
NimCfitsio Documentation
Release 0.1

Maurizio Tomasi

August 08, 2015

Contents

1 Introduction 3

2 Installation 5

3 Basic access to FITS files 7
3.1 Opening FITS files for read/write . 7
3.2 Creating files . 8
3.3 Closing files . 9
3.4 Other file-related functions . 9

4 HDU functions 11
4.1 Moving through the HDUs . 11

5 Table functions 13
5.1 Creating tables . 13
5.2 Reading columns . 13
5.3 Writing columns . 14

6 Image functions 17

7 Indices and tables 19

i

ii

NimCfitsio Documentation, Release 0.1

A set of Nim bindings to the CFITSIO library.

Contents 1

http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html

NimCfitsio Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

This manual describes NimCfitsio, a set of bindings to the CFITSIO library for the Nim language.

The purpose of NimCfitsio is to allow the creation/reading/writing of FITS files (either containing images or tables)
from Nim programs. The interface matches the underlying C library quite close, but in a number of cases the syntax
is nicer, thanks to Nim’s richer and more expressive syntax.

So far the library provides an extensive, albeit not complete, coverage of the functions to read/write keywords and
ASCII/binary tables. More extensive support for reading/writing images (i.e., 2D matrices of numbers) is yet to come.

The specification of the FITS file format is provided in the article Definition of the Flexible Image Transport System
(FITS), version 3.0 (Astronomy & Astrophysics, 524, A42, 2010).

3

http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201015362&Itemid=129
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201015362&Itemid=129

NimCfitsio Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER 2

Installation

[I plan to add support for Nimble very soon. At the moment, you’re on your own, sorry...]

5

NimCfitsio Documentation, Release 0.1

6 Chapter 2. Installation

CHAPTER 3

Basic access to FITS files

In this section we describe the functions used to access FITS files and get general information about their content.

All the code from now on can be used only if the NimCfitsio module is imported with the following command:

import cfitsio

Virtually every function in NimCfitsio requires as its first argument a variable of type FitsFile.

objectFitsFile
This object contains the following fields:

Name Type Meaning
file InternalFitsStruct (private) Used internally by CFITSIO
fileName string Name of the file

In case of error, all the NimCfitsio functions raise an exception of type EFitsException:

objectEFitsException
The fields of this object are the following:

Field name Type Meaning
code int CFITSIO error code identifier
message string Descriptive error message
errorStack seq[string] List of all the CFITSIO error messages raised

3.1 Opening FITS files for read/write

The CFITSIO library provides several functions to open a file for reading/writing, and NimCfitsio provides a wrapper
to each of them. Here is a general overview of their purpose:

Function Purpose
openFile() Open a generic file. Access through FTP and HTTP is allowed
openData() Open a file and move to the first HDU containing some data
openTable() Like openData, but the HDU must contain a table
openImage() Like openData, but the HDU must contain an image

All the prototypes of these functions accept the same parameters and return the same result. Here is a short example
that shows how to use them:

import cfitsio

var f = cfitsio.openFile("test.fits", ReadOnly)

7

NimCfitsio Documentation, Release 0.1

try:
Read data from "f"

finally:
cfitsio.closeFile(f)

If the underlying CFITSIO function fails when opening the file (e.g, because the file does not exist), a
EFitsException will be raised.

enumIoMode= ReadOnly, ReadWrite
This enumeration is used by all the procedures that open an existing FITS file.

procopenFile(fileName : string, ioMode : IoMode)→ FitsFile
Open the FITS file whose path is fileName. If ioMode is ReadOnly, the file is opened in read-only mode
and any modification is forbidden; if ioMode is ReadWrite, then write operations are allowed as well as read
operations.

If the file cannot be opened, a EFitsException is raised.

If the underlying CFITSIO library supports them, protocols like ftp:// or http:// can be used for fileName.
Compressed files (e.g. .gz) may be supported as well.

You must call closeFile() once the file is no longer needed, in order to close the file and flush any pending
write operation.

procopenData(fileName : string, ioMode : IoMode)→ FitsFile
This function can be used instead of openData() when the user wants to move to the first HDU containing
either an image or a table. Its usage is the same as openFile().

procopenTable(fileName : string, ioMode : IoMode)→ FitsFile
This function is equivalent to openData(), but it moves to the first HDU containing either a binary or ASCII
table.

If the file cannot be opened, or it does not contain any table, a EFitsException is raised.

procopenImage(fileName : string, ioMode : IoMode)→ FitsFile
This function is equivalent to openData(), but it moves to the first HDU containing an image.

If the file cannot be opened, or it does not contain any image, a EFitsException is raised.

3.2 Creating files

enumOverwriteMode= Overwrite, DoNotOverwrite

proccreateFile(fileName : string, overwriteMode : OverwriteMode = Overwrite)→ FitsFile
Create a new file at the path specified by fileName. If a file already exists, the behavior of the function is specified
by the overwriteMode parameter: if it is equal to DoNotOverwrite, a EFitsException exception is
raised, otherwise the file is silently overwritten.

The return value is a FitsFile object that should be closed using either closeFile() or deleteFile().

Here is an example about how to use this procedure:

import cfitsio

var f = cfitsio.createFile("test.fits")
try:

Write data into "f"
finally:

cfitsio.closeFile(f)

8 Chapter 3. Basic access to FITS files

NimCfitsio Documentation, Release 0.1

proccreateDiskFile*(fileName : string, overwriteMode : OverwriteMode = Overwrite)→ FitsFile
This function is equivalent to :nim:proc::createFile, but it does not attempt to interpret fileName according to
CFITSIO’s extended syntax rules.

3.3 Closing files

proccloseFile(fileObj : var FitsFile)
Close the file and flush any pending write operation on it. The variable fileObj can no longer be used after a call
to closeFile.

See also deleteFile().

procdeleteFile(fileObj : var FitsFile)
This procedure is similar to closeFile(), but the file is deleted after having been closed. It is mainly useful
for testing purposes.

3.4 Other file-related functions

In this section we list all the other functions that work on the file as a whole, but do not fit in any of the previous
sections.

procgetFileName(fileObj : var FitsFile)→ string
Return the name of the file associated with the FITS file variable fileObj. Since this variable calls CFIT-
SIO instead of simply returning the file field of FitsFile, it could fail. In the latter case, it will throw a
EFitsException exception.

procgetFileMode(fileObj : var FitsFile)→ IoMode
Return the I/O mode of the file.

procgetUrlType(fileObj : var FitsFile)→ string
Return the kind of URL of the file. Possible values are e.g. file://, ftp://, http://.

3.3. Closing files 9

NimCfitsio Documentation, Release 0.1

10 Chapter 3. Basic access to FITS files

CHAPTER 4

HDU functions

4.1 Moving through the HDUs

A FITS files is composed by one or more HDUs. NimCfitsio provides a number of functions to know how many
HDUs are present in a FITS file and what is their content. (To create a new HDU you have first to decide which kind
of HDU you want. Depending on the answer, you should read Table functions or Image functions.)

enumHduType= Any = -1, Image = 0, AsciiTable = 1, BinaryTable = 2
HDU types recognized by NimCfitsio. The Any type is used by functions which perform searches on the
available HDUs in a file. See the FITS specification documents for further information about the other types.

NimCfitsio (and CFITSIO itself) uses the concept of “current HDU”. Each FitsFile variable is a stateful object.
Instead of specifying on which HDU a NimCfitsio procedure should operate, the user must first select the HDU and
then call the desired procedure.

procmoveToAbsHdu(fileObj : var FitsFile, num : int)→ HduType
Select the HDU at position idx as the HDU to be used for any following operation on the FITS file. The value
of num must be between 1 and the value returned by getNumberOfHdus().

procmoveToRelHdu(fileObj : var FitsFile, num : int)→ HduType
Move the current HDU by num positions. If num is 0, this is a no-op. Positive as well as negative values are
allowed.

procmoveToNamedHdu(fileObj : var FitsFile, hduType : HduType, name : string, ver : int = 0)
Move to the HDU whose name is name. If ver is not zero, then the HDU must match the version number as well
as the name.

If no matching HDU are found, a EFitsException is raised.

procgetNumberOfHdus(fileObj : var FitsFile)→ int
Return the number of HDUs in the FITS file.

11

NimCfitsio Documentation, Release 0.1

12 Chapter 4. HDU functions

CHAPTER 5

Table functions

5.1 Creating tables

enumTableType= AsciiTable, BinaryTable
This enumeration lists the two types of tables that can be found in a FITS file. Binary tables have the advantage
of allowing any datatype supported by CFITSIO; moreover, they are more efficient in terms of required storage.

enumDataType= dtBit, dtInt8, dtUint8, dtInt16, dtUint16, dtInt32, dtInt64, dtFloat32, dtFloat64, dtComplex32, dtComplex64, dtLogical, dtString
Data types recognized by NimCfitsio.

objectTableColumn
This type describes one column in a table HDU. It is used by createTable(). Its fields are listed in the
following table:

Field Type Description
name string Name of the column (not longer than 8 chars)
dataType DataType Data type
width int For strings, this gives the maximum number of chars
repeatCount int Number of items per row
unit string Measure unit

proccreateTable(fileObj : var FitsFile, tableType : TableType, numOfElements : int64, fields : openAr-
ray[TableColumn], extname : string)

Create a new table HDU after the current HDU. The file must have been opened in ReadWrite mode (this is
automatically the case if f has been returned by a call to createFile()).

The value of numOfElements is used to allocate some space, but it can be set to zero: calls to functions like
writeColumn() will make room if needed.

5.2 Reading columns

The NimCfitsio library provides an extensive set of functions to read data from FITS table HDUs. Each of them
initializes an “open array” type that is passed as a var argument: this allows to initialize arrays as well as seq types.

The functions implemented by NimCfitsio to read columns of data are the following:

13

NimCfitsio Documentation, Release 0.1

Function name Type
readColumnOfInt8() int8
readColumnOfInt16() int16
readColumnOfInt32() int32
readColumnOfInt64() int64
readColumnOfFloat32() float32
readColumnOfFloat64() float64
readColumnOfString() string

We describe here the many incarnations of a function readColumn() which operates on a generic type T. Such
function however does not exist: such description should be applied to any of the procedures listed in the table above.

procreadColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, numOfElements : int,
dest : var openArray[T], destNull : var openArray[bool], destFirstIdx : int)

Read a number of elements equal to numOfElements from the column at position colNum (the position of the
first column is 1), starting from the row number firstRow (starting from 1) and the element firstElem (within the
row; this also starts from 1). The destination is saved in the dest array, starting from the index destFirstIdx. The
array destNull must be defined on the same indexes as the array dest; readColumn() initializes it with either
true or false, according to the nullity of the corresponding element in dest.

As an example, the following call reads 3 elements from the first column of file f. The values read from the file
are saved in dest[2], dest[3], and dest[4], because destFirstIdx is 2. Note that nullFlag is not as long
as dest (4 elements instead of 10): this is ok, as the upper limit of the indexes used by the procedure is 4.

var dest : array[int32, 10]
var nullFlag : array[int32, 4]
f.readColumnOfInt32(1, 4, 1, 3, dest, destNull, 2)

procreadColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, numOfElements : int,
dest : var openArray[T], destFirstIdx : int, nullValue : T)

This second version of the procedure allows for quickly substitute null values with the value nullValue.

procreadColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, dest : var openArray[T],
nullValue : T)

In many cases it is not needed to save data in the middle of the dest array. This version of readColumn uses
the length of dest as the value to be used for numOfElements. The implicit value of firstElem is low(dest).

procreadColumn(fileObj : var FitsFile, colNum : int, dest : var openArray[T], nullValue : T)
This is the simplest possible version of readColumn. It reads as many values as they fit in dest, starting from
the first one (i.e., firstRow and firstElem are implicitly set to 1).

5.3 Writing columns

The functions implemented by NimCfitsio to write columns of data are the following:

Function name Type
writeColumnOfInt8() int8
writeColumnOfInt16() int16
writeColumnOfInt32() int32
writeColumnOfInt64() int64
writeColumnOfFloat32() float32
writeColumnOfFloat64() float64
writeColumnOfString() string

procwriteColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, numOfElements : int,
values : var openArray[T], valueFirstIdx : int, nullPtr : ptr T = nil)

Write numOfElements values taken from values into the column at position colNum in the current HDU of the

14 Chapter 5. Table functions

NimCfitsio Documentation, Release 0.1

FITS file f. The elements will be written starting from the row with number firstRow (the first row is 1) and from
the element in the row at position firstElem (the first element is 1). The values that are saved in the file start from
the index valueFirstIdx, i.e., they are values[valueFirstIdx], values[valueFirstIdx+1] and so
on.

The nullPtr argument is a pointer to a variable that contains the “null” value: any value in values that is going
to be written is compared with nullPtr[] and, if it is equal, it is set to NULL.

procwriteColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, values : var openAr-
ray[T], nullPtr : ptr T = nil)

This is a wrapper around the previous definition of writeColumn(). It assumes that valueFirstIdx =
low(values).

procwriteColumn(fileObj : var FitsFile, colNum : int, values : var openArray[T], nullPtr : ptr T = nil)
This function is a wrapper around the previous definition of writeColumn(). It writes all the elements of the
values array into the column colNum.

5.3. Writing columns 15

NimCfitsio Documentation, Release 0.1

16 Chapter 5. Table functions

CHAPTER 6

Image functions

17

NimCfitsio Documentation, Release 0.1

18 Chapter 6. Image functions

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19

NimCfitsio Documentation, Release 0.1

20 Chapter 7. Indices and tables

Index

C
closeFile (Nim procedure), 9
createDiskFile* (Nim procedure), 8
createFile (Nim procedure), 8
createTable (Nim procedure), 13

D
DataType (Nim enumeration), 13
deleteFile (Nim procedure), 9

G
getFileMode (Nim procedure), 9
getFileName (Nim procedure), 9
getNumberOfHdus (Nim procedure), 11
getUrlType (Nim procedure), 9

H
HduType (Nim enumeration), 11

I
IoMode (Nim enumeration), 8

M
moveToAbsHdu (Nim procedure), 11
moveToNamedHdu (Nim procedure), 11
moveToRelHdu (Nim procedure), 11

O
openData (Nim procedure), 8
openFile (Nim procedure), 8
openImage (Nim procedure), 8
openTable (Nim procedure), 8
OverwriteMode (Nim enumeration), 8

R
readColumn (Nim procedure), 14

T
TableType (Nim enumeration), 13

W
writeColumn (Nim procedure), 14, 15

21

	Introduction
	Installation
	Basic access to FITS files
	Opening FITS files for read/write
	Creating files
	Closing files
	Other file-related functions

	HDU functions
	Moving through the HDUs

	Table functions
	Creating tables
	Reading columns
	Writing columns

	Image functions
	Indices and tables

