
nimblenet Documentation
Release 0.2

Jørgen Grimnes

August 24, 2016

Contents

1 Installing 3
1.1 Dependencies . 3

2 Content 5
2.1 Getting Started . 5
2.2 Initializing a Network . 8
2.3 Saving and loading a trained network . 9
2.4 Preprocessing . 9
2.5 Gradient Checking . 11
2.6 Activation Functions . 12
2.7 Learning Algorithms . 15
2.8 Cost Functions . 20
2.9 Using the Network . 22
2.10 Support . 23

3 Support 25

i

ii

nimblenet Documentation, Release 0.2

nimblenet is a lightweight and efficient Numpy library for creating feed forward neural networks. The library was de-
veloped with PYPY in mind and should play nicely with their super-fast JIT compiler. The networks can be trained by
a variety of learning algorithms: backpropagation, resilient backpropagation, adaptive learning rate backpropagation,
scaled conjugate gradient and SciPy’s optimize function.

This is a list of handy links to get up and running.

• Getting Started

• Cost Functions

• Activation Functions

• Saving and loading a trained network

Contents 1

nimblenet Documentation, Release 0.2

2 Contents

CHAPTER 1

Installing

$ pip install nimblenet

1.1 Dependencies

• Python 2.7

• NumPy

• SciPy (optional). This is of course a required depedency if you intend to train the network using SciPy’s
optimize function.

3

nimblenet Documentation, Release 0.2

4 Chapter 1. Installing

CHAPTER 2

Content

2.1 Getting Started

This guide will walk you through how to install nimblenet and configure a network using the library.

• Installing
– Required dependencies
– Optional dependencies

• Creating a Network
• Training the Network
• Using the Network
• Putting it all together

2.1.1 Installing

$ pip install nimblenet

Required dependencies

• Python 2.7

• NumPy

Optional dependencies

• SciPy

In order to speed up the code when using the Sigmoid activation functions, the SciPy package should also be installed.
This is an optional dependency, but it is of course required if you intend to train the network using SciPy’s optimize
function.

2.1.2 Creating a Network

Once nimblenet has been installed, initializing a network is simple. The following example creates a two layered
network that require two input signals.

5

nimblenet Documentation, Release 0.2

from nimblenet.activation_functions import sigmoid_function
from nimblenet.neuralnet import NeuralNet

settings = {
"n_inputs" : 2,
"layers" : [(3, sigmoid_function), (1, sigmoid_function)]

}

network = NeuralNet(settings)

The layers parameter describe the topology of the network. The first tuple state that the hidden layer should have
three neurons and apply the sigmoid activation function. The final tuple in the layers list always describe the number
of output signals. A list of built-in activations functions are listed in Activation Functions.

Important: The final tuple in the layers list always describe the number of output signals.

The properties specified in the settings parameter are required. The initialization of a network is further customizable,
please refer to the page Initializing a Network.

2.1.3 Training the Network

The network can be trained by a wide range of learning functions. In this quick intro, we will see how use RMSprop
to fit the network to some training data.

First off, we need some dataset to fit the network to. In this guide, we will teach the network XOR. In nimblenet, a
dataset is a list of Instances.

from nimblenet.data_structures import Instance
dataset = [

Instance([inputs], [outputs])
Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [0])

]

The dataset above consist of four training instances with two input signals and one output signal. In general we would
split the dataset into a training set and a test set, but for the XOR problem we simply specify the training and test set
to be identical:

training_set = dataset
test_set = dataset

The nimblenet library also offers a selection of preprocessors to manipluate the data and make training more efficient.
The preprocessors are not used in this guide, please refer to Preprocessing instead.

Before fitting the network to some training data, we need to decide which cost function we would like to optimize.
There are a few cost functions already implemented in this library, and this guide will use the Cross Entropy cost
function. However, it is easy to implement your own custom cost functions. Please refer to Cost Functions.

from nimblenet.cost_functions import cross_entropy_cost
cost_function = cross_entropy_cost

Now that we’ve specified a cost function, we can use RSMprop to train our network:

from nimblenet.learning_algorithms import *
RMSprop(

network, # the network to train
training_set, # specify the training set

6 Chapter 2. Content

nimblenet Documentation, Release 0.2

test_set, # specify the test set
cost_function, # specify the cost function to calculate error

ERROR_LIMIT = 1e-2, # define an acceptable error limit
#max_iterations = 100, # continues until the error limit is reach if this argument is skipped

)

If the training shows poor progression, you may try to gradient check the network to verify that the numerical and the
analytical gradient are similar. If the gradient check fails, the math might be wrong. Refer to gradient checking here:
Gradient Checking.

2.1.4 Using the Network

After the training has completed, we can verify the training by forward propagating some input data in the network.
Since the network is written using matrices, we can forward propagate multiple input instances at once. In contrast
to the instances generated when training the network, these instance will only be created with a single parameter (the
input signal). The following code tests the output of two instances:

prediction_set = [Instance([0,1]), Instance([1,0])]
print network.predict(prediction_set)
>> [[0.99735413]

[0.99735378]]

The prediction method returns a 2D NumPy array with shape [n_samples, n_outputs]. The first dimension
of the list contain the outputs from the corresponing Instance.

2.1.5 Putting it all together

from nimblenet.activation_functions import sigmoid_function
from nimblenet.cost_functions import cross_entropy_cost
from nimblenet.learning_algorithms import RMSprop
from nimblenet.data_structures import Instance
from nimblenet.neuralnet import NeuralNet

dataset = [
Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [0])

]

settings = {
"n_inputs" : 2,
"layers" : [(5, sigmoid_function), (1, sigmoid_function)]

}

network = NeuralNet(settings)
training_set = dataset
test_set = dataset
cost_function = cross_entropy_cost

RMSprop(
network, # the network to train
training_set, # specify the training set
test_set, # specify the test set
cost_function, # specify the cost function to calculate error

2.1. Getting Started 7

nimblenet Documentation, Release 0.2

ERROR_LIMIT = 1e-2, # define an acceptable error limit
#max_iterations = 100, # continues until the error limit is reach if this argument is skipped

)

2.2 Initializing a Network

In nimblenet, a neural network is configured according to a dict of parameters specified upon initialization.

from nimblenet.neuralnet import NeuralNet
network = NeuralNet({

"n_inputs" : 2,
"layers" : [(1, sigmoid_function)],

})

Important: The final tuple in the layers list always describe the number of output signals.

2.2.1 Parameters

The two dict keys n_inputs and layers are required. However, the network is further customizable through
specifying any of the following dict parameters:

• n_inputs the number of input signals

• layers the topology of the network

• initial_bias_value the input signal from the bias node will be initialized to this value

• weights_low the lower bound on weight value during the random initialization

• weights_high the upper bound on weight value during the random initialization

2.2.2 Example

from nimblenet.neuralnet import NeuralNet
settings = {

Required settings
"n_inputs" : 2, # Number of network input signals
"layers" : [(3, sigmoid_function), (1, sigmoid_function)],

[(number_of_neurons, activation_function)]
The last pair in the list dictate the number of output signals

Optional settings
"initial_bias_value" : 0.0,
"weights_low" : -0.1, # Lower bound on the initial weight value
"weights_high" : 0.1, # Upper bound on the initial weight value

}
network = NeuralNet(settings)

8 Chapter 2. Content

nimblenet Documentation, Release 0.2

2.3 Saving and loading a trained network

2.3.1 Save

A network can be easily saved to a file:

from nimblenet.neuralnet import NeuralNet
Create a network
network = NeuralNet({

"n_inputs" : 2,
"layers" : [(1, sigmoid_function)],

})
Save the network to disk
network.save_network_to_file("%s.pkl" % "filename")

In addition to doing this explicitly, all of the learning algorithms also offer the possibility to save the network after the
training has completed. This is done by passing the named parameter save_trained_network = True when
calling the learning function:

RMSprop(..., save_trained_network = False) # omitted parameters for readability

This will promt the user whether to save the network or not, upon completion of the training.

2.3.2 Load

If you have saved a network to a file, you can easily load the network back up by calling:

from nimblenet.neuralnet import NeuralNet
network = NeuralNet.load_network_from_file("%s.pkl" % "filename")

2.4 Preprocessing

This is a work in progress. However, the library has already implementations a few of the most used preprocessing
techniques.

• Usage
• Available preprocessors

– Standardize
– Replace NaN
– Subtract Mean
– Normalize
– Whiten

A preprocessor can be constructed by combining any number of these techniques, and is intended allow maximum
configurability.

2.4.1 Usage

First, we need to import construct_preprocessor. This will take care of combining our preprocessors:

2.3. Saving and loading a trained network 9

nimblenet Documentation, Release 0.2

from nimblenet.preprocessing import construct_preprocessor

Next, we import the preprocessors we’d like to apply:

from nimblenet.preprocessing import replace_nan, standarize

Then, we combine the preprocessors. This is done by sending a list of preprocessors in addition to the dataset which
we would like to fit the preprocessors againts. Note: this dataset should be the combined set of training, test and
validation data.

preprocess = construct_preprocessor(dataset, [
(replace_nan, {"replace_with": 0 }),
standardize

])

This constructed preprocessor can now be applied to your datasets. Let’s take a look at how we can apply this to the
XOR dataset:

from nimblenet.data_structures import Instance
dataset = [Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [0])]
preprocess = construct_preprocessor(dataset, [

(replace_nan, {"replace_with": 0 }),
standardize

])
preprocessed_dataset = preprocess(dataset)

Remember that if using a preprocessor before training the network, you will have to use the same preprocessor before
using the network to predict based on new input signals.

Important: The dataset given to construct_preprocessor should be the combined set of training, test and
validation data.

2.4.2 Available preprocessors

Standardize

from nimblenet.preprocessing import standarize

Has no parameters.

Replace NaN

from nimblenet.preprocessing import replace_nan

Takes an optional parameter replace_with. By default, it replaces NaN with the mean of the given input signal.

In order to replace NaN with zero:

from nimblenet.preprocessing import construct_preprocessor, replace_nan
from nimblenet.data_structures import Instance

dataset = [Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [0])]
preprocess = construct_preprocessor(dataset, [

(replace_nan, {"replace_with": 0 }),
])

10 Chapter 2. Content

nimblenet Documentation, Release 0.2

Subtract Mean

from nimblenet.preprocessing import subtract_mean

Has no parameters.

Normalize

from nimblenet.preprocessing import normalize

Has no parameters.

Whiten

from nimblenet.preprocessing import whiten

Takes an optional parameter epsilon. By default, epsilon equals 1e-5.

In order to redefine epsilon to e.g 0.5:

from nimblenet.preprocessing import construct_preprocessor, whiten
from nimblenet.data_structures import Instance

dataset = [Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [0])]
preprocess = construct_preprocessor(dataset, [

(whiten, {"epsilon": 0.5 }),
])

2.5 Gradient Checking

Gradient checking great method for debugging neural networks. The main challenge with implementing these net-
works, is to get the gradient calculations correct. To verify the analytically computed gradients that are used during
gradient descent, we can compare these gradients to numerically calculated gradients. This is called gradient checking.

Warning: Gradient checking against a large dataset is very slow.

Important: If the gradient check fails, it will query the user whether to abort or continue executing the script.

2.5.1 Usage

Checking the gradient of a network requires both a dataset and a specific cost function.

network = NeuralNet(...) # parameters omitted for readability
network.check_gradient(dataset, cost_function)

The following code snippet is a complete example on how to perform gradient checking:

2.5. Gradient Checking 11

nimblenet Documentation, Release 0.2

from nimblenet.activation_functions import binary_cross_entropy_cost
from nimblenet.cost_functions import cross_entropy_cost
from nimblenet.data_structures import Instance
from nimblenet.neuralnet import NeuralNet

cost_function = binary_cross_entropy_cost
dataset = [Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [0])]
settings = {

"n_inputs" : 2,
"layers" : [(2, sigmoid_function), (1, sigmoid_function)]

}

network = NeuralNet(settings)
network.check_gradient(dataset, cost_function)

2.6 Activation Functions

The some of the most popular activation functions has already been implemented in nimblenet. However, it is very
easy to specify your own activation function as described in Arbitrary Activation Functions.

• Usage
• List of cost functions

– Sigmoid function
– Tanh function
– Softmax function
– Elliot function
– Symmetric Elliot function
– ReLU function
– LReLU function
– Linear function
– Softplus function
– Softsign function

• Arbitrary Activation Functions
– How to

2.6.1 Usage

Using the various activation functions is as easy as importing the desired activation function and using it when declar-
ing the network topology. Below is an example of how to use the Sigmoid activation function in a simple neural
network.

from nimblenet.activation_functions import sigmoid_function
from nimblenet.neuralnet import NeuralNet

settings = {
"n_inputs" : 2, # Two input signals

Using the sigmoid activation function in a layer
"layers" : [(1, sigmoid_function)] # A single layer neural network with one output signal

}

network = NeuralNet(settings)

12 Chapter 2. Content

nimblenet Documentation, Release 0.2

A network may of course use different activation functions at each layer:

from nimblenet.activation_functions import sigmoid_function, tanh_function
from nimblenet.neuralnet import NeuralNet

settings = {
"n_inputs" : 2, # Two input signals

Using both tanh and sigmoid activation functions
"layers" : [(2, tanh_function), (1, sigmoid_function)] # A two layered neural network with one output signal

}

network = NeuralNet(settings)

2.6.2 List of cost functions

Sigmoid function

from nimblenet.activation_functions import sigmoid_function

Tanh function

from nimblenet.activation_functions import tanh_function

Softmax function

from nimblenet.activation_functions import softmax_function

Elliot function

The Elliot function is a fast approximation to the Sigmoid activation function.

from nimblenet.activation_functions import elliot_function

Symmetric Elliot function

The Symmetric Elliot function is a fast approximation to the tanh activation function.

from nimblenet.activation_functions import symmetric_elliot_function

ReLU function

from nimblenet.activation_functions import ReLU_function

2.6. Activation Functions 13

nimblenet Documentation, Release 0.2

LReLU function

This is the leaky rectified linear activation function.

from nimblenet.activation_functions import LReLU_function

Linear function

from nimblenet.activation_functions import linear_function

Softplus function

from nimblenet.activation_functions import softplus_function

Softsign function

from nimblenet.activation_functions import softsign_function

2.6.3 Arbitrary Activation Functions

It is easy to write your own, custom activation functions. A activation function takes the required form:

def activation_function(signal, derivative = False):
...

The signal parameter is a NumPy matrix with shape [n_samples, n_outputs]. When the derivative
flag is true, the activation function is expected to return the partial derivation of the function.

As an example, we can look at how the tanh activation function is implemented:

def tanh_function(signal, derivative=False):
squashed_signal = np.tanh(signal)

if derivative:
return 1 - np.power(squashed_signal, 2)

else:
return squashed_signal

How to

Lets define a custom cost function and use it when training the network:

from nimblenet.learning_algorithms import backpropagation
from nimblenet.cost_functions import sum_squared_error
from nimblenet.data_structures import Instance
from nimblenet.neuralnet import NeuralNet
import numpy as np

def custom_activation_function(signal, derivative = False):
This activation function amounts to a ReLU layer
if derivative:

return (signal > 0).astype(float)

14 Chapter 2. Content

nimblenet Documentation, Release 0.2

else:
return np.maximum(0, signal)

#end

dataset = [Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [1])]
settings = {

"n_inputs" : 2,

This is where we apply our custom activation function:
"layers" : [(2, custom_activation_function)]

}

network = NeuralNet(settings)
training_set = dataset
test_set = dataset
cost_function = sum_squared_error

backpropagation(
network, # the network to train
training_set, # specify the training set
test_set, # specify the test set
cost_function # specify the cost function to optimize

)

2.7 Learning Algorithms

This library offers a wide range of analytical learning algorithms. These algorithms have been implemented in Python
using NumPy and its matrices for efficiency:

• Backpropagation Variations
– Vanilla Backpropagation
– Classical Momentum
– Nesterov Momentum
– RMSprop
– Adagrad
– Adam

• Additional Learning Algorithms
– Resilient Backpropagation
– Scaled Conjugate Gradient
– SciPy’s Optimize

To shorten the code examples given below, the following code snippet is implicitly called before executing the exam-
ples:

from nimblenet.activation_functions import sigmoid_function
from nimblenet.cost_functions import cross_entropy_cost
from nimblenet.data_structures import Instance
from nimblenet.neuralnet import NeuralNet

dataset = [
Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [1])

]

2.7. Learning Algorithms 15

nimblenet Documentation, Release 0.2

settings = {
"n_inputs" : 2,
"layers" : [(1, sigmoid_function)]

}

network = NeuralNet(settings)
training_set = dataset
test_set = dataset
cost_function = cross_entropy_cost

Important: The dropout regularization strategy is applicable to all backpropagation variations and adaptive learning
rate methods. The scaled conjugate gradient, SciPy’s optimize, and resilient backpropagation does not support this
regularization.

2.7.1 Backpropagation Variations

These are the common parameters accepted by the following learning algorithms along with their default value:

learning_algorithm(
Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

Optional parameters
ERROR_LIMIT = 1e-3, # Error tolerance when terminating the learning
max_iterations = (), # Regardless of the achieved error, terminate after max_iterations epochs. Default: infinite
batch_size = 0, # Set the batch size. 0 implies using the entire training_set as a batch, 1 equals no batch learning, and any other number dictate the batch size
input_layer_dropout = 0.0, # Dropout fraction of the input layer
hidden_layer_dropout = 0.0, # Dropout fraction of in the hidden layer(s)
print_rate = 1000, # The epoch interval to print progression statistics
save_trained_network = False # Whether to ask the user if they would like to save the network after training

)

Vanilla Backpropagation

This example show how to train your network using the vanilla backpropagation algorithm. The optional common
parameters has been skipped for brevity, but the algorithm conforms to common backpropagation variables.

from nimblenet.learning_algorithms import backpropagation
backpropagation(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

)

Classical Momentum

This example show how to train your network using backpropagation with classical momentum. The optional common
parameters has been skipped for brevity, but the algorithm conforms to common backpropagation variables.

16 Chapter 2. Content

nimblenet Documentation, Release 0.2

Named variables are shown together with their default value.

from nimblenet.learning_algorithms import backpropagation_classical_momentum
backpropagation_classical_momentum(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

Classical momentum backpropagation specific, optional parameters
momentum_factor = 0.9

)

Nesterov Momentum

This example show how to train your network using backpropagation with Nesterov momentum. The optional common
parameters has been skipped for brevity, but the algorithm conforms to common backpropagation variables.

Named variables are shown together with their default value.

from nimblenet.learning_algorithms import backpropagation_nesterov_momentum
backpropagation_nesterov_momentum(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

Nesterov momentum backpropagation specific, optional parameters
momentum_factor = 0.9

)

RMSprop

This example show how to train your network using RMSprop. The optional common parameters has been skipped
for brevity, but the algorithm conforms to common backpropagation variables.

Named variables are shown together with their default value.

from nimblenet.learning_algorithms import RMSprop
RMSprop(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

RMSprop specific, optional parameters
decay_rate = 0.99,
epsilon = 1e-8

)

2.7. Learning Algorithms 17

nimblenet Documentation, Release 0.2

Adagrad

This example show how to train your network using Adagrad. The optional common parameters has been skipped for
brevity, but the algorithm conforms to common backpropagation variables.

Named variables are shown together with their default value.

from nimblenet.learning_algorithms import adagrad
adagrad(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

Adagrad specific, optional parameters
epsilon = 1e-8

)

Adam

This example show how to train your network using Adam. The optional common parameters has been skipped for
brevity, but the algorithm conforms to common backpropagation variables.

Named variables are shown together with their default value.

from nimblenet.learning_algorithms import Adam
Adam(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

Adam specific, optional parameters
beta1 = 0.9,
beta2 = 0.999,
epsilon = 1e-8

)

2.7.2 Additional Learning Algorithms

Resilient Backpropagation

This example show how to train your network using resilient backpropagation. This is the iRprop+ variation of resilient
backpropagation.

Named variables are shown together with their default value.

from nimblenet.learning_algorithms import resilient_backpropagation
resilient_backpropagation(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

18 Chapter 2. Content

nimblenet Documentation, Release 0.2

Resilient backpropagation specific, optional parameters
weight_step_max = 50.,
weight_step_min = 0.,
start_step = 0.5,
learn_max = 1.2,
learn_min = 0.5,

Optional parameters
ERROR_LIMIT = 1e-3, # Error tolerance when terminating the learning
max_iterations = (), # Regardless of the achieved error, terminate after max_iterations epochs. Default: infinite
print_rate = 1000, # The epoch interval to print progression statistics
save_trained_network = False # Whether to ask the user if they would like to save the network after training

)

Scaled Conjugate Gradient

This example show how to train your network using scaled conjugate gradient. This algorithm has been implemented
according to Scaled Conjugate Gradient for Fast Supervised Learning authored by Martin Møller.

Named variables are shown together with their default value.

from nimblenet.learning_algorithms import scaled_conjugate_gradient
scaled_conjugate_gradient(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

Optional parameters
ERROR_LIMIT = 1e-3, # Error tolerance when terminating the learning
max_iterations = (), # Regardless of the achieved error, terminate after max_iterations epochs. Default: infinite
print_rate = 1000, # The epoch interval to print progression statistics
save_trained_network = False # Whether to ask the user if they would like to save the network after training

)

SciPy’s Optimize

This example show how to train your network using SciPy’s optimize function. This learning algorithm requires
SciPy to be installed.

Named variables are shown together with their default value.

from nimblenet.learning_algorithms import scipyoptimize
scipyoptimize(

Required parameters
network, # the neural network instance to train
training_set, # the training dataset
test_set, # the test dataset
cost_function, # the cost function to optimize

SciPy Optimize specific, optional parameters
method = "Newton-CG", # The method name correspond to the method names accepted by the SciPy optimize function. Please refer to the SciPy documentation.

Optional parameters

2.7. Learning Algorithms 19

http://www.sciencedirect.com/science/article/pii/S0893608005800565

nimblenet Documentation, Release 0.2

save_trained_network = False # Whether to ask the user if they would like to save the network after training
)

2.8 Cost Functions

A the most popular and applicable cost functions has already been implemented in this library, and are listed below.
However, it is very easy to specify your own cost functions as described in Arbitrary Cost Functions.

• Usage
• List of cost functions

– Sum Squared Error
– Binary Cross Entropy
– Softmax Categorical Cross Entropy
– Hellinger Distance

• Arbitrary Cost Functions
– How to

Warning: The Softmax Categorical Cross Entropy cost function is required when using a softmax layer in the
network topology.

2.8.1 Usage

Using the various cost functions is as easy as only importing the desired cost function and passing it to the decided
learning function. Below is an example of how to use the Cross Entropy cost function when training using the vanilla
backpropagation algorithm.

from nimblenet.cost_functions import binary_cross_entropy_cost
from nimblenet.activation_functions import sigmoid_function
from nimblenet.learning_algorithms import backpropagation
from nimblenet.data_structures import Instance
from nimblenet.neuralnet import NeuralNet

dataset = [Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [1])]
settings = {

"n_inputs" : 2,
"layers" : [(2, sigmoid_function)]

}

network = NeuralNet(settings)
training_set = dataset
test_set = dataset
cost_function = binary_cross_entropy_cost

backpropagation(
network, # the network to train
training_set, # specify the training set
test_set, # specify the test set

This is where we specify the cost function to optimize:
cost_function # specify the cost function to calculate error

)

20 Chapter 2. Content

nimblenet Documentation, Release 0.2

2.8.2 List of cost functions

• Sum Squared Error
• Binary Cross Entropy
• Softmax Categorical Cross Entropy
• Hellinger Distance

Sum Squared Error

from nimblenet.cost_functions import sum_squared_error

Binary Cross Entropy

from nimblenet.cost_functions import binary_cross_entropy_cost

Softmax Categorical Cross Entropy

This cost function is required when including a softmax layer in your network topology.

from nimblenet.cost_functions import softmax_categorical_cross_entropy_cost

Hellinger Distance

from nimblenet.cost_functions import hellinger_distance

2.8.3 Arbitrary Cost Functions

It is easy to optimize your own, custom cost functions. A cost function has the required form:

def custom_cost_function(
outputs, # the signal emitted from the network
targets, # the target values we would like the network to output
derivative = False # whether the cost function should return its derivative

):
...

The outputs and targets parameters are NumPy matrices with shape [n_samples, n_outputs].

As an example, we can look at how the Sum Squared Error function is implemented:

def sum_squared_error(outputs, targets, derivative = False):
if derivative:

return outputs - targets
else:

return 0.5 * np.mean(np.sum(np.power(outputs - targets,2), axis = 1))

Important: Observe that we calculate the mean of the error, per singal, across the input instances fed into the
network. This detail is important to remember in order to get the derivatives correct.

2.8. Cost Functions 21

nimblenet Documentation, Release 0.2

How to

Lets define a custom cost function and use it when training the network:

from nimblenet.activation_functions import sigmoid_function
from nimblenet.learning_algorithms import backpropagation
from nimblenet.data_structures import Instance
from nimblenet.neuralnet import NeuralNet
import numpy as np

def custom_cost_function(outputs, targets, derivative = False):
if derivative:

return outputs - targets
else:

return 0.5 * np.mean(np.sum(np.power(outputs - targets,2), axis = 1))
#end

dataset = [Instance([0,0], [0]), Instance([1,0], [1]), Instance([0,1], [1]), Instance([1,1], [1])]
settings = {

"n_inputs" : 2,
"layers" : [(2, sigmoid_function)]

}

network = NeuralNet(settings)
training_set = dataset
test_set = dataset
cost_function = custom_cost_function

backpropagation(
network, # the network to train
training_set, # specify the training set
test_set, # specify the test set

This is where we specify the cost function to optimize:
cost_function # specify the cost function to calculate error

)

2.9 Using the Network

Nimblenet is implemented using matrices rather than for-loops. This allow more efficient computation, and also
enables the network to forward propagate multiple input instances at once.

In contrast to the instances generated when training the network:

from nimblenet.data_structures import Instance
dataset = [

Instance([inputs], [outputs])
Instance([0,0], [0]), ...

]

the instances used during prediction need only to be instantiated with a single parameter (the input signal):

from nimblenet.data_structures import Instance
dataset = [

Instance([inputs])
Instance([0,0]), ...

]

22 Chapter 2. Content

nimblenet Documentation, Release 0.2

The following code calculates the output from two instances:

prediction_set = [Instance([0,1]), Instance([1,0])]
print network.predict(prediction_set)
>> [[0.99735413]

[0.99735378]]

The prediction method returns a 2D NumPy array with shape [n_samples, n_outputs]. That means each row
in the output matrix correspond to an input Instance. The first row of the output matrix, is the output generated from
the first instance. Refer to the the expected output below:

prediction_set = [Instance([0,1])]
print network.predict(prediction_set)
>> [[0.99735413]]

2.10 Support

Have you spotted a bug, or run into inconsistencies in the documentation? Please report the issue at Github.

2.10. Support 23

https://github.com/jorgenkg/python-neural-network/issues

nimblenet Documentation, Release 0.2

24 Chapter 2. Content

CHAPTER 3

Support

Have you spotted a bug, or run into inconsistencies in the documentation? Please report the issue at Github.

25

https://github.com/jorgenkg/python-neural-network/issues

	Installing
	Dependencies

	Content
	Getting Started
	Initializing a Network
	Saving and loading a trained network
	Preprocessing
	Gradient Checking
	Activation Functions
	Learning Algorithms
	Cost Functions
	Using the Network
	Support

	Support

