

Welcome to customerApp’s documentation!

Contents:

://pypi.python.org/pypi/sphinx-autobuild/0.2.3
Dec 25, 2013 - sphinx-autobuild relies on a not-yet-released version of python-livereload. You can install it through pip by issuing the following command:https://pypi.python.org/pypi/sphinx-autobuild/0.2.3
Dec 25, 2013 - sphinx-autobuild relies on a not-yet-released version of python-livereload. You can install it through pip by issuing the following command:https://pypi.python.org/pypi/sphinx-autobuild/0.2.3
Dec 25, 2013 - sphinx-autobuild relies on a not-yet-released version of python-livereload. You can install it through pip by issuing the following command:https://pypi.python.org/pypi/sphinx-autobuild/0.2.3
Dec 25, 2013 - sphinx-autobuild relies on a not-yet-released version of python-livereload. You can install it through pip by issuing the following command:

Indices and tables

	Index

	Module Index

	search.rst

web3j

web3j is a lightweight, reactive, type safe Java and Android library for integrating with clients
(nodes) on the Ethereum network:

[image: images/web3j_network.png]
This allows you to work with the Ethereum [https://www.ethereum.org/] blockchain, without the
additional overhead of having to write your own integration code for the platform.

The Java and the Blockchain [https://www.youtube.com/watch?v=ea3miXs_P6Y] talk provides an
overview of blockchain, Ethereum and web3j.

Features

	Complete implementation of Ethereum’s JSON-RPC [https://github.com/ethereum/wiki/wiki/JSON-RPC]
client API over HTTP and IPC

	Ethereum wallet support

	Reactive-functional API for working with filters

	Auto-generation of Java smart contract wrappers to create, deploy, transact with and call smart
contracts from native Java code

	Support for Parity’s
Personal [https://github.com/paritytech/parity/wiki/JSONRPC-personal-module], and Geth’s
Personal [https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal] client APIs

	Support for Infura [https://infura.io/], so you don’t have to run an Ethereum client yourself

	Comprehensive integration tests demonstrating a number of the above scenarios

	Command line tools

	Android compatible

	Support for JP Morgan’s Quorum via web3j-quorum [https://github.com/web3j/quorum]

Dependencies

It has seven runtime dependencies:

	RxJava [https://github.com/ReactiveX/RxJava] for its reactive-functional API

	Apache HTTP Client [https://hc.apache.org/httpcomponents-client-ga/index.html]

	Jackson Core [https://github.com/FasterXML/jackson-core] for fast JSON
serialisation/deserialisation

	Bouncy Castle [https://www.bouncycastle.org/] and
Java Scrypt [https://github.com/wg/scrypt] for crypto

	JavaPoet [https://github.com/square/javapoet] for generating smart contract wrappers

	Jnr-unixsocket [https://github.com/jnr/jnr-unixsocket] for *nix IPC

Index

~

~

~
- Ethereum Homestead Documentation [https://ethereum-homestead.readthedocs.io/en/latest/]
- Ethereum Wiki [https://github.com/ethereum/wiki/wiki]
- Ethereum JSON-RPC specification [https://github.com/ethereum/wiki/wiki/JSON-RPC]
- Ethereum Yellow Paper and

GitHub [https://github.com/ethereum/yellowpaper] repository

	Homestead [https://ethereum-homestead.readthedocs.org/en/latest/] docs

	Solidity [http://solidity.readthedocs.io/en/develop/] docs

	Layout of variables in storage [http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage]

	Ethereum tests [https://github.com/ethereum/tests] contains lots of common tests for clients

	Etherscan [https://etherscan.io] is very useful for exploring blocks and transactions, it also
has a testnet site [https://testnet.etherscan.io]

	Ethstats [https://ethstats.net/] provides a useful network dashboard. There is also a
testnet dashboard [http://morden.io/], and one for Parity clients [https://stats.parity.io/].

	Ethereum reddit [https://www.reddit.com/r/ethereum/]

	. customerApp documentation master file, created by

	sphinx-quickstart on Thu Apr 27 13:27:22 2017.
You can adapt this file completely to your liking, but it should at least
contain the root toctree directive.

Welcome to customerApp’s documentation!

Contents:

://pypi.python.org/pypi/sphinx-autobuild/0.2.3
Dec 25, 2013 - sphinx-autobuild relies on a not-yet-released version of python-livereload. You can install it through pip by issuing the following command:https://pypi.python.org/pypi/sphinx-autobuild/0.2.3
Dec 25, 2013 - sphinx-autobuild relies on a not-yet-released version of python-livereload. You can install it through pip by issuing the following command:https://pypi.python.org/pypi/sphinx-autobuild/0.2.3
Dec 25, 2013 - sphinx-autobuild relies on a not-yet-released version of python-livereload. You can install it through pip by issuing the following command:https://pypi.python.org/pypi/sphinx-autobuild/0.2.3
Dec 25, 2013 - sphinx-autobuild relies on a not-yet-released version of python-livereload. You can install it through pip by issuing the following command:

Indices and tables

	xyz

	abcindex

	search123

Transactions

Broadly speaking there are three types transactions supported on Ethereum:

	Transfer of Ether from one party to another

	Creation of a smart contract

	Transacting with a smart contract

To undertake any of these transactions, it is necessary to have Ether (the fuel of the Ethereum
blockchain) residing in the Ethereum account which the transactions are taking place from. This is
to pay for the Gas costs, which is the transaction execution cost for the Ethereum client that
performs the transaction on your behalf, comitting the result to the Ethereum blockchain.
Instructions for obtaining Ether are described below in Obtaining Ether.

Additionally, it is possible to query the state of a smart contract, this is described in
Querying the state of a smart contract.

[image: images/web3j_transaction.png]

Obtaining Ether

To obtain Ether you have two options:

	Mine it yourself

	Buy Ether from another party

Mining it yourself in a private environment, or the public tet environment (testnet) is very
straight forwards. However, in the main live environment (mainnet) it requires significant
dedicated GPU time which is not likely to be feasible unless you already have a gaming PC with
multiple dedicated GPUs. If you wish to use a private environment, there is some guidance on the
Homestead documentation [https://ethereum-homestead.readthedocs.io/en/latest/network/test-networks.html#id3].

To purchase Ether you will need to go via an exchange. As different regions have different
exchanges, you will need to research the best location for this yourself. The
Homestead documentation [https://ethereum-homestead.readthedocs.io/en/latest/ether.html#list-of-centralised-exchange-marketplaces]
contains a number of exchanges which is a good place to start.

Alternatively, if you need some Ether on testnet to get started, please post a message with your
wallet address to the web3j Gitter channel [https://gitter.im/web3j/web3j] and I’ll send you
some.

Mining on testnet/private blockchains

In the Ethereum test environment (testnet), the mining difficulty is set lower then the main
environment (mainnet). This means that you can mine new Ether with a regular CPU, such as your
laptop. What you’ll need to do is run an Ethereum client such as Geth or Parity to start building
up reserves. Further instructions are available on the respective sites.

	Geth

	https://github.com/ethereum/go-ethereum/wiki/Mining

	Parity

	https://github.com/paritytech/parity/wiki/Mining

Once you have mined some Ether, you can start transacting with the blockchain.

Gas

When a transaction takes place in Ethereum, a transaction cost must be paid to the client that
executes the transaction on your behalf, committing the output of this transaction to the Ethereum
blockchain.

This cost is measure in gas, where gas is the number of instructions used to execute a transaction
in the Ethereum Virtual Machine. Please refer to the
Homestead documentation [http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html?highlight=gas#what-is-gas]
for further information.

What this means for you when working with Ethereum clients is that there are two parameters which
are used to dictate how much Ether you wish to spend in order for a tranaction to complete:

Gas price

This is the amount you are prepared in Ether per unit of gas. It defaults to a price of 9000 Wei
(9 x 10-15 Ether).

Gas limit

This is the total amount of gas you are happy to spend on the transaction execution. There is an
upper limit of how large a single transaction can be in an Ethereum block which restricts this
value typically to less then 1,500,000. The current gas limit is visible at https://ethstats.net/.

These parameters taken together dictate the maximum amount of Ether you are willing to spend on
transaction costs. i.e. you can spend no more then gas price * gas limit. The gas price can also
affect how quickly a transaction takes place depending on what other transactions are available
with a more profitable gas price for miners.

You may need to adjust these parameters to ensure that transactions take place in a timely manner.

Transaction mechanisms

When you have a valid account created with some Ether, there are two mechanisms you can use to
transact with Ethereum.

	Transaction signing via an Ethereum client

	Offline transaction signing

Both mechanisms are supported via web3j.

Transaction signing via an Ethereum client

In order to transact via an Ethereum client, you first need to ensure that the client you’re
transacting with knows about your wallet address. You are best off running your own Ethereum client
such as Geth/Parity in order to do this. Once you have a client running, you can create a wallet
via:

	The Geth Wiki [https://github.com/ethereum/go-ethereum/wiki/Managing-your-accounts] contains
a good run down of the different mechanisms Geth supports such as importing private key files,
and creating a new account via it’s console

	Alternatively you can use a JSON-RPC admin command for your client, such as personal_newAccount
for Parity [https://github.com/paritytech/parity/wiki/JSONRPC-personal-module#personal_newaccount]
or Geth [https://github.com/ethereum/go-ethereum/wiki/Management-APIs#personal_newaccount]

With your wallet file created, you can unlock your account via web3j by first of all creating an
instance of web3j that supports Parity/Geth admin commands:

Parity parity = Parity.build(new HttpService());

Then you can unlock the account, and providing this was successful, send a transaction:

PersonalUnlockAccount personalUnlockAccount = parity.personalUnlockAccount("0x000...", "a password").sendAsync().get();
if (personalUnlockAccount.accountUnlocked()) {
 // send a transaction
}

Transactions for sending in this manner should be created via
EthSendTransaction [https://github.com/web3j/web3j/blob/master/src/main/java/org/web3j/protocol/core/methods/request/EthSendTransaction.java],
with the Transaction [https://github.com/web3j/web3j/blob/master/src/main/java/org/web3j/protocol/core/methods/request/Transaction.java] type:

Transaction transaction = Transaction.createContractTransaction(
 <from address>,
 <nonce>,
 BigInteger.valueOf(<gas price>),
 "0x...<smart contract code to execute>"
);

 org.web3j.protocol.core.methods.response.EthSendTransaction
 transactionResponse = parity.ethSendTransaction(ethSendTransaction)
 .sendAsync().get();

 String transactionHash = transactionResponse.getTransactionHash();

 // poll for transaction response via org.web3j.protocol.Web3j.ethGetTransactionReceipt(<txHash>)

Where the <nonce> value is obtained as per below.

Please refer to the integration test
DeployContractIT [https://github.com/web3j/web3j/blob/master/src/integration-test/java/org/web3j/protocol/scenarios/DeployContractIT.java]
and its superclass
Scenario [https://github.com/web3j/web3j/blob/master/src/integration-test/java/org/web3j/protocol/scenarios/Scenario.java]
for further details of this transaction workflow.

Further details of working with the different admin commands supported by web3j are available in
the section management_apis.

Offline transaction signing

If you’d prefer not to manage your own Ethereum client, or do not want to provide wallet details
such as your password to an Ethereum client, then offline transaction signing is the way to go.

Offline transaction signing allows you to sign a transaction using your Ethereum Ethereum wallet
within web3j, allowing you to have complete control over your private credentials. A transaction
created offline can then be sent to any Ethereum client on the network, which will propagate the
transaction out to other nodes, provided it is a valid transaction.

Creating and working with wallet files

In order to sign transactions offline, you need to have either your Ethereum wallet file or the
public and private keys associated with an Ethereum wallet/account.

web3j is able to both generate a new secure Ethereum wallet file for you, or work with an existing
wallet file.

To create a new wallet file:

String fileName = WalletUtils.generateNewWalletFile(
 "your password",
 new File("/path/to/destination"));

To load the credentials from a wallet file:

Credentials credentials = WalletUtils.loadCredentials(
 "your password",
 "/path/to/walletfile");

These credentials are then used to sign transactions.

Please refer to the
Web3 Secret Storage Definition [https://github.com/ethereum/wiki/wiki/Web3-Secret-Storage-Definition]
for the full wallet file specification.

Signing transactions

Transactions to be used in an offline signing capacity, should use the
RawTransaction [https://github.com/web3j/web3j/blob/master/src/main/java/org/web3j/protocol/core/methods/request/Transaction.java]
type for this purpose. The RawTransaction is similar to the previously mentioned Transaction type,
however it does not require a from address, as this can be inferred from the signature.

In order to create and sign a raw transaction, the sequence of events is as follows:

	Identify the next available nonce for the sender account

	Create the RawTransaction object

	Encode the RawTransaction object

	Sign the RawTransaction object

	Send the RawTransaction object to a node for processing

The nonce is an increasing numeric value which is used to uniquely identify transactions. A nonce
can only be used once and until a transaction is mined, it is possible to send multiple versions of
a transaction with the same nonce, however, once mined, any subsequent submissions will be rejected.

Once you have obtained the next available nonce, the value can then be used to
create your transaction object:

RawTransaction rawTransaction = RawTransaction.createEtherTransaction(
 nonce, <gas price>, <gas limit>, <toAddress>, <value>);

The transaction can then be signed and encoded:

byte[] signedMessage = TransactionEncoder.signMessage(rawTransaction, <credentials>);
String hexValue = Hex.toHexString(signedMessage);

Where the credentials are those loaded as per Creating and working with wallet files.

The transaction is then sent using eth_sendRawTransaction [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sendrawtransaction]:

EthSendTransaction ethSendTransaction = web3j.ethSendRawTransaction(hexValue).sendAsync().get();
String transactionHash = ethSendTransaction.getTransactionHash();
// poll for transaction response via org.web3j.protocol.Web3j.ethGetTransactionReceipt(<txHash>)

Please refer to the integration test
CreateRawTransactionIT [https://github.com/web3j/web3j/blob/master/src/integration-test/java/org/web3j/protocol/scenarios/CreateRawTransactionIT.java]
for a full example of creating and sending a raw transaction.

The transaction nonce

The nonce is an increasing numeric value which is used to uniquely identify transactions. A nonce
can only be used once and until a transaction is mined, it is possible to send multiple versions of
a transaction with the same nonce, however, once mined, any subsequent submissions will be rejected.

You can obtain the next available nonce via the
eth_getTransactionCount [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactioncount] method:

EthGetTransactionCount ethGetTransactionCount = web3j.ethGetTransactionCount(
 address, DefaultBlockParameterName.LATEST).sendAsync().get();

 BigInteger nonce = ethGetTransactionCount.getTransactionCount();

The nonce can then be used to create your transaction object:

RawTransaction rawTransaction = RawTransaction.createEtherTransaction(
 nonce, <gas price>, <gas limit>, <toAddress>, <value>);

Transaction types

The different types of transaction in web3j work with both Transaction and RawTransaction objects.
The key difference is that Transaction objects must always have a from address, so that the
Ethereum client which processes the
eth_sendTransaction [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sendtransaction]
request know which wallet to use in order to sign and send the transaction on the message senders
behalf. As mentioned above, this is not necessary for raw transactions
which are signed offline.

The subsequent sections outline the key transaction attributes required for the different
transaction types. The following attributes remain constant for all:

	Gas price

	Gas limit

	Nonce

	From

Transaction and RawTransaction objects are used interchangeably in all of the subsequent examples.

Transfer of Ether from one party to another

The sending of Ether between two parties requires a minimal number of details of the transaction
object:

	to

	the destination wallet address

	value

	the amount of Ether you wish to send to the destination address

BigInteger value = Convert.toWei("1.0", Convert.Unit.ETHER).toBigInteger();
RawTransaction rawTransaction = RawTransaction.createEtherTransaction(
 <nonce>, <gas price>, <gas limit>, <toAddress>, value);
// send...

Creation of a smart contract

To deploy a new smart contract, the following attributes will need to be provided

	value

	the amount of Ether you wish to deposit in the smart contract (assumes zero if not provided)

	data

	the hex formatted, compiled smart contract creation code

// using a raw transaction
RawTransaction rawTransaction = RawTransaction.createContractTransaction(
 <nonce>,
 <gasPrice>,
 <gasLimit>,
 <value>,
 "0x <compiled smart contract code>");
// send...

// get contract address
EthGetTransactionReceipt.TransactionReceipt transactionReceipt = sendTransactionReceiptRequest(transactionHash);

Optional<String> contractAddressOptional = transactionReceipt.getContractAddress();

If the smart contract contains a constructor, the associated constructor field values must be
encoded and appended to the compiled smart contract code:

String encodedConstructor =
 FunctionEncoder.encodeConstructor(Arrays.asList(new Type(value), ...));

// using a regular transaction
Transaction transaction = Transaction.createContractTransaction(
 <fromAddress>,
 <nonce>,
 <gasPrice>,
 <gasLimit>,
 <value>,
 "0x <compiled smart contract code>" + encodedConstructor);

// send...

Transacting with a smart contract

To transact with an existing smart contract, the following attributes will need to be provided:

	to

	the smart contract address

	value

	the amount of Ether you wish to deposit in the smart contract (assumes zero if not provided)

	data

	the encoded function selector and parameter arguments

web3j takes care of the function encoding for you, further details are available in the
Ethereum Contract ABI [https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI#function-selector-and-argument-encoding]
section of the Ethereum Wiki.

Function function = new Function<>(
 "functionName", // function we're calling
 Arrays.asList(new Type(value), ...), // Parameters to pass as Solidity Types
 Arrays.asList(new TypeReference<Type>() {}, ...));

String encodedFunction = FunctionEncoder.encode(function)
Transaction transaction = Transaction.createFunctionCallTransaction(
 <from>, <gasPrice>, <gasLimit>, contractAddress, <funds>, encodedFunction);

org.web3j.protocol.core.methods.response.EthSendTransaction transactionResponse =
 web3j.ethSendTransaction(transaction).sendAsync().get();

String transactionHash = transactionResponse.getTransactionHash();

// wait for response using EthGetTransactionReceipt...

It is not possible to return values from transactional functional calls, regardless of the return
type of the message signature. However, it is possible to capture values returned by functions
using filters. Please refer to the filters section for details.

Querying the state of a smart contract

This functionality is facilitated by the eth_call [https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_call]
JSON-RPC call.

eth_call allows you to call a method on a smart contract to query a value. There is no transaction
cost associated with this function, this is because it does not change the state of any smart
contract method’s called, it simply returns the value from them:

Function function = new Function<>(
 "functionName",
 Arrays.asList(new Type(value)), // Solidity Types in smart contract functions
 Arrays.asList(new TypeReference<Type>() {}, ...));

String encodedFunction = FunctionEncoder.encode(function)
org.web3j.protocol.core.methods.response.EthCall response = web3j.ethCall(
 Transaction.createEthCallTransaction(contractAddress, encodedFunction),
 DefaultBlockParameterName.LATEST)
 .sendAsync().get();

List<Type> someTypes = FunctionReturnDecoder.decode(
 response.getValue(), function.getOutputParameters());

Note: If an invalid function call is made, or a null result is obtained, the return value will
be an instance of Collections.emptyList() [https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html#emptyList–]

 nav.xhtml

 Table of Contents

 		Welcome to customerApp's documentation!

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

