

NineML Python library

NineML [http://nineml.net] is a language for describing the dynamics and connectivity of neuronal
network simulations; in particular for large-scale simulations of many point
neurons.

The language is defined as an object model, described in the
NineML specification [http://nineml.net/specification/], with standardized serializations to XML, JSON, YAML
and HDF5.

This documentation describes the nineml Python package, which
implements the NineML [http://nineml.net] object model using Python classes, allowing models to be
created, edited, introspected, etc. using Python, and then written to/read from
the NineML [http://nineml.net] XML format.

Users’ guide

	Motivation
	Why NineML?

	Abstraction and User Layers

	The nineml Python library

	Installation
	Depdendencies

	Install Python packages

	Getting started
	Reading model descriptions from XML files

	Introspecting NineML models

	Writing model descriptions in Python

	NineML Types
	Relationship to specification

	Common properties/methods

	Serialization
	Formats

	Versions

	Referencing style

	Hierarchical dynamics
	Multi-Dynamics

	Examples
	Neuron Models

	Post-synaptic Response Models

	Plasticity Models

	Network Models

	API reference
	Common Types API

	Abstraction layer API

	User layer API

	Release notes

	Getting help

Developers’ guide

	Contributing to NineML
	Mailing list

	Setting up a development environment

	Coding style

	Testing

	Submitting code

	Documentation

	Making a release

	Developer reference
	Base classes

	Visitors

Motivation

Why NineML?

NineML [http://nineml.net] (or “9ML”) is a language for describing the dynamics and connectivity of neuronal network
simulations; in particular for large-scale simulations of many point neurons (where the neuron model does
not explicitly represent dendrites).

At present, networks of point-neurons are typically simulated by writing either a custom
simulation program in a general-purpose programming language (such as Python, MATLAB)
or by writing a model for a particular simulator (NEURON [http://www.neuron.yale.edu/neuron/], NEST [http://www.nest-simulator.org], Brian [http://www.briansimulator.org], etc.) As models
of neuronal dynamics and connectivity become more and more complex, writing a
simulation from scratch in Python or Matlab can become more and more complex, taking
time to debug and producing hard to find bugs. Writing simulator-specific models
can reduce some of this duplication, but this means the model will only run on a single simulator
and is hence difficult to share.

Programmatic model description APIs such as PyNN [http://neuralensemble.org/PyNN/] provide simulator independence at the expense of
(i) having to choose from a limited library of neuron models (note however that PyNN now works with
neuron/synapse models defined in NineML [http://nineml.net], for certain simulators), (ii) being tied to a particular programming
language. Having access to a full programming language is also a temptation to writing over-complex,
difficult to maintain model descriptions when compared to a declarative language such as NineML [http://nineml.net].

NineML [http://nineml.net] tries to mitigate some of these problems by providing an language for
defining smaller components of a simulation in a declarative, language-independent way.
Various tools are then available for generating code for various simulators from this description
(see http://nineml.net/software).

Note

NineML [http://nineml.net] and NeuroML [http://neuroml.org] version 2 are both languages for mathematically-explicit descriptions
of biological neuronal network models. NineML [http://nineml.net] currently works only for point-neuron/single-compartment
neuron models, while NeuroML also supports multi-compartment, morphologically-detailed models.
The two languages evolved in parallel, although with considerable cross-influence in both
directions. It is possible they will merge in future; tools are under development to allow
conversion between the formats where possible. Which one you should choose depends largely
on what you want to do, and what tools are available for working with the two languages.

Abstraction and User Layers

In NineML [http://nineml.net], the definition of a component is split into two parts;

	Abstraction Layer

	Components on this layer can be thought of as parameterised models. For
example, we could specify a general integrate-and-fire neuron, with a
firing threshold, V_Threshold and a reset voltage V_Reset. We are
able to define the dynamics of the neuron in terms of these parameters.

	User Layer

	In order to simulate a network, we need to take the parameterised models
from the Abstraction Layer, fill in the parameters, and specify the
number of each type of component we wish to simulate and how they should be
connected. For example, we might specify for our neurons that
V_Threshold was -45 mV and V_Reset was -60 mV.

The flow for a simulation using NineML [http://nineml.net] would look like:

[image: _images/AL_UL_Overview.png]
An obvious question is “Why do this?!”

For a single, relatively simple simulation, it may not be worth the effort!
But imagine we are modelling a (relatively simple) network of neurons, which
contains five different types of neurons. The neurons synapse onto each other,
and there are three different classes of synapses, with different models for
their dynamics. If we were to implement this naively, we could potentially
copy and paste the same code 15 times, for each simulator. By factoring out
basic functionality, we make our workflow much more manageable.

The nineml Python library

NineML [http://nineml.net] is defined by an object model (the specification can be found at
nineml.net [http://nineml.net/specification/nineml_version1.pdf]), with standardized serializations to XML, JSON, YAML and HDF5.
The Python nineml library provides tools for reading and writing
NineML [http://nineml.net] models to and from the supported serialization formats and an API for
building/introspecting/manipulating/validating NineML [http://nineml.net] models in Python
(including a shorthand notation for building NineML [http://nineml.net] models). The library is
intended as a base for other Python tools working with NineML [http://nineml.net], for example
tools for code generation.

Installation

Use of the Python 9ML API requires that you have Python (version 2.7 or >=3.4)
with the sympy package installed. To serialize NineML [http://nineml.net] to XML, YAML and
HDF5 formats the lxml, pyyaml and h5py packages are also required
respectively.

Depdendencies

macOS

If you are not already using another Python installation (e.g. Enthought,
Python(x,y), etc…) it can be a good idea to install Python using the
Homebrew [http://brew.sh] package manager rather than using the system version as Apple has
modified some package versions (e.g. six), which can cause difficulties
down the track.

$ brew install python

While other Python installations should work fine, it is not recommended to use
the system Python installation at /usr/bin/python for scientific
computing as some of the standard pacakges (e.g. six) have been modified and
this can cause problems with other packages down the track.

Before installing h5py you will also need to install a development version of
HDF5. With Homebrew [http://brew.sh] this can be done with:

$ brew install hdf5

Linux

On Linux, development packages for HDF5 (i.e. with headers). For Ubuntu/Debian
the following packages can be used

	libhdf5-serial-dev (serial)

	libhdf5-openmpi-dev (parallel with Open MPI)

	libhdf5-mpich-dev (parallel with MPICH)

Please consult the relevant documentation to find the appropriate package for
other distributions.

Windows

On Windows, you can download the Python installer from http://www.python.org.
To use HDF5 serialisation you will need to install HDF5 from source, see
http://docs.h5py.org/en/latest/build.html.

Install Python packages

To install the Python package it is recommeded to install from PyPI using
pip:

$ pip install nineml

Otherwise for the latest version you can clone the repository at
http://github.com/INCF/nineml-python or install directly with:

$ pip install git+http://github.com/INCF/nineml-python

Getting started

Reading model descriptions from XML files

NineML documents can contain abstraction layer models, user layer models (with
references to abstraction layer models defined in other documents) or both.

To read a file containing only abstraction layer elements:

>>> import nineml, pprint
>>> doc = nineml.read("./BrunelIaF.xml")
>>> pprint(doc.items())
[('BrunelIaF', Dynamics(name='BrunelIaF')),
 ('current', Dimension(name='current', i=1)),
 ('resistance', Dimension(name='resistance', i=-2, m=1, t=-3, l=2)),
 ('time', Dimension(name='time', t=1)),
 ('voltage', Dimension(name='voltage', i=-1, m=1, t=-3, l=2)]

This gives us a Document instance, a dictionary-like object
containing a Dynamics definition of an
integrate-and-fire neuron model, together with the definitions of the physical
dimensions of parameters and state variables used in the model.

Now for a file containing an entire user layer model (with references to other
NineML documents containing the abstraction layer definitions):

>>> doc = nineml.read("./network/Brunel2000/AI.xml")
>>> pprint(doc.items())
[('All': Selection(name='All')),
 ('Exc': Population(name='Exc', number=4000, cell=nrn)),
 ('Excitation': Projection(name="Excitation", source=Population(name='Exc', number=4000, cell=nrn), destination=Selection(name='All'), connectivity=BaseComponent(name="RandomExc", componentclass="RandomFanIn"), response=BaseComponent(name="syn", componentclass="AlphaPSR")plasticity=BaseComponent(name="ExcitatoryPlasticity", componentclass="StaticConnection"), delay=Delay(value=1.5, unit=ms), with 2 port-connections)),
 ('Ext': Population(name='Ext', number=5000, cell=stim)),
 ('External': Projection(name="External", source=Population(name='Ext', number=5000, cell=stim), destination=Selection(name='All'), connectivity=BaseComponent(name="OneToOne", componentclass="OneToOne"), response=BaseComponent(name="syn", componentclass="AlphaPSR")plasticity=BaseComponent(name="ExternalPlasticity", componentclass="StaticConnection"), delay=Delay(value=1.5, unit=ms), with 2 port-connections)),
 ('Hz': Unit(name='Hz', dimension='per_time', power=0)),
 ('Inh': Population(name='Inh', number=1000, cell=nrn)),
 ('Inhibition': Projection(name="Inhibition", source=Population(name='Inh', number=1000, cell=nrn), destination=Selection(name='All'), connectivity=BaseComponent(name="RandomInh", componentclass="RandomFanIn"), response=BaseComponent(name="syn", componentclass="AlphaPSR")plasticity=BaseComponent(name="InhibitoryPlasticity", componentclass="StaticConnection"), delay=Delay(value=1.5, unit=ms), with 2 port-connections)),
 ('Mohm': Unit(name='Mohm', dimension='resistance', power=6)),
 ('current': Dimension(name='current', i=1)),
 ('mV': Unit(name='mV', dimension='voltage', power=-3)),
 ('ms': Unit(name='ms', dimension='time', power=-3)),
 ('nA': Unit(name='nA', dimension='current', power=-9)),
 ('per_time': Dimension(name='per_time', t=-1)),
 ('resistance': Dimension(name='resistance', i=-2, m=1, t=-3, l=2)),
 ('time': Dimension(name='time', t=1)),
 ('voltage': Dimension(name='voltage', i=-1, m=1, t=-3, l=2))]

Again we get a Document instance object containing all the
NineML objects in the document. An alternative representation can be obtained
by reading the file as a Network object:

>>> from nineml.user import Network
>>> net = doc.read("./network/Brunel2000/AI.xml").as_network('BrunelAI')
>>> print(net)
Network(name='BrunelAI')

This gives a much more structured representation. For example, all the
Populations within the model are
available through the populations attribute:

>>> pprint(list(net.populations))
[Population(name='Exc', number=4000, cell=nrn),
 Population(name='Ext', number=5000, cell=stim),
 Population(name='Inh', number=1000, cell=nrn)]

Introspecting NineML models

Introspecting abstraction layer models

Once we have loaded a model from an XML file we can begin to examine its
structure.

>>> model = doc['BrunelIaF']
>>> model
Dynamics(name='BrunelIaF')

We can see a list of model parameters:

>>> pprint(list(model.parameters))
[Parameter(theta, dimension=voltage),
 Parameter(Vreset, dimension=voltage),
 Parameter(R, dimension=resistance),
 Parameter(tau_rp, dimension=time),
 Parameter(tau, dimension=time)]

a list of state variables:

>>> pprint(list(model.state_variables))
[StateVariable(V, dimension=voltage),
 StateVariable(t_rpend, dimension=time)]

and a list of the variables that are imported from/exposed to the outside world:

>>> pprint(list(model.ports))
[AnalogSendPort('V', dimension='Dimension(name='voltage', i=-1, m=1, t=-3, l=2)'),
 AnalogSendPort('t_rpend', dimension='Dimension(name='time', t=1)'),
 AnalogReducePort('Isyn', dimension='Dimension(name='current', i=1)', op='+'),
 EventSendPort('spikeOutput')]

Delving more deeply, we can examine the model’s regimes more closely:

>>> pprint(list(model.regimes))
[Regime(refractoryRegime),
 Regime(subthresholdRegime)]
>>> r_ref, r_sth = model.regimes

Looking first at the subthreshold regime, we can see the differential equations:

>>> list(r_sth.time_derivatives)
[TimeDerivative(dV/dt = (-V + R*Isyn)/tau)]

and the conditions under which the model will transition to the refractory regime:

>>> list(r_sth.transitions)
[OnCondition(V > theta)]
>>> tr_spike = next(r_sth.transitions)

The trigger for this transition is for the variable V to pass a threshold (parameter theta):

>>> tr_spike.trigger
Trigger('V > theta')

When the transition is initiated, the model will emit an output event (i.e. a spike) and discontinusouly change
the values of some of the state variables:

>>> tr_spike.output_events
[OutputEvent('spikeOutput')]
>>> tr_spike.state_assignments
[StateAssignment('t_rpend', 't + tau_rp'), StateAssignment('V', 'Vreset')]

Then it will move to the refractory regime:

>>> tr_spike.target_regime
Regime(refractoryRegime)

The refractory regime can be introspected in a similar way.

Introspecting user layer models

As shown above, once a complete network model has been loaded as a Network object, we
can look at its neuron populations and the connections between these populations (“projections”):

>>> pprint(list(net.populations))
[Population(name='Exc', number=4000, cell=nrn),
 Population(name='Ext', number=5000, cell=stim),
 Population(name='Inh', number=1000, cell=nrn)]

>>> pprint(list(net.projections))
[Projection(name="Inhibition", pre=Population(name='Inh', size=2500, cell=nrn), post=Selection(name='All', Concatenate(Item(name='0'), Item(name='1'))), connectivity=Connectivity(rule=RandomFanIn, src_size=2500, dest_size=12500), response=DynamicsProperties(name="syn", component_class="Alpha")plasticity=DynamicsProperties(name="InhibitoryPlasticity", component_class="Static"), delay=1.5 * ms,event_port_connections=[EventPortConnection(sender=role:pre->spike_output, receiver=role:response->input_spike)], analog_port_connections=[AnalogPortConnection(sender=role:response->i_synaptic, receiver=role:post->i_synaptic), AnalogPortConnection(sender=role:plasticity->fixed_weight, receiver=role:response->weight)]),
 Projection(name="External", pre=Population(name='Ext', size=12500, cell=stim), post=Selection(name='All', Concatenate(Item(name='0'), Item(name='1'))), connectivity=Connectivity(rule=OneToOne, src_size=12500, dest_size=12500), response=DynamicsProperties(name="syn", component_class="Alpha")plasticity=DynamicsProperties(name="ExternalPlasticity", component_class="Static"), delay=1.5 * ms,event_port_connections=[EventPortConnection(sender=role:pre->spike_output, receiver=role:response->input_spike)], analog_port_connections=[AnalogPortConnection(sender=role:response->i_synaptic, receiver=role:post->i_synaptic), AnalogPortConnection(sender=role:plasticity->fixed_weight, receiver=role:response->weight)]),
 Projection(name="Excitation", pre=Population(name='Exc', size=10000, cell=nrn), post=Selection(name='All', Concatenate(Item(name='0'), Item(name='1'))), connectivity=Connectivity(rule=RandomFanIn, src_size=10000, dest_size=12500), response=DynamicsProperties(name="syn", component_class="Alpha")plasticity=DynamicsProperties(name="ExcitatoryPlasticity", component_class="Static"), delay=1.5 * ms,event_port_connections=[EventPortConnection(sender=role:pre->spike_output, receiver=role:response->input_spike)], analog_port_connections=[AnalogPortConnection(sender=role:response->i_synaptic, receiver=role:post->i_synaptic), AnalogPortConnection(sender=role:plasticity->fixed_weight, receiver=role:response->weight)])]

NineML also supports “selections”, groupings of neurons which span populations:

>>> pprint(list(net.selections))
[Selection(name='All', Concatenate(Item(name='0'), Item(name='1')))]

Note

in NineML version 1, the only type of selection is a concatenation of two or more populations. In future
versions it will be possible to select and combine sub-populations.

Looking more closely at a population, we can see its name, the number of neurons it contains and
the neuron model used (Component):

>>> p_exc = net.population('Exc')
>>> p_exc
Population(name='Exc', size=4000, cell=nrn)
>>> p_exc.size
4000
>>> p_exc.cell
DynamicsProperties(name="nrn", componentclass="BrunelIaF")

In the neuron model component we can see its abstraction layer definition
(ComponentClass), it’s properties (parameter values), and the initial
values of its state variables.

Note

the handling of initial values is likely to change in future versions of NineML.

>>> p_exc.cell.component_class
Dynamics(name='BrunelIaF')
>>> pprint(list(p_exc.cell.properties))
[Property(name=Vreset, value=10.0, unit=mV),
 Property(name=tau, value=20.0, unit=ms),
 Property(name=R, value=1.5, unit=Mohm),
 Property(name=tau_rp, value=2.0, unit=ms),
 Property(name=theta, value=20.0, unit=mV)]
>>> pprint(list(p_exc.cell.initial_values))
[Initial(name='t_rpend', value=0.0, unit=ms),
 Initial(name='V', value=0.0, unit=mV)]

Turning from a population to a projection:

>>> prj_inh = net.projection('Inhibition')
>>> prj_inh.pre
Population(name='Inh', number=1000, cell=nrn)
>>> prj_inh.post
Selection(name='All', Concatenate(Item(name='0'), Item(name='1')))
>>> prj_inh.response
DynamicsProperties(name="syn", componentclass="AlphaPSR")
>>> prj_inh.connectivity
DynamicsProperties(name="RandomInh", componentclass="RandomFanIn")
>>> prj_inh.plasticity
DynamicsProperties(name="InhibitoryPlasticity", componentclass="StaticConnection")
>>> prj_inh.delay
1.5 * ms
>>> pprint(list(prj_inh.port_connections))
[AnalogPortConnection(sender=role:response->i_synaptic, receiver=role:post->i_synaptic),
 AnalogPortConnection(sender=role:plasticity->fixed_weight, receiver=role:response->weight),
 EventPortConnection(sender=role:pre->spike_output, receiver=role:response->input_spike)]

Note that the pre and post attributes point to
Populations or Projections, the
connectivity rule, the post-synaptic response model and
the synaptic plasticity model are all
Components. The port_connections
attribute indicates which ports in the different components should be connected
together.

Writing model descriptions in Python

Writing abstraction layer models

subthreshold_regime = Regime(
 name="subthreshold_regime",
 time_derivatives=[
 "dV/dt = alpha*V*V + beta*V + zeta - U + Isyn / C_m",
 "dU/dt = a*(b*V - U)",],

 transitions=[On("V > theta",
 do=["V = c",
 "U = U+ d",
 OutputEvent('spike')],
 to='subthreshold_regime')]
)

ports = [AnalogSendPort("V", un.voltage),
 AnalogReducePort("Isyn", un.current, operator="+")]

parameters = [
 Parameter('theta', un.voltage),
 Parameter('a', un.per_time),
 Parameter('b', un.per_time),
 Parameter('c', un.voltage),
 Parameter('d', un.voltage / un.time),
 Parameter('C_m', un.capacitance),
 Parameter('alpha', un.dimensionless / (un.voltage * un.time)),
 Parameter('beta', un.per_time),
 Parameter('zeta', un.voltage / un.time)]

state_variables = [
 StateVariable('V', un.voltage),
 StateVariable('U', un.voltage / un.time)]

izhi = Dynamics(
 name="Izhikevich",
 parameters=parameters,
 state_variables=state_variables,
 regimes=[subthreshold_regime],
 analog_ports=ports)

Writing user layer models

Meta-parameters
order = 1000 # scales the size of the network
Ne = 4 * order # number of excitatory neurons
Ni = 1 * order # number of inhibitory neurons
epsilon = 0.1 # connection probability
Ce = int(epsilon * Ne) # number of excitatory synapses per neuron
Ci = int(epsilon * Ni) # number of inhibitory synapses per neuron
Cext = Ce # effective number of external synapses per neuron
delay = 1.5 # (ms) global delay for all neurons in the group
J = 0.1 # (mV) EPSP size
Jeff = 24.0 * J # (nA) synaptic weight
Je = Jeff # excitatory weights
Ji = -g * Je # inhibitory weights
Jext = Je # external weights
theta = 20.0 # firing thresholds
tau = 20.0 # membrane time constant
tau_syn = 0.1 # synapse time constant
nu_thresh = theta / (Je * Ce * tau * exp(1.0) * tau_syn) # threshold rate
nu_thresh = theta / (J * Ce * tau)
nu_ext = eta * nu_thresh # external rate per synapse
input_rate = 1000.0 * nu_ext * Cext # mean input spiking rate

Parameters
neuron_parameters = dict(tau=tau * ms,
 v_threshold=theta * mV,
 refractory_period=2.0 * ms,
 v_reset=10.0 * mV,
 R=1.5 * Mohm) # units??
psr_parameters = dict(tau=tau_syn * ms)

Initial Values
v_init = RandomDistributionProperties(
 "uniform_rest_to_threshold",
 ninemlcatalog.load("randomdistribution/Uniform",
 'UniformDistribution'),
 {'minimum': (0.0, unitless),
 'maximum': (theta, unitless)})
neuron_initial_values = {"v": (v_init * mV),
 "refractory_end": (0.0 * ms)}
synapse_initial_values = {"a": (0.0 * nA), "b": (0.0 * nA)}
tpoisson_init = RandomDistributionProperties(
 "exponential_beta",
 ninemlcatalog.load('randomdistribution/Exponential',
 'ExponentialDistribution'),
 {"rate": (1000.0 / input_rate * unitless)})

Dynamics components
celltype = DynamicsProperties(
 "nrn",
 ninemlcatalog.load('neuron/LeakyIntegrateAndFire',
 'LeakyIntegrateAndFire'),
 neuron_parameters, initial_values=neuron_initial_values)
ext_stim = DynamicsProperties(
 "stim",
 ninemlcatalog.load('input/Poisson', 'Poisson'),
 dict(rate=(input_rate, Hz)),
 initial_values={"t_next": (tpoisson_init, ms)})
psr = DynamicsProperties(
 "syn",
 ninemlcatalog.load('postsynapticresponse/Alpha', 'Alpha'),
 psr_parameters,
 initial_values=synapse_initial_values)

Connecion rules
one_to_one_class = ninemlcatalog.load(
 '/connectionrule/OneToOne', 'OneToOne')
random_fan_in_class = ninemlcatalog.load(
 '/connectionrule/RandomFanIn', 'RandomFanIn')

Populations
exc_cells = Population("Exc", Ne, celltype, positions=None)
inh_cells = Population("Inh", Ni, celltype, positions=None)
external = Population("Ext", Ne + Ni, ext_stim, positions=None)

Selections
all_cells = Selection(
 "All", Concatenate(exc_cells, inh_cells))

Projections
input_prj = Projection(
 "External", external, all_cells,
 connectivity=ConnectionRuleProperties(
 "OneToOne", one_to_one_class),
 response=psr,
 plasticity=DynamicsProperties(
 "ExternalPlasticity",
 ninemlcatalog.load("plasticity/Static", 'Static'),
 properties={"weight": (Jext, nA)}),
 port_connections=[
 EventPortConnection(
 'pre', 'response', 'spike_output', 'spike'),
 AnalogPortConnection(
 "plasticity", "response", "fixed_weight", "weight"),
 AnalogPortConnection(
 "response", "destination", "i_synaptic", "i_synaptic")],
 delay=(delay, ms))

exc_prj = Projection(
 "Excitation", exc_cells, all_cells,
 connectivity=ConnectionRuleProperties(
 "RandomExc", random_fan_in_class, {"number": (Ce * unitless)}),
 response=psr,
 plasticity=DynamicsProperties(
 "ExcitatoryPlasticity",
 ninemlcatalog.load("plasticity/Static", 'Static'),
 properties={"weight": (Je, nA)}),
 port_connections=[
 EventPortConnection(
 'pre', 'response', 'spike_output', 'spike'),
 AnalogPortConnection(
 "plasticity", "response", "fixed_weight", "weight"),
 AnalogPortConnection(
 "response", "destination", "i_synaptic", "i_synaptic")],
 delay=(delay, ms))

inh_prj = Projection(
 "Inhibition", inh_cells, all_cells,
 connectivity=ConnectionRuleProperties(
 "RandomInh", random_fan_in_class, {"number": (Ci * unitless)}),
 response=psr,
 plasticity=DynamicsProperties(
 "InhibitoryPlasticity",
 ninemlcatalog.load("plasticity/Static", 'Static'),
 properties={"weight": (Ji, nA)}),
 port_connections=[
 EventPortConnection(
 'pre', 'response', 'spike_output', 'spike'),
 AnalogPortConnection(
 "plasticity", "response", "fixed_weight", "weight"),
 AnalogPortConnection(
 "response", "destination", "i_synaptic", "i_synaptic")],
 delay=(delay, ms))

Save to document in NineML Catalog
network = Network(name if name else "BrunelNetwork")
network.add(exc_cells, inh_cells, external, all_cells, input_prj, exc_prj,
 inh_prj)

NineML Types

Relationship to specification

There is a near one-to-one mapping between NineML types as defined in the
NineML specification [http://nineml.net/specification/] and classes in the nineml Python package.

The most significant exceptions are classes in the nineml package that are
modelled on proposed changes to the NineML specification [http://nineml.net/specification/]
(see http://github.com/INCF/nineml-spec/issues), e.g.
ComponentClass->:ref:Dynamics/ConnectionRule, Projection,
Quantity.

There are also cases where a type in the specification is just a thin wrapper
around a body element (e.g. Delay, Size), which are “flattened” to be
attributes in the NineML Python Library.

Mathematical expressions

All expressions in the NineML Python Library are represented using Sympy [http://sympy.org/]
objects. Whereas in the NineML Specification [http://nineml.net/specification/] mathematical expressions are
specified to be enclosed within MathInline elements (with a subset of
MathML planned as an alternative in future versions), in the NineML Python
Library the Sympy [http://sympy.org/] object representing is accessed via the rhs property
of the relevant objects.

Common properties/methods

All types

All NineML types in the NineML Python Library derive from BaseNineMLObject,
which adds some common methods.

Document-level types

There are 12 types that are permitted in the root of a NineML document

	Dynamics

	DynamicsProperties

	ConnectionRule

	ConnectionRuleProperties

	RandomDistribution

	RandomDistribution

	Population

	Projection

	Selection

	Network

	Unit

	Dimension

Instances of these types has a document property to access the document it
belongs to and a url property to access the url of the document. If the
instance has not been added to a document then they will return None.

Container types

NineML types that can have multiple child elements of one or more types, i.e.:

	Dynamics

	ConnectionRule

	RandomDistribution

	DynamicsProperties

	ConnectionRuleProperties

	RandomDistributionProperties

	Regime

	OnEvent

	OnCondition

	Network

	Selection

derive from the ContainerObject class, which defines several
methods to accessing, adding and removing their children. Internally, each
child is stored in a dictionary according to its type. However, access to
children is provided through four standardised accessor methods for each
child type the container can hold:

	<child-type-plural>:

	Property that returns an iterator over child elements of the given
type (e.g. aliases, parameters, on_conditions)

	<child-type>_names/keys:

	Property that returns an iterator over the keys of child elements that
are used to store the child in the internal dictionary. If
the child type has a name, then the access will be
<child-type>_names, otherwise it will be <child-type>_keys
(e.g. alias_names, parameter_names, on_condition_keys)

	num_<child-type-plural>:

	Property that returns the number child elements in the container

	<child-type>:

	Accessor method that takes the name/key of the child type and returns
the corresponding element in the container.

There are a number of standard methods for container types

Annotations

All NineML elements can be annotated (except Annotations themselves) via their
annotations property. The annotations property returns an Annotations
element, with several convenient methods for setting attributes of nested
elements.

Serialization

All NineML Python objects can be written to file via their write method,
which simply wraps the object in a Document and
passes it to the nineml.write function (alternatively the nineml.write
function can be called directly). NineML documents can be read from files
into Document objects using the nineml.read method, e.g.:

>>> dynA = nineml.Dynamics('A', ...)
>>> dynA.write('example.xml') # Alternatively nineml.write('example.xml', dynA, ...)
>>> doc = nineml.read('example.xml')
>>> dynA = doc['dynA']

Documents that are read or written to/from files will be cached in the
Document class unless the register keyword argument is set to
False.

NineML objects can also be serialized to string and/or basic Python objects
and back again using the serialize and unserialize methods depending
on the data format chosen (see Formats).

Formats

There are currently five supported formats for serialization with the NineML
Python library: XML [http://www.w3.org/XML/], YAML [http://yaml.org], JSON [http://www.json.org/], HDF5 [http://www.hdfgroup.org/HDF5/], and Python
dictionary (the JSON [http://www.json.org/] and YAML [http://yaml.org] formats are derived from the
Python dictionary serializer). Noting that the serialization module is written
in a modular way that can support additional hierarchical formats if required
by deriving the BaseSerializer and BaseUnserializer classes.

Depending on the format used, NineML can be serialized to file, string or
standard Python objects (i.e dictionary).

	Format

	File

	String

	Object

	XML [http://www.w3.org/XML/]

	X

	X

	X

	JSON [http://www.json.org/]

	X

	X

	

	YAML [http://yaml.org]

	X

	X

	

	HDF5 [http://www.hdfgroup.org/HDF5/]

	X

	
	

	Python dictionary

	
	
	X

Note

Although the set of hierarchical object models that can be represented by
XML [http://www.w3.org/XML/], JSON [http://www.json.org/]/YAML [http://yaml.org] and HDF5 [http://www.hdfgroup.org/HDF5/] are very similar, there are slight differences
that prevent general one-to-one mappings between them. These issues,
and how they are overcome are explained in the Serialization Section [http://nineml-spec.readthedocs.io/latest/serialization] of
the NineML Specification [http://nineml.net/specification/].

Versions

The NineML Python Library is fully interoperable with the NineML v1
syntax the v2 syntax currently under development. While this
will not be feasible as non-compatible features are added to v2, the aim is to
maintain full backwards compatibility with v1.

Referencing style

References from one serialized NineML object to another can either be “local”,
where both objects are contained in the same document, or “remote”, where the
referenced object is in a different document to the object that references it.

Remote references enable large and complex models to be split across a number
of files, or to reference standardized models from the NineML catalog [http://github.com/INCF/nineml-catalog] for
example. However, in some circumstances it may be desirable to copy all
references to the local document, for ease-of-portability or to reduce the
complexity of the read methods required by supporting tools.

The ref_style keyword argument can be used to control the referencing style
used when serializing NineML documents. Valid options are

	local:

	All references are written locally to the serialized document.

	prefer:

	Objects are written as references where possible

	inline:

	Objects are written inline where possible

	None:

	Whether an object is written as a reference or inline is preserved from when
the document was read

Hierarchical dynamics

Hierarchical components allow us to build a single component, out of several
smaller components. For example, imagine we could build a component that
represented an integrate-and-fire neuron (IAF) with 2 input synapses. We could
do this by either by creating a single component, as we have been doing
previously, or by creating 3 components; the IAF component and 2 synapses, and
then creating a larger component out of them by specifying internal
connectivity.

Building larger components out of smaller components has several advantages:

	
	We can define components in a reusable way. I.e., we can write the IAF

	subcomponent once, then reuse it across multiple components.

	
	We can isolated unrelated variables; reducing the chance of a typo

	producing a bug or variable collisions.

We look at the IAF with two synapse example in more detail. The following
figure shows a cartoon of an iaf neuron with a refractory period. Orange boxes
denote regimes, yellow ovals denote transitions and the ports are shown on the
right-hand-side. Parameters have been omitted.

[image: _images/iaf_component_im.png]
The corresponding code to generate this component is:

r1 = al.Regime(name = "subthresholdregime",
 time_derivatives = ["dV/dt = (gl*(vrest - V) + ISyn)/(cm)"],
 transitions = [al.On("V > vthresh",
 do=["tspike = t",
 "V = vreset",
 al.OutputEvent('spikeoutput')],
 to="refractoryregime")])
r2 = al.Regime(name="refractoryregime",
 time_derivatives=["dV/dt = 0"],
iaf = al.Dynamics(
 name = "iaf",
 dynamics = al.Dynamics(regimes = [r1,r2]),
 analog_ports=[al.SendPort("V"), al.ReducePort("ISyn", reduce_op="+")],
 event_ports=[al.SendEventPort('spikeoutput')])

Similarly, we can define a synapse component:

[image: _images/coba_component_im.png]
with corresponding code:

coba = al.Dynamics(
 name = "CobaSyn",
 dynamics =
 al.Dynamics(
 aliases = ["I:=g*(vrev-V)",],
 regimes = [
 al.Regime(
 name = "cobadefaultregime",
 time_derivatives = ["dg/dt = -g/tau",],
 transitions = [
 al.On(al.InputEvent('spikeinput'), do=["g=g+q"]),
],
)
],
 state_variables = [al.StateVariable('g')]
),

 analog_ports = [al.RecvPort("V"), al.SendPort("I"),],
 event_ports = [al.RecvEventPort('spikeinput')],
 parameters = [al.Parameter(p) for p in ['tau','q','vrev']]
)

Multi-Dynamics

We now define a larger component, which will contain these sub_dynamics. When
we create the component, we specify the name of each subcomponent, which
allows us to reference them in the future.

We also need to specify that the voltage send port from the iaf needs to be
connected to the voltage receive ports of the synapse. Similarly we need to
connect the current port from the synapses into the current reduce port on the
IAF neuron. These connections are shown in red on the diagram, and correspond
to the arguments corresponding to the port_connections argument.

In a diagram:

[image: _images/iaf_coba2_component_im.png]
In code:

Create a model, composed of an iaf neuron, and
iaf_2coba_comp = al.MultiDynamics(name="iaf_2coba",
 sub_dynamics={"iaf" : get_iaf(),
 "coba_excit" : get_coba(),
 "coba_inhib" : get_coba()},
 port_connections=[
 ("iaf", "V", "coba_excit", "V"),
 ("iaf", "V", "coba_inhib", "V"),
 ("coba_excit", "I", "iaf", "ISyn"),
 ("coba_inhib", "I", "iaf", "ISyn")]

Examples

Neuron Models

Example - Adaptive Exponential Integrate and Fire

from __future__ import division
from nineml import units as un
from nineml import abstraction as al, user as ul

def create_adaptive_exponential():
 """
 Adaptive exponential integrate-and-fire neuron as described in
 A. Destexhe, J COmput Neurosci 27: 493--506 (2009)

 Author B. Kriener (Jan 2011)

 ## neuron model: aeIF

 ## variables:
 ## V: membrane potential
 ## w: adaptation variable

 ## parameters:
 ## C_m # specific membrane capacitance [muF/cm**2]
 ## g_L # leak conductance [mS/cm**2]
 ## E_L # resting potential [mV]
 ## Delta # steepness of exponential approach to threshold [mV]
 ## V_T # spike threshold [mV]
 ## S # membrane area [mum**2]
 ## trefractory # refractory time [ms]
 ## tspike # spike time [ms]
 ## tau_w # adaptation time constant
 ## a, b # adaptation parameters [muS, nA]
 """
 aeIF = al.Dynamics(
 name="AdaptiveExpIntegrateAndFire",
 parameters=[
 al.Parameter('C_m', un.capacitance),
 al.Parameter('g_L', un.conductance),
 al.Parameter('E_L', un.voltage),
 al.Parameter('Delta', un.voltage),
 al.Parameter('V_T', un.voltage),
 al.Parameter('S'),
 al.Parameter('trefractory', un.time),
 al.Parameter('tspike', un.time),
 al.Parameter('tau_w', un.time),
 al.Parameter('a', un.dimensionless / un.voltage),
 al.Parameter('b')],
 state_variables=[
 al.StateVariable('V', un.voltage),
 al.StateVariable('w')],
 regimes=[
 al.Regime(
 name="subthresholdregime",
 time_derivatives=[
 "dV/dt = -g_L*(V-E_L)/C_m + Isyn/C_m + g_L*Delta*exp((V-V_T)/Delta-w/S)/C_m", # @IgnorePep8
 "dw/dt = (a*(V-E_L)-w)/tau_w",],
 transitions=al.On("V > V_T",
 do=["V = E_L", "w = w + b",
 al.OutputEvent('spikeoutput')],
 to="refractoryregime")),
 al.Regime(
 name="refractoryregime",
 transitions=al.On("t>=tspike+trefractory",
 to="subthresholdregime"))],
 analog_ports=[al.AnalogReducePort("Isyn", un.current, operator="+")])
 return aeIF

def parameterise_adaptive_exponential(definition=None):
 if definition is None:
 definition = create_adaptive_exponential()
 comp = ul.DynamicsProperties(
 name='SampleAdaptiveExpIntegrateAndFire',
 definition=definition,
 properties=[ul.Property('C_m', 1 * un.pF),
 ul.Property('g_L', 0.1 * un.nS),
 ul.Property('E_L', -65 * un.mV),
 ul.Property('Delta', 1 * un.mV),
 ul.Property('V_T', -58 * un.mV),
 ul.Property('S', 0.1),
 ul.Property('tspike', 0.5 * un.ms),
 ul.Property('trefractory', 0.25 * un.ms),
 ul.Property('tau_w', 4 * un.ms),
 ul.Property('a', 1 * un.per_mV),
 ul.Property('b', 2)],
 initial_values=[ul.Initial('V', -70 * un.mV),
 ul.Initial('w', 0.1 * un.mV)])
 return comp

Example - Hodgkin-Huxley

from __future__ import division
from past.utils import old_div
from nineml import abstraction as al, user as ul, Document
from nineml import units as un
from nineml.xml import E, etree

def create_hodgkin_huxley():
 """A Hodgkin-Huxley single neuron model.
 Written by Andrew Davison.
 See http://phobos.incf.ki.se/src_rst/
 examples/examples_al_python.html#example-hh
 """
 aliases = [
 "q10 := 3.0**((celsius - qfactor)/tendegrees)", # temperature correction factor @IgnorePep8
 "m_alpha := m_alpha_A*(V-m_alpha_V0)/(exp(-(V-m_alpha_V0)/m_alpha_K) - 1.0)", # @IgnorePep8
 "m_beta := m_beta_A*exp(-(V-m_beta_V0)/m_beta_K)",
 "mtau := 1.0/(q10*(m_alpha + m_beta))",
 "minf := m_alpha/(m_alpha + m_beta)",
 "h_alpha := h_alpha_A*exp(-(V-h_alpha_V0)/h_alpha_K)",
 "h_beta := h_beta_A/(exp(-(V-h_beta_V0)/h_beta_K) + 1.0)",
 "htau := 1.0/(q10*(h_alpha + h_beta))",
 "hinf := h_alpha/(h_alpha + h_beta)",
 "n_alpha := n_alpha_A*(V-n_alpha_V0)/(exp(-(V-n_alpha_V0)/n_alpha_K) - 1.0)", # @IgnorePep8
 "n_beta := n_beta_A*exp(-(V-n_beta_V0)/n_beta_K)",
 "ntau := 1.0/(q10*(n_alpha + n_beta))",
 "ninf := n_alpha/(n_alpha + n_beta)",
 "gna := gnabar*m*m*m*h",
 "gk := gkbar*n*n*n*n",
 "ina := gna*(ena - V)",
 "ik := gk*(ek - V)",
 "il := gl*(el - V)"]

 hh_regime = al.Regime(
 "dn/dt = (ninf-n)/ntau",
 "dm/dt = (minf-m)/mtau",
 "dh/dt = (hinf-h)/htau",
 "dV/dt = (ina + ik + il + isyn)/C",
 transitions=al.On("V > v_threshold", do=al.SpikeOutputEvent())
)

 state_variables = [
 al.StateVariable('V', un.voltage),
 al.StateVariable('m', un.dimensionless),
 al.StateVariable('n', un.dimensionless),
 al.StateVariable('h', un.dimensionless)]

 # the rest are not "parameters" but aliases, assigned vars, state vars,
 # indep vars, analog_analog_ports, etc.
 parameters = [
 al.Parameter('el', un.voltage),
 al.Parameter('C', un.capacitance),
 al.Parameter('ek', un.voltage),
 al.Parameter('ena', un.voltage),
 al.Parameter('gkbar', un.conductance),
 al.Parameter('gnabar', un.conductance),
 al.Parameter('v_threshold', un.voltage),
 al.Parameter('gl', un.conductance),
 al.Parameter('celsius', un.temperature),
 al.Parameter('qfactor', un.temperature),
 al.Parameter('tendegrees', un.temperature),
 al.Parameter('m_alpha_A', old_div(un.dimensionless, (un.time * un.voltage))),
 al.Parameter('m_alpha_V0', un.voltage),
 al.Parameter('m_alpha_K', un.voltage),
 al.Parameter('m_beta_A', old_div(un.dimensionless, un.time)),
 al.Parameter('m_beta_V0', un.voltage),
 al.Parameter('m_beta_K', un.voltage),
 al.Parameter('h_alpha_A', old_div(un.dimensionless, un.time)),
 al.Parameter('h_alpha_V0', un.voltage),
 al.Parameter('h_alpha_K', un.voltage),
 al.Parameter('h_beta_A', old_div(un.dimensionless, un.time)),
 al.Parameter('h_beta_V0', un.voltage),
 al.Parameter('h_beta_K', un.voltage),
 al.Parameter('n_alpha_A', old_div(un.dimensionless, (un.time * un.voltage))),
 al.Parameter('n_alpha_V0', un.voltage),
 al.Parameter('n_alpha_K', un.voltage),
 al.Parameter('n_beta_A', old_div(un.dimensionless, un.time)),
 al.Parameter('n_beta_V0', un.voltage),
 al.Parameter('n_beta_K', un.voltage)]

 analog_ports = [al.AnalogSendPort("V", un.voltage),
 al.AnalogReducePort("isyn", un.current, operator="+")]

 dyn = al.Dynamics("HodgkinHuxley",
 parameters=parameters,
 state_variables=state_variables,
 regimes=(hh_regime,),
 aliases=aliases,
 analog_ports=analog_ports)
 return dyn

def parameterise_hodgkin_huxley(definition=None):
 if definition is None:
 definition = create_hodgkin_huxley()
 comp = ul.DynamicsProperties(
 name='SampleHodgkinHuxley',
 definition=create_hodgkin_huxley(),
 properties=[ul.Property('C', 1.0 * un.pF),
 ul.Property('celsius', 20.0 * un.degC),
 ul.Property('ek', -90 * un.mV),
 ul.Property('el', -65 * un.mV),
 ul.Property('ena', 80 * un.mV),
 ul.Property('gkbar', 30.0 * un.nS),
 ul.Property('gl', 0.3 * un.nS),
 ul.Property('gnabar', 130.0 * un.nS),
 ul.Property('v_threshold', -40.0 * un.mV),
 ul.Property('qfactor', 6.3 * un.degC),
 ul.Property('tendegrees', 10.0 * un.degC),
 ul.Property('m_alpha_A', -0.1,
 old_div(un.unitless, (un.ms * un.mV))),
 ul.Property('m_alpha_V0', -40.0 * un.mV),
 ul.Property('m_alpha_K', 10.0 * un.mV),
 ul.Property('m_beta_A', 4.0 * un.per_ms),
 ul.Property('m_beta_V0', -65.0 * un.mV),
 ul.Property('m_beta_K', 18.0 * un.mV),
 ul.Property('h_alpha_A', 0.07 * un.per_ms),
 ul.Property('h_alpha_V0', -65.0 * un.mV),
 ul.Property('h_alpha_K', 20.0 * un.mV),
 ul.Property('h_beta_A', 1.0 * un.per_ms),
 ul.Property('h_beta_V0', -35.0 * un.mV),
 ul.Property('h_beta_K', 10.0 * un.mV),
 ul.Property('n_alpha_A', -0.01,
 old_div(un.unitless, (un.ms * un.mV))),
 ul.Property('n_alpha_V0', -55.0 * un.mV),
 ul.Property('n_alpha_K', 10.0 * un.mV),
 ul.Property('n_beta_A', 0.125 * un.per_ms),
 ul.Property('n_beta_V0', -65.0 * un.mV),
 ul.Property('n_beta_K', 80.0 * un.mV)],
 initial_values=[ul.Initial('V', -70 * un.mV),
 ul.Initial('m', 0.1),
 ul.Initial('n', 0),
 ul.Initial('h', 0.9)])
 return comp

Example - Leaky Integrate and Fire

Example - Izhikevich

from __future__ import division
from past.utils import old_div
from nineml import units as un
from nineml import abstraction as al, user as ul, Document
from nineml.xml import etree, E

def create_izhikevich():
 subthreshold_regime = al.Regime(
 name="subthreshold_regime",
 time_derivatives=[
 "dV/dt = alpha*V*V + beta*V + zeta - U + Isyn / C_m",
 "dU/dt = a*(b*V - U)",],

 transitions=[al.On("V > theta",
 do=["V = c",
 "U = U+ d",
 al.OutputEvent('spike')],
 to='subthreshold_regime')]
)

 ports = [al.AnalogSendPort("V", un.voltage),
 al.AnalogReducePort("Isyn", un.current, operator="+")]

 parameters = [
 al.Parameter('theta', un.voltage),
 al.Parameter('a', un.per_time),
 al.Parameter('b', un.per_time),
 al.Parameter('c', un.voltage),
 al.Parameter('d', old_div(un.voltage, un.time)),
 al.Parameter('C_m', un.capacitance),
 al.Parameter('alpha', old_div(un.dimensionless, (un.voltage * un.time))),
 al.Parameter('beta', un.per_time),
 al.Parameter('zeta', old_div(un.voltage, un.time))]

 state_variables = [
 al.StateVariable('V', un.voltage),
 al.StateVariable('U', old_div(un.voltage, un.time))]

 c1 = al.Dynamics(
 name="Izhikevich",
 parameters=parameters,
 state_variables=state_variables,
 regimes=[subthreshold_regime],
 analog_ports=ports

)
 return c1

def create_izhikevich_fast_spiking():
 """
 Load Fast spiking Izhikevich XML definition from file and parse into
 Abstraction Layer of Python API.
 """
 izhi_fs = al.Dynamics(
 name='IzhikevichFastSpiking',
 parameters=[
 al.Parameter('a', un.per_time),
 al.Parameter('b', old_div(un.conductance, (un.voltage ** 2))),
 al.Parameter('c', un.voltage),
 al.Parameter('k', old_div(un.conductance, un.voltage)),
 al.Parameter('Vr', un.voltage),
 al.Parameter('Vt', un.voltage),
 al.Parameter('Vb', un.voltage),
 al.Parameter('Vpeak', un.voltage),
 al.Parameter('Cm', un.capacitance)],
 analog_ports=[
 al.AnalogReducePort('iSyn', un.current, operator="+"),
 al.AnalogSendPort('U', un.current),
 al.AnalogSendPort('V', un.voltage)],
 event_ports=[
 al.EventSendPort("spikeOutput")],
 state_variables=[
 al.StateVariable('V', un.voltage),
 al.StateVariable('U', un.current)],
 regimes=[
 al.Regime(
 'dU/dt = a * (b * pow(V - Vb, 3) - U)',
 'dV/dt = V_deriv',
 transitions=[
 al.On('V > Vpeak',
 do=['V = c', al.OutputEvent('spikeOutput')],
 to='subthreshold')],
 name="subthreshold"),
 al.Regime(
 'dU/dt = - U * a',
 'dV/dt = V_deriv',
 transitions=[al.On('V > Vb', to="subthreshold")],
 name="subVb")],
 aliases=["V_deriv := (k * (V - Vr) * (V - Vt) - U + iSyn) / Cm"]) # @IgnorePep8
 return izhi_fs

def parameterise_izhikevich(definition=None):
 if definition is None:
 definition = create_izhikevich()
 comp = ul.DynamicsProperties(
 name='SampleIzhikevich',
 definition=create_izhikevich(),
 properties=[ul.Property('a', 0.2 * un.per_ms),
 ul.Property('b', 0.025 * un.per_ms),
 ul.Property('c', -75 * un.mV),
 ul.Property('d', 0.2 * un.mV / un.ms),
 ul.Property('theta', -50 * un.mV),
 ul.Property('alpha', 0.04 * un.unitless / (un.mV * un.ms)),
 ul.Property('beta', 5 * un.per_ms),
 ul.Property('zeta', 140.0 * un.mV / un.ms),
 ul.Property('C_m', 1.0 * un.pF)],
 initial_values=[ul.Initial('V', -70 * un.mV),
 ul.Initial('U', -1.625 * un.mV / un.ms)])
 return comp

def parameterise_izhikevich_fast_spiking(definition=None):
 if definition is None:
 definition = create_izhikevich_fast_spiking()
 comp = ul.DynamicsProperties(
 name='SampleIzhikevichFastSpiking',
 definition=create_izhikevich_fast_spiking(),
 properties=[ul.Property('a', 0.2 * un.per_ms),
 ul.Property('b', 0.025 * un.nS / un.mV ** 2),
 ul.Property('c', -45 * un.mV),
 ul.Property('k', 1 * un.nS / un.mV),
 ul.Property('Vpeak', 25 * un.mV),
 ul.Property('Vb', -55 * un.mV),
 ul.Property('Cm', 20 * un.pF),
 ul.Property('Vr', -55 * un.mV),
 ul.Property('Vt', -40 * un.mV)],
 initial_values=[ul.Initial('V', -70 * un.mV),
 ul.Initial('U', -1.625 * un.mV / un.ms)])
 return comp

Post-synaptic Response Models

Example - Alpha

Plasticity Models

Example - Static

from __future__ import print_function
from nineml import units as un, user as ul, abstraction as al, Document
from nineml.xml import etree, E

def create_static():
 dyn = al.Dynamics(
 name="Static",
 aliases=["fixed_weight := weight"],
 regimes=[
 al.Regime(name="default")],
 analog_ports=[al.AnalogSendPort("fixed_weight", dimension=un.current)],
 parameters=[al.Parameter('weight', dimension=un.current)])
 return dyn

def parameterise_static():

 comp = ul.DynamicsProperties(
 name='SampleAlpha',
 definition=create_static(),
 properties=[ul.Property('weight', 10.0 * un.nA)])
 return comp

if __name__ == '__main__':
 import argparse
 try:
 import ninemlcatalog
 catalog_path = 'plasticity/Static'
 except ImportError:
 ninemlcatalog = None
 parser = argparse.ArgumentParser()
 parser.add_argument('--mode', type=str, default='print',
 help=("The mode to run this script, can be 'print', "
 "'compare' or 'save', which correspond to "
 "printing the models, comparing the models with "
 "the version in the catalog, or overwriting the "
 "version in the catalog with this version "
 "respectively"))
 args = parser.parse_args()

 if args.mode == 'print':
 document = Document()
 print(etree.tostring(
 E.NineML(
 create_static().to_xml(document),
 parameterise_static().to_xml(document)),
 encoding="UTF-8", pretty_print=True, xml_declaration=True))
 elif args.mode == 'compare':
 if ninemlcatalog is None:
 raise Exception(
 "NineML catalog is not installed")
 local_version = create_static()
 catalog_version = ninemlcatalog.load(catalog_path,
 local_version.name)
 mismatch = local_version.find_mismatch(catalog_version)
 if mismatch:
 print ("Local version differs from catalog version:\n{}"
 .format(mismatch))
 else:
 print("Local version matches catalog version")
 elif args.mode == 'save':
 if ninemlcatalog is None:
 raise Exception(
 "NineML catalog is not installed")
 dynamics = create_static()
 ninemlcatalog.save(dynamics, catalog_path, dynamics.name)
 params = parameterise_static(
 ninemlcatalog.load(catalog_path, dynamics.name))
 ninemlcatalog.save(params, catalog_path, params.name)
 print("Saved '{}' and '{}' to catalog".format(dynamics.name,
 params.name))

Example - Guetig Spike-timing Dependent Plasticity (STDP)

from nineml import units as un, user as ul, abstraction as al

def create_stdp_guetig():
 dyn = al.Dynamics(
 name="StdpGuetig",
 parameters=[
 al.Parameter(name='tauLTP', dimension=un.time),
 al.Parameter(name='aLTD', dimension=un.dimensionless),
 al.Parameter(name='wmax', dimension=un.dimensionless),
 al.Parameter(name='muLTP', dimension=un.dimensionless),
 al.Parameter(name='tauLTD', dimension=un.time),
 al.Parameter(name='aLTP', dimension=un.dimensionless)],
 analog_ports=[
 al.AnalogReceivePort(dimension=un.dimensionless, name="w"),
 al.AnalogSendPort(dimension=un.dimensionless, name="wsyn")],
 event_ports=[
 al.EventReceivePort(name="incoming_spike")],
 state_variables=[
 al.StateVariable(name='tlast_post', dimension=un.time),
 al.StateVariable(name='tlast_pre', dimension=un.time),
 al.StateVariable(name='deltaw', dimension=un.dimensionless),
 al.StateVariable(name='interval', dimension=un.time),
 al.StateVariable(name='M', dimension=un.dimensionless),
 al.StateVariable(name='P', dimension=un.dimensionless),
 al.StateVariable(name='wsyn', dimension=un.dimensionless)],
 regimes=[
 al.Regime(
 name="sole",
 al.On('incoming_spike',
 target_regime="sole",
 do=[
 al.StateAssignment(
 'tlast_post',
 '((w >= 0) ? (tlast_post) : (t))'),
 al.StateAssignment(
 'tlast_pre',
 '((w >= 0) ? (t) : (tlast_pre))'),
 al.StateAssignment(
 'deltaw',
 '((w >= 0) ? '
 '(0.0) : '
 '(P*pow(wmax - wsyn, muLTP) * '
 'exp(-interval/tauLTP) + deltaw))'),
 al.StateAssignment(
 'interval',
 '((w >= 0) ? (-t + tlast_post) : '
 '(t - tlast_pre))'),
 al.StateAssignment(
 'M',
 '((w >= 0) ? (M) : '
 '(M*exp((-t + tlast_post)/tauLTD) - aLTD))'),
 al.StateAssignment(
 'P',
 '((w >= 0) ? '
 '(P*exp((-t + tlast_pre)/tauLTP) + aLTP) : '
 '(P))'),
 al.StateAssignment(
 'wsyn', '((w >= 0) ? (deltaw + wsyn) : '
 '(wsyn))')]))])
 return dyn

def parameterise_stdp_guetig():

 comp = ul.DynamicsProperties(
 name='SampleAlpha',
 definition=create_stdp_guetig(),
 properties=[])
 return comp

Network Models

Example - Brunel

encoding: utf-8
"""
Network model from

 Brunel, N. (2000) J. Comput. Neurosci. 8: 183-208

expressed in NineML using the Python API

Author: Andrew P. Davison, UNIC, CNRS
June 2014
 Edited by Thomas G. Close, October 2015
"""

from __future__ import division
from nineml.user import (
 DynamicsProperties, Population, RandomDistributionProperties,
 Projection, ConnectionRuleProperties, AnalogPortConnection,
 EventPortConnection, Network, Selection, Concatenate)
from nineml.units import ms, mV, nA, unitless, Hz, Mohm
import ninemlcatalog

def create_brunel(g, eta, name=None):
 """
 Build a NineML representation of the Brunel (2000) network model.

 Arguments:
 g: relative strength of inhibitory synapses
 eta: nu_ext / nu_thresh

 Returns:
 a nineml user layer Model object
 """
 # Meta-parameters
 order = 1000 # scales the size of the network
 Ne = 4 * order # number of excitatory neurons
 Ni = 1 * order # number of inhibitory neurons
 epsilon = 0.1 # connection probability
 Ce = int(epsilon * Ne) # number of excitatory synapses per neuron
 Ci = int(epsilon * Ni) # number of inhibitory synapses per neuron
 Cext = Ce # effective number of external synapses per neuron
 delay = 1.5 # (ms) global delay for all neurons in the group
 J = 0.1 # (mV) EPSP size
 Jeff = 24.0 * J # (nA) synaptic weight
 Je = Jeff # excitatory weights
 Ji = -g * Je # inhibitory weights
 Jext = Je # external weights
 theta = 20.0 # firing thresholds
 tau = 20.0 # membrane time constant
 tau_syn = 0.1 # synapse time constant
 # nu_thresh = theta / (Je * Ce * tau * exp(1.0) * tau_syn) # threshold rate
 nu_thresh = theta / (J * Ce * tau)
 nu_ext = eta * nu_thresh # external rate per synapse
 input_rate = 1000.0 * nu_ext * Cext # mean input spiking rate

 # Parameters
 neuron_parameters = dict(tau=tau * ms,
 v_threshold=theta * mV,
 refractory_period=2.0 * ms,
 v_reset=10.0 * mV,
 R=1.5 * Mohm) # units??
 psr_parameters = dict(tau=tau_syn * ms)

 # Initial Values
 v_init = RandomDistributionProperties(
 "uniform_rest_to_threshold",
 ninemlcatalog.load("randomdistribution/Uniform",
 'UniformDistribution'),
 {'minimum': (0.0, unitless),
 'maximum': (theta, unitless)})
v_init = 0.0
 neuron_initial_values = {"v": (v_init * mV),
 "refractory_end": (0.0 * ms)}
 synapse_initial_values = {"a": (0.0 * nA), "b": (0.0 * nA)}
 tpoisson_init = RandomDistributionProperties(
 "exponential_beta",
 ninemlcatalog.load('randomdistribution/Exponential',
 'ExponentialDistribution'),
 {"rate": (1000.0 / input_rate * unitless)})
tpoisson_init = 5.0

 # Dynamics components
 celltype = DynamicsProperties(
 "nrn",
 ninemlcatalog.load('neuron/LeakyIntegrateAndFire',
 'LeakyIntegrateAndFire'),
 neuron_parameters, initial_values=neuron_initial_values)
 ext_stim = DynamicsProperties(
 "stim",
 ninemlcatalog.load('input/Poisson', 'Poisson'),
 dict(rate=(input_rate, Hz)),
 initial_values={"t_next": (tpoisson_init, ms)})
 psr = DynamicsProperties(
 "syn",
 ninemlcatalog.load('postsynapticresponse/Alpha', 'Alpha'),
 psr_parameters,
 initial_values=synapse_initial_values)

 # Connecion rules
 one_to_one_class = ninemlcatalog.load(
 '/connectionrule/OneToOne', 'OneToOne')
 random_fan_in_class = ninemlcatalog.load(
 '/connectionrule/RandomFanIn', 'RandomFanIn')

 # Populations
 exc_cells = Population("Exc", Ne, celltype, positions=None)
 inh_cells = Population("Inh", Ni, celltype, positions=None)
 external = Population("Ext", Ne + Ni, ext_stim, positions=None)

 # Selections
 all_cells = Selection(
 "All", Concatenate((exc_cells, inh_cells)))

 # Projections
 input_prj = Projection(
 "External", external, all_cells,
 connection_rule_properties=ConnectionRuleProperties(
 "OneToOne", one_to_one_class),
 response=psr,
 plasticity=DynamicsProperties(
 "ExternalPlasticity",
 ninemlcatalog.load("plasticity/Static", 'Static'),
 properties={"weight": (Jext, nA)}),
 port_connections=[
 EventPortConnection(
 'pre', 'response', 'spike_output', 'spike'),
 AnalogPortConnection(
 "plasticity", "response", "fixed_weight", "weight"),
 AnalogPortConnection(
 "response", "destination", "i_synaptic", "i_synaptic")],
 delay=(delay, ms))

 exc_prj = Projection(
 "Excitation", exc_cells, all_cells,
 connection_rule_properties=ConnectionRuleProperties(
 "RandomExc", random_fan_in_class, {"number": (Ce * unitless)}),
 response=psr,
 plasticity=DynamicsProperties(
 "ExcitatoryPlasticity",
 ninemlcatalog.load("plasticity/Static", 'Static'),
 properties={"weight": (Je, nA)}),
 port_connections=[
 EventPortConnection(
 'pre', 'response', 'spike_output', 'spike'),
 AnalogPortConnection(
 "plasticity", "response", "fixed_weight", "weight"),
 AnalogPortConnection(
 "response", "destination", "i_synaptic", "i_synaptic")],
 delay=(delay, ms))

 inh_prj = Projection(
 "Inhibition", inh_cells, all_cells,
 connection_rule_properties=ConnectionRuleProperties(
 "RandomInh", random_fan_in_class, {"number": (Ci * unitless)}),
 response=psr,
 plasticity=DynamicsProperties(
 "InhibitoryPlasticity",
 ninemlcatalog.load("plasticity/Static", 'Static'),
 properties={"weight": (Ji, nA)}),
 port_connections=[
 EventPortConnection(
 'pre', 'response', 'spike_output', 'spike'),
 AnalogPortConnection(
 "plasticity", "response", "fixed_weight", "weight"),
 AnalogPortConnection(
 "response", "destination", "i_synaptic", "i_synaptic")],
 delay=(delay, ms))

 # Save to document in NineML Catalog
 network = Network(name if name else "BrunelNetwork")
 network.add(exc_cells, inh_cells, external, all_cells, input_prj, exc_prj,
 inh_prj)
 return network

API reference

Following the layer structure of the NineML specification [http://nineml.net/specification/], the nineml
package is split into a Abstraction and User Layers, with a small
intersection that are common to both layers.

	Common Types API
	Document

	Dimensions and units

	Abstraction layer API
	Common types

	Mathematics

	dynamics module
	Ports

	Time derivatives

	Transitions

	connectionrule module

	randomdistribution module

	User layer API
	Components

	References

	Values and Physical Quantities

	Properties

	Populations

	Projections

	Networks

Common Types API

There a few NineML types are common across all layers

Document

Dimensions and units

A number of Dimensions and Unithave been pre-defined,
in the nineml.units module, for example:

>>> from nineml.units import time, voltage, capacitance, nA, mol_per_cm3, Mohm
>>> voltage
Dimension(name='voltage', i=-1, m=1, t=-3, l=2)
>>> nA
Unit(name='nA', dimension='current', power=-9)

Dimension and units implement multiplication/division operators to allow the
quick creation of compound units and dimensions

>>> from nineml.units import mV, ms
>>> mV / ms
Unit(name='mV_per_ms', dimension='voltage_per_time', power=0)

Abstraction layer API

The abstraction layer is intended to provide explicit mathematical descriptions
of any components used in a neuronal network model, where such components may
be neuron models, synapse models, synaptic plasticity algorithms, connectivity
rules, etc.

The abstraction layer therefore has a modular structure, to support different
types of components, and allow extensions to the language. The current modules
are:

	dynamics:

	for describing hybrid dynamical systems, whose behaviour is
governed both by differential equations and by discontinuous events.
Such systems are often used to model point neurons, synapses and
synaptic plasticity mechanisms.

	connectionrule:

	a module containing several “built-in” connectivity rules
(‘all-to-all’, etc.).

	randomdistribution:

	a module for specifying random distributions.

Common types

Mathematics

Mathematical expressions are stored in Sympy [http://www.sympy.org/] objects throughout the Python
NineML library. However, they are typically constructed by passing a string
representation to a derived class of the Expression class (
e.g. Trigger, Alias). The Sympy [http://www.sympy.org/] string parsing has been slightly
extended to handle the ANSI-C-based format in the NineML specification, such as
using the caret symbol to signify raising to the power of (Sympy [http://www.sympy.org/] uses the
Python syntax of ‘**’ to signify raising to the power of), e.g:

(3 * B + 1) * V ^ 2

Note

Currently, trigonometric functions are parsed as generic functions but this
is planned to change in later versions of the library to use in-built
Sympy [http://www.sympy.org/] functions. For the most part this will not have much effect on the
represented expressions but in some cases it may prevent Sympy [http://www.sympy.org/]’s solving
and simplifying algorithms from making use of additional assumptions.

dynamics module

Ports

Time derivatives

Transitions

connectionrule module

randomdistribution module

User layer API

A NineML model is made up of populations of cells, connected via synapses,
which may exhibit plasticity. The models for the cells, synapses and plasticity
mechanisms are all instances of subclasses of Component. Populations
of cells are represented by Population, the set of connections between
two populations by Projection. Finally, the entire model is
encapsulated in Network.

Components

References

NineML has three closely-related objects used to refer to other NineML objects.
Definition is used inside Components to refer to abstraction
layer ComponentClass definitions.
Prototype is used inside Components to refer to
previously-defined Components. Reference is used inside
Selections to refer to Population objects, and inside
Projections to refer to Populations and
Selections.

Values and Physical Quantities

Properties

Populations

Projections

Networks

Release notes

All released NineML Python versions:

Getting help

For help using the NineML Python Library please contact the
NeuralEnsemble Google group [http://groups.google.com/group/neuralensemble].

If you find a bug or would like to add a new feature to the Python
nineml package, please go to
https://github.com/INCF/nineml-python/issues/. First check that there is not an
existing ticket for your bug or request, then click on “New issue” to create a
new ticket (you will need a GitHub account, but creating one is simple and
painless).

If you would like to propose a change to the specification, please see the
issue tracker at https://github.com/INCF/nineml-spec/issues/.

Contributing to NineML

Mailing list

Discussions about Python nineml take place in the
NeuralEnsemble Google Group [http://groups.google.com/group/neuralensemble].

Setting up a development environment

Requirements

In addition to the requirements listed in Installation, you will need
to install:

	nose [https://nose.readthedocs.org/]

	coverage [http://nedbatchelder.com/code/coverage/]

to run tests, and:

	Sphinx [http://sphinx-doc.org/]

	numpydoc [https://pypi.python.org/pypi/numpydoc]

to build the documentation.

Code checkout

NineML development is based around GitHub. Once you have a GitHub account, you
should fork [https://github.com/INCF/nineml/fork] the official NineML repository [https://github.com/INCF/nineml/], and then clone your fork to
your local machine:

$ git clone https://github.com/<username>/nineml-python.git nineml_dev
$ cd nineml_dev

To work on the development version:

$ git checkout master

To keep your NineML repository up-to-date with respect to the official
repository, add it as a remote:

$ git remote add upstream https://github.com/INCF/nineml-python.git

and then you can pull in any upstream changes:

$ git pull upstream master

We suggest developing in a virtualenv [http://www.virtualenv.org/], and installing nineml using:

$ pip install -e .

Coding style

We follow the PEP8 [http://www.python.org/dev/peps/pep-0008/] coding style. Please note in particular:

	indentation of four spaces, no tabs

	single space around most operators, but no space around the ‘=’ sign when
used to indicate a keyword argument or a default parameter value.

	we currently only Python version 2.7 but Python 3 support is planned.

Testing

Running the PyNN test suite requires the nose_ packages, and
optionally the coverage_ package. To run the entire test suite, in the
lib9ml/python/test subdirectory of the source tree:

$ nosetests unit

To see how well the codebase is covered by the tests, run:

$ nosetests --with-coverage --cover-package=nineml --cover-erase --cover-html test/unittests

If you add a new feature to nineml, or fix a bug, you should write a
unit test to cover the situation it arose.

Unit tests should where necessary make use of mock/fake/stub/dummy objects to
isolate the component under test as well as possible.

Submitting code

The best way to get started with contributing code to NineML is to fix a small
bug (bugs marked “minor” in the bug tracker [https://github.com/INCF/nineml/issues?labels=minor&state=open]) in your checkout of
the code. Once you are happy with your changes, run the test suite again to
check that you have not introduced any new bugs. If this is your first
contribution to the project, please add your name and affiliation/employer to
lib9ml/python/AUTHORS.

After committing the changes to your local repository:

$ git commit -m 'informative commit message'

first pull in any changes from the upstream repository:

$ git pull upstream master

then push to your own account on GitHub:

$ git push

Now, via the GitHub web interface, open a pull request.

Documentation

Python NineML documentation is generated using Sphinx [http://sphinx-doc.org/].

To build the documentation in HTML format, run:

$ make html

in the doc subdirectory of the source tree. Some of the files contain
examples of interactive Python sessions. The validity of this code can be
tested by running:

$ make doctest

NineML documentation is hosted at http://readthedocs.org/nineml

Making a release

To make a release of NineML requires you to have permissions to upload Python
NineML packages to the Python Package Index [http://pypi.python.org/] and the INCF Software Center.
If you are interested in becoming release manager for Python NineML, please
contact us via the mailing list [http://groups.google.com/group/neuralensemble].

When you think a release is ready, run through the following checklist one
last time:

	do all the tests pass? This means running nosetests and
make doctest as described above. You should do this on at
least two Linux systems – one a very recent version and one at least a
year old, and on at least one version of macOS.

	does the documentation build without errors? You should then at least
skim the generated HTML pages to check for obvious problems.

	have you updated the version numbers in setup.py,
__init__.py, doc/source/conf.py and
doc/source/installation.rst?

	have you written release notes and added them to the documentation?

Once you’ve confirmed all the above, create a source package using:

$ python setup.py sdist

and check that it installs properly (you will find it in the dist
subdirectory.

Now you should commit any changes, then tag with the release number as follows:

$ git tag x.y.z

where x.y.z is the release number.

If this is a development release (i.e. an alpha or beta), the final step is
to upload the source package to the INCF Software Center.
Do not upload development releases to PyPI.

To upload a package to the INCF Software Center, log-in, and then go to the
Contents [http://software.incf.org/software/nineml/nineml/folder_contents] tab. Click on “Add new…” then “File”, then fill in the form and
upload the source package.

If this is a final release, there are a few more steps:

	if it is a major release (i.e. an x.y.0 release), create a new
bug-fix branch:

$ git branch x.y

	upload the source package to PyPI:

$ python setup.py sdist upload

	make an announcement on the mailing list [http://groups.google.com/group/neuralensemble]

	if it is a major release, write a blog post about it with a focus on the
new features and major changes.

Developer reference

The structure NineML Python library aims to closely match the
NineML specification [http://nineml.net/specification/], with each NineML “layer” represented by a
sub-package (i.e. nineml.abstraction and nineml.user) and each NineML
type mapping to a separate Python class, with the exception of some
simple types that just contain a single element (e.g. Size) or are used just to
provide a name to a singleton child class (e.g. Pre, Post, etc…).

Base classes

There are number of base classes that should be derived from when designing
NineML classes, which one(s) depend on the structure of the type, e.g.
whether the contain annotations, child elements, or can be placed at the
top-level of a NineML document.

BaseNineMLObject

All classes that represent objects in the “NineML object model” should derive
from BaseNineMLObject.

BaseNineMLObject defines a number of common methods such as clone,
equals, write, etc… (see NineML Types). As well as default
values for class attributes that are required for all NineML classes,
nineml_type, nineml_attr, nineml_child, nineml_children.
These class attributes match the structure of the NineML specification [http://nineml.net/specification/] and
are used extensively within the visitor architecture (including
serialization).

nineml_type

nineml_type should be a string containing the name of the
corresponding NineML type in the NineML specification [http://nineml.net/specification/].

nineml_type_v1

If the nineml_type differs between v1 and v2 of the specification,
nineml_type_v1 should also be defined to hold the name of the type
in the v1 syntax.

nineml_attr

nineml_attr should be a tuple of strings, listing the
attributes of the given NineML class that are part of the
NineML specification [http://nineml.net/specification/] and are not NineML types themselves, such as str,
int and float fields.

nineml_child

nineml_child should be a dictionary, which lists the names of singleton
NineML child attributes in the class along with a mapping to their
expected class. If the the child attribute can be one of several NineML
classes then the attribute should map to None.

nineml_children

nineml_children should be a tuple listing the NineML classes that
are contained within the object as children sets (e.g. (Property, Initial)
for the DynamicsProperties class). Note that if a class has
non-empty nineml_children it should derive from ContainerObject.

temporary

“Temporary” NineML objects are created when calling iterator properties and
accessor methods of the MultiDynamics class that override corresponding in
the Dynamics class, allowing MultiDynamics objects to duck-type (i.e.
pretend to be) Dynamics objects. Such classes should override the
temporary class attribute and set it to True. This prevents their
address in memory being used to identify the object (e.g. in the cloner “memo”
dictionary) as it since they are generated on the fly, this address will change
between accesses.

Note

The id property in BaseNineMLObject should always be used to check
whether two Python objects are the representing the same NineML object for
this reason.

AnnotatedObject

The NineML specification [http://nineml.net/specification/] states that all NineML objects can be annotated
except Annotations objects themselves. Therefore, all bar Annotations
NineML classes should derive from AnnotatedObject, which itself derives
from BaseNineMLObject. This provides the annotations attribute, which
can provides access to any annotations associated with the object.

ContainerObject

“Container classes” are classes that contain sets of children, such as
Dynamics` (contains parameters, regimes, state-variables) or
OnCondition (contains state assignments and output events), as opposed
to classes that have nested singleton objects such as Dimension objects
in Parameter objects. Such classes should derive from ContainerObject.

ContainerObject adds a number of convenient methods, including add,
remove, and general iterators used to traverse the object hierarchy.

The ContainerObject.__init__ method creates an OrderedDict for each
child set with the name supplied by the child class’ _children_dict_name
method (which is _<pluralized-lowercase-child-type> by default).

Iterators and accessors

Container classes need to define three iterator properties and one
accessor method for each children-set, corresponding to the method names
supplied by the class methods in the child class, _children_iter_name,
_num_children_name, _children_keys_name and _child_accessor_name.
By default the method names returned by these class methods will be
<pluralized-lowercase-nineml_type>, num_<pluralized-lowercase-nineml_type>,
<pluralized-lowercase-nineml_type>_names, and <lowercase-nineml_type>
respectively. These properties/method should return:

	children_iter:

	A property that returns an iterator over all children in the dictionary

	num_children :

	A property that returns the number of children in the dictionary:

	children_keys:

	A property that returns an iterator over the keys of the dictionary.
If the child type doesn’t have a name attribute then the iterator
should be named <pluralized-lowercase-nineml-type>_keys instead.

	child_accessor:

	An accessor that takes the name (or key) of a child and returns the child.

Note

It would be possible to implement these properties/methods in the
ContainerObject base class using __getattr__ but since they are
part of the public API that could be confusing to the user.

DocumentLevelObject

All NineML classes that are permitted at the top level in NineML documents
(see Document-level types) need to derive from DocumentLevelObject,
this provides document and url attribute properties and is also used
in checks at various points in the code.

Visitors

Visitor patterns are used extensively within the NineML Python to find,
validate, modify and analyze NineML structures, including their serialization.

Base Visitors

Visitor base classes are found in the nineml.visitors.base module,
which search the object hierarchy and perform an “action” each object. These
visitors use the nineml_* class attributes (see BaseNineMLObject) to
navigate the object hierarchy and therefore can be used search to any NineML
object.

If not overridden, the action method applied to each object will first check
whether a specialized method for that type of object called
action_<lowercase-nineml_type> has been implemented and call it if it
has, otherwise call default_action method. Note that if specialized methods
are not required then the visitor can just override the action method
directly.

There are a number of different base visitor classes to derive from depending
on the requirements of the visitor pattern in question.

BaseVisitor

If no contextual information or results of child objects are required then a
visitor can derive directly from the BaseVisitor class. The action method
will be called before child objects are actioned.

BaseVisitorWithContext

If contextual information is required, such as the parent container (and its
parent, etc…) then the BaseVisitorWithContext can be derived instead. The
immediate context is available via the context property and the context
of all parent containers via the contexts attribute.

BaseChildResultsVisitor

For visitors that require the results of child objects (e.g. Cloner) to
in their action methods. The child/children results can be accessed via the
child_result and children_result dictionaries. If context information
is also required use the BaseChildResultsVisitorWithContext visitor.

BasePreAndPostVisitor

For visitors the need to perform and action before and after the child results
are actioned. The “pre” action methods are the same as in the BaseVisitor
class and the “post” action method is called post_action, which by
default will call the post_action_<lowercase-nineml_type> or
default_post_action methods. If context information
is also required use the BasePreAndPostVisitorWithContext visitor.

BaseDualVisitor

This visitor visits two objects side by side, raising exceptions if their
structure doesn’t match. As such it is probably only useful for equality
checking (and is derived by the EqualityChecker and MismatchFinder
visitors). A BaseDualVisitorWithContext visitor is also available.

Validation

Validation is currently only performed on component classes (i.e. Dynamics,
ConnectionRule, and RandomDistribution). A separate visitor is
implemented for every aspect of the component classes that need to be validated
(e.g. name-conflicts, mismatching-dimensions).

Base validators are implemented in the
nineml.abstraction.componentclassvisitors.validators package with
specializations for each component class type in the corresponding
nineml.abstraction.<componentclass-type>.visitors.validators packages (at
this stage only the Dynamics component class has specialised validators).

Serialization

For serialization visitors to be able to serialize a NineML object it needs to
define both serialize_node and unserialize_node methods.

serialize_node/unserialize_node

Both serialize_node and unserialize_node take a single argument, a
NodeToSerialize or NodeToUnSerialize instance respectively. These
node objects wrap a serial element of the given serialization format (e.g.
lxml.etree._Element for the XMLSerializer) and provide convenient
methods for adding, or accessing, children, attributes and body elements to the
node.

The node method calls then call format-specific method of the serialization
visitor to un/serialize the NineML objects. However, in some cases
(particularly in some awkward v1.0 syntax), the serialization visitor may need
to be accessed directly, which is available at node.visitor.

Both serialize_node and unserialize_node should accept arbitrary
keyword arguments and pass them on to all calls made to methods of the nodes
and the visitor directly. However, these arguments are not currently used by
any of the current serializers.

has_serial_body

NineML classes that contain “body” text when serialized (to a supporting
serial format) should override the class attribute has_serial_body to set
it to True. If the class has a body only in NineML v1.0 syntax but not v2.0
then it should be set to 'v1'.

NineML classes that just contain a single body element (e.g.
SingleValue) should set has_serial_body to 'only', to allow them to be
collapsed into an attribute in formats that don’t support body text (i.e. YAML,
JSON).

Index

The Building Blocks of the NineML Abstraction Layer

A NineML component can be considered in 2 parts: the internal dynamics and
the external interface.

Dynamics

The dynamics are the internal mechanisms governing the behaviour of the
component. The dynamics of a component are specified in terms of the following:

	StateVariables

	Regimes

	Transitions

	Aliases

	Events

StateVariables & Regime Graphs

The dynamics of a component is defined by a set of state-variables; variables
that can change either continuously or discontinuously as a function of time.
The changes to state variables happen in two ways:

	through TimeDerivatives , which define the state variables
evolution over time, for example \(dX/dt=1-X\)

	through StateAssignments, which make discrete changes to a
StateVariable’s value, for example \(X = X + 1\)

A component contains a Regime-graph; a graph consisting of Regimes at the
vertices, and Transitions at the edges. At any given time, a component will be
in a single Regime. A regime contains a set of TimeDerivatives, one for each
StateVariable of the component, which define how the StateVariables evolve over
time.

This diagram shows the dynamics block for an imaginary component.

[image: _old/_static/images/SimpleRegimeGraph.png]
This dynamics has 3 state variables, X,Y & Z, and a state graph with 3
regimes, regime1, regime2 & regime3. At any time, a component will be in
one of these regimes, and the state variables will evolve accordingly.

Components can move between Regimes via transitions. There are 2 ways of
triggering a transition:

	By a condition of the state variables, for example \(X>Y\).

	By an InputEvent on a port.

When a transition is triggered; three things can happen:

	The component can change regime. For example, in the example above, if the
component is in regime3, and the trigger for t3 is satisfied, then the
component will move into regime1.

	StateAssignments can take place, for example, \(X=0\)

	The component can send OutputEvents

During a transition, multiple StateAssignments and OutputEvents can occur.

Note

	The Regime-graph for a component must not contain an islands - regimes
which can not be reached from each other.

	If a TimeDerivative for a state variable is not defined in a regime, it
is assumed to be zero.

	A Transition does not need to lead to a change of regime. It can cause
StateAssignments and OutputEvents, and leave the component in the
original regime. (For example t5 in the diagram)

Aliases

Aliases are motivated from two problems;

	Rather than writing long expressions for functions of state-variables, we can
define an alias once.
For example, we can define chains of aliases:

m_alpha = (alphaA + alphaB*V) / (alphaC + exp((alphaD+V/alphaE)))
m_beta = (betaA + betaB*V) / (betaC + exp((betaD+V/betaE)))
minf = m_alpha / (m_alpha + m_beta)
mtau = 1./(m_alpha+m_beta)
dm/dt = (1/C) * (minf-m)/mtau

In this case, m_alpha, m_beta, minf and mtau are all alias
definitions. There is no reason we couldn’t expand our \(dm/dt\)
description out to eliminate the these intermediate aliases, but the
expression would be very long and difficult to read.

	If we would like to communicate a value other than a simple state variable to
to another component. For example, if we have a component representing a
neuron, which has an internal StateVariable, ‘V’, we may be interested in
transmitting a current, for example \(i=g*(E-V)\)

Note

Aliases are defined in the Dynamics, not in the Regime. This means that
aliases are the same across all regimes.

Events

As well as being able to communicate continuous values, components are also
able to emit and receive Event s. Events are discrete notifications that are
transmitted over EventPorts. Since EventPorts have names, saying
that we transmit a ‘event1’ for example would mean transmitting an event on
the EventPort called ‘event1’. Events can be used to signal action
potentials firing for example.

Interface

The interface is the external view of the component; what inputs and outputs
the component exposes to other components and the parameters that can be set
for the component.

The interface consists of Ports and Parameters.

Parameters

Parameters allow us to define the dynamics of a component once, then adjust the
behaviours by using different parameters. For example, if we are building an
integrate-and-fire neuron, we can specify that the Reset-Voltage and the
Firing-Threshold are parameters, write our dynamics in terms of these
parameters, then use the User Layer to provide parameters to create different
neurons. Parameters are set at the start of the simulation, and remain constant
throughout.

Ports

Ports allow components to communicate between each other during a simulation.
There are 2 types, AnalogPorts and EventPorts, and each can have
different modes.

	AnalogPorts:

	AnalogPorts transmit and receive continuous values, Alias es and
StateVariables. AnalogPorts can have 3 modes:

	
	SendPort - transmit data originating in this component which can

	be read by other components

	
	RecvPort - receive data from another components SendPort port.

	Each recv port can be connected to one SendPort.

	ReducePort - receive data from multiple SendPort . These
differ from RecvPorts in that they can be connected to multiple
SendPort . ReducePorts take an additional operator,
operator, which specifies how the data from multiple Send
ports should be combined to produce a single value. Currently, the
only supported operations is +, which sums the inputs. The
motivation for ReducePorts is that it allows us to make our
component definitions more general. For example, if we are defining a
neuron, would define a ReducePort called, InjectedCurrents.
This allows us to write the membrane equation for that neuron as:

\[dV/dt = (1/C) * InjectedCurrents\]

Then, when we connect this neuron to synapses, current-clamps, etc,
we simply need to connect the SendPorts containing the currents of
these components onto the InjectedCurrents reduce-port, within
having to change our original component definitions.

	EventPorts:

	Event ports transmit discrete events. They are useful for example in
simulation of integrate-and-fire neurons to notify components about
neuron’s spiking. Event ports only have 2 modes:

	SendPort - transmit events originating in this component which
can be read by other components

	RecvPort - receive events from another components SendPort
port. Each recv port can be connected to multiple SendPort.

For example, a synapse component may have a RecvPort connected to the
presynaptic neurons SendPort port. When the presynaptic neuron fires;
it delivers an event to the synapse, which could cause it to produce
current flow in a post-synaptic neuron.

Simulating

Interfacing directly to NEURON

It is possible to export NineML to .mod files, for use in NEURON simulations.
This can be done directly from the commandline, with the commandline tool:

$ nineml2nmodl.py myninemlfile.xml

If there is a single component in this file, this script will generate out a
single file myninemlfile.mod, containing a mod-file which represents the
dynamics of this neuron. If there are multiple components in this XML file, then
nineml2nmodl.py will produce a mod-file for each one, in the form
myninemlfile_comp1.mod, myninemlfile_comp2.mod, etc.

This code can also be generated from python, using the method:

def write_nmodldirect(component, mod_filename, weight_variables={}, hierarchical_mode=False):

where nineml_file is the filename to be written to; component is the
component we want to create the mod-file from.

Interfacing to PyNN (NEST & NEURON)

To use a component with PyNN; we construct the component as we have been doing
previously; then we construct a class that PyNN can use for simulation. If we
are using the NEURON backend, this internally takes care of creating and
compiling the relevant mod-file for the simulation, and if we are using the NEST
back-end, it will automatically create the relevant module.

The interface to NineML is consistent across back-ends; using with pyNN/Neuron
or pyNN/NEST, the code will look like this

#Either:
import pyNN.nest as sim
import pyNN.nest.nineml as pyNNml

#Or:
import pyNN.neuron as sim
import pyNN.neuron.nineml as pyNNml

...
PyNN Initialisation:
[omitted]
...

Create a component; it can be hierachical.
test_component = get_hierachical_iaf_3coba()

celltype_cls = pyNNml.nineml_celltype_from_model(
 name = "iaf_3coba",
 nineml_model = test_component,
 synapse_components = [
 pyNNml.CoBaSyn(namespace='AMPA', weight_connector='q'),
 pyNNml.CoBaSyn(namespace='GABAa', weight_connector='q'),
 pyNNml.CoBaSyn(namespace='GABAb', weight_connector='q'),
]
)

parameters = ComponentFlattener.flatten_namespace_dict(
{
 'iaf.cm': 1.0,
 'iaf.gl': 50.0,
 'iaf.taurefrac': 5.0,
 'iaf.vrest': -65.0,
 'iaf.vreset': -65.0,
 'iaf.vthresh': -50.0,
 'AMPA.tau': 2.0,
 'GABAa.tau': 5.0,
 'GABAb.tau': 50.0,
 'AMPA.vrev': 0.0,
 'GABAa.vrev': -70.0,
 'GABAb.vrev': -95.0,

})

parameters = (parameters)

cells = sim.Population(1, celltype_cls, parameters)

Finish building simulation.....

Basic Structure of NineML Abstraction Layer

In this tutorial, we build the Izhikevich model neuron. It is defined by the
following dynamics:

\[\begin{align}\begin{aligned}\frac{dV}{dt} = 0.04V^2 + 5V + 140 -u + I\\\frac{du}{dt} = a(bV -u)\end{aligned}\end{align} \]

where if \(v> 30mV\) then we have a spike

\[\begin{align}\begin{aligned}v \leftarrow c\\u \leftarrow u + d\end{aligned}\end{align} \]

where \(a,b,c,d\) are parameters of our neuron and \(I\) is the
injected current. V and U are state variables, which need to be solved over
time.

Interfaces: Parameters and Ports

We begin by defining the interface to our neuron. The interface is composed
of

	Parameters: values used to instantiate a component of a particular type.
In this case, these would be a, b, c and d. Parameters are set once
at the beginning of a simulation.

	
	Ports: which allow the component to communicate with other components

	
during the simulation. Ports are divided into two categories:

	Event ports, which transmit or receive single, discrete events at
points in time. For example, an event could represent a neuron spiking.

	
	Analog ports, which transmit or receive continuous signals, for

	example the membrane voltage of the neuron.

Furthermore, ports have a direction, specifying whether they represent
information coming from the component send, or information flowing into
the component, recv (And reduce, which will be discussed later.)

In this case, the neuron receives an injected current I, which will be a
recv Analog-port. Other components (such as synapses) may be interested in
the neuron’s voltage, V, so we should transmit this as a send
Analog-port. When the neuron reaches the condition for firing
(\(v> 30mV\)), we may also want to notify other components about this
event, so we also have a send Event-port.

We can build a ComponentClass with this interface with the following code:

If you try running this code, you will receive the following error:

nineml.exceptions.exceptions.NineMLRuntimeError: Unable to find an Alias or State variable for analog-port: V

This is because we have defined a component and promised that we will transmit
a value over the port V, but we have not defined V anywhere. We will fix
this next.

Dynamics: Regimes & StateVariables

Now that we have defined the interface of the ComponentClass, we now need
to define the internal dynamics of the system, to give it some behaviour. A
ComponentClass can contain StateVariables, which are variables that
describe the internal state of the neuron. Typically, these are specified by
first-order-differential equations with-respect-to time. In our example, the
Izhikevich model has 2 state-variables, U and V.

The state-variables can have different behaviours when operating in
different Regimes. A regime can be considered the ‘mode’ of the component; at
any time, the component will be in a single ‘regime’, and it is possible to
move between regimes. for example, an integrate-and-fire neuron with an
explicit refractory period could be modelled as a component with two regimes, a
default regime, where injected current affects membrane voltage, where and a
second refractory regime where the voltage is fixed to a certain value.

For this model, the differential-equations governing the state variables never
change, so we only need a single regime.

In this case, we have specified the state-variables for this component by
explicitly providing a list of the state-variables to the Dynamics blocks.
This is not essential, if it is not provided, it will automatically be inferred
from the state-variable definitions in the Regimes, but if it is given, it must
match exactly.

This code should now run; but we are missing the condition, \(v> 30mV\).

Transitions: Events, Conditions & Assignments

We have discussed that component can contain multiple Regimes. In order to
move between regimes; we introduce the idea of Transition s. A transition
can be:

	OnEvent - A transition triggered by an event arriving on a recv
EventPort.

	OnCondition - A transition triggered by a condition.

When a transition occurs, three things can optionally occur:

	An event can be emitted on a send EventPort, for example, when a
membrane voltage reaches a threshold values, we may want to send an event
to signal a spike occurring.

	StateVariables can be changes through StateAssignment. For example, a
transition in a synapse component may cause the post-synaptic conductance
to increase by a fixed amount.

	The component can switch to another regime; i.e. respond to another set of
differential equations.

For the Izhikevich model, we will use an ‘OnCondition’ transition, which should
update the state-variables, U and V according to the equations:

\[\begin{align}\begin{aligned}v \leftarrow c\\u \leftarrow u + d\end{aligned}\end{align} \]

We will also emit a spike on the EventPort spikeoutput, as this might be
useful if we want to use this component as part of a larger system. Since we
only have a single regime, we will not change regime.

Multiple Regimes & Transitions

We have only discussed the case of a single regime. A leaky integrate-and-fire
model with refractory period has two dynamical regimes - the sub-threshold
regime and the refractory regime. Just for fun, we’ll define the component in a
single step:

Note that here we used the name of the regime in the to argument to the
On transition constructor, rather than a Regime object. These references
are resolved automatically when the component is built.

If the differential equations for a StateVariable are not defined within a
regime, then it is assumed that the state-variable does not change in that
Regime, i.e. d/dt = 0.

Further Classes

Aliases

Aliases are motivated by 2 cases; firstly that we would like to be able to
send something other than pure StateVariables, and that often we end
up re-using calculations. For example, if we want to define a conductance-based
synapse in NineML, then we would like to specify the current in the
post-synaptic neuron.

Note

When specifying Aliases, we use the syntax := instead of =

In this case, we define an Alias, I, which can used in a send port.
Aliases can also be used on the right-hand-side of other aliases, Condition
s, StateAssignment s and TimeDerivative s.

Reduce Ports

We have discussed send and recv ports, but there is another
port-mode, which is reduce. A reduce port is also a port that takes
in data; but it can take information from multiple send ports. A typical
example might be the injected current into a neuron. Current can come into a
neuron from current injection, synapses or membrane channels. A recv port
is not sufficient in this case, because a recv port can only take
information from one other send port. Instead, we use a reduce port,
which takes an additional parameter reduce_op. This specifies how the
incoming data should be defined. For example, to calculate the total current
flowing into a cell, we would add all the current sources together, so we
would create the port as:

p = AnalogPort(name="I", mode='reduce', reduce_op='+')

See the docs for AnalogPort for more information.

Specifying Mathematical Strings

When specifying mathematics, we use a notation similar to C/C++. That is:

(3B + 1)V^2

is not valid, it should be written as:

V * V * (3*B + 1)

Depending on what is being specified, we specify the mathematics slightly differently:

	Aliases should be of the form:

alias := some * equation

	TimeDerivatives for a state-variable, S, should be of the form:

dS/dt = some * equation

	StateAssignments must be written out in full; there is no in-place operators:

g += q # Invalid
g = g + q # Valid

nineml 1.0-rc1

01/22/18

This is a release candidate for the first public release of the Python
nineml package, corresponding to the release of NineML specification [http://nineml-spec.readthedocs.io/].

 _images/AL_UL_Overview.png
NineML NineML
Abstraction Layer User Layer

_images/coba_component_im.png
coba component

Ports:

v
spikeinput

_static/ajax-loader.gif

_images/iaf_coba2_component_im.png
iaf 2coba component

Ports

iaf
iaf

coba

coba
coba_inhib

iafy

iafisyn

iaf spikeoutput

coba_excit.spikeinput

coba_inhib.spikeinput

_images/iaf_component_im.png
iaf component
y Ports:

v
pikeoutput

-« i

ac

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 NineML Python library

 		
 Motivation

 		
 Why NineML?

 		
 Abstraction and User Layers

 		
 The nineml Python library

 		
 Installation

 		
 Depdendencies

 		
 macOS

 		
 Linux

 		
 Windows

 		
 Install Python packages

 		
 Getting started

 		
 Reading model descriptions from XML files

 		
 Introspecting NineML models

 		
 Introspecting abstraction layer models

 		
 Introspecting user layer models

 		
 Writing model descriptions in Python

 		
 Writing abstraction layer models

 		
 Writing user layer models

 		
 NineML Types

 		
 Relationship to specification

 		
 Mathematical expressions

 		
 Common properties/methods

 		
 All types

 		
 Document-level types

 		
 Container types

 		
 Annotations

 		
 Serialization

 		
 Formats

 		
 Versions

 		
 Referencing style

 		
 Hierarchical dynamics

 		
 Multi-Dynamics

 		
 Examples

 		
 Neuron Models

 		
 Example - Adaptive Exponential Integrate and Fire

 		
 Example - Hodgkin-Huxley

 		
 Example - Leaky Integrate and Fire

 		
 Example - Izhikevich

 		
 Post-synaptic Response Models

 		
 Example - Alpha

 		
 Plasticity Models

 		
 Example - Static

 		
 Example - Guetig Spike-timing Dependent Plasticity (STDP)

 		
 Network Models

 		
 Example - Brunel

 		
 API reference

 		
 Common Types API

 		
 Document

 		
 Dimensions and units

 		
 Abstraction layer API

 		
 Common types

 		
 Mathematics

 		
 dynamics module

 		
 connectionrule module

 		
 randomdistribution module

 		
 User layer API

 		
 Components

 		
 References

 		
 Values and Physical Quantities

 		
 Properties

 		
 Populations

 		
 Projections

 		
 Networks

 		
 Release notes

 		
 Getting help

 		
 Contributing to NineML

 		
 Mailing list

 		
 Setting up a development environment

 		
 Requirements

 		
 Code checkout

 		
 Coding style

 		
 Testing

 		
 Submitting code

 		
 Documentation

 		
 Making a release

 		
 Developer reference

 		
 Base classes

 		
 BaseNineMLObject

 		
 AnnotatedObject

 		
 ContainerObject

 		
 DocumentLevelObject

 		
 Visitors

 		
 Base Visitors

 		
 Validation

 		
 Serialization

_static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/logo_small.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/images/AL_UL_Overview.png
NineML NineML
Abstraction Layer User Layer

_static/images/coba_component_im.png
coba component

Ports:

v
spikeinput

_static/images/iaf_coba2_component_im.png
iaf 2coba component

Ports

iaf
iaf

coba

coba
coba_inhib

iafy

iafisyn

iaf spikeoutput

coba_excit.spikeinput

coba_inhib.spikeinput

_static/images/Python9.jpg

_static/images/SimpleRegimeGraph.png
State Variables: X, ¥, Z
Regime Graph:

Regime: regimel

Transition: 1 Regime: regime2

axdt = (5072 X/t = (5X02
av/at = (x5
azidt = (1:X2) Jransition: t2

Transition: €3 Transition: t

Regime: regime3

axdt =0
v/t = (6)/5
az/dt = 0

C Srmastton: 18

_static/images/logo_small.png

_static/images/iaf_component_im.png
iaf component
y Ports:

v
pikeoutput

-« i

ac

_static/images/logo.png

