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NFLWin

NFLWin is designed from the ground up to provide two things:


	A simple-to-use interface for users to compute Win Probabilities
(WP) for NFL plays based on a built-in WP model.

	A robust framework for improving estimates of WP.



NFLWin builds on scikit-learn’s [http://scikit-learn.org/stable/]
fit-transform idiom, allowing for pipelines that take in raw
box score data and return estimated WPs - all data
preprocessing takes place behind the scenes. Additionally,
these preprocessing steps can be easily reordered, replaced, and/or
extended, allowing for rapid iteration and prototyping of potential
improvements to the WP model.

NFLWin also has built-in support for efficiently querying data from
nfldb [https://github.com/BurntSushi/nfldb] directly into a format
useable by the built-in WP model, although the model is fully
data-source-agnostic as long as the data is formatted properly for the
model to parse.


Quickstart

NFLWin is pip-installable:

$ pip install nflwin






Note

NFLWin depends on SciPy [https://www.scipy.org/], which
is notoriously difficult to install properly via
pip. You may wish to use the Conda [http://conda.pydata.org/docs/] package manager to install
Scipy before installing NFLWin.



When installed via pip, NFLWin comes with a working Win Probability model out-of-the-box:

>>> from nflwin.model import WPModel
>>> standard_model = WPModel.load_model()





The default model can be inspected to learn what data it requires:

>>> standard_model.column_descriptions
{'home_team': 'Abbreviation for the home team', 'yardline': "The yardline, given by (yards from own goalline - 50). -49 is your own 1 while 49 is the opponent's 1.", 'seconds_elapsed': 'Seconds elapsed in the quarter', 'down': 'The current down', 'curr_away_score': 'Abbreviation for the visiting team', 'offense_team': 'Abbreviation for the offensive team', 'yards_to_go': 'Yards to a first down (or the endzone)', 'quarter': 'The quarter'}





NFLWin operates on Pandas [http://pandas.pydata.org/] DataFrames:

>>> import pandas as pd
>>> plays = pd.DataFrame({
... "quarter": ["Q1", "Q2", "Q4"],
... "seconds_elapsed": [0, 0, 600],
... "offense_team": ["NYJ", "NYJ", "NE"],
... "yardline": [-20, 20, 35],
... "down": [1, 3, 3],
... "yards_to_go": [10, 2, 10],
... "home_team": ["NYJ", "NYJ", "NYJ"],
... "away_team": ["NE", "NE", "NE"],
... "curr_home_score": [0, 0, 21],
... "curr_away_score": [0, 0, 10]
... })





Once data is loaded, using the model to predict WP is easy:

>>> standard_model.predict_wp(plays)
array([ 0.58300397,  0.64321796,  0.18195466])








Current Default Model

[image: _images/validation_plot.png]



Why NFLWin?

Put simply, there are no other options: while WP models have been
widely used in NFL analytics for years, the analytics community has
almost totally dropped the ball in making these models available for the
general public or even explaining their algorithms at all.

For a (much) longer explanation, see the PhD Football blog [http://phdfootball.blogspot.com/].




Resources
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Installation

NFLWin only supports Python 2, as nfldb is currently incompatible
with Python 3. The bulk of NFLWin should work natively with Python 3,
however that is currently untested. Pull requests ensuring this
compatibility would be welcome.


Releases

Stable releases of NFLWin are available on PyPI:

$ pip install nflwin





The default install provides exactly the tools necessary to make
predictions using the standard WP model as well as make new
models. However it does not include the dependencies necessary for
using nfldb, producing diagnostic plots, or contributing to the
package.

Installing NFLWin with those extra dependencies is accomplished by
adding a parameter in square brackets:

$ pip install nflwin[plotting] #Adds matplotlib for plotting
$ pip install nflwin[nfldb] #Dependencies for using nfldb
$ pip install nflwin[dev] #Everything you need to develop on NFLWin






Note

NFLWin depends on the scipy library, which is notoriously difficult
to install via pip or from source. One option if you’re having
difficulty getting scipy installed is to use the Conda [http://conda.pydata.org/docs/] package manager. After installing
Conda, you can create a new environment and install dependencies
manually before pip installing NFLWin:

$ conda create -n nflwin-env python=2.7 numpy scipy scikit-learn pandas










Bleeding Edge

If you want the most recent stable version you can install directly
from GitHub:

$ pip install git+https://github.com/AndrewRook/NFLWin.git@master#egg=nflwin





You can append the arguments for the extra dependencies in the same
way as for the installation from PyPI.


Note

GitHub installs do not come with the default model. If you want
to use a GitHub install with the default model, you’ll need to
install NFLWin from PyPI somewhere else and then copy the model
into the model directory from your GitHub install. If you need to
figure out where that directory is, print
model.WPModel.model_directory.
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Creating a New WP Model

While NFLWin ships with a fairly robust default model, there is always
room for improvement. Maybe there’s a new dataset you want to use to
train the model, a new feature you want to add, or a new machine
learning model you want to evaluate.

Good news! NFLWin makes it easy to train a new model, whether you just
want to refresh the data or to do an entire refit from scratch. We’ll
start with the simplest case:


Default Model, New Data

Refreshing the data with NFLWin is a snap. If you want to change the
data used by the default model but keep the source as nfldb, all you
have to do is override the default keyword arguments when calling the
train_model() and validate_model()
methods. For instance, if for some insane reason you wanted to train on the 2009 and 2010 regular
seasons and validate on the 2011 and 2012 playoffs, you would do the following:

>>> from nflwin.model import WPModel
>>> new_data_model = WPModel()
>>> new_data_model.train_model(training_seasons=[2009, 2010], training_season_types=["Regular"])
>>> new_data_model.validate_model(validation_seasons=[2011, 2012], validation_season_types=["Postseason"])
(21.355462918011327, 565.56909036318007)





If you want to supply your own data, that’s easy too - simply set the
source_data kwarg of train_model() and
validate_model() to be a Pandas DataFrame of your training and validation data (respectively):

>>> from nflwin.model import WPModel
>>> new_data_model = WPModel()
>>> training_data.head()
      gsis_id  drive_id  play_id offense_team  yardline  down  yards_to_go  \
0  2012090500         1       35          DAL     -15.0     0            0
1  2012090500         1       57          NYG     -34.0     1           10
2  2012090500         1       79          NYG     -34.0     2           10
3  2012090500         1      103          NYG     -29.0     3            5
4  2012090500         1      125          NYG     -29.0     4            5

  home_team away_team offense_won quarter  seconds_elapsed  curr_home_score  \
0       NYG       DAL        True      Q1              0.0                0
1       NYG       DAL       False      Q1              4.0                0
2       NYG       DAL       False      Q1             11.0                0
3       NYG       DAL       False      Q1             55.0                0
4       NYG       DAL       False      Q1             62.0                0

   curr_away_score
0                0
1                0
2                0
3                0
4                0
>>> new_data_model.train_model(source_data=training_data)
>>> validation_data.head()
      gsis_id  drive_id  play_id offense_team  yardline  down  yards_to_go  \
0  2014090400         1       36          SEA     -15.0     0            0
1  2014090400         1       58           GB     -37.0     1           10
2  2014090400         1       79           GB     -31.0     2            4
3  2014090400         1      111           GB     -26.0     1           10
4  2014090400         1      132           GB     -11.0     1           10

  home_team away_team offense_won quarter  seconds_elapsed  curr_home_score  \
0       SEA        GB        True      Q1              0.0                0
1       SEA        GB       False      Q1              4.0                0
2       SEA        GB       False      Q1             30.0                0
3       SEA        GB       False      Q1             49.0                0
4       SEA        GB       False      Q1             88.0                0

   curr_away_score
0                0
1                0
2                0
3                0
4                0
>>> new_data_model.validate_model(source_data=validation_data)
(8.9344062502671591, 265.7971863696315)








Building a New Model

If you want to construct a totally new model, that’s possible
too. Just instantiate
WPModel, then replace the
model attribute with either a
scikit-learn classifier [http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html]
or Pipeline [http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html]. From
that point train_model() and
validate_model() should work as normal.


Note

If you create your own model, the
column_descriptions attribute will no longer be
accurate unless you update it manually.




Note

If your model uses a data structure other than a Pandas DataFrame,
you will not be able to use the source_data="nfldb" default
kwarg of train_model() and
validate_model(). If you want to use nfldb
data, query it through nflwin.utilities.get_nfldb_play_data()
first and convert it from a DataFrame to the format required by your model.




Using NFLWin’s Preprocessors

While you can completely roll your own WP model from scratch, NFLWin
comes with several classes designed to aid in preprocessing your
data. These can be found in the appropriately named
preprocessing module. Each of these preprocessors inherits
from scikit-learn’s BaseEstimator class, and therefore is fully
compatible with scikit-learn Pipelines. Available preprocessors
include:


	ComputeElapsedTime: Convert the time
elapsed in a quarter into the total seconds elapsed in the game.

	ComputeIfOffenseIsHome: Create an
indicator variable for whether or not the offense is the home team.

	CreateScoreDifferential: Create a
column indicating the difference between the offense and defense
point totals (offense-defense). Uses home team and away team plus
an indicator giving if the offense is the home team to compute.

	MapToInt: Map a column of values to
integers. Useful for string columns (e.g. a quarter column with “Q1”, “Q2”, etc).

	CheckColumnNames: Ensure that only the desired data gets passed to
the model in the right order. Useful to guarantee that the
underlying numpy arrays in a Pandas DataFrame used for model
validation are in the same order as they were when the model was
trained.



To see examples of these preprocessors in use to build a model, look
at nflwin.model.WPModel.create_default_pipeline().






Model I/O

To save a model to disk, use the
nflwin.model.WPModel.save_model() method.


Note

If you do not provide
a filename, the default model will be overwritten and in order to
recover it you will need to reinstall NFLWin (which will then
overwrite any non-default models you have saved).



To load a model from disk, use the
nflwin.model.WPModel.load_model() class method. By default this
will load the standard model that comes bundled with pip installs of
NFLWin. Simply specify the filename kwarg to load a non-standard
model.


Note

By default, models are saved to and loaded from the path given by
nflwin.model.WPModel.model_directory, which by default is
located inside your NFLWin install.






Estimating Quality of Fit

When you care about measuring the probability of a classification
model rather than getting a yes/no prediction it is challenging to
estimate its quality. This is an area I’m actively looking to improve
upon, but for now NFLWin does the following.

First, it takes the probabilities given by the model for each play in the
validation set, then produces a kernel density estimate [https://en.wikipedia.org/wiki/Kernel_density_estimation] (KDE) of all
the plays as well as just the ones that were predicted
correctly. The ratio of these two KDEs is the actual WP measured
from the test data set at a given predicted WP. While all of this is
measured in validate_model(), you can plot
it for yourself by calling the
plot_validation() method, which will
generate a plot like that shown on the home page.

From there NFLWin computes both the maximum deviation at any given
percentage and the total area between the estimated WP from the model
and what would be expected if the model was perfect - that’s what is
actually returned by
validate_model(). This is obviously not
ideal given that it’s not directly estimating uncertainties in
the model, but it’s the best I’ve been able to come up with so far. If anyone
has an idea for how to do this better I would welcome it enthusiastically.
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Using Data From nfldb

NFLWin comes with robust support for querying data from nfldb [https://github.com/BurntSushi/nfldb], a package designed to
facilitate downloading and accessing play-by-play data. There are
functions to query the nfldb database in nflwin.utilities,
and nflwin.model.WPModel has keyword arguments that allow
you to directly use nfldb data to fit and validate a WP model. Using
nfldb is totally optional: a default model is already fit and ready to
use, and NFLWin is fully compatible with any source for play-by-play
data. However, nfldb is one of the few free sources of up-to-date NFL
data and so it may be a useful resource to have.


Installing nfldb

nfldb is pip-installable, and can be installed as an extra dependency
(pip install nflwin[nfldb]). Without setting up the nfldb
Postgres database first, however, the pip install will succeed but
nfldb will be unuseable. What’s more, trying to set up the database
after installing nfldb may fail as well.

The nfldb wiki has fairly decent installation instructions [https://github.com/BurntSushi/nfldb/wiki/Installation], but I know
that when I went through the installation process I had to interpret
and adjust several steps. I’d at least recommend reading through the
wiki first, but in case it’s useful
I’ve listed the steps I followed below (for reference I was on Mac OS 10.10).


Installing Postgres

I had an old install kicking around, so I first had to clean that up.
Since I was using Homebrew [http://brew.sh/]:

$ brew uninstall -force postgresql
$ rm -rf /usr/local/var/postgres/ # where I'd installed the prior DB





Then install a fresh version:

$ brew update
$ brew install postgresql








Start Postgres and Create a Default DB

You can choose to run Postgres at startup, but I don’t use it that
often so I choose not to do those steps - I just run it in the
foreground with this command:

$ postgres -D /usr/local/var/postgres





Or in the background with this command:

$ pg_ctl -D /usr/local/var/postgres -l logfile start





If you don’t create a default database based on your username,
launching Postgres will fail with a psql: FATAL: database
"USERNAME" does not exist error:

$ createdb `whoami`





Check that the install and configuration went well by launching
Postgres as your default user:

$ psql
psql (9.5.2)
Type "help" for help.

USERNAME=#





Next, add a password:

USERNAME=# ALTER ROLE "USERNAME" WITH ENCRYPTED PASSWORD 'choose a
superuser password';
USERNAME=# \q;





Edit the pg_hba.conf``file found in your database (in my case the
file was
``/usr/local/var/postgres/pg_hba.conf), and change all instances of
trust to md5.




Create nfldb Postgres User and Database

Start by making a user:

$ createuser -U USERNAME -E -P nfldb





where you replace USERNAME with your actual username. Make up a
new password. Then make the nfldb database:

$ createdb -U USERNAME -O nfldb nfldb





You’ll need to enter the password for the USERNAME account. Next, add
the fuzzy string matching extension:

$ psql -U USERNAME -c 'CREATE EXTENSION fuzzystrmatch;' nfldb





You should now be able to connect the nfldb user to the nfldb
database:

$ psql -U nfldb nfldb





From this point you should be able to follow along with the
instructions from nfldb [https://github.com/BurntSushi/nfldb/wiki/Installation#importing-the-nfldb-database].






Using nfldb

Once nfldb is properly installed, you can use it with NFLwin in a
couple of different ways.


Querying Data

nfldb comes with a robust set of options to query its database, but
they tend to be designed more for ad hoc querying of small amounts of
data or computing aggregate statistics. It’s possible to use built-in
nfldb queries to get the data NFLWin needs, but it’s slow. So NFLWin
has built in support for bulk queries of nfldb in the
nflwin.utilities module:

>>> from nflwin import utilities
>>> data = utilities.get_nfldb_play_data(season_years=[2010],
... season_types=["Regular", "Postseason"])
>>> data.head()
      gsis_id  drive_id  play_id offense_team  yardline  down  yards_to_go  \
0  2010090900         1       35          MIN     -20.0     0            0
1  2010090900         1       57           NO     -27.0     1           10
2  2010090900         1       81           NO       1.0     1           10
3  2010090900         1      109           NO      13.0     1           10
4  2010090900         1      135           NO      13.0     2           10

  home_team away_team offense_won quarter  seconds_elapsed  curr_home_score  \
0        NO       MIN       False      Q1              0.0                0
1        NO       MIN        True      Q1              4.0                0
2        NO       MIN        True      Q1             39.0                0
3        NO       MIN        True      Q1             79.0                0
4        NO       MIN        True      Q1             84.0                0

   curr_away_score
0                0
1                0
2                0
3                0
4                0





You can see the docstring for more details, but basically get_nfldb_play_data queries
the nfldb database directly for columns relevant to estimating WP,
does some simple parsing/preprocessing to get them in the right format,
then returns them as a dataframe. Keyword arguments control what parts
of seasons are queried.




Integration with WPModel

While you can train NFLWin’s win probability model
(nflwin.model.WPModel) with whatever data you want, it
comes with keyword arguments that allow you to query nfldb
directly. For instance, to train the default model on the 2009 and 2010
regular seasons from nfldb, you’d enter the following:

>>> from nflwin.model import WPModel
>>> model = WPModel()
>>> model.create_default_pipeline() 
Pipeline(...)
>>> model.train_model(source_data="nfldb",
... training_seasons=[2009, 2010],
... training_season_types=["Regular"])
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For Developers

This section of the documentation covers things that will be useful for those already contributing to NFLWin.


Note

Unless stated otherwise assume that all filepaths given in this section start at the root directory for the repo.




Testing Documentation

Documentation for NFLWin is hosted at Read the Docs [https://readthedocs.org/], and is built automatically when changes are made on the master branch or a release is cut. However, oftentimes it’s valuable to display NFLWin’s documentation locally as you’re writing. To do this, run the following:

$ ./build_local_documentation.sh





When that command finishes, open up doc/index.html in your browser of choice to see the site.




Updating the Default Model

NFLWin comes with a pre-trained model, but if the code generating that model is updated the model itself is not. So you have to update it yourself. The good news, however, is that there’s a script for that:

$ python make_default_model.py






Note

This script hardcodes in the seasons to use for training and
testing samples. After each season those will likely need to be
updated to use the most up-to-date data.




Note

This script requires matplotlib in order to run, as it produces a
validation plot for the documentation.






Cutting a New Release

NFLWin uses semantic versioning [http://semver.org/], which basically boils down to the following (taken directly from the webpage linked earlier in this sentence):


Given a version number MAJOR.MINOR.PATCH, increment the:


	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a backwards-compatible manner, and

	PATCH version when you make backwards-compatible bug fixes.






Basically, unless you change something drastic you leave the major version alone (the exception being going to version 1.0.0, which indicates the first release where the interface is considered “stable”).

The trick here is to note that information about a new release must live in a few places:


	In nflwin/_version.py as the value of the __version__ variable.

	As a tagged commit.

	As a release on GitHub.

	As an upload to PyPI.

	(If necessary) as a documented release on Read the Docs.



Changing the version in one place but not in others can have relatively minor but fairly annoying consequences. To help manage the release cutting process there is a shell script that automates significant parts of this process:

$ ./increment_version.sh [major|minor|patch]





This script does a bunch of things, namely:


	Parse command line arguments to determine whether to
increment major, minor, or patch version.

	Makes sure it’s not on the master branch.

	Makes sure there aren’t any changes that have been
staged but not committed.

	Makes sure there aren’t any changes that have been
committed but not pushed.

	Makes sure all unit tests pass.

	Compares current version in nflwin/_version.py to most recent
git tag to make sure they’re the same.

	Figures out what the new version should be.

	Updates nflwin/_version.py to the new version.

	Uploads package to PyPI.

	Adds and commits nflwin/_version.py with commit message
“bumped [TYPE] version to [VERSION]”, where [TYPE] is major, minor, or patch.

	Tags latest commit with version number (no ‘v’).

	Pushes commit and tag.



It will exit if anything returns with a non-zero exit status, and since it waits until the very end to upload anything to PyPI or GitHub if you do run into an error in most cases you can fix it and then just re-run the script.

The process for cutting a release is as follows:


	Make double sure that you’re on a branch that’s not master and you’re ready to cut a new release (general good practice is to branch off from master just for the purpose of making a new release).

	Run the increment_version.sh script.

	Fix any errors, then rerun the script until it passes.

	Make a PR on GitHub into master, and merge it in (self-merge is ok if branch is just updating version).

	Make release notes for new release on GitHub.

	(If necessary) go to Read the Docs and activate the new release.
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nflwin package


Submodules




nflwin.model module

Tools for creating and running the model.


	
class nflwin.model.WPModel(copy_data=True)[source]

	Bases: object

The object that computes win probabilities.

In addition to holding the model itself, it defines some columns names likely to be
used in the model as parameters to allow other users to more easily figure out which
columns go into the model.





	Parameters:	copy_data : boolean (default=``True``)


Whether or not to copy data when fitting and applying the model. Running the model
in-place (copy_data=False) will be faster and have a smaller memory footprint,
but if not done carefully can lead to data integrity issues.










Attributes







	model
	(A Scikit-learn pipeline (or equivalent)) The actual model used to compute WP. Upon initialization it will be set to a default model, but can be overridden by the user.


	column_descriptions
	(dictionary) A dictionary whose keys are the names of the columns used in the model, and the values are string descriptions of what the columns mean. Set at initialization to be the default model, if you create your own model you’ll need to update this attribute manually.


	training_seasons
	(A list of ints, or None (default=``None``)) If the model was trained using data downloaded from nfldb, a list of the seasons used to train the model. If nfldb was not used, an empty list. If no model has been trained yet, None.


	training_season_types
	(A list of strings or None (default=``None``)) Same as training_seasons, except for the portions of the seasons used in training the model (“Preseason”, “Regular”, and/or “Postseason”).


	validation_seasons
	(same as training_seasons, but for validation data.)


	validation_season_types
	(same as training_season_types, but for validation data.)


	sample_probabilities
	(A numpy array of floats or None (default=``None``)) After the model has been validated, contains the sampled predicted probabilities used to compute the validation statistic.


	predicted_win_percents
	(A numpy array of floats or None (default=``None``)) After the model has been validated, contains the actual probabilities in the test set at each probability in sample_probabilities.


	num_plays_used
	(A numpy array of floats or None (default=``None``)) After the model has been validated, contains the number of plays used to compute each element of predicted_win_percents.


	model_directory
	(string) The directory where all models will be saved to or loaded from.






	
create_default_pipeline()[source]

	Create the default win probability estimation pipeline.





	Returns:	Scikit-learn pipeline


The default pipeline, suitable for computing win probabilities
but by no means the best possible model.




This can be run any time a new default pipeline is required,

and either set to the model attribute or used independently.












	
classmethod load_model(filename=None)[source]

	Load a saved WPModel.





	Parameters:	Same as ``save_model``.


	Returns:	nflwin.WPModel instance.










	
model_directory = '/home/docs/checkouts/readthedocs.org/user_builds/nflwin/checkouts/1.0.0/nflwin/models'

	




	
num_plays_used

	




	
plot_validation(axis=None, **kwargs)[source]

	Plot the validation data.





	Parameters:	axis : matplotlib.pyplot.axis object or None (default=``None``)


If provided, the validation line will be overlaid on axis.
Otherwise, a new figure and axis will be generated and plotted on.




**kwargs


Arguments to axis.plot.







	Returns:	matplotlib.pylot.axis


The axis the plot was made on.







	Raises:	NotFittedError


If the model hasn’t been fit and validated.















	
predict_wp(plays)[source]

	Estimate the win probability for a set of plays.

Basically a simple wrapper around WPModel.model.predict_proba,
takes in a DataFrame and then spits out an array of predicted
win probabilities.





	Parameters:	plays : Pandas DataFrame


The input data to use to make the predictions.







	Returns:	Numpy array, of length len(plays)


Predicted probability that the offensive team in each play
will go on to win the game.







	Raises:	NotFittedError


If the model hasn’t been fit.















	
predicted_win_percents

	




	
sample_probabilities

	




	
save_model(filename=None)[source]

	Save the WPModel instance to disk.

All models are saved to the same place, with the installed
NFLWin library (given by WPModel.model_directory).





	Parameters:	filename : string (default=None):


The filename to use for the saved model. If this parameter
is not specified, save to the default filename. Note that if a model
already lists with this filename, it will be overwritten. Note also that
this is a filename only, not a full path. If a full path is specified
it is likely (albeit not guaranteed) to cause errors.







	Returns:	None












	
train_model(source_data='nfldb', training_seasons=[2009, 2010, 2011, 2012, 2013, 2014], training_season_types=['Regular', 'Postseason'], target_colname='offense_won')[source]

	Train the model.

Once a modeling pipeline is set up (either the default or something
custom-generated), historical data needs to be fed into it in order to
“fit” the model so that it can then be used to predict future results.
This method implements a simple wrapper around the core Scikit-learn functionality
which does this.

The default is to use data from the nfldb database, however that can be changed
to a simple Pandas DataFrame if desired (for instance if you wish to use data
from another source).

There is no particular output from this function, rather the parameters governing
the fit of the model are saved inside the model object itself. If you want to get an
estimate of the quality of the fit, use the validate_model method after running
this method.





	Parameters:	source_data : the string "nfldb" or a Pandas DataFrame (default=``”nfldb”``)


The data to be used to train the model. If "nfldb", will query the nfldb
database for the training data (note that this requires a correctly configured
installation of nfldb’s database).




training_seasons : list of ints (default=``[2009, 2010, 2011, 2012, 2013, 2014]``)


What seasons to use to train the model if getting data from the nfldb database.
If source_data is not "nfldb", this argument will be ignored.
NOTE: it is critical not to use all possible data in order to train the
model - some will need to be reserved for a final validation (see the
validate_model method). A good dataset to reserve
for validation is the most recent one or two NFL seasons.




training_season_types : list of strings (default=``[“Regular”, “Postseason”]``)


If querying from the nfldb database, what parts of the seasons to use.
Options are “Preseason”, “Regular”, and “Postseason”. If source_data is not
"nfldb", this argument will be ignored.




target_colname : string or integer (default=``”offense_won”``)


The name of the target variable column.







	Returns:	None







Notes

If you are loading in the default model, there is no need to re-run this method.
In fact, doing so will likely result in weird errors and could corrupt the model if you
were to try to save it back to disk.






	
training_seasons

	




	
training_seasons_types

	




	
validate_model(source_data='nfldb', validation_seasons=[2015], validation_season_types=['Regular', 'Postseason'], target_colname='offense_won')[source]

	Validate the model.

Once a modeling pipeline is trained, a different dataset must be fed into the trained model
to validate the quality of the fit.
This method implements a simple wrapper around the core Scikit-learn functionality
which does this.

The default is to use data from the nfldb database, however that can be changed
to a simple Pandas DataFrame if desired (for instance if you wish to use data
from another source).

The output of this method is a p value which represents the confidence at which
we can reject the null hypothesis that the model predicts the appropriate win
probabilities. This number is computed by first smoothing the predicted win probabilities of both all test data and
just the data where the offense won with a gaussian kernel density
estimate [http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity]
with standard deviation = 0.01. Once the data is smooth, ratios at each percentage point from 1% to 99% are computed (i.e.
what fraction of the time did the offense win when the model says they have a 1% chance of winning, 2% chance, etc.). Each of
these ratios should be well approximated by the binomial distribution, since they are essentially independent (not perfectly
but hopefully close enough) weighted coin flips, giving a p value. From there Fisher’s method [https://en.wikipedia.org/wiki/Fisher%27s_method]
is used to combine the p values into a global p value. A p value close to zero means that the model is unlikely to be
properly predicting the correct win probabilities. A p value close to one, while not proof that the model is correct,
means that the model is at least not inconsistent with the hypothesis that it predicts good win probabilities.





	Parameters:	source_data : the string "nfldb" or a Pandas DataFrame (default=``”nfldb”``)


The data to be used to train the model. If "nfldb", will query the nfldb
database for the training data (note that this requires a correctly configured
installation of nfldb’s database).




training_seasons : list of ints (default=``[2015]``)


What seasons to use to validate the model if getting data from the nfldb database.
If source_data is not "nfldb", this argument will be ignored.
NOTE: it is critical not to use the same data to validate the model as was used
in the fit. Generally a good data set to use for validation is one from a time
period more recent than was used to train the model. For instance, if the model was trained
on data from 2009-2014, data from the 2015 season would be a sensible choice to validate the model.




training_season_types : list of strings (default=``[“Regular”, “Postseason”]``)


If querying from the nfldb database, what parts of the seasons to use.
Options are “Preseason”, “Regular”, and “Postseason”. If source_data is not
"nfldb", this argument will be ignored.




target_colname : string or integer (default=``”offense_won”``)


The name of the target variable column.







	Returns:	float, between 0 and 1


The combined p value, where smaller values indicate that the model is not accurately predicting win
probabilities.







	Raises:	NotFittedError


If the model hasn’t been fit.










Notes

Probabilities are computed between 1 and 99 percent because a single incorrect prediction at 100% or 0% automatically drives
the global p value to zero. Since the model is being smoothed this situation can occur even when there are no model predictions
at those extreme values, and therefore leads to erroneous p values.

While it seems reasonable (to me at least), I am not totally certain that this approach is entirely correct.
It’s certainly sub-optimal in that you would ideally reject the null hypothesis that the model predictions
aren’t appropriate, but that seems to be a much harder problem (and one that would need much more test
data to beat down the uncertainties involved). I’m also not sure if using Fisher’s method is appropriate here,
and I wonder if it might be necessary to Monte Carlo this. I would welcome input from others on better ways to do this.






	
validation_seasons

	




	
validation_seasons_types

	










nflwin.preprocessing module

Tools to get raw data ready for modeling.


	
class nflwin.preprocessing.CheckColumnNames(column_names=None, copy=True)[source]

	Bases: sklearn.base.BaseEstimator

Make sure user has the right column names, in the right order.

This is a useful first step to make sure that nothing
is going to break downstream, but can also be used effectively
to drop columns that are no longer necessary.





	Parameters:	column_names : None, or list of strings


A list of column names that need to be present in the scoring
data. All other columns will be stripped out. The order of the
columns will be applied to any scoring
data as well, in order to handle the fact that pandas lets
you play fast and loose with column order. If None,
will obtain every column in the DataFrame passed to the
fit method.




copy : boolean (default=``True``)


If False, add the score differential in place.











	
fit(X, y=None)[source]

	Grab the column names from a Pandas DataFrame.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	self : For compatibility with Scikit-learn’s Pipeline.












	
transform(X, y=None)[source]

	Apply the column ordering to the data.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	X : Pandas DataFrame, of shape(number of plays, len(column_names))


The input DataFrame, properly ordered and with extraneous
columns dropped







	Raises:	KeyError


If the input data frame doesn’t have all the columns specified
by column_names.




NotFittedError


If transform is called before fit.



















	
class nflwin.preprocessing.ComputeElapsedTime(quarter_colname, quarter_time_colname, quarter_to_second_mapping={'Q1': 0, 'Q3': 1800, 'Q2': 900, 'Q4': 2700, 'OT3': 5400, 'OT2': 4500, 'OT': 3600}, total_time_colname='total_elapsed_time', copy=True)[source]

	Bases: sklearn.base.BaseEstimator

Compute the total elapsed time from the start of the game.





	Parameters:	quarter_colname : string


Which column indicates what quarter it is.




quarter_time_colname : string


Which column indicates how much time has elapsed in the current quarter.




quarter_to_second_mapping : dict (default=``{“Q1”: 0, “Q2”: 900, “Q3”: 1800, “Q4”: 2700,



“OT”: 3600, “OT2”: 4500, “OT3”: 5400}``)




What mapping to use between the string values in the quarter column and the seconds they
correspond to. Mostly useful if your data had quarters listed as something like “Quarter 1”
or “q1” instead of the values from nfldb.




total_time_colname : string (default=”total_elapsed_time”)


What column name to store the total elapsed time under.




copy : boolean (default=True)


Whether to add the new column in place.











	
fit(X, y=None)[source]

	




	
transform(X, y=None)[source]

	Create the new column.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	X : Pandas DataFrame, of shape(number of plays, number of features + 1)


The input DataFrame, with the new column added.







	Raises:	KeyError


If quarter_colname or quarter_time_colname don’t exist, or
if total_time_colname does exist.




TypeError


If the total time elapsed is not a numeric column, which typically indicates
that the mapping did not apply to every row.



















	
class nflwin.preprocessing.ComputeIfOffenseIsHome(offense_team_colname, home_team_colname, offense_home_team_colname='is_offense_home', copy=True)[source]

	Bases: sklearn.base.BaseEstimator

Determine if the team currently with possession is the home team.





	Parameters:	offense_team_colname : string


Which column indicates what team was on offense.




home_team_colname : string


Which column indicates what team was the home team.




offense_home_team_colname : string (default=”is_offense_home”)


What column to store whether or not the offense was the home team.




copy : boolean (default=True)


Whether to add the new column in place.











	
fit(X, y=None)[source]

	




	
transform(X, y=None)[source]

	Create the new column.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	X : Pandas DataFrame, of shape(number of plays, number of features + 1)


The input DataFrame, with the new column added.







	Raises:	KeyError


If offense_team_colname or home_team_colname don’t exist, or
if offense_home_team_colname does exist.



















	
class nflwin.preprocessing.CreateScoreDifferential(home_score_colname, away_score_colname, offense_home_colname, score_differential_colname='score_differential', copy=True)[source]

	Bases: sklearn.base.BaseEstimator

Convert offense and defense scores into a differential (offense - defense).





	Parameters:	home_score_colname : string


The name of the column containing the score of the home team.




away_score_colname : string


The name of the column containing the score of the away team.




offense_home_colname : string


The name of the column indicating if the offense is home.




score_differential_colname : string (default=``”score_differential”``)


The name of column containing the score differential. Must not already
exist in the DataFrame.




copy : boolean (default = True)


If False, add the score differential in place.











	
fit(X, y=None)[source]

	




	
transform(X, y=None)[source]

	Create the score differential column.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	X : Pandas DataFrame, of shape(number of plays, number of features + 1)


The input DataFrame, with the score differential column added.



















	
class nflwin.preprocessing.MapToInt(colname, copy=True)[source]

	Bases: sklearn.base.BaseEstimator

Map a column of values to integers.

Mapping to integer is nice if you know a column
only has a few specific values in it, but you need
to convert it to integers before one-hot encoding it.





	Parameters:	colname : string


The name of the column to perform the mapping on.




copy : boolean (default=True)


If False, apply the mapping in-place.










Attributes







	mapping
	(dict) Keys are the unique values of the column, values are the integers those values will be mapped to.






	
fit(X, y=None)[source]

	Find all unique strings and construct the mapping.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	self : For compatibility with Scikit-learn’s Pipeline.




	Raises:	KeyError


If colname is not in X.















	
transform(X, y=None)[source]

	Apply the mapping to the data.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	X : Pandas DataFrame, of shape(number of plays, number of features)


The input DataFrame, with the mapping applied.







	Raises:	NotFittedError


If transform is called before fit.




KeyError


If colname is not in X.



















	
class nflwin.preprocessing.OneHotEncoderFromDataFrame(categorical_feature_names='all', dtype=<type 'float'>, handle_unknown='error', copy=True)[source]

	Bases: sklearn.base.BaseEstimator

One-hot encode a DataFrame.

This cleaner wraps the standard scikit-learn OneHotEncoder,
handling the transfer between column name and column index.





	Parameters:	categorical_feature_names : “all” or array of column names.


Specify what features are treated as categorical.
* “all” (default): All features are treated as categorical.
* array of column names: Array of categorical feature names.




dtype : number type, default=np.float.


Desired dtype of output.




handle_unknown : str, “error” (default) or “ignore”.


Whether to raise an error or ignore if an unknown categorical feature
is present during transform.




copy : boolean (default=True)


If False, apply the encoding in-place.











	
dtype

	




	
fit(X, y=None)[source]

	Convert the column names to indices, then compute the one hot encoding.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	self : For compatibility with Scikit-learn’s Pipeline.












	
handle_unknown

	




	
transform(X, y=None)[source]

	Apply the encoding to the data.





	Parameters:	X : Pandas DataFrame, of shape(number of plays, number of features)


NFL play data.




y : Numpy array, with length = number of plays, or None


1 if the home team won, 0 if not.
(Used as part of Scikit-learn’s Pipeline)







	Returns:	X : Pandas DataFrame, of shape(number of plays, number of new features)


The input DataFrame, with the encoding applied.





















nflwin.utilities module

Utility functions that don’t fit in the main modules


	
nflwin.utilities.connect_nfldb()[source]

	Connect to the nfldb database.

Rather than using the builtin method we make our own,
since we’re going to use SQLAlchemy as the engine. However,
we can still make use of the information in the nfldb config
file to get information like username and password, which
means this function doesn’t need any arguments.





	Parameters:	None




	Returns:	SQLAlchemy engine object


A connected engine, ready to be used to query the DB.







	Raises:	IOError


If it can’t find the config file.















	
nflwin.utilities.get_nfldb_play_data(season_years=None, season_types=['Regular', 'Postseason'])[source]

	Get play-by-play data from the nfldb database.

We use a specialized query and then postprocessing because, while possible to
do using the objects created by nfldb, it is orders of magnitude slower.
This is due to the more general nature of nfldb, which is not really designed
for this kind of data mining. Since we need to get a lot of data in a single way,
it’s much simpler to interact at a lower level with the underlying postgres
database.





	Parameters:	season_years : list (default=None)


A list of all years to get data for (earliest year in nfldb is 2009).
If None, get data from all available seasons.




season_types : list (default=[“Regular”, “Postseason”])


A list of all parts of seasons to get data for (acceptable values are
“Preseason”, “Regular”, and “Postseason”). If None, get data from
all three season types.







	Returns:	Pandas DataFrame


The play by play data, with the following columns:


	gsis_id: The official NFL GSIS_ID for the game.

	drive_id: The id of the drive, starts at 1 and increases by 1 for each new drive.

	play_id: The id of the play in nfldb. Note that sequential plays have
increasing but not necessarily sequential values. With drive_id and gsis_id,
works as a unique identifier for a given play.

	quarter: The quarter, prepended with “Q” (e.g. Q1 means the first quarter). 
Overtime periods are denoted as OT, OT2, and theoretically OT3 if one were to
ever be played.

	seconds_elapsed: seconds elapsed since the start of the quarter.

	offense_team: The abbreviation of the team currently with possession of the ball.

	yardline: The current field position. Goes from -49 to 49, where negative numbers
indicate that the team with possession is on its own side of the field.

	down: The down. kickoffs, extra points, and similar have a down of 0.

	yards_to_go: How many yards needed in order to get a first down (or touchdown).

	home_team: The abbreviation of the home team.

	away_team: The abbreviation of the away team.

	curr_home_score: The home team’s score at the start of the play.

	curr_away_score: The away team’s score at the start of the play.

	offense_won: A boolean - True if the offense won the game, False otherwise. (The
database query skips tied games.)












Notes

gsis_id, drive_id, and play_id are not necessary to make the model, but
are included because they can be useful for computing things like WPA.
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  Source code for nflwin.utilities

"""Utility functions that don't fit in the main modules"""
from __future__ import print_function, division

import numpy as np
import pandas as pd


[docs]def connect_nfldb():
    """Connect to the nfldb database.

    Rather than using the builtin method we make our own,
    since we're going to use SQLAlchemy as the engine. However,
    we can still make use of the information in the nfldb config
    file to get information like username and password, which
    means this function doesn't need any arguments.

    Parameters
    ----------
    None

    Returns
    -------
    SQLAlchemy engine object
        A connected engine, ready to be used to query the DB.

    Raises
    ------
    IOError
        If it can't find the config file.
    """
    import nfldb
    import sqlalchemy as sql
    db_config, paths_tried = nfldb.db.config()
    if db_config is None:
        raise IOError("get_play_data: could not find database config! Looked"
                      " in these places: {0}".format(paths_tried))
    db_config["drivername"] = "postgres"
    db_config["username"] = db_config["user"]
    del db_config["user"]
    del db_config["timezone"]

    engine = sql.create_engine(sql.engine.url.URL(**db_config))

    return engine

    
    
[docs]def get_nfldb_play_data(season_years=None, season_types=["Regular", "Postseason"]):
    """Get play-by-play data from the nfldb database.

    We use a specialized query and then postprocessing because, while possible to
    do using the objects created by ``nfldb``, it is *orders of magnitude slower*.
    This is due to the more general nature of ``nfldb``, which is not really designed
    for this kind of data mining. Since we need to get a lot of data in a single way,
    it's much simpler to interact at a lower level with the underlying postgres
    database.


    Parameters
    ----------
    season_years : list (default=None)
        A list of all years to get data for (earliest year in nfldb is 2009).
        If ``None``, get data from all available seasons.
    season_types : list (default=["Regular", "Postseason"])
        A list of all parts of seasons to get data for (acceptable values are
        "Preseason", "Regular", and "Postseason"). If ``None``, get data from
        all three season types.

    Returns
    -------
    Pandas DataFrame
        The play by play data, with the following columns:
        
        * **gsis_id:** The official NFL GSIS_ID for the game.
        * **drive_id:** The id of the drive, starts at 1 and increases by 1 for each new drive.
        * **play_id:** The id of the play in ``nfldb``. Note that sequential plays have
          increasing but not necessarily sequential values. With ``drive_id`` and ``gsis_id``,
          works as a unique identifier for a given play.
        * **quarter:** The quarter, prepended with "Q" (e.g. ``Q1`` means the first quarter). 
          Overtime periods are denoted as ``OT``, ``OT2``, and theoretically ``OT3`` if one were to
          ever be played.
        * **seconds_elapsed:** seconds elapsed since the start of the quarter.
        * **offense_team:** The abbreviation of the team currently with possession of the ball.
        * **yardline:** The current field position. Goes from -49 to 49, where negative numbers
          indicate that the team with possession is on its own side of the field.
        * **down:** The down. kickoffs, extra points, and similar have a down of 0.
        * **yards_to_go:** How many yards needed in order to get a first down (or touchdown).
        * **home_team:** The abbreviation of the home team.
        * **away_team:** The abbreviation of the away team.
        * **curr_home_score:** The home team's score at the start of the play.
        * **curr_away_score:** The away team's score at the start of the play. 
        * **offense_won:** A boolean - ``True`` if the offense won the game, ``False`` otherwise. (The
          database query skips tied games.)

    Notes
    -----
    ``gsis_id``, ``drive_id``, and ``play_id`` are not necessary to make the model, but
    are included because they can be useful for computing things like WPA.
    """
    
    engine = connect_nfldb()

    sql_string = _make_nfldb_query_string(season_years=season_years, season_types=season_types)

    plays_df = pd.read_sql(sql_string, engine)

    #Fix yardline, quarter and time elapsed:
    def yardline_time_fix(row):
        try:
            yardline = float(row['yardline'][1:-1])
        except TypeError:
            yardline = np.nan
        split_time = row['time'].split(",")
        return yardline, split_time[0][1:], float(split_time[1][:-1])
    
    plays_df[['yardline', 'quarter', 'seconds_elapsed']] = pd.DataFrame(plays_df.apply(yardline_time_fix, axis=1).values.tolist())
    plays_df.drop('time', axis=1, inplace=True)

    #Set NaN downs (kickoffs, etc) to 0:
    plays_df['down'] = plays_df['down'].fillna(value=0).astype(np.int8)


    #Aggregate scores:
    plays_df = _aggregate_nfldb_scores(plays_df)
    
    return plays_df


def _aggregate_nfldb_scores(play_df):
    """Aggregate the raw nfldb data to get the score of every play."""

    # First, add the yardline of the subsequent play to the df
    play_df['next_yardline'] = play_df['yardline'].shift(-1)

    #Set up the dictionary to keep track of things:
    curr_home_score = 0
    curr_away_score = 0
    curr_gsis_id = play_df.iloc[0].gsis_id
    argdict = {"curr_home_score": 0, "curr_away_score": 0, "curr_gsis_id": play_df.iloc[0].gsis_id}

    #Define an internal function to actually compute the score of a given play:
    def compute_current_scores(play, argdict):
        #If new game, set scores to zero:
        if play.gsis_id != argdict['curr_gsis_id']:
            argdict['curr_home_score'] = 0
            argdict['curr_away_score'] = 0
            argdict['curr_gsis_id'] = play.gsis_id

        #Get current score at start of play:
        home_score_to_return = argdict['curr_home_score']
        away_score_to_return = argdict['curr_away_score']
        
        #Check if an extra point is missing from the data:
        if play.offense_play_points == 6 and play.next_yardline < 0:
            play.offense_play_points += 1
        if play.defense_play_points == 6 and play.next_yardline < 0:
            play.defense_play_points += 1

        #Update scores, if necessary:
        if play.offense_team == play.home_team:
            argdict['curr_home_score'] += play.offense_play_points
            argdict['curr_away_score'] += play.defense_play_points
        else:
            argdict['curr_home_score'] += play.defense_play_points
            argdict['curr_away_score'] += play.offense_play_points
        return home_score_to_return, away_score_to_return

    #Apply function to data:
    #TODO (AndrewRook): Make the .apply function go faster, currently it's a large bottleneck
    aggregate_scores = play_df.apply(compute_current_scores, axis=1, args=(argdict,))
    aggregate_scores = pd.DataFrame(aggregate_scores.values.tolist())
    play_df[['curr_home_score', 'curr_away_score']] = aggregate_scores

    #Drop unnecessary columns:
    play_df.drop(labels=["next_yardline", "offense_play_points", "defense_play_points"],
                 axis=1, inplace=True)

    return play_df


def _make_nfldb_query_string(season_years=None, season_types=None):
    """Construct the query string to get all the play data.

    This way is a little more compact and robust than specifying
    the string in the function that uses it.

    """
    
    play_fields = ['gsis_id', 'drive_id', 'play_id',
                   'time', 'pos_team AS offense_team', 'yardline', 'down',
                   'yards_to_go']

    offense_play_points = ("GREATEST("
        "(agg_play.fumbles_rec_tds * 6), "
        "(agg_play.kicking_rec_tds * 6), "
        "(agg_play.passing_tds * 6), "
        "(agg_play.receiving_tds * 6), "
        "(agg_play.rushing_tds * 6), "
        "(agg_play.kicking_xpmade * 1), "
        "(agg_play.passing_twoptm * 2), "
        "(agg_play.receiving_twoptm * 2), "
        "(agg_play.rushing_twoptm * 2), "
        "(agg_play.kicking_fgm * 3)) "
        "AS offense_play_points")
    defense_play_points = ("GREATEST("
        "(agg_play.defense_frec_tds * 6), "
        "(agg_play.defense_int_tds * 6), "
        "(agg_play.defense_misc_tds * 6), "
        "(agg_play.kickret_tds * 6), "
        "(agg_play.puntret_tds * 6), "
        "(agg_play.defense_safe * 2)) "
        "AS defense_play_points")

    game_fields = ("game.home_team, game.away_team, "
                   "((game.home_score > game.away_score AND play.pos_team = game.home_team) "
                   "OR (game.away_score > game.home_score AND play.pos_team = game.away_team)) AS offense_won")

    where_clause = ("WHERE game.home_score != game.away_score "
                    "AND game.finished = TRUE "
                    "AND play.pos_team != 'UNK' "
                    "AND (play.time).phase not in ('Pregame', 'Half', 'Final')")

    if season_years is not None:
        where_clause += " AND game.season_year"
        if len(season_years) == 1:
            where_clause += " = {0}".format(season_years[0])
        else:
            where_clause += (" in ({0})"
                            "".format(",".join([str(year) for year in season_years])))
    if season_types is not None:
        where_clause += " AND game.season_type"
        if len(season_types) == 1:
            where_clause += " = '{0}'".format(season_types[0])
        else:
            where_clause += " in ('{0}')".format("','".join(season_types))

    query_string = "SELECT "
    query_string += "play." + ", play.".join(play_fields)
    query_string += ", " + offense_play_points
    query_string += ", " + defense_play_points
    query_string += ", " + game_fields
    query_string += " FROM play INNER JOIN agg_play"
    query_string += (" ON play.gsis_id = agg_play.gsis_id"
        " AND play.drive_id = agg_play.drive_id"
        " AND play.play_id = agg_play.play_id")
    query_string += " INNER JOIN game on play.gsis_id = game.gsis_id"
    query_string += " " + where_clause
    query_string += " ORDER BY play.gsis_id, play.drive_id, play.play_id;"

    return query_string
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  Source code for nflwin.preprocessing

"""Tools to get raw data ready for modeling."""
from __future__ import print_function, division

import numpy as np
import pandas as pd

from sklearn.base import BaseEstimator
from sklearn.preprocessing import OneHotEncoder
from sklearn.utils.validation import NotFittedError

[docs]class ComputeElapsedTime(BaseEstimator):
    """Compute the total elapsed time from the start of the game.

    Parameters
    ----------
    quarter_colname : string
        Which column indicates what quarter it is.
    quarter_time_colname : string
        Which column indicates how much time has elapsed in the current quarter.
    quarter_to_second_mapping : dict (default=``{"Q1": 0, "Q2": 900, "Q3": 1800, "Q4": 2700,
                                                 "OT": 3600, "OT2": 4500, "OT3": 5400}``)
        What mapping to use between the string values in the quarter column and the seconds they
        correspond to. Mostly useful if your data had quarters listed as something like "Quarter 1"
        or "q1" instead of the values from ``nfldb``.
    total_time_colname : string (default="total_elapsed_time")
        What column name to store the total elapsed time under.
    copy : boolean (default=True)
        Whether to add the new column in place.
    """
    def __init__(self, quarter_colname, quarter_time_colname,
                 quarter_to_second_mapping={"Q1": 0, "Q2": 900, "Q3": 1800, "Q4": 2700,
                                            "OT": 3600, "OT2": 4500, "OT3": 5400},
                 total_time_colname="total_elapsed_time", copy=True):
        self.quarter_colname = quarter_colname
        self.quarter_time_colname = quarter_time_colname
        self.quarter_to_second_mapping = quarter_to_second_mapping
        self.total_time_colname = total_time_colname
        self.copy = copy

[docs]    def fit(self, X, y=None):
        return self


    
[docs]    def transform(self, X, y=None):
        """Create the new column.

        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        X : Pandas DataFrame, of shape(number of plays, number of features + 1)
            The input DataFrame, with the new column added.

        Raises
        ------
        KeyError
            If ``quarter_colname`` or ``quarter_time_colname`` don't exist, or
            if ``total_time_colname`` **does** exist.
        TypeError
            If the total time elapsed is not a numeric column, which typically indicates
            that the mapping did not apply to every row.
        """

        if self.quarter_colname not in X.columns:
            raise KeyError("ComputeElapsedTime: quarter_colname {0} does not exist in dataset."
                           .format(self.quarter_colname))
        if self.quarter_time_colname not in X.columns:
            raise KeyError("ComputeElapsedTime: quarter_time_colname {0} does not exist in dataset."
                           .format(self.quarter_time_colname))

        if self.total_time_colname in X.columns:
            raise KeyError("ComputeElapsedTime: total_time_colname {0} already exists in dataset."
                           .format(self.total_time_colname))

        if self.copy:
            X = X.copy()

        try:
            time_elapsed = X[self.quarter_colname].replace(self.quarter_to_second_mapping) + X[self.quarter_time_colname]
        except TypeError:
            raise TypeError("ComputeElapsedTime: Total time elapsed not numeric. Check your mapping from quarter name to time.")

        X[self.total_time_colname] = time_elapsed

        return X


    

[docs]class ComputeIfOffenseIsHome(BaseEstimator):
    """Determine if the team currently with possession is the home team.


    Parameters
    ----------
    offense_team_colname : string
        Which column indicates what team was on offense.
    home_team_colname : string
        Which column indicates what team was the home team.
    offense_home_team_colname : string (default="is_offense_home")
        What column to store whether or not the offense was the home team.
    copy : boolean (default=True)
        Whether to add the new column in place.
    """
    def __init__(self, offense_team_colname,
                 home_team_colname,
                 offense_home_team_colname="is_offense_home",
                 copy=True):
        self.offense_team_colname = offense_team_colname
        self.home_team_colname = home_team_colname
        self.offense_home_team_colname = offense_home_team_colname
        self.copy = copy

[docs]    def fit(self, X, y=None):
        return self


[docs]    def transform(self, X, y=None):
        """Create the new column.

        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        X : Pandas DataFrame, of shape(number of plays, number of features + 1)
            The input DataFrame, with the new column added.

        Raises
        ------
        KeyError
            If ``offense_team_colname`` or ``home_team_colname`` don't exist, or
            if ``offense_home_team_colname`` **does** exist.
        """

        if self.home_team_colname not in X.columns:
            raise KeyError("ComputeIfOffenseWon: home_team_colname {0} does not exist in dataset."
                           .format(self.home_team_colname))
        if self.offense_team_colname not in X.columns:
            raise KeyError("ComputeIfOffenseWon: offense_team_colname {0} does not exist in dataset."
                           .format(self.offense_team_colname))

        if self.offense_home_team_colname in X.columns:
            raise KeyError("ComputeIfOffenseWon: offense_home_team_colname {0} already exists in dataset."
                           .format(self.offense_home_team_colname))

        if self.copy:
            X = X.copy()

        X[self.offense_home_team_colname] = (X[self.home_team_colname] == X[self.offense_team_colname])

        return X




[docs]class MapToInt(BaseEstimator):
    """Map a column of values to integers.

    Mapping to integer is nice if you know a column
    only has a few specific values in it, but you need
    to convert it to integers before one-hot encoding it.

    Parameters
    ----------
    colname : string
        The name of the column to perform the mapping on.
    copy : boolean (default=True)
        If ``False``, apply the mapping in-place.

    Attributes
    ----------
    mapping : dict
        Keys are the unique values of the column, values are the
        integers those values will be mapped to.

    Note
    ----
    The ``transform`` method DOES NOT CHECK to see if the input
    DataFrame only contains values in ``mapping``. Any values not
    in ``mapping`` will be left alone, which can cause subtle bugs
    if you're not careful.
    """

    def __init__(self, colname, copy=True):
        self.colname = colname
        self.copy = copy
        self.mapping = None

[docs]    def fit(self, X, y=None):
        """Find all unique strings and construct the mapping.

        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        self : For compatibility with Scikit-learn's ``Pipeline``.

        Raises
        ------
        KeyError
            If ``colname`` is not in ``X``.

        """
        if self.colname not in X.columns:
            raise KeyError("MapStringsToInt: Required column {0} "
                           "not present in data".format(self.colname))
        unique_values = X[self.colname].unique()
        
        self.mapping = {unique_values[i]: i for i in range(len(unique_values))}
        
        try:
            del self.mapping[np.nan]
        except KeyError:
            pass
        
        return self


[docs]    def transform(self, X, y=None):
        """Apply the mapping to the data.

        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            The input DataFrame, with the mapping applied.

        Raises
        ------
        NotFittedError
            If ``transform`` is called before ``fit``.
        KeyError
            If ``colname`` is not in ``X``.
        """
        if not self.mapping:
            raise NotFittedError("MapStringsToInt: Must fit before transform.")
        
        if self.colname not in X.columns:
            raise KeyError("MapStringsToInt: Required column {0} "
                           "not present in data".format(self.colname))

        if self.copy:
            X = X.copy()

        X[self.colname].replace(self.mapping, inplace=True)

        return X


        

[docs]class OneHotEncoderFromDataFrame(BaseEstimator):
    """One-hot encode a DataFrame.

    This cleaner wraps the standard scikit-learn OneHotEncoder,
    handling the transfer between column name and column index.

    Parameters
    ----------
    categorical_feature_names : "all" or array of column names.
        Specify what features are treated as categorical.
        * "all" (default): All features are treated as categorical.
        * array of column names: Array of categorical feature names.
    dtype : number type, default=np.float.
        Desired dtype of output.
    handle_unknown : str, "error" (default) or "ignore".
        Whether to raise an error or ignore if an unknown categorical feature
        is present during transform.
    copy : boolean (default=True)
        If ``False``, apply the encoding in-place.
    """

    @property
    def dtype(self):
        return self._dtype
    @dtype.setter
    def dtype(self, dtype):
        self._dtype = dtype
        self.onehot.dtype = self._dtype

    @property
    def handle_unknown(self):
        return self._handle_unknown
    @handle_unknown.setter
    def handle_unknown(self, handle_unknown):
        self._handle_unknown = handle_unknown
        self.onehot.handle_unknown = self._handle_unknown
        
    def __init__(self,
                 categorical_feature_names="all",
                 dtype=np.float,
                 handle_unknown="error",
                 copy=True):
        self.onehot = OneHotEncoder(sparse=False, n_values="auto",
                                    categorical_features="all") #We'll subset the DF
        self.categorical_feature_names = categorical_feature_names
        self.dtype = dtype
        self.handle_unknown = handle_unknown
        self.copy = copy

[docs]    def fit(self, X, y=None):
        """Convert the column names to indices, then compute the one hot encoding.

        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        self : For compatibility with Scikit-learn's ``Pipeline``.
        """

        if self.categorical_feature_names == "all":
            self.categorical_feature_names = X.columns

        #Get all columns that need to be encoded:
        data_to_encode = X[self.categorical_feature_names]
            

        self.onehot.fit(data_to_encode)

        return self


[docs]    def transform(self, X, y=None):
        """Apply the encoding to the data.
        
        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        X : Pandas DataFrame, of shape(number of plays, number of new features)
            The input DataFrame, with the encoding applied.
        """
        if self.copy:
            X = X.copy()
        
        data_to_transform = X[self.categorical_feature_names]
        transformed_data = self.onehot.transform(data_to_transform)

        #TODO (AndrewRook): Find good column names for the encoded columns.
        colnames = ["onehot_col{0}".format(i+1) for i in range(transformed_data.shape[1])]
        #Create a dataframe from the transformed columns (setting the index is critical for
        #merging with data containing non-standard indexes)
        transformed_df = pd.DataFrame(transformed_data, columns=colnames, index=X.index)
        
        X.drop(self.categorical_feature_names, axis=1, inplace=True)
        X[transformed_df.columns] = transformed_df
        
        return X


            
    

[docs]class CreateScoreDifferential(BaseEstimator):
    """Convert offense and defense scores into a differential (offense - defense).

    Parameters
    ----------
    home_score_colname : string
        The name of the column containing the score of the home team.
    away_score_colname : string
        The name of the column containing the score of the away team.
    offense_home_colname : string
        The name of the column indicating if the offense is home.
    score_differential_colname : string (default=``"score_differential"``)
        The name of column containing the score differential. Must not already
        exist in the DataFrame.
    copy : boolean (default = ``True``)
        If ``False``, add the score differential in place.
    """
    def __init__(self, home_score_colname,
                 away_score_colname,
                 offense_home_colname,
                 score_differential_colname="score_differential",
                 copy=True):
        self.home_score_colname = home_score_colname
        self.away_score_colname = away_score_colname
        self.offense_home_colname = offense_home_colname
        self.score_differential_colname = score_differential_colname
        self.copy = copy

[docs]    def fit(self, X, y=None):
        return self


[docs]    def transform(self, X, y=None):
        """Create the score differential column.

        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        X : Pandas DataFrame, of shape(number of plays, number of features + 1)
            The input DataFrame, with the score differential column added.
        """
        try:
            score_differential = ((X[self.home_score_colname] - X[self.away_score_colname]) *
                                  (2 * X[self.offense_home_colname] - 1))
        except KeyError:
            raise KeyError("CreateScoreDifferential: data missing required column. Must "
                           "include columns named {0}, {1}, and {2}".format(self.home_score_colname,
                                                                            self.away_score_colname,
                                                                            self.offense_home_colname))
        if self.score_differential_colname in X.columns:
            raise KeyError("CreateScoreDifferential: column {0} already in DataFrame, and can't "
                           "be used for the score differential".format(self.score_differential_colname))

        if self.copy:
            X = X.copy()

        X[self.score_differential_colname] = score_differential

        return X


        


[docs]class CheckColumnNames(BaseEstimator):
    """Make sure user has the right column names, in the right order.

    This is a useful first step to make sure that nothing
    is going to break downstream, but can also be used effectively
    to drop columns that are no longer necessary.

    Parameters
    ----------
    column_names : ``None``, or list of strings
        A list of column names that need to be present in the scoring
        data. All other columns will be stripped out. The order of the
        columns will be applied to any scoring
        data as well, in order to handle the fact that pandas lets
        you play fast and loose with column order. If ``None``,
        will obtain every column in the DataFrame passed to the
        ``fit`` method.
    copy : boolean (default=``True``)
        If ``False``, add the score differential in place.
       
    """
    def __init__(self, column_names=None, copy=True):
        self.column_names = column_names
        self.copy = copy
        self._fit = True
        self.user_specified_columns = False
        if self.column_names is None:
            self._fit = False
        else:
            self.user_specified_columns = True
            

[docs]    def fit(self, X, y=None):
        """Grab the column names from a Pandas DataFrame.

        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        self : For compatibility with Scikit-learn's ``Pipeline``. 
        """
        if not self.user_specified_columns:
            self.column_names = X.columns
            self._fit = True

        return self


[docs]    def transform(self, X, y=None):
        """Apply the column ordering to the data.

        Parameters
        ----------
        X : Pandas DataFrame, of shape(number of plays, number of features)
            NFL play data.
        y : Numpy array, with length = number of plays, or None
            1 if the home team won, 0 if not.
            (Used as part of Scikit-learn's ``Pipeline``)

        Returns
        -------
        X : Pandas DataFrame, of shape(number of plays, ``len(column_names)``)
            The input DataFrame, properly ordered and with extraneous
            columns dropped

        Raises
        ------
        KeyError
            If the input data frame doesn't have all the columns specified
            by ``column_names``.
        NotFittedError
            If ``transform`` is called before ``fit``.
        """
        if not self._fit:
            raise NotFittedError("CheckColumnName: Call 'fit' before 'transform")
        
        if self.copy:
            X = X.copy()

        try:
                
            return X[self.column_names]
        except KeyError:
            raise KeyError("CheckColumnName: DataFrame does not have required columns. "
                           "Must contain at least {0}".format(self.column_names))
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  Source code for nflwin.model

"""Tools for creating and running the model."""
from __future__ import print_function, division

import os

import numpy as np
from scipy import integrate
from scipy import stats

from sklearn.ensemble import RandomForestClassifier
from sklearn.externals import joblib
from sklearn.linear_model import LogisticRegression
from sklearn.calibration import CalibratedClassifierCV
from sklearn.cross_validation import train_test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import brier_score_loss
from sklearn.neighbors import KernelDensity
from sklearn.pipeline import Pipeline
from sklearn.utils.validation import NotFittedError

import preprocessing
import utilities

[docs]class WPModel(object):
    """The object that computes win probabilities.

    In addition to holding the model itself, it defines some columns names likely to be
    used in the model as parameters to allow other users to more easily figure out which
    columns go into the model.

    Parameters
    ----------
    copy_data : boolean (default=``True``)
        Whether or not to copy data when fitting and applying the model. Running the model
        in-place (``copy_data=False``) will be faster and have a smaller memory footprint,
        but if not done carefully can lead to data integrity issues.

    Attributes
    ----------
    model : A Scikit-learn pipeline (or equivalent)
        The actual model used to compute WP. Upon initialization it will be set to
        a default model, but can be overridden by the user.
    column_descriptions : dictionary
        A dictionary whose keys are the names of the columns used in the model, and the values are
        string descriptions of what the columns mean. Set at initialization to be the default model,
        if you create your own model you'll need to update this attribute manually.
    training_seasons : A list of ints, or ``None`` (default=``None``)
        If the model was trained using data downloaded from nfldb, a list of the seasons
        used to train the model. If nfldb was **not** used, an empty list. If no model
        has been trained yet, ``None``.
    training_season_types : A list of strings or ``None`` (default=``None``)
        Same as ``training_seasons``, except for the portions of the seasons used in training the
        model ("Preseason", "Regular", and/or "Postseason").
    validation_seasons : same as ``training_seasons``, but for validation data.
    validation_season_types : same as ``training_season_types``, but for validation data.
    sample_probabilities : A numpy array of floats or ``None`` (default=``None``)
        After the model has been validated, contains the sampled predicted probabilities used to
        compute the validation statistic.
    predicted_win_percents : A numpy array of floats or ``None`` (default=``None``)
        After the model has been validated, contains the actual probabilities in the test
        set at each probability in ``sample_probabilities``.
    num_plays_used : A numpy array of floats or ``None`` (default=``None``)
        After the model has been validated, contains the number of plays used to compute each
        element of ``predicted_win_percents``.
    model_directory : string
        The directory where all models will be saved to or loaded from.

    """
    model_directory = os.path.join(os.path.dirname(os.path.abspath(__file__)), "models")
    _default_model_filename = "default_model.nflwin"

    def __init__(self,
                 copy_data=True
                ):
        self.copy_data = copy_data

        self.model = self.create_default_pipeline()
        self._training_seasons = None
        self._training_season_types = None
        self._validation_seasons = None
        self._validation_season_types = None

        self._sample_probabilities = None
        self._predicted_win_percents = None
        self._num_plays_used = None


    @property
    def training_seasons(self):
        return self._training_seasons
    @property
    def training_seasons_types(self):
        return self._training_season_types
    @property
    def validation_seasons(self):
        return self._validation_seasons
    @property
    def validation_seasons_types(self):
        return self._validation_season_types

    @property
    def sample_probabilities(self):
        return self._sample_probabilities
    @property
    def predicted_win_percents(self):
        return self._predicted_win_percents
    @property
    def num_plays_used(self):
        return self._num_plays_used

[docs]    def train_model(self,
                    source_data="nfldb",
                    training_seasons=[2009, 2010, 2011, 2012, 2013, 2014],
                    training_season_types=["Regular", "Postseason"],
                    target_colname="offense_won"):
        """Train the model.

        Once a modeling pipeline is set up (either the default or something
        custom-generated), historical data needs to be fed into it in order to
        "fit" the model so that it can then be used to predict future results.
        This method implements a simple wrapper around the core Scikit-learn functionality
        which does this.

        The default is to use data from the nfldb database, however that can be changed
        to a simple Pandas DataFrame if desired (for instance if you wish to use data
        from another source).

        There is no particular output from this function, rather the parameters governing
        the fit of the model are saved inside the model object itself. If you want to get an
        estimate of the quality of the fit, use the ``validate_model`` method after running
        this method.

        Notes
        -----
        If you are loading in the default model, **there is no need to re-run this method**.
        In fact, doing so will likely result in weird errors and could corrupt the model if you
        were to try to save it back to disk.

        Parameters
        ----------
        source_data : the string ``"nfldb"`` or a Pandas DataFrame (default=``"nfldb"``)
            The data to be used to train the model. If ``"nfldb"``, will query the nfldb
            database for the training data (note that this requires a correctly configured
            installation of nfldb's database).
        training_seasons : list of ints (default=``[2009, 2010, 2011, 2012, 2013, 2014]``)
            What seasons to use to train the model if getting data from the nfldb database.
            If ``source_data`` is not ``"nfldb"``, this argument will be ignored.
            **NOTE:** it is critical not to use all possible data in order to train the
            model - some will need to be reserved for a final validation (see the
            ``validate_model`` method). A good dataset to reserve
            for validation is the most recent one or two NFL seasons.
        training_season_types : list of strings (default=``["Regular", "Postseason"]``)
            If querying from the nfldb database, what parts of the seasons to use.
            Options are "Preseason", "Regular", and "Postseason". If ``source_data`` is not
            ``"nfldb"``, this argument will be ignored.
        target_colname : string or integer (default=``"offense_won"``)
            The name of the target variable column. 

        Returns
        -------
        ``None``
        """
        self._training_seasons = []
        self._training_season_types = []
        if isinstance(source_data, basestring):
            if source_data == "nfldb":
                source_data = utilities.get_nfldb_play_data(season_years=training_seasons,
                                                            season_types=training_season_types)
                self._training_seasons = training_seasons
                self._training_season_types = training_season_types
            else:
                raise ValueError("WPModel: if source_data is a string, it must be 'nfldb'")
        target_col = source_data[target_colname]
        feature_cols = source_data.drop(target_colname, axis=1)
        self.model.fit(feature_cols, target_col)


[docs]    def validate_model(self,
                       source_data="nfldb",
                       validation_seasons=[2015],
                       validation_season_types=["Regular", "Postseason"],
                       target_colname="offense_won"):
        """Validate the model.

        Once a modeling pipeline is trained, a different dataset must be fed into the trained model
        to validate the quality of the fit.
        This method implements a simple wrapper around the core Scikit-learn functionality
        which does this.

        The default is to use data from the nfldb database, however that can be changed
        to a simple Pandas DataFrame if desired (for instance if you wish to use data
        from another source).

        The output of this method is a p value which represents the confidence at which
        we can reject the null hypothesis that the model predicts the appropriate win
        probabilities. This number is computed by first smoothing the predicted win probabilities of both all test data and
        just the data where the offense won with a gaussian `kernel density
        estimate <http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity>`_
        with standard deviation = 0.01. Once the data is smooth, ratios at each percentage point from 1% to 99% are computed (i.e.
        what fraction of the time did the offense win when the model says they have a 1% chance of winning, 2% chance, etc.). Each of
        these ratios should be well approximated by the binomial distribution, since they are essentially independent (not perfectly
        but hopefully close enough) weighted coin flips, giving a p value. From there `Fisher's method <https://en.wikipedia.org/wiki/Fisher%27s_method>`_
        is used to combine the p values into a global p value. A p value close to zero means that the model is unlikely to be
        properly predicting the correct win probabilities. A p value close to one, **while not proof that the model is correct**,
        means that the model is at least not inconsistent with the hypothesis that it predicts good win probabilities.

        Parameters
        ----------
        source_data : the string ``"nfldb"`` or a Pandas DataFrame (default=``"nfldb"``)
            The data to be used to train the model. If ``"nfldb"``, will query the nfldb
            database for the training data (note that this requires a correctly configured
            installation of nfldb's database).
        training_seasons : list of ints (default=``[2015]``)
            What seasons to use to validate the model if getting data from the nfldb database.
            If ``source_data`` is not ``"nfldb"``, this argument will be ignored.
            **NOTE:** it is critical not to use the same data to validate the model as was used
            in the fit. Generally a good data set to use for validation is one from a time
            period more recent than was used to train the model. For instance, if the model was trained
            on data from 2009-2014, data from the 2015 season would be a sensible choice to validate the model.
        training_season_types : list of strings (default=``["Regular", "Postseason"]``)
            If querying from the nfldb database, what parts of the seasons to use.
            Options are "Preseason", "Regular", and "Postseason". If ``source_data`` is not
            ``"nfldb"``, this argument will be ignored.
        target_colname : string or integer (default=``"offense_won"``)
            The name of the target variable column. 

        Returns
        -------
        float, between 0 and 1
            The combined p value, where smaller values indicate that the model is not accurately predicting win
            probabilities.
            
        Raises
        ------
        NotFittedError
            If the model hasn't been fit.

        Notes
        -----
        Probabilities are computed between 1 and 99 percent because a single incorrect prediction at 100% or 0% automatically drives
        the global p value to zero. Since the model is being smoothed this situation can occur even when there are no model predictions
        at those extreme values, and therefore leads to erroneous p values.

        While it seems reasonable (to me at least), I am not totally certain that this approach is entirely correct.
        It's certainly sub-optimal in that you would ideally reject the null hypothesis that the model predictions
        **aren't** appropriate, but that seems to be a much harder problem (and one that would need much more test
        data to beat down the uncertainties involved). I'm also not sure if using Fisher's method is appropriate here,
        and I wonder if it might be necessary to Monte Carlo this. I would welcome input from others on better ways to do this.
        
        """

        if self.training_seasons is None:
            raise NotFittedError("Must fit model before validating.")
        
        self._validation_seasons = []
        self._validation_season_types = []
        if isinstance(source_data, basestring):
            if source_data == "nfldb":
                source_data = utilities.get_nfldb_play_data(season_years=validation_seasons,
                                                            season_types=validation_season_types)
                self._validation_seasons = validation_seasons
                self._validation_season_types = validation_season_types
            else:
                raise ValueError("WPModel: if source_data is a string, it must be 'nfldb'")
            
        target_col = source_data[target_colname]
        feature_cols = source_data.drop(target_colname, axis=1)
        predicted_probabilities = self.model.predict_proba(feature_cols)[:,1]

        self._sample_probabilities, self._predicted_win_percents, self._num_plays_used = (
            WPModel._compute_predicted_percentages(target_col.values, predicted_probabilities))

        #Compute the maximal deviation from a perfect prediction as well as the area under the
        #curve of the residual between |predicted - perfect|:
        max_deviation, residual_area = self._compute_prediction_statistics(self.sample_probabilities,
                                                                           self.predicted_win_percents)
        return max_deviation, residual_area

        
        #Compute p-values for each where null hypothesis is that distributions are same, then combine
        #them all to make sure data is not inconsistent with accurate predictions.
        # combined_pvalue = self._test_distribution(self.sample_probabilities,
        #                                           self.predicted_win_percents,
        #                                           self.num_plays_used)
        
        # return combined_pvalue

    @staticmethod
    def _compute_prediction_statistics(sample_probabilities, predicted_win_percents):
        """Take the KDE'd model estimates, then compute statistics.

        Returns
        -------
        A tuple of (``max_deviation``, ``residual_area``), where ``max_deviation``
        is the largest discrepancy between the model and expectation at any WP,
        and ``residual_area`` is the total area under the curve of |predicted WP - expected WP|.
        """
        abs_deviations = np.abs(predicted_win_percents - sample_probabilities)
        max_deviation = np.max(abs_deviations)
        residual_area = integrate.simps(abs_deviations,
                                        sample_probabilities)
        return (max_deviation, residual_area)
                                       

[docs]    def predict_wp(self, plays):
        """Estimate the win probability for a set of plays.

        Basically a simple wrapper around ``WPModel.model.predict_proba``,
        takes in a DataFrame and then spits out an array of predicted
        win probabilities.

        Parameters
        ----------
        plays : Pandas DataFrame
            The input data to use to make the predictions.

        Returns
        -------
        Numpy array, of length ``len(plays)``
            Predicted probability that the offensive team in each play
            will go on to win the game.

        Raises
        ------
        NotFittedError
            If the model hasn't been fit.
        """
        if self.training_seasons is None:
            raise NotFittedError("Must fit model before predicting WP.")

        return self.model.predict_proba(plays)[:,1]



[docs]    def plot_validation(self, axis=None, **kwargs):
        """Plot the validation data.

        Parameters
        ----------
        axis : matplotlib.pyplot.axis object or ``None`` (default=``None``)
            If provided, the validation line will be overlaid on ``axis``.
            Otherwise, a new figure and axis will be generated and plotted on.
        **kwargs
            Arguments to ``axis.plot``.

        Returns
        -------
        matplotlib.pylot.axis
            The axis the plot was made on.

        Raises
        ------
        NotFittedError
            If the model hasn't been fit **and** validated.
        """

        if self.sample_probabilities is None:
            raise NotFittedError("Must validate model before plotting.")
        
        import matplotlib.pyplot as plt
        if axis is None:
            axis = plt.figure().add_subplot(111)
            axis.plot([0, 100], [0, 100], ls="--", lw=2, color="black")
            axis.set_xlabel("Predicted WP")
            axis.set_ylabel("Actual WP")
        axis.plot(self.sample_probabilities,
                  self.predicted_win_percents,
                  **kwargs)

        return axis

            

    @staticmethod
    def _test_distribution(sample_probabilities, predicted_win_percents, num_plays_used):
        """Based off assuming the data at each probability is a Bernoulli distribution."""

        #Get the p-values:
        p_values = [stats.binom_test(np.round(predicted_win_percents[i] * num_plays_used[i]),
                                     np.round(num_plays_used[i]),
                                     p=sample_probabilities[i]) for i in range(len(sample_probabilities))]
        combined_p_value = stats.combine_pvalues(p_values)[1]
        return(combined_p_value)

    @staticmethod
    def _compute_predicted_percentages(actual_results, predicted_win_probabilities):
        """Compute the sample percentages from a validation data set.
        """
        kde_offense_won = KernelDensity(kernel='gaussian', bandwidth=0.01).fit(
            (predicted_win_probabilities[(actual_results == 1)])[:, np.newaxis])
        kde_total = KernelDensity(kernel='gaussian', bandwidth=0.01).fit(
            predicted_win_probabilities[:, np.newaxis])
        sample_probabilities = np.linspace(0.01, 0.99, 99)
        number_density_offense_won = np.exp(kde_offense_won.score_samples(sample_probabilities[:, np.newaxis])) * np.sum((actual_results))
        number_density_total = np.exp(kde_total.score_samples(sample_probabilities[:, np.newaxis])) * len(actual_results)
        number_offense_won = number_density_offense_won * np.sum(actual_results) / np.sum(number_density_offense_won)
        number_total = number_density_total * len(actual_results) / np.sum(number_density_total)
        predicted_win_percents = number_offense_won / number_total

        return 100.*sample_probabilities, 100.*predicted_win_percents, number_total
    
[docs]    def create_default_pipeline(self):
        """Create the default win probability estimation pipeline.


        Returns
        -------
        Scikit-learn pipeline
            The default pipeline, suitable for computing win probabilities
            but by no means the best possible model.

        This can be run any time a new default pipeline is required,
        and either set to the ``model`` attribute or used independently.
        """

        steps = []

        offense_team_colname = "offense_team"
        home_team_colname = "home_team"
        home_score_colname = "curr_home_score"
        away_score_colname = "curr_away_score"
        down_colname = "down"
        quarter_colname = "quarter"
        time_colname = "seconds_elapsed"
        yardline_colname = "yardline"
        yards_to_go_colname="yards_to_go"

        self.column_descriptions = {
            offense_team_colname: "Abbreviation for the offensive team",
            home_team_colname: "Abbreviation for the home team",
            away_score_colname: "Abbreviation for the visiting team",
            down_colname: "The current down",
            yards_to_go_colname: "Yards to a first down (or the endzone)",
            quarter_colname: "The quarter",
            time_colname: "Seconds elapsed in the quarter",
            yardline_colname: ("The yardline, given by (yards from own goalline - 50). "
                               "-49 is your own 1 while 49 is the opponent's 1.")
            }

        is_offense_home = preprocessing.ComputeIfOffenseIsHome(offense_team_colname,
                                                               home_team_colname,
                                                               copy=self.copy_data)
        steps.append(("compute_offense_home", is_offense_home))
        score_differential = preprocessing.CreateScoreDifferential(home_score_colname,
                                                                   away_score_colname,
                                                                   is_offense_home.offense_home_team_colname,
                                                                   copy=self.copy_data)
        steps.append(("create_score_differential", score_differential))
        steps.append(("map_downs_to_int", preprocessing.MapToInt(down_colname, copy=self.copy_data)))
        total_time_elapsed = preprocessing.ComputeElapsedTime(quarter_colname, time_colname, copy=self.copy_data)
        steps.append(("compute_total_time_elapsed", total_time_elapsed))
        steps.append(("remove_unnecessary_columns", preprocessing.CheckColumnNames(
            column_names=[is_offense_home.offense_home_team_colname,
                          score_differential.score_differential_colname,
                          total_time_elapsed.total_time_colname,
                          yardline_colname,
                          yards_to_go_colname,
                          down_colname],
            copy=self.copy_data)))
        steps.append(("encode_categorical_columns", preprocessing.OneHotEncoderFromDataFrame(
            categorical_feature_names=[down_colname],
            copy=self.copy_data)))

        search_grid = {'base_estimator__penalty': ['l1', 'l2'],
                       'base_estimator__C': [0.01, 0.1, 1, 10, 100]
                      }
        base_model = LogisticRegression()
        calibrated_model = CalibratedClassifierCV(base_model, cv=2, method="isotonic")
        #grid_search_model = GridSearchCV(calibrated_model, search_grid,
        #                     scoring=self._brier_loss_scorer)
        steps.append(("compute_model", calibrated_model))

        pipe = Pipeline(steps)
        return pipe


[docs]    def save_model(self, filename=None):
        """Save the WPModel instance to disk.

        All models are saved to the same place, with the installed
        NFLWin library (given by ``WPModel.model_directory``). 

        Parameters
        ----------
        filename : string (default=None):
            The filename to use for the saved model. If this parameter
            is not specified, save to the default filename. Note that if a model
            already lists with this filename, it will be overwritten. Note also that
            this is a filename only, **not** a full path. If a full path is specified
            it is likely (albeit not guaranteed) to cause errors.

        Returns
        -------
        ``None``
        """

        if filename is None:
            filename = self._default_model_filename
        joblib.dump(self, os.path.join(self.model_directory, filename))


    @classmethod
[docs]    def load_model(cls, filename=None):
        """Load a saved WPModel.

        Parameters
        ----------
        Same as ``save_model``.

        Returns
        -------
        ``nflwin.WPModel`` instance.
        """
        if filename is None:
            filename = cls._default_model_filename
            
        return joblib.load(os.path.join(cls.model_directory, filename))


    @staticmethod
    def _brier_loss_scorer(estimator, X, y):
        """Use the Brier loss to estimate model score.

        For use in GridSearchCV, instead of accuracy.
        """
        predicted_positive_probabilities = estimator.predict_proba(X)[:, 1]
        return 1. - brier_score_loss(y, predicted_positive_probabilities)
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