
NGSPipes Documentation
Release 1.0

NGSPipes Team

May 31, 2017

Contents

1 NGSPipes overview 3
1.1 NGSPipes Team . 4

2 NGSPipes DSL 5
2.1 Primitives . 5
2.2 Full NGSPipes DSL syntax . 9
2.3 Examples . 10

3 NGSPipes repository 21
3.1 Tool names . 21
3.2 Tool descriptors . 22
3.3 Tool configurators . 29
3.4 Defining your own tool repository . 31
3.5 Tool Types . 31

4 NGSPipes Editor 35
4.1 Download NGSPipes Editor . 35
4.2 Execute NGSPipes Editor . 35
4.3 NGSPipes Editor Sections . 38
4.4 Select the tools repository . 41
4.5 Creating a new Pipeline . 43
4.6 Generate the final pipeline version to execute . 46
4.7 Loading an existing pipeline . 47
4.8 Multiple loaded pipelines . 47
4.9 Error Reporting . 47
4.10 Multiple inputs . 49

5 Engines 51
5.1 Engine for workstation . 51
5.2 Engine for cloud . 66

6 Running Examples 73
6.1 A pipeline used on epidemiological surveillance . 73
6.2 A pipeline used on ChiP-Seq analysis . 81
6.3 A pipeline using listing tools . 85

i

ii

NGSPipes Documentation, Release 1.0

NGSPipes is a framework to easily design and use pipelines, relying on state of the art cloud technologies to execute
them without users need to configure, install and manage tools, servers and complex workflow management systems.

Contents 1

http://ngspipes.github.io

NGSPipes Documentation, Release 1.0

2 Contents

CHAPTER 1

NGSPipes overview

NGSPipes is a framework to easily design and use pipelines, relying on state of the art cloud technologies to execute
them without users need to configure, install and manage tools, servers and complex workflow management systems.

Figure 1.1: Overview of NGSPipes System.

3

NGSPipes Documentation, Release 1.0

NGSPipes Team

• Alexandre Almeida, ADEETC, ISEL, Instituto Politécnico de Lisboa

• Bruno Dantas, ADEETC, ISEL, Instituto Politécnico de Lisboa

• Calmenelias Fleitas, ADEETC, ISEL, Instituto Politécnico de Lisboa

• João Forja, ADEETC, ISEL, Instituto Politécnico de Lisboa

• Alexandre P. Francisco, INESC-ID / CSE Dept, IST, Universidade de Lisboa

• José Simão, INESC-ID / ADEETC, ISEL, Instituto Politécnico de Lisboa

• Cátia Vaz , INESC-ID / ADEETC, ISEL, Instituto Politécnico de Lisboa

For more information please contact us at ngspipes_at_gmail.com

4 Chapter 1. NGSPipes overview

https://web.ist.utl.pt/aplf/
http://www.cc.isel.ipl.pt/membros/paginas-pessoais/jose-simao/
http://pwp.net.ipl.pt/cc.isel/cvaz/

CHAPTER 2

NGSPipes DSL

The NGSPipes DSL is a domain specific language for describing pipelines. The syntax is described following a EBNF
notation alike. As a programming language, it has some primitive building blocks with the expressiveness to define
data processing, namely flow processing can be modeled as a direct acyclic graph. These primitives are defined by
syntactic and semantic rules which describe their structure and meaning respectively. The primitives and the full syntax
will be presented in this section. For further explaining the expressiveness of each primitive, we also incrementally
introduce an example in this section, as well as the full example.

Primitives

The primitives of NGSPipes DSL are Pipeline, tool, command, argument and chain. In the folowing
subsections it will be introduced the purpose of this primitives, ilustrating with some examples.

Pipeline

Since a Pipeline is composed by the execution of one or more tools, it must be defined the tools repository, i.e., all
the information necessary with respect to the available tools. To define this repository in the pipeline it is necessary
to identify not only where it is stored, but also the type of storage (localy ou remotely, like github) to know how to
process that information. In Example 2.1 is depicted a part of a pipeline specification.

Pipeline "Github" "https://github.com/ngspipes/tools"{

Example 2.1: A partial pipeline specification, using a remote repository.

In the example of listing 2.1, “Github” is the repository type and “https://github.com/ngspipes/tools” is the location of
the tool repository. The case of being a local repository is very similar, as it can be observed in Example 2.2.

Pipeline "Local" "E:\ngspipes" {

Example 2.2: A partial pipeline specification, using a local repository.

5

NGSPipes Documentation, Release 1.0

In the previous example, the tool repository is on the directory named as “ngspipes”, found at drive “E:”. Formally,
the pipeline must follow the grammar in Listing 2.1.

pipeline: ’Pipeline’ repositoryType repositoryLocation ’{’ (tool)+ ’}’ ;

Listing 2.1: Partial specification of the DSL grammar: pipeline specification grammar

In Listing 2.1, (tool)+ represents that a pipeline is composed by the execution of one or more tools (notice that, as
will be further explained, the tool execution may include the execution of one or more commands).

tool

Each tool is specified in the pipeline by its name, its configuration file name (without extension) and by the set of
commands within the tool that will be executed within this pipeline. For instance, in Example 2.3 the pipeline is
composed only by one tool, which only includes a command.

javascript
Pipeline "Github" "https://github.com/ngspipes/tools" {

tool "Trimmomatic" "DockerConfig" {
command "trimmomatic" {

argument "mode" "SE"
argument "quality" "-phred33"
argument "inputFile" "ERR406040.fastq"
argument "outputFile" "ERR406040.filtered.fastq"
argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
argument "seed mismatches" "2"
argument "palindrome clip threshold" "30"
argument "simple clip threshold" "10"
argument "windowSize" "4"
argument "requiredQuality" "15"
argument "leading quality" "3"
argument "trailing quality" "3"
argument "minlen length" "36"

}
}
}

Example 2.3: A pipeline specification composed only by one tool, including only one command.

The tool configuration file name in Listing 2.4 is “DockerConfig”, i.e., it must ex-
ist in the tool repository “https://github.com/ngspipes/tools”, within the tool information
“https://github.com/ngspipes/tools/tree/master/Trimmomatic” (notice that this repository structure is directory
based, as explained in https://github.com/ngspipes/tools/wiki), a configuration file named “DockerConfig”, with
JSON Format. This file must define a JSON object with the property builder set as “DockerConfig”. In this
case, this JSON file is https://github.com/ngspipes/tools/blob/master/Trimmomatic/DockerConfig.json. With this
information together with the repository information, the environment for executing the Trimmomatic command is
specified.

command

As mentioned before, there may exist a set of commands within the tool that should be executed within a pipeline.
Example 2.4 depicts an example with this feature.

Pipeline "Github" "https://github.com/ngspipes/Repository" {
tool "Trimmomatic" "DockerConfig" {
command "trimmomatic" {

6 Chapter 2. NGSPipes DSL

NGSPipes Documentation, Release 1.0

argument "mode" "SE"
argument "quality" "-phred33"
argument "inputFile" "ERR406040.fastq"
argument "outputFile" "ERR406040.filtered.fastq"
argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
argument "seed mismatches" "2"
argument "palindrome clip threshold" "30"
argument "simple clip threshold" "10"
argument "windowSize" "4"
argument "requiredQuality" "15"
argument "leading quality" "3"
argument "trailing quality" "3"
argument "minlen length" "36"

}
}
tool "Velvet" "DockerConfig" {
command "velveth" {

argument "output_directory" "velvetdir"
argument "hash_length" "21"
argument "file_format" "-fastq"
chain "filename" "outputFile"

}
command "velvetg" {

argument "output_directory" "velvetdir"
argument "-cov_cutoff" "5"

}
}

Example 2.4: A pipeline specification composed by more than one tool and more than one command.

In example depicted in Example 2.4, the pipeline will run two tools, where the second one executes two commands of
the Velvet tool, namely velvethand velvetg.

Therefore, the tools specification must follow the grammar presented in Listing 2.2.

tool: 'tool' toolName configurationName '{' (command)+ '}'

Listing 2.2: Partial specification of the DSL grammar: tool specification grammar

In Listing 2.2 (command)+ represents that there may exist set of commands with at least a command, within the tool
that should be executed within a pipeline.

For executing each command, it is necessary to identify its name, which is unique in the tool context and to set the
values for each required parameters (optional parameters may not be specified). We refer the command parameters
in NGSPipes language as arguments, since we only specify in the pipeline the parameters which we have values to
set. For instance, in the previous pipeline example, the argument filename of the command velveth has as value
-fastq, i.e., the input file for this command has a FASTQ format.

Thus, the command specification must follow the grammar in Listing 2.3.

command : 'command' commandName '{' (argument | chain)+ '}';

Listing 2.3: Partial specification of the DSL grammar: command specification grammar

In Listing 2.3 (argument | chain)+ represents that there may exist a list of arguments within this command as
well as a list of chains. Chain is also a primitive in NGSPipes, as we will further explain in the subsection chain.

argument

As defined in the previous example, the argument definition has the syntax presented in Listing 2.4.

2.1. Primitives 7

NGSPipes Documentation, Release 1.0

argument : 'argument' argumentName argumentValue;

Listing 2.4: argument syntax.

For instance, in the previous pipeline specification the format_file is an argument for the velveth tool, namely:

argument "file_format" "-fastq"

chain

The chain primitive allows to set an argument of a command with the produced output of other command. Sometimes
the produced output is returned as files with names given internally by the command. Alternatively the output files
name may be given explicitly as an argument to the command. In both situations, it is common that other commands
use these output files for continue processing the pipeline. For instance, consider the following example:

Pipeline "Github" "https://github.com/ngspipes/Repository" {
tool "Trimmomatic" "DockerConfig" {
command "trimmomatic" {

argument "mode" "SE"
argument "quality" "-phred33"
argument "inputFile" "ERR406040.fastq"
argument "outputFile" "ERR406040.filtered.fastq"
argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
argument "seed mismatches" "2"
argument "palindrome clip threshold" "30"
argument "simple clip threshold" "10"
argument "windowSize" "4"
argument "requiredQuality" "15"
argument "leading quality" "3"
argument "trailing quality" "3"
argument "minlen length" "36"

}
}
tool "Velvet" "DockerConfig" {
command "velveth" {

argument "output_directory" "velvetdir"
argument "hash_length" "21"
argument "file_format" "-fastq"
chain "filename" "outputFile"

}
command "velvetg" {

argument "output_directory" "velvetdir"
argument "-cov_cutoff" "5"

}
}
tool "Blast" "DockerConfig" {
command "makeblastdb" {

argument "-dbtype" "prot"
argument "-out" "allrefs"
argument "-title" "allrefs"
argument "-in" "allrefs.fna.pro"

}
command "blastx" {

chain "-db" "-out"
chain "-query" "Velvet" "velvetg" "contigs_fa"
argument "-out" "blast.out"

}

8 Chapter 2. NGSPipes DSL

NGSPipes Documentation, Release 1.0

}
}

Example 2.5: A pipeline specificaton using the chain primitive.

As it can be seen in Example 2.5, in command blastx, the argument query receives as value the file ‘‘contigs_fa’‘,
which is an output of the command \verb+velvetg+ of the tool velvet (notice that in this case, the name of the file is
given internally by the command).

The primitive chain has a simplified version, which can be used when the output is from a the previous command in
the pipeline specification. In this case, we only specify the name of the output file to chain with the given argument.
As an example, we can see the argument filename of the velveth command chained with the output file, named
as outputFile, of the command trimmomatic.

A last version of the primitive chain is when the name of the tool can be omitted, but it is necessary to specify the
name of the command, of the argument and also the output. This apply to cases where the chain occurs between two
commands of the same tool.

Thus, the chain specification must follow the grammar depicted in Listing 2.5.

chain : 'chain' argumentName ((toolName)? commandName)? outputName;

Listing 2.5: Partial specification of the DSL grammar: chain specification grammar

Full NGSPipes DSL syntax

In Listing 2.6 is depicted the full NGSPipes DSL grammar.

pipeline: 'Pipeline' repositoryType repositoryLocation '{' (tool)+ '}' ;

tool: 'tool' toolName configurationName '{' (command)+ '}';

command : 'command' commandName '{' (argument | chain)+ '}';

argument : 'argument' argumentName argumentValue;

chain : 'chain' argumentName ((toolName)? commandName)? outputName;

repositoryType : String;

repositoryLocation : String;

toolName : String;

configurationName : String;

commandName : String;

argumentName : String;

argumentValue : String;

outputName : String;

toolPos: Digit;

commandPos : Digit;

String : ’"’ (ESC | ~["\\])* '"';

Digit : [0-9]+;

fragment ESC : '\\' (["\\/bfnrt] | UNICODE);

2.2. Full NGSPipes DSL syntax 9

NGSPipes Documentation, Release 1.0

fragment UNICODE : 'u' HEX HEX HEX HEX;

fragment HEX : [0-9a-fA-F];

WS : [\t\r\n]+ -> skip ;

Listing 2.6: Specification of the NGSPipes Full DSL grammar.

Examples

A pipeline used on epidemiological surveillance

In this section we present a pipeline used on epidemiological surveillance. The aim is to characterize bacterial strains
through allelic profiles . When sequencing a bacterial strain by paired end methods with desired depth of coverage of
100x (in average each position in the genome will be covered by 100 reads), the output from the sequencer will be two
FASTQ files containing the reads. Each read typically will have 90-250 nucleotides length, using Illumina technology.
The first data processing step is to trim the reads for removing the adapters used in the sequencing process and any
tags used to identify the experiment in a run.

In de novo assembly, software such as Velvet is used to obtain a draft genome composed of contigs, longer DNA
sequences resulting from assembling multiple reads. The draft genome can be compared to databases of gene alleles
for multiple loci using BLAST. Given BLAST results we can create an allelic profile characterizing the strain.

Pipeline "Github" "https://github.com/ngspipes/tools" {
tool "Trimmomatic" "DockerConfig" {
command "trimmomatic" {

argument "mode" "SE"
argument "quality" "-phred33"
argument "inputFile" "ERR406040.fastq"
argument "outputFile" "ERR406040.filtered.fastq"
argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
argument "seed mismatches" "2"
argument "palindrome clip threshold" "30"
argument "simple clip threshold" "10"
argument "windowSize" "4"
argument "requiredQuality" "15"
argument "leading quality" "3"
argument "trailing quality" "3"
argument "minlen length" "36"

}
}
tool "Velvet" "DockerConfig" {
command "velveth" {

argument "output_directory" "velvetdir"
argument "hash_length" "21"
argument "file_format" "-fastq"
chain "filename" "outputFile"

}
command "velvetg" {

argument "output_directory" "velvetdir"
argument "-cov_cutoff" "5"

}
}
tool "Blast" "DockerConfig" {
command "makeblastdb" {

argument "-dbtype" "prot"
argument "-out" "allrefs"

10 Chapter 2. NGSPipes DSL

NGSPipes Documentation, Release 1.0

argument "-title" "allrefs"
argument "-in" "allrefs.fna.pro"

}
command "blastx" {

chain "-db" "-out"
chain "-query" "Velvet" "velvetg" "contigs_fa"
argument "-out" "blast.out"

}
}

}

Example 2.6: A pipeline used on epidemiological surveillance.

A visual representation of this pipeline described in Example 2.6 is presented in the Figure 2.1. Moreover, in this
figure is also possible to observe other execution orders that are feasible to execute this pipeline in the engine for
workstation.

2.3. Examples 11

NGSPipes Documentation, Release 1.0

Figure 2.1: Visual representation of the execution, in the engine for workstation, of the pipeline described in

12 Chapter 2. NGSPipes DSL

NGSPipes Documentation, Release 1.0

Example 2.6.

In the engine for cloud, different steps of the pipeline can be executed in different machines, it is only necessary to
respect its depedencies, as it is shown in the Figure 2.2.

2.3. Examples 13

NGSPipes Documentation, Release 1.0

14 Chapter 2. NGSPipes DSL

NGSPipes Documentation, Release 1.0

Figure 2.2: Visual representation of the execution, in the engine for cloud, of the pipeline described in Example
2.6.

A pipeline used on ChiP-Seq analysis

In this section we present a pipeline used on ChiP-Seq analysis. This pipeline includes mapping with bowtie2, convert-
ing the output to bam format, sorting the bam file, creating a bam index file, running flagstat command, and removing
duplicates with picard. So, this pipeline can be used in a ChiP-Seq pipeline that uses the resulting bam file for peak
calling and creating heatmaps. Since those steps are generic that can be used for ATAC-Seq analysis too.

Pipeline "Github" "https://github.com/ngspipes/tools" {
tool "Bowtie2" "DockerConfig" {

command "bowtie2-build" {
argument "reference_in" "sequence.fasta"
argument "bt2_base" "sequence"

}
}
tool "Bowtie2" "DockerConfig" {

command "bowtie2" {
argument "-U" "SRR386886.fastq"
argument "-x" "sequence"
argument "--trim3" "1"
argument "-S" "eg2.sam"

}
}
tool "SAMTools" "DockerConfig" {

command "view" {
argument "-b" "-b"
argument "-o" "eg2.bam"
chain "input" "-S"

}
}
tool "SAMTools" "DockerConfig" {

command "sort" {
argument "-o" "eg2.sorted.bam"
chain "input" "-o"

}
}
tool "Picard" "DockerConfig" {

command "MarkDuplicates" {
chain "INPUT" "-o"
argument "OUTPUT" "marked_duplicates.bam"
argument "REMOVE_DUPLICATES" "true"
argument "METRICS_FILE" "metrics.txt"

}
}

}

Example 2.7: A pipeline used on ChiP-Seq analysis.

A visual representation of this pipeline is presented in the next figure.

2.3. Examples 15

NGSPipes Documentation, Release 1.0

Figure 2.3: Visual representation of the execution, in both engines, of the pipeline described in Example 2.6.

16 Chapter 2. NGSPipes DSL

NGSPipes Documentation, Release 1.0

A pipeline using listing tools (for executing only with Engine for Cloud)

A specific use of NGS data in public health is the determination of the relationship between samples potentially
associated with a foodborne pathogen outbreak. This relationship can be determined from the phylogenetic analysis
of a DNA sequence alignment containing only variable positions, which we refer to as a SNP matrix. The applications
of such a matrix include inferring a phylogeny for systematic studies and determining within traceback investigations
whether a clinical sample is significantly different from environmental/product samples.

This case study is a pipeline which combines all the steps necessary to construct a reference-based SNP matrix from
an NGS sample data set.The pipeline starts with the mapping of NGS reads to a reference genome using Bowtie2,
then it continues with the processing of those mapping (BAM) files using SAMtools, identification of variant sites
using VarScan3, and ends with the production of a SNP matrix using custom Python scripts (calling of SNPs at each
variant site, combining the SNPs into a SNP matrix). The Python scripts are reused from the CFSAN SNP Pipeline: an
automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer Science 1:e20
https://doi.org/10.7717/peerj-cs.20. As it can be observed in this data set, there are four samples, whose dataflow
process is more detailed in the documentation page of this pipeline.

Pipeline "Github" "https://github.com/Vacalexis/tools" {
tool "snp-pipeline" "DockerConfig" {

command "create_sample_dirs" {
argument "-d" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/*"
argument "--output" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/sampleDirectories.txt"
}

}

tool "Bowtie2" "DockerConfig" {
command "bowtie2-build" {

argument "reference_in" "snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/reference/lambda_virus.fasta"

argument "bt2_base" "reference"
}
command "bowtie2" {

argument "-p" "1"
argument "-q" "-q"
argument "-x" "reference"
argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample1/sample1_1.fastq"
argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample1/sample1_2.fastq"
argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads1.sam"
}
command "bowtie2" {

argument "-p" "1"
argument "-q" "-q"
argument "-x" "reference"
argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample2/sample2_1.fastq"
argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample2/sample2_2.fastq"
argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads2.sam"
}
command "bowtie2" {

argument "-p" "1"
argument "-q" "-q"

2.3. Examples 17

http://snp-pipeline.readthedocs.io/en/latest/dataflow.html

NGSPipes Documentation, Release 1.0

argument "-x" "reference"
argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample3/sample3_1.fastq"
argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample3/sample3_2.fastq"
argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads3.sam"
}
command "bowtie2" {

argument "-p" "1"
argument "-q" "-q"
argument "-x" "reference"
argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample4/sample4_1.fastq"
argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample4/sample4_2.fastq"
argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads4.sam"
}

}
tool "Listing" "DockerConfig" {

command "startListing" {
argument "referenceName" "reads.sam"
argument "filesList" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/reads1.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/
→˓reads2.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads3.sam snp-
→˓pipeline-master/snppipeline/data/lambdaVirusInputs/reads4.sam"

}
}
tool "Samtools" "DockerConfig" {

command "view" {
argument "-b" "-b"
argument "-S" "-S"
argument "-F" "4"
argument "-o" "reads.unsorted.bam"
argument "input" "reads.sam"

}
command "sort" {
argument "-o" "reads.sorted.bam"
argument "input" "reads.unsorted.bam"

}
command "mpileup" {

argument "--fasta-ref" "snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/reference/lambda_virus.fasta"

argument "input" "reads.sorted.bam"
argument "--output" "reads.pileup"

}
}
tool "VarScan" "DockerConfig" {

command "mpileup2snp" {
argument "mpileupFile" "reads.pileup"
argument "--min-var-freq" "0.90"
argument "--output-vcf" "1"
argument "output" "var.flt.vcf"

}
}

18 Chapter 2. NGSPipes DSL

NGSPipes Documentation, Release 1.0

tool "Listing" "DockerConfig" {
command "stopListing" {

argument "referenceName" "var.flt.vcf"
argument "destinationFiles" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/samples/sample1/var.flt.vcf snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/samples/sample2/var.flt.vcf snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/samples/sample3/var.flt.vcf snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/samples/sample4/var.flt.vcf"

}
}
tool "snp-pipeline" "DockerConfig" {

command "create_snp_list" {
argument "--vcfname" "var.flt.vcf"
argument "--output" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/snplist.txt"
argument "sampleDirsFile" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/sampleDirectories.txt"
}

}
tool "Listing" "DockerConfig" {

command "restartListing" {
argument "referenceName" "reads.pileup"

}
}
tool "snp-pipeline" "DockerConfig" {

command "call_consensus" {
argument "--snpListFile" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/snplist.txt"
argument "--output" "consensus.fasta"
argument "--vcfFileName" "consensus.vcf "
argument "allPileupFile" "reads.pileup"

}
}
tool "Listing" "DockerConfig" {

command "stopListing" {
argument "referenceName" "consensus.fasta"
argument "destinationFiles" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/samples/sample1/consensus.fasta snp-pipeline-master/snppipeline/
→˓data/lambdaVirusInputs/samples/sample2/consensus.fasta snp-pipeline-master/
→˓snppipeline/data/lambdaVirusInputs/samples/sample3/consensus.fasta snp-pipeline-
→˓master/snppipeline/data/lambdaVirusInputs/samples/sample4/consensus.fasta"

}
}
tool "snp-pipeline" "DockerConfig" {

command "create_snp_matrix" {
argument "sampleDirsFile" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/sampleDirectories.txt"
argument "--consFileName" "consensus.fasta"
argument "--output" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/snpma.fasta"
}

}
}

2.3. Examples 19

NGSPipes Documentation, Release 1.0

Figure 2.4: Figure from Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A, Rand H, Strain E. (2015) CFSAN
SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ
Computer Science 1:e20 https://doi.org/10.7717/peerj-cs.20

20 Chapter 2. NGSPipes DSL

CHAPTER 3

NGSPipes repository

The NGSPipes repository is a component of NGSPipes system that contains all the information related to the available
tools which can be used when defining a pipeline. We provide a repository prototype that contains some tools to test
our system, which can be found in https://github.com/ngspipes/tools. User made repositories can be used, as it will be
explained in this section. This component has to supply the following information:

• a list of tool names;

• a list of tool descriptors;

• a list of tool logotypes (optional);

• a list of configurators of a given tool;

• a list of the names of the configurators available for a given tool.

For defining the tool descriptors and configurators, we have defined JSON schemas, as well as for specify all the tools
that are available in the repository.

Tool names

The repository is composed by a list of tools. All the tools names that are available in a given repository, are described
in a file with a JSON format designed by Tools.json. In NGSPipes repository example this file appears at the
root of the repository (please, see the tool’s repository). Moreover, the presented repository structure is one of the
possible structures that is supported by the repository support library used in the NGSPIpes framework. The format of
the Tools.json file is given by the JSON schema presented in Listing 3.1.

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {

"toolsName": {
"type": "array",
"items":{ "type": "string" }

},

21

https://github.com/ngspipes/tools

NGSPipes Documentation, Release 1.0

"required": ["toolsName"]
}

}

Listing 3.1: JSON schema for specifying the names of the tools included in the repository.

Tool descriptors

To each available tool in our framework, we have a tool descriptor, i.e., a JSON file responsible for supplying all the
information needed about the tool, such as the memory needed to execute it, the commands and the arguments of each
command. The format of this file is given by the JSON schema presented in Listing 3.2.

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {

"name": { "type": "string" },
"author": {"type": "string"},
"version": { "type": "string"},
"description": {"type": "string"},
"documentation": {
"type": "array",
"items": { "type": "string" }

},
"setup": {
"type": "array",
"items": { "type": "string" }

},
"toolType": {
"type": "string",
"enum": ["Unit", "splitting", "joinning", "listing"]

},
"requiredMemory": { "type": "integer" },
"recommendedCpus": { "type": "integer" },
"recommendedDiskSpace": { "type": "integer" },
"commands": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": { "type": "string" },
"command": {"type": "string"},
"description": {"type": "string" },
"priority": { "type": "integer" },
"argumentsComposer": { "type": "string" },
"arguments": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {"type": "string" },
"argumentType": {"type": {

"enum": ["int","file","string","double","directory"]}},
"isRequired": {"type": { "enum": ["true","false"]} },
"description": { "type": "string" }

},

22 Chapter 3. NGSPipes repository

NGSPipes Documentation, Release 1.0

"required": ["name", "argumentType", "isRequired","description"]
}

},
"outputs": {
"type": "array",
"items":{
"type": "object",
"properties": {
"name": {"type": "string"},
"description": {"type": "string"},
"outputType": {"type": {

"enum": ["directory_dependent","file_dependent","independent
→˓"]}},

"argument_name": {"type": "string"},
"value": { "type": "string" }

},
"required": ["name","description","outputType", "argument_name",

→˓"value"]
}

}
"inputs": {
"type": "array",
"items": {

"type": "object",
"properties": {
"name": { "type": "string" },
"description": { "type": "string" },
"inputType": { "type": "string",

"enum": ["directory_dependent", "file_dependent",
→˓"independent"]}},

"value": { "type": "string" }
"required": ["name", "description", "inputType", "argument_name",

→˓"value"]}}
},
"required": ["name","command","description","priority",

"argumentsComposer", "arguments","outputs", "inputs"]
}

},
"required": ["name","author","version","description",

"documentation","setup", "tool type",
"requiredMemory", "recomendedDiskSpace",
"recommendedCpus, "commands"]

}
}

Listing 3.2: JSON schema for specifying each tool included in the repository.

As an example, please see the tools descriptors that we have included in our tools’ repository example, such as the
Velvet descriptor and the Trimommatic descriptor for Velvet and Trimmomatic tools, respectively. In our repository
support library, each tool descriptor must be defined in a file named as Descriptor.json.

As defined on the previous JSON schema, a tool description must include its name, author, version, description,
documentation, setup, toolType, required memory , recommendedCpus, recommendedDiskSpace and commands. The
version property describes the version of the executable that is being considered by this descriptor. The documentation
property allows to add a collection of links that contains documentation about the tool. The setup property contains
all the scripts that must be executed before executing any command within the tool. For instance, for executing the
Trimmomatic command, it must be previously installed the Java Runtime Environment. Thus, in the Trimmomatic
descriptor, we include the setup presented in Example 3.1.

3.2. Tool descriptors 23

https://github.com/ngspipes/tools/blob/master/Velvet/Descriptor.json
https://github.com/ngspipes/tools/blob/master/Trimmomatic/Descriptor.json
https://www.ebi.ac.uk/~zerbino/velvet/
http://www.usadellab.org/cms/?page=trimmomatic

NGSPipes Documentation, Release 1.0

"setup" : ["apt-get install -y default-jre"]

Example 3.1: Trimmomatic command setup.

Command descriptions

commands is an array of JSON objects that describes each command within a tool. For instance, the Trimmomatic
tool has only one command, but the Velvet tool has two commands, namely, velvetg and velveth. For each
command in the array commands it must exist its name, the command itself, its description, its priority, its arguments,
the argumentComposer and its outputs. The priority of each command within a tool is important for defining execution
dependency among commands within the same tool. For instance, in the Velvet tool, although not explicitly defined as
an argument, velveth uses files produced by velvetg. If the files are already produced, then it is not necessary to
execute velvetg if data is the same. Homever, if data differs from the last execution or is not yet produced, it must be
assured that velvetg is executed before velveth. Therefore, we have added the priority property to each command
to assign an integer that reflect the execution order within commands of the same tool which do not have it explicitly,
but which is needed. The argumentsComposer item is the responsible for knowing how to concatenate the arguments,
namely if arguments are passed as argName=argValue OR argName:argValue OR argName-argValue.
The many argumentComposer types supported by the NGSPipes repository support library are detailed in sub-section
ArgumentsComposer. The arguments and the outputs are both arrays of JSON objects.

Argument descriptions

arguments is an array of JSON objects that describes each argument of a specific command. For each argument is
required to define its name, its argumentType, if it is isRequired and its description. The type of each argument must
be one of the following: integer number (int); file (file); text (string); real number (double) or a directory
(directory). The isRequired property, which can be defined as true or false, indicates if is necessary to set a
value to this argument or is an optional argument. As an example, consider the trimmomatic tool, which only has
a command. For SINGLE END data, one output and input file are specified. Therefore, it is necessary to add to its
descriptor the information specified in Example 3.2.

{
"name" : "outputFile",
"argumentType" : "file",

"isRequired" : "false",
"description" : "Specifies the name of output file."

},
{

"name" : "inputFile",
"argumentType" : "file",
"isRequired" : "false",
"description" : "Specifies the path to the fastq input file."

},

Example 3.2: arguments for Trimmomatic command

Both of the previous examples have the isRequired property set to false since for non SINGLE END data, trim-
momatic execution uses pairs of input and output files, which are described in the tool descriptor by other arguments.

Output descriptions

output is an array of JSON objects that describes the outputs of each command. For each output is required to define its
name, outputType, description,argument_name and value. Notice that the name passed as an argument
to a command is not the name that is necessary to specify as a JSON property of the output JSON object. The

24 Chapter 3. NGSPipes repository

NGSPipes Documentation, Release 1.0

name property refers to the name of the JSON object, not to the name of the file that is produced by the execution
of a given command. Depending on the command, the name of the file that is produced by a given command can be
set as an argument by the user or be an internal decision of the executing command. Therefore, the independent
outputType is used when an output value is specified inside of command and isn’t affected by any argument. In
this case, the value property of the JSON output object is set with the name that is internally generated by the
corresponding command. An example of the output in descriptor file is depicted in Example 3.3.

{
"name" : "output",
"description" : "",
"outputType" : "independent",
"argument_name" : "",
"value" : "output.txt"
}

Example 3.3: Example of an output descriptor.

In the previous case, the argument_name is the empty string since there is no corresponding argument defined in
the tool descriptor to set the name of the produced output file.

The outputType can also be file_dependent or directory_dependent. An outputType is
file_dependent if its value is specified in an argument and there is no specific directory that is created for
keeping the generated output file. As an example, and taking into account the previous example of trimmomatic
for SINGLE END data, the output is described in the tool description as presented in Example 3.4.

{
"name" : "outputFile",
"description" : "",
"outputType" : "file_dependent",
"value" : "",
"argument_name" : "outputFile"

},

Example 3.4: Example of an output descriptor.

In this case, the value property is set to the empty string since the name of the output file is specified by the user.
Moreover, the argument_name property defines the name of the JSON object that corresponds to the JSON object
that defines the argument used for the specified the output file name.

The other type of output is directory_dependent, which is used when an output value is added to a specified
directory that is generated within the command execution. In this case, the name of the directory is passed as an
argument, but the name of the produced files are not passed as arguments. Instead, they are generated internally,
within execution. As an example, consider the velvet tool, where the commands outputs are of this type because
they will be written to a directory, the first argument of velvetg and velveth, when executing both commands.
Therefore, since the output directory is a command argument, we have to specify in the tool descriptor a corresponding
argument description, such as the one depicted in Example 3.5.

{ "name" : "output_directory",
"outputType" : "directory",
"isRequired" : "true",
"description" : "Directory where will be output files"
}

Example 3.5: Argument description in the case of a directory type

And thus, Example 3.6 illustrates of the output descriptor in the descriptor file, corresponding to the previous argument
will be like:

3.2. Tool descriptors 25

NGSPipes Documentation, Release 1.0

{
"name" : "stats",
"description" : "",
"argumentType" : "directory_dependent",
"argument_name" : "output_directory",
"value" : "stats.txt"
}

Example 3.6: Output description when is dependent of an argument with type directory

Notice that the file name stats.txt is not passed as an argument to velveth nor to velvetg. Instead, it is
generated internally and is stored in the output directory whose name was passed as an argument.

Input descriptions

input is an array of JSON objects that describes the inputs of each command. They are similar to Output descriptions.
They help inferring dependencies between pipeline tasks.

ArgumentsComposer

In this subsection is listed all the argumentsComposer that are already included in our repository support library. The
existing argumentsComposer are (name of the argumentComposer-> [corresponding format]):

1. dummy -> []

2. valuesSeparatedBySpace -> [value value value]

3. nameValuesSeparatedByEqual -> [name=value name=value name=value]

4. nameValuesSeparatedByColon -> [name:value name:value name:value]

5. nameValuesSeparatedByHyphen -> [name-value name-value name-value]

6. nameValuesSeparatedBySpace -> [name value name value name value]

7. valuesSeparatedByColon -> [value:value:value]

8. valuesSeparatedByVerticalBar -> [value|value|value]

9. valuesSeparatedByHyphen -> [value-value-value]

10. valuesSeparatedBySlash -> [value/value/value]

11. valuesSeparatedByComma -> [value,value,value]

12. trimmomatic -> [TRIMMOMATIC STYLE ArgCategory:arg:arg:arg]

13. velvetG -> [VELVETG STYLE all arguments has format [name value] except output_directory that has format
[value]]

Listing 3.3: Some argumentsComposer included in the repository support library.

Examples of the mapping of the arguments and output descriptions to command
parameters.

As we can see in the Velvet tool manual, a simple execution of the velvetg command in the command line (without
the NGSPipes System) after producing the executable with the make command is described in Example 3.7.

./velvetg velvetDir -cov_cutoff 5

26 Chapter 3. NGSPipes repository

https://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf

NGSPipes Documentation, Release 1.0

Example 3.7: Executing velvetg command on the command line.

Therefore, the description of velvetg command, within the descriptor of velvet tool, must include two arguments
descriptions, namely, one for the directory argument and other for the option _cov_cutoff. As we can observe in
velvet descriptor file (https://github.com/ngspipes/tools/blob/master/Velvet/Descriptor.json), the JSON object for
defining the arguments of velvetg command starts with the definitions depicted in Example 3.8.

{
"arguments" : [

{
"name" : "output_directory",
"argumentType" : "directory",
"isRequired" : "true",
"description" : "Directory where will be output files"

},
{

"name" : "-cov_cutoff",
"argumentType" : "float",
"isRequired" : "false",
"description" : "remove coverage nodes

AFTER tour bus or allow the system to infer it (default no removal)"
},

Example 3.8: Some velvetg arguments descriptions.

And, since the output directory produces output files, the produced output is directory_dependent as we can see
in section “Output descriptions” within this section, the JSON object for defining the outputs of velvetg command
starts with the descriptions depicted in Example 3.9.

"outputs" : [
{
"name" : "stats",
"description" : "",
"outputType" : "directory_dependent",
"argument_name" : "output_directory",
"value" : "stats.txt"

},
{
"name" : "preGraph",
"description" : "",
"outputType" : "directory_dependent",
"argument_name" : "output_directory",
"value" : "PreGraph"

},

Example 3.9: Some output descriptions for velvetg.

The values of these arguments (velvetDir and 5, respectively) will be set in the pipeline specification. For more
information about the pipeline specification, please consult (https://github.com/ngspipes/dsl/wiki).

Another example referred in this documentation is the Trimmomatic tool. As we can see in the Trimmomatic manual,
For single-ended data, one input and one output file are specified. The required processing steps (trimming, cropping,
adapter clipping etc.) are specified as additional arguments after the input/output files. Thus, it appears in description
presented in Example 3.10 how to execute this command.

java -jar <path to trimmomatic jar> SE
[-threads <threads>] [-phred33 | -phred64] [-trimlog <logFile>]
<input> <output> <step 1> ...

3.2. Tool descriptors 27

http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/TrimmomaticManual_V0.32.pdf

NGSPipes Documentation, Release 1.0

Example 3.10: Executing Trimmomatic in the command line for single-ended data.

For paired-end data, two input files, and 4 output files are specified, 2 for the ‘paired’ output where both reads survived
the processing, and 2 for corresponding ‘unpaired’ output where a read survived, but the partner read did not. Thus, it
appears in the description presented in Exampl 3.11 how to executed this command in this version.

java -jar <path to trimmomatic.jar> PE
[-threads <threads] [-phred33 | -phred64] [-trimlog <logFile>] >]
[-basein <inputBase> | <input 1> <input 2>]
[-baseout <outputBase> | <unpaired output 1>
<paired output 2> <unpaired output 2> <step 1> ...

Example 3.11: Executing Trimmomatic in the command line for paired-ended data.

Thus, considering the SINGLE END DATA, a possible execution in the command line could be like the following

java -jar local/trimmomatic/trimmomatic-0.33.jar SE -phred33 ERR406040.fastq
ERR406040.filtered.fastq ILLUMINACLIP:local/trimmomatic/adapters/TruSeq3-SE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

**Example 3.12: **

In this case the input file is ERR406040.fastq and the output file is ERR406040.filtered.fastq. Thus, in the Trim-
momatic tool description, we have included as arguments descriptions the ones described in Example 3.13.

{
"name" : "inputFile",
"argumentType" : "file",
"isRequired" : "false",
"description" : "Specifies the path to the fastq input file."
},

{
"name" : "outputFile",
"argumentType" : "file",
"isRequired" : "false",
"description" : "Specifies the name of output file."

},
{

"name" : "paired input 1",
"argumentType" : "file",
"isRequired" : "false",
"description" : "Specifies the path to the input file 1 of paired mode."

},
{
"name" : "paired input 2",
"argumentType" : "file",
"isRequired" : "false",
"description" : "Specifies the path to the input file 2 of paired mode."

},

Example 3.13: Trimmonatic arguments.

In the case of Trimmomatic command (please notice that Trimmomatic tool has only one command, with the same
name), since both arguments inputFile and outputFile are only required in the SINGLE END data, their
property isRequired was set to false.

With respect to the outputs, the Trimmomatic command description has the outputs described as in Example 3.14.

{
"name" : "outputFile",

28 Chapter 3. NGSPipes repository

NGSPipes Documentation, Release 1.0

"description" : "",
"argumentType" : "file_dependent",
"value" : "",
"argument_name" : "outputFile"

},
{

"name" : "paired output 1",
"description" : "",
"argumentType" : "file_dependent",
"value" : "",
"argument_name" : "paired output 1"

},
{

"name" : "unpaired output 1",
"description" : "",
"argumentType" : "file_dependent",
"value" : "",
"argument_name" : "unpaired output 1"

},
{

"name" : "paired output 2",
"description" : "",
"argumentType" : "file_dependent",
"value" : "",
"argument_name" : "paired output 2"

},
{
"name" : "unpaired output 2",
"description" : "",
"argumentType" : "file_dependent",
"value" : "",
"argument_name" : "unpaired output 2"
}

Example 3.14: Outputs description of Trimmomatic command.

As mentioned before, in the arguments and outputs descriptions, the values to be set to the arguments are done in
the pipeline specification, as can be seen in the example in https://github.com/ngspipes/dsl/wiki. Notice that the
Trimmomatic outputs are all file_dependent which means that its value is also an argument and thus is set by
the user in the pipeline specification.

Tool configurators

The repository must also include at least one configurator for each tool. A tool configurator is responsible for adding
all the information needed to define the execution context for executing the tool and its respective commands. Each
tool configurator for each tool is given as a JSON file. Thus, for knowing all the available configurators for a specific
tool, it exists, for each tool, a JSON file that lists all the JSON files that correspond to tool configurators for that
tool. In our repository example and thus in our support implementation, these files appear at the root of each tool
directory (please, see the a tool directory example). For instance, in Blast tool, it can be observed that there is only
a tool configurator (https://github.com/ngspipes/tools/blob/master/Blast/configurators.json), and the same is given as
(https://github.com/ngspipes/tools/blob/master/Blast/DockerConfig.json).

3.3. Tool configurators 29

https://github.com/ngspipes/tools/tree/master/Blast

NGSPipes Documentation, Release 1.0

List of configurators of a tool

For each tool, the list of the tool configurators that are available in a given repository are described in a JSON format
in a file designed by Configurators.json. The format of the file that lists all the tool configurators files is given
by JSON schema defined in Listing 3.4.

"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {

"configuratorsFileName": {
"type": "array",
"items":{ "type": "string" }

},
"required": ["configuratorsFileName"]
}

}

Listing 3.4: JSON schema for declaring the filenames of the configurators for a given tool.

Tool Configurators

As depicted in the previous schema, the file Configurators.json includes all the name of the files that corre-
sponds to possible configurators for a given tool. Thus, for each file name included in onfigurators.json it
exists a corresponding JSON file with the specific configuration. In our repository example and thus in our support
implementation, the files for each specific configuration appears at the root of each tool directory (please, see the a
tool directory example). The format of this file is given by the JSON schema defined in Listing 3.5.

{
"$schema": "http://json-schema.org/draft-04/schema#",
"type": "object",
"properties": {
"name": {"type": "string" },
"builder": {"type": "string" },
"uri": { "type": "string" },
"setup": {

"type": "array",
"items": { "type": "string" }

}
},
"required": ["name","uri","setup"]

}

Listing 3.5: JSON schema for declarung each tool configurator.

Thus, a tool configuration is a JSON file with the following information: name of the file where is defined the
execution context execution context (ex: DockerConfig); builder name of the execution context (ex: Docker);
setup}, i.e., the scripts that are necessary to execute to assure the existence of the execution context; and the uri
where the tool is. Next example describes that the tool is on a docker image and thus is necessary to install docker in
the execution context.

{
"name" : "DockerConfig",

"builder": "Docker"

"uri" : "simonalpha/ncbi-blast-docker",

30 Chapter 3. NGSPipes repository

https://github.com/ngspipes/tools/tree/master/Blast

NGSPipes Documentation, Release 1.0

"setup" : [
"wget -qO- https://get.docker.com/ | sh"

]
}

Example 3.15: Example of a tool configurator for the blast tool.

Defining your own tool repository

Each user can define its own tool repository, locally or remotely and use NGSPipes support library. The simplest
way to do this it to use an hierarchical directory system approach, either locally or remotely. For a different form of
structuring data, it would probably be necessary to extend NGSPipes support library.

Using an hierarchical directory system approach

In this section it will be described how to use an hierarchical directory system approach for defining a new tool
repository, locally and remotely. For the remote case, we will use github as an example. In both cases, it is necessary
to create a directory for each tool. The directory name will be seen as the tool name (the tool identifier on the
repository) and is exactly the same name that is used in the pipeline definition and in the file Tools.json. In the
file Tools.json there will be a tool name for each available tool in the repository.

Each tool directory keep all the information about that tool, namely its description, its logotype, its configurators and
the file name of its configurators. As mentioned before, the tool descriptor, which includes all the metadata needed to
describe a tool, is given in a JSON file. As a convention, each tool descriptor file name is Descriptor.json. With
respect to the logo file it should be a png file named as Logo.png. The logo file is optional. The file where is kept the
file name of the configurators for a tool is also given as a JSON file, always designed as Configurators.json.
For each file name specified in this file, there must exist the respective configurator JSON file.

Define a new repository locally

For defining a new repository in our own computer we have first to create a directory that will be our tool repository
(ex: named as tools). Then, add to tools directory the file Tools.json and for each tool name that appears in
this file, which identify a specific tool, create a new directory in tools. Each new created directory inside tools
must have the corresponding name used in Tools.json to identify the tool. Each tool directory must contain the
data described in the beginning of subsection “Defining your own tool repository”.

Define a new repository on github

After log-in in github, create a new repository (ex: named as tools). The endpoint of this new repository will the
tool repository. Then, after cloning your repository to your computer, it will appear a directory named as tools.
Then, do the same steps of a section “Define a new repository locally” within this subsection. After that, synchronize
the repository.

Tool Types

For supporting data partitioning in the engine for cloud, which will allow to executing in multiple machines partitions
of data at the same time and thus increase process efficiency, the ´tool type´should be specified in a tool descriptor.
Notice that this feature has only impact in the engine for cloud solution. There are four different tool types:

3.4. Defining your own tool repository 31

NGSPipes Documentation, Release 1.0

• data processing tools, i.e., unit;

• listing tools, i.e., splitting;

• splitting tools i.e., joining;

• joining tools i.e., listing.

Unlike unit processing tools, where each command is mapped into one task, a splitting command within a splitting
tool generates one task corresponding to the splitting of the file plus N tasks per command, where N is the number of
partitions of the file whereas each task processes a partition of the file. Data partitioning allows users to work with and
process multiple files having to specify each command only once, while treating the files like a single file. It means
that when users split a file in ten, for instance, they do not have to include the same tool ten times in the pipeline for
every partition: the analyser will do that for them.

Figure 3.1 Splitting and Joining tools example.

Figure 3.1 shows how a file named input is split originating three different files with the same name, stored in directo-
ries with different names. For each partition the analyser will generate a directory where it stores the file partition with
the same name it had before being partitioned. For every command specified in the pipeline description that uses the
partitioned file, it is generated a task where the input path (partitioned file’s path) is concatenated with the name of the
directory where the partition of the file is stored. Multiple directories are created to avoid name collision between files
generated. Joining tools generate a task to join the partitions with the name of the input, that are stored in analyser
generated directories (through either splitting or listing) corresponding to that input. Commands whose input depend
on the join output will no longer have their tasks multiplied per partition. In Figure 3.2 it is depicted an example where
a user wants to process different files of the same type, using the same tools, without having to specify each command
more than once. Listing tools move and rename the files to match the same pattern as the splitting tools. After files are
listed, they can be treated as one, as if it had been a split. While the splitting tools are used to partition data files and
apply the same command or set of commands to each partition, the listing tools allow users to

32 Chapter 3. NGSPipes repository

NGSPipes Documentation, Release 1.0

Figure 3.2 Listing and Joining tools example.

apply the same command or set of commands to a list of specified files. Listing tools generate a task to move the files
to the newly generated directories and change the files names to match the name used in the .pipes file. Listing
tools generate the same tasks as splitting and joinning tools on commands that depend from them. The listing tools
purpose is to allow a user to provide multiple files and treat them as one in the .pipes file. The listing tools have
two commands, startlisting and stoplisting that are similar to split and join tools, respectively, but
applied when the input are multiple files (passed as a zip file). The way data partitioning and dependencies inference
is implemented, allows users to benefit from parallelization without adding complexity to the DSL and the process
of writing a .pipes file. The analyser also skims all the outputs that will be produced in order to create a list of the
directories that have to exist for the swift and correct execution of the pipeline. These directories are stored in an array
on the intermediate representation, under the directories property. With the current version of the analyser, we have
achieved a solution that allows users to split data and that allows to infer a topological graph from task dependencies,
enabling the parallelization of the pipeline execution, without increasing the DSL complexity.

tool "Listing" "DockerConfig" {
command "startListing" {

argument "referenceName" "reads.sam"
argument "filesList" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads1.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads2.sam snp-
→˓pipeline-master/snppipeline/data/lambdaVirusInputs/reads3.sam snp-pipeline-master/
→˓snppipeline/data/lambdaVirusInputs/r

}
}

Listing 3.6 An example of tool with type listing type.

More details on the type of tools can be found in this report.

3.5. Tool Types 33

https://gitlab.com/ngs4cloud/ngs4cloud/blob/36b53a7c40b07e5aac81c170f74b90d33bcdd4d6/docs/FinalReport.pdf

NGSPipes Documentation, Release 1.0

34 Chapter 3. NGSPipes repository

CHAPTER 4

NGSPipes Editor

The NGSPipes Editor is a user-friendly editor for graphically define pipelines. Using this editor is very simple to define
each processing step of the pipeline (i.e. a command) as well as the data to be used at each step (i.e., arguments).

The following sections show how to use the editor.

Download NGSPipes Editor

The NGSPipes Editor is a Java Application. To deploy this it in your system you need:

• Java Runtime Environment (JRE), version 8, which can be obtained from here.

Download the editor from here.

Execute NGSPipes Editor

To run the editor, and uncompress the downloaded file. Then you should have the following file tree:

|-- editor-1.0\
|-- bin\

|-- editor (CUI OSX/Linux run script)
|-- editor.bat (CUI Window run script)

|-- lib\
|-- ...

Then you can simple double click on corresponding script.

If you have OSX and you you prefer the double click version to run the editor, it may appears, only the first time after
you double click it, the following info:

35

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
https://github.com/ngspipes/editor/releases

NGSPipes Documentation, Release 1.0

Figure 4.1: Running a jar in a first time in OSX.

Then, go to “System Preferences” and choose “Security and Privacy”

36 Chapter 4. NGSPipes Editor

NGSPipes Documentation, Release 1.0

Figure 4.2: Selecting System Preferences in OSX.

Then select the button “Open anyway”

Notice that depending on the MAC OS version, it may be necessary to unlock to make changes and to select the
option “Allow apps downloaded from Anywhere”

Figure 4.3: Allowing to run the jar file in OSX (just appears at the first time).

The initial GUI that appears from editor is the following:

4.2. Execute NGSPipes Editor 37

NGSPipes Documentation, Release 1.0

Figure 4.4: Editor initial screen.

In the following sections it will be explained how to use the editor. Moreover, in the editor’s menu, selecting help
and then the menu item about, it is possible to find some tutorial videos to help to use NGSPipes Editor.

NGSPipes Editor Sections

When defining a new pipeline (we will explain how to define a new pipeline in the Section Creating a new pipeline), the
editor environment will appear similar to one of Figures 4.5 and 4.6 (it depends on the edition that is being performed).

38 Chapter 4. NGSPipes Editor

NGSPipes Documentation, Release 1.0

Figure 4.5: How NGSPipes editor looks like when defining a pipeline.

Figure 4.6: How NGSPipes editor looks like when consulting a possible execution order of the pipeline.

The NGSPipes Editor is composed of 5 sections: utilities; repository; tools; com-
mands; pipeline and menu bar. These sections are pointed out in Figure 4.7.

4.3. NGSPipes Editor Sections 39

NGSPipes Documentation, Release 1.0

Figure 4.7: NGSPipes editor sections.

The utilities section includes all the buttons for executing the utilities actions, such as saving the active pipeline,
closing it and generate the final version, when in this last case the user is asked to define the input and output directory
((see Section 6 for more information on pipeline generation). There are also in this section similar buttons for applying
these actions for more than one workflow at the same time. Moreover, it is also in this section that exists a button for
creating a new pipeline (see Section Creating a new pipeline) for more information).

More specifically,

• New button - Create a new pipeline;

• Open button - Open an existent pipeline;

• Save button - Save the active pipeline;

• Save Allbutton - Save all the open pipelines;

• Close button - Close the active pipeline;

• Close All button - Close all the open pipelines;

• Generate button - Generate the pipeline in the NGSPipes language, i.e., generate the file with extension .
pipes for the active pipeline. This file is essential for executing the pipeline with the NGSPipes Engine (see
https://github.com/ngspipes/engine/wiki for more information). With this action, the user is asked for defining
the input and output directory. It is asked if it is allowed to copy the input files that are not already in the Input
directory.

• Generate All button - Generate all the files with extension .pipes for all the active pipelines. For each
pipeline it is applied the action of the Generate button.

40 Chapter 4. NGSPipes Editor

NGSPipes Documentation, Release 1.0

Select the tools repository

When the Editor starts, it loads a local repository that is included within the tool. However, user can select other
repository, either local or remote. To select other repository, go to the menu Repository and select Change
repository. In the version 1 of the Editor, there are four types that are supported, as depicted in Figure 4.8.

Figure 4.8: Setting the tool’s repository for the current pipeline.

The Default is a local repository that is included within the tool. To specify other local repositories, it is necessary
to select the Local option and, with the search button, select the path to the repository. Instead, to specify a
remote one, it is necessary to select one of the following options, github or uribased, depending on the type
of the remote repository. For instance with the tools’ repository example, namely https://github.com/ngspipes/tools,
please select the option github, with the URL https://github.com/ngspipes/tools.

Then, it is possible to observe the repository section on Figure 4.9.

4.4. Select the tools repository 41

NGSPipes Documentation, Release 1.0

Figure 4.9: How NGSPipes Editor looks like when there is no pipeline loaded/created.

In the repository section, the user may explore all the tools that are available on the repository, as well as filter them
by name. It is also possible to obtain the description of a tool if we place the mouse over the tool’s logotype. Selecting
a tool, will open the tool section (in Figure 4.5), Velvet is selected and the tool section is at the bottom, centered),
where is possible to navigate over all the commands available within that tool. In some cases, the tool has only
one command, as for instance the Trimmomatic tool. It is also possible to obtain the description of each command
similarly as done for obtaining the tool description. In these sections, the user may obtain more information about a
given tool, command, input or output, only by selecting a given item of one of these sections with the right button of
the mouse and selecting the Description option. This option opens a new window with all the information available
on the repository, as depicted in Figure 4.10.

42 Chapter 4. NGSPipes Editor

NGSPipes Documentation, Release 1.0

Figure 4.10: Description of all tolls included in the selected repository.

The other sections, namely the pipeline and command sections will be detailed in next section.

Creating a new Pipeline

In order to create a new pipeline, after selecting the tools' repository, please select the button with a plus (in
the utilities section) or go to the menu File and select the option new.

4.5. Creating a new Pipeline 43

NGSPipes Documentation, Release 1.0

Figure 4.11: Creating a new pipeline in the editor.

After defining the directory where the pipeline is kept and the name of the pipeline, it will appear the pipeline section,
as depicted in the following Figure.

44 Chapter 4. NGSPipes Editor

NGSPipes Documentation, Release 1.0

Figure 4:12 The pipeline section.

The pipeline creation generates a file with extension .wf. This file keeps all information of a pipeline within the
editor, not only the commands as well as the visual positions of the pipeline within the editor.

The pipeline section has two panels, the chain and the order panel. In the chain panel, the user can add or remove
commands as well as set arguments and chains. For instance, in (Figure 4.5) it was defined a chain between the
trimmomatic command and the velveth command since the output file of the first one is an input file of the
second one. For more information about chains, please see https://github.com/ngspipes/dsl/wiki. Before defining the
chain, it is necessary to add the commands to execute within the pipeline. Adding a new command to the chain
panel (notice that is necessary to previously select the tool in the repository section and then in the tool
section select the command) is simply done by a drag and drop action.

After adding a command and double clicking on it, it appears the command section (see the right size of Figure 4.5).
This section only appears when the user does a double click on a command over the chain panel. In the command
section, the user can set the arguments of the selected commands as well as to confirm its generated output file names.

For defining the chain between two commands, it is necessary to drag the blue icon that appears in the command
image within the chain panel, after a double click.

_Images/Editor_fig13.png

Figure 4.13: Command selection.

Then it is necessary to select the blue icon and drag it to the command to which is to do the chain operation. After
that, it will appear the following figure:

Figure 4.14: The chain panel.

4.5. Creating a new Pipeline 45

NGSPipes Documentation, Release 1.0

Here it is necessary to select the output to be chained as an argument to the other tool. After that, it is necessary to
click on the blue icon and the chain action will be set and a black arrow will appear between both tools (see next
Figure).

Figure 4.15: After setting a chain action betweeen two commands.

After setting the required arguments of all commands added to the pipeline and setting all the chains, the user can
observe in the order panel one of the possible inferred orders of the pipeline execution (see Figure 4.6). This or-
der is given, assuring that command dependency and priority are preserved. For more information about command
dependency and priority, please see NGSPipes repository section.

Moreover, in the editor’s menu, selecting help and then the menu item about, it is possible to find some tutorial
videos to help to use NGSPipes Editor.

Generate the final pipeline version to execute

As mentioned before, creating a new pipeline generates a file with extension .wf and with the name chosen by the
user. This file keeps all information of a pipeline within the editor, not only the commands as well as its visual
positions.

However, if the user wants to execute the pipeline in the NGSPipes Engine (https://github.com/ngspipes/engine/wiki),
it is necessary to produce a file with extension .pipes. This file is written using the NGSPipes language
(https://github.com/ngspipes/dsl/wiki) and thus does not have visual information. For producing the file with extension
.pipes it is necessary to select the generate button or go to File -> Generate pipeline.

46 Chapter 4. NGSPipes Editor

NGSPipes Documentation, Release 1.0

Loading an existing pipeline

To load an existing pipeline, it is necessary to go to File -> Open and choose a pipeline file (with extension .wf)
or select the open button.

Multiple loaded pipelines

It is possible to have multiple loaded pipelines, but just one is active.

Figure 4.16: Multiple loaded pipelines.

Error Reporting

Each argument of a command of a given tool has a type and may be or not optional. The required arguments (not
optional) appears in a red box. The type of each argument must be one of the following: integer number; file; text;
real number or a directory. When the user assigns an incompatible type to a given argument, the editor will generate
an error message to report that situation. An example of this situation is depicted in the following figure:

4.7. Loading an existing pipeline 47

NGSPipes Documentation, Release 1.0

Figure 4.17: Incompatible value type for the selected argument.

If the user does not set a compatible value to a required argument, the editor will also generate an error message to
report that situation, when generating the pipeline specification (pressing the generate button).

Figure 4.18: Missing a value for a required argument.

48 Chapter 4. NGSPipes Editor

NGSPipes Documentation, Release 1.0

Multiple inputs

The tools can produce multiple outputs. These tools also might require multiple inputs coming from dif-
ferent tools or the same tool. When the multiple inputs are from the same tool, NGSPipes supports
it by adding a numbered label on the arrow. This functionality is depicted in the following figure:

Figure 4.19: Multiple inputs from a previous command.

Notice that this label is only visible when one of the tools is selected.

4.10. Multiple inputs 49

NGSPipes Documentation, Release 1.0

50 Chapter 4. NGSPipes Editor

CHAPTER 5

Engines

Our framework offers two engines. Based on the same definition and the same tool’s repository, a pipeline can
be put to run either on the workstation or on a compatible cloud environment. Both engines analyse the pipeline
description and transformation it to an executable format, determining resource requirements of each tool based on the
tool configuration present in the repository.

Engine for workstation

The NGSPipes engine for workstation starts with a pipeline description and transform it into a sequence of calls to the
designated tools. After this, the engine automatically configures and executes each tool in isolation from the remaining
system environment (using a dedicated virtual machine).

The NGSPipes engine for workstation is available in two flavors: a command line user interface (CUI) and a graphic
user interface (GUI). The first is ideal to use when running on remote servers (either physical or deployed as virtual
machines in the cloud), although it can also run locally. The second one can be used in systems where a graphical
display is available.

The following sections shows how to run the engine. To build from source code please follow the instructions in
subsection “Instructions to build NGS Pipes Engine from source code”.

Requirements to run the engine for workstation

The machine where engine is to be executed needs the following tools:

• Java 8 Development Kit (http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html).

• VirtualBox version >= 5.0 (https://www.virtualbox.org/wiki/Downloads). NOTE: Ensure the command
VBoxManage can be found by the command line of your operating system.

51

NGSPipes Documentation, Release 1.0

Install engine for workstation

The engine is made of a regular Java application and a VirtualBox’s compliant image (also identified as executor). To
deploy this in your system:

1. Download engine-2.0-zip from our file server and uncompress to a working directory (WD)

2. Download the executor image from here and uncompress to your work directory (WD\engine-1.0\)

3. Follow the instructions bellow to either run in a system in a console or with a graphical interface.

After these steps you should have the following file tree:

WD
|-- engine-1.0\

|-- NGSPipesEngineExecutor\
|-- NGSPipesEngineExecutor.vbox
|-- NGSPipesEngineExecutor.vdi

|-- bin\
|-- engine (CUI OSX/Linux run script)
|-- engine.bat (CUI Window run script)
|-- engine-ui (GUI OSX/Linux run script)
|-- engine-ui.bat (GUI Window run script)

|-- lib\
|-- ...

|-- (other files, e.g. the pipeline description)

Run the Engine for workstation

The engine is provided as a console application or a graphical user interface application.

command line tool

This is a regular Java application packed as a JAR file. To run, use the following command line at the working directory
(WD):

Windows:

c:\WD>engine-1.0\bin\engine.bat <mandatory arguments> [<optional arguments>]

OSX/Linux

user@machine:/home/WD$ engine-1.0/bin/engine <mandatory arguments> [<optional
arguments>]

Parameters

• The command line tool has the following mandatory parameters :

-pipes Relative ou absolute path of the pipeline description (mandatory). This file must be a .pipes extension file,
where the pipeline is written using the NGSPipes language.

-in Absolute path at the user machine where the input data files are located (mandatory).

52 Chapter 5. Engines

http://link.inesc-id.pt/pipes/engine-2.0.zip
http://link.inesc-id.pt/pipes/NGSPipesEngineExecutor.zip

NGSPipes Documentation, Release 1.0

-out Absolute path at the user machine where the output data file will be placed (mandatory).

• The command line tool has the following optional parameters :

-cpus Assigned cores. Default is 2 CPUs.

-memAssigned memory (in Gigabytes). If not present, the number of gigabytes allocated to the engine will be inferred
by analyzing the tools in the pipeline.

-from Initial pipeline step. If not present, the first step will be executed.

-to Final pipeline step. If not present, the pipeline will execute all the steps.

-executor Executor image name. If not present, uses the image located at WD/NGSPipesEngineExecutor.

Example

A small example with only manadatory arguments (a more complete description is presented in the subsection “Use
case”.

engine-1.0/bin/engine -in /home/ngs/inputs -out /home/ngs/outputs -pipes pipeline.
→˓pipes

Error reporting

The next figure shows an error report from the pipeline engine when executing a pipeline where a mandatory argument
is not specified.

The next figure shows an error report from the pipeline engine when executing a pipeline where an argument is uses
with a non-compatible value type, according to the tool’s specification.

5.1. Engine for workstation 53

NGSPipes Documentation, Release 1.0

User interface tool

The GUI version of the NGSPipes Engine for workstation allows the same operations but using a graphical interface.
When installed at a working directory (WD), the tool can be executed in the file explorer of your operating system:

Windows

WD\engine-1.0\bin\engine-ui.bat

OSX/Linux

WD/engine-1.0/bin/engine-ui

54 Chapter 5. Engines

NGSPipes Documentation, Release 1.0

If you have OSX and you you prefer the double click version to run the editor, it may appears, only the first time after
you double click it, the following info:

Figure 1

Then, go to “System Preferences” and choose “Security and Privacy”

5.1. Engine for workstation 55

NGSPipes Documentation, Release 1.0

Figure 2

Then select the button “Open anyway”

56 Chapter 5. Engines

NGSPipes Documentation, Release 1.0

Figure 3

Notice that depending on the MAC OS version, it may be necessary to unlock to make changes and to select the
option “Allow apps downloaded from Anywhere

Screen shots

The following image shows a screenshot of the main windows and a short description of each button.

5.1. Engine for workstation 57

NGSPipes Documentation, Release 1.0

There are two main tabs: Recent pipelines and Engines. The Recent pipelines tab lists the last pipelines loaded by
the application. It also allows the configuration of parameters for a selected pipeline. The Engines tab shows the
previously used instances. In each engine, different tools can already be installed. The user can choose which instance
to execute based on his knowledge of the pipeline.

Load pipeline

When loading a pipeline the user chooses the file with the pipeline description, the directory at the user’s computer
where the results are to be written and the path from where the data is to be loaded. The user can also choose which
engine instance to use.

58 Chapter 5. Engines

NGSPipes Documentation, Release 1.0

Configure pipeline

When a pipeline description in already loaded by the UI, several execution parameters can be changed: paths, engine
instance, memory and number of cores.

5.1. Engine for workstation 59

NGSPipes Documentation, Release 1.0

Execute pipeline

When an engine instance is selected and the “Run Pipeline” button is pressed, the UI will show the following window,
where output information regarding the execution steps are presented.

60 Chapter 5. Engines

NGSPipes Documentation, Release 1.0

Error reporting

Errors can occur during the execution of a pipeline. For example, the next figure shows an error related to a mandatory
argument that is not specified.

5.1. Engine for workstation 61

NGSPipes Documentation, Release 1.0

The next figure shows an error related to a mismatch between the type of value used in the pipline and the type of
parameter that is present in the specification of the tool.

62 Chapter 5. Engines

NGSPipes Documentation, Release 1.0

Use case

The following use case executes the pipeline described in the DSL section using the console version of NGSEngine.
The tools’ repository used in the pipeline is https://github.com/ngspipes/repository. It has metadata for the tools
Trimmomatic, Velvet and Blast.

• Check if requirements are met and that the engine and executor image are installed.

• Download the pipeline here and save it as pipeline.pipes to the working directory. The following exam-
ples assume the working directory is c:\ngspipes.

• Download the input data sample and place it at inputs directory (other name can be chosen). This data set
comes from the NCBI SRA, being part of a project on deep sequencing within the Streptococcus pneumoniae
antibiotic resistant pandemic clone PMEN1. Extra information on how this data was obtained can be obtained
here.

After unziping file ERR406040.fastq.zip the directory content will look like:

5.1. Engine for workstation 63

https://github.com/ngspipes/dsl/wiki#head3
https://github.com/ngspipes/repository
https://link.inesc-id.pt/pipes/example/pipeline.pipes
https://link.inesc-id.pt/pipes/example/
http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR406040
https://link.inesc-id.pt/pipes/data/

NGSPipes Documentation, Release 1.0

c:\ngspipes\inputs
|-- allrefs.fna.pro
|-- ERR406040.fastq
|-- NexteraPE-PE.fa
|-- TruSeq2-PE.fa
|-- TruSeq2-SE.fa
|-- TruSeq3-SE.fa
|-- TruSeq3-PE-2.fa
|-- TruSeq3-PE.fa
|-- TruSeq3-SE.fa

• Create the outputs directory (c:\ngspipes\outputs)

• Execute the engine at your working directory using the following command line:

Windows

c:\ngspipes>engine-1.0\bin\engine.bat -in c:\ngspipes\inputs -out
c:\ngspipes\outputs -pipes c:\ngspipes\pipeline.pipes

OSX/Linux

ngs@server:/home/ngspipes$engine-1.0/bin/engine -in /home/ngspipes/inputs -out
/home/ngspipes/outputs -pipes /home/ngspipes/pipeline.pipes

Example and description of output messages

Initial steps of the output will look like this:

Loading engine directories
Loading engine resources
Using classpath C:/Users/user/NGSPipes/Engine/dsl-1.0.jar;

C:/Users/user/NGSPipes/Engine/repository-1.0.jar
Getting engine requirements
Getting clone engine
Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
Configurating engine
Starting execute engine
Booting engine and installing necessary packages
...

Note that the cloning step only happens in the first execution of the engine. On the other hand, when a tool is used
for the first in any pipeline, the engine will automatically download and install the corresponding Docker image. An
example of output for when this is necessary is presented for the Trimmomatic tool:

...
TRACE :: STARTED ::
TRACE Running -> Step : 1 Tool : Trimmomatic Command : trimmomatic

64 Chapter 5. Engines

NGSPipes Documentation, Release 1.0

INFO Executing : sudo docker run -v /home/ngspipes/Inputs/:/shareInputs/:rw -v
/home/ngspipes/Outputs/:/shareOutputs/:rw

ngspipes/trimmomatic0.33 java -jar trimmomatic-0.33.jar SE
-phred33 /shareInputs/ERR406040.fastq /shareOutputs
ERR406040.filtered.fastq
ILLUMINACLIP:/shareInputs/adapters/TruSeq3-SE.fa:2:30:10
SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:36

INFO Unable to find image 'ngspipes/trimmomatic0.33:latest' locally
INFO latest: Pulling from ngspipes/trimmomatic0.33
INFO 511136ea3c5a: Pulling fs layer
INFO e977d53b9210: Pulling fs layer
INFO c9fa20ecce88: Pulling fs layer
...
INFO 6cf3f4911f80: Download complete
INFO Digest:
→˓sha256:44f1dea760903cdce1d75c4c9b2bd37803be2e0fbbb9e960cd8ff27048cbb997
INFO Status: Downloaded newer image for ngspipes/trimmomatic0.33:latest
INFO TrimmomaticSE: Started with arguments: -phred33 /shareInputs/ERR406040.fastq

/ shareOutputs/ERR406040.filtered.fastq
ILLUMINACLIP:/shareInputs/adapters/TruSeq3-SE.fa:2:30:10
SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:36

...

Note that this tool was previously dockerized by the NGSPipes team. For other tools, such as Velvet or Blast, there is
already public Docker images which the example pipeline uses.

When the execution finish, the following files will be at the working directory:

c:\ngspipes\outputs
|-- allrefs.phr
|-- allrefs.pin
|-- allrefs.psq
|-- blast.out
|-- filtered.fastq
|-- velvetdir/

|-- Log
|-- Roadmaps
|-- Sequences
|-- contigs.fa
|-- LastGrpah
|-- stats.txt

Execution times

The above example was executed using several hardware configurations and operating systems. The pipeline was
executed with the command line:

ngs@server:/home/ngspipes$engine-1.0/bin/engine -in /home/ngspipes/inputs
-out /home/ngspipes/outputs -pipes /home/ngspipes/pipeline.

→˓pipes

The folowing table shows execution times measured on cold and warm start situations. Cold start happens when
the engine is executed the first time after installation. Warm start represents the situation when a pipeline is being
re-executed and no updates are necessary to the tools.

| OS | CPU | RAM (GB) | Disk | Cold start | Warm start | |————-|———————|———-|——|————|——
——| | Windows 10 | Intel i5 @ 2.53 Ghz | 8 | SSD | 39 min. | 35 min. | | Windows 10 | Intel i7 @ 3.5 Ghz | 16 | HDD |

5.1. Engine for workstation 65

NGSPipes Documentation, Release 1.0

39 min. | 30 min. | | OSX | Intel(TM) i5 1.8Ghz | 8 | SSD | 41 min. | 38 min. |

(*) http://www.speedtest.net/

As expected, a cold start takes an extra time because of intial setup and download of the tools used in the pipeline.
Warm start is the common execution scenario. These values can vary depending on:

• the size of the input data;

• the number of tools and commands used in pipeline;

• the input data and resources assigned to the execution image (CPU (-cpus) and memory (-mem)).

Instructions to build NGS Pipes Engine for workstation from source code

Requirements

No specific tools must be installed to build the NGSPipes engine for workstation. The code is available at git hub
repository, which can be downloaded as a zip.

The source code repository can also be cloned. In the last case, the git version control tool must be installed first.

Build commands

To build the NGSPipes engine for workstation follow these steps:

• Download the zip or clone the git repo to your working directory. The following command will build all the
components – DSL, Tools repository and the Engine (both console and UI version).

– cd main

– git submodule init

– git submodule update

– gradlew build (This will install Gradle, if necessary)

• To generate the engine-1.0.zip and editor-1.0.zip distributions files, run gradlew distZip, at
main directory. The files will be located at the respective build/distributions directory.

Engine for cloud

The Engine for cloud solution consists of two tools: the analyser and the monitor.

The analyser inspects the given pipeline and, using the information stored in the tool meta-data repository, produces
the instructions to execute the pipeline, along with the required computational resources for its execution. These tool
produces internally a graph of tasks, which reflects the dependency among the tasks and allows to infer what can be
executed in parallel an what can only be executed in serie. These instructions are then written to a file and locally
stored, giving origin to an intermediate representation. The analyser tool can be simple executed in a workstation or
in a cloud environment.

Given the pipeline representation produced by the Analyser tool, the monitor can be launched. The monitor tool is
suitable for running in a cloud environment. It converts the intermediate representation into jobs’ descriptions readable
by Chronos and, using Chronos’s REST API, schedules them for execution. The tasks are deployed in a cluster of
machines governed by the Mesos batch job scheduling framework Chronos Having launched the pipeline, the user
can now query the system to know its current state. This results in a series of requests from the monitor to Chronos.
When the pipeline finishes the execution, the user can make a request to the monitor to download its outputs.

66 Chapter 5. Engines

http://www.speedtest.net/
https://link.inesc-id.pt/pipes/example/pipeline.pipes
https://git-scm.com/downloads
https://github.com/ngspipes/main
https://github.com/ngspipes/dsl/wiki
https://github.com/ngspipes/tools/wiki
https://github.com/ngspipes/engine/wiki
http://gradle.org/whygradle-build-automation/
https://mesos.github.io/chronos/
http://mesos.apache.org/

NGSPipes Documentation, Release 1.0

We provide a jar file with the analyser tool and a virtual machine with the monitor tool for experimental purposes,
where users can simulate a cluster. With this machine, pipelines can be tested without requiring a big amount of
computational ressources or an account in a cloud provider. Thus our solution can be tested in this virtual machine or
within a cloud provider, as described in the subsection “Install engine for cloud”.

Next figure describes the main components of this engine and their interactions. More details on this engine can be
found in this report.

5.2. Engine for cloud 67

https://gitlab.com/ngs4cloud/ngs4cloud/blob/36b53a7c40b07e5aac81c170f74b90d33bcdd4d6/docs/FinalReport.pdf

NGSPipes Documentation, Release 1.0

Requirements to run the engine for cloud

To run the analyser tool you will need:

• to have installed JRE 8.

To run the monitor (within the virtual machine that we supply for testing) you will need:

• to have installed JRE 8.

• virtualization software which supports vmdk files, like VMware or VirtualBox.

• To emulate the image is required 8GB of RAM and 1 CPU

To run the monitor (without the virtual machine that we supply for testing) you will need:

• a cluster with Chronos installed with the following requirements:

– an endpoint to Chronos REST API;

– Support for the execution od Docker jobs on all Mesos-Agents (Slaves);

– A NFS acessible on all Mesos-Agents

– SSH acess to a cluster machine that can interact with the cluster’s NFS;

Install the engine for cloud

Install the analyser

To deploy this in your system:

• Create a new directory named Analyser and download the executable to there.

• After the installlation, you should have the following tree file:

WorkingDirectory
|-- Analyser\

|-- ngs4cloud-analyser-1.0-SNAPSHOT\
|-- bin

|--ngs4cloud-analyser
|--ngs4cloud-analyser.bat (CUI Window run script)

|-- Monitor\
|-- monitor.jar

|-- (other files,...)

Install the monitor

• To deploy this in your system:

• Create a new directory named Monitor and download the jar to there.

Normally to execute monitor.jar one would need a cluster with the specifications mentioned above. However to
facilitate executing, for testing purposes, we provide a Virtual Image which emulates an appropriate cluster to
execute monitor.jar. In a cloud environment, the setting will be similar, with the corresponding credentials.

• Emulate the image of the cluster using a virtualization software which supports vmdk files, like VMware or
VirtualBox. To emulate the image is required 8GB of RAM and 1 CPU.

• In order to emulate the image (steps in Virtual Box), for instance, we should:

– Select the option New Virtual Machine. We can choose, for instance, Debian.

68 Chapter 5. Engines

http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html
http://www.vmware.com/
https://www.virtualbox.org/
http://pwp.net.ipl.pt/cc.isel/cvaz/NGSPipes/ngs4cloud-analyser-1.0-SNAPSHOT.zip
http://tinyurl.com/j22n92z
http://tinyurl.com/j22n92z
http://tinyurl.com/h8xg4n7
http://www.vmware.com/
https://www.virtualbox.org/

NGSPipes Documentation, Release 1.0

– Select the option Using an existing virtual hard disk file.

– Select the option Create (for creating a virtual machine).

– After creating, it is necessary to configure SSH between The host system and virtual box guest.

– Then, add a NAT Network in Virtual Box menu, namely, Virtual Box --> Preferences.

– Then, add vboxnext0 in Virtual Box menu, namely, Virtual Box --> Preferences.

– Then, select the created virtual machine and select this settings. In its settings:

* Check if the IO APIC is enabled, namely in Settings-->System;

* Select to attach to HostOnlyAdapter the name vboxnet0, namely in Settings-->Adapter
2

* Select to attach NAT Network the name NAT Network, namely in Settings-->Adapter 1

• Launch (Start) the created virtual machine.

• After launching the virtual machine, wait for the graphical environment and log in the desktop using the follow-
ing credentials:

User: ngs4cloud
Pass: cloud123

• Open a terminal and type the command

/sbin/ifconfig

and get the ip of Virtual Machine.

• If necessary, you may have to configure the ip of the Virtual Machine. For example sudo ifconfig eth1
1§92.168.56.2

• Now back to the host OS. If you try to execute the monitor the following message will be shown +

"The environment variable NGS4_CLOUD_MONITOR_CONFIGS
needs to be defined with the path of the configuration file"

• Therefore we need to first setup the configurations so that we can execute the monitor. In same directory where
monitor.jar is, create a file named configs and open it. Now write on the file the following configurations:

SSH_HOST = "The ip of the virtual machine"
SSH_PORT = 22
SSH_USER = ngs4cloud
SSH_PASS = cloud123
CHRONOS_HOST = "The ip of the virtual machine"
CHRONOS_PORT = 4400
PIPELINE_OWNER = example@example.com
CLUSTER_SHARED_DIR_PATH = /home/ngs4cloud/pipes
WGET_DOCKER_IMAGE = jnforja/wget
P7ZIP_DOCKER_IMAGE = jnforja/7zip

• An example of the configs.txt is

SSH_HOST = 192.168.56.2
SSH_PORT = 22
SSH_USER = ngs4cloud
SSH_PASS = cloud123
CHRONOS_HOST = 192.168.56.2

5.2. Engine for cloud 69

NGSPipes Documentation, Release 1.0

CHRONOS_PORT = 4400
PIPELINE_OWNER = example@example.com
CLUSTER_SHARED_DIR_PATH = /home/ngs4cloud/pipes
WGET_DOCKER_IMAGE = jnforja/wget
P7ZIP_DOCKER_IMAGE = jnforja/7zip

• After defining the config.txt file, it is necessary to set the environment variable.

• For instance, in MAC OS, for setting the environment variable is to open a terminal in the current Monitor di-
rectory and then do export NGS4_CLOUD_MONITOR_CONFIGS=configs.txt if config.txtis also
in the Monitor directory.

• In the monitor directory create another directory called repo and add the following entry to the configs file:

EXECUTION_TRACKER_REPO_PATH = "The repo directory path"

• As an example, configsfile should look like:

SSH_HOST = 192.168.56.2
SSH_PORT = 22
SSH_USER = ngs4cloud
SSH_PASS = cloud123
CHRONOS_HOST = 192.168.56.2
CHRONOS_PORT = 4400
PIPELINE_OWNER = example@example.com
CLUSTER_SHARED_DIR_PATH = /home/ngs4cloud/pipes
WGET_DOCKER_IMAGE = jnforja/wget
P7ZIP_DOCKER_IMAGE = jnforja/7zip
EXECUTION_TRACKER_REPO_PATH = /Users/cvaz/Documents/pipelines/Monitor/repo

Save the configs file and close it. Now to finish configuring the monitor just add a environment variable named
NGS4_CLOUD_MONITOR_CONFIGS with the path of the configs file as value.

Open a terminal and execute monitor.jar, a message explaining all the commands the monitor can execute should
appear.

Run the Engine for cloud

Run the Analyser

This a regular Java application package as a JAR file. To run, open a terminal and execute the command analyse at
the working directory.

user@machine:/home/workingDirectory$./bin/ngs4cloud-analyser analyse
analyse <mandatory arguments>

Parameters

The command line tool has the following mandatory parameters:

• -pipes Relative ou absolute path of the pipeline description (mandatory). This file must be a .pipes exten-
sion file, where the pipeline is written using the NGSPipes language.

• -ir Intermediate representation file produced by the analyser. This filepath should be provided by the user.

• This file will be given as input to the monitor tool.

• -input The URI with the location of the inputs for the pipeline.

70 Chapter 5. Engines

NGSPipes Documentation, Release 1.0

• -outputs $space_separated_list_of_outputs.

In this current version of the Analyser tool, the input must always be an URI. And since usually we have more than
one input for each pipeline, the same can be zipped. If the input is not an URI already, we can create a shared link in
dropbox, for instance, and use that URI.

Example

Here is an example:

./bin/ngs4cloud-analyser analyse -pipes ./pipelines/pipeline.pipes
-ir ./ir/ir.json
-input https://github.com/CFSAN-Biostatistics/snp-pipeline/archive/

→˓master.zip
-outputs snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snplist.

→˓txt
snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snpma.

→˓fasta

This will analyse and process the file -pipes, store the IR in the file -ir, set the input and outputs for -ir and
-output.

To execute the pipeline on a simulated environment, see subsection . . .

Run the monitor

In this section, we describe how to run the monitor with the virtual image provided for testing, after setting up
the virtual imagem, as explained before. In a cloud environment, the setting will be similar, with the corresponding
credentials.

Open a terminal and execute monitor.jar, a message explaining all the commands the monitor can execute should
appear. The application monitor is a regular Java application package as a JAR file. To run, open a terminal and
execute the command monitor at the working directory.

This aplication has 3 commands:

• launch, to lauch the execution of a pipeline. This command is followed with the filepath of a IR file (a file
produced by the analyser tool.

• This command returns an integer, which is the id of the launched pipeline.

• status, to check the state of the pipeline execution. This command is followed by the ÌD returned by a
execution of the previous command

• outputs, to download the outputs of a pipeline execution after it has finished. This command is followed by
the ÌD of the pipeline. Notice that this will only download the outputs that were previously specified by the
analyser tool to be downloaded for this pipeline.

Example

Here is an example:

"java -jar monitor.jar launch ir.json"

The pipeline represented in the file ir.json, which in this example is assumed to be in the same directory as
the monitor.jar, is launched for execution. You will now see in the console messages regarding the upload of the input
file. Once the upload is finished a message like this will appear "ID: 1", this is the ID attributed to the launched
pipeline.

To check the state of the pipeline execution type the following command:

5.2. Engine for cloud 71

NGSPipes Documentation, Release 1.0

"java -jar monitor.jar status 1"

notice that “1” is the id of pipeline, which was given in the previous step. If the pipeline has finished executing this
message will appear

"The pipeline execution has finished with success."

When the pipeline execution has finished type the following commands to download its outputs:

"java -jar monitor.jar outputs 1 ."

This will download the outputs of the pipeline to the directory where the monitor is beeing executed.

Here is a video for demostrating the previous steps:

72 Chapter 5. Engines

CHAPTER 6

Running Examples

A pipeline used on epidemiological surveillance

In this section we present a pipeline used on epidemiological surveillance. The aim is to characterize bacterial strains
through allelic profiles . When sequencing a bacterial strain by paired end methods with desired depth of coverage of
100x (in average each position in the genome will be covered by 100 reads), the output from the sequencer will be two
FASTQ files containing the reads. Each read typically will have 90-250 nucleotides length, using Illumina technology.
The first data processing step is to trim the reads for removing the adapters used in the sequencing process and any
tags used to identify the experiment in a run.

In de novo assembly, software such as Velvet is used to obtain a draft genome composed of contigs, longer DNA
sequences resulting from assembling multiple reads. The draft genome can be compared to databases of gene alleles
for multiple loci using BLAST. Given BLAST results we can create an allelic profile characterizing the strain.

Pipeline "Github" "https://github.com/ngspipes/tools" {
tool "Trimmomatic" "DockerConfig" {
command "trimmomatic" {

argument "mode" "SE"
argument "quality" "-phred33"
argument "inputFile" "study1/ERR406040.fastq"
argument "outputFile" "ERR406040.filtered.fastq"
argument "fastaWithAdaptersEtc" "study1/TruSeq3-SE.fa"
argument "seed mismatches" "2"
argument "palindrome clip threshold" "30"
argument "simple clip threshold" "10"
argument "windowSize" "4"
argument "requiredQuality" "15"
argument "leading quality" "3"
argument "trailing quality" "3"
argument "minlen length" "36"

}
}
tool "Velvet" "DockerConfig" {
command "velveth" {

73

NGSPipes Documentation, Release 1.0

argument "output_directory" "velvetdir"
argument "hash_length" "21"
argument "file_format" "-fastq"
chain "filename" "outputFile"

}
command "velvetg" {

argument "output_directory" "velvetdir"
argument "-cov_cutoff" "5"

}
}
tool "Blast" "DockerConfig" {
command "makeblastdb" {

argument "-dbtype" "prot"
argument "-out" "allrefs"
argument "-title" "allrefs"
argument "-in" "study1/allrefs.fna.pro"

}
command "blastx" {

chain "-db" "-out"
chain "-query" "Velvet" "velvetg" "contigs_fa"
argument "-out" "blast.out"

}
}

}

Example 6.1: A pipeline used on epidemiological surveillance.

A visual representation of this pipeline described in Example 6.1 is presented in the Figure 6.1. Moreover, in this
figure is also possible to observe other execution orders that are feasible to execute this pipeline in the engine for
workstation.

74 Chapter 6. Running Examples

NGSPipes Documentation, Release 1.0

Figure 6.1: Visual representation of the execution, in the engine for workstation, of the pipeline described in

6.1. A pipeline used on epidemiological surveillance 75

NGSPipes Documentation, Release 1.0

Example 6.1.

In the engine for cloud, different steps of the pipeline can be executed in different machines, it is only necessary to
respect its depedencies, as it is shown in the Figure 2.2.

76 Chapter 6. Running Examples

NGSPipes Documentation, Release 1.0

6.1. A pipeline used on epidemiological surveillance 77

NGSPipes Documentation, Release 1.0

Figure 6.2: Visual representation of the execution, in the engine for cloud, of the pipeline described in Example
6.1.

Input data is available here

Running this example in Engine for workstation

Note Please, be sure that the Engine for Workstation is already installed. For this, follow the steps that are in section:

Engine->Engine for Workstation-> Install engine for workstation.

Since the engine for workstation is provided as a console application or a graphical user interface application, we will
describe how to do with the console application (for more information on how to user the graphical user interface,
please look at the section: Engine->Engine for Workstation-> Run engine for workstation.

• After the installation, you should have the following tree file:

WD
|-- engine-1.0\

|-- NGSPipesEngineExecutor\
|-- NGSPipesEngineExecutor.vbox
|-- NGSPipesEngineExecutor.vdi

|-- bin\
|-- engine (CUI OSX/Linux run script)
|-- engine.bat (CUI Window run script)
|-- engine-ui (GUI OSX/Linux run script)
|-- engine-ui.bat (GUI Window run script)

|-- lib\
|-- ...

|-- (other files, ...)

• Download the data available here

• After unzipping, the directory content look like, for instance,

/home/ngspipes/study1
|-- allrefs.fna.pro
|-- ERR406040.fastq
|-- NexteraPE-PE.fa
|-- TruSeq2-PE.fa
|-- TruSeq2-SE.fa
|-- TruSeq3-SE.fa
|-- TruSeq3-PE-2.fa
|-- TruSeq3-PE.fa
|-- TruSeq3-SE.fa

• Create a file casestudy1.pipes(.pipesis the extension containing the pipeline previously described in
Figure 6.1. Assume that, on the following casestudy1.pipes is inside the directory study1.

• Create the outputs directory (/home/ngspipes/outputs)

• Execute the engine at your working directory using the following command line:

Windows

c:\ngspipes>engine-1.0\bin\engine.bat -in c:\ngspipes\study1 -out
c:\ngspipes\outputs -pipes c:\ngspipes\casestudy1.pipes

78 Chapter 6. Running Examples

https://www.dropbox.com/s/h8e8t3prt9f0gq3/study1.zip?dl=0
https://www.dropbox.com/s/h8e8t3prt9f0gq3/study1.zip?dl=0

NGSPipes Documentation, Release 1.0

OSX/Linux

ngs@server:/home/ngspipes$engine-1.0/bin/engine -in /home/ngspipes/inputs -out
/home/ngspipes/outputs -pipes /home/ngspipes/casestudy1.pipes

Example and description of output messages

Initial steps of the output will look like this:

Loading engine directories
Loading engine resources
Using classpath C:/Users/user/NGSPipes/Engine/dsl-1.0.jar;

C:/Users/user/NGSPipes/Engine/repository-1.0.jar
Getting engine requirements
Getting clone engine
Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
Configurating engine
Starting execute engine
Booting engine and installing necessary packages
...

Note that the cloning step only happens in the first execution of the engine. On the other hand, when a tool is used
for the first in any pipeline, the engine will automatically download and install the corresponding Docker image. An
example of output for when this is necessary is presented for the Trimmomatic tool:

...
TRACE :: STARTED ::
TRACE Running -> Step : 1 Tool : Trimmomatic Command : trimmomatic
INFO Executing : sudo docker run -v /home/ngspipes/Inputs/:/shareInputs/:rw -v

/home/ngspipes/Outputs/:/shareOutputs/:rw
ngspipes/trimmomatic0.33 java -jar trimmomatic-0.33.jar SE
-phred33 /shareInputs/ERR406040.fastq /shareOutputs
ERR406040.filtered.fastq
ILLUMINACLIP:/shareInputs/adapters/TruSeq3-SE.fa:2:30:10
SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:36

INFO Unable to find image 'ngspipes/trimmomatic0.33:latest' locally
INFO latest: Pulling from ngspipes/trimmomatic0.33
INFO 511136ea3c5a: Pulling fs layer
INFO e977d53b9210: Pulling fs layer
INFO c9fa20ecce88: Pulling fs layer
...
INFO 6cf3f4911f80: Download complete
INFO Digest:
→˓sha256:44f1dea760903cdce1d75c4c9b2bd37803be2e0fbbb9e960cd8ff27048cbb997
INFO Status: Downloaded newer image for ngspipes/trimmomatic0.33:latest
INFO TrimmomaticSE: Started with arguments: -phred33 /shareInputs/ERR406040.fastq

/ shareOutputs/ERR406040.filtered.fastq
ILLUMINACLIP:/shareInputs/adapters/TruSeq3-SE.fa:2:30:10
SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:36

...

6.1. A pipeline used on epidemiological surveillance 79

NGSPipes Documentation, Release 1.0

Note that this tool was previously dockerized by the NGSPipes team. For other tools, such as Velvet or Blast, there is
already public Docker images which the example pipeline uses.

When the execution finish, the following files will be at the working directory:

home/ngspipes/outputs
|-- allrefs.phr
|-- allrefs.pin
|-- allrefs.psq
|-- blast.out
|-- filtered.fastq
|-- velvetdir/

|-- Log
|-- Roadmaps
|-- Sequences
|-- contigs.fa
|-- LastGrpah
|-- stats.txt

Running this example in Engine for Cloud

Note Please, be sure that the Engine for Cloud is already installed. For this, follow the steps that are in section:

Engine->Engine for Cloud-> Install engine for cloud.

If previously installed, please ensure that:

• the ip of the virtual machine is configured

• the environment variable is stablished on the terminal that you are executing the monitor. For managing these
settings, please also consult the section:

Engine->Engine for Cloud-> Install engine for cloud.

After the installation, you should have the following tree file:

WorkingDirectory
|-- Analyser\

|-- ngs4cloud-analyser-1.0-SNAPSHOT\
|-- bin

|--ngs4cloud-analyser
|--ngs4cloud-analyser.bat (CUI Window run script)

|-- Monitor\
|-- monitor.jar

|-- (other files,...)

• Input data is available here, but is not necessary to download. Input data in Engine for Cloud engine is always
passed as an URI.

• Create a file casestudy1.pipes(.pipesis the extension containing the pipeline previously de-
scribed in Figure 6.1. Assume that, on the following, casestudy1.pipes is inside the directory
ngs4cloud-analyser-1.0-SNAPSHOT.

• Start by execution the analyser tool, in order to produce an file with jsonextension.

80 Chapter 6. Running Examples

https://www.dropbox.com/s/h8e8t3prt9f0gq3/study1.zip?dl=0

NGSPipes Documentation, Release 1.0

OSX/Linux

ngs@server:ngs4cloud-analyser-1.0-SNAPSHOT$./bin/ngs4cloud-analyser analyse
-pipes casestudy1.pipes
-ir ir1.json
-input https://www.dropbox.com/s/h8e8t3prt9f0gq3/study1.zip?dl=0
-outputs blast.out velvetdir/contigs.fa

• This execution will produce the file ir1.json.

• Then, copy the ir1.json inside to directory Monitor

• Before executing the Monitor, please assure that the Virtual Machine with the cluster image given for test
purposes is lauched and correctly settled (please, see the section

Engine->Engine for cloud->
Install the engine for cloud -> Install the monitor

• Launch the pipeline into the cluster through the monitor command

ngs@server:Monitor$ java -jar monitor.jar launch ir1.json

• The previous command with generate a pipeline id. Assume in this example that the id is 1.

• Consult the status of the pipeline by its id

ngs@server:Monitor$ java -jar monitor.jar status 1

• After pipeline is finished, it is possible to download its results from the cluster to a previously defined directory
inside the Monitordirectory.

ngs@server:Monitor$ java -jar monitor.jar outputs 1 resultsDirectory

• resultsDirectory is the directory that contains a copy of the outputs that where previously specified by
the analyser that should be copied; 1 is the pipeline ìd

For more information about the analyser and monitor commands and its parameters, please see section

Engine->Engine for cloud->Run the engine for cloud

A pipeline used on ChiP-Seq analysis

In this section we present a pipeline used on ChiP-Seq analysis. This pipeline includes mapping with bowtie2, convert-
ing the output to bam format, sorting the bam file, creating a bam index file, running flagstat command, and removing
duplicates with picard. So, this pipeline can be used in a ChiP-Seq pipeline that uses the resulting bam file for peak
calling and creating heatmaps. Since those steps are generic that can be used for ATAC-Seq analysis too.

Pipeline "Github" "https://github.com/ngspipes/tools" {
tool "Bowtie2" "DockerConfig" {

command "bowtie2-build" {
argument "reference_in" "study2/sequence.fasta"
argument "bt2_base" "sequence"

}
}
tool "Bowtie2" "DockerConfig" {

command "bowtie2" {

6.2. A pipeline used on ChiP-Seq analysis 81

NGSPipes Documentation, Release 1.0

argument "-U" "study2/SRR386886.fastq"
argument "-x" "sequence"
argument "--trim3" "1"
argument "-S" "eg2.sam"

}
}
tool "Samtools" "DockerConfig" {

command "view" {
argument "-b" "NA"
argument "-o" "eg2.bam"
chain "input" "-S"

}
}
tool "Samtools" "DockerConfig" {

command "sort" {
argument "-o" "eg2.sorted.bam"
chain "input" "-o"

}
}
tool "Picard" "DockerConfig" {

command "MarkDuplicates" {
chain "INPUT" "-o"
argument "OUTPUT" "marked_duplicates.bam"
argument "REMOVE_DUPLICATES" "true"
argument "METRICS_FILE" "metrics.txt"

}
}

}

Example 6.2: A pipeline used on ChiP-Seq analysis.

A visual representation of this pipeline is presented in the next figure.

82 Chapter 6. Running Examples

NGSPipes Documentation, Release 1.0

Figure 6.2: Visual representation of the execution, in both engines, of the pipeline described in Example 6.2.

6.2. A pipeline used on ChiP-Seq analysis 83

NGSPipes Documentation, Release 1.0

Running this example in Engine for workstation

Similar to the prevous example.

Running this example in Engine for Cloud

It is similar to the previous example.

Note Please, be sure that the Engine for Cloud is already installed. For this, follow the steps that are in section:

Engine->Engine for Cloud-> Install engine for cloud.

If previously installed, please ensure that:

• the ip of the virtual machine is configured

• the environment variable is stablished on the terminal that you are executing the monitor. For managing these
settings, please also consult the section:

Engine->Engine for Cloud-> Install engine for cloud.

After the installation, you should have the following tree file:

WorkingDirectory
|-- Analyser\

|-- ngs4cloud-analyser-1.0-SNAPSHOT\
|-- bin

|--ngs4cloud-analyser
|--ngs4cloud-analyser.bat (CUI Window run script)

|-- Monitor\
|-- monitor.jar

|-- (other files,...)

• Input data is available here, but is not necessary to download. Input data in Engine for Cloud engine is always
passed as an URI.

• Create a file casestudy2.pipes(.pipesis the extension containing the pipeline previously de-
scribed in Figure 6.2. Assume that, on the following, casestudy2.pipes is inside the directory
ngs4cloud-analyser-1.0-SNAPSHOT.

• Start by execution the analyser tool, in order to produce an file with jsonextension.

OSX/Linux

ngs@server:ngs4cloud-analyser-1.0-SNAPSHOT$./bin/ngs4cloud-analyser analyse
-pipes casestudy2.pipes
-ir ir2.json
-input https://www.dropbox.com/s/filps3qavvhjta7/study2.zip?dl=0
-outputs metrics.txt

• This execution will produce the file ir2.json.

• Then, copy the ir2.json inside to directory Monitor

• Before executing the Monitor, please assure that the Virtual Machine with the cluster image given for test
purposes is lauched and correctly settled (please, see the section

Engine->Engine for cloud->
Install the engine for cloud -> Install the monitor

84 Chapter 6. Running Examples

https://www.dropbox.com/s/filps3qavvhjta7/study2.zip?dl=0

NGSPipes Documentation, Release 1.0

• Launch the pipeline into the cluster through the monitor command

ngs@server:Monitor$ java -jar monitor.jar launch ir2.json

• The previous command with generate a pipeline id. Assume in this example that the id is 2.

• Consult the status of the pipeline by its id

ngs@server:Monitor$ java -jar monitor.jar status 2

• After pipeline is finished, it is possible to download its results from the cluster to a previously defined directory
inside the Monitordirectory.

ngs@server:Monitor$ java -jar monitor.jar outputs 2 resultsDirectory2

• resultsDirectory is the directory that contains a copy of the outputs that where previously specified by
the analyser that should be copied; 2 is the pipeline ìd

For more information about the analyser and monitor commands and its parameters, please see section

Engine->Engine for cloud->Run the engine for cloud

A pipeline using listing tools

A specific use of NGS data in public health is the determination of the relationship between samples potentially
associated with a foodborne pathogen outbreak. This relationship can be determined from the phylogenetic analysis
of a DNA sequence alignment containing only variable positions, which we refer to as a SNP matrix. The applications
of such a matrix include inferring a phylogeny for systematic studies and determining within traceback investigations
whether a clinical sample is significantly different from environmental/product samples.

This case study is a pipeline which combines all the steps necessary to construct a reference-based SNP matrix from
an NGS sample data set.The pipeline starts with the mapping of NGS reads to a reference genome using Bowtie2,
then it continues with the processing of those mapping (BAM) files using SAMtools, identification of variant sites
using VarScan3, and ends with the production of a SNP matrix using custom Python scripts (calling of SNPs at each
variant site, combining the SNPs into a SNP matrix). The Python scripts are reused from the CFSAN SNP Pipeline: an
automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer Science 1:e20
https://doi.org/10.7717/peerj-cs.20. As it can be observed in this data set, there are four samples, whose dataflow
process is more detailed in the documentation page of this pipeline.

Pipeline "Github" "https://github.com/Vacalexis/tools" {
tool "snp-pipeline" "DockerConfig" {

command "create_sample_dirs" {
argument "-d" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/*"
argument "--output" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/sampleDirectories.txt"
}

}

tool "Bowtie2" "DockerConfig" {
command "bowtie2-build" {

argument "reference_in" "snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/reference/lambda_virus.fasta"

argument "bt2_base" "reference"
}
command "bowtie2" {

6.3. A pipeline using listing tools 85

http://snp-pipeline.readthedocs.io/en/latest/dataflow.html

NGSPipes Documentation, Release 1.0

argument "-p" "1"
argument "-q" "-q"
argument "-x" "reference"
argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample1/sample1_1.fastq"
argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample1/sample1_2.fastq"
argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads1.sam"
}
command "bowtie2" {

argument "-p" "1"
argument "-q" "-q"
argument "-x" "reference"
argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample2/sample2_1.fastq"
argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample2/sample2_2.fastq"
argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads2.sam"
}
command "bowtie2" {

argument "-p" "1"
argument "-q" "-q"
argument "-x" "reference"
argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample3/sample3_1.fastq"
argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample3/sample3_2.fastq"
argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads3.sam"
}
command "bowtie2" {

argument "-p" "1"
argument "-q" "-q"
argument "-x" "reference"
argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample4/sample4_1.fastq"
argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓samples/sample4/sample4_2.fastq"
argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/

→˓reads4.sam"
}

}
tool "Listing" "DockerConfig" {

command "startListing" {
argument "referenceName" "reads.sam"
argument "filesList" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/reads1.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/
→˓reads2.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads3.sam snp-
→˓pipeline-master/snppipeline/data/lambdaVirusInputs/reads4.sam"

}
}
tool "Samtools" "DockerConfig" {

command "view" {
argument "-b" "-b"

86 Chapter 6. Running Examples

NGSPipes Documentation, Release 1.0

argument "-S" "-S"
argument "-F" "4"
argument "-o" "reads.unsorted.bam"
argument "input" "reads.sam"

}
command "sort" {
argument "-o" "reads.sorted.bam"
argument "input" "reads.unsorted.bam"

}
command "mpileup" {

argument "--fasta-ref" "snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/reference/lambda_virus.fasta"

argument "input" "reads.sorted.bam"
argument "--output" "reads.pileup"

}
}
tool "VarScan" "DockerConfig" {

command "mpileup2snp" {
argument "mpileupFile" "reads.pileup"
argument "--min-var-freq" "0.90"
argument "--output-vcf" "1"
argument "output" "var.flt.vcf"

}
}
tool "Listing" "DockerConfig" {

command "stopListing" {
argument "referenceName" "var.flt.vcf"
argument "destinationFiles" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/samples/sample1/var.flt.vcf snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/samples/sample2/var.flt.vcf snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/samples/sample3/var.flt.vcf snp-pipeline-master/snppipeline/data/
→˓lambdaVirusInputs/samples/sample4/var.flt.vcf"

}
}
tool "snp-pipeline" "DockerConfig" {

command "create_snp_list" {
argument "--vcfname" "var.flt.vcf"
argument "--output" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/snplist.txt"
argument "sampleDirsFile" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/sampleDirectories.txt"
}

}
tool "Listing" "DockerConfig" {

command "restartListing" {
argument "referenceName" "reads.pileup"

}
}
tool "snp-pipeline" "DockerConfig" {

command "call_consensus" {
argument "--snpListFile" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/snplist.txt"
argument "--output" "consensus.fasta"
argument "--vcfFileName" "consensus.vcf "
argument "allPileupFile" "reads.pileup"

}
}
tool "Listing" "DockerConfig" {

6.3. A pipeline using listing tools 87

NGSPipes Documentation, Release 1.0

command "stopListing" {
argument "referenceName" "consensus.fasta"
argument "destinationFiles" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/samples/sample1/consensus.fasta snp-pipeline-master/snppipeline/
→˓data/lambdaVirusInputs/samples/sample2/consensus.fasta snp-pipeline-master/
→˓snppipeline/data/lambdaVirusInputs/samples/sample3/consensus.fasta snp-pipeline-
→˓master/snppipeline/data/lambdaVirusInputs/samples/sample4/consensus.fasta"

}
}
tool "snp-pipeline" "DockerConfig" {

command "create_snp_matrix" {
argument "sampleDirsFile" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/sampleDirectories.txt"
argument "--consFileName" "consensus.fasta"
argument "--output" "snp-pipeline-master/snppipeline/data/

→˓lambdaVirusInputs/snpma.fasta"
}

}
}

88 Chapter 6. Running Examples

NGSPipes Documentation, Release 1.0

Figure 6.3: Figure from Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A, Rand H, Strain E. (2015) CFSAN
SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ
Computer Science 1:e20 https://doi.org/10.7717/peerj-cs.20

6.3. A pipeline using listing tools 89

NGSPipes Documentation, Release 1.0

Running this example in Engine for Cloud

It is similar to the previous example. Note that this tool types are only avaiable for running in the Engine for
Cloud.

Note Please, be sure that the Engine for Cloud is already installed. For this, follow the steps that are in section:

Engine->Engine for Cloud-> Install engine for cloud.

If previously installed, please ensure that:

• the ip of the virtual machine is configured

• the environment variable is stablished on the terminal that you are executing the monitor. For managing these
settings, please also consult the section:

Engine->Engine for Cloud-> Install engine for cloud.

After the installation, you should have the following tree file:

WorkingDirectory
|-- Analyser\

|-- ngs4cloud-analyser-1.0-SNAPSHOT\
|-- bin

|--ngs4cloud-analyser
|--ngs4cloud-analyser.bat (CUI Window run script)

|-- Monitor\
|-- monitor.jar

|-- (other files,...)

• Input data is available here, but is not necessary to download. Input data in Engine for Cloud engine is always
passed as an URI.

• Create a file casestudy3.pipes(.pipesis the extension containing the pipeline previously de-
scribed in Figure 6.3. Assume that, on the following, casestudy3.pipes is inside the directory
ngs4cloud-analyser-1.0-SNAPSHOT.

• Start by execution the analyser tool, in order to produce an file with jsonextension.

OSX/Linux

ngs@server:ngs4cloud-analyser-1.0-SNAPSHOT$./bin/ngs4cloud-analyser analyse
-pipes casestudy3.pipes
-ir ir3.json
-input https://github.com/CFSAN-Biostatistics/snp-pipeline/archive/master.

→˓zip
-outputs snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snplist.txt

→˓snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snpma.fasta

• This execution will produce the file ir3.json.

• Then, copy the ir3.json inside to directory Monitor

• Before executing the Monitor, please assure that the Virtual Machine with the cluster image given for test
purposes is lauched and correctly settled (please, see the section

Engine->Engine for cloud->
Install the engine for cloud -> Install the monitor

• Launch the pipeline into the cluster through the monitor command

90 Chapter 6. Running Examples

https://github.com/CFSAN-Biostatistics/snp-pipeline/archive/master.zip

NGSPipes Documentation, Release 1.0

ngs@server:Monitor$ java -jar monitor.jar launch ir3.json

• The previous command with generate a pipeline id. Assume in this example that the id is 3.

• Consult the status of the pipeline by its id

ngs@server:Monitor$ java -jar monitor.jar status 3

• After pipeline is finished, it is possible to download its results from the cluster to a previously defined directory
inside the Monitordirectory.

ngs@server:Monitor$ java -jar monitor.jar outputs 3 resultsDirectory3

• resultsDirectory is the directory that contains a copy of the outputs that where previously specified by
the analyser that should be copied; 3 is the pipeline ìd

For more information about the analyser and monitor commands and its parameters, please see section

Engine->Engine for cloud->Run the engine for cloud

// : # (##A pipeline using split and join tools (for executing only with Engine for Cloud))

6.3. A pipeline using listing tools 91

	NGSPipes overview
	NGSPipes Team

	NGSPipes DSL
	Primitives
	Full NGSPipes DSL syntax
	Examples

	NGSPipes repository
	Tool names
	Tool descriptors
	Tool configurators
	Defining your own tool repository
	Tool Types

	NGSPipes Editor
	Download NGSPipes Editor
	Execute NGSPipes Editor
	NGSPipes Editor Sections
	Select the tools repository
	Creating a new Pipeline
	Generate the final pipeline version to execute
	Loading an existing pipeline
	Multiple loaded pipelines
	Error Reporting
	Multiple inputs

	Engines
	Engine for workstation
	Engine for cloud

	Running Examples
	A pipeline used on epidemiological surveillance
	A pipeline used on ChiP-Seq analysis
	A pipeline using listing tools

