
NineML Python library
Release 0.3dev

Andrew P. Davison Thomas G. Close, Mike Hull, and Eilif Muller,

Jan 22, 2018





Contents

1 Users’ guide 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 NineML Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Hierarchical dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 API reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.9 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.10 Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Developers’ guide 35
2.1 Contributing to NineML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Developer reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



ii



NineML Python library, Release 0.3dev

NineML is a language for describing the dynamics and connectivity of neuronal network simulations; in particular for
large-scale simulations of many point neurons.

The language is defined as an object model, described in the NineML specification, with standardized serializations to
XML, JSON, YAML and HDF5.

This documentation describes the nineml Python package, which implements the NineML object model using
Python classes, allowing models to be created, edited, introspected, etc. using Python, and then written to/read from
the NineML XML format.

Contents 1

http://nineml.net
http://nineml.net/specification/
http://nineml.net
http://nineml.net


NineML Python library, Release 0.3dev

2 Contents



CHAPTER 1

Users’ guide

1.1 Motivation

1.1.1 Why NineML?

NineML (or “9ML”) is a language for describing the dynamics and connectivity of neuronal network simulations; in
particular for large-scale simulations of many point neurons (where the neuron model does not explicitly represent
dendrites).

At present, networks of point-neurons are typically simulated by writing either a custom simulation program in a
general-purpose programming language (such as Python, MATLAB) or by writing a model for a particular simulator
(NEURON, NEST, Brian, etc.) As models of neuronal dynamics and connectivity become more and more complex,
writing a simulation from scratch in Python or Matlab can become more and more complex, taking time to debug and
producing hard to find bugs. Writing simulator-specific models can reduce some of this duplication, but this means
the model will only run on a single simulator and is hence difficult to share.

Programmatic model description APIs such as PyNN provide simulator independence at the expense of (i) having to
choose from a limited library of neuron models (note however that PyNN now works with neuron/synapse models
defined in NineML, for certain simulators), (ii) being tied to a particular programming language. Having access to
a full programming language is also a temptation to writing over-complex, difficult to maintain model descriptions
when compared to a declarative language such as NineML.

NineML tries to mitigate some of these problems by providing an language for defining smaller components of a
simulation in a declarative, language-independent way. Various tools are then available for generating code for various
simulators from this description (see http://nineml.net/software).

Note: NineML and NeuroML version 2 are both languages for mathematically-explicit descriptions of biological
neuronal network models. NineML currently works only for point-neuron/single-compartment neuron models, while
NeuroML also supports multi-compartment, morphologically-detailed models. The two languages evolved in parallel,
although with considerable cross-influence in both directions. It is possible they will merge in future; tools are under
development to allow conversion between the formats where possible. Which one you should choose depends largely
on what you want to do, and what tools are available for working with the two languages.

3

http://nineml.net
http://www.neuron.yale.edu/neuron/
http://www.nest-simulator.org
http://www.briansimulator.org
http://neuralensemble.org/PyNN/
http://nineml.net
http://nineml.net
http://nineml.net
http://nineml.net/software
http://nineml.net
http://neuroml.org
http://nineml.net


NineML Python library, Release 0.3dev

1.1.2 Abstraction and User Layers

In NineML, the definition of a component is split into two parts;

Abstraction Layer Components on this layer can be thought of as parameterised models. For example, we could
specify a general integrate-and-fire neuron, with a firing threshold, V_Threshold and a reset voltage
V_Reset. We are able to define the dynamics of the neuron in terms of these parameters.

User Layer In order to simulate a network, we need to take the parameterised models from the Abstraction Layer, fill
in the parameters, and specify the number of each type of component we wish to simulate and how they should
be connected. For example, we might specify for our neurons that V_Threshold was -45 mV and V_Reset
was -60 mV.

The flow for a simulation using NineML would look like:

An obvious question is “Why do this?!”

For a single, relatively simple simulation, it may not be worth the effort! But imagine we are modelling a (relatively
simple) network of neurons, which contains five different types of neurons. The neurons synapse onto each other,
and there are three different classes of synapses, with different models for their dynamics. If we were to implement
this naively, we could potentially copy and paste the same code 15 times, for each simulator. By factoring out basic
functionality, we make our workflow much more manageable.

1.1.3 The nineml Python library

NineML is defined by an object model (the specification can be found at nineml.net), with standardized serializations
to XML, JSON, YAML and HDF5. The Python nineml library provides tools for reading and writing NineML
models to and from the supported serialization formats and an API for building/introspecting/manipulating/validating
NineML models in Python (including a shorthand notation for building NineML models). The library is intended as a
base for other Python tools working with NineML, for example tools for code generation.

1.2 Installation

Use of the Python 9ML API requires that you have Python (version 2.7 or >=3.4) with the sympy package installed.
To serialize NineML to XML, YAML and HDF5 formats the lxml, pyyaml and h5py packages are also required
respectively.

1.2.1 Depdendencies

macOS

If you are not already using another Python installation (e.g. Enthought, Python(x,y), etc. . . ) it can be a good idea
to install Python using the Homebrew package manager rather than using the system version as Apple has modified

4 Chapter 1. Users’ guide

http://nineml.net
http://nineml.net
http://nineml.net
http://nineml.net/specification/nineml_version1.pdf
http://nineml.net
http://nineml.net
http://nineml.net
http://nineml.net
http://nineml.net
http://brew.sh


NineML Python library, Release 0.3dev

some package versions (e.g. six), which can cause difficulties down the track.

$ brew install python

While other Python installations should work fine, it is not recommended to use the system Python installation at
/usr/bin/python for scientific computing as some of the standard pacakges (e.g. six) have been modified and this can
cause problems with other packages down the track.

Before installing h5py you will also need to install a development version of HDF5. With Homebrew this can be done
with:

$ brew install hdf5

Linux

On Linux, development packages for HDF5 (i.e. with headers). For Ubuntu/Debian the following packages can be
used

• libhdf5-serial-dev (serial)

• libhdf5-openmpi-dev (parallel with Open MPI)

• libhdf5-mpich-dev (parallel with MPICH)

Please consult the relevant documentation to find the appropriate package for other distributions.

Windows

On Windows, you can download the Python installer from http://www.python.org. To use HDF5 serialisation you will
need to install HDF5 from source, see http://docs.h5py.org/en/latest/build.html.

1.2.2 Install Python packages

To install the Python package it is recommeded to install from PyPI using pip:

$ pip install nineml

Otherwise for the latest version you can clone the repository at http://github.com/INCF/nineml-python or install di-
rectly with:

$ pip install git+http://github.com/INCF/nineml-python

1.3 Getting started

1.3.1 Reading model descriptions from XML files

NineML documents can contain abstraction layer models, user layer models (with references to abstraction layer
models defined in other documents) or both.

To read a file containing only abstraction layer elements:

1.3. Getting started 5

http://brew.sh
http://www.python.org
http://docs.h5py.org/en/latest/build.html
http://github.com/INCF/nineml-python


NineML Python library, Release 0.3dev

>>> import nineml, pprint
>>> doc = nineml.read("./BrunelIaF.xml")
>>> pprint(doc.items())
[('BrunelIaF', Dynamics(name='BrunelIaF')),
('current', Dimension(name='current', i=1)),
('resistance', Dimension(name='resistance', i=-2, m=1, t=-3, l=2)),
('time', Dimension(name='time', t=1)),
('voltage', Dimension(name='voltage', i=-1, m=1, t=-3, l=2)]

This gives us a Document instance, a dictionary-like object containing a Dynamics definition of an integrate-and-
fire neuron model, together with the definitions of the physical dimensions of parameters and state variables used in
the model.

Now for a file containing an entire user layer model (with references to other NineML documents containing the
abstraction layer definitions):

>>> doc = nineml.read("./network/Brunel2000/AI.xml")
>>> pprint(doc.items())
[('All': Selection(name='All')),
('Exc': Population(name='Exc', number=4000, cell=nrn)),
('Excitation': Projection(name="Excitation", source=Population(name='Exc',
→˓number=4000, cell=nrn), destination=Selection(name='All'),
→˓connectivity=BaseComponent(name="RandomExc", componentclass="RandomFanIn"),
→˓response=BaseComponent(name="syn", componentclass="AlphaPSR
→˓")plasticity=BaseComponent(name="ExcitatoryPlasticity", componentclass=
→˓"StaticConnection"), delay=Delay(value=1.5, unit=ms), with 2 port-connections)),
('Ext': Population(name='Ext', number=5000, cell=stim)),
('External': Projection(name="External", source=Population(name='Ext', number=5000,
→˓cell=stim), destination=Selection(name='All'), connectivity=BaseComponent(name=
→˓"OneToOne", componentclass="OneToOne"), response=BaseComponent(name="syn",
→˓componentclass="AlphaPSR")plasticity=BaseComponent(name="ExternalPlasticity",
→˓componentclass="StaticConnection"), delay=Delay(value=1.5, unit=ms), with 2 port-
→˓connections)),
('Hz': Unit(name='Hz', dimension='per_time', power=0)),
('Inh': Population(name='Inh', number=1000, cell=nrn)),
('Inhibition': Projection(name="Inhibition", source=Population(name='Inh',
→˓number=1000, cell=nrn), destination=Selection(name='All'),
→˓connectivity=BaseComponent(name="RandomInh", componentclass="RandomFanIn"),
→˓response=BaseComponent(name="syn", componentclass="AlphaPSR
→˓")plasticity=BaseComponent(name="InhibitoryPlasticity", componentclass=
→˓"StaticConnection"), delay=Delay(value=1.5, unit=ms), with 2 port-connections)),
('Mohm': Unit(name='Mohm', dimension='resistance', power=6)),
('current': Dimension(name='current', i=1)),
('mV': Unit(name='mV', dimension='voltage', power=-3)),
('ms': Unit(name='ms', dimension='time', power=-3)),
('nA': Unit(name='nA', dimension='current', power=-9)),
('per_time': Dimension(name='per_time', t=-1)),
('resistance': Dimension(name='resistance', i=-2, m=1, t=-3, l=2)),
('time': Dimension(name='time', t=1)),
('voltage': Dimension(name='voltage', i=-1, m=1, t=-3, l=2))]

Again we get a Document instance object containing all the NineML objects in the document. An alternative repre-
sentation can be obtained by reading the file as a Network object:

>>> from nineml.user import Network
>>> net = doc.read("./network/Brunel2000/AI.xml").as_network('BrunelAI')
>>> print(net)
Network(name='BrunelAI')

6 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

This gives a much more structured representation. For example, all the Populations within the model are available
through the populations attribute:

>>> pprint(list(net.populations))
[Population(name='Exc', number=4000, cell=nrn),
Population(name='Ext', number=5000, cell=stim),
Population(name='Inh', number=1000, cell=nrn)]

1.3.2 Introspecting NineML models

Introspecting abstraction layer models

Once we have loaded a model from an XML file we can begin to examine its structure.

>>> model = doc['BrunelIaF']
>>> model
Dynamics(name='BrunelIaF')

We can see a list of model parameters:

>>> pprint(list(model.parameters))
[Parameter(theta, dimension=voltage),
Parameter(Vreset, dimension=voltage),
Parameter(R, dimension=resistance),
Parameter(tau_rp, dimension=time),
Parameter(tau, dimension=time)]

a list of state variables:

>>> pprint(list(model.state_variables))
[StateVariable(V, dimension=voltage),
StateVariable(t_rpend, dimension=time)]

and a list of the variables that are imported from/exposed to the outside world:

>>> pprint(list(model.ports))
[AnalogSendPort('V', dimension='Dimension(name='voltage', i=-1, m=1, t=-3, l=2)'),
AnalogSendPort('t_rpend', dimension='Dimension(name='time', t=1)'),
AnalogReducePort('Isyn', dimension='Dimension(name='current', i=1)', op='+'),
EventSendPort('spikeOutput')]

Delving more deeply, we can examine the model’s regimes more closely:

>>> pprint(list(model.regimes))
[Regime(refractoryRegime),
Regime(subthresholdRegime)]

>>> r_ref, r_sth = model.regimes

Looking first at the subthreshold regime, we can see the differential equations:

>>> list(r_sth.time_derivatives)
[TimeDerivative( dV/dt = (-V + R*Isyn)/tau )]

and the conditions under which the model will transition to the refractory regime:

1.3. Getting started 7



NineML Python library, Release 0.3dev

>>> list(r_sth.transitions)
[OnCondition( V > theta )]
>>> tr_spike = next(r_sth.transitions)

The trigger for this transition is for the variable V to pass a threshold (parameter theta):

>>> tr_spike.trigger
Trigger('V > theta')

When the transition is initiated, the model will emit an output event (i.e. a spike) and discontinusouly change the
values of some of the state variables:

>>> tr_spike.output_events
[OutputEvent('spikeOutput')]
>>> tr_spike.state_assignments
[StateAssignment('t_rpend', 't + tau_rp'), StateAssignment('V', 'Vreset')]

Then it will move to the refractory regime:

>>> tr_spike.target_regime
Regime(refractoryRegime)

The refractory regime can be introspected in a similar way.

Introspecting user layer models

As shown above, once a complete network model has been loaded as a Network object, we can look at its neuron
populations and the connections between these populations (“projections”):

>>> pprint(list(net.populations))
[Population(name='Exc', number=4000, cell=nrn),
Population(name='Ext', number=5000, cell=stim),
Population(name='Inh', number=1000, cell=nrn)]

>>> pprint(list(net.projections))
[Projection(name="Inhibition", pre=Population(name='Inh', size=2500, cell=nrn),
→˓post=Selection(name='All', Concatenate(Item(name='0'), Item(name='1'))),
→˓connectivity=Connectivity(rule=RandomFanIn, src_size=2500, dest_size=12500),
→˓response=DynamicsProperties(name="syn", component_class="Alpha
→˓")plasticity=DynamicsProperties(name="InhibitoryPlasticity", component_class="Static
→˓"), delay=1.5 * ms,event_port_connections=[EventPortConnection(sender=role:pre->
→˓spike_output, receiver=role:response->input_spike)], analog_port_
→˓connections=[AnalogPortConnection(sender=role:response->i_synaptic,
→˓receiver=role:post->i_synaptic), AnalogPortConnection(sender=role:plasticity->fixed_
→˓weight, receiver=role:response->weight)]),
Projection(name="External", pre=Population(name='Ext', size=12500, cell=stim),
→˓post=Selection(name='All', Concatenate(Item(name='0'), Item(name='1'))),
→˓connectivity=Connectivity(rule=OneToOne, src_size=12500, dest_size=12500),
→˓response=DynamicsProperties(name="syn", component_class="Alpha
→˓")plasticity=DynamicsProperties(name="ExternalPlasticity", component_class="Static
→˓"), delay=1.5 * ms,event_port_connections=[EventPortConnection(sender=role:pre->
→˓spike_output, receiver=role:response->input_spike)], analog_port_
→˓connections=[AnalogPortConnection(sender=role:response->i_synaptic,
→˓receiver=role:post->i_synaptic), AnalogPortConnection(sender=role:plasticity->fixed_
→˓weight, receiver=role:response->weight)]),
Projection(name="Excitation", pre=Population(name='Exc', size=10000, cell=nrn),
→˓post=Selection(name='All', Concatenate(Item(name='0'), Item(name='1'))),
→˓connectivity=Connectivity(rule=RandomFanIn, src_size=10000, dest_size=12500),
→˓response=DynamicsProperties(name="syn", component_class="Alpha
→˓")plasticity=DynamicsProperties(name="ExcitatoryPlasticity", component_class="Static
→˓"), delay=1.5 * ms,event_port_connections=[EventPortConnection(sender=role:pre->
→˓spike_output, receiver=role:response->input_spike)], analog_port_
→˓connections=[AnalogPortConnection(sender=role:response->i_synaptic,
→˓receiver=role:post->i_synaptic), AnalogPortConnection(sender=role:plasticity->fixed_
→˓weight, receiver=role:response->weight)])]

8 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

NineML also supports “selections”, groupings of neurons which span populations:

>>> pprint(list(net.selections))
[Selection(name='All', Concatenate(Item(name='0'), Item(name='1')))]

Note: in NineML version 1, the only type of selection is a concatenation of two or more populations. In future
versions it will be possible to select and combine sub-populations.

Looking more closely at a population, we can see its name, the number of neurons it contains and the neuron model
used (Component):

>>> p_exc = net.population('Exc')
>>> p_exc
Population(name='Exc', size=4000, cell=nrn)
>>> p_exc.size
4000
>>> p_exc.cell
DynamicsProperties(name="nrn", componentclass="BrunelIaF")

In the neuron model component we can see its abstraction layer definition (ComponentClass), it’s properties (pa-
rameter values), and the initial values of its state variables.

Note: the handling of initial values is likely to change in future versions of NineML.

>>> p_exc.cell.component_class
Dynamics(name='BrunelIaF')
>>> pprint(list(p_exc.cell.properties))
[Property(name=Vreset, value=10.0, unit=mV),
Property(name=tau, value=20.0, unit=ms),
Property(name=R, value=1.5, unit=Mohm),
Property(name=tau_rp, value=2.0, unit=ms),
Property(name=theta, value=20.0, unit=mV)]

>>> pprint(list(p_exc.cell.initial_values))
[Initial(name='t_rpend', value=0.0, unit=ms),
Initial(name='V', value=0.0, unit=mV)]

Turning from a population to a projection:

>>> prj_inh = net.projection('Inhibition')
>>> prj_inh.pre
Population(name='Inh', number=1000, cell=nrn)
>>> prj_inh.post
Selection(name='All', Concatenate(Item(name='0'), Item(name='1')))
>>> prj_inh.response
DynamicsProperties(name="syn", componentclass="AlphaPSR")
>>> prj_inh.connectivity
DynamicsProperties(name="RandomInh", componentclass="RandomFanIn")
>>> prj_inh.plasticity
DynamicsProperties(name="InhibitoryPlasticity", componentclass="StaticConnection")
>>> prj_inh.delay
1.5 * ms
>>> pprint(list(prj_inh.port_connections))
[AnalogPortConnection(sender=role:response->i_synaptic, receiver=role:post->i_
→˓synaptic),

1.3. Getting started 9



NineML Python library, Release 0.3dev

AnalogPortConnection(sender=role:plasticity->fixed_weight, receiver=role:response->
→˓weight),
EventPortConnection(sender=role:pre->spike_output, receiver=role:response->input_
→˓spike)]

Note that the pre and post attributes point to Populations or Projections, the connectivity
rule, the post-synaptic response model and the synaptic plasticity model are all Components. The
port_connections attribute indicates which ports in the different components should be connected together.

1.3.3 Writing model descriptions in Python

Writing abstraction layer models

subthreshold_regime = Regime(
name="subthreshold_regime",
time_derivatives=[

"dV/dt = alpha*V*V + beta*V + zeta - U + Isyn / C_m",
"dU/dt = a*(b*V - U)", ],

transitions=[On("V > theta",
do=["V = c",

"U = U+ d",
OutputEvent('spike')],

to='subthreshold_regime')]
)

ports = [AnalogSendPort("V", un.voltage),
AnalogReducePort("Isyn", un.current, operator="+")]

parameters = [
Parameter('theta', un.voltage),
Parameter('a', un.per_time),
Parameter('b', un.per_time),
Parameter('c', un.voltage),
Parameter('d', un.voltage / un.time),
Parameter('C_m', un.capacitance),
Parameter('alpha', un.dimensionless / (un.voltage * un.time)),
Parameter('beta', un.per_time),
Parameter('zeta', un.voltage / un.time)]

state_variables = [
StateVariable('V', un.voltage),
StateVariable('U', un.voltage / un.time)]

izhi = Dynamics(
name="Izhikevich",
parameters=parameters,
state_variables=state_variables,
regimes=[subthreshold_regime],
analog_ports=ports)

10 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

Writing user layer models

# Meta-parameters
order = 1000 # scales the size of the network
Ne = 4 * order # number of excitatory neurons
Ni = 1 * order # number of inhibitory neurons
epsilon = 0.1 # connection probability
Ce = int(epsilon * Ne) # number of excitatory synapses per neuron
Ci = int(epsilon * Ni) # number of inhibitory synapses per neuron
Cext = Ce # effective number of external synapses per neuron
delay = 1.5 # (ms) global delay for all neurons in the group
J = 0.1 # (mV) EPSP size
Jeff = 24.0 * J # (nA) synaptic weight
Je = Jeff # excitatory weights
Ji = -g * Je # inhibitory weights
Jext = Je # external weights
theta = 20.0 # firing thresholds
tau = 20.0 # membrane time constant
tau_syn = 0.1 # synapse time constant
# nu_thresh = theta / (Je * Ce * tau * exp(1.0) * tau_syn) # threshold rate
nu_thresh = theta / (J * Ce * tau)
nu_ext = eta * nu_thresh # external rate per synapse
input_rate = 1000.0 * nu_ext * Cext # mean input spiking rate

# Parameters
neuron_parameters = dict(tau=tau * ms,

v_threshold=theta * mV,
refractory_period=2.0 * ms,
v_reset=10.0 * mV,
R=1.5 * Mohm) # units??

psr_parameters = dict(tau=tau_syn * ms)

# Initial Values
v_init = RandomDistributionProperties(

"uniform_rest_to_threshold",
ninemlcatalog.load("randomdistribution/Uniform",

'UniformDistribution'),
{'minimum': (0.0, unitless),
'maximum': (theta, unitless)})

neuron_initial_values = {"v": (v_init * mV),
"refractory_end": (0.0 * ms)}

synapse_initial_values = {"a": (0.0 * nA), "b": (0.0 * nA)}
tpoisson_init = RandomDistributionProperties(

"exponential_beta",
ninemlcatalog.load('randomdistribution/Exponential',

'ExponentialDistribution'),
{"rate": (1000.0 / input_rate * unitless)})

# Dynamics components
celltype = DynamicsProperties(

"nrn",
ninemlcatalog.load('neuron/LeakyIntegrateAndFire',

'LeakyIntegrateAndFire'),
neuron_parameters, initial_values=neuron_initial_values)

ext_stim = DynamicsProperties(
"stim",
ninemlcatalog.load('input/Poisson', 'Poisson'),
dict(rate=(input_rate, Hz)),

1.3. Getting started 11



NineML Python library, Release 0.3dev

initial_values={"t_next": (tpoisson_init, ms)})
psr = DynamicsProperties(

"syn",
ninemlcatalog.load('postsynapticresponse/Alpha', 'Alpha'),
psr_parameters,
initial_values=synapse_initial_values)

# Connecion rules
one_to_one_class = ninemlcatalog.load(

'/connectionrule/OneToOne', 'OneToOne')
random_fan_in_class = ninemlcatalog.load(

'/connectionrule/RandomFanIn', 'RandomFanIn')

# Populations
exc_cells = Population("Exc", Ne, celltype, positions=None)
inh_cells = Population("Inh", Ni, celltype, positions=None)
external = Population("Ext", Ne + Ni, ext_stim, positions=None)

# Selections
all_cells = Selection(

"All", Concatenate(exc_cells, inh_cells))

# Projections
input_prj = Projection(

"External", external, all_cells,
connectivity=ConnectionRuleProperties(

"OneToOne", one_to_one_class),
response=psr,
plasticity=DynamicsProperties(

"ExternalPlasticity",
ninemlcatalog.load("plasticity/Static", 'Static'),
properties={"weight": (Jext, nA)}),

port_connections=[
EventPortConnection(

'pre', 'response', 'spike_output', 'spike'),
AnalogPortConnection(

"plasticity", "response", "fixed_weight", "weight"),
AnalogPortConnection(

"response", "destination", "i_synaptic", "i_synaptic")],
delay=(delay, ms))

exc_prj = Projection(
"Excitation", exc_cells, all_cells,
connectivity=ConnectionRuleProperties(

"RandomExc", random_fan_in_class, {"number": (Ce * unitless)}),
response=psr,
plasticity=DynamicsProperties(

"ExcitatoryPlasticity",
ninemlcatalog.load("plasticity/Static", 'Static'),
properties={"weight": (Je, nA)}),

port_connections=[
EventPortConnection(

'pre', 'response', 'spike_output', 'spike'),
AnalogPortConnection(

"plasticity", "response", "fixed_weight", "weight"),
AnalogPortConnection(

"response", "destination", "i_synaptic", "i_synaptic")],
delay=(delay, ms))

12 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

inh_prj = Projection(
"Inhibition", inh_cells, all_cells,
connectivity=ConnectionRuleProperties(

"RandomInh", random_fan_in_class, {"number": (Ci * unitless)}),
response=psr,
plasticity=DynamicsProperties(

"InhibitoryPlasticity",
ninemlcatalog.load("plasticity/Static", 'Static'),
properties={"weight": (Ji, nA)}),

port_connections=[
EventPortConnection(

'pre', 'response', 'spike_output', 'spike'),
AnalogPortConnection(

"plasticity", "response", "fixed_weight", "weight"),
AnalogPortConnection(

"response", "destination", "i_synaptic", "i_synaptic")],
delay=(delay, ms))

# Save to document in NineML Catalog
network = Network(name if name else "BrunelNetwork")
network.add(exc_cells, inh_cells, external, all_cells, input_prj, exc_prj,

inh_prj)

1.4 NineML Types

1.4.1 Relationship to specification

There is a near one-to-one mapping between NineML types as defined in the NineML specification and classes in the
nineml Python package.

The most significant exceptions are classes in the nineml package that are modelled on proposed
changes to the NineML specification (see http://github.com/INCF/nineml-spec/issues), e.g. ComponentClass-
>:ref:Dynamics/ConnectionRule, Projection, Quantity.

There are also cases where a type in the specification is just a thin wrapper around a body element (e.g. Delay, Size),
which are “flattened” to be attributes in the NineML Python Library.

Mathematical expressions

All expressions in the NineML Python Library are represented using Sympy objects. Whereas in the NineML Speci-
fication mathematical expressions are specified to be enclosed within MathInline elements (with a subset of MathML
planned as an alternative in future versions), in the NineML Python Library the Sympy object representing is accessed
via the rhs property of the relevant objects.

1.4.2 Common properties/methods

All types

All NineML types in the NineML Python Library derive from BaseNineMLObject, which adds some common
methods.

1.4. NineML Types 13

http://nineml.net/specification/
http://nineml.net/specification/
http://github.com/INCF/nineml-spec/issues
http://sympy.org/
http://nineml.net/specification/
http://nineml.net/specification/
http://sympy.org/


NineML Python library, Release 0.3dev

Document-level types

There are 12 types that are permitted in the root of a NineML document

• Dynamics

• DynamicsProperties

• ConnectionRule

• ConnectionRuleProperties

• RandomDistribution

• RandomDistribution

• Population

• Projection

• Selection

• Network

• Unit

• Dimension

Instances of these types has a document property to access the document it belongs to and a url property to access
the url of the document. If the instance has not been added to a document then they will return None.

Container types

NineML types that can have multiple child elements of one or more types, i.e.:

• Dynamics

• ConnectionRule

• RandomDistribution

• DynamicsProperties

• ConnectionRuleProperties

• RandomDistributionProperties

• Regime

• OnEvent

• OnCondition

• Network

• Selection

derive from the ContainerObject class, which defines several methods to accessing, adding and removing their
children. Internally, each child is stored in a dictionary according to its type. However, access to children is provided
through four standardised accessor methods for each child type the container can hold:

<child-type-plural>: Property that returns an iterator over child elements of the given type (e.g.
aliases, parameters, on_conditions)

14 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

<child-type>_names/keys: Property that returns an iterator over the keys of child elements that
are used to store the child in the internal dictionary. If the child type has a name, then the access will
be <child-type>_names, otherwise it will be <child-type>_keys (e.g. alias_names,
parameter_names, on_condition_keys)

num_<child-type-plural>: Property that returns the number child elements in the container

<child-type>: Accessor method that takes the name/key of the child type and returns the correspond-
ing element in the container.

There are a number of standard methods for container types

Annotations

All NineML elements can be annotated (except Annotations themselves) via their annotations property. The
annotations property returns an Annotations element, with several convenient methods for setting attributes
of nested elements.

1.5 Serialization

All NineML Python objects can be written to file via their write method, which simply wraps the object in a
Document and passes it to the nineml.write function (alternatively the nineml.write function can be called
directly). NineML documents can be read from files into Document objects using the nineml.read method, e.g.:

>>> dynA = nineml.Dynamics('A', ...)
>>> dynA.write('example.xml') # Alternatively nineml.write('example.xml', dynA, ...)
>>> doc = nineml.read('example.xml')
>>> dynA = doc['dynA']

Documents that are read or written to/from files will be cached in the Document class unless the register keyword
argument is set to False.

NineML objects can also be serialized to string and/or basic Python objects and back again using the serialize
and unserialize methods depending on the data format chosen (see Formats).

1.5.1 Formats

There are currently five supported formats for serialization with the NineML Python library: XML, YAML, JSON,
HDF5, and Python dictionary (the JSON and YAML formats are derived from the Python dictionary serializer). Noting
that the serialization module is written in a modular way that can support additional hierarchical formats if required
by deriving the BaseSerializer and BaseUnserializer classes.

Depending on the format used, NineML can be serialized to file, string or standard Python objects (i.e dictionary).

Format File String Object
XML X X X
JSON X X
YAML X X
HDF5 X
Python dictionary X

1.5. Serialization 15

http://www.w3.org/XML/
http://yaml.org
http://www.json.org/
http://www.hdfgroup.org/HDF5/
http://www.json.org/
http://yaml.org
http://www.w3.org/XML/
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/


NineML Python library, Release 0.3dev

Note: Although the set of hierarchical object models that can be represented by XML, JSON/YAML and HDF5 are
very similar, there are slight differences that prevent general one-to-one mappings between them. These issues, and
how they are overcome are explained in the Serialization Section of the NineML Specification.

1.5.2 Versions

The NineML Python Library is fully interoperable with the NineML v1 syntax the v2 syntax currently under develop-
ment. While this will not be feasible as non-compatible features are added to v2, the aim is to maintain full backwards
compatibility with v1.

1.5.3 Referencing style

References from one serialized NineML object to another can either be “local”, where both objects are contained in
the same document, or “remote”, where the referenced object is in a different document to the object that references
it.

Remote references enable large and complex models to be split across a number of files, or to reference standardized
models from the NineML catalog for example. However, in some circumstances it may be desirable to copy all
references to the local document, for ease-of-portability or to reduce the complexity of the read methods required by
supporting tools.

The ref_style keyword argument can be used to control the referencing style used when serializing NineML
documents. Valid options are

local: All references are written locally to the serialized document.

prefer: Objects are written as references where possible

inline: Objects are written inline where possible

None: Whether an object is written as a reference or inline is preserved from when the document was read

1.6 Hierarchical dynamics

Hierarchical components allow us to build a single component, out of several smaller components. For example, imag-
ine we could build a component that represented an integrate-and-fire neuron (IAF) with 2 input synapses. We could
do this by either by creating a single component, as we have been doing previously, or by creating 3 components; the
IAF component and 2 synapses, and then creating a larger component out of them by specifying internal connectivity.

Building larger components out of smaller components has several advantages:

• We can define components in a reusable way. I.e., we can write the IAF subcomponent once, then reuse it
across multiple components.

• We can isolated unrelated variables; reducing the chance of a typo producing a bug or variable collisions.

We look at the IAF with two synapse example in more detail. The following figure shows a cartoon of an iaf neuron
with a refractory period. Orange boxes denote regimes, yellow ovals denote transitions and the ports are shown on the
right-hand-side. Parameters have been omitted.

16 Chapter 1. Users’ guide

http://www.w3.org/XML/
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/
http://nineml-spec.readthedocs.io/latest/serialization
http://nineml.net/specification/
http://github.com/INCF/nineml-catalog


NineML Python library, Release 0.3dev

The corresponding code to generate this component is:

r1 = al.Regime(name = "subthresholdregime",
time_derivatives = ["dV/dt = ( gl*( vrest - V ) + ISyn)/(cm)"],
transitions = [al.On("V > vthresh",

do=["tspike = t",
"V = vreset",
al.OutputEvent('spikeoutput')],

to="refractoryregime")])
r2 = al.Regime(name="refractoryregime",

time_derivatives=["dV/dt = 0"],
iaf = al.Dynamics(

name = "iaf",
dynamics = al.Dynamics( regimes = [r1,r2] ),
analog_ports=[al.SendPort("V"), al.ReducePort("ISyn", reduce_op="+")],
event_ports=[al.SendEventPort('spikeoutput')])

Similarly, we can define a synapse component:

1.6. Hierarchical dynamics 17



NineML Python library, Release 0.3dev

with corresponding code:

coba = al.Dynamics(
name = "CobaSyn",
dynamics =

al.Dynamics(
aliases = ["I:=g*(vrev-V)", ],
regimes = [
al.Regime(

name = "cobadefaultregime",
time_derivatives = ["dg/dt = -g/tau",],
transitions = [

al.On(al.InputEvent('spikeinput'), do=["g=g+q"]),
],

)
],

state_variables = [ al.StateVariable('g') ]
),

analog_ports = [ al.RecvPort("V"), al.SendPort("I"), ],
event_ports = [al.RecvEventPort('spikeinput') ],
parameters = [ al.Parameter(p) for p in ['tau','q','vrev'] ]
)

1.6.1 Multi-Dynamics

We now define a larger component, which will contain these sub_dynamics. When we create the component, we
specify the name of each subcomponent, which allows us to reference them in the future.

We also need to specify that the voltage send port from the iaf needs to be connected to the voltage receive ports of
the synapse. Similarly we need to connect the current port from the synapses into the current reduce port on the IAF

18 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

neuron. These connections are shown in red on the diagram, and correspond to the arguments corresponding to the
port_connections argument.

In a diagram:

In code:

# Create a model, composed of an iaf neuron, and
iaf_2coba_comp = al.MultiDynamics(name="iaf_2coba",

sub_dynamics={"iaf" : get_iaf(),
"coba_excit" : get_coba(),
"coba_inhib" : get_coba()},

port_connections=[
("iaf", "V", "coba_excit", "V"),
("iaf", "V", "coba_inhib", "V"),
("coba_excit", "I", "iaf", "ISyn"),
("coba_inhib", "I", "iaf", "ISyn")]

1.7 Examples

1.7.1 Neuron Models

Example - Adaptive Exponential Integrate and Fire

from __future__ import division
from nineml import units as un
from nineml import abstraction as al, user as ul

1.7. Examples 19



NineML Python library, Release 0.3dev

def create_adaptive_exponential():
"""
Adaptive exponential integrate-and-fire neuron as described in
A. Destexhe, J COmput Neurosci 27: 493--506 (2009)

Author B. Kriener (Jan 2011)

## neuron model: aeIF

## variables:
## V: membrane potential
## w: adaptation variable

## parameters:
## C_m # specific membrane capacitance [muF/cm**2]
## g_L # leak conductance [mS/cm**2]
## E_L # resting potential [mV]
## Delta # steepness of exponential approach to threshold [mV]
## V_T # spike threshold [mV]
## S # membrane area [mum**2]
## trefractory # refractory time [ms]
## tspike # spike time [ms]
## tau_w # adaptation time constant
## a, b # adaptation parameters [muS, nA]
"""
aeIF = al.Dynamics(

name="AdaptiveExpIntegrateAndFire",
parameters=[

al.Parameter('C_m', un.capacitance),
al.Parameter('g_L', un.conductance),
al.Parameter('E_L', un.voltage),
al.Parameter('Delta', un.voltage),
al.Parameter('V_T', un.voltage),
al.Parameter('S'),
al.Parameter('trefractory', un.time),
al.Parameter('tspike', un.time),
al.Parameter('tau_w', un.time),
al.Parameter('a', un.dimensionless / un.voltage),
al.Parameter('b')],

state_variables=[
al.StateVariable('V', un.voltage),
al.StateVariable('w')],

regimes=[
al.Regime(

name="subthresholdregime",
time_derivatives=[

"dV/dt = -g_L*(V-E_L)/C_m + Isyn/C_m + g_L*Delta*exp((V-V_T)/
→˓Delta-w/S)/C_m", # @IgnorePep8

"dw/dt = (a*(V-E_L)-w)/tau_w", ],
transitions=al.On("V > V_T",

do=["V = E_L", "w = w + b",
al.OutputEvent('spikeoutput')],

to="refractoryregime")),
al.Regime(

name="refractoryregime",
transitions=al.On("t>=tspike+trefractory",

to="subthresholdregime"))],
analog_ports=[al.AnalogReducePort("Isyn", un.current, operator="+")])

20 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

return aeIF

def parameterise_adaptive_exponential(definition=None):
if definition is None:

definition = create_adaptive_exponential()
comp = ul.DynamicsProperties(

name='SampleAdaptiveExpIntegrateAndFire',
definition=definition,
properties=[ul.Property('C_m', 1 * un.pF),

ul.Property('g_L', 0.1 * un.nS),
ul.Property('E_L', -65 * un.mV),
ul.Property('Delta', 1 * un.mV),
ul.Property('V_T', -58 * un.mV),
ul.Property('S', 0.1),
ul.Property('tspike', 0.5 * un.ms),
ul.Property('trefractory', 0.25 * un.ms),
ul.Property('tau_w', 4 * un.ms),
ul.Property('a', 1 * un.per_mV),
ul.Property('b', 2)],

initial_values=[ul.Initial('V', -70 * un.mV),
ul.Initial('w', 0.1 * un.mV)])

return comp

Example - Hodgkin-Huxley

from __future__ import division
from past.utils import old_div
from nineml import abstraction as al, user as ul, Document
from nineml import units as un
from nineml.xml import E, etree

def create_hodgkin_huxley():
"""A Hodgkin-Huxley single neuron model.
Written by Andrew Davison.
See http://phobos.incf.ki.se/src_rst/

examples/examples_al_python.html#example-hh
"""
aliases = [

"q10 := 3.0**((celsius - qfactor)/tendegrees)", # temperature correction
→˓factor @IgnorePep8

"m_alpha := m_alpha_A*(V-m_alpha_V0)/(exp(-(V-m_alpha_V0)/m_alpha_K) - 1.0)",
→˓ # @IgnorePep8

"m_beta := m_beta_A*exp(-(V-m_beta_V0)/m_beta_K)",
"mtau := 1.0/(q10*(m_alpha + m_beta))",
"minf := m_alpha/(m_alpha + m_beta)",
"h_alpha := h_alpha_A*exp(-(V-h_alpha_V0)/h_alpha_K)",
"h_beta := h_beta_A/(exp(-(V-h_beta_V0)/h_beta_K) + 1.0)",
"htau := 1.0/(q10*(h_alpha + h_beta))",
"hinf := h_alpha/(h_alpha + h_beta)",
"n_alpha := n_alpha_A*(V-n_alpha_V0)/(exp(-(V-n_alpha_V0)/n_alpha_K) - 1.0)",

→˓ # @IgnorePep8
"n_beta := n_beta_A*exp(-(V-n_beta_V0)/n_beta_K)",
"ntau := 1.0/(q10*(n_alpha + n_beta))",
"ninf := n_alpha/(n_alpha + n_beta)",

1.7. Examples 21



NineML Python library, Release 0.3dev

"gna := gnabar*m*m*m*h",
"gk := gkbar*n*n*n*n",
"ina := gna*(ena - V)",
"ik := gk*(ek - V)",
"il := gl*(el - V )"]

hh_regime = al.Regime(
"dn/dt = (ninf-n)/ntau",
"dm/dt = (minf-m)/mtau",
"dh/dt = (hinf-h)/htau",
"dV/dt = (ina + ik + il + isyn)/C",
transitions=al.On("V > v_threshold", do=al.SpikeOutputEvent())

)

state_variables = [
al.StateVariable('V', un.voltage),
al.StateVariable('m', un.dimensionless),
al.StateVariable('n', un.dimensionless),
al.StateVariable('h', un.dimensionless)]

# the rest are not "parameters" but aliases, assigned vars, state vars,
# indep vars, analog_analog_ports, etc.
parameters = [

al.Parameter('el', un.voltage),
al.Parameter('C', un.capacitance),
al.Parameter('ek', un.voltage),
al.Parameter('ena', un.voltage),
al.Parameter('gkbar', un.conductance),
al.Parameter('gnabar', un.conductance),
al.Parameter('v_threshold', un.voltage),
al.Parameter('gl', un.conductance),
al.Parameter('celsius', un.temperature),
al.Parameter('qfactor', un.temperature),
al.Parameter('tendegrees', un.temperature),
al.Parameter('m_alpha_A', old_div(un.dimensionless, (un.time * un.voltage))),
al.Parameter('m_alpha_V0', un.voltage),
al.Parameter('m_alpha_K', un.voltage),
al.Parameter('m_beta_A', old_div(un.dimensionless, un.time)),
al.Parameter('m_beta_V0', un.voltage),
al.Parameter('m_beta_K', un.voltage),
al.Parameter('h_alpha_A', old_div(un.dimensionless, un.time)),
al.Parameter('h_alpha_V0', un.voltage),
al.Parameter('h_alpha_K', un.voltage),
al.Parameter('h_beta_A', old_div(un.dimensionless, un.time)),
al.Parameter('h_beta_V0', un.voltage),
al.Parameter('h_beta_K', un.voltage),
al.Parameter('n_alpha_A', old_div(un.dimensionless, (un.time * un.voltage))),
al.Parameter('n_alpha_V0', un.voltage),
al.Parameter('n_alpha_K', un.voltage),
al.Parameter('n_beta_A', old_div(un.dimensionless, un.time)),
al.Parameter('n_beta_V0', un.voltage),
al.Parameter('n_beta_K', un.voltage)]

analog_ports = [al.AnalogSendPort("V", un.voltage),
al.AnalogReducePort("isyn", un.current, operator="+")]

dyn = al.Dynamics("HodgkinHuxley",
parameters=parameters,

22 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

state_variables=state_variables,
regimes=(hh_regime,),
aliases=aliases,
analog_ports=analog_ports)

return dyn

def parameterise_hodgkin_huxley(definition=None):
if definition is None:

definition = create_hodgkin_huxley()
comp = ul.DynamicsProperties(

name='SampleHodgkinHuxley',
definition=create_hodgkin_huxley(),
properties=[ul.Property('C', 1.0 * un.pF),

ul.Property('celsius', 20.0 * un.degC),
ul.Property('ek', -90 * un.mV),
ul.Property('el', -65 * un.mV),
ul.Property('ena', 80 * un.mV),
ul.Property('gkbar', 30.0 * un.nS),
ul.Property('gl', 0.3 * un.nS),
ul.Property('gnabar', 130.0 * un.nS),
ul.Property('v_threshold', -40.0 * un.mV),
ul.Property('qfactor', 6.3 * un.degC),
ul.Property('tendegrees', 10.0 * un.degC),
ul.Property('m_alpha_A', -0.1,

old_div(un.unitless, (un.ms * un.mV))),
ul.Property('m_alpha_V0', -40.0 * un.mV),
ul.Property('m_alpha_K', 10.0 * un.mV),
ul.Property('m_beta_A', 4.0 * un.per_ms),
ul.Property('m_beta_V0', -65.0 * un.mV),
ul.Property('m_beta_K', 18.0 * un.mV),
ul.Property('h_alpha_A', 0.07 * un.per_ms),
ul.Property('h_alpha_V0', -65.0 * un.mV),
ul.Property('h_alpha_K', 20.0 * un.mV),
ul.Property('h_beta_A', 1.0 * un.per_ms),
ul.Property('h_beta_V0', -35.0 * un.mV),
ul.Property('h_beta_K', 10.0 * un.mV),
ul.Property('n_alpha_A', -0.01,

old_div(un.unitless, (un.ms * un.mV))),
ul.Property('n_alpha_V0', -55.0 * un.mV),
ul.Property('n_alpha_K', 10.0 * un.mV),
ul.Property('n_beta_A', 0.125 * un.per_ms),
ul.Property('n_beta_V0', -65.0 * un.mV),
ul.Property('n_beta_K', 80.0 * un.mV)],

initial_values=[ul.Initial('V', -70 * un.mV),
ul.Initial('m', 0.1),
ul.Initial('n', 0),
ul.Initial('h', 0.9)])

return comp

Example - Leaky Integrate and Fire

Example - Izhikevich

from __future__ import division
from past.utils import old_div

1.7. Examples 23



NineML Python library, Release 0.3dev

from nineml import units as un
from nineml import abstraction as al, user as ul, Document
from nineml.xml import etree, E

def create_izhikevich():
subthreshold_regime = al.Regime(

name="subthreshold_regime",
time_derivatives=[

"dV/dt = alpha*V*V + beta*V + zeta - U + Isyn / C_m",
"dU/dt = a*(b*V - U)", ],

transitions=[al.On("V > theta",
do=["V = c",

"U = U+ d",
al.OutputEvent('spike')],

to='subthreshold_regime')]
)

ports = [al.AnalogSendPort("V", un.voltage),
al.AnalogReducePort("Isyn", un.current, operator="+")]

parameters = [
al.Parameter('theta', un.voltage),
al.Parameter('a', un.per_time),
al.Parameter('b', un.per_time),
al.Parameter('c', un.voltage),
al.Parameter('d', old_div(un.voltage, un.time)),
al.Parameter('C_m', un.capacitance),
al.Parameter('alpha', old_div(un.dimensionless, (un.voltage * un.time))),
al.Parameter('beta', un.per_time),
al.Parameter('zeta', old_div(un.voltage, un.time))]

state_variables = [
al.StateVariable('V', un.voltage),
al.StateVariable('U', old_div(un.voltage, un.time))]

c1 = al.Dynamics(
name="Izhikevich",
parameters=parameters,
state_variables=state_variables,
regimes=[subthreshold_regime],
analog_ports=ports

)
return c1

def create_izhikevich_fast_spiking():
"""
Load Fast spiking Izhikevich XML definition from file and parse into
Abstraction Layer of Python API.
"""
izhi_fs = al.Dynamics(

name='IzhikevichFastSpiking',
parameters=[

al.Parameter('a', un.per_time),
al.Parameter('b', old_div(un.conductance, (un.voltage ** 2))),

24 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

al.Parameter('c', un.voltage),
al.Parameter('k', old_div(un.conductance, un.voltage)),
al.Parameter('Vr', un.voltage),
al.Parameter('Vt', un.voltage),
al.Parameter('Vb', un.voltage),
al.Parameter('Vpeak', un.voltage),
al.Parameter('Cm', un.capacitance)],

analog_ports=[
al.AnalogReducePort('iSyn', un.current, operator="+"),
al.AnalogSendPort('U', un.current),
al.AnalogSendPort('V', un.voltage)],

event_ports=[
al.EventSendPort("spikeOutput")],

state_variables=[
al.StateVariable('V', un.voltage),
al.StateVariable('U', un.current)],

regimes=[
al.Regime(

'dU/dt = a * (b * pow(V - Vb, 3) - U)',
'dV/dt = V_deriv',
transitions=[

al.On('V > Vpeak',
do=['V = c', al.OutputEvent('spikeOutput')],
to='subthreshold')],

name="subthreshold"),
al.Regime(

'dU/dt = - U * a',
'dV/dt = V_deriv',
transitions=[al.On('V > Vb', to="subthreshold")],
name="subVb")],

aliases=["V_deriv := (k * (V - Vr) * (V - Vt) - U + iSyn) / Cm"]) #
→˓@IgnorePep8

return izhi_fs

def parameterise_izhikevich(definition=None):
if definition is None:

definition = create_izhikevich()
comp = ul.DynamicsProperties(

name='SampleIzhikevich',
definition=create_izhikevich(),
properties=[ul.Property('a', 0.2 * un.per_ms),

ul.Property('b', 0.025 * un.per_ms),
ul.Property('c', -75 * un.mV),
ul.Property('d', 0.2 * un.mV / un.ms),
ul.Property('theta', -50 * un.mV),
ul.Property('alpha', 0.04 * un.unitless / (un.mV * un.ms)),
ul.Property('beta', 5 * un.per_ms),
ul.Property('zeta', 140.0 * un.mV / un.ms),
ul.Property('C_m', 1.0 * un.pF)],

initial_values=[ul.Initial('V', -70 * un.mV),
ul.Initial('U', -1.625 * un.mV / un.ms)])

return comp

def parameterise_izhikevich_fast_spiking(definition=None):
if definition is None:

definition = create_izhikevich_fast_spiking()

1.7. Examples 25



NineML Python library, Release 0.3dev

comp = ul.DynamicsProperties(
name='SampleIzhikevichFastSpiking',
definition=create_izhikevich_fast_spiking(),
properties=[ul.Property('a', 0.2 * un.per_ms),

ul.Property('b', 0.025 * un.nS / un.mV ** 2),
ul.Property('c', -45 * un.mV),
ul.Property('k', 1 * un.nS / un.mV),
ul.Property('Vpeak', 25 * un.mV),
ul.Property('Vb', -55 * un.mV),
ul.Property('Cm', 20 * un.pF),
ul.Property('Vr', -55 * un.mV),
ul.Property('Vt', -40 * un.mV)],

initial_values=[ul.Initial('V', -70 * un.mV),
ul.Initial('U', -1.625 * un.mV / un.ms)])

return comp

1.7.2 Post-synaptic Response Models

Example - Alpha

1.7.3 Plasticity Models

Example - Static

from __future__ import print_function
from nineml import units as un, user as ul, abstraction as al, Document
from nineml.xml import etree, E

def create_static():
dyn = al.Dynamics(

name="Static",
aliases=["fixed_weight := weight"],
regimes=[

al.Regime(name="default")],
analog_ports=[al.AnalogSendPort("fixed_weight", dimension=un.current)],
parameters=[al.Parameter('weight', dimension=un.current)])

return dyn

def parameterise_static():

comp = ul.DynamicsProperties(
name='SampleAlpha',
definition=create_static(),
properties=[ul.Property('weight', 10.0 * un.nA)])

return comp

if __name__ == '__main__':
import argparse
try:

import ninemlcatalog
catalog_path = 'plasticity/Static'

except ImportError:

26 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

ninemlcatalog = None
parser = argparse.ArgumentParser()
parser.add_argument('--mode', type=str, default='print',

help=("The mode to run this script, can be 'print', "
"'compare' or 'save', which correspond to "
"printing the models, comparing the models with "
"the version in the catalog, or overwriting the "
"version in the catalog with this version "
"respectively"))

args = parser.parse_args()

if args.mode == 'print':
document = Document()
print(etree.tostring(

E.NineML(
create_static().to_xml(document),
parameterise_static().to_xml(document)),

encoding="UTF-8", pretty_print=True, xml_declaration=True))
elif args.mode == 'compare':

if ninemlcatalog is None:
raise Exception(

"NineML catalog is not installed")
local_version = create_static()
catalog_version = ninemlcatalog.load(catalog_path,

local_version.name)
mismatch = local_version.find_mismatch(catalog_version)
if mismatch:

print ("Local version differs from catalog version:\n{}"
.format(mismatch))

else:
print("Local version matches catalog version")

elif args.mode == 'save':
if ninemlcatalog is None:

raise Exception(
"NineML catalog is not installed")

dynamics = create_static()
ninemlcatalog.save(dynamics, catalog_path, dynamics.name)
params = parameterise_static(

ninemlcatalog.load(catalog_path, dynamics.name))
ninemlcatalog.save(params, catalog_path, params.name)
print("Saved '{}' and '{}' to catalog".format(dynamics.name,

params.name))

Example - Guetig Spike-timing Dependent Plasticity (STDP)

from nineml import units as un, user as ul, abstraction as al

def create_stdp_guetig():
dyn = al.Dynamics(

name="StdpGuetig",
parameters=[

al.Parameter(name='tauLTP', dimension=un.time),
al.Parameter(name='aLTD', dimension=un.dimensionless),
al.Parameter(name='wmax', dimension=un.dimensionless),
al.Parameter(name='muLTP', dimension=un.dimensionless),

1.7. Examples 27



NineML Python library, Release 0.3dev

al.Parameter(name='tauLTD', dimension=un.time),
al.Parameter(name='aLTP', dimension=un.dimensionless)],

analog_ports=[
al.AnalogReceivePort(dimension=un.dimensionless, name="w"),
al.AnalogSendPort(dimension=un.dimensionless, name="wsyn")],

event_ports=[
al.EventReceivePort(name="incoming_spike")],

state_variables=[
al.StateVariable(name='tlast_post', dimension=un.time),
al.StateVariable(name='tlast_pre', dimension=un.time),
al.StateVariable(name='deltaw', dimension=un.dimensionless),
al.StateVariable(name='interval', dimension=un.time),
al.StateVariable(name='M', dimension=un.dimensionless),
al.StateVariable(name='P', dimension=un.dimensionless),
al.StateVariable(name='wsyn', dimension=un.dimensionless)],

regimes=[
al.Regime(

name="sole",
al.On('incoming_spike',

target_regime="sole",
do=[

al.StateAssignment(
'tlast_post',
'((w >= 0) ? ( tlast_post ) : ( t ))'),

al.StateAssignment(
'tlast_pre',
'((w >= 0) ? ( t ) : ( tlast_pre ))'),

al.StateAssignment(
'deltaw',
'((w >= 0) ? '
'( 0.0 ) : '
'( P*pow(wmax - wsyn, muLTP) * '
'exp(-interval/tauLTP) + deltaw ))'),

al.StateAssignment(
'interval',
'((w >= 0) ? ( -t + tlast_post ) : '
'( t - tlast_pre ))'),

al.StateAssignment(
'M',
'((w >= 0) ? ( M ) : '
'( M*exp((-t + tlast_post)/tauLTD) - aLTD ))'),

al.StateAssignment(
'P',
'((w >= 0) ? '
'( P*exp((-t + tlast_pre)/tauLTP) + aLTP ) : '
'( P ))'),

al.StateAssignment(
'wsyn', '((w >= 0) ? ( deltaw + wsyn ) : '
'( wsyn ))')]))])

return dyn

def parameterise_stdp_guetig():

comp = ul.DynamicsProperties(
name='SampleAlpha',
definition=create_stdp_guetig(),
properties=[])

28 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

return comp

1.7.4 Network Models

Example - Brunel

# encoding: utf-8
"""
Network model from

Brunel, N. (2000) J. Comput. Neurosci. 8: 183-208

expressed in NineML using the Python API

Author: Andrew P. Davison, UNIC, CNRS
June 2014

Edited by Thomas G. Close, October 2015
"""

from __future__ import division
from nineml.user import (

DynamicsProperties, Population, RandomDistributionProperties,
Projection, ConnectionRuleProperties, AnalogPortConnection,
EventPortConnection, Network, Selection, Concatenate)

from nineml.units import ms, mV, nA, unitless, Hz, Mohm
import ninemlcatalog

def create_brunel(g, eta, name=None):
"""
Build a NineML representation of the Brunel (2000) network model.

Arguments:
g: relative strength of inhibitory synapses
eta: nu_ext / nu_thresh

Returns:
a nineml user layer Model object

"""
# Meta-parameters
order = 1000 # scales the size of the network
Ne = 4 * order # number of excitatory neurons
Ni = 1 * order # number of inhibitory neurons
epsilon = 0.1 # connection probability
Ce = int(epsilon * Ne) # number of excitatory synapses per neuron
Ci = int(epsilon * Ni) # number of inhibitory synapses per neuron
Cext = Ce # effective number of external synapses per neuron
delay = 1.5 # (ms) global delay for all neurons in the group
J = 0.1 # (mV) EPSP size
Jeff = 24.0 * J # (nA) synaptic weight
Je = Jeff # excitatory weights
Ji = -g * Je # inhibitory weights
Jext = Je # external weights
theta = 20.0 # firing thresholds
tau = 20.0 # membrane time constant
tau_syn = 0.1 # synapse time constant

1.7. Examples 29



NineML Python library, Release 0.3dev

# nu_thresh = theta / (Je * Ce * tau * exp(1.0) * tau_syn) # threshold rate
nu_thresh = theta / (J * Ce * tau)
nu_ext = eta * nu_thresh # external rate per synapse
input_rate = 1000.0 * nu_ext * Cext # mean input spiking rate

# Parameters
neuron_parameters = dict(tau=tau * ms,

v_threshold=theta * mV,
refractory_period=2.0 * ms,
v_reset=10.0 * mV,
R=1.5 * Mohm) # units??

psr_parameters = dict(tau=tau_syn * ms)

# Initial Values
v_init = RandomDistributionProperties(

"uniform_rest_to_threshold",
ninemlcatalog.load("randomdistribution/Uniform",

'UniformDistribution'),
{'minimum': (0.0, unitless),
'maximum': (theta, unitless)})

# v_init = 0.0
neuron_initial_values = {"v": (v_init * mV),

"refractory_end": (0.0 * ms)}
synapse_initial_values = {"a": (0.0 * nA), "b": (0.0 * nA)}
tpoisson_init = RandomDistributionProperties(

"exponential_beta",
ninemlcatalog.load('randomdistribution/Exponential',

'ExponentialDistribution'),
{"rate": (1000.0 / input_rate * unitless)})

# tpoisson_init = 5.0

# Dynamics components
celltype = DynamicsProperties(

"nrn",
ninemlcatalog.load('neuron/LeakyIntegrateAndFire',

'LeakyIntegrateAndFire'),
neuron_parameters, initial_values=neuron_initial_values)

ext_stim = DynamicsProperties(
"stim",
ninemlcatalog.load('input/Poisson', 'Poisson'),
dict(rate=(input_rate, Hz)),
initial_values={"t_next": (tpoisson_init, ms)})

psr = DynamicsProperties(
"syn",
ninemlcatalog.load('postsynapticresponse/Alpha', 'Alpha'),
psr_parameters,
initial_values=synapse_initial_values)

# Connecion rules
one_to_one_class = ninemlcatalog.load(

'/connectionrule/OneToOne', 'OneToOne')
random_fan_in_class = ninemlcatalog.load(

'/connectionrule/RandomFanIn', 'RandomFanIn')

# Populations
exc_cells = Population("Exc", Ne, celltype, positions=None)
inh_cells = Population("Inh", Ni, celltype, positions=None)
external = Population("Ext", Ne + Ni, ext_stim, positions=None)

30 Chapter 1. Users’ guide



NineML Python library, Release 0.3dev

# Selections
all_cells = Selection(

"All", Concatenate((exc_cells, inh_cells)))

# Projections
input_prj = Projection(

"External", external, all_cells,
connection_rule_properties=ConnectionRuleProperties(

"OneToOne", one_to_one_class),
response=psr,
plasticity=DynamicsProperties(

"ExternalPlasticity",
ninemlcatalog.load("plasticity/Static", 'Static'),
properties={"weight": (Jext, nA)}),

port_connections=[
EventPortConnection(

'pre', 'response', 'spike_output', 'spike'),
AnalogPortConnection(

"plasticity", "response", "fixed_weight", "weight"),
AnalogPortConnection(

"response", "destination", "i_synaptic", "i_synaptic")],
delay=(delay, ms))

exc_prj = Projection(
"Excitation", exc_cells, all_cells,
connection_rule_properties=ConnectionRuleProperties(

"RandomExc", random_fan_in_class, {"number": (Ce * unitless)}),
response=psr,
plasticity=DynamicsProperties(

"ExcitatoryPlasticity",
ninemlcatalog.load("plasticity/Static", 'Static'),
properties={"weight": (Je, nA)}),

port_connections=[
EventPortConnection(

'pre', 'response', 'spike_output', 'spike'),
AnalogPortConnection(

"plasticity", "response", "fixed_weight", "weight"),
AnalogPortConnection(

"response", "destination", "i_synaptic", "i_synaptic")],
delay=(delay, ms))

inh_prj = Projection(
"Inhibition", inh_cells, all_cells,
connection_rule_properties=ConnectionRuleProperties(

"RandomInh", random_fan_in_class, {"number": (Ci * unitless)}),
response=psr,
plasticity=DynamicsProperties(

"InhibitoryPlasticity",
ninemlcatalog.load("plasticity/Static", 'Static'),
properties={"weight": (Ji, nA)}),

port_connections=[
EventPortConnection(

'pre', 'response', 'spike_output', 'spike'),
AnalogPortConnection(

"plasticity", "response", "fixed_weight", "weight"),
AnalogPortConnection(

"response", "destination", "i_synaptic", "i_synaptic")],

1.7. Examples 31



NineML Python library, Release 0.3dev

delay=(delay, ms))

# Save to document in NineML Catalog
network = Network(name if name else "BrunelNetwork")
network.add(exc_cells, inh_cells, external, all_cells, input_prj, exc_prj,

inh_prj)
return network

1.8 API reference

Following the layer structure of the NineML specification, the nineml package is split into a Abstraction and User
Layers, with a small intersection that are common to both layers.

1.8.1 Common Types API

There a few NineML types are common across all layers

Document

Dimensions and units

A number of Dimensions and Unithave been pre-defined, in the nineml.units module, for example:

>>> from nineml.units import time, voltage, capacitance, nA, mol_per_cm3, Mohm
>>> voltage
Dimension(name='voltage', i=-1, m=1, t=-3, l=2)
>>> nA
Unit(name='nA', dimension='current', power=-9)

Dimension and units implement multiplication/division operators to allow the quick creation of compound units and
dimensions

>>> from nineml.units import mV, ms
>>> mV / ms
Unit(name='mV_per_ms', dimension='voltage_per_time', power=0)

1.8.2 Abstraction layer API

The abstraction layer is intended to provide explicit mathematical descriptions of any components used in a neu-
ronal network model, where such components may be neuron models, synapse models, synaptic plasticity algorithms,
connectivity rules, etc.

The abstraction layer therefore has a modular structure, to support different types of components, and allow extensions
to the language. The current modules are:

dynamics: for describing hybrid dynamical systems, whose behaviour is governed both by differen-
tial equations and by discontinuous events. Such systems are often used to model point neurons,
synapses and synaptic plasticity mechanisms.

connectionrule: a module containing several “built-in” connectivity rules (‘all-to-all’, etc.).

randomdistribution: a module for specifying random distributions.

32 Chapter 1. Users’ guide

http://nineml.net/specification/


NineML Python library, Release 0.3dev

Common types

Mathematics

Mathematical expressions are stored in Sympy objects throughout the Python NineML library. However, they are
typically constructed by passing a string representation to a derived class of the Expression class ( e.g. Trigger,
Alias). The Sympy string parsing has been slightly extended to handle the ANSI-C-based format in the NineML
specification, such as using the caret symbol to signify raising to the power of (Sympy uses the Python syntax of ‘**’
to signify raising to the power of), e.g:

(3 * B + 1) * V ^ 2

Note: Currently, trigonometric functions are parsed as generic functions but this is planned to change in later versions
of the library to use in-built Sympy functions. For the most part this will not have much effect on the represented ex-
pressions but in some cases it may prevent Sympy’s solving and simplifying algorithms from making use of additional
assumptions.

dynamics module

Ports

Time derivatives

Transitions

connectionrule module

randomdistribution module

1.8.3 User layer API

A NineML model is made up of populations of cells, connected via synapses, which may exhibit plasticity. The
models for the cells, synapses and plasticity mechanisms are all instances of subclasses of Component. Populations
of cells are represented by Population, the set of connections between two populations by Projection. Finally,
the entire model is encapsulated in Network.

Components

References

NineML has three closely-related objects used to refer to other NineML objects. Definition is used inside
Components to refer to abstraction layer ComponentClass definitions. Prototype is used inside Components
to refer to previously-defined Components. Reference is used inside Selections to refer to Population ob-
jects, and inside Projections to refer to Populations and Selections.

1.8. API reference 33

http://www.sympy.org/
http://www.sympy.org/
http://www.sympy.org/
http://www.sympy.org/
http://www.sympy.org/


NineML Python library, Release 0.3dev

Values and Physical Quantities

Properties

Populations

Projections

Networks

1.9 Release notes

All released NineML Python versions:

1.10 Getting help

For help using the NineML Python Library please contact the NeuralEnsemble Google group.

If you find a bug or would like to add a new feature to the Python nineml package, please go to https://github.com/
INCF/nineml-python/issues/. First check that there is not an existing ticket for your bug or request, then click on “New
issue” to create a new ticket (you will need a GitHub account, but creating one is simple and painless).

If you would like to propose a change to the specification, please see the issue tracker at https://github.com/INCF/
nineml-spec/issues/.

34 Chapter 1. Users’ guide

http://groups.google.com/group/neuralensemble
https://github.com/INCF/nineml-python/issues/
https://github.com/INCF/nineml-python/issues/
https://github.com/INCF/nineml-spec/issues/
https://github.com/INCF/nineml-spec/issues/


CHAPTER 2

Developers’ guide

2.1 Contributing to NineML

2.1.1 Mailing list

Discussions about Python nineml take place in the NeuralEnsemble Google Group.

2.1.2 Setting up a development environment

Requirements

In addition to the requirements listed in Installation, you will need to install:

• nose

• coverage

to run tests, and:

• Sphinx

• numpydoc

to build the documentation.

Code checkout

NineML development is based around GitHub. Once you have a GitHub account, you should fork the official NineML
repository, and then clone your fork to your local machine:

$ git clone https://github.com/<username>/nineml-python.git nineml_dev
$ cd nineml_dev

35

http://groups.google.com/group/neuralensemble
https://nose.readthedocs.org/
http://nedbatchelder.com/code/coverage/
http://sphinx-doc.org/
https://pypi.python.org/pypi/numpydoc
https://github.com/INCF/nineml/fork
https://github.com/INCF/nineml/
https://github.com/INCF/nineml/


NineML Python library, Release 0.3dev

To work on the development version:

$ git checkout master

To keep your NineML repository up-to-date with respect to the official repository, add it as a remote:

$ git remote add upstream https://github.com/INCF/nineml-python.git

and then you can pull in any upstream changes:

$ git pull upstream master

We suggest developing in a virtualenv, and installing nineml using:

$ pip install -e .

2.1.3 Coding style

We follow the PEP8 coding style. Please note in particular:

• indentation of four spaces, no tabs

• single space around most operators, but no space around the ‘=’ sign when used to indicate a keyword argument
or a default parameter value.

• we currently only Python version 2.7 but Python 3 support is planned.

2.1.4 Testing

Running the PyNN test suite requires the nose_ packages, and optionally the coverage_ package. To run the entire test
suite, in the lib9ml/python/test subdirectory of the source tree:

$ nosetests unit

To see how well the codebase is covered by the tests, run:

$ nosetests --with-coverage --cover-package=nineml --cover-erase --cover-html test/
→˓unittests

If you add a new feature to nineml, or fix a bug, you should write a unit test to cover the situation it arose.

Unit tests should where necessary make use of mock/fake/stub/dummy objects to isolate the component under test as
well as possible.

2.1.5 Submitting code

The best way to get started with contributing code to NineML is to fix a small bug (bugs marked “minor” in the bug
tracker) in your checkout of the code. Once you are happy with your changes, run the test suite again to check that
you have not introduced any new bugs. If this is your first contribution to the project, please add your name and
affiliation/employer to lib9ml/python/AUTHORS.

After committing the changes to your local repository:

$ git commit -m 'informative commit message'

36 Chapter 2. Developers’ guide

http://www.virtualenv.org/
http://www.python.org/dev/peps/pep-0008/
https://github.com/INCF/nineml/issues?labels=minor&state=open
https://github.com/INCF/nineml/issues?labels=minor&state=open


NineML Python library, Release 0.3dev

first pull in any changes from the upstream repository:

$ git pull upstream master

then push to your own account on GitHub:

$ git push

Now, via the GitHub web interface, open a pull request.

2.1.6 Documentation

Python NineML documentation is generated using Sphinx.

To build the documentation in HTML format, run:

$ make html

in the doc subdirectory of the source tree. Some of the files contain examples of interactive Python sessions. The
validity of this code can be tested by running:

$ make doctest

NineML documentation is hosted at http://readthedocs.org/nineml

2.1.7 Making a release

To make a release of NineML requires you to have permissions to upload Python NineML packages to the Python
Package Index and the INCF Software Center. If you are interested in becoming release manager for Python NineML,
please contact us via the mailing list.

When you think a release is ready, run through the following checklist one last time:

• do all the tests pass? This means running nosetests and make doctest as described above. You should
do this on at least two Linux systems – one a very recent version and one at least a year old, and on at least one
version of macOS.

• does the documentation build without errors? You should then at least skim the generated HTML pages to check
for obvious problems.

• have you updated the version numbers in setup.py, __init__.py, doc/source/conf.py and doc/
source/installation.rst?

• have you written release notes and added them to the documentation?

Once you’ve confirmed all the above, create a source package using:

$ python setup.py sdist

and check that it installs properly (you will find it in the dist subdirectory.

Now you should commit any changes, then tag with the release number as follows:

$ git tag x.y.z

where x.y.z is the release number.

If this is a development release (i.e. an alpha or beta), the final step is to upload the source package to the INCF
Software Center. Do not upload development releases to PyPI.

2.1. Contributing to NineML 37

http://sphinx-doc.org/
http://readthedocs.org/nineml
http://pypi.python.org/
http://pypi.python.org/
http://groups.google.com/group/neuralensemble


NineML Python library, Release 0.3dev

To upload a package to the INCF Software Center, log-in, and then go to the Contents tab. Click on “Add new. . . ”
then “File”, then fill in the form and upload the source package.

If this is a final release, there are a few more steps:

• if it is a major release (i.e. an x.y.0 release), create a new bug-fix branch:

$ git branch x.y

• upload the source package to PyPI:

$ python setup.py sdist upload

• make an announcement on the mailing list

• if it is a major release, write a blog post about it with a focus on the new features and major changes.

2.2 Developer reference

The structure NineML Python library aims to closely match the NineML specification, with each NineML “layer”
represented by a sub-package (i.e. nineml.abstraction and nineml.user) and each NineML type mapping
to a separate Python class, with the exception of some simple types that just contain a single element (e.g. Size) or are
used just to provide a name to a singleton child class (e.g. Pre, Post, etc. . . ).

2.2.1 Base classes

There are number of base classes that should be derived from when designing NineML classes, which one(s) depend
on the structure of the type, e.g. whether the contain annotations, child elements, or can be placed at the top-level of a
NineML document.

BaseNineMLObject

All classes that represent objects in the “NineML object model” should derive from BaseNineMLObject.

BaseNineMLObject defines a number of common methods such as clone, equals, write, etc. . . (see NineML
Types). As well as default values for class attributes that are required for all NineML classes, nineml_type,
nineml_attr, nineml_child, nineml_children. These class attributes match the structure of the NineML
specification and are used extensively within the visitor architecture (including serialization).

nineml_type

nineml_type should be a string containing the name of the corresponding NineML type in the NineML specifica-
tion.

nineml_type_v1

If the nineml_type differs between v1 and v2 of the specification, nineml_type_v1 should also be defined to hold
the name of the type in the v1 syntax.

38 Chapter 2. Developers’ guide

http://software.incf.org/software/nineml/nineml/folder_contents
http://groups.google.com/group/neuralensemble
http://nineml.net/specification/
http://nineml.net/specification/
http://nineml.net/specification/
http://nineml.net/specification/
http://nineml.net/specification/


NineML Python library, Release 0.3dev

nineml_attr

nineml_attr should be a tuple of strings, listing the attributes of the given NineML class that are part of the
NineML specification and are not NineML types themselves, such as str, int and float fields.

nineml_child

nineml_child should be a dictionary, which lists the names of singleton NineML child attributes in the class along
with a mapping to their expected class. If the the child attribute can be one of several NineML classes then the attribute
should map to None.

nineml_children

nineml_children should be a tuple listing the NineML classes that are contained within the object as children
sets (e.g. (Property, Initial) for the DynamicsProperties class). Note that if a class has non-empty
nineml_children it should derive from ContainerObject.

temporary

“Temporary” NineML objects are created when calling iterator properties and accessor methods of the
MultiDynamics class that override corresponding in the Dynamics class, allowing MultiDynamics objects
to duck-type (i.e. pretend to be) Dynamics objects. Such classes should override the temporary class attribute
and set it to True. This prevents their address in memory being used to identify the object (e.g. in the cloner “memo”
dictionary) as it since they are generated on the fly, this address will change between accesses.

Note: The id property in BaseNineMLObject should always be used to check whether two Python objects are the
representing the same NineML object for this reason.

AnnotatedObject

The NineML specification states that all NineML objects can be annotated except Annotations objects them-
selves. Therefore, all bar Annotations NineML classes should derive from AnnotatedObject, which itself
derives from BaseNineMLObject. This provides the annotations attribute, which can provides access to any
annotations associated with the object.

ContainerObject

“Container classes” are classes that contain sets of children, such as Dynamics‘ (contains parameters, regimes, state-
variables) or OnCondition (contains state assignments and output events), as opposed to classes that have nested single-
ton objects such as Dimension objects in Parameter objects. Such classes should derive from ContainerObject.

ContainerObject adds a number of convenient methods, including add, remove, and general iterators used to
traverse the object hierarchy.

The ContainerObject.__init__ method creates an OrderedDict for each child set with the name supplied
by the child class’ _children_dict_name method (which is _<pluralized-lowercase-child-type>
by default).

2.2. Developer reference 39

http://nineml.net/specification/
http://nineml.net/specification/


NineML Python library, Release 0.3dev

Iterators and accessors

Container classes need to define three iterator properties and one accessor method for each children-set, cor-
responding to the method names supplied by the class methods in the child class, _children_iter_name,
_num_children_name, _children_keys_name and _child_accessor_name. By default the method
names returned by these class methods will be <pluralized-lowercase-nineml_type>, num_<pluralized-lowercase-
nineml_type>, <pluralized-lowercase-nineml_type>_names, and <lowercase-nineml_type> respectively. These prop-
erties/method should return:

children_iter: A property that returns an iterator over all children in the dictionary

num_children : A property that returns the number of children in the dictionary:

children_keys: A property that returns an iterator over the keys of the dictionary. If the child type doesn’t have a
name attribute then the iterator should be named <pluralized-lowercase-nineml-type>_keys instead.

child_accessor: An accessor that takes the name (or key) of a child and returns the child.

Note: It would be possible to implement these properties/methods in the ContainerObject base class using
__getattr__ but since they are part of the public API that could be confusing to the user.

DocumentLevelObject

All NineML classes that are permitted at the top level in NineML documents (see Document-level types) need to
derive from DocumentLevelObject, this provides document and url attribute properties and is also used in
checks at various points in the code.

2.2.2 Visitors

Visitor patterns are used extensively within the NineML Python to find, validate, modify and analyze NineML struc-
tures, including their serialization.

Base Visitors

Visitor base classes are found in the nineml.visitors.base module, which search the object hierarchy and per-
form an “action” each object. These visitors use the nineml_* class attributes (see BaseNineMLObject) to navigate
the object hierarchy and therefore can be used search to any NineML object.

If not overridden, the action method applied to each object will first check whether a specialized method for that type
of object called action_<lowercase-nineml_type> has been implemented and call it if it has, otherwise call
default_action method. Note that if specialized methods are not required then the visitor can just override the
action method directly.

There are a number of different base visitor classes to derive from depending on the requirements of the visitor pattern
in question.

BaseVisitor

If no contextual information or results of child objects are required then a visitor can derive directly from the
BaseVisitor class. The action method will be called before child objects are actioned.

40 Chapter 2. Developers’ guide



NineML Python library, Release 0.3dev

BaseVisitorWithContext

If contextual information is required, such as the parent container (and its parent, etc. . . ) then the
BaseVisitorWithContext can be derived instead. The immediate context is available via the context prop-
erty and the context of all parent containers via the contexts attribute.

BaseChildResultsVisitor

For visitors that require the results of child objects (e.g. Cloner) to in their action methods. The child/children
results can be accessed via the child_result and children_result dictionaries. If context information is
also required use the BaseChildResultsVisitorWithContext visitor.

BasePreAndPostVisitor

For visitors the need to perform and action before and after the child results are actioned. The “pre” action methods
are the same as in the BaseVisitor class and the “post” action method is called post_action, which by default
will call the post_action_<lowercase-nineml_type> or default_post_action methods. If context
information is also required use the BasePreAndPostVisitorWithContext visitor.

BaseDualVisitor

This visitor visits two objects side by side, raising exceptions if their structure doesn’t match. As such it is probably
only useful for equality checking (and is derived by the EqualityChecker and MismatchFinder visitors). A
BaseDualVisitorWithContext visitor is also available.

Validation

Validation is currently only performed on component classes (i.e. Dynamics, ConnectionRule, and
RandomDistribution). A separate visitor is implemented for every aspect of the component classes that need to
be validated (e.g. name-conflicts, mismatching-dimensions).

Base validators are implemented in the nineml.abstraction.componentclassvisitors.validators
package with specializations for each component class type in the corresponding nineml.abstraction.
<componentclass-type>.visitors.validators packages (at this stage only the Dynamics component
class has specialised validators).

Serialization

For serialization visitors to be able to serialize a NineML object it needs to define both serialize_node and
unserialize_node methods.

serialize_node/unserialize_node

Both serialize_node and unserialize_node take a single argument, a NodeToSerialize or
NodeToUnSerialize instance respectively. These node objects wrap a serial element of the given serialization
format (e.g. lxml.etree._Element for the XMLSerializer) and provide convenient methods for adding, or
accessing, children, attributes and body elements to the node.

2.2. Developer reference 41



NineML Python library, Release 0.3dev

The node method calls then call format-specific method of the serialization visitor to un/serialize the NineML objects.
However, in some cases (particularly in some awkward v1.0 syntax), the serialization visitor may need to be accessed
directly, which is available at node.visitor.

Both serialize_node and unserialize_node should accept arbitrary keyword arguments and pass them on
to all calls made to methods of the nodes and the visitor directly. However, these arguments are not currently used by
any of the current serializers.

has_serial_body

NineML classes that contain “body” text when serialized (to a supporting serial format) should override the class
attribute has_serial_body to set it to True. If the class has a body only in NineML v1.0 syntax but not v2.0 then
it should be set to 'v1'.

NineML classes that just contain a single body element (e.g. SingleValue) should set has_serial_body to 'only',
to allow them to be collapsed into an attribute in formats that don’t support body text (i.e. YAML, JSON).

42 Chapter 2. Developers’ guide


	Users’ guide
	Motivation
	Installation
	Getting started
	NineML Types
	Serialization
	Hierarchical dynamics
	Examples
	API reference
	Release notes
	Getting help

	Developers’ guide
	Contributing to NineML
	Developer reference


