

 Navigation

 	
 index

 	ng latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/ng/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/ng/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ng latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 README.html

 Navigation

 		
 index

 		ng latest documentation »

 [image: nginx 1.11.6] [image: License MIT] [image: Build Status] [https://travis-ci.org/jwilder/nginx-proxy] [image:] [https://hub.docker.com/r/jwilder/nginx-proxy] [image:] [https://hub.docker.com/r/jwilder/nginx-proxy]

nginx-proxy sets up a container running nginx and docker-gen [https://github.com/jwilder/docker-gen]. docker-gen generates reverse proxy configs for nginx and reloads nginx when containers are started and stopped.

See Automated Nginx Reverse Proxy for Docker [http://jasonwilder.com/blog/2014/03/25/automated-nginx-reverse-proxy-for-docker/] for why you might want to use this.

Usage

To run it:

$ docker run -d -p 80:80 -v /var/run/docker.sock:/tmp/docker.sock:ro jwilder/nginx-proxy

Then start any containers you want proxied with an env var VIRTUAL_HOST=subdomain.youdomain.com

$ docker run -e VIRTUAL_HOST=foo.bar.com ...

The containers being proxied must expose [https://docs.docker.com/reference/run/#expose-incoming-ports] the port to be proxied, either by using the EXPOSE directive in their Dockerfile or by using the --expose flag to docker run or docker create.

Provided your DNS is setup to forward foo.bar.com to the a host running nginx-proxy, the request will be routed to a container with the VIRTUAL_HOST env var set.

Docker Compose

version: '2'
services:
 nginx-proxy:
 image: jwilder/nginx-proxy
 container_name: nginx-proxy
 ports:
 - "80:80"
 volumes:
 - /var/run/docker.sock:/tmp/docker.sock:ro

 whoami:
 image: jwilder/whoami
 container_name: whoami
 environment:
 - VIRTUAL_HOST=whoami.local

$ docker-compose up
$ curl -H "Host: whoami.local" localhost
I'm 5b129ab83266

Multiple Ports

If your container exposes multiple ports, nginx-proxy will default to the service running on port 80. If you need to specify a different port, you can set a VIRTUAL_PORT env var to select a different one. If your container only exposes one port and it has a VIRTUAL_HOST env var set, that port will be selected.

Multiple Hosts

If you need to support multiple virtual hosts for a container, you can separate each entry with commas. For example, foo.bar.com,baz.bar.com,bar.com and each host will be setup the same.

Wildcard Hosts

You can also use wildcards at the beginning and the end of host name, like *.bar.com or foo.bar.*. Or even a regular expression, which can be very useful in conjunction with a wildcard DNS service like xip.io [http://xip.io], using ~^foo\.bar\..*\.xip\.io will match foo.bar.127.0.0.1.xip.io, foo.bar.10.0.2.2.xip.io and all other given IPs. More information about this topic can be found in the nginx documentation about server_names [http://nginx.org/en/docs/http/server_names.html].

Multiple Networks

With the addition of overlay networking [https://docs.docker.com/engine/userguide/networking/get-started-overlay/] in Docker 1.9, your nginx-proxy container may need to connect to backend containers on multiple networks. By default, if you don’t pass the --net flag when your nginx-proxy container is created, it will only be attached to the default bridge network. This means that it will not be able to connect to containers on networks other than bridge.

If you want your nginx-proxy container to be attached to a different network, you must pass the --net=my-network option in your docker create or docker run command. At the time of this writing, only a single network can be specified at container creation time. To attach to other networks, you can use the docker network connect command after your container is created:

$ docker run -d -p 80:80 -v /var/run/docker.sock:/tmp/docker.sock:ro \
 --name my-nginx-proxy --net my-network jwilder/nginx-proxy
$ docker network connect my-other-network my-nginx-proxy

In this example, the my-nginx-proxy container will be connected to my-network and my-other-network and will be able to proxy to other containers attached to those networks.

SSL Backends

If you would like the reverse proxy to connect to your backend using HTTPS instead of HTTP, set VIRTUAL_PROTO=https on the backend container.

uWSGI Backends

If you would like to connect to uWSGI backend, set VIRTUAL_PROTO=uwsgi on the
backend container. Your backend container should than listen on a port rather
than a socket and expose that port.

Default Host

To set the default host for nginx use the env var DEFAULT_HOST=foo.bar.com for example

$ docker run -d -p 80:80 -e DEFAULT_HOST=foo.bar.com -v /var/run/docker.sock:/tmp/docker.sock:ro jwilder/nginx-proxy

Separate Containers

nginx-proxy can also be run as two separate containers using the jwilder/docker-gen [https://index.docker.io/u/jwilder/docker-gen/]
image and the official nginx [https://registry.hub.docker.com/_/nginx/] image.

You may want to do this to prevent having the docker socket bound to a publicly exposed container service.

You can demo this pattern with docker-compose:

$ docker-compose --file docker-compose-separate-containers.yml up
$ curl -H "Host: whoami.local" localhost
I'm 5b129ab83266

To run nginx proxy as a separate container you’ll need to have nginx.tmpl [https://github.com/jwilder/nginx-proxy/blob/master/nginx.tmpl] on your host system.

First start nginx with a volume:

$ docker run -d -p 80:80 --name nginx -v /tmp/nginx:/etc/nginx/conf.d -t nginx

Then start the docker-gen container with the shared volume and template:

$ docker run --volumes-from nginx \
 -v /var/run/docker.sock:/tmp/docker.sock:ro \
 -v $(pwd):/etc/docker-gen/templates \
 -t jwilder/docker-gen -notify-sighup nginx -watch /etc/docker-gen/templates/nginx.tmpl /etc/nginx/conf.d/default.conf

Finally, start your containers with VIRTUAL_HOST environment variables.

$ docker run -e VIRTUAL_HOST=foo.bar.com ...

SSL Support

SSL is supported using single host, wildcard and SNI certificates using naming conventions for
certificates or optionally specifying a cert name (for SNI) as an environment variable.

To enable SSL:

$ docker run -d -p 80:80 -p 443:443 -v /path/to/certs:/etc/nginx/certs -v /var/run/docker.sock:/tmp/docker.sock:ro jwilder/nginx-proxy

The contents of /path/to/certs should contain the certificates and private keys for any virtual
hosts in use. The certificate and keys should be named after the virtual host with a .crt and
.key extension. For example, a container with VIRTUAL_HOST=foo.bar.com should have a
foo.bar.com.crt and foo.bar.com.key file in the certs directory.

If you are running the container in a virtualized environment (Hyper-V, VirtualBox, etc...),
/path/to/certs must exist in that environment or be made accessible to that environment.
By default, Docker is not able to mount directories on the host machine to containers running in a virtual machine.

Diffie-Hellman Groups

If you have Diffie-Hellman groups enabled, the files should be named after the virtual host with a
dhparam suffix and .pem extension. For example, a container with VIRTUAL_HOST=foo.bar.com
should have a foo.bar.com.dhparam.pem file in the certs directory.

Wildcard Certificates

Wildcard certificates and keys should be named after the domain name with a .crt and .key extension.
For example VIRTUAL_HOST=foo.bar.com would use cert name bar.com.crt and bar.com.key.

SNI

If your certificate(s) supports multiple domain names, you can start a container with CERT_NAME=<name>
to identify the certificate to be used. For example, a certificate for *.foo.com and *.bar.com
could be named shared.crt and shared.key. A container running with VIRTUAL_HOST=foo.bar.com
and CERT_NAME=shared will then use this shared cert.

How SSL Support Works

The SSL cipher configuration is based on mozilla nginx intermediate profile [https://wiki.mozilla.org/Security/Server_Side_TLS#Nginx] which
should provide compatibility with clients back to Firefox 1, Chrome 1, IE 7, Opera 5, Safari 1,
Windows XP IE8, Android 2.3, Java 7. The configuration also enables HSTS, and SSL
session caches.

The default behavior for the proxy when port 80 and 443 are exposed is as follows:

		If a container has a usable cert, port 80 will redirect to 443 for that container so that HTTPS
is always preferred when available.

		If the container does not have a usable cert, a 503 will be returned.

Note that in the latter case, a browser may get an connection error as no certificate is available
to establish a connection. A self-signed or generic cert named default.crt and default.key
will allow a client browser to make a SSL connection (likely w/ a warning) and subsequently receive
a 503.

To serve traffic in both SSL and non-SSL modes without redirecting to SSL, you can include the
environment variable HTTPS_METHOD=noredirect (the default is HTTPS_METHOD=redirect). You can also
disable the non-SSL site entirely with HTTPS_METHOD=nohttp. HTTPS_METHOD must be specified
on each container for which you want to override the default behavior. If HTTPS_METHOD=noredirect is
used, Strict Transport Security (HSTS) is disabled to prevent HTTPS users from being redirected by the
client. If you cannot get to the HTTP site after changing this setting, your browser has probably cached
the HSTS policy and is automatically redirecting you back to HTTPS. You will need to clear your browser’s
HSTS cache or use an incognito window / different browser.

Basic Authentication Support

In order to be able to secure your virtual host, you have to create a file named as its equivalent VIRTUAL_HOST variable on directory
/etc/nginx/htpasswd/$VIRTUAL_HOST

$ docker run -d -p 80:80 -p 443:443 \
 -v /path/to/htpasswd:/etc/nginx/htpasswd \
 -v /path/to/certs:/etc/nginx/certs \
 -v /var/run/docker.sock:/tmp/docker.sock:ro \
 jwilder/nginx-proxy

You’ll need apache2-utils on the machine where you plan to create the htpasswd file. Follow these instructions [http://httpd.apache.org/docs/2.2/programs/htpasswd.html]

Custom Nginx Configuration

If you need to configure Nginx beyond what is possible using environment variables, you can provide custom configuration files on either a proxy-wide or per-VIRTUAL_HOST basis.

Replacing default proxy settings

If you want to replace the default proxy settings for the nginx container, add a configuration file at /etc/nginx/proxy.conf. A file with the default settings would
look like this:

HTTP 1.1 support
proxy_http_version 1.1;
proxy_buffering off;
proxy_set_header Host $http_host;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $proxy_connection;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $proxy_x_forwarded_proto;
proxy_set_header X-Forwarded-Port $proxy_x_forwarded_port;

Mitigate httpoxy attack (see README for details)
proxy_set_header Proxy "";

NOTE: If you provide this file it will replace the defaults; you may want to check the .tmpl file to make sure you have all of the needed options.

NOTE: The default configuration blocks the Proxy HTTP request header from being sent to downstream servers. This prevents attackers from using the so-called httpoxy attack [http://httpoxy.org]. There is no legitimate reason for a client to send this header, and there are many vulnerable languages / platforms (CVE-2016-5385, CVE-2016-5386, CVE-2016-5387, CVE-2016-5388, CVE-2016-1000109, CVE-2016-1000110, CERT-VU#797896).

Proxy-wide

To add settings on a proxy-wide basis, add your configuration file under /etc/nginx/conf.d using a name ending in .conf.

This can be done in a derived image by creating the file in a RUN command or by COPYing the file into conf.d:

FROM jwilder/nginx-proxy
RUN { \
 echo 'server_tokens off;'; \
 echo 'client_max_body_size 100m;'; \
 } > /etc/nginx/conf.d/my_proxy.conf

Or it can be done by mounting in your custom configuration in your docker run command:

$ docker run -d -p 80:80 -p 443:443 -v /path/to/my_proxy.conf:/etc/nginx/conf.d/my_proxy.conf:ro -v /var/run/docker.sock:/tmp/docker.sock:ro jwilder/nginx-proxy

Per-VIRTUAL_HOST

To add settings on a per-VIRTUAL_HOST basis, add your configuration file under /etc/nginx/vhost.d. Unlike in the proxy-wide case, which allows multiple config files with any name ending in .conf, the per-VIRTUAL_HOST file must be named exactly after the VIRTUAL_HOST.

In order to allow virtual hosts to be dynamically configured as backends are added and removed, it makes the most sense to mount an external directory as /etc/nginx/vhost.d as opposed to using derived images or mounting individual configuration files.

For example, if you have a virtual host named app.example.com, you could provide a custom configuration for that host as follows:

$ docker run -d -p 80:80 -p 443:443 -v /path/to/vhost.d:/etc/nginx/vhost.d:ro -v /var/run/docker.sock:/tmp/docker.sock:ro jwilder/nginx-proxy
$ { echo 'server_tokens off;'; echo 'client_max_body_size 100m;'; } > /path/to/vhost.d/app.example.com

If you are using multiple hostnames for a single container (e.g. VIRTUAL_HOST=example.com,www.example.com), the virtual host configuration file must exist for each hostname. If you would like to use the same configuration for multiple virtual host names, you can use a symlink:

$ { echo 'server_tokens off;'; echo 'client_max_body_size 100m;'; } > /path/to/vhost.d/www.example.com
$ ln -s /path/to/vhost.d/www.example.com /path/to/vhost.d/example.com

Per-VIRTUAL_HOST default configuration

If you want most of your virtual hosts to use a default single configuration and then override on a few specific ones, add those settings to the /etc/nginx/vhost.d/default file. This file
will be used on any virtual host which does not have a /etc/nginx/vhost.d/{VIRTUAL_HOST} file associated with it.

Per-VIRTUAL_HOST location configuration

To add settings to the “location” block on a per-VIRTUAL_HOST basis, add your configuration file under /etc/nginx/vhost.d
just like the previous section except with the suffix _location.

For example, if you have a virtual host named app.example.com and you have configured a proxy_cache my-cache in another custom file, you could tell it to use a proxy cache as follows:

$ docker run -d -p 80:80 -p 443:443 -v /path/to/vhost.d:/etc/nginx/vhost.d:ro -v /var/run/docker.sock:/tmp/docker.sock:ro jwilder/nginx-proxy
$ { echo 'proxy_cache my-cache;'; echo 'proxy_cache_valid 200 302 60m;'; echo 'proxy_cache_valid 404 1m;' } > /path/to/vhost.d/app.example.com_location

If you are using multiple hostnames for a single container (e.g. VIRTUAL_HOST=example.com,www.example.com), the virtual host configuration file must exist for each hostname. If you would like to use the same configuration for multiple virtual host names, you can use a symlink:

$ { echo 'proxy_cache my-cache;'; echo 'proxy_cache_valid 200 302 60m;'; echo 'proxy_cache_valid 404 1m;' } > /path/to/vhost.d/app.example.com_location
$ ln -s /path/to/vhost.d/www.example.com /path/to/vhost.d/example.com

Per-VIRTUAL_HOST location default configuration

If you want most of your virtual hosts to use a default single location block configuration and then override on a few specific ones, add those settings to the /etc/nginx/vhost.d/default_location file. This file
will be used on any virtual host which does not have a /etc/nginx/vhost.d/{VIRTUAL_HOST} file associated with it.

Contributing

Before submitting pull requests or issues, please check github to make sure an existing issue or pull request is not already open.

Running Tests Locally

To run tests, you’ll need to install bats 0.4.0 [https://github.com/sstephenson/bats].

make test

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		ng latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

test/README.html

 Navigation

 		
 index

 		ng latest documentation »

Test suite

This test suite is implemented on top of the Bats [https://github.com/sstephenson/bats/blob/master/README.md] test framework.

It is intended to verify the correct behavior of the Docker image jwilder/nginx-proxy:bats.

Running the test suite

Make sure you have Bats installed, then run:

docker build -t jwilder/nginx-proxy:bats .
bats test/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

test/lib/README.html

 Navigation

 		
 index

 		ng latest documentation »

bats lib

found on https://github.com/sstephenson/bats/pull/110

When that pull request will be merged, the test/lib/bats won’t be necessary anymore.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

