

 [image: _images/logo_pn.png]
[image: _images/logo_iac.png]
[image: _images/logo_cirad.png]
[image: _images/logo_amap.png]
[image: _images/logo_ird.png]

Niamoto documentation

Important

Niamoto is currently in active development and thus not ready for
production use. If you are interested in the project and willing to
contribute or collaborate feel free to contact.

Niamoto is an ecological data warehouse framework, it aims to provide a
flexible and efficient platform for decision support in ecosystems and
biodiversity conservation.

Niamoto is funded by the COGEFOR projet in New Caledonia, which is a
partnership between the North Province of New Caledonia, the New Caledonian
Agronomic Institute (IAC) and the CIRAD. The AMAP joint research unit and the
IRD are also implied in the project.

Contents:

	Project overview
	What is Niamoto?

	Niamoto structure

	Niamoto data flow

	Installation
	Prerequisites

	Install Niamoto

	Setting up the Niamoto environment

	Quickstart
	Setting the taxonomy

	Adding data providers and importing data

	Importing rasters and vectors

	Processing and publishing data

	Tutorial
	Setting the taxonomy

	Managing data providers

	Importing occurrence, plot and plot/occurrence data

	Importing rasters

	Importing vectors

	Extracting raster values to occurrences and plot properties

	Processing and publishing data

	CLI reference
	General commands

	Taxonomy commands

	Data providers commands

	Raster commands

	Vector commands

	Data publisher commands

	Data marts commands

	Data publishers reference
	Occurrence publisher

	Plot publisher

	Plot/Occurrence publisher

	Taxon publisher

	Configuration

	Contributing
	Setting up a developpment environment

Project overview

What is Niamoto?

Niamoto is an ecological data warehouse framework designed to fill the gap
between scientists and decision makers. It is currently being used and
developed for tropical rainforest ecosystems in New Caledonia, but had been
designed generic enough to be adapted for other ecosystems and contexts.

Niamoto’s objective is to provide a platform for aggregating ecological data
from several data sources, defining and running scientific data workflows and
distributing value-added data in several formats, for several purposes.
Niamoto provides ETL (Extract, Transform, Load) functionalities, a structured
and persistent staging area and functionalities to publish data marts.
Niamoto data marts can be seamlessly loaded into the cubes OLAP framework.

Niamoto comes with a command-line interface (CLI), and a Python API.

Niamoto structure

Bellow is a diagram of how Niamoto is structured in the main lines, and how
it interacts with data sources and targets:

[image: _images/niamoto-core_ETL.png]

Niamoto data flow

Here a diagram describing the Niamoto data flow in the main lines:

[image: _images/niamoto_data_flow.png]

Installation

Prerequisites

Operating System

Niamoto had been developed and tested to run under Linux systems. However,
it had been developed with open-source and cross-platform technologies and it
should then be possible to set up a Niamoto instance on Mac or
Windows. If you succeeded to do so, feel free to contribute to this doc
(see Contributing).

Python 3

Niamoto is written in Python 3. It is tested with Python 3.4, 3.5 and 3.6.
You must have one of the following installed in your system, in addition to
pip.

PostgreSQL / PostGIS

Niamoto uses PostgreSQL (>= 9.5) with its spatial extension PostGIS (>= 2.1)
as a backend for constituting the data warehouse and storing the data. It
implies that your Niamoto instance must be granted access to a
PostgreSQL / PostGIS instance, whether it is distant or on the same system.

Important

PostgreSQL version must be at least 9.5, since Niamoto uses JSONB
capabilities that had been released with PostgreSQL 9.5.

The installation procedure can change according to your system. Please refer
to https://www.postgresql.org/download/ and http://postgis.net/install/ .

gdal-bin and libgdal-dev

Niamoto dependencies require that libgdal-dev and gdal-bin are installed in
your system. The installation is straightforward:

sudo apt-get install -y libgdal-dev gdal-bin

Git

In order to clone the Niamoto repository, Git must be installed in your system:

sudo apt-get install -y git

Install Niamoto

First, clone the Niamoto repository in your system:

git clone https://github.com/dimitri-justeau/niamoto-core.git

Then, move into the project directory and install Niamoto using pip:

pip install .

Setting up the Niamoto environment

Setting up the Niamoto database

Note

For more options with the Niamoto database, please refer to
Configuration.

1. Create Database and Database User

First, change the current Linux user to postgres:

sudo su postgres

Then, log into PostgreSQL:

psql

Create the Niamoto database (default name is niamoto, see
Configuration for more details):

CREATE DATABASE niamoto;

Then, create the Niamoto user and grant full access to Niamoto database to it
(to ensure a secure instance, you must change at least the default user
password see Configuration for more details):

CREATE USER niamoto WITH PASSWORD niamoto;
GRANT ALL PRIVILEGES ON DATABASE niamoto TO niamoto;

Finally, logout with \q.

2. Create PostGIS extension and niamoto schema

Log into PostgreSQL, with postgres user and niamoto database:

psql -d niamoto

Create the PostGIS extension:

CREATE EXTENSION POSTGIS;

Logout with \q.

3. Create Database Schemas

Log into PostgreSQL, with niamoto user and niamoto database:

psql -U niamoto -d niamoto

Create the niamoto, niamoto_raster, niamoto_vector, niamoto_dimensions, niamoto_fact_tables schemas
(see Configuration for more details
and options):

CREATE SCHEMA niamoto;
CREATE SCHEMA niamoto_raster;
CREATE SCHEMA niamoto_vector;
CREATE SCHEMA niamoto_dimensions;
CREATE SCHEMA niamoto_fact_tables;

Logout with \q.

Initializing the Niamoto home directory

Note

For more options with the Niamoto home directory, please refer to
Configuration.

Niamoto home is the place where configuration files, scripts and plugins will
be stored. Niamoto comes with a handy command for initializing it:

niamoto init_niamoto_home

Initializing the Niamoto database

Initializing the Niamoto database means creating the tables, indexes, constraints and initializing basic data. The procedure is straightforward:

niamoto init_db

What’s next?

At this point, you should have a working Niamoto environment. If you are ready
to play, you can go to the Quickstart of the Tutorial!

Quickstart

Setting the taxonomy

The Niamoto’s taxonomic referential is set using the
set_taxonomy command:

$ niamoto set_taxonomy taxonomy.csv
Setting the taxonomy...
The taxonomy had been successfully set!
 4 taxa inserted
 2 synonyms inserted: {'taxref', 'gbif'}

Adding data providers and importing data

Plots and occurrences data is imported registered data providers and syncing
with them.

$ niamoto add_provider csv_gbif CSV gbif
 Registering the data provider in database...
 The data provider had been successfully registered to Niamoto!

It is possible to see the registered providers using the
niamoto providers command:

$ niamoto providers
 name provider_type synonym_key
id
1 csv_gbif CSV gbif

Importing data using the csv data provider is done with three csv files:

	The occurrences csv file, containing the occurrence data.

	The plots csv file, containing the plot data.

	The plots/occurrences csv file, mapping plots with occurrences.

All of them are optional, you can import only occurrences, only plots or only
map existing plots with existing occurrences. The command for importing data
from a provider is niamoto sync PROVIDER_NAME [PROVIDER_ARGS]. With the
csv data provider, three arguments are needed, corresponding to the csv files
paths:

$ niamoto sync <csv_data_provider_name> <occurrences.csv> <plots.csv> <plots_occurrences.csv>

Using 0 instead of a path means that no data is to be imported. For
instance, importing only plot data can be achieved using:

$ niamoto sync <csv_data_provider_name> 0 <plots.csv> 0

Now let’s import some data:

$ niamoto sync csv_gbif csv_niamoto_gbif_occurrences.csv csv_gbif_plots.csv csv_gbif_plots_occurrences.csv
Syncing the Niamoto database with 'csv_gbif'...
[INFO] *** Data sync starting ('csv_gbif' - CSV)...
[INFO] ** Occurrence sync starting ('csv_gbif' - CSV)...
[INFO] ** Occurrence sync with 'csv_gbif' done (0.08 s)!
[INFO] ** Plot sync starting ('csv_gbif' - CSV)...
[INFO] ** Plot sync with 'csv_gbif' done (0.06 s)!
[INFO] *** Data sync with 'csv_gbif' done (total time: 0.08 s)!
The Niamoto database had been successfully synced with 'csv_gbif'!
Bellow is a summary of what had been done:
 Occurrences:
 432 inserted
 0 updated
 0 deleted
 Plots:
 34 inserted
 0 updated
 0 deleted
 Plots / Occurrences:
 432 inserted
 0 updated
 0 deleted

We can check the Niamoto database status with the niamoto status command:

$ niamoto status
 1 data providers are registered.
 123 taxa are stored.
 3 taxon synonym keys are registered.
 432 occurrences are stored.
 34 plots are stored.
 432 plots/occurrences are stored.
 0 rasters are stored.
 0 vectors are stored.

Importing rasters and vectors

Processing and publishing data

Tutorial

Setting the taxonomy

Niamoto does not make any assumption on the taxonomic referential to be used,
and therefore let you define it. Since the choice of a taxonomic referential
should not be a blocking decision either a point of no return, Niamoto always
store two taxon identifier values for an occurrence: the data provider’s one,
and it’s correspondence in the Niamoto’s referential. In order to be able to
map a provider’s taxon identifier with an internal taxon identifier, Niamoto
needs a set of correspondences for each taxon. Those correspondences are called
synonyms. When no synonym is known for a provider’s taxon identifier, the
Niamoto taxon identifier will be set null.

The definition of the Niamoto referential is done using a csv file. This csv
file must have a header defining at least the following columns:

	id: The unique identifier of the taxon, in the provider’s referential.

	parent_id: The parent’s id of the taxon. If the taxon is a root, let the value blank.

	rank: The rank of the taxon, can be a value among: ‘REGNUM’, ‘PHYLUM’, ‘CLASSIS’, ‘ORDO’, ‘FAMILIA’, ‘GENUS’, ‘SPECIES’, ‘INFRASPECIES’.

	full_name: The full name of the taxon.

	rank_name: The rank name of the taxon.

All the additional columns will be considered as synonyms.

Let’s consider the following example:

	id

	parent_id

	rank

	full_name

	rank_name

	gbif

	taxref

	0

	
	FAMILIA

	A

	A

	10

	1

	1

	0

	GENUS

	A a

	a

	20

	2

	2

	1

	SPECIES

	A a 1

	1

	30

	3

	3

	1

	SPECIES

	A a 2

	2

	40

	4

We set this table as the Niamoto’s taxonomic referential using the
set_taxonomy command:

$ niamoto set_taxonomy taxonomy.csv
Setting the taxonomy...
The taxonomy had been successfully set!
 4 taxa inserted
 2 synonyms inserted: {'taxref', 'gbif'}

We can see that Niamoto found the two following synonym keys: ‘taxref’ and
‘gbif’. Those keys are the one that we will use later to tell Niamoto how
to map the data provider’s taxon identifier. Note that there is also a special
synonym key, ‘niamoto’, that is used when a data provider uses the same
taxon identifiers as Niamoto.

Managing data providers

Now that we have set the taxonomic referential, we would like to import some
data within Niamoto. But before being able to do so, we need to define data
providers.

Using the command niamoto providers, we can see that there are not
registered providers in the database:

$ niamoto providers
There are no registered data providers in the database.

The simplest data provider type implemented in Niamoto is the csv data
provider, which enables us to import occurrence and plot data from plain csv
files. All the available provider_types can be obtained using the
niamoto provider_types command.

Adding a data provider can achieved using the niamoto add_provider command,
which have the following usage:

$ niamoto add_provider --help
Usage: niamoto add_provider [OPTIONS] NAME PROVIDER_TYPE [SYNONYM_KEY]

 Register a data provider. The name of the data provider must be unique.
 The available provider types can be obtained using the 'niamoto
 provider_types' command. The available synonym keys can be obtained using
 the 'niamoto synonym_keys" command.

Options:
 --help Show this message and exit.

Let’s add three data providers: csv_niamoto, csv_taxref and
csv_gbif:

$ niamoto add_provider csv_niamoto CSV niamoto
 Registering the data provider in database...
 The data provider had been successfully registered to Niamoto!

$ niamoto add_provider csv_taxref CSV taxref
 Registering the data provider in database...
 The data provider had been successfully registered to Niamoto!

$ niamoto add_provider csv_gbif CSV gbif
 Registering the data provider in database...
 The data provider had been successfully registered to Niamoto!

They are now available with the niamoto providers command:

$ niamoto providers
 name provider_type synonym_key
id
2 csv_niamoto CSV niamoto
3 csv_taxref CSV taxref
4 csv_gbif CSV gbif

In the next section, we will see how to import data with these data providers.

Importing occurrence, plot and plot/occurrence data

Importing data using the csv data provider is done with three csv files:

	The occurrences csv file, containing the occurrence data.

	The plots csv file, containing the plot data.

	The plots/occurrences csv file, mapping plots with occurrences.

All of them are optional, you can import only occurrences, only plots or only
map existing plots with existing occurrences. The command for importing data
from a provider is niamoto sync PROVIDER_NAME [PROVIDER_ARGS]. With the
csv data provider, three arguments are needed, corresponding to the csv files
paths:

$ niamoto sync <csv_data_provider_name> <occurrences.csv> <plots.csv> <plots_occurrences.csv>

Using 0 instead of a path means that no data is to be imported. For
instance, importing only plot data can be achieved using:

$ niamoto sync <csv_data_provider_name> 0 <plots.csv> 0

In this tutorial, we will import occurrence data for the three previously
registered data providers. We will also import plot and plot/occurrence data,
only for the first provider.

1. Importing occurrence data

The occurrences csv file must have a header and contain at least the
following columns:

	id: The provider’s unique identifier for the occurrence.

	taxon_id: The provider’s taxon id for the occurrence.

	x: The longitude of the occurrence (WGS84).

	y: The latitude of the occurrence (WGS84).

All the remaining column will be stored as properties.

For the csv_niamoto provider, let’s consider the following dataset:

	id

	taxon_id

	x

	y

	dbh

	height

	0

	3

	165.321

	-21.47

	21

	18

	1

	2

	165.321

	-21.47

	20.5

	14

	2

	2

	165.321

	-21.47

	22.5

	16

	3

	3

	165.125

	-21.54

	18

	12

	4

	3

	165.125

	-21.54

	19

	18

	5

	2

	162.001

	-18.11

	11

	15

	6

	2

	162.001

	-18.11

	24

	20

	7

	2

	162.001

	-18.11

	25

	22

For the csv_taxref provider, let’s consider the following dataset:

	id

	taxon_id

	x

	y

	status

	0

	4

	92.321

	42.40

	alive

	1

	4

	91.224

	41.56

	alive

	2

	4

	91.015

	41.11

	dead

	3

	4

	92.221

	42.10

	alive

	4

	4

	92.221

	42.10

	dead

	5

	4

	92.221

	42.10

	alive

	6

	4

	92.221

	42.10

	alive

For the csv_gbif provider, let’s consider the following dataset:

	id

	taxon_id

	x

	y

	0

	20

	11.921

	11.47

	1

	30

	16.120

	21.54

	2

	30

	61.045

	18.12

	3

	20

	16.001

	8.11

Now let’s import the data:

$ niamoto sync csv_niamoto csv_niamoto_occurrences.csv 0 0
Syncing the Niamoto database with 'csv_niamoto'...
[INFO] *** Data sync starting ('csv_niamoto' - CSV)...
[INFO] ** Occurrence sync starting ('csv_niamoto' - CSV)...
[INFO] ** Occurrence sync with 'csv_niamoto' done (0.08 s)!
[INFO] *** Data sync with 'csv_niamoto' done (total time: 0.08 s)!
The Niamoto database had been successfully synced with 'csv_niamoto'!
Bellow is a summary of what had been done:
 Occurrences:
 8 inserted
 0 updated
 0 deleted

$ niamoto sync csv_taxref csv_niamoto_taxref_occurrences.csv 0 0
Syncing the Niamoto database with 'csv_taxref'...
[INFO] *** Data sync starting ('csv_taxref' - CSV)...
[INFO] ** Occurrence sync starting ('csv_taxref' - CSV)...
[INFO] ** Occurrence sync with 'csv_taxref' done (0.08 s)!
[INFO] *** Data sync with 'csv_taxref' done (total time: 0.08 s)!
The Niamoto database had been successfully synced with 'csv_taxref'!
Bellow is a summary of what had been done:
 Occurrences:
 7 inserted
 0 updated
 0 deleted

$ niamoto sync csv_gbif csv_niamoto_gbif_occurrences.csv 0 0
Syncing the Niamoto database with 'csv_gbif'...
[INFO] *** Data sync starting ('csv_gbif' - CSV)...
[INFO] ** Occurrence sync starting ('csv_gbif' - CSV)...
[INFO] ** Occurrence sync with 'csv_gbif' done (0.08 s)!
[INFO] *** Data sync with 'csv_gbif' done (total time: 0.08 s)!
The Niamoto database had been successfully synced with 'csv_gbif'!
Bellow is a summary of what had been done:
 Occurrences:
 4 inserted
 0 updated
 0 deleted

We now have 19 occurrences coming from 3 data providers in our Niamoto
database, as we can see using the following command:

$ niamoto status
 3 data providers are registered.
 4 taxa are stored.
 3 taxon synonym keys are registered.
 19 occurrences are stored.
 0 plots are stored.
 0 plots/occurrences are stored.
 0 rasters are stored.
 0 vectors are stored.

2. Importing plot data

The plot csv file must have a header and contain at least the following
columns:

	id: The provider’s identifier for the plot.

	name: The name of the plot.

	x: The longitude of the plot (WGS84).

	y: The latitude of the plot (WGS84).

All the remaining column will be stored as properties.

Let’s consider the following dataset for the csv_niamoto provider:

	id

	name

	x

	y

	width

	height

	0

	plot_1

	165.321

	-21.47

	100

	100

	1

	plot_2

	165.125

	-21.54

	100

	100

	2

	plot_3

	162.001

	-18.11

	100

	100

We import the plot data using the following command:

$ niamoto sync csv_niamoto 0 csv_niamoto_plots.csv 0
 Syncing the Niamoto database with 'csv_niamoto'...
 [INFO] *** Data sync starting ('csv_niamoto' - CSV)...
 [INFO] ** Plot sync starting ('csv_niamoto' - CSV)...
 [INFO] ** Plot sync with 'csv_niamoto' done (0.06 s)!
 [INFO] *** Data sync with 'csv_niamoto' done (total time: 0.07 s)!
 The Niamoto database had been successfully synced with 'csv_niamoto'!
 Bellow is a summary of what had been done:
 Plots:
 3 inserted
 0 updated
 0 deleted

3. Importing plot/occurrence data

The plot/occurrence data is a many to many relationship between occurrences and
plots. A plot can contains several occurrences and an occurrence can be
contained by several plots. The plot/occurrence csv file must have a header and
contain at least the following columns:

	plot_id: The provider’s id for the plot.

	occurrence_id: The provider’s id for the occurrence.

	occurrence_identifier: The occurrence identifier in the plot.

The additional columns will be ignored.

Let’s consider the following data, for linking csv_niamoto’s occurrences
with csv_niamoto’s plots:

	plot_id

	occurrence_id

	occurrence_identifier

	0

	0

	PLOT_1__OCC_1

	0

	1

	PLOT_1__OCC_2

	0

	2

	PLOT_1__OCC_3

	1

	3

	PLOT_2__OCC_1

	1

	4

	PLOT_2__OCC_2

	2

	5

	PLOT_3__OCC_1

	2

	6

	PLOT_3__OCC_2

	2

	7

	PLOT_3__OCC_3

We import the plot/occurrence data using the following command:

$ niamoto sync csv_niamoto 0 0 csv_niamoto_plots_occurrences.csv
Syncing the Niamoto database with 'csv_niamoto'...
[INFO] *** Data sync starting ('csv_niamoto' - CSV)...
[INFO] ** Plot-occurrence sync starting ('csv_niamoto' - CSV)...
[INFO] ** Plot-occurrence sync with 'csv_niamoto' done (0.05 s)!
[INFO] *** Data sync with 'csv_niamoto' done (total time: 0.06 s)!
The Niamoto database had been successfully synced with 'csv_niamoto'!
Bellow is a summary of what had been done:
 Plots / Occurrences:
 8 inserted
 0 updated
 0 deleted

We can check the Niamoto database status with the niamoto status command:

$ niamoto status
 3 data providers are registered.
 4 taxa are stored.
 3 taxon synonym keys are registered.
 19 occurrences are stored.
 3 plots are stored.
 8 plots/occurrences are stored.
 0 rasters are stored.
 0 vectors are stored.

Importing rasters

Niamoto provides functionalities to import and manage raster within the Niamoto
database, these functionalities rely on the PostGIS raster functionalities.
The main advantage of storing rasters inside a PostGIS database is to benefit
from the power of the SQL language, and the PostGIS spatial functions. It is
also a convenient way for having all the data stored at the same place and for
using the same system for querying.

Importing a raster in Niamoto is straightforward using the
niamoto add_raster command:

$ niamoto add_raster --help
Usage: niamoto add_raster [OPTIONS] NAME RASTER_FILE_PATH

 Add a raster in Niamoto's raster database.

Options:
 -t, --tile_dimension TEXT Tile dimension <width>x<height>
 -R, --register Register the raster as a filesystem (out-db)
 raster. (-R option of raster2pgsql).
 --help Show this message and exit.

Now let’s import a rainfall raster in our Niamoto database:

$ niamoto add_raster rainfall rainfall.tif
Registering the raster in database...
The raster had been successfully registered to the Niamoto raster database!

We can see the registered rasters with the niamoto rasters command:

$ niamoto rasters
 name date_create date_update
id
1 rainfall 2017/06/08 None

Importing vectors

Niamoto rely on the ogr2ogr utility to import vector layers in the Niamoto
vector database. To import a vector layer, we use the niamoto add_vector
command:

$ niamoto add_vector boundaries boundaries.shp
Registering the vector in database...
The vector had been successfully registered to the Niamoto vector database!

We can see the registered rasters with the niamoto vectors command:

$ niamoto vectors
 name date_create date_update
id
2 boundaries 2017/06/23 None

Extracting raster values to occurrences and plot properties

Niamoto provides utilities for extracting raster values directly into
occurrences or plots properties.

$ niamoto raster_to_occurrences --help
Usage: niamoto raster_to_occurrences [OPTIONS] RASTER_NAME

 Extract raster values to occurrences properties.

Options:
 --help Show this message and exit

$ niamoto raster_to_plots --help
Usage: niamoto raster_to_plots [OPTIONS] RASTER_NAME

 Extract raster values to plots properties.

Options:
 --help Show this message and exit.

$ niamoto all_rasters_to_occurrences --help
Usage: niamoto all_rasters_to_occurrences [OPTIONS]

 Extract raster values to occurrences properties for all registered
 rasters.

Options:
 --help Show this message and exit.

$ niamoto all_rasters_to_plots --help
Usage: niamoto all_rasters_to_plots [OPTIONS]

 Extract raster values to plots properties for all registered rasters.

Options:
 --help Show this message and exit.

For instance, let’s extract the values of the previously registered raster,
rainfall to the occurrences properties:

$ niamoto raster_to_occurrences rainfall
Extracting 'rainfall' raster values to occurrences...
The raster values had been successfully extracted!

Processing and publishing data

The list of available data publishers can be displayed using the
niamoto publishers command:

$ niamoto publishers
 occurrences : Publish the occurrence dataframe with properties as columns.
 plots : Publish the plot dataframe with properties as columns.
 taxa : Publish the taxa dataframe.
 plots_occurrences : Publish the plots/occurrences dataframe.
 raster : Publish a raster from the niamoto raster database.

For a given publisher, the available publish formats can be displayed using
the niamoto publish_formats command:

$ niamoto publish_formats occurrences
 csv : Publish the data using the csv format.
 sql : Publish the data as a table to a SQL database

For each publisher, it is possible to get the list options
using the niamoto publish <publisher> --help command:

$ niamoto publish occurrences --help
Usage: niamoto publish occurrences [OPTIONS] COMMAND [ARGS]...

 Publish the occurrence dataframe with properties as columns.

Options:
 --drop_null_properties
 --properties TEXT List of properties to retain. Can be a python list
 or a comma (',') separated string.
 --help Show this message and exit.

Commands:
 csv Publish the data in a csv file.
 sql Publish a DataFrame as a table to a SQL...

The same is possible for each publisher’s publish format:

$ niamoto publish occurrences csv --help
Usage: niamoto publish occurrences csv [OPTIONS]

 Publish the data in a csv file.

Options:
 --index_label TEXT
 -d, --destination TEXT
 --help Show this message and exit.

Let’s publish the occurrence dataframe in a csv file:

$ niamoto publish occurrences csv -d occurrences.csv

CLI reference

General commands

init_niamoto_home

Usage: niamoto init_niamoto_home [OPTIONS]

 Initialize the Niamoto home directory.

Options:
 --niamoto_home_path TEXT
 --help Show this message and exit.

init_db

Usage: niamoto init_db [OPTIONS]

 Initialize the Niamoto database.

Options:
 --help Show this message and exit.

status

Usage: niamoto status [OPTIONS]

 Show the status of the Niamoto database.

Options:
 --help Show this message and exit.

Taxonomy commands

set_taxonomy

Usage: niamoto set_taxonomy [OPTIONS] CSV_FILE_PATH

 Set the taxonomy.

Options:
 --no_mapping BOOLEAN
 --help Show this message and exit.

map_all_synonyms

Usage: niamoto map_all_synonyms [OPTIONS]

 Update the synonym mapping for every data provider registered in the
 database.

Options:
 --help Show this message and exit.

synonym_keys

Usage: niamoto synonym_keys [OPTIONS]

 List the registered synonym keys.

Options:
 --help Show this message and exit.

Data providers commands

provider_types

Usage: niamoto provider_types [OPTIONS]

 List registered data provider types.

Options:
 --help Show this message and exit.

providers

Usage: niamoto providers [OPTIONS]

 List registered data providers.

Options:

add_provider

Usage: niamoto add_provider [OPTIONS] NAME PROVIDER_TYPE [SYNONYM_KEY]

 Register a data provider. The name of the data provider must be unique.
 The available provider types can be obtained using the 'niamoto
 provider_types' command. The available synonym keys can be obtained using
 the 'niamoto synonym_keys" command.

Options:
 --help Show this message and exit.

update_provider

Usage: niamoto update_provider [OPTIONS] CURRENT_NAME

 Update a data provider.

Options:
 --new_name TEXT
 --synonym_key TEXT
 --help Show this message and exit.

delete_provider

Usage: niamoto delete_provider [OPTIONS] NAME

 Delete a data provider.

Options:
 -y TEXT
 --help Show this message and exit.

sync

Usage: niamoto sync [OPTIONS] PROVIDER_NAME [PROVIDER_ARGS]...

 Sync the Niamoto database with a data provider.

Options:
 --help Show this message and exit.

Raster commands

rasters

Usage: niamoto rasters [OPTIONS]

 List registered rasters.

Options:
 --help Show this message and exit.

add_raster

Usage: niamoto add_raster [OPTIONS] NAME RASTER_FILE_PATH

 Add a raster in Niamoto's raster database.

Options:
 -t, --tile_dimension TEXT Tile dimension <width>x<height>
 --help Show this message and exit.

update_raster

Usage: niamoto update_raster [OPTIONS] NAME RASTER_FILE_PATH

 Update an existing raster in Niamoto's raster database.

Options:
 -t, --tile_dimension TEXT Tile dimension <width>x<height>
 --new_name TEXT The new name of the raster
 --help Show this message and exit.

delete_raster

Usage: niamoto delete_raster [OPTIONS] NAME

 Delete an existing raster from Niamoto's raster database.

Options:
 --help Show this message and exit.

raster_to_occurrences

Usage: niamoto raster_to_occurrences [OPTIONS] RASTER_NAME

 Extract raster values to occurrences properties.

Options:
 --help Show this message and exit.

raster_to_plots

Usage: niamoto raster_to_plots [OPTIONS] RASTER_NAME

 Extract raster values to plots properties.

Options:
 --help Show this message and exit.

all_rasters_to_occurrences

Usage: niamoto all_rasters_to_occurrences [OPTIONS]

 Extract raster values to occurrences properties for all registered
 rasters.

Options:
 --help Show this message and exit.

all_rasters_to_plots

Usage: niamoto all_rasters_to_plots [OPTIONS]

 Extract raster values to plots properties for all registered rasters.

Options:
 --help Show this message and exit.

Vector commands

vectors

Usage: niamoto vectors [OPTIONS]

 List the registered vectors.

Options:
 --help Show this message and exit.

add_vector

Usage: niamoto add_vector [OPTIONS] NAME VECTOR_FILE_PATH

 Add a raster in Niamoto's vector database.

Options:
 --help Show this message and exit.

update_vector

Usage: niamoto add_vector [OPTIONS] NAME VECTOR_FILE_PATH

 Add a raster in Niamoto's vector database.

Options:
 --help Show this message and exit.

delete_vector

Usage: niamoto delete_vector [OPTIONS] NAME

 Delete an existing vector from Niamoto's vector database.

Options:
 --help Show this message and exit.

Data publisher commands

publish_formats

Usage: niamoto publish_formats [OPTIONS] PUBLISHER_KEY

 Display the list of available publish formats for a given publisher.

Options:
 --help Show this message and exit.

publishers

Usage: niamoto publishers [OPTIONS]

 Display the list of available data publishers.

Options:
 --help Show this message and exit.

publish

Note

Please refer to Data publishers reference for details specific to each available
data publisher.

Usage: niamoto publish [OPTIONS] PUBLISHER_KEY PUBLISH_FORMAT [ARGS]...

 Process and publish data.

Options:
 -d, --destination TEXT
 --help Show this message and exit.

Data marts commands

dimension_types

Usage: niamoto dimension_types [OPTIONS]

 List the available dimension types.

Options:
 --help Show this message and exit.

dimensions

Usage: niamoto dimensions [OPTIONS]

 List the registered dimensions.

Options:
 --help Show this message and exit.

fact_tables

Usage: niamoto fact_tables [OPTIONS]

 List the registered fact tables.

Options:
 --help Show this message and exit.

create_taxon_dimension

Usage: niamoto create_taxon_dimension [OPTIONS]

 Create the taxon dimension.

Options:
 --populate Populate the dimension
 --help Show this message and exit.

create_vector_dimension

Usage: niamoto create_vector_dimension [OPTIONS] VECTOR_NAME

 Create a vector dimension from a registered vector.

Options:
 --label_col TEXT The label column name of the dimension
 --populate Populate the dimension
 --help Show this message and exit.

create_fact_table

Usage: niamoto create_fact_table [OPTIONS] NAME

 Create and register a fact table from existing dimensions. Use -d
 <dimension_name> for each dimension, and -m <measure_name> for each
 measure.

Options:
 -d, --dimension TEXT The fact table's dimension names [required]
 -m, --measure TEXT The fact table's measures names [required]
 --help Show this message and exit.

delete_dimension

Usage: niamoto delete_dimension [OPTIONS] DIMENSION_NAME

 Delete a registered dimension.

Options:
 --help Show this message and exit.

delete_fact_table

Usage: niamoto delete_fact_table [OPTIONS] FACT_TABLE_NAME

 Delete a registered fact table.

Options:
 --help Show this message and exit.

populate_fact_table

Usage: niamoto populate_fact_table [OPTIONS] FACT_TABLE_NAME PUBLISHER_KEY

 Populate a registered fact table using an available publisher.

Options:
 --help Show this message and exit.

Data publishers reference

Occurrence publisher

Publish the occurrence dataframe with properties as columns.

	key

	occurrences

	formats

	csv

	options

	
	--properties <properties>

	List of properties to extract as columns.
If not specified, retrieve all the existing
properties.
Exemple: --properties height dbh.

	--drop_null_properties

	Flag indicating that record with null values
for properties must be dropped.

Plot publisher

Publish the plot dataframe with properties as columns.

	key

	plots

	formats

	csv

	options

	
	--properties <properties>

	List of properties to extract as columns.
If not specified, retrieve all the existing
properties.
Exemple: --properties width height.

Plot/Occurrence publisher

Publish the plot/occurrence dataframe.

	key

	plots_occurrences

	formats

	csv

	options

	

Taxon publisher

Publish the taxa dataframe.

	key

	taxa

	formats

	csv

	options

	
	--include_mptt

	Flag indicating that the MPTT (Modified Pre-ordered
Traversal Tree) columns must be included

Configuration

(Available soon)

Contributing

Setting up a developpment environment

Prerequesite: You need to have PostgreSQL and PostGIS installed and
running in your system, or have access to a distant instance of it. Check the
test settings in the tests/test_data/test_niamoto_home/settings.py file.

It is recommended to use virtualenv to setup a development environment with
python 3.4, 3.5 or 3.6. Please refer to https://virtualenv.pypa.io/en/stable/

First, clone the repository in your system using git:

git clone https://github.com/dimitri-justeau/niamoto-core.git

Move in the cloned repository and install the dependencies using pip:

pip install -r requirements.txt

Finally download the test data:

sh tests/download_test_data.sh

You can check the tests using:

python run_tests.py

Index

 _images/logo_iac.png
< 1AC

Institut Agronomique
néo-Calédonien

_images/logo_ird.png
o

Institut & Recherche
pourte Développement

_images/logo_amap.png

_images/logo_cirad.png
écira

R o

_images/niamoto_data_flow.png
/ Occurrences / Plots

csv

(Rasters \

tiff |

Niamoto database

Occurrences/ Plots
database

Value extraction

5

e ———

Raster database

Vector database

N

<Python>

AN

f Data publishing \

_static/ajax-loader.gif

_images/logo_pn.png

_images/niamoto-core_ETL.png
Niamoto core Airflow
(Main server application) (Workflow manager)

Scheduling and automation of:

) . Data extraction from data providers
Data publisher (e.g. Pl@ntnote database, inventories,
GBIF, Herbarium).

' . Data transformation (e.g. aggregations,

synthesis, analysis, simulations).

- Data publishing (e.g. specialized
databases, mails, web services,
Data provider Data transformer Amazon S3, open-data portals)

"'Data sources
i Extract

Archive Transform

Niamoto core database

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Niamoto documentation

 		
 Project overview

 		
 What is Niamoto?

 		
 Niamoto structure

 		
 Niamoto data flow

 		
 Installation

 		
 Prerequisites

 		
 Operating System

 		
 Python 3

 		
 PostgreSQL / PostGIS

 		
 gdal-bin and libgdal-dev

 		
 Git

 		
 Install Niamoto

 		
 Setting up the Niamoto environment

 		
 Setting up the Niamoto database

 		
 Initializing the Niamoto home directory

 		
 Initializing the Niamoto database

 		
 What’s next?

 		
 Quickstart

 		
 Setting the taxonomy

 		
 Adding data providers and importing data

 		
 Importing rasters and vectors

 		
 Processing and publishing data

 		
 Tutorial

 		
 Setting the taxonomy

 		
 Managing data providers

 		
 Importing occurrence, plot and plot/occurrence data

 		
 1. Importing occurrence data

 		
 2. Importing plot data

 		
 3. Importing plot/occurrence data

 		
 Importing rasters

 		
 Importing vectors

 		
 Extracting raster values to occurrences and plot properties

 		
 Processing and publishing data

 		
 CLI reference

 		
 General commands

 		
 init_niamoto_home

 		
 init_db

 		
 status

 		
 Taxonomy commands

 		
 set_taxonomy

 		
 map_all_synonyms

 		
 synonym_keys

 		
 Data providers commands

 		
 provider_types

 		
 providers

 		
 add_provider

 		
 update_provider

 		
 delete_provider

 		
 sync

 		
 Raster commands

 		
 rasters

 		
 add_raster

 		
 update_raster

 		
 delete_raster

 		
 raster_to_occurrences

 		
 raster_to_plots

 		
 all_rasters_to_occurrences

 		
 all_rasters_to_plots

 		
 Vector commands

 		
 vectors

 		
 add_vector

 		
 update_vector

 		
 delete_vector

 		
 Data publisher commands

 		
 publish_formats

 		
 publishers

 		
 publish

 		
 Data marts commands

 		
 dimension_types

 		
 dimensions

 		
 fact_tables

 		
 create_taxon_dimension

 		
 create_vector_dimension

 		
 create_fact_table

 		
 delete_dimension

 		
 delete_fact_table

 		
 populate_fact_table

 		
 Data publishers reference

 		
 Occurrence publisher

 		
 Plot publisher

 		
 Plot/Occurrence publisher

 		
 Taxon publisher

 		
 Configuration

 		
 Contributing

 		
 Setting up a developpment environment

_static/down-pressed.png

_static/comment.png

_static/db_schema.png
*id INTEGER = provider_id
“ taxon_id INTEGER e
© date_create DATETIME o location
© name VARCHAR(100) © provider_pk
o mptt_depth INTEGER
© mptt_right INTEGER -
o rank 'VARCHAR(12)
[e i) RS i

* occurrence_id
* plot_id
+ provider_id

+ provider_occurrence_pk
+ provider_plot_pk
© occurrence_identifier

INTEGER
INTEGER

INTEGER
geometry(POINT,4326)
JsoNB

INTEGER

INTEGER

rovider_id

+ provider_id

provider_pk

INTEGER
INTEGER *id INTEGER
INTEGER © date_create DATETIME
INTEGER © date_update DATETIME
INTEGER o dimension_type_key VARCHAR(100)

VARCHAR(50) © label_column VARCHAR(100)
© name VARCHAR(100)
© properties JsoNB

INTEGER
INTEGER
geometry(POINT4326)
VARCHAR(100)

JsoNB

INTEGER

rovider_id

*id
“ synonym_key_id
© date_create

© date_update

o last_sync
properties.
provider_type_key.

INTEGER
INTEGER
DATETIME
DATETIME
DATETIME
VARCHAR(100)
JsoNB
VARCHAR(100)

nonym_key_id

*id INTEGER
© date_create DATETIME
© date_update DATETIME
VARCHAR(100)

*id INTEGER

date_create DATETIME
date_update DATETIME
name VARCHAR(100)
properties JSONB

*id INTEGER

date_create DATETIME
date_update DATETIME
name VARCHAR(100)
properties JSONB

*id INTEGER
© date_create DATETIME

© date_update DATETIME

© name VARCHAR(100)
© properties JSONB

_static/file.png

_static/minus.png

_static/down.png

_static/niamoto-core_ELT_white_background.png
Niamoto core Airflow
(Main server application) (Workflow manager)

Scheduling and automation of:

) . Data extraction from data providers
Data publisher (e.g. Pl@ntnote database, inventories,
GBIF, Herbarium).

' . Data transformation (e.g. aggregations,

synthesis, analysis, simulations).

- Data publishing (e.g. specialized
databases, mails, web services,
Data provider Data transformer Amazon S3, open-data portals)

"'Data sources
i Extract

Archive Transform

Niamoto core database

_static/niamoto-core_ETL.png
Niamoto core Airflow
(Main server application) (Workflow manager)

Scheduling and automation of:

) . Data extraction from data providers
Data publisher (e.g. Pl@ntnote database, inventories,
GBIF, Herbarium).

' . Data transformation (e.g. aggregations,

synthesis, analysis, simulations).

- Data publishing (e.g. specialized
databases, mails, web services,
Data provider Data transformer Amazon S3, open-data portals)

"'Data sources
i Extract

Archive Transform

Niamoto core database

_static/niamoto-core_spatial-analysis.png
Last richness
grid

| ,

Spatial analysis tool

Geographic layers Last spatial

Niamoto core metrics

(Main server application)

- = SSDM
’
I

Data publisher

Taxonomic inventories

I
4
M
“y
1
Pi@ntnote database I Spatial metrics
i

Niamoto core database

\
\
~
-~ Richness grid

_static/niamoto-portal_to_niamoto-core_2.png
Niamoto core
(Main server application)

Data publisher

Data provider Data transformer

Airflow
(Workflow manager)

Scheduling and automation of:

- Data extraction from data providers (e.g.
Pl@ntnote database, inventories, GBIF,
Herbarium).

- Data transformation (e.g. aggregations,
synthesis, analysis, simulations).

- Data publishing (e.g. specialized databases,
mails, web services, Amazon S3, open-data
portals)

_static/niamoto-portal_to_niamoto-core_3.png
Niamoto core
(Main server application)

Niamoto portal
(Web server and web portal)

Data publisher

Inventories Dashboards REST API

Data provider Data transformer

Niamoto portal database
Niamoto core database

Pl@ntnote database

_static/niamoto-portal_as_niamoto-core_service.png
Niamoto portal
(Web server and web portal)

REST API Dashboards

Inventories

Niamoto core database

Pi@ntnote database

Niamoto core
(Main server application)

Data publisher

Data provider Data transformer

Niamoto core database

_static/niamoto-portal_to_niamoto-core_1.png
Inventories

Niamoto portal
(Web server and web portal)

Dashboards

REST API

Niamoto portal database

Pl@ntnote database

_static/plus.png

_static/niamoto_data_flow.png
/ Occurrences / Plots

csv

(Rasters \

tiff |

Niamoto database

Occurrences/ Plots
database

Value extraction

5

e ———

Raster database

Vector database

N

<Python>

AN

f Data publishing \

_static/up.png

_static/logos/logo_amap.png

_static/up-pressed.png

_static/logos/logo_ird.png
o

Institut & Recherche
pourte Développement

_static/logos/logo_pn.png

_static/logos/logo_cirad.png
écira

R o

_static/logos/logo_iac.png
< 1AC

Institut Agronomique
néo-Calédonien

