

Documentation

This is the documentation for nexoclom.
Monte Carlo model of neutral clouds and exospheres

	Input

	LOSResult

	Output

	configure_model

	nexoclom Outline

Input Files

The inputs for a model run are defined in an plain text file with lines in the
form:

category.parameter = setting

A description of everything that can go into an input file is at
Input File Format.

Input

	
class nexoclom.Input(infile)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Read the input options from a file.

Parameters

	infile
	Plain text file containing model input parameters. See
Input File Format for a description of the input file format.

Class Attributes

	geometry

	surface_interaction

	forces

	spatialdist

	speeddist

	angulardist

	options

Methods Summary

	search()

	Search the database for previous model runs with the same inputs.

	produce_image(format_[, filenames, overwrite])

	

	run(npackets[, packs_per_it, overwrite, …])

	Run the nexoclom model with the current inputs.

Methods Documentation

	
search()

	Search the database for previous model runs with the same inputs.
See searchtolerances for tolerances used in searches.

Parameters

No parameters.

Returns

	A list of filenames corresponding to the inputs.

	Number of packets contained in those saved outputs.

	Total modeled source rate.

	
produce_image(format_, filenames=None, overwrite=False)

	

	
run(npackets, packs_per_it=None, overwrite=False, compress=True)

	Run the nexoclom model with the current inputs.

Parameters

	npackets
	Number of packets to simulate

	packs_per_it
	Maximum number of packets to run at one time. Default = 1e5 in
constant step-size mode; 1e6 in adaptive step-size mode.

	overwrite
	Erase any files matching the current inputs that exist.
Default = False

	compress
	Remove packets with frac=0 from the outputs to reduce file size.
Default = True

Outputs

Nothing is returned, but model runs are saved and cataloged.

LOSResult

	
class nexoclom.LOSResult(inputs, data, quantity, dphi=<Quantity 3. deg>, filenames=None, overwrite=False, **kwargs)

	Bases: nexoclom.ModelResults.ModelResult

Determine column or emission along lines of sight.
This assumes the model has already been run.

	inputs
	An Inputs object

	data
	A Pandas DataFrame object with information on the lines of sight.

	quantity
	Quantity to calculate: ‘column’, ‘radiance’, ‘density’

	dphi
	Angular size of the view cone. Default = 3 deg.

	filenames
	A filename or list of filenames to use. Default = None is to
find all files created for the inputs.

	overwrite
	If True, deletes any images that have already been computed.
Default = False

Methods Summary

	create_model(data, outfile, **kwargs)

	

	restore(data, fname)

	

	save(data, fname, radiance, packets)

	

Methods Documentation

	
create_model(data, outfile, **kwargs)

	

	
restore(data, fname)

	

	
save(data, fname, radiance, packets)

	

Output

	
class nexoclom.Output(inputs, npackets, compress=True, logger=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Determine and store packet trajectories.

Parameters

	inputs
	An Input object with the run parameters.

	npackets
	Number of packets to run.

	compress
	Remove packets with frac=0 from the outputs to reduce file size.
Default = True

Class Attributes

x0, y0, z0

f0

vx0, vy0, vz0

phi0, lat0, lon0

time, x, y, z, vx, vy, vz
index, npackets, totalsource

	inputs
	The inputs used for the simulation

	logfile
	Path to file with output log

	compress
	Whether output is compressed.

	unit
	Basic length unit used. Equal to radius of central planet.

	GM
	GM_planet in units of R_planet/s**2

	aplanet
	Distance of planet from the Sun in AU

	vrplanet
	Radial velocity of planet relative to the Sun in R_planet/s

	radpres
	Radiation pressure object containing acceleration as funtion
of velocity in units of R_planet/s**2 and R_planet/s

Methods Summary

	Output.determine_filename

	

	Output.driver

	

	restore(filename)

	

	save()

	Add output to database and save as a pickle.

	Output.source_distribution

	

	Output.stream_driver

	

Methods Documentation

	
classmethod restore(filename)

	

	
save()

	Add output to database and save as a pickle.

configure_model

Create and read configuration file, create necessary database tables.

	
nexoclom.configure_model.configfile()

	Configure external resources used in the model.

The following parameters can be saved in the file $HOME/.nexoclom.

	savepath = <path where output files are saved>

	datapath = <path where MESSENGER data is kept>

	database = <name of the postgresql database to use> (optional)

	port = <port for postgreSQL server to use> (optional)

If savepath and datapath are not present, user is prompted to enter them.

	
nexoclom.configure_model.configure_model()

	Ensure the database and configuration file are set up for nexoclom.

Parameters

No parameters.

Returns

No output.

	
nexoclom.configure_model.verify_output_tables()

	Create the database tables used by nexoclom to save output.

nexoclom Outline

	configure_model.py

	Functions

	configfile()

	set_up_output_tables()

	configure_model()

	Classes

	Input.py

	Functions

	Classes

	Geometry

	StickingInfo

	Forces

	SpatialDist

	SpeedDist

	AngularDist

	Options

	input_classes.py

	Functions

	Classes

	modeldriver.py

	Functions

	modeldriver()

	delete_files()

	Classes

	Output.py

	Functions

	Classes

	Output

	satellite_initial_positions.py

	Functions

	Classes

	LossInfo.py

	Functions

	Classes

	LossInfo

	State.py

	Functions

	Classes

	bouncepackets.py

	Functions

	Classes

	rk5.py

	Functions

	Classes

	source_distribution.py

	Functions

	Classes

	xyz_to_magcoord.py

	Functions

	Classes

	ModelResults.py

	Functions

	Classes

	ModelResult

	LOSResult.py

	Functions

	Classes

	LOSResult(ModelResult)

	produce_image.py

	Functions

	Classes

	ModelImage(ModelResult)

	IDLout.py

	Functions

	Classes

	IDLout

	__init__.py

	Functions

	Classes

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nexoclom	

 	
 	
 nexoclom.configure_model	

Index

 C
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | V

C

 	
 	configfile() (in module nexoclom.configure_model)

 	
 	configure_model() (in module nexoclom.configure_model)

 	create_model() (nexoclom.LOSResult method)

I

 	
 	Input (class in nexoclom)

L

 	
 	LOSResult (class in nexoclom)

N

 	
 	nexoclom.configure_model (module)

O

 	
 	Output (class in nexoclom)

P

 	
 	produce_image() (nexoclom.Input method)

R

 	
 	restore() (nexoclom.LOSResult method)

 	(nexoclom.Output class method)

 	
 	run() (nexoclom.Input method)

S

 	
 	save() (nexoclom.LOSResult method)

 	(nexoclom.Output method)

 	
 	search() (nexoclom.Input method)

V

 	
 	verify_output_tables() (in module nexoclom.configure_model)

 {% extends “autosummary_core/base.rst” %}
{# The template this is inherited from is in astropy/sphinx/ext/templates/autosummary_core. If you want to modify this template, it is strongly recommended that you still inherit from the astropy template. #}

 {% extends “autosummary_core/class.rst” %}
{# The template this is inherited from is in astropy/sphinx/ext/templates/autosummary_core. If you want to modify this template, it is strongly recommended that you still inherit from the astropy template. #}

 {% extends “autosummary_core/module.rst” %}
{# The template this is inherited from is in astropy/sphinx/ext/templates/autosummary_core. If you want to modify this template, it is strongly recommended that you still inherit from the astropy template. #}

Input File Format

Input files are plain text files in the form:

category.parameter = setting

Lines in the input file that can not be parsed in this manner are ignored.
Comments can be entered with either a “,” or a “#”. Everything in a line
after a comment character is ignored. There are currently seven categories
that can be set: geometry, surface_interaction,
forces, spatial_dist, speed_dist, angular_dist, and options. The required
parameters for each category are not fixed; i.e., which paramters are needed
depends somewhat on the settings chosen. Below, all possible parameters for
each category are defined. Input files are case insensitive.

Geometry

The geometry can be defined either with a timestamp (i.e., determine the
geometry values at a defined epoch), or without a timestamp (i.e., by
specifying important values). If running the model from MESSENGERdata.model(),
the geometry is determined from from the data and geometry settings in the
input file are ignored.

Geometry With Time Stamp

	geometry.planet [Required]
	Central planet for the model. This must be an object that orbits the Sun.

	geometry.StartPoint [Optional]
	Object from which packets are ejected. This must be an object in the
planetary system (the planet or one of its moons).
Default = geometry.planet.

	geometry.objects [Optional]
	Objects to include in calculations given as comma-separated list of
bodies in the planetary system. For example, if
geometry.objects = Jupiter, Io, the gravity effects of the other moons
would not be included, nor would collisions with their surfaces. Default
is to include all defined objects for the system.

	geometry.startttime [Required]
	Starting time for the model run in ISOT format (YYYY-MM-DDTHH:MM:SS).
The true anomaly angle, subsolar point, and orbital position of moons
are determined using SPICE [https://naif.jpl.nasa.gov/naif/toolkit.html].

Geometry Without Time Stamp

	geometry.planet [Required]
	Central planet for the model. This must be an object that orbits the Sun.

	geometry.StartPoint [Optional]
	Object from which packets are ejected. This must be an object in the
planetary system (the planet or one of its moons).
Default = geometry.planet.

	geometry.objects [Optional]
	Objects to include in calculations given as comma-separated list of
bodies in the planetary system. For example, if
geometry.objects = Jupiter, Io, the gravity effects of the other moons
would not be included, nor would collisions with their surfaces. Default
is to include all defined objects for the system.

	geometry.phi [Required if planet has moons.]
	Orbital phase of each included moon relative to the Sun in radians given
as a comma-separated list.
Measured from 0 rad to 2π rad where 0 rad is superior conjunction and
π/2 rad is over the planet’s dawn terminator. The number of values must be
equal to the number of non-planet objects included.

	geometry.subsolarpoint [Optional]
	The sub-solar longitude and latitude over the planet’s surface in radians
given as comma-separated values. For Jupiter, use System-III central
meridian longitude. Sub-solar latitude isn’t used for anything currently,
but could in the future be used to include effects of the planetary system’s
tilt relative to the Sun.

	geometry.TAA [Required]
	Planet’s True Anomaly Angle in radians. This is used to determine the
planet’s distance and radial velocity relative to the Sun.

SurfaceInteraction

The SurfaceInteraction class defines interactions between packets and body
surfaces. The available parameters depend on the interactions desired.
If no values are provided, 100% sticking is assumed.

Constant Sticking Coefficient

	surfaceinteraction.stickcoef [Optional]
	Sticking coefficient to be used uniformly across the body’s surface.
For complete surface sticking, set surfaceinteraction.stickcoef = 1..
For no sticking (100% of packets are reemitted from the surface, set
surfaceinteraction.stickcoef = 0. Default = 1.

	surfaceinteraction.accomfactor [Required if stickcoef < 1]
	Surface accommodation factor. 1 = Fully accommodated to local surface
temperature. 0 = Elastic reemission.

Temperature Dependent Sticking Coefficient

The sticking coefficient follows the functional form (Yakshinskiy & Madey 2005):

\[S(T) = A_0 e^{A_1 T} + A_2\]

where the coefficients are species dependent. For Na,
\(A_0=1.57014, A_1=-0.006262, A_2=0.1614157\).

	surfaceinteraction.sticktype [Required]
	Set surfaceinteraction.sticktype = temperature dependent.

	surfaceinteractions.accomfactor [Required]
	Surface accommodation factor. 1 = Fully accommodated to local surface
temperature. 0 = Elastic reemission.

	surfaceinteractions.A [Optional]
	Comma separated values for the coeffeicients.
Default = 1.57014, 0.006262, 0.1614157. (Ideally the defaults will be
species dependent, but I only have values for Na.)

Sticking Coefficient from a Surface Map

	surfaceinteraction.type [Required]
	Set surfaceinteraction.sticktype = from map.

	surfaceinteraction.sticking_mapfile [Required]
	Path to the file containing a map of the sticking coeficient. The format
for the map has not been determined.

	surfaceinteractions.accomfactor [Required]
	Surface accommodation factor. 1 = Fully accommodated to local surface
temperature. 0 = Elastic reemission.

Forces

The Forces class determines which forces are included in the simulation.
Currently, the model only includes gravity and radiation pressure. If
no forces are set in the input file both are included by default.

	forces.gravity [Optional]
	True to include gravity; False to exclude. Default = True.

	forces.radpres [Optional]
	True to include radiation pressure; False to exclude. Default = True

SpatialDist

The SpatialDist class specifies the initial spatial distribution of packets
in the system. Currently, three spatial distribution types are defined, all of
which place packets over the surface (or exobase) of geometry.StartingPoint.
More distributions may defined upon request.

Coordinate Systems

The coordinate system used for the object’s latitude and longitude depends
on whether the packets are ejected from a planet or a moon. For planets, a
solar-fixed coordinate system is used where the longitude increases in the
positive direction from the sub-solar point (noon) point to dusk point:

sub-solar (noon) point = 0 rad = 0°
dusk point = π/2 rad = 90°
anti-solar (midnight) point = π rad = 180°
dawn point = 3π/2 rad = 270°

For satellites, the coordinate system is planet-fixed from the sub-planet
point increasing positive through the leading point:

sub-planet point = 0 rad = 0°
leading point = π/2 rad = 90°
anti-planet point = π rad = 180°
trailing point = 3π/2 rad = 270°

Latitude ranges from -π/2 rad to π/2 rad for the south pole to the north pole.
All angular values are given in radians in the input file.

Uniform Surface

Distribute packets randomly across a region of the surface or exobase with
a uniform probability distribution.

	spatialdist.type [Required]
	Set spatialdist.type = uniform.

	spatialdist.longitude [Optional]
	Longitude range on the surface to place packets in radians given as
long0, long1 where \(0 \leq long0,long1 \leq 2\pi\). If long0 >
long1, the region wraps around. Default = 0, 2π.

	spatialdist.latitude [Optional]
	Latitude range on the surface to place packets in radians given as
lat0, lat1 where \(-\pi/2 \leq lat0 \leq lat1 \leq \pi/2\).

	spatialdist.exobase [Optional]
	Location of the exobase in units of the starting point’s radius.
Default = 1.

To eject all packets from a single point, set long0 = long1 and
lat0 = lat1; i.e., to eject all packets from the sub-solar point of a planet,
set:

spatialdist.longitude = 3.14159,3.14159
spatialdist.latitude = 0,0

Spatial Distribution from a Surface Map

Distribute packets according to a probability distribution given by a
pre-defined surface map.

	spatialdist.type [Required]
	Set spatialdist.type = surface map.

	spatialdist.mapfile [Optional]
	Set this to a pickle or IDL savefile containing the map information, or
set to ‘default’ to use the default surface composition map.

The sourcemap is saved as a dictionary with the fields:

	longitude: longitude axis in radians

	latitude: latitude axis in radians

	abundance: surface abundance map

	coordinate_system: planet-fixed, solar-fixed, or moon-fixed

If not given, the default, planet-fixed surface composition map is used.

	spatialdist.subsolarlon [Optional]
	Sub-solar longitude for the observation in radians. This is required for
a planet-fixed coordinate system. However, if simulating a MESSENGER
orbit, this value will be overwritten by the value at the time the data
were taken. If it is required, but not given or specified programmatically,
an Exception will be raised.

	spatialdist.exobase [Optional]
	Location of the exobase in units of the starting point’s radius.
Default = 1.

Surface-Spot Spatial Distribution

Distribute packets with a spatial distribution that drops off exponentially
from a central point.

	spatialdist.type [Required]
	Set spatialdist.type = surface spot.

	spatialdist.longitude [Required]
	Longitude of the source center in radians.

	spatialdist.latitude [Required]
	Latitude of the soruce center in radians.

	spatialdist.sigma [Required]
	Angular e-folding width of the source in radians.

	spatialdist.exobase [Optional]
	Location of the exobase in units of the starting point’s radius.
Default = 1.

SpeedDist

The SpeedDist class defines the one-dimensional initial speed distribution
of the packets. Currently implemented speed distributions are gaussian,
Maxwellian, sputtering, and flat. More can be added upon request.

Gaussian (Normal) distribution

Packets speeds are chosen from a normal distribution. See
numpy.random.normal [https://docs.scipy.org/doc/numpy-1.16.0/reference/generated/numpy.random.normal.html#numpy.random.normal]
for more information on the implementation.

	speeddist.type [Required]
	Set speeddist.type = gaussian

	speeddist.vprob [Required]
	Mean speed of the distribution in km/s.

	speeddist.sigma [Required]
	Standard deviation of the distribution in km/s.

Maxwellian Distribution

Packet speeds are chosen from a Maxwellian distribution given by:

\begin{eqnarray*}
f(v) & \propto & v^3 \exp(-v^2/v_{th}^2) \\
v_{th}^2 & = & 2Tk_B/m
\end{eqnarray*}

	speeddist.type [Required]
	Set speeddist.type = maxwellian

	speeddist.temperature [Required]
	Temperature of the distribution in K. Set speeddist.temperature = 0 to
use a pre-defined surface temperature map (Not implemented yet).

Sputtering Distribution

Packet speeds are chosen from a sputtering distribution in the form:

\begin{eqnarray*}
f(v) & \propto & \frac{v^{2\beta + 1}}{(v^2 + v_b^2)^\alpha} \\
v_b & = & \left(\frac{2U}{m} \right)^{1/2}
\end{eqnarray*}

	speeddist.type [Required]
	Set speeddist.type = sputtering

	speeddist.alpha [Required]
	\(\alpha\) parameter.

	speeddist.beta [Required]
	\(\beta\) parameter.

	speeddist.U [Required]
	Surface binding energy in eV.

Flat Distribution

Packet speeds are uniformly distributed between vprob - delv/2 and
vrpob + delv/2. Setting speeddist.delv = 0 gives a monoenergetic
distribution.

	speeddist.type [Required]
	Set speeddist.type = flat

	speeddist.vprob [Required]
	Mean speed of the distribution in km/s.

	speeddist.delv [Required]
	Full width of the distribution in km/s.

AngularDist

The AngularDist class defines the initial angular distribution of packets.
The options are radial and isotropic. More distributions can be added upon
request. If not given, an isotropic distribution into the outward facing
hemisphere is assumed.

Radial Distribution

Packets are ejected radially from the surface.

	angulardist.type [Required]
	Set angulardist.type = radial.

Isotropic Distribution

Packets are ejected isotropically into the outward facing hemisphere (if the
packets are starting from the surface) or the full hemisphere.
angulardist.type is not given, an isotropic distribution is assumed and
all other options are ignored (i.e., altitude and azimuth can not be specified).

	angulardist.type [Optional]
	Set angulardist.type = isotropic.

	angulardist.altitude [Optional]
	Used to limit the altitude range of the distribution. Given as a
comma-separated list of altmin, altmax in radians measured from the
surface tangent to the surface normal.

	angulardist.azimuth [Optional]
	Used to limit the azimuth range of the distribution. Given as a
comma-separated list of az0, az1 in radians. This should be measured with
azimuth = 0 rad pointing to north, but I’m not sure if it actually works.
Use of this option is not recommended.

Options

The Options class sets runtime options that don’t fit into other categories.

	options.endtime [Required]
	The total simulated runtime for the model. Generally chosen to be several
times the lifetime of the species.

	options.species [Required]
	The species to be simulated.

	options.lifetime [Optional]
	The lifetime due to ionization or dissociation of the species in seconds.
If options.lifetime = 0, the lifetime is computed based on available
ionization and dissociation reactions. If options.lifetime > 0, the
lifetime is constant throughout the system. If options.lifetime < 0,
the lifetime is assumed to be the photo-lifetime and no loss occurs in
the geometric shadow. Default = 0 (use available reactions).

	options.outer_edge [Optional]
	Distance from geometry.startpoint to simulate in object radii. Default =
infinite; i.e., no outer edge is given to the simulation.

	options.step_size [Optional]
	Time step size for the simulation in seconds. Set options.step_size = 0
for variable step size. Default = 0 (variable step size). If step_size is
non-zero, the number of steps to be run is endtime/step_size + 1.

	options.resolution [Optional]
	Relative precision of the simulation. Default = \(10^{-4}\).
This is ignored if options.step_size is set.

modeldriver

 nav.xhtml

 Table of Contents

 		
 Documentation

 		
 Input

 		
 LOSResult

 		
 Output

 		
 configure_model

 		
 nexoclom Outline

_static/plus.png

_static/file.png

_static/minus.png

