
newforms Documentation
Release 0.13.2

Jonny Buchanan

October 26, 2015

Contents

1 Getting newforms 3

2 Documentation 5

3 Documentation Contents 7
3.1 Guide Documentation . 7
3.2 API Reference . 77

i

ii

newforms Documentation, Release 0.13.2

An isomorphic JavaScript form-handling library for React.

(Formerly a direct port of the Django framework’s django.forms library)

Contents 1

http://facebook.github.io/react/
http://www.djangoproject.com

newforms Documentation, Release 0.13.2

2 Contents

CHAPTER 1

Getting newforms

Node.js Newforms can be used on the server, or bundled for the client using an npm-compatible packaging system
such as Browserify or webpack.

npm install newforms

var forms = require('newforms')

Note: By default, newforms will be in development mode. To use it in production mode, set the environment
variable NODE_ENV to ’production’ when bundling. To completely remove all development mode code,
use a minifier that performs dead-code elimination, such as UglifyJS.

Browser bundles The browser bundles expose newforms as a global forms variable and expects to find a global
React variable to work with.

The uncompressed bundle is in development mode, so will log warnings about potential mistakes.

You can find it in the dist/ directory.

Source Newforms source code and issue tracking is on GitHub:

• https://github.com/insin/newforms

3

http://browserify.org/
http://webpack.github.io/
https://github.com/mishoo/UglifyJS2
https://github.com/insin/newforms/tree/react/dist
https://github.com/insin/newforms

newforms Documentation, Release 0.13.2

4 Chapter 1. Getting newforms

CHAPTER 2

Documentation

Note: Unless specified otherwise, documented API items live under the forms namespace object in the browser, or
the result of require(’newforms’) in Node.js.

• Quickstart A quick introduction to defining and using newforms Form objects
• Guide Documentation An overview of newforms concepts, and guide docs with examples
• API Reference Reference guide for the API exposed by newforms

5

newforms Documentation, Release 0.13.2

6 Chapter 2. Documentation

CHAPTER 3

Documentation Contents

3.1 Guide Documentation

3.1.1 Quickstart

A quick introduction to defining and using newforms Form objects.

Design your Form

The starting point for defining your own forms is Form.extend().

Here’s a simple (but incomplete!) definition of a type of Form you’ve probably seen dozens of times:

var SignupForm = forms.Form.extend({
username: forms.CharField(),
email: forms.EmailField(),
password: forms.CharField({widget: forms.PasswordInput}),
confirmPassword: forms.CharField({widget: forms.PasswordInput}),
acceptTerms: forms.BooleanField({required: true})

})

A piece of user input data is represented by a Field, groups of related Fields are held in a Form and a form input which
will be displayed to the user is represented by a Widget. Every Field has a default Widget, which can be overridden.

Rendering a Form

Forms provide helpers for rendering labels, user inputs and validation errors for their fields. To get you started quickly,
newforms provides a React component which use these helpers to render a basic form structure.

At the very least, you must wrap rendered form contents in a <form>, provide form controls such as a submit button
and hook up handling of form submission:

var Signup = React.createClass({
render: function() {
return <form onSubmit={this._onSubmit}>

<forms.RenderForm form={SignupForm} ref="signupForm"/>
<button>Sign Up</button>

</form>
},

// ...

7

newforms Documentation, Release 0.13.2

Rendering helpers attach event handlers to the inputs they render, so getting user input data is handled for you.

The RenderForm component handles creating a form instance for you, and setting up automatic validation of user
input as it’s given.

To access this form instance later, make sure the component has a ref name.

Handling form submission

The final step in using a Form is validating when the user attempts to submit.

First, use the ref name you defined earlier to get the form instance via the RenderForm component’s getForm()
method.

Then call the form’s validate() method to ensure every field in the form is validated against its current user input.

If a Form is valid, it will have a cleanedData object containing validated data, coerced to the appropriate JavaScript
data type when appropriate:

propTypes: {
onSignup: React.PropTypes.func.isRequired

},

_onSubmit: function(e) {
e.preventDefault()

var form = this.refs.signupForm.getForm()
var isValid = form.validate()
if (isValid) {

this.props.onSignup(form.cleanedData)
}

}
})

Implementing custom validation

There’s an obvious validation not being handled by our form: what if the passwords don’t match?

This is a cross-field validation. To implement custom, cross-field validation add a clean() method to the Form
definition:

clean: function() {
if (this.cleanedData.password &&

this.cleanedData.confirmPassword &&
this.cleanedData.password != this.cleanedData.confirmPassword) {

throw forms.ValidationError('Passwords do not match.')
}

}

Live demo

This is the React component we defined above being used by another component which passes an onSignup()
callback to receive and display submitted data:

8 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

3.1.2 Overview

Newforms takes care of a number of common form-related tasks. Using it, you can:

• Display a form with automatically generated form widgets.

• Automatically keep a JavaScript object in sync with current user input.

• Check user input against a set of validation rules.

• Update form display with validation errors.

• Convert valid user input to the relevant JavaScript data types.

Concepts

The core concepts newforms deals with are:

Widgets Widgets create ReactElement objects for form inputs.

For example, a Select widget knows which <option> values and labels it should generate and how to
generate a <select> with the <option> corresponding to given user input data marked as selected.

Fields A Field holds metadata about displaying a form input and validating a piece of user input. Its metadata is the
source for:

• Configuring a suitable Widget to generate a form input, with a label and help text.

• Validating user input and providing an appropriate error message when it’s invalid.

• Converting valid user input to an appropriate JavaScript data type.

For example, an IntegerField makes sure that its user input data is a valid integer, is valid according to
any additional rules defined – such as minValue – and converts valid user input to a JavaScript Number. By
default, it configures a NumberInput widget to display an <input type="number"> for input.

Forms Forms group related Fields together, using them to validate user input and providing helpers for displaying
them as HTML.

Forms drive the validation process, holding raw user input data, validation error messages and “cleaned” data
which has been validated and type-converted.

Form objects

Form constructors are created by extending forms.Form and declaratively specifying field names and metadata:

var ContactForm = forms.Form.extend({
subject: forms.CharField({maxLength: 100}),
message: forms.CharField(),
sender: forms.EmailField(),
ccMyself: forms.BooleanField({required: false})

})

A form is composed of Field objects. In this case, our form has four fields: subject, message, sender and
ccMyself. CharField, EmailField and BooleanField are just three of the available field types – a full list
can be found in Form fields.

• A form with no user input data will render as empty or will contain any default values it was configured with.

• Once a form has user input data, it can validate it. If a form is rendered with invalid input data, it can include
error messages telling the user what to correct.

3.1. Guide Documentation 9

newforms Documentation, Release 0.13.2

Processing input data with a Form

When a form is given valid input data, the successfully validated form data will be in the form.cleanedData
object. This data will have been converted into JavaScript types for you, where necessary.

In the above example, ccMyself will be a boolean value. Likewise, fields such as IntegerField and
DateField convert values to a JavaScript Number and Date, respectively.

Displaying a Form

Newforms provides a React component which implements default rendering of Form objects.

This only provides rendering of the form’s own fields; it’s up to you to provide the surrounding <form> element,
submit buttons etc:

render: function() {
return <form action="/contact" method="POST" onSubmit={this.onSubmit}>
<forms.RenderForm form={ContactForm}/>
<div>

<input type="submit" value="Submit"/>{' '}
<input type="button" value="Cancel" onClick={this.onCancel}/>

</div>
</form>

}

RenderForm will output each form field and accompanying label wrapped in a <div>. Here’s the output for our
example component:

<form action="/contact" method="POST">
<div>
<div><label for="id_subject">Subject:</label> <input maxlength="100" type="text" name="subject" id="id_subject"></div>
<div><label for="id_message">Message:</label> <input type="text" name="message" id="id_message"></div>
<div><label for="id_sender">Sender:</label> <input type="email" name="sender" id="id_sender"></div>
<div><label for="id_ccMyself">Cc myself:</label> <input type="checkbox" name="ccMyself" id="id_ccMyself"></div>

</div>
<div><input type="submit" value="Submit"> <input type="button" value="Cancel"></div>

</form>

Note that each form field has an id attribute set to id_<field-name>, which is referenced by the accompanying
label tag. You can customise the way in which labels and ids are generated.

You can customise the output of RenderForm by passing certain props or a child React component. See the docu-
mentation for custom rendering for more info.

You can also completely customise form display using rendering helpers for each field.

“Isomorphic”

Newforms was developed to be independent of the DOM, so it can be used on the server as well as the browser. This
allows you to use it when pre-rendering initial HTML on the server, to be rehydrated and reused by React on the client
side.

User inputs generated by newforms have unique name attributes and its handling of input data is compatible with
POST data which would be submitted for the user inputs it generates, so you can also use it to validate regular form
submissions on the server and redisplay with errors, should you need to.

This makes newforms suitable for creating apps which use good old HTTP round tripping, or for JavaScript apps
which need to be capable of falling back to being usable as regular forms ‘n links webapps in any device.

10 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

For an example of using newforms this way, check out the Isomorphic Lab demo and its source on GitHub.

3.1.3 React Components

New in version 0.10.

To help you get started quickly, newforms provides some React components to handle instantation and rendering of
Forms and FormSets.

For the basic scenario of displaying form fields in the order they were defined, these may be all you need to handle
rendering your forms.

RenderForm

This component renders a Form as a list of “rows” – one for each field.

It handles the generic use case for form rendering:

• Whole-form error messages are displayed at the top.

• Each visible field in the form is displayed in the order fields were defined.

It can also take care of some of the details of creating a Form instance and re-rendering when the form’s state changes
for you.

<RenderForm form={MyForm} ref="myForm"/>

Form options

If form construction options are passed as props to RenderForm, they will be passed on to the Form
constructor when creating an instance.

For example, if you need to display more than one of the same Form, you need to specify a prefix to give them a unique
namespace, so pass a prefix prop like so:

var ParentForm = forms.Form.extend({
name: forms.CharField(),
dob: forms.DateField({label: 'Date of birth'})

})

<fieldset>
<legend>Parent 1</legend>
<RenderForm form={ParentForm} prefix="parent1"/>

</fieldset>
<fieldset>

<legend>Parent 2</legend>
<RenderForm form={ParentForm} prefix="parent2"/>

</fieldset>

Getting the Form instance

When passing RenderForm a Form constructor, give it a ref prop so you can use its getForm() method to access
the Form instance it manages for you.

For example, when handling submission of a form:

3.1. Guide Documentation 11

https://isomorphic-lab.herokuapp.com/addthing
https://github.com/insin/isomorphic-lab

newforms Documentation, Release 0.13.2

render: function() {
return <form onSubmit={this._onSubmit}>
<forms.RenderForm form={MyForm} ref="myForm"/>
<button>Submit</button>

</form>
},

_onSubmit: function(e) {
e.preventDefault()
var form = this.refs.form.getForm()
var isValid = form.validate()
if (isValid) {
// ..

}
}

Other rendering scenarios

For the sake of being a complete default rendering implementation, RenderForm also handles some less common
scenarios:

• Displaying error messages related to hidden fields.

• Rendering hidden fields.

• Displaying a progress indicator if the form has asynchronous whole-form validation pending completion.

RenderForm props

Note: A ReactCompositeComponent is what you get back when you call React.createClass()

form

type Form or Function (a Form constructor)

The Form to be rendered – can be a constructor or an instance.

If you pass a Form constructor, the component will instantiate it for you. Form construction options
may also be passed to RenderForm as additional props.

If you pass a Form instance, make sure you set up its onChange() in such a way that it will also re-render the
<RenderForm/> component when the form changes.

component

type ReactCompositeComponent or String (an HTML tag name)

The component used to wrap all the form’s rows – defaults to ’div’.

className

type String

If provided, this prop will be passed to the wrapper component containing all the form’s rows.

row

type ReactCompositeComponent

The component used to render each form row – defaults to FormRow.

12 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

rowComponent

type ReactCompositeComponent or String (an HTML tag name)

The tag name or component used to wrap each form row. Defaults to ’div’.

This is passed as a component prop to the component in the row prop.

progress

type ReactCompositeComponent or Function

Used to render what’s displayed if the form has an async clean() method which is pending completion.

This will also be passed to the component in the row prop when rendering.

Form construction options All the options which be passed when instantiating a Form can be
passed as props to RenderForm for use when you pass a Form constructor as the form prop.

RenderForm methods

getForm() Returns the Form instance being rendered by the component.

FormRow

This component handles rendering a single form “row”. RenderForm uses this to render rows by default; it will either:

1. Wrap some given content (such as a list of error messages) as a row, or:

2. Use a field’s rendering helper to generate a row for the field, with a label, user input, error messages and help
text, as necessary.

FormRow props

content

type Any

If given, will be used for the entire contents of the row.

bf

type BoundField()

If given and content is not given, this Field rendering helper will be used to create contents for a Field row.

component

type ReactCompositeComponent or String (an HTML tag name)

The component used to wrap the row contents. Defaults to ’div’.

className

type String

If provided, this prop will be passed to the wrapper component for the row.

hidden

type Boolean

If true, the row container ReactElement will be given a display: none style – defaults to false.

3.1. Guide Documentation 13

newforms Documentation, Release 0.13.2

progress

type ReactCompositeComponent or Function

Used to render what’s displayed if the form has async clean<Field>() method which is pending comple-
tion.

RenderFormSet

This component handles the generic use case for FormSet rendering, using RenderForm to render each form in a
formset one after the other.

It can also take care of some of the details of creating a FormSet and re-rendering when form state changes.

<RenderFormSet form={MyForm} extra="3" ref="myFormset"/>

<RenderFormSet formset={MyFormSet} ref="myFormset"/>

RenderFormSet props

form

type Function (a Form constructor)

If you pass a Form constructor, the component will instantiate a FormSet for you.

FormSet constructor options may be passed as additional props to RenderFormSet.

Note: When a form prop is passed, use of the formset prop changes. If also provided, it must be a FormSet
constructor to be extended from.

formset

type FormSet or Function (a FormSet constructor)

The FormSet to be rendered – can be a constructor or an instance.

If you pass a FormSet constructor, the component will instantiate it for you. FormSet construction
options may also be passed to RenderFormSet as additional props.

If you pass a FormSet instance, make sure you set up its onChange() in such a way that it will also re-render the
<RenderFormSet/> component when one of its forms changes.

component

type ReactCompositeComponent or String (an HTML tag name)

The component used to wrap the formset’s contents. Defaults to ’div’.

className

type String

If provided, this prop will be passed to the wrapper component for the formset.

formComponent

type ReactCompositeComponent or String (an HTML tag name)

The component used to wrap each form. Defaults to ’div’.

This is passed as a component prop to RenderForm.

14 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

row & rowComponent These are as defined above for RenderForm, which they are passed to.

progress

type ReactCompositeComponent or Function

Used to render what’s displayed if the formset has an async clean() method which is pending completion.

This will also be passed to RenderForm.

useManagementForm

type Boolean

If true, hidden fields from the FormSet’s management form will be rendered. Defaults to
false.

These fields are usually only required if you will be performing a regular form submission which
will be processed by newforms on the server.

RenderFormSet methods

getFormset() Returns the FormSet instance being rendered by the component.

Custom rendering with props

The bundled React compoents offer a degree of customisation via their props.

You can use the component, className and rowComponent props to customise the containers:

<RenderForm form={ParentForm}
component="ul"
className="parent"
rowComponent="li"
autoId={false}

/>

Which renders as:

<ul class="parent">
Name: <input type="text" name="name">
Date of birth: <input type="text" name="dob">

You can also customise how form rows are generated by passing a custom React component to the row prop.

<RenderForm form={ParentForm} row={MySpecialFormRow}/>

Note: Keep in mind when implementing a custom row component that it will receive props as per those described for
FormRow.

Custom rendering with a child component

If you want to implement custom form rendering with your own React component while still making use of Ren-
derForm to instantiate the form and set up automatic validation and redisplay, pass a component as the only child of
RenderForm.

3.1. Guide Documentation 15

newforms Documentation, Release 0.13.2

Warning: Passing more than one child component to RenderForm will result in an Error.

RenderForm wil then clone your component and pass the Form instance it manages as a form prop.

For example, this is how newforms-gridforms implements a custom grid layout:

<RenderForm form={ParentForm}>
<GridForm>
<Section name="Parent">
<Row>

<Field name="name"/>
<Field name="dob"/>

</Row>
</Section>

</GridForm>
</RenderForm>

Changed in version 0.13: The Form instance is also available via React’s context feature as a form context variable,
allowing you to access the Form instance in nested custom rendering components without having to manually pass it
down via props.

Custom async progress rendering

By default, when async validation is in progress, each of the React components newforms provides will render a
<progress> element with fallback “Validating...” text. However, the <progress> element doesn’t currently lend
itself to extensive customisation via CSS, especially cross-browser.

To customise this, each component takes a progress prop which can take a function or React component which will
be used to indicate an in-progress async validation.

For example, either of the following could be passed as the progress prop to display a spinner image instead:

var InProgress = React.createClass({
render() {
return

 Validating…

}
})

function inProgress() {
return
 Validating…

}

<RenderForm form={MyForm} ref="myForm" progress={InProgress}/>

3.1.4 Interactive Forms with React

This section focuses on API and patterns of usage that are applicable to using newforms to create interactive forms in
a React component in the browser.

Other documentation sections use the API for providing user input when creating a Form instance, to demonstrate
behaviour and features based on user input in a concise way.

16 Chapter 3. Documentation Contents

https://github.com/insin/newforms-gridforms
http://facebook.github.io/react/docs/context.html

newforms Documentation, Release 0.13.2

However, this API is more typical of using newforms on the server or as a standalone validator. When working with
Forms in the client, user input is more often taken one field at a time using the onChange event.

Provide a containing <form>

Warning: You must provide a <form> to contain fields you’re rendering with newforms.

At the time of documenting (version 0.10), you must provide a <form> to contain fields you’re rendering with
newforms. It’s likely that you’ll want one anyway to make use of its onSubmit event for Final Form validation.

React’s virtual DOM doesn’t provide a means of obtaining values from form inputs. To do this for you, newforms
must reach into the real DOM when an onChange event fires on one of the inputs it rendered for you.

Forms currently make use of the real DOM’s form.elements collection to simplify retrieving values for fields
which render as multiple inputs, such as a MultipleChoiceField which uses a CheckboxSelectMultiple
widget.

noValidate

Some newforms Widgets render HTML5 input types which, by default, perform their own validation.

When you’re using newforms with React for interactive validation, this can give your forms an inconsistent feeling as
the native inputs have their own way of presenting validation errors. Consider adding a noValidate prop to your
<form> to disable native validation if this starts to feel like an issue:

<form onSubmit={this.handleSubmit} noValidate>

If you’re creating an isomorphic application, you might want to conditionally use noValidate so there’s some
validation while the page is still initially loading, or for scenarios when JavaScript isn’t available on the client:

getInitialState() {
return {client: false}

},

componentDidMount() {
this.setState({client: true})

},

render() {
return <form onSubmit={this.handleSubmit} noValidate={!this.state.client}>
...

Creating Forms and FormSets

There are a number of client-specific options available when creating an instance of a Form to use in a React com-
ponent. The same options apply when creating FormSets, as they use them to handle creation of Form instances for
you.

Form state and onChange()

While a Form is not itself a React component, it is stateful. Its data, errors() and cleanedData properties will
be changed when the user makes changes and their input is stored and validated.

3.1. Guide Documentation 17

newforms Documentation, Release 0.13.2

In order to update display of its containing React component, a Form will call a given onChange() callback each
time user input is taken or validation is performed in response to a user changing input data.

Note: The details of setting up onChange are handled for you when rendering a Form by passing its constructor to
a <RenderForm/> component.

Typically, this function will just force its React component to update, for example:

getInitialState: function() {
return {
form: new ContactForm({onChange: this.onFormChange})

}
},

onFormChange: function() {
this.forceUpdate()

}

Passing an onChange callback will also automatically configure interactive validation of each form input as it’s
updated by the user. See below for details of what that entails and how to configure it.

Warning: Due to the way controlled components work in React, if you are using Controlled user inputs and you
do not pass an onChange() callback, your form inputs will be read-only! The development version of newforms
will warn you if this happens.

Interactive Form validation

To validate individual input fields as the user interacts with them, you can pass a validation argument when in-
stantiating a Form or Field; passing a validation argument when instantiating a Form sets up interactive validation
for every Field in it.

Form ’auto’ validation

Important: When you pass an onChange callback to a Form, its validation mode is automatically implied to
be ’auto’:

var form = new SignupForm({onChange: this.onFormChange})

When the validation mode is ’auto’:

• Text fields are validated using the onChange and onBlur events, with a debounce delay of 369ms applied to
onChange between the last change being made and validation being performed.

• Other input fields are validated as soon as the user interacts with them.

Note: React normalises the onChange event in text inputs to fire after every character which is entered.

’auto’ example form

Let’s use a standard signup form as an example:

18 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

var SignupForm = forms.Form.extend({
email: forms.EmailField(),
password: forms.CharField({widget: forms.PasswordInput}),
confirm: forms.CharField({label: 'Confirm password', widget: forms.PasswordInput}),
terms: forms.BooleanField({
label: 'I have read and agree to the Terms and Conditions',
errorMessages: {required: 'You must accept the terms to continue'}

}),

clean: function() {
if (this.cleanedData.password && this.cleanedData.confirm &&

this.cleanedData.password != this.cleanedData.confirm) {
throw forms.ValidationError('Passwords do not match.')

}
}

})

Note that this Form defines a clean() function for cross-field validation. In addition to validating the field which
just changed, user input will also trigger cross-field validation by calling clean(). This function must always be
written defensively regardless of whether full or partial validation is being run, as it can’t assume that any of the
cleanedData it validates against will be present due to the possibility of missing or invalid user input.

Field validation

Fields also accept a validation argument – validation defined at the field level overrides any configured at the
Form level, so if you want to use interaction validation only for certain fields, or to opt fields out when validation has
been configured at the Form level, use the validation argument when defining those fields.

validation options

’manual’

This is the default option, which disables interactive validation.

You’re only likely to need to use this if you’re opting specific fields out of form-wide interactive validation.

validation object

Interactive validation can be specified as an object with the following properties:

on The name of the default event to use to trigger validation on text input fields. This can be specified with or
without an ’on’ prefix. If validation should be triggerd by multiple events, their names can be passed as a
space-delimited string or a list of strings.

For example, given validation: {on: ’blur’}, text input validation will be performed when the
input loses focus after editing.

onChangeDelay A delay, in milliseconds, to be used to debounce performing of validation when using the
onChange event, to give the user time to enter input without distracting them with error messages or other
disply changes around the input while they’re still typing.

3.1. Guide Documentation 19

newforms Documentation, Release 0.13.2

’auto’

The behaviour of ’auto’ validation is documented above. It’s equivalent to passing:

validation: {on: 'blur change', onChangeDelay: 369}

Any event name

If you pass any other string as the validation argument, it will be assumed to be an event name, so the following
lines are equivalent:

validation: 'blur'
validation: {on: 'blur'}

Final Form validation

Whether or not you’ve given your Form an onChange callback, Forms will still automatically update their data
object with user input as the user interacts with each input field. Even if all fields have been used and are valid, the
user still has to signal their intent to submit before any final validation can be performed.

Validating final form submission is left in your hands, as newforms doesn’t know (or care, sorry!) what you ultimately
want to do with the cleanedData it creates for you.

This is typically implemented by hooking into a <form>‘s onSubmit event and calling form.validate() to
validate the entire user input.

onSubmit: function(e) {
e.preventDefault()
var form = this.state.form
var isValid = form.validate()
if (isValid) {
this.props.processContactData(form.cleanedData)

}
}

Tip: Forms represent groups of related Fields and don’t necessarily have to model the content of the entire <form>.

Use as many as you like, but don’t forget to use prefixes when necessary to avoid input field name and id clashes.

Controlled user inputs

By default, newforms generates uncontrolled React components for user inputs, which can provide initial values but
require manual updating via the DOM should you wish to change the displayed values from code.

If you need to programatically update the values displayed in user inputs after their initial display, you will need to use
controlled React components.

You can do this by passing a controlled argument when constructing the Form or individual Fields you wish to
have control over:

var form = new SignupForm({controlled: true, onChange: this.onFormChange})

20 Chapter 3. Documentation Contents

http://facebook.github.io/react/docs/forms.html#uncontrolled-components
http://facebook.github.io/react/docs/forms.html#controlled-components

newforms Documentation, Release 0.13.2

Controlled components created by newforms reflect the values held in form.data. It’s recommended that you call
form.setData() or form.updateData() to update form.data, as they handle transitioning from initial dis-
play of data to displaying user input and will also call onChange() for you, to trigger re-rendering of the containing
React component.

controlled example Form

An example of reusing the same controlled Form to edit a bunch of different objects which have the same fields.

First, define a form:

var PersonForm = forms.Form.extend({
name: forms.CharField({maxLength: 100}),
age: forms.IntegerField({minValue: 0, maxValue: 115}),
bio: forms.CharField({widget: forms.Textarea})

})

When creating the form in our example React component, we’re passing controlled: true:

getInitialState: function() {
return {
form: new PersonForm({

controlled: true,
onChange: this.forceUpdate.bind(this)

}),
editing: null,
people: [/* ... */]

}
}

To update what’s displayed in the form, we have a handleEdit function in our React component which is calling
form.reset() to put the form back into its initial state, with new initial data:

handleEdit: function(personIndex) {
this.state.form.reset(this.state.people[personIndex])
this.setState({editing: personIndex})

}

Rendering Forms

One of the benefits of using React is that display logic really is Just JavaScript. Reusable pieces can be extracted into
functions, or React components, or a configurable object of some sort or... whatever your programmery heart desires.

Newforms gives you a rendering helper – called a BoundField – for each field, which has access to the Field, its
Widget and its Form, which collectively have access to all the metadata and user input data it needs to render the field.
It uses these to implement rendering helper methods, which are available for you to use in your react components.

BoundFields, their most useful properties and examples of their use are covered in Customising Form display and the
complete BoundField API is documented.

3.1.5 Customising Form display

The React Components provided by newforms can help you get started quickly and offer a degreee of customisation,
but you can completely customise the way a form is presented by rendering it yourself.

To assist with rendering, we introduce another concept which ties together Widgets, Fields and Forms:

3.1. Guide Documentation 21

newforms Documentation, Release 0.13.2

BoundField

BoundField A BoundField() is a helper for rendering HTML content for – and related to – a single Field.

It ties together the Field itself, the fields’s configured Widget, the name the field is given by the Form, and the
raw user input data and validation errors held by a Form.

BoundFields provide properties and functions for using these together to render the different components re-
quired to display a field – its label, form inputs and validation error messages – as well as exposing the con-
stituent parts of each of these should you wish to fully customise every aspect of form display.

Forms provide a number of methods for creating BoundFields. These are:

• form.boundFieldsObj() – returns an object whose properties are the form’s field names, with Bound-
Fields as values.

• form.boundFields() – returns a list of BoundFields in their form-defined order.

• form.boundField(fieldName) – returns the BoundField for the named field.

Every object which can generate ReactElement objects in newforms has a default render()method – for Bound-
Fields, the default render() for a non-hidden field calls asWidget(), which renders the Widget the field is con-
figured with.

A selection of the properties and methods of a BoundField which are useful for custom field rendering are listed below.
For complete details, see the BoundField API.

Useful BoundField properties

bf.name The name of the field in the form.

bf.htmlName The name the field will be represented by when rendered. If each Form and FormSet being used to
render user inputs has a unique prefix, this is guaranteed to be a unique name.

As such, it’s a good candidate if you need a unique key prop for a React component related to each field.

bf.label The label text for the field, e.g. ’Email address’.

bf.helpText Any help text that has been associated with the field.

bf.field The Field() instance from the form, that this BoundField() wraps. You can use it to access field
properties directly.

Newforms also adds a custom property to the Field API – you can pass this argument when creating a field to
store any additional, custom metadata you want to associate with the field for later use.

Useful BoundField methods

bf.errors() Gets an object which holds any validation error messages for the field and has a default rendering to
a <ul class="errorlist">.

bf.errorMessage() Gets the first validation error message for the field as a String, or undefined if there are
none, making it convenient for conditional display of error messages.

bf.idForLabel() Generates the id that will be used for this field. You may want to use this in lieu of
labelTag() if you are constructing the label manually.

bf.labelTag() Generates a <label> containing the field’s label text, with the appropriate htmlFor property.

22 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

bf.helpTextTag() By default, generates a containing the field’s help
text if it has some configured, but this can be configured with arguments.

New in version 0.10.

bf.status() Gets the current validation status of the field as a string, one of:

• ’pending’ – has a pending async validation.

• ’error’ – has validation errors.

• ’valid’ – has neither of the above and data present in form.cleanedData.

• ’default’ – none of the above (likely hasn’t been interacted with or validated yet).

New in version 0.10.

bf.value() Gets the value which will be displayed in the field’s user input.

boundFields() example

Using these, let’s customise rendering of our ContactForm. Rendering things in React is just a case of creating
ReactElement objects, so the full power of JavaScript and custom React components are available to you.

For example, let’s customise rendering to add a CSS class to our form field rows and to put the checkbox for the
ccMyself field inside its <label>:

function renderField(bf) {
var className = 'form-field'
if (bf.field instanceof forms.BooleanField) {
return <div className={className}>

<label>{bf.render()} {bf.label}</label>
{bf.helpTextTag()} {bf.errors().render()}

</div>
}
else {
return <div className={className}>

{bf.labelTag()} {bf.render()}
{bf.helpTextTag()} {bf.errors().render()}

</div>
}

}

We still don’t need to do much work in our component’s render() method:

render: function() {
return <form action="/contact" method="POST">
{this.state.form.boundFields().map(renderField)}
<div>

<input type="submit" value="Submit"/>{' '}
<input type="button" value="Cancel" onClick={this.onCancel}/>

</div>
</form>

}

Its initial rendered output is now:

<form action="/contact" method="POST">
<div class="form-field"><label for="id_subject">Subject:</label> <input maxlength="100" type="text" name="subject" id="id_subject"></div>
<div class="form-field"><label for="id_message">Message:</label> <input type="text" name="message" id="id_message"></div>
<div class="form-field"><label for="id_sender">Sender:</label> <input type="email" name="sender" id="id_sender"></div>

3.1. Guide Documentation 23

newforms Documentation, Release 0.13.2

<div class="form-field"><label for="id_ccMyself"><input type="checkbox" name="ccMyself" id="id_ccMyself"> Cc myself</label></div>
<div><input type="submit" value="Submit"> <input type="button" value="Cancel"></div>

</form>

boundFieldsObj() example

The following Form and FormSet will be used to take input for a number of items to be cooked:

var ItemForm = forms.Form.extend({
name: Forms.CharField(),
time: Forms.IntegerField(),
tend: Forms.ChoiceField({required: false, choices: ['', 'Flip', 'Rotate']})

})

var ItemFormSet = forms.FormSet.extend({form: ItemForm, extra: 3})

The list of item forms will be presented as a <table> for alignment and compactness. We could use
boundFields() as above and loop over each form’s fields, creating a <td> for each one, but what if we wanted to
display a unit label alongside the “time” field and dynamically display some extra content alongside the “tend” field?

If every field needs to be rendered slightly differently, or needs to be placed individually into an existing layout,
boundFieldsObj() provides a convenient way to access the form’s BoundFields by field name:

<tbody>
{itemFormset.forms().map(function(itemForm, index) {
var fields = itemForm.boundFieldsObj()
return <tr>

<td>{fields.name.render()}</td>
<td>{fields.time.render()} mins</td>
<td>

{fields.tend.render()}
{fields.tend.value() && ' halfway'}

</td>
</tr>

})}
</tbody>

3.1.6 Forms

Note: In code examples which display HTML string output, we use a reactHTML() function as shorthand conven-
tion for rendering a ReactElement as a static HTML string.

Initial input data

When constructing a Form() instance, whether or not you pass input data determines the behaviour of the form’s
initial render.

• If a user input data object is given, initial rendering will trigger validation when it tries to determine if there
are any error messages to be displayed.

This is typically how user input is passed to the form when using newforms on the server to validate a POST
request’s submitted data.

• If data is not given, validation will not be performed on initial render, so the form can render with blank inputs
or display any default initial values that have been configured, without triggering validation.

24 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

To create a Form instance , simply instantiate it:

var f = new ContactForm()

To create an instance with input data, pass data as an option argument, like so:

var data = {
subject: 'hello'

, message: 'Hi there'
, sender: 'foo@example.com'
, ccMyself: true
}
var f = new ContactForm({data: data})

In this object, the property names are the field names, which correspond to the names in your Form definition. The
values are the data you’re trying to validate. These will usually be strings, but there’s no requirement that they be
strings; the type of data you pass depends on the Field(), as we’ll see in a moment.

Data can also be set on a Form instance, which triggers validation, returning the validation result:

var isValid = f.setData(data)

form.isInitialRender

If you need to distinguish between the type of rendering behaviour a form instance will exhibit, check the value of the
form’s form.isInitialRender property:

var f = new ContactForm()
print(f.isInitialRender)
// => true
f = new ContactForm({data: {subject: 'hello'}})
print(f.isInitialRender)
// => false

A form given an empty data object will still be considered to have user input and will trigger validation when rendered:

var f = new ContactForm({data: {}})
print(f.isInitialRender)
// => false

Using forms to validate data

Server or standalone validation

The primary task of a Form object is to validate data. With a bound Form instance, call the Form#isValid()
method to run validation and return a boolean designating whether the data was valid:

var data = {
subject: 'hello'

, message: 'Hi there'
, sender: 'foo@example.com'
, ccMyself: true
}
var f = new ContactForm({data: data})
print(f.isValid())
// => true

3.1. Guide Documentation 25

newforms Documentation, Release 0.13.2

Let’s try with some invalid data. In this case, subject is blank (an error, because all fields are required by default)
and sender is not a valid email address:

var data = {
subject: 'hello',

, message: 'Hi there'
, sender: 'invalid email address'
, ccMyself: true
}
var f = new ContactForm({data: data})
print(f.isValid())
// => false

form.errors() returns an ErrorObject() containing error messages:

f.errors().asText()
/* =>

* subject

* This field is required.

* sender

* Enter a valid email address.

*/

You can access form.errors() without having to call Form.isValid() first. The form’s data will be validated
the first time you either call form.isValid() or form.errors().

The validation routines will only get called once for a given set of data, regardless of how many times you call
form.isValid() or form.errors(). This means that if validation has side effects, those side effects will only
be triggered once per set of input data.

Client validation

On the client-side, the user’s input is held in form DOM inputs, not a tidy JavaScript object as in the above examples
(whereas if you’re handling a request on the server, the request body serves this purpose).

Regardless of whether or not you’re using event-based validation, the form’s input data will be updated as the user fills
it in. To force the form to fully validate, call form.validate():

// Form creation in a React component's getInitialState()
var form = new ContactForm()

// Validation in an onSubmit event handler
var isValid = this.state.form.validate()

Dynamic initial values

Use form.initial to declare the initial value of form fields at runtime. For example, you might want to fill in a
username field with the username of the current session.

To do this, pass an initial argument when constructing the form. This argument, if given, should be an object
mapping field names to initial values. You only have to include the fields for which you’re specifying an initial value,
for example:

var f = new ContactForm({initial: {subject: 'Hi there!'}})

Where both a Field and Form define an initial value for the same field, the Form-level initial gets precedence:

26 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

var CommentForm = forms.Form.extend({
name: forms.CharField({initial: 'prototype'}),
url: forms.URLField(),
comment: forms.CharField()

})

var f = new CommentForm({initial: {name: 'instance'}, autoId: false})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div>Name: <input type="text" name="name" value="instance"></div>
<div>Url: <input type="url" name="url"></div>
<div>Comment: <input type="text" name="comment"></div>

</div>

*/

Accessing the fields from the form

You can access the fields of a Form instance from its fields attribute:

print(f.fields)
// => {name: [object CharField], url: [object URLField], comment: [object CharField]}

You can alter fields of a Form instance:

f.fields.name.label = 'Username'
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div>Username: <input type="text" name="name" value="instance"></div>
<div>Url: <input type="url" name="url"></div>
<div>Comment: <input type="text" name="comment"></div>

</div>

*/

Warning: don’t alter baseFields or every subsequent form instance will be affected:

f.baseFields.name.label = 'Username'
var anotherForm = new CommentForm({autoId: false})
print(reactHTML(<RenderForm form={anotherForm}/>))
/* =>
<div>

<div>Username: <input type="text" name="name" value="prototype"></div>
<div>Url: <input type="url" name="url"></div>
<div>Comment: <input type="text" name="comment"></div>

</div>

*/

Accessing “clean” data

Each field in a Form is responsible not only for validating data, but also for “cleaning” it – normalising it to a consistent
format. This allows data for a particular field to be input in a variety of ways, always resulting in consistent output.

Once a set of input data has been validated, you can access the clean data via a form’s cleanedData property:

var data = {
subject: 'hello'

3.1. Guide Documentation 27

newforms Documentation, Release 0.13.2

, message: 'Hi there'
, sender: 'foo@example.com'
, ccMyself: true
}
var f = new ContactForm({data: data})
print(f.isValid())
// => true
print(f.cleanedData)
// => {subject: 'hello', message: 'Hi there', sender: 'foo@example.com', ccMyself: true}

If input data does not validate, cleanedData contains only the valid fields:

var data = {
subject: ''

, message: 'Hi there'
, sender: 'foo@example.com'
, ccMyself: true
}
var f = new ContactForm({data: data})
print(f.isValid())
// => false
print(f.cleanedData)
// => {message: 'Hi there', sender: 'foo@example.com', ccMyself: true}

cleanedData will only contain properties for fields defined in the form, even if you pass extra data:

var data = {
subject: 'Hello'

, message: 'Hi there'
, sender: 'foo@example.com'
, ccMyself: true
, extraField1: 'foo'
, extraField2: 'bar'
, extraField3: 'baz'
}
var f = new ContactForm({data: data})
print(f.isValid())
// => false
print(f.cleanedData) // Doesn't contain extraField1, etc.
// => {subject: 'hello', message: 'Hi there', sender: 'foo@example.com', ccMyself: true}

When the Form is valid, cleanedData will include properties for all its fields, even if the data didn’t include a
value for some optional fields. In this example, the data object doesn’t include a value for the nickName field, but
cleanedData includes it, with an empty value:

var OptionalPersonForm = forms.Form.extend({
firstName: forms.CharField(),
lastName: forms.CharField(),
nickName: forms.CharField({required: false})

})
var data {firstName: 'Alan', lastName: 'Partridge'}
var f = new OptionalPersonForm({data: data})
print(f.isValid())
// => true
print(f.cleanedData)
// => {firstName: 'Alan', lastName: 'Partridge', nickName: ''}

In the above example, the cleanedData value for nickName is set to an empty string, because nickName is a
CharField, and CharFields treat empty values as an empty string.

28 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

Each field type knows what its “blank” value is – e.g., for DateField, it’s null instead of the empty string. For
full details on each field’s behaviour in this case, see the “Empty value” note for each field in the Built-in Field types
documentation.

You can write code to perform validation for particular form fields (based on their name) or for the form as a whole
(considering combinations of various fields). More information about this is in Form and Field validation.

Updating a form’s input data

form.setData()

To replace a Form’s entire input data with a new set, use form.setData().

This will also trigger validation – updating form.errors() and form.cleanedData, and returning the result
of form.isValid():

var f = new ContactForm()
// ...user inputs data...
var data = {
subject: 'hello'

, message: 'Hi there'
, sender: 'foo@example.com'
, ccMyself: true
}
var isValid = f.setData(data)
print(f.isInitialRender)
// => false
print(isValid)
// => true

form.updateData()

To partially update a Form’s input data, use form.updateData().

This will trigger validation of the fields for which new input data has been given, and also any form-wide validation if
configured.

It doesn’t return the result of the validation it triggers, since the validity of a subset of fields doesn’t tell you whether
or not the entire form is valid.

If you’re peforming partial updates of user input (which is the case if individual fields are being validated onChange)
and need to check if the entire form is valid without triggering validation errors on fields the user may not have reached
yet, use Form#isComplete():

var f = new ContactForm()
f.updateData({subject: 'hello'})
print(f.isComplete())
// => false
f.updateData({message: 'Hi there'})
print(f.isComplete())
// => false
f.updateData({sender: 'foo@example.com'})
print(f.isComplete())
// => true

Note that form.isComplete() returns true once all required fields have valid input data.

3.1. Guide Documentation 29

newforms Documentation, Release 0.13.2

Outputting forms as HTML

Forms provide helpers for rendering their fields but don’t know how to render themselved. The RenderForm React
component uses these helpers to provide a default implementation of rendering a whole form, to get you started
quickly:

var f = new ContactForm()
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div><label for="id_subject">Subject:</label> <input maxlength="100" type="text" name="subject" id="id_subject"></div>
<div><label for="id_message">Message:</label> <input type="text" name="message" id="id_message"></div>
<div><label for="id_sender">Sender:</label> <input type="email" name="sender" id="id_sender"></div>
<div><label for="id_ccMyself">Cc myself:</label> <input type="checkbox" name="ccMyself" id="id_ccMyself"></div>

</div>

*/

If a form has some user input data, the HTML output will include that data appropriately:

var data = {
subject: 'hello'

, message: 'Hi there'
, sender: 'foo@example.com'
, ccMyself: true
}
var f = new ContactForm({data: data})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div><label for="id_subject">Subject:</label> <input maxlength="100" type="text" name="subject" id="id_subject" value="hello"></div>
<div><label for="id_message">Message:</label> <input type="text" name="message" id="id_message" value="Hi there"></div>
<div><label for="id_sender">Sender:</label> <input type="email" name="sender" id="id_sender" value="foo@example.com"></div>
<div><label for="id_ccMyself">Cc myself:</label> <input type="checkbox" name="ccMyself" id="id_ccMyself" checked></div>

<div>

*/

• For flexibility, the output does not include the a <form> or an <input type="submit">. It’s your job to
do that.

• Each field type has a default HTML representation. CharField is represented by an <input
type="text"> and EmailField by an <input type="email">. BooleanField is represented
by an <input type="checkbox">. Note these are merely sensible defaults; you can specify which input
to use for a given field by using widgets, which we’ll explain shortly.

• The HTML name for each tag is taken directly from its property name in ContactForm.

• The text label for each field – e.g. ’Subject:’, ’Message:’ and ’Cc myself:’ is generated from the
field name by splitting on capital letters and lowercasing first letters, converting all underscores to spaces and
upper-casing the first letter. Again, note these are merely sensible defaults; you can also specify labels manually.

• Each text label is surrounded in an HTML <label> tag, which points to the appropriate form field via its id.
Its id, in turn, is generated by prepending ’id_’ to the field name. The id attributes and <label> tags are
included in the output by default, to follow best practices, but you can change that behavior.

Styling form rows

When defining a Form, there are a few hooks you can use to add class attributes to form rows in the default rendering:

• rowCssClass – applied to every form row

30 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• requiredCssClass – applied to form rows for required fields

• optionalCssClass – applied to form rows for optional fields

• errorCssClass – applied to form rows for fields which have errors

• validCssClass – applied to form rows for fields which have a corresponding value present in
cleanedData

• pendingCssClass – applied to form rows for fields which have a pending asynchronous valdation.

To use these hooks, ensure your form has them as prototype or instance properties, e.g. to set them up as protoype
properties:

var ContactForm = forms.Form.extend({
rowCssClass: 'row',
requiredCssClass: 'required',
optionalCssClass: 'optional',
errorCssClass: 'error',
validCssClass: 'valid',

// ...and the rest of your fields here
})

Once you’ve done that, the generated markup will look something like:

var data = {
subject: 'hello'

, message: 'Hi there'
, sender: ''
, ccMyself: true
}
var f = new ContactForm({data: data})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div class="row valid required"><label for="id_subject">Subject:</label> ...
<div class="row valid required"><label for="id_message">Message:</label> ...
<div class="row error required"><label for="id_sender">Sender:</label> ...
<div class="row valid optional"><label for="id_ccMyself">Cc myself:</label> ...

</div>

*/

The className string generated for each field when you configure the available CSS properties is also available for
use in custom rendering, via a BoundField’s cssClasses() method.

Configuring form elements’ HTML id attributes and <label> tags

By default, the form rendering methods include:

• HTML id attributes on the form elements.

• The corresponding <label> tags around the labels. An HTML <label> tag designates which label text is
associated with which form element. This small enhancement makes forms more usable and more accessible to
assistive devices. It’s always a good idea to use <label> tags.

The id attribute values are generated by prepending id_ to the form field names. This behavior is configurable,
though, if you want to change the id convention or remove HTML id attributes and <label> tags entirely.

Use the autoId argument to the Form constructor to control the id and label behavior. This argument must be
true, false or a string.

3.1. Guide Documentation 31

newforms Documentation, Release 0.13.2

If autoId is false, then the form output will include neither <label> tags nor id attributes:

var f = new ContactForm({autoId: false})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<divSubject: <input maxlength="100" type="text" name="subject"></div>
<divMessage: <input type="text" name="message"></div>
<divSender: <input type="email" name="sender"></div>
<divCc myself: <input type="checkbox" name="ccMyself"></div>

</div>

*/

If autoId is set to true, then the form output will include <label> tags and will simply use the field name as its
id for each form field:

var f = new ContactForm({autoId: true})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div><label for="subject">Subject:</label> <input maxlength="100" type="text" name="subject" id="subject"></div>
<div><label for="message">Message:</label> <input type="text" name="message" id="message"></div>
<div><label for="sender">Sender:</label> <input type="email" name="sender" id="sender"></div>
<div><label for="ccMyself">Cc myself:</label> <input type="checkbox" name="ccMyself" id="ccMyself"></div>

</div>

*/

If autoId is set to a string containing a ’{name}’ format placeholder, then the form output will include <label>
tags, and will generate id attributes based on the format string:

var f = new ContactForm({autoId: 'id_for_{name}'})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div><label for="id_for_subject">Subject:</label> <input maxlength="100" type="text" name="subject" id="id_for_subject"></div>
<div><label for="id_for_message">Message:</label> <input type="text" name="message" id="id_for_message"></div>
<div><label for="id_for_sender">Sender:</label> <input type="email" name="sender" id="id_for_sender"></div>
<div><label for="id_for_ccMyself">Cc myself:</label> <input type="checkbox" name="ccMyself" id="id_for_ccMyself"></div>

</div>

*/

By default, autoId is set to the string ’id_{name}’.

It’s possible to customise the suffix character appended to generated labels (default: ’:’), or omit it entirely, using
the labelSuffix parameter:

var f = new ContactForm({autoId: 'id_for_{name}', labelSuffix: ''})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div><label for="id_for_subject">Subject</label> <input maxlength="100" type="text" name="subject" id="id_for_subject"></div>
<div><label for="id_for_message">Message</label> <input type="text" name="message" id="id_for_message"></div>
<div><label for="id_for_sender">Sender</label> <input type="email" name="sender" id="id_for_sender"></div>
<div><label for="id_for_ccMyself">Cc myself</label> <input type="checkbox" name="ccMyself" id="id_for_ccMyself"></div>

</div>

*/

f = new ContactForm({autoId: 'id_for_{name}', labelSuffix: ' ->'})
print(reactHTML(<RenderForm form={f}/>))
/* =>

32 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

<div>
<div><label for="id_for_subject">Subject -></label> <input maxlength="100" type="text" name="subject" id="id_for_subject"></div>
<div><label for="id_for_message">Message -></label> <input type="text" name="message" id="id_for_message"></div>
<div><label for="id_for_sender">Sender -></label> <input type="email" name="sender" id="id_for_sender"></div>
<div><label for="id_for_ccMyself">Cc myself -></label> <input type="checkbox" name="ccMyself" id="id_for_ccMyself"></div>

</div>

*/

Note that the label suffix is added only if the last character of the label isn’t a punctuation character.

You can also customise the labelSuffix on a per-field basis using the labelSuffix argument to
BoundField#labelTag().

Notes on field ordering

In the provided default rendering, fields are displayed in the order in which you define them in your form. For example,
in the ContactForm example, the fields are defined in the order subject, message, sender, ccMyself. To
reorder the HTML output, just change the order in which those fields are listed in the class.

How errors are displayed

If you render a bound Form object, the act of rendering will automatically run the form’s validation if it hasn’t already
happened, and the HTML output will include the validation errors as a <ul class="errorlist"> near the field:

var data = {
subject: ''

, message: 'Hi there'
, sender: 'invalid email address'
, ccMyself: true
}
var f = new ContactForm({data: data})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div><ul class="errorlist">This field is required.<label for="id_subject">Subject:</label> <input maxlength="100" type="text" name="subject" id="id_subject"></div>
<div><label for="id_message">Message:</label> <input type="text" name="message" id="id_message" value="Hi there"></div>
<div><ul class="errorlist">Enter a valid email address.<label for="id_sender">Sender:</label> <input type="email" name="sender" id="id_sender" value="invalid email address"></div>
<div><label for="id_ccMyself">Cc myself:</label> <input type="checkbox" name="ccMyself" id="id_ccMyself" checked></div>

</div>

*/

Customising the error list format

By default, forms use ErrorList() to format validation errors. You can pass an alternate constructor for displaying
errors at form construction time:

var DivErrorList = forms.ErrorList.extend({
render: function() {
return <div className="errorlist">

{this.messages().map(function(error) { return <div>{error}</div> })}
</div>

}
})

3.1. Guide Documentation 33

newforms Documentation, Release 0.13.2

f = new ContactForm({data: data, errorConstructor: DivErrorList, autoId: false})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div><div class="errorlist"><div>This field is required.</div></div>Subject: <input maxlength="100" type="text" name="subject"></div>
<div>Message: <input type="text" name="message" value="Hi there"></div>
<div><div class="errorlist"><div>Enter a valid email address.</div></div>Sender: <input type="email" name="sender" value="invalid email address"></div>
<div>Cc myself: <input type="checkbox" name="ccMyself" checked></div>

</div>

*/

More granular output

To retrieve a single BoundField(), use the Form#boundField() method on your form, passing the field’s
name:

var form = new ContactForm()
print(reactHTML(form.boundField('subject').render()))
// => <input maxlength="100" type="text" name="subject" id="id_subject">

To retrieve all BoundField objects, call Form#boundFields():

var form = new ContactForm()
form.boundFields().forEach(function(bf) {

print(reactHTML(bf.render()))
})
/* =>
<input maxlength="100" type="text" name="subject" id="id_subject">
<input type="text" name="message" id="id_message">
<input type="email" name="sender" id="id_sender">
<input type="checkbox" name="ccMyself" id="id_ccMyself">"

*/

The field-specific output honours the form object’s autoId setting:

var f = new ContactForm({autoId: false})
print(reactHTML(f.boundField('message').render()))
// => <input type="text" name="message">
f = new ContactForm({autoId: 'id_{name}'})
print(reactHTML(f.boundField('message').render()))
// => <input type="text" name="message" id="id_message">

boundField.errors() returns an object which renders as a <ul class="errorlist">:

var data = {subject: 'hi', message: '', sender: '', ccMyself: ''}
var f = new ContactForm({data: data, autoId: false})
var bf = f.boundField('message')
print(reactHTML(bf.render()))
// => <input type="text" name="message">
print(bf.errors().messages())
// => ["This field is required."]
print(reactHTML(bf.errors().render())
// => <ul class="errorlist">This field is required.
bf = f.boundField('subject')
print(bf.errors().messages())
// => []
print(reactHTML(bf.errors().render()))
// =>

34 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

To separately render the label tag of a form field, you can call its BoundField#labelTag() method:

var f = new ContactForm()
print(reactHTML(f.boundField('message').labelTag()))
// => <label for="id_message">Message:</label>

If you’re manually rendering a field, you can access configured CSS classes using the cssClasses method:

var f = new ContactForm()#
f.requiredCssClass = 'required'
print(f.boundField('message').cssClasses())
// => required

Additional classes can be provided as an argument:

print(f.boundField('message').cssClasses('foo bar'))
// => foo bar required

boundField.value() returns the raw value of the field as it would be rendered by a Widget():

var initial = {subject: 'welcome'}
var data = {subject: 'hi'}
var unboundForm = new ContactForm({initial: initial})
var boundForm = new ContactForm({data: data, initial: initial})
print(unboundForm.boundField('subject').value())
// => welcome
print(boundForm.boundField('subject').value())
// => hi

boundField.idForLabel() returns the id of the field. For example, if you are manually constructing a label
in JSX:

<label htmlFor={form.boundField('myField').idForLabel()}>...<label>

Extending forms

When you extend a custom Form, the resulting form will include all fields of its parent form(s), followed by any new
fields defined:

var ContactFormWithPrority = ContactForm.extend({
priority: forms.CharField()

})
var f = new ContactFormWithPrority({autoId: false})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div>Subject: <input maxlength="100" type="text" name="subject"></div>
<div>Message: <input type="text" name="message"></div>
<div>Sender: <input type="email" name="sender"></div>
<div>Cc myself: <input type="checkbox" name="ccMyself"></div>
<div>Priority: <input type="text" name="priority"></div>

</div>

*/

Forms can be used as mixins (using Concur‘s __mixins__ functionality). In this example, BeatleForm mixes in
PersonForm and InstrumentForm, and its field list includes their fields:

var PersonForm = forms.Form.extend({
first_name: forms.CharField(),

3.1. Guide Documentation 35

https://github.com/insin/concur#api

newforms Documentation, Release 0.13.2

last_name: forms.CharField()
})
var InstrumentForm = forms.Form.extend({
instrument: forms.CharField()

})
var BeatleForm = forms.Form.extend({
__mixins__: [PersonForm, InstrumentForm],
haircut_type: forms.CharField()

})
var b = new BeatleForm({autoId: false})
print(reactHTML(<RenderForm form={b}/>))
/* =>
<div>

<div>First name: <input type="text" name="first_name"></div>
<div>Last name: <input type="text" name="last_name"></div>
<div>Instrument: <input type="text" name="instrument"></div>
<div>Haircut type: <input type="text" name="haircut_type"></div>

</div>

*/

Prefixes for forms

You can put as many forms as you like inside one <form> tag. To give each form its own namespace, use the prefix
argument:

var mother = new PersonForm({prefix: 'mother'})
var father = new PersonForm({prefix: 'father'})
print(reactHTML(<RenderForm form={mother}/>))
/* =>
<div>

<div><label for="id_mother-first_name">First name:</label> <input type="text" name="mother-first_name" id="id_mother-first_name"></div>
<div><label for="id_mother-last_name">Last name:</label> <input type="text" name="mother-last_name" id="id_mother-last_name"></div>

</div>

*/
print(reactHTML(<RenderForm form={father}/>))
/* =>
<div>

<div><label for="id_father-first_name">First name:</label> <input type="text" name="father-first_name" id="id_father-first_name"></div>
<div><label for="id_father-last_name">Last name:</label> <input type="text" name="father-last_name" id="id_father-last_name"></div>

</div>

*/

Client: Working with files

If your browser implements the File API, form.cleanedData will contain native File objects for any
FileField, MultipleFileField and ImageField fields in your form.

While these fields are only currently capable of performing limited validation, having access to File objects allows
you to more easily implement your own validation based on file size, type and contents at whichever of the available
validation steps is most appropriate for your needs.

Server: Binding uploaded files to a form

Note: This section deals with a very specific use case: using React to render forms, but performing and subsequently

36 Chapter 3. Documentation Contents

http://www.w3.org/TR/FileAPI
https://developer.mozilla.org/en-US/docs/Web/API/File

newforms Documentation, Release 0.13.2

handling regular form submissions.

This may only be relevant if you’re using React purely for server-side rendering, or you’re creating an isomorphic app
which progressively enhances regular form submissions.

Dealing with forms that have FileField, MultipleFileField or ImageField fields and will be submitted
via a regular form POST is a little more complicated than a regular form.

Firstly, in order to upload files, you’ll need to make sure that your <form> element correctly defines the enctype
as "multipart/form-data":

<form enctype="multipart/form-data" method="POST" action="/foo">

Secondly, when you use the form, you need to bind the file data. File data is handled separately to normal form data,
so when your form contains a FileField and ImageField, you will need to specify a files argument when
creating a form instance. So if we extend our ContactForm to include an ImageField called mugshot, we need to
bind the file data containing the mugshot image:

// Bound form with an image field
var data = {
subject: 'hello'

, message: 'Hi there'
, sender: 'invalid email address'
, ccMyself: true
}
var fileData = {mugshot: {name: 'face.jpg', size: 123456}}
var f = new ContactFormWithMugshot({data: data, files: fileData})

Assuming you’re using Express, or a similar library which supports middleware for processing file uploads, you will
usually specify req.files as the source of file data (just like you’d use req.body as the source of form data):

// Bound form with an image field, data from the request
var f = new ContactFormWithMugshot({data: req.body, files: req.files})

Note: Newforms doesn’t really care how you’re handling file uploads, just that the object passed as a file argument
has FileField names as its properties and that the corresponding values have name and size properties.

Constructing an unbound form is the same as always – just omit both form data and file data:

// Unbound form with a image field
var f = new ContactFormWithMugshot()

Testing for multipart forms

If you’re writing reusable views or templates, you may not know ahead of time whether your form is a multipart form
or not. The isMultipart() method tells you whether the form requires multipart encoding for submission:

var f = new ContactFormWithMugshot()
print(f.isMultipart())
// => true

Here’s an example of how you might use this in a React component render() method with JSX:

<form enctype={form.isMultipart() && 'multipart/form-data'} method="POST" action="/foo">
...

</form>

3.1. Guide Documentation 37

http://expressjs.com/

newforms Documentation, Release 0.13.2

3.1.7 Form fields

When you create a new Form, the most important part is defining its fields. Each field has custom validation logic,
along with a few other hooks.

Although the primary way you’ll use a Field is in a Form, you can also instantiate them and use them directly to
get a better idea of how they work. Each Field instance has a clean() method, which takes a single argument and
either throws a forms.ValidationError or returns the clean value:

var f = forms.EmailField()
print(f.clean('foo@example.com'))
// => foo@example.com
try {
f.clean('invalid email address')

}
catch (e) {

print(e.messages())
}
// => ["Enter a valid email address."]

Core field arguments

required

By default, each Field assumes the value is required, so if you pass an empty value – undefined, null or the
empty string (’’) – then clean() will throw a ValidationError.

To specify that a field is not required, pass required: false to the Field constructor:

var f = forms.CharField({required: false})

If a Field has required: false and you pass clean() an empty value, then clean() will return a nor-
malised empty value rather than throwing a ValidationError. For CharField, this will be an empty string.
For another Field type, it might be null (This varies from field to field.).

label

The label argument lets you specify the “human-friendly” label for this field. This is used when the Field is
displayed in a Form.

initial

The initial argument lets you specify the initial value to use when rendering this Field in an unbound Form.

To specify dynamic initial data, see the initial option.

widget

The widget argument lets you specify a Widget to use when rendering this Field. You can pass either an instance
or a Widget constructor. See Widgets for more information.

38 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

helpText

The helpText argument lets you specify descriptive text for this Field. If you provide helpText, it will be
displayed next to the Field when the Field is rendered by one the default rending components.

To render raw HTML in help text, specify it using the React convention for raw HTML, which is as an object with an
__html property.

errorMessages

The errorMessages argument lets you override the default messages that the field will throw. Pass in an object
with properties matching the error messages you want to override. For example, here is the default error message:

var generic = forms.CharField()
try {
generic.clean('')

}
catch (e) {

print(e.messages())
}
// => ["This field is required."]

And here is a custom error message:

var name = forms.CharField({errorMessages: {required: 'Please enter your name.'}})
try {
name.clean('')

}
catch (e) {

print(e.messages())
}
// => ["Please enter your name."]

The error message codes used by fields are defined below.

validators

The validators argument lets you provide a list of additional validation functions for this field.

widgetAttrs

New in version 0.11.

The widgetAttrs argument lets you specify additional attributes for the field’s Widget without having to specify a
new Widget from scratch using the widget argument.

This provides a more convenient way to add attributes like autoFocus, className or data- attributes to the
field’s default Widget but has the lowest priority when determining final widget attributes.

For example, you can’t override an Input-based widget’s type attribute using widgetAttrs, as type is set in
that widget’s render() method based on the specific widget constructor being used.

However, TextInput() treats the type attribute specially, to allow you to override the rendered type when creating
an instance:

3.1. Guide Documentation 39

newforms Documentation, Release 0.13.2

TextInput({attrs: {type: 'tel'}})

Or you can extend TextInput to create your own widget constructor:

var TelInput = TextInput.extend({
inputType: 'tel'

})

Providing choices

Fields and Widgets which take a choices argument expect to be given a list containing any of the following:

Choice pairs A choice pair is a list containing exactly 2 elements, which correspond to:

1. the value to be submitted/returned when the choice is selected.

2. the value to be displayed to the user for selection.

For example:

var STATE_CHOICES = [
['S', 'Scoped']

, ['D', 'Defined']
, ['P', 'In-Progress']
, ['C', 'Completed']
, ['A', 'Accepted']
]
print(reactHTML(forms.Select().render('state', null, {choices: STATE_CHOICES})))
/* =>
<select name="state">
<option value="S">Scoped</option>
<option value="D">Defined</option>
<option value="P">In-Progress</option>
<option value="C">Completed</option>
<option value="A">Accepted</option>
</select>

*/

Grouped lists of choice pairs A list containing exactly 2 elements, which correspond to:

1. A group label

2. A list of choice pairs, as described above

var DRINK_CHOICES = [
['Cheap', [

[1, 'White Lightning']
, [2, 'Buckfast']
, [3, 'Tesco Gin']
]

]
, ['Expensive', [

[4, 'Vieille Bon Secours Ale']
, [5, 'Château d’Yquem']
, [6, 'Armand de Brignac Midas']
]

]
, [7, 'Beer']
]
print(reactHTML(forms.Select().render('drink', null, {choices: DRINK_CHOICES})))

40 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

/* =>
<select name="drink">
<optgroup label="Cheap">
<option value="1">White Lightning</option>
<option value="2">Buckfast</option>
<option value="3">Tesco Gin</option>
</optgroup>
<optgroup label="Expensive">
<option value="4">Vieille Bon Secours Ale</option>
<option value="5">Château d’Yquem</option>
<option value="6">Armand de Brignac Midas</option>
</optgroup>
<option value="7">Beer</option>
</select>

*/

As you can see from the ’Beer’ example above, grouped pairs can be mixed with ungrouped pairs within the list of
choices.

Flat choices New in version 0.5.

If a non-array value is provided where newforms expects to see a choice pair, it will be normalised to a choice
pair using the same value for submission and display.

This allows you to pass a flat list of choices when that’s all you need:

var VOWEL_CHOICES = ['A', 'E', 'I', 'O', 'U']
var f = forms.ChoiceField({choices: VOWEL_CHOICES})
print(f.choices())
// => [['A', 'A'], ['E', 'E'], ['I', 'I'], ['O', 'O'], ['U', 'U']]

var ARBITRARY_CHOICES = [
['Numbers', [1, 2,]]

, ['Letters', ['A', 'B']]
]
f.setChoices(ARBITRARY_CHOICES)
print(f.choices())
// => [['Numbers', [[1, 1], [2, 2]]], ['Letters', [['A', 'A'], ['B', 'B']]]]

Dynamic choices

A common pattern for providing dynamic choices (or indeed, dynamic anything) is to provide your own form con-
structor and pass in whatever data is required to make changes to form.fields as the form is being instantiated.

Newforms provides a util.makeChoices() helper function for creating choice pairs from a list of objects using
named properties:

var ProjectBookingForm = forms.Form.extend({
project: forms.ChoiceField(),
hours: forms.DecimalField({minValue: 0, maxValue: 24, maxdigits: 4, decimalPlaces: 2}),
date: forms.DateField(),

constructor: function(projects, kwargs) {
// Call the constructor of whichever form you're extending so that the
// forms.Form constructor eventually gets called - this.fields doesn't
// exist until this happens.
forms.Form.call(this, kwargs)

3.1. Guide Documentation 41

newforms Documentation, Release 0.13.2

// Now that this.fields is a thing, make whatever changes you need to -
// in this case, we're going to creata a list of pairs of project ids
// and names to set as the project field's choices.
this.fields.project.setChoices(forms.util.makeChoices(projects, 'id', 'name'))

}
})

var projects = [
{id: 1, name: 'Project 1'}

, {id: 2, name: 'Project 2'}
, {id: 3, name: 'Project 3'}
]
var form = new ProjectBookingForm(projects, {autoId: false})
print(reactHTML((form.boundField('project').render()))
/* =>
<select name=\"project\">
<option value=\"1\">Project 1</option>
<option value=\"2\">Project 2</option>
<option value=\"3\">Project 3</option>
</select>

*/

Server-side example of using a form with dynamic choices:

// Users are assigned to projects and they're booking time, so we need to:
// 1. Display choices for the projects they're assigned to
// 2. Validate that the submitted project id is one they've been assigned to
var form
var display = function() { res.render('book_time', {form: form}) }
req.user.getProjects(function(err, projects) {
if (err) { return next(err) }
if (req.method == 'POST') {
form = new ProjectBookingForm(projects, {data: req.body})
if (form.isValid()) {

return ProjectService.saveHours(user, form.cleanedData, function(err) {
if (err) { return next(err) }
return res.redirect('/time/book/')

})
}

}
else {
form = new ProjectBookingForm(projects)

}
display(form)

})

Built-in Field types

newforms comes with a set of Field types that represent common validation eeds. This section documents each
built-in field.

For each field, we describe the default widget used if you don’t specify widget. We also specify the value returned
when you provide an empty value (see the section on required above to understand what that means).

42 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

Built-in Field type hierarchy

• Field

– BaseTemporalField

* DateField

* DateTimeField

* TimeField

– BooleanField

* NullBooleanField

– CharField

* EmailField

* GenericIPAddressField

* IPAddressField

* RegexField

* SlugField

* URLField

– ChoiceField

* FilePathField

* MultipleChoiceField

· TypedMultipleChoiceField

* TypedChoiceField

– ComboField

– IntegerField

* DecimalField

* FloatField

– FileField

* ImageField

* MultipleFileField

– MultiValueField

* SplitDateTimeField

Build-in Fields (A-Z)

BooleanField()

• Default widget: CheckboxInput()

• Empty value: false

• Normalises to: A JavaScript true or false value.

3.1. Guide Documentation 43

newforms Documentation, Release 0.13.2

• Validates that the value is true (e.g. the check box is checked) if the field has required:
true.

• Error message keys: required

Note: Since all Field types have required: true by default, the validation condition here is
important. If you want to include a boolean in your form that can be either true or false (e.g. a
checked or unchecked checkbox), you must remember to pass in required: false when creating
the BooleanField.

CharField()

• Default widget: TextInput()

• Empty value: ’’ (an empty string)

• Normalises to: A string.

• Validates maxLength or minLength, if they are provided. Otherwise, all inputs are valid.

• Error message keys: required, maxLength, minLength

Has two optional arguments for validation:

• maxLength

• minLength

If provided, these arguments ensure that the string is at most or at least the given length.

ChoiceField()

• Default widget: Select()

• Empty value: ’’ (an empty string)

• Normalises to: A string.

• Validates that the given value exists in the list of choices.

• Error message keys: required, invalidChoice

The invalidChoice error message may contain {value}, which will be replaced with the selected
choice.

Takes one extra argument:

• choices

A list of pairs (2 item lists) to use as choices for this field. See Providing choices for more
details.

TypedChoiceField()

Just like a ChoiceField(), except TypedChoiceField() takes two extra arguments, coerce
and emptyValue.

• Default widget: Select()

• Empty value: Whatever you’ve given as emptyValue

44 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• Normalises to: A value of the type provided by the coerce argument.

• Validates that the given value exists in the list of choices and can be coerced.

• Error message keys: required, invalidChoice

Takes extra arguments:

• coerce

A function that takes one argument and returns a coerced value. Examples include the
built-in Number, Boolean and other types. Defaults to an identity function. Note that
coercion happens after input validation, so it is possible to coerce to a value not present in
choices.

• emptyValue

The value to use to represent “empty.” Defaults to the empty string; null is another
common choice here. Note that this value will not be coerced by the function given in the
coerce argument, so choose it accordingly.

DateField()

• Default widget: DateInput()

• Empty value: null

• Normalises to: A JavaScript Date object, with its time fields set to zero.

• Validates that the given value is either a Date, or string formatted in a particular date format.

• Error message keys: required, invalid

Takes one optional argument:

• inputFormats

A list of format strings used to attempt to convert a string to a valid Date object.

If no inputFormats argument is provided, the default input formats are:

[
'%Y-%m-%d' // '2006-10-25'

, '%m/%d/%Y', '%m/%d/%y' // '10/25/2006', '10/25/06'
, '%b %d %Y', '%b %d, %Y' // 'Oct 25 2006', 'Oct 25, 2006'
, '%d %b %Y', '%d %b, %Y' // '25 Oct 2006', '25 Oct, 2006'
, '%B %d %Y', '%B %d, %Y' // 'October 25 2006', 'October 25, 2006'
, '%d %B %Y', '%d %B, %Y' // '25 October 2006', '25 October, 2006'
]

DateTimeField()

• Default widget: DateTimeInput()

• Empty value: null

• Normalises to: A JavaScript Date object.

• Validates that the given value is either a Date or string formatted in a particular datetime format.

• Error message keys: required, invalid

Takes one optional argument:

3.1. Guide Documentation 45

https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

• inputFormats

A list of format strings used to attempt to convert a string to a valid Date object.

If no inputFormats argument is provided, the default input formats are:

[
'%Y-%m-%d %H:%M:%S' // '2006-10-25 14:30:59'

, '%Y-%m-%d %H:%M' // '2006-10-25 14:30'
, '%Y-%m-%d' // '2006-10-25'
, '%m/%d/%Y %H:%M:%S' // '10/25/2006 14:30:59'
, '%m/%d/%Y %H:%M' // '10/25/2006 14:30'
, '%m/%d/%Y' // '10/25/2006'
, '%m/%d/%y %H:%M:%S' // '10/25/06 14:30:59'
, '%m/%d/%y %H:%M' // '10/25/06 14:30'
, '%m/%d/%y' // '10/25/06'
]

DecimalField()

• Default widget: NumberInput().

• Empty value: null

• Normalises to: A string (since JavaScript doesn’t have built-in Decimal type).

• Validates that the given value is a decimal. Leading and trailing whitespace is ignored.

• Error message keys: required, invalid, maxValue, minValue, maxDigits,
maxDecimalPlaces, maxWholeDigits

The maxValue and minValue error messages may contain {limitValue}, which will be substi-
tuted by the appropriate limit.

Similarly, the maxDigits, maxDecimalPlaces and maxWholeDigits error messages may con-
tain {max}.

Takes four optional arguments:

• maxValue

• minValue

These control the range of values permitted in the field.

• maxDigits

The maximum number of digits (those before the decimal point plus those after the decimal
point, with leading zeros stripped) permitted in the value.

• decimalDlaces

The maximum number of decimal places permitted.

EmailField()

• Default widget: EmailInput()

• Empty value: ’’ (an empty string)

• Normalises to: A string.

46 Chapter 3. Documentation Contents

https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

• Validates that the given value is a valid email address, using a moderately complex regular expres-
sion.

• Error message keys: required, invalid

Has two optional arguments for validation, maxLength and minLength. If provided, these arguments
ensure that the string is at most or at least the given length.

FileField()

• Default widget: ClearableFileInput()

• Empty value: null

• Normalises to:

– Client: a native File object, when supported by the browser, otherwise the value of the
<input type="file">.

– Server: the given object in files - this field just validates what’s there and leaves the rest up
to you.

• Can validate that non-empty file data has been bound to the form.

• Error message keys: required, invalid, missing, empty, maxLength

Has two optional arguments for validation, maxLength and allowEmptyFile. If provided, these
ensure that the file name is at most the given length, and that validation will succeed even if the file
content is empty.

When you use a FileField in a form, you must also remember to bind the file data to the form.

The maxLength error refers to the length of the filename. In the error message for that key, {max} will
be replaced with the maximum filename length and {length} will be replaced with the current filename
length.

FilePathField()

• Default widget: Select()

• Empty value: null

• Normalises to: A string

• Validates that the selected choice exists in the list of choices.

• Error message keys: required, invalidChoice

The field allows choosing from files inside a certain directory. It takes three extra arguments; only path
is required:

• path

The absolute path to the directory whose contents you want listed. This directory must
exist.

• recursive

If false (the default) only the direct contents of path will be offered as choices. If
true, the directory will be descended into recursively and all descendants will be listed
as choices.

• match

3.1. Guide Documentation 47

https://developer.mozilla.org/en-US/docs/Web/API/File

newforms Documentation, Release 0.13.2

A regular expression pattern; only files with names matching this expression will be al-
lowed as choices.

• allowFiles

Optional. Either true or false. Default is true. Specifies whether files in the specified
location should be included. Either this or allowFolders must be true.

• allowFolders

Optional. Either true or false. Default is false. Specifies whether folders in the
specified location should be included. Either this or allowFiles must be true.

FloatField()

• Default widget: NumberInput().

• Empty value: null

• Normalises to: A JavaScript Number.

• Validates that the given value is a float. Leading and trailing whitespace is allowed.

• Error message keys: required, invalid, maxValue, minValue

Takes two optional arguments for validation, maxValue and minValue. These control the range of
values permitted in the field.

ImageField()

• Default widget: ClearableFileInput()

• Empty value: null

• Normalises to: The given object in files - this field just validates what’s there and leaves the rest
up to you.

• Validates that file data has been bound to the form, and that the file is of an image format.

• Error message keys: required, invalid, missing, empty, invalidImage

Note: Server-side image validation isn’t implemented yet.

When you use a ImageField in a form, you must also remember to bind the file data to the form.

IntegerField()

• Default widget: NumberInput().

• Empty value: null

• Normalises to: A JavaScript Number.

• Validates that the given value is an integer. Leading and trailing whitespace is allowed.

• Error message keys: required, invalid, maxValue, minValue

The maxValue and minValue error messages may contain {limitValue}, which will
be substituted by the appropriate limit.

Takes two optional arguments for validation:

48 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• maxValue

• minValue

These control the range of values permitted in the field.

IPAddressField()

Deprecated since version 0.5: This field has been deprecated in favour of
GenericIPAddressField().

• Default widget: TextInput()

• Empty value: ’’ (an empty string)

• Normalises to: A string.

• Validates that the given value is a valid IPv4 address, using a regular expression.

• Error message keys: required, invalid

GenericIPAddressField()

A field containing either an IPv4 or an IPv6 address.

• Default widget: TextInput()

• Empty value: ’’ (an empty string)

• Normalises to: A string. IPv6 addresses are normalised as described below.

• Validates that the given value is a valid IP address.

• Error message keys: required, invalid

The IPv6 address normalisation follows RFC 4291#section-2.2 section 2.2, including using the
IPv4 format suggested in paragraph 3 of that section, like ::ffff:192.0.2.0. For ex-
ample, 2001:0::0:01 would be normalised to 2001::1, and ::ffff:0a0a:0a0a to
::ffff:10.10.10.10. All characters are converted to lowercase.

Takes two optional arguments:

• protocol

Limits valid inputs to the specified protocol. Accepted values are both (default), ipv4
or ipv6. Matching is case insensitive.

• unpackIPv4

Unpacks IPv4 mapped addresses like ::ffff:192.0.2.1. If this option is enabled that
address would be unpacked to 192.0.2.1. Default is disabled. Can only be used when
protocol is set to ’both’.

MultipleChoiceField()

• Default widget: SelectMultiple()

• Empty value: [] (an empty list)

• Normalises to: A list of strings.

• Validates that every value in the given list of values exists in the list of choices.

3.1. Guide Documentation 49

https://tools.ietf.org/html/rfc4291.html#section-2.2

newforms Documentation, Release 0.13.2

• Error message keys: required, invalidChoice, invalidList

The invalidChoice error message may contain {value}, which will be replaced with the selected
choice.

Takes one extra required argument, choices, as for ChoiceField.

MultipleFileField()

New in version 0.11: Default widget: FileInput() with multiple attribute Empty value: [] (an
empty list) Normalises to:

••• – Client: a list of File objects, when supported by the browser, otherwise the value of the <input
type="file" multiple>.

– Server: the given object in files - this field just validates what’s there and leaves the rest up to you.

• Can validate that non-empty file data has been bound to the form.

• Error message keys: required, invalid, missing, empty, maxLength

The empty and maxLength error messages may contain {name}, which will be replaced with the name of the file
which failed validation.

Has two optional arguments for validation, maxLength and allowEmptyFile as for FileField.

TypedMultipleChoiceField()

Just like a MultipleChoiceField(), except TypedMultipleChoiceField() takes two extra
arguments, coerce and emptyValue.

• Default widget: SelectMultiple()

• Empty value: Whatever you’ve given as emptyValue

• Normalises to: A list of values of the type provided by the coerce argument.

• Validates that the given values exists in the list of choices and can be coerced.

• Error message keys: required, invalidChoice

The invalidChoice error message may contain {value}, which will be replaced with the selected
choice.

Takes two extra arguments, coerce and emptyValue, as for TypedChoiceField.

NullBooleanField()

• Default widget: NullBooleanSelect()

• Empty value: null

• Normalises to: A JavaScript true, false or null value.

• Validates nothing (i.e., it never raises a ValidationError).

50 Chapter 3. Documentation Contents

https://developer.mozilla.org/en-US/docs/Web/API/File

newforms Documentation, Release 0.13.2

RegexField()

• Default widget: TextInput()

• Empty value: ’’ (an empty string)

• Normalises to: A string.

• Validates that the given value matches against a certain regular expression.

• Error message keys: required, invalid

Takes one required argument:

• regex

A regular expression specified either as a string or a compiled regular expression object.

Also takes maxLength and minLength, which work just as they do for CharField.

SlugField()

• Default widget: TextInput()

• Empty value: ’’ (an empty string)

• Normalises to: A string.

• Validates that the given value contains only letters, numbers, underscores, and hyphens.

• Error messages: required, invalid

TimeField()

• Default widget: TextInput()

• Empty value: null

• Normalises to: A JavaScript Date object, with its date fields set to 1900-01-01.

• Validates that the given value is either a Date or string formatted in a particular time format.

• Error message keys: required, invalid

Takes one optional argument:

• inputFormats

A list of format strings used to attempt to convert a string to a valid Date object.

If no inputFormats argument is provided, the default input formats are:

[
'%H:%M:%S' // '14:30:59'

, '%H:%M' // '14:30'
]

3.1. Guide Documentation 51

https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

URLField()

• Default widget: URLInput()

• Empty value: ’’ (an empty string)

• Normalises to: A string.

• Validates that the given value is a valid URL.

• Error message keys: required, invalid

Takes the following optional arguments:

• maxLength

• minLength

These are the same as CharField.maxLength and CharField.minLength.

Slightly complex built-in Field types

ComboField()

• Default widget: TextInput()

• Empty value: ’’ (an empty string)

• Normalises to: A string.

• Validates that the given value against each of the fields specified as an argument to the
ComboField.

• Error message keys: required, invalid

Takes one extra argument:

• fields

The list of fields that should be used to validate the field’s value (in the order in which they
are provided):

var f = forms.ComboField({fields: [
forms.CharField({maxLength: 20}),
forms.EmailField()

]})
print(f.clean('test@example.com'))
// => test@example.com
try {
f.clean('longemailaddress@example.com')

}
catch (e) {

print(e.messages())
}
// => ['Ensure this value has at most 20 characters (it has 28).']

MultiValueField()

• Default widget: TextInput()

52 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• Empty value: ’’ (an empty string)

• Normalises to: the type returned by the compress method of the field.

• Validates that the given value against each of the fields specified as an argument to the
MultiValueField.

• Error message keys: required, invalid, incomplete

Aggregates the logic of multiple fields that together produce a single value.

This field is abstract and must be extended. In contrast with the single-value fields, fields which ex-
tend js:class:MultiValueField must not implement BaseField#clean() but instead - implement
compress().

Takes one extra argument:

• fields

A list of fields whose values are cleaned and subsequently combined into a single value.
Each value of the field is cleaned by the corresponding field in fields – the first value is
cleaned by the first field, the second value is cleaned by the second field, etc. Once all fields
are cleaned, the list of clean values is combined into a single value by compress().

Also takes one extra optional argument:

• requireAllFields

New in version 0.5.

Defaults to true, in which case a required validation error will be raised if no value is
supplied for any field.

When set to false, the Field.required attribute can be set to false for individual
fields to make them optional. If no value is supplied for a required field, an incomplete
validation error will be raised.

A default incomplete error message can be defined on the MultiValueField(), or
different messages can be defined on each individual field. For example:

var RegexValidator = forms.validators.RegexValidator
var PhoneField = forms.MultiValueField.extend({
constructor: function(kwargs) {
kwargs = kwargs || {}
// Define one message for all fields

kwargs.errorMessages = {
incomplete: 'Enter a country code and phone number.'

}
// Or define a different message for each field
kwargs.fields = [
forms.CharField({errorMessages: {incomplete: 'Enter a country code.'}, validators: [
RegexValidator({regex: /^\d+$/, message: 'Enter a valid country code.'})

]}),
forms.CharField({errorMessages: {incomplete: 'Enter a phone number.'}, validators: [
RegexValidator({regex: /^\d+$/, message: 'Enter a valid phone number.'})

]}),
forms.CharField({required: false, validators: [
RegexValidator({regex: /^\d+$/, message: 'Enter a valid extension.'})

]})
]
PhoneField.__super__.constructor.call(this, kwargs)

3.1. Guide Documentation 53

newforms Documentation, Release 0.13.2

}
})

• MultiValueField.widget

Must extend MultiWidget(). Default value is TextInput(), which probably is not
very useful in this case. Have a nice day :)

• compress(dataList)

Takes a list of valid values and returns a “compressed” version of those values – in a single
value. For example, SplitDateTimeField() is a combines a time field and a date
field into a Date object.

This method must be implemented in the Field extending MultiValueField.

SplitDateTimeField()

• Default widget: SplitDateTimeWidget()

• Empty value: null

• Normalises to: A JavaScript datetime.datetime object.

• Validates that the given value is a datetime.datetime or string formatted in a particular date-
time format.

• Error message keys: required, invalid, invalidDate, invalidTime

Takes two optional arguments:

• inputDateFormats

A list of format strings used to attempt to convert a string to a valid Date object with its
time fields set to zero.

If no inputDateFormats argument is provided, the default input formats for DateField
are used.

• inputTimeFormats

A list of format strings used to attempt to convert a string to a valid Date object with its
date fields set to 1900-01-01.

If no inputTimeFormats argument is provided, the default input formats for TimeField
are used.

Creating custom fields

If the built-in Field objects don’t meet your needs, you can easily create custom Fields. To do this, just
.extend() Field. Its only requirements are that it implement a clean() method and that its constructor()
accepts the core arguments mentioned above (required, label, initial, widget, helpText) in an argument
object.

3.1.8 Form and Field validation

Form validation happens when the data is cleaned. If you want to customise this process, there are various places you
can change, each one serving a different purpose. Three types of cleaning methods are run during form processing.

54 Chapter 3. Documentation Contents

https://github.com/insin/isomorph#formatting-directives
https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

These are normally executed when you call the validate() method on a form or you interact with a field when the
form is using event-based validation.

In general, any cleaning method can throw a ValidationError if there is a problem with the data it is processing,
passing the relevant information to the ValidationError constructor.

Most validation can be done using validators – helpers that can be reused easily. Validators are functions that
take a single argument and throw a ValidationError on invalid input. Validators are run after the field’s
toJavaScript() and validate() methods have been called.

Validation steps and order

Validation of a Form is split into several steps, which can be customised or overridden:

• The toJavaScript()method on a Field is the first step in every validation. It coerces the value to the correct
datatype and throws a ValidationError if that is not possible. This method accepts the raw value from
the widget and returns the converted value. For example, a FloatField will turn the data into a JavaScript
Number or throw a ValidationError.

• The validate() method on a Field handles field-specific validation that is not suitable for a validator. It
takes a value that has been coerced to the correct datatype and throws a ValidationError on any error.

This method does not return anything and shouldn’t alter the value. You should override it to handle validation
logic that you can’t or don’t want to put in a validator.

• The runValidators() method on a Field runs all of the field’s validators and aggregates all the errors into
a single ValidationError. You shouldn’t need to override this method.

• The clean() method on a Field. This is responsible for running toJavaScript, validate and
runValidators in the correct order and propagating their errors. If, at any time, any of the methods throws
a ValidationError, the validation stops and that error is thrown. This method returns the clean data, which
is then inserted into the cleanedData object of the form.

• Field-specific cleaning/validation hooks on the Form. If your form includes a clean<FieldName>() (or
clean_<fieldName>()) method in its definition, it will be called for the field its name matches. This
method is not passed its field’s data as an argument. You will need to look up the value of the field in
this.cleanedData (it will be in cleanedData because the general field clean() method, above, has
already cleaned the data once).

For example, if you wanted to validate that the content of a CharField called serialNumber was unique,
implementing cleanSerialNumber() would provide the right place to do this.

• The Form clean() method. This method can perform any validation that requires access to multiple fields
from the form at once. This is where you would perform checks like password or email confirmation fields
being equal to the original input.

Since the field validation methods have been run by the time clean() is called, you also have access to the
form’s errors(), which contains all the errors thrown by cleaning of individual fields.

Note that any errors thrown by your form.clean() override will not be associated with any field in particular.
They go into a special “field” (called __all__), which you can access via the nonFieldErrors() method
if you need to. If you want to attach errors to a specific field in the form, you need to call form.addError().

These methods are run in the order given above, one field at a time. That is, for each field in the form (in
the order they are declared in the form definition), the field.clean() method (or its override) is run, then
clean<Fieldname>() (or clean_<fieldName>()) if defined. Finally, the form.clean() method, or
its override, is executed whether or not the previous methods have thrown errors.

Examples of each of these methods are provided below.

3.1. Guide Documentation 55

newforms Documentation, Release 0.13.2

As mentioned, any of these methods can throw a ValidationError. For any field, if the field.clean()
method throws a ValidationError, any field-specific cleaning method is not called. However, the cleaning
methods for all remaining fields are still executed.

Throwing ValidationError

In order to make error messages flexible and easy to override, consider the following guidelines:

• Provide a descriptive error code to the constructor when possible:

forms.ValidationError('Invalid value', {code: 'invalid'})

• Don’t coerce variables into the message; use placeholders and the params argument of the constructor:

forms.ValidationError('Invalid value: {value}', {params: {value: '42'}})

Putting it all together:

throw forms.ValidationError('Invalid value: {value)', {
code: 'invalid',
params: {value: '42'}

})

Following these guidelines is particularly useful to others if you write reusable forms and form fields.

If you’re at the end of the validation chain (i.e. your form’s clean()) and you know you will never need to override
your error message (or even just... because) you can still opt for the less verbose:

forns.ValidationError('Invalid value: ' + value)

Throwing multiple errors

If you detect multiple errors during a cleaning method and wish to signal all of them to the form submitter, it is possible
to pass a list of errors to the ValidationError constructor.

It’s recommended to pass a list of ValidationError instances with codes and params but a list of strings will
also work:

throw forms.ValidationError([
forms.ValidationError('Error 1', {code: 'error1'}),
forms.ValidationError('Error 2', {code: 'error2'})

])

throw forms.ValidationError(['Error 1', 'Error 2'])

Using validation in practice

The previous sections explained how validation works in general for forms. Since it can sometimes be easier to put
things into place by seeing each feature in use, here are a series of small examples that use each of the previous
features.

Using validators

Fields support use of utility functions known as validators. A validator is a function that takes a value and returns
nothing if the value is valid, or thriws a ValidationError() if not. These can be passed to a field’s constructor,
via the field’s validators argument, or defined on the field’s prototype as a defaultValidators property.

56 Chapter 3. Documentation Contents

http://www.youtube.com/watch?v=pWdd6_ZxX8c

newforms Documentation, Release 0.13.2

Let’s have a look at a basic implementation of newforms’ SlugField:

var MySlugField = forms.CharField.extend({
defaultValidators: [forms.validators.validateSlug]

})

As you can see, a basic SlugField is just a CharField with a customised validator that validates that submitted
text obeys some character usage rules. This can also be done on field definition so:

var field = new MySlugField()

is equivalent to:

var field = forms.CharField({validators: [forms.validators.validateSlug]})

Common cases such as validating against an email or a regular expression can be handled using existing validators
available in newforms. For example, validateSlug() is a function created by passing a slug-matching RegExp
to the RegexValidator() function factory.

Form field default cleaning

Let’s firstly create a custom form field that validates its input is a string containing comma-separated email addresses:

var MultiEmailField = forms.Field.extend({
/**
* Normalise data to a list of strings.

*/
toJavaScript: function(value) {
// Return an empty list if no input was given
if (this.isEmptyValue(value)) {

return []
}
return value.split(/, ?/g)

},

/**
* Check if value consists only of valid emails.

*/
validate: function(value) {
// Use the parent's handling of required fields, etc.
MultiEmailField.__super__.validate.call(this, value)
value.map(forms.validators.validateEmail)

}
})

Let’s create a simple ContactForm to demonstrate how you’d use this field:

var ContactForm = forms.Form.extend({
subject: forms.CharField({maxLength: 100}),
message: forms.CharField(),
sender: forms.EmailField(),
recipients: new MultiEmailField(),
ccMyself: forms.BooleanField({required: false})

})

3.1. Guide Documentation 57

newforms Documentation, Release 0.13.2

Cleaning a specific field

Suppose that in our ContactForm, we want to make sure that the recipients field always contains the address
"fred@example.com". This is validation that is specific to our form, so we don’t want to put it into the general
MultiEmailField. Instead, we write a cleaning function that operates on the recipients field, like so:

var ContactForm = forms.Form.extend({
// Everything as before
// ...

cleanRecipients: function() {
var recipients = this.cleanedData.recipients
if (recipients.indexOf('fred@example.com') == -1) {

throw forms.ValidationError('You forgot about Fred!')
}

}
}

Changed in version 0.10: You can no longer return a value from a custom field cleaning method to update the field’s
cleanedData.

Cleaning and validating fields that depend on each other

form.clean() There are two ways to report any errors from this step. Probably the most common method is to display
the error at the top of the form. To create such an error, you can throw a ValidationError from the clean()
method. For example:

var ContactForm = forms.Form.extend({
// Everything as before
// ...

clean: function() {
var ccMyself = this.cleanedData.ccMyself
var subject = this.cleanedData.subject

if (ccMyself && subject) {
// Only do something if both fields are valid so far
if (subject.indexOf('help') == -1) {

throw forms.ValidationError(
"Did not send for 'help' in the subject despite CC'ing yourself.")

}
}

}
}

Another approach might involve assigning the error message to one of the fields. In this case, let’s assign an error
message to both the “subject” and “ccMyself” rows in the form display:

var ContactForm = forms.Form.extend({
// Everything as before
// ...

clean: function() {
var cleanedData = ContactForm.__super__.clean.call(this)
var ccMyself = this.cleanedData.ccMyself
var subject = this.cleanedData.subject

58 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

if (ccMyself && subject && subject.indexOf('help') == -1) {
var message = "Must put 'help' in subject when cc'ing yourself."
this.addError('ccMyself', message)
this.addError('subject', message)

}
}

}

The second argument oto addError() can be a simple string, or preferably an instance of ValidationError.
See Throwing ValidationError for more details. Note that addError() automatically removes the field from
cleanedData.

Specifying fields used in cross-field validation New in version 0.9.

To let a form know which fields are used in cross-field validation, specify its clean() method as an array of field
named followed by the cleaning function itself.

In scenarios where the form is being partially updated, such as when individual field input values are being updated and
validated when an onChange event fires, if this information is available cross-field cleaning will only be performed
if one of the fields it uses is affected.

var PersonForm = forms.Form.extend({
firstName: forms.CharField({required: false, maxLength: 50}),
lastName: forms.CharField({required: false, maxLength: 50}),
jobTitle: forms.CharField({required: false, maxLength: 100}),
organisation : forms.CharField({required: false}),

clean: ['firstName', 'lastName', function() {
if (!this.cleanedData.firstName && !this.cleanedData.lastName) {

throw forms.ValidationError('A first name or last name is required.')
}

}]
})

Asynchronous validation

New in version 0.10.

For some validation you may need to access an external data source, such as a web service, database or filesystem. In
JavaScript, these tend to be asynchronous operations.

You can let newforms know that a custom field – or cross-field clean() – validation method will be async by defining
it with a single parameter in its function signature. It doesn’t matter what this is called, but it’s conventionally called
callback or cb:

cleanUsername: function(callback) {
// ...

}

When your custom cleaning method is finished whatever async operation it needs to perform, it must call the callback
function to let the form know it can finish the validation process.

The callback has the following signature:

function callback(error, validationError)

3.1. Guide Documentation 59

newforms Documentation, Release 0.13.2

• error – an Error indicating that something went wrong with the async operation. Any falsy value can be
passed if there was no error, but it’s conventional to pass null in that case. This style of error reporting is
known as an “errback”.

• validationError – an error message if the field’s value was invalid, this can be a simple string or a
ValidationError.

If async validation determines that the input is valid, you must still call the callback to let newforms know you’re done.
It can be called without any arguments in this case.

The callback must only be called once, so take care with your custom validation logic, branching or returning early as
necessary to avoid calling it multiple times.

Async field validation example

A common use case for async validation is checking if a username is available in a signup form:

cleanUsername: function(callback) {
http.post('/checkuser', {username: this.cleanedData.username}, function(err, res) {
// There was an error during the HTTP request
if (err) {

return callback(err)
}

// The username is already taken
if (res.alreadyTaken) {

return callback(null, forms.ValidationError('This username is already taken.'))
}

// The username is available
callback()

})
}

In this live example, someone has registered every possible username containing a vowel from the English alphabet,
which will randomly take between 1 and 2 seconds to validate:

Cancelling async validation

Asynchronous validation will be cancelled if the user is able to make a change which re-triggers validation while their
last change is still being validated.

From the newforms side of things, this effectivly involves ignoring calls to the callback which was handed to async
validation function.

Tip: In order to support cancelling asyncronous validation, you should always call the given callback with validation
results, rather than modifying the form directly via this. This allows newforms to ignore your eventual callback if
the data is was validating is stale.

If an async validation involves a potentially long-running or (in some way) expensive operation which you’d like to
cancel should this happen, you can give newforms a callback to call by returning an object with an onCancel()
function, after your async validation has started:

cleanExpensiveField: function(callback) {
var request = http.post(
// ...

60 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

)

return {
onCancel: function() {

request.cancel()
}

}
}

Combining sync and async validation

If you have custom validation which can be performed locally, as well as async validation, you can combine the two
in the same custom cleaning method.

If validation fails before it reaches the asynchronous part, throwing a ValidationError or explicitly returning
false will let newforms know that asynchronous validation wes never initiated:

cleanUsername: function(callback) {
var username = this.cleanedData.username

// Throwing a ValidationError skips remaining validation for this field
if (username != esrever.reverse(username)) {
throw forms.ValidationError('Usernames must be palindromes.')

}

// Returning false explicitly lets newforms know not to wait for a callback
if (/[aeiou].test(username)) {
this.addError('useranme', 'Usernames must not contain vowels.')
return false

}

http.post(
// ...

)
}

3.1.9 Widgets

A widget is a representation of an HTML input element. The widget handles the rendering of the HTML, and the
extraction of data from a data object that corresponds to how the widget’s values(s) would be submitted by a form.

Tip: Widgets should not be confused with the form fields. Form fields deal with the logic of input validation and are
used directly in templates. Widgets deal with rendering of HTML form input elements on the web page and extraction
of raw submitted data. However, widgets do need to be assigned to form fields.

Specifying widgets

Whenever you specify a field on a form, newforms will use a default widget that is appropriate to the type of data that
is to be displayed. To find which widget is used on which field, see the documentation about Build-in Field types.

However, if you want to use a different widget for a field, you can just use the widget argument on the field definition.
For example:

3.1. Guide Documentation 61

newforms Documentation, Release 0.13.2

var CommentForm = forms.Form.extend({
name: forms.CharField(),
url: forms.URLField(),
comment: forms.CharField({widget: forms.Textarea})

})

This would specify a form with a comment that uses a larger Textarea() widget, rather than the default
TextInput() widget.

Setting arguments for widgets

Many widgets have optional extra arguments; they can be set when defining the widget on the field. In the following
example, we set additional HTML attributes to be added to the TextArea to control its display:

var CommentForm = forms.Form.extend({
name: forms.CharField(),
url: forms.URLField(),
comment: forms.CharField({
widget: forms.Textarea({attrs: {rows: 6, cols: 60}})

})
})

See the Built-in widgets for more information about which widgets are available and which arguments they accept.

Customising widget attributes

New in version 0.11.

Sometimes you just need to add some extra attributes to a field’s default widget. Instead of completely redefining the
widget as shown above, you can provide extra attributes using the field’s widgetAttrs argument. For example, if
we want focus to be given to the name field when the form is first rendered:

var CommentForm = forms.Form.extend({
name: forms.CharField({widgetAttrs: {autoFocus: true}}),
url: forms.URLField(),
comment: forms.CharField({widget: forms.Textarea})

})

Widgets inheriting from the Select widget

Widgets inheriting from the Select() widget deal with choices. They present the user with a list of options to
choose from. The different widgets present this choice differently; the Select() widget itself uses a <select>
HTML list representation, while RadioSelect() uses radio buttons.

Select() widgets are used by default on ChoiceField() fields. The choices displayed on the widget are in-
herited from the ChoiceField() and setting new choices with ChoiceField#setChoices() will update
Select.choices. For example:

var CHOICES = [['1', 'First'], ['2', 'Second']]
var field = forms.ChoiceField({choices: CHOICES, widget: forms.RadioSelect})
print(field.choices())
// => [['1', 'First'], ['2', 'Second']]
print(field.widget.choices
// => [['1', 'First'], ['2', 'Second']]
field.widget.choices = []

62 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

field.setChoices([['1', 'First and only']])
print(field.widget.choices)
// => [['1', 'First and only']]

Widgets which offer a choices property can however be used with fields which are not based on choice – such as a
CharField() – but it is recommended to use a ChoiceField()-based field when the choices are inherent to the
model and not just the representational widget.

Customising widget instances

Widgets are rendered with minimal markup - by default there are no CSS class names applied, or any other widget-
specific attributes. This means, for example, that all TextInput() widgets will appear the same on your pages.

Styling widget instances

If you want to make one widget instance look different from another, you will need to specify additional attributes at
the time when the widget object is instantiated and assigned to a form field (and perhaps add some rules to your CSS
files).

For example, take the following simple form:

var CommentForm = forms.Form.extend({
name: forms.CharField(),
url: forms.URLField(),
comment: forms.CharField()

})

This form will include three default TextInput() widgets, with default rendering – no CSS class, no extra at-
tributes. This means that the input boxes provided for each widget will be rendered exactly the same:

var f = new CommentForm({autoId: false})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div>Name: <input type="text" name="name"></div>
<div>Url: <input type="url" name="url"></div>
<div>Comment: <input type="text" name="comment"></div>

</div>

*/

On a real Web page, you probably don’t want every widget to look the same. You might want a larger input element for
the comment, and you might want the ‘name’ widget to have some special CSS class. It is also possible to specify the
‘type’ attribute to take advantage of the new HTML5 input types. To do this, you use the Widget.attrs argument
when creating the widget:

var CommentForm = forms.Form.extend({
name: forms.CharField({
widget: forms.TextInput({attrs: {className: 'special'}})

}),
url: forms.URLField(),
comment: forms.CharField({widget: forms.TextInput({attrs: {size: '40'}})

})

Note: Widgets are rendered as ReactElement objects – in the example above, we used className instead of
class as React has standardised on the JavaScript-safe versions of attribute names, which avoid conflicting with
JavaScript reserved words.

3.1. Guide Documentation 63

http://facebook.github.io/react/docs/tags-and-attributes.html#html-attributes

newforms Documentation, Release 0.13.2

The extra attributes will then be included in the rendered output:

var f = new CommentForm({autoId: false})
print(reactHTML(<RenderForm form={f}/>))
/* =>
<div>

<div>Name: <input class="special" type="text" name="name"></div>
<div>Url: <input type="url" name="url"></div>
<div>Comment: <input size="40" type="text" name="comment"></div>

</div>

*/

You can also set the HTML id using Widget.attrs.

Base Widgets

Base widgets Widget() and MultiWidget() are extended by all the built-in widgets and may serve as a founda-
tion for custom widgets.

Widget()

This abstract widget cannot be rendered, but provides the basic attribute Widget.attrs. You may also
implement or override the render() method on custom widgets.

widget.attrs An object containing HTML attributes to be set on the rendered widget:

var name = forms.TextInput({attrs: {size:10, title: 'Your name'}})
print(reactHTML(name.render('name', 'A name')))
// => <input size="10" title="Your name" type="text" name="name" value="A name">"

Key Widget methods are:

Widget#render() Returns a ReactElement representation of the widget. This method must be
implemented by extending widgets, or an Error will be thrown.

The ‘value’ given is not guaranteed to be valid input, therefore extending widgets should program
defensively.

Widget#valueFromData() Given an object containing input data and this widget’s name, returns
the value of this widget. Returns null if a value wasn’t provided.

MultiWidget()

A widget that is composed of multiple widgets. MultiWidget() works hand in hand with the
MultiValueField().

MultiWidget has one required argument:

MultiWidget.widgets A list containing the widgets needed.

And one required method:

MultiWidget#decompress() This method takes a single “compressed” value from the field and
returns a list of “decompressed” values. The input value can be assumed valid, but not necessarily
non-empty.

64 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

This method must be implemented by the widgets extending MultiWidget, and since the value
may be empty, the implementation must be defensive.

The rationale behind “decompression” is that it is necessary to “split” the combined value of the
form field into the values for each widget.

An example of this is how SplitDateTimeWidget() turns a Date value into a list with date
and time split into two separate values.

Tip: Note that MultiValueField() has a complementary method
MultiValueField#compress() with the opposite responsibility - to combine cleaned
values of all member fields into one.

Other methods that may be useful to implement include:

MultiWidget#render() The value argument must be handled differently in this method then in
Widget#render() because it has to figure out how to split a single value for display in multiple
widgets.

The value argument used when rendering can be one of two things:

• A list.

• A single value (e.g., a string) that is the “compressed” representation of a list of values.

If value is a list, the output of MultiWidget#render() will be a concatenation of
rendered child widgets. If value is not a list, it will first be processed by the method
MultiWidget#decompress() to create the list and then rendered.

When render() runs, each value in the list is rendered with the corresponding widget – the first
value is rendered in the first widget, the second value is rendered in the second widget, etc.

Unlike in the single value widgets, render() doesn’t have to be implemented by extending wid-
gets.

MultiWidget#formatOutput() Given a list of rendered widgets (as ReactElement objects),
returns the list or a ReactElement object containing the widgets. This hook allows you to lay out
the widgets any way you’d like.

Here’s an example widget which extends MultiWidget() to display a date with the day, month, and year in different
select boxes. This widget is intended to be used with a DateField() rather than a MultiValueField(), so
we’ve implemented Widget#valueFromData():

var DateSelectorWidget = forms.MultiWidget.extend({
constructor: function(kwargs) {
kwargs = extend({attrs: {}}, kwargs)
widgets = [

forms.Select({choices: range(1, 32), attrs: kwargs.attrs}),
forms.Select({choices: range(1, 13), attrs: kwargs.attrs}),
forms.Select({choices: range(2012, 2017), attrs: kwargs.attrs})

]
forms.MultiWidget.call(this, widgets, kwargs)

},

decompress: function(value) {
if (value instanceof Date) {

return [value.getDate(),
value.getMonth() + 1, // Make month 1-based for display
value.getFullYear()]

}
return [null, null, null]

3.1. Guide Documentation 65

newforms Documentation, Release 0.13.2

},

formatOutput: function(renderedWidgets) {
return React.createElement('div', null, renderedWidgets)

},

valueFromData: function(data, files, name) {
var parts = this.widgets.map(function(widget, i) {
return widget.valueFromData(data, files, name + '_' + i)

})
parts.reverse() // [d, m, y] => [y, m, d]
return parts.join('-')

}
})

The constructor creates several Select() widgets in a list. The “super” constructor uses this list to setup the widget.

The MultiWidget#formatOutput() method is fairly vanilla here (in fact, it’s the same as what’s been imple-
mented as the default for MultiWidget), but the idea is that you could add custom HTML between the widgets
should you wish.

The required method MultiWidget#decompress() breaks up a Date value into the day, month, and year values
corresponding to each widget. Note how the method handles the case where value is null.

The default implementation of Widget#valueFromData() returns a list of values corresponding to each
Widget. This is appropriate when using a MultiWidget with a MultiValueField(), but since we want to use
this widget with a DateField() which takes a single value, we have overridden this method to combine the data of
all the subwidgets into a ’yyyy-mm-dd’ formatted date string and returns it for validation by the DateField().

Built-in widgets

Newforms provides a representation of all the basic HTML widgets, plus some commonly used groups of widgets,
including the input of text, various checkboxes and selectors, uploading files, and handling of multi-valued input.

Widgets handling input of text

These widgets make use of the HTML elements <input> and <textarea>.

TextInput()

Text input: <input type="text" ...>

NumberInput()

Text input: <input type="number" ...>

EmailInput()

Text input: <input type="email" ...>

66 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

URLInput()

Text input: <input type="url" ...>

PasswordInput()

Password input: <input type=’password’ ...>

Takes one optional argument:

• PasswordInput.renderValue

Determines whether the widget will have a value filled in when the form is re-displayed
after a validation error (default is false).

Textarea()

Text area: <textarea>...</textarea>

HiddenInput()

Hidden input: <input type=’hidden’ ...>

Note that there also is a MultipleHiddenInput() widget that encapsulates a set of hidden input
elements.

DateInput()

Date input as a simple text box: <input type=’text’ ...>

Takes same arguments as TextInput(), with one more optional argument:

• DateInput.format

The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is the first format found in the current locale’s
DATE_INPUT_FORMATS.

DateTimeInput()

Date/time input as a simple text box: <input type=’text’ ...>

Takes same arguments as TextInput(), with one more optional argument:

• DateTimeInput.format

The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is the first format found in the current locale’s
DATETIME_INPUT_FORMATS.

3.1. Guide Documentation 67

newforms Documentation, Release 0.13.2

TimeInput()

Time input as a simple text box: <input type=’text’ ...>

Takes same arguments as TextInput(), with one more optional argument:

• TimeInput.format

The format in which this field’s initial value will be displayed.

If no format argument is provided, the default format is the first format found in the current locale’s
TIME_INPUT_FORMATS.

Selector and checkbox widgets

CheckboxInput()

Checkbox: <input type=’checkbox’ ...>

Takes one optional argument:

• CheckboxInput.checkTest

A function that takes the value of the CheckBoxInput and returns true if the checkbox
should be checked for that value.

Select()

Select widget: <select><option ...>...</select>

• Select.choices

This attribute is optional when the form field does not have a choices attribute. If it
does, it will override anything you set here when the attribute is updated on the Field().

NullBooleanSelect()

Select widget with options ‘Unknown’, ‘Yes’ and ‘No’

SelectMultiple()

Similar to Select, but allows multiple selection: <select
multiple=’multiple’>...</select>

RadioSelect()

Similar to Select, but rendered as a list of radio buttons within tags:

<input type='radio' ...>
...

68 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

For more granular control over the generated markup, you can loop over the radio buttons. Assuming a
form myform with a field beatles that uses a RadioSelect as its widget:

myForm.boundField('beatles').subWidgets().map(function(radio) {
return <div className="myRadio">{radio.render()}</div>

})

This would generate the following HTML:

<div class="myRadio">
<label for="id_beatles_0"><input id="id_beatles_0" type="radio" name="beatles" value="john"> John</label>

</div>
<div class="myRadio">
<label for="id_beatles_1"><input id="id_beatles_1" type="radio" name="beatles" value="paul"> Paul</label>

</div>
<div class="myRadio">
<label for="id_beatles_2"><input id="id_beatles_2" type="radio" name="beatles" value="george"> George</label>

</div>
<div class="myRadio">
<label for="id_beatles_3"><input id="id_beatles_3" type="radio" name="beatles" value="ringo"> Ringo</label>

</div>

That included the <label> tags. To get more granular, you can use each radio button’s tag(),
choiceLabel and idForLabel(). For example, this code...:

myForm.boundField('beatles').subWidgets().map(function(radio) {
return <label htmlFor={radio.idForLabel()}>
{radio.choiceLabel}
{radio.tag()}

</label>
})

...will result in the following HTML:

<label for="id_beatles_0">
John
<input id="id_beatles_0" type="radio" name="beatles" value="john">

</label>
<label for="id_beatles_1">
Paul
<input id="id_beatles_1" type="radio" name="beatles" value="paul">

</label>
<label for="id_beatles_2">
George
<input id="id_beatles_2" type="radio" name="beatles" value="george">

</label>
<label for="id_beatles_3">
Ringo
<input id="id_beatles_3" type="radio" name="beatles" value="ringo">

</label>

If you decide not to loop over the radio buttons – e.g., if your layout simply renders the beatles
BoundField – they’ll be output in a with tags, as above.

CheckboxSelectMultiple()

Similar to SelectMultiple(), but rendered as a list of check buttons:

3.1. Guide Documentation 69

newforms Documentation, Release 0.13.2

<input type='checkbox' ...>
...

Like RadioSelect(), you can loop over the individual checkboxes making up the lists.

File upload widgets

FileInput()

File upload input: <input type=’file’ ...>

ClearableFileInput()

File upload input: <input type=’file’ ...>, with an additional checkbox input to clear the
field’s value, if the field is not required and has initial data.

Composite widgets

MultipleHiddenInput()

Multiple <input type=’hidden’ ...> widgets.

A widget that handles multiple hidden widgets for fields that have a list of values.

• MultipleHiddenInput.choices

This attribute is optional when the form field does not have a choices attribute. If it
does, it will override anything you set here when the attribute is updated on the Field().

SplitDateTimeWidget()

Wrapper (using MultiWidget()) around two widgets: DateInput() for the date, and
TimeInput() for the time.

SplitDateTimeWidget has two optional attributes:

• SplitDateTimeWidget.dateFormat

Similar to DateInput.format

• SplitDateTimeWidget.timeFormat

Similar to TimeInput.format

SplitHiddenDateTimeWidget()

Similar to SplitDateTimeWidget(), but uses HiddenInput() for both date and time.

70 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

3.1.10 Formsets

A formset is a layer of abstraction to work with multiple forms on the same page. It can be best compared to a data
grid. Let’s say you have the following form:

var ArticleForm = forms.Form.extend({
title: forms.CharField(),
pubDate: forms.DateField()

})

You might want to allow the user to create several articles at once. To create a formset out of an ArticleForm, use
FormSet.extend():

var ArticleFormSet = forms.FormSet.extend({form: ArticleForm})

You have now created a formset named ArticleFormSet. The formset gives you the ability to iterate over the
forms within it and display them as you would any other form:

var formset = new ArticleFormSet()
formset.forms().forEach(function(form) {
print(reactHTML(<RenderForm form={form}/>))

})
/* =>
<div>

<div><label for="id_form-0-title">Title:</label> <input type="text" name="form-0-title" id="id_form-0-title"></div>
<div><label for="id_form-0-pubDate">Pub date:</label> <input type="text" name="form-0-pubDate" id="id_form-0-pubDate"></div>

</div>

*/

As you can see it only displayed one empty form. The number of empty forms displayed is controlled by the extra
parameter. By default, FormSet() defines one extra form; the following example will display two blank forms:

var ArticleFormSet = forms.FormSet.extend({form: ArticleForm, extra: 2})

Using initial data with a formset

Initial data is what drives the main usability of a formset. As shown above you can define the number of extra forms.
What this means is that you are telling the formset how many forms to show in addition to the number of forms it
generates from the initial data. Let’s take a look at an example:

var ArticleFormSet = forms.FormSet.extend({form: ArticleForm, extra: 2})
var formset = new ArticleFormSet({initial: [

{title: "Django's docs are open source!", pubDate: new Date()}
]})
formset.forms().forEach(function(form) {
print(reactHTML(<RenderForm form={form}/>))

})
/* =>
<div>

<div><label for="id_form-0-title">Title:</label> <input type="text" name="form-0-title" id="id_form-0-title" value="Django's docs are open source!"></div>
<div><label for="id_form-0-pubDate">Pub date:</label> <input type="text" name="form-0-pubDate" id="id_form-0-pubDate" value="2014-02-28"></div>

</div>
<div>

<div><label for="id_form-1-title">Title:</label> <input type="text" name="form-1-title" id="id_form-1-title"></div>
<div><label for="id_form-1-pubDate">Pub date:</label> <input type="text" name="form-1-pubDate" id="id_form-1-pubDate"></div>

</div>
<div>

<div><label for="id_form-2-title">Title:</label> <input type="text" name="form-2-title" id="id_form-2-title"></div>

3.1. Guide Documentation 71

newforms Documentation, Release 0.13.2

<div><label for="id_form-2-pubDate">Pub date:</label> <input type="text" name="form-2-pubDate" id="id_form-2-pubDate"></div>
</div>

*/

There are now a total of three forms showing above. One for the initial data that was passed in and two extra forms.
Also note that we are passing in a list of objects as the initial data.

Limiting the maximum number of forms

The maxNum parameter to FormSet() gives you the ability to limit the maximum number of empty forms the
formset will display:

var ArticleFormSet = forms.FormSet.extend({
form: ArticleForm,
extra: 2,
maxNum: 1

})
var formset = new ArticleFormSet()
formset.forms().forEach(function(form) {

print(reactHTML(<RenderForm form={form}/>))
})
/* =>
<div>

<div><label for="id_form-0-title">Title:</label> <input type="text" name="form-0-title" id="id_form-0-title"></div>
<div><label for="id_form-0-pubDate">Pub date:</label> <input type="text" name="form-0-pubDate" id="id_form-0-pubDate"></div>

</div>

*/

If the value of maxNum is greater than the number of existing objects, up to extra additional blank forms will be
added to the formset, so long as the total number of forms does not exceed maxNum.

Formset validation

Validation with a formset is almost identical to a regular Form. There’s an isValid() method on the formset to
provide a convenient way to validate all forms in the formset:

var data = {
'form-TOTAL_FORMS': '1'

, 'form-INITIAL_FORMS': '0'
, 'form-MAX_NUM_FORMS': ''
}
var formset = new ArticleFormSet({data: data})
print(formset.isValid()
// => true

If we provide an invalid article:

var data = {
'form-TOTAL_FORMS': '2'

, 'form-INITIAL_FORMS': '0'
, 'form-MAX_NUM_FORMS': ''
, 'form-0-title': 'Test'
, 'form-0-pubDate': '1904-06-16'
, 'form-1-title': 'Test'
, 'form-1-pubDate': '' // <-- this date is missing but required
}
var formset = new ArticleFormSet({data: data})

72 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

print(formset.isValid())
// => false
print(formset.errors().map(function(e) { return e.toJSON() }))
// => [{}, {pubDate: [{message: 'This field is required.', code: 'required'}]}]

To check how many errors there are in the formset, we can use the totalErrorCount() method:

formset.totalErrorCount()
// => 1

We can also check if form data differs from the initial data (i.e. the form was sent without any data):

var data = {
'form-TOTAL_FORMS': '1'

, 'form-INITIAL_FORMS': '0'
, 'form-MAX_NUM_FORMS': ''
, 'form-0-title': ''
, 'form-0-pubDate': ''
}
var formset = new ArticleFormSet({data: data})
print(formset.hasChanged())
// => false

Understanding the ManagementForm

You may have noticed the additional data (form-TOTAL_FORMS, form-INITIAL_FORMS and
form-MAX_NUM_FORMS) included in the formset’s data above. This data is handled by the ManagementForm.
This form defines hidden fields which are used to submit information about the number of forms in the formset.
It’s intended for use when a FormSet’s inputs are being used for a regular form submission to be handled on the
server-side. If you’re using newforms on the server to handle formsets bound to data from an HTTP POST and you
don’t provide this management data, an Error will be thrown:

var data = {
'form-0-title': ''

, 'form-0-pubDate': ''
}
try {
var formset = new ArticleFormSet({data: data})

}
catch (e) {

print(e.message)
}
// => ManagementForm data is missing or has been tampered with

It is used to keep track of how many form instances are being displayed. If you are adding new forms via JavaScript,
you should increment the count fields in this form as well. On the other hand, if you are using JavaScript to allow
deletion of existing objects, then you need to ensure the ones being removed are properly marked for deletion by
including form-#-DELETE in the POST data. It is expected that all forms are present in the POST data regardless.

totalFormCount() and initialFormCount()

FormSet has a couple of methods that are closely related to the ManagementForm, totalFormCount and
initialFormCount.

totalFormCount returns the total number of forms in this formset. initialFormCount returns the number of
forms in the formset that were pre-filled, and is also used to determine how many forms are required.

3.1. Guide Documentation 73

newforms Documentation, Release 0.13.2

Client-side FormSets

When FormSets are used on the client-side, the ManagementForm isn’t necessary. The formset’s own form manage-
ment properties are used whether or not the formset is bound.

Of particular interest is the formset’s extra property, which can be used to implement “add another” functionality –
since this is a common use case, formsets have an addAnother() method which does this for you.

Formsets also have a removeForm(index) method which takes care of the internal details of removing an extra
form. This should only ever be called with the index of an extra form in the formset. To ensure this, if you’re displaying
a formset which contains both initial forms for existing data, and extra forms for new data which support deletion,
use both FormSet.initialForms() and FormSet.extraForms() when rendering instead of looping over
FormSet.forms().

If you ever have a need to use FormSets on the client side and perform a regular HTTP POST request to process the
form, you can still render formset.managmentForm() – its hidden fields will be kept in sync with any changes
made to the forset’s form management configuration.

Updating a formset’s data

Similar to Forms, a FormSet has a formset.setData() method which can be used to update the data bound to
the formset and its forms.

This will also trigger validation – updating each form’s form.errors() and form.cleanedData, and returning
the result of formset.isValid().

Validating a formset on-demand

To force full validation of the current state of a formset and its forms’ input data, call formset.validate().

Custom formset validation

A formset has a clean() method similar to the one on a Form class. This is where you define your own validation
that works at the formset level:

var ArticleFormSet = forms.FormSet.extend({
form: ArticleForm,
/** Checks that no two articles have the same title. */
clean: function() {
if (this.totalErrorCount() !== 0) {

// Don't bother validating the formset unless each form is valid on its own
return

}
var titles = {}
this.forms().forEach(function(form) {
var title = form.cleanedData.title
if (title in titles) {

throw forms.ValidationError('Articles in a set must have distinct titles.')
}
titles[title] = true

})
}

})

var data = {

74 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

'form-TOTAL_FORMS': '2'
, 'form-INITIAL_FORMS': '0'
, 'form-MAX_NUM_FORMS': ''
, 'form-0-title': 'Test'
, 'form-0-pubDate': '1904-06-16'
, 'form-1-title': 'Test'
, 'form-1-pubDate': '1912-06-23'
}
var formset = new ArticleFormSet({data: data})
print(formset.isValid())
// => false
print(formset.errors().map(function(e) { return e.toJSON() }))
// => [{}, {}])
print(formset.nonFormErrors().messages())
// => ['Articles in a set must have distinct titles.']

Using more than one formset in a <form>

Just like Forms, FormSets can be given a prefix to prefix form field names to allow more than one formset to be
used in the same <form> without their input name attributes clashing.

For example, if we had a Book form which also had a “title” field - this is how we could avoid field names for
Article and Book forms clashing:

var ArticleFormSet = forms.FormSet.extend({form: Article})
var BookFormSet = forms.FormSet.extend({form: Book})

var PublicationManager = React.createClass({
getInitialState: function() {
return {

articleFormset: new ArticleFormSet({prefix: 'articles'})
, bookFormset: new BookFormSet({prefix: 'books'})
}

},

// ...rendering implemented as normal...

onSubmit: function(e) {
e.preventDefault()
var articlesValid = this.state.articleFormset.validate()
var booksValid = this.state.bookFormset.validate()
if (articlesValid && booksValid) {

// Do something with cleanedData() on the formsets
}

}
})

For server-side usage, it’s important to point out that you need to pass prefix every time you’re creating a new
formset instance – on both POST and non-POST cases – so expected input names match up when submitted data is
being processed.

3.1.11 Locales

New in version 0.7.

Newforms comes with two pre-configured locales: en and en_GB.

3.1. Guide Documentation 75

newforms Documentation, Release 0.13.2

The default locale is en, which (for backwards-compatibility) expects any forward slash delimited date input to be in
month/day/year format and will, by default, format dates as year-month-day for display in inputs.

The en_GB locale is provided as a quick way to switch to day/month/year date input if that’s what your application
needs.

Adding a new locale

To add a new locale, use forms.addLocale(), providing a language code and an ob-
ject specifying localisation data. The following properties are expected in the locale object:

Property Value
b List of abbreviated month names
B List of full month names
DATE_INPUT_FORMATS Accepted date input format strings
DATETIME_INPUT_FORMATS Accepted date/time input format strings
TIME_INPUT_FORMATS Accepted time input format strings

For each of the *_INPUT_FORMATS, ISO 8601 standard formats will be automatically be added if they’re not already
present.

For example, to add a French locale:

forms.addLocale('fr', {
b: 'janv._févr._mars_avr._mai_juin_juil._août_sept._oct._nov._déc.'.split('_')

, B: 'janvier_février_mars_avril_mai_juin_juillet_août_septembre_octobre_novembre_décembre'.split('_')
, DATE_INPUT_FORMATS: [

'%d/%m/%Y', '%d/%m/%y'
, '%d %b %Y', '%d %b %y'
, '%d %B %Y', '%d %B %y'
]

, DATETIME_INPUT_FORMATS: [
'%d/%m/%Y %H:%M:%S'

, '%d/%m/%Y %H:%M'
, '%d/%m/%Y'
]

})

Setting the default locale

To set the defaul locale, use forms.setDefaultLocale():

forms.setDefaultLocale('fr')

Fields and Widgets which deal with dates and times and haven’t been explicitly configured with input/output format
strings will pick up their input and output formats from the default locale the first time they need them, caching them
for future use.

As such, if you want to switch locales on the fly, any form instances created prior to calling setDefaultLocale()
should be re-initialised.

76 Chapter 3. Documentation Contents

https://github.com/insin/isomorph#formatting-directives
https://github.com/insin/isomorph#formatting-directives
https://github.com/insin/isomorph#formatting-directives
http://en.wikipedia.org/wiki/ISO_8601
https://github.com/insin/isomorph#formatting-directives
https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

3.2 API Reference

3.2.1 Forms API

Form

Form.extend(prototypeProps[, constructorProps])
This is the entry point for defining your own forms.

Creates a new constructor which inherits from Form.

Arguments

• prototypeProps (Object) – form Fields and other prototype properties for the new form,
such as a custom constructor and validation methods.

See DeclarativeFieldsMeta() for details of how Fields passed as prototypeProps
are handled.

• constructorProps (Object) – properties to be set directly on the new constructor func-
tion.

class Form([kwargs])
A collection of Fields that knows how to validate and display itself.

Arguments

• kwargs (Object) – form options, which are as follows:

• kwargs.data (Object) – input form data, where property names are field names. A form
with data is considered to be “bound” and ready for use validating and coercing the given
data.

• kwargs.files (Object) – input file data.

• kwargs.errors (ErrorObject) – initial errors to be displayed.

Note: Passing initial errors will prevent validation from firing if a form has input data
and isValid() or errors() are called during rendering.

This argument is intended for redisplaying a form with the user’s input and errors received
from another source, such as an API call.

This is more typical of server-side usage.

• kwargs.validation – Configures form-wide interactive validation when the user
makes changes to form inputs in the browser. This can be a String, or an Object which
configures default validation for form inputs.

If ’manual’, interactive validation will not be performed – you are responsible for hook-
ing up validation and using methods such as setData() and isValid() to perform all
validation. This is the default setting.

If an Object is given, it should have the following properties:

on The name of the default event to use to trigger validation. For example, if ’blur’,
text input validation will be performed when the input loses focus after editing. Multiple,
space-separated event names can be given.

onChangeDelay A delay, in milliseconds, to be used to debounce performing of
onChange validation.

3.2. API Reference 77

newforms Documentation, Release 0.13.2

If ’auto’, validation behaviour will be the equivalent of having passed:

..code-block: javascript

validation: {on: ‘blur change’, onChangeDelay: 369}

If any String but ’manual’ or ’auto’ is given, it will be used as if it were passed as the
on property of an Object.

For example, passing {validation: ’change’} will cause form inputs to trigger
validation as soon as the user makes any change.

New in version 0.6.

• kwargs.controlled (Boolean) – Configures whether or not the form will ren-
der controlled components - when using controlled components, you can update the
values displayed in the form after its initial render using form.setData() or
form.updateData()

New in version 0.6.

• kwargs.onChange (Function) – If interactive validation is configured for a Form or any
of its Fields, this callback function must be provided, or an Error will be thrown.

It will be called any time the form’s input data or validation state changes as the result of
user input.

Typically, this function should at least force React to update the component in which the
Form is being rendered, to display the latest validation state to the user from the last change
they made to the form.

New in version 0.9: Replaces kwargs.onStateChange

• kwargs.autoId (String) – a template for use when automatically generating id at-
tributes for fields, which should contain a {name} placeholder for the field name – defaults
to id_{name}.

• kwargs.prefix (String) – a prefix to be applied to the name of each field in this instance
of the form - using a prefix allows you to easily work with multiple instances of the same
Form object in the same HTML <form>, or to safely mix Form objects which have fields
with the same names.

• kwargs.initial (Object) – initial form data, where property names are field names –
if a field’s value is not specified in data, these values will be used when initially rendering
field widgets.

• kwargs.errorConstructor (Function) – the constructor function to be used when
creating error details. Defaults to ErrorList().

• kwargs.labelSuffix (String) – a suffix to be used when generating labels in one of
the convenience methods which renders the entire Form – defaults to ’:’.

• kwargs.emptyPermitted (Boolean) – if true, the form is allowed to be empty –
defaults to false.

Prototype Properties

Form#prefixFormat
This string defines the format used to generate name attributes for fields when a form instance is given a
prefix. It must contain {prefix} and {name} placeholders.

The default format is ’{prefix}-{name}’.

Type String

78 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

Instance Properties

Form options documented in kwargs above are all set as instance properties.

The following instance properties are also available:

form.fields
Form fields for this instance of the form.

Since a particular instance might want to alter its fields based on data passed to its constructor, fields given
as part of the form definition are deep-copied into fields every time a new instance is created.

Instances should only ever modify fields.

Note: fields does not exist until the Form constructor has been called on the form instance that’s
being constructed.

This is important to note when you intend to dynamically modify fields when extending a form – you
must call the constructor of the form which has been extended before attempting to modify fields.

Type Object with field names as property names and Field instances as properties.

form.isInitialRender
Determines if this form has been given input data which can be validated.

true if the form has data or files set.

form.cleanedData
After a form has been validated, it will have a cleanedData property. If your data does not validate,
cleanedData will contain only the valid fields.

Type Object with field names as property names and valid, cleaned values coerced to the appro-
priate JavaScript type as properties.

Prototype Functions

Validation: Methods for validating and getting information about the results of validation:

Form#validate([form[, callback(err, isValid, cleanedData)]])
Forces the form to revalidate from scratch. If a <form> is given, data from it will be set on this form first.
Otherwise, validation will be done with this form’s current input data.

Arguments

• form – a <form> DOM node – if React’s representation of the <form> is given, its
getDOMNode() function will be called to get the real DOM node.

• Boolean, Object) callback (function(Error,) – Callback for asynchronous vali-
dation.

This argument is required if the form uses asynchronous validation - an Error will be
thrown if it’s not given in this case.

The callback should be an errback with the signature (err, isValid,
cleanedData).

Returns true if the form only has synchronous validation and is valid.

New in version 0.6.

Changed in version 0.10: Added callback argument for async validation.

3.2. API Reference 79

newforms Documentation, Release 0.13.2

Form#fullClean()
Validates and cleans forms.data and populates errors and cleanedData.

You shouldn’t need to call this function directly in general use, as it’s called for you when necessary by
Form#isValid() and Form#errors().

Form#partialClean(fieldNames)
Validates and cleans form.data for the given field names and triggers cross-form cleaning in case any
form.cleanedData it uses has changed.

Arguments

• fieldNames (Array) – a list of unprefixed field names.

Form#clean([callback(err, validationError)])
Hook for doing any extra form-wide cleaning after each Field’s Field#clean() has been called. Any
ValidationError() thrown by this method will not be associated with a particular field; it will have
a special-case association with the field named ’__all__’.

Arguments

• String|ValidationError) callback (function(Error,) – Optional callback for
asynchronous validation.

Changed in version 0.10: This method can now be defined with a callback parameter if it needs to
perform async validation. The form will provide a callback function and wait for it to be called before
finishing validation.

Data mutability: Methods for programmatically changing the form’s data.

Form#reset([initialData])
Resets the form to its initial render state, optionally giving it new initial data.

Arguments

• initialData (Object) – new initial data for the form.

New in version 0.6.

Form#setData(data[, kwargs])
Replaces the form’s form.data with the given data (and flips form.isInitialRender to false,
if necessary) and triggers form cleaning and validation, returning the result of form.isValid().

Arguments

• data (Object) – new input data for the form

• kwargs (Object) – data updating options, which are as follows:

• kwargs.prefixed (Boolean) – pass true when updating data in a prefixed form and
the field names in data are already prefixed – defaults to false

New in version 0.6.

Returns true if the form has no errors after validating the updated data, false otherwise.

New in version 0.5.

Form#setFormData(formData)
Replaces with form’s input data with data extracted from a <form> (i.e. with formData()).

When using multiple forms with prefixes, form data will always be prefixed - using this method when
working with manually extracted form data should ensure there are no surprises if moving from non-
prefixed forms to prefixed forms.

Arguments

80 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• formData (Object) –

new input data for the form, which has been extracted from a <form>

New in version 0.6.

Form#updateData(data[, kwargs])
Updates the form’s form.data (and flips form.isInitialRender to false, if necessary).

By default, triggers validation of fields which had their input data updated, as well as form-wide cleaning.

Arguments

• data (Object) – partial input data for the form, field name -> input data.

If your form has a prefix, field names in the given data object must also be prefixed.

• kwargs (Object) – data updating options, which are as follows:

• kwargs.prefixed (Boolean) – pass true when updating data in a prefixed form and
the field names in data are already prefixed – defaults to false

The follwing options are intended for use with controlled forms, when you’re only updating data in order
to change what’s displayed in the controlled components:

Arguments

• kwargs.validate (Boolean) – pass false if you want to skip validating the updated
fields – defaults to true. This can be ignored if you’re passing known-good data.

• kwargs.clearValidation (Boolean) – pass false if you’re skipping validation
and you also want to skip clearing of the results of any previous validation on the fields
being updated, such as error messages and cleanedData – defaults to true

New in version 0.6.

BoundFields: Methods which create BoundField helpers for rendering the form’s fields.

Form#boundFields([test])
Creates a BoundField() for each field in the form, in the order in which the fields were created.

Arguments

• test (Function(field,name)) – If provided, this function will be called with field and
name arguments - BoundFields will only be generated for fields for which true is re-
turned.

Form#boundFieldsObj([test])
A version of Form#boundFields() which returns an Object with field names as property names and
BoundFields as properties.

Form#boundField(name)
Creates a BoundField() for the field with the given name.

Arguments

• name (String) – the name of a field in the form.

Form#hiddenFields()

Returns a list of BoundField() objects that correspond to hidden fields. Useful for manual
form layout.

Form#visibleFields()

Returns a list of BoundField() objects that do not correspond to hidden fields. The opposite
of the Form#hiddenFields() function.

3.2. API Reference 81

newforms Documentation, Release 0.13.2

Error: Methods for wokring with the form’s validation errors.

Form#addError(field, error)
This function allows adding errors to specific fields from within the form.clean() method, or from
outside the form altogether.

Arguments

• field (String) – the name of the field to which the error(s) should be added.
If its value is null the error will be treated as a non-field error as returned by
form.nonFieldErrors().

• error (String|Array|ValidationError|Object) – the error argument can be a single error,
a list of errors, or an object that maps field names to lists of errors. A single error can be
given as a String or an instance of a ValidationError().

Multiple errors can be given as an Array, an Object which maps field names to validation
errors, or a ValidationError created with an Array or Object.

If the error argument is an Object, the field argument must be null – errors will be added to the
fields that correspond to the properties of the object.

Note: Using form.addError() automatically removes the relevant field from
form.cleanedData.

New in version 0.5.

Changed in version 0.10: addErrpr() will no longer add a duplicated error message for the same field.
This can happen if event-based validation which runs repeatedly adds errors to a field other than that which
triggered the validation, such as in a custom clean() method.

Form#errors()
Getter for validation errors which first cleans the form if there are no errors defined yet.

Returns validation errors for the form, as an ErrorObject()

Form#nonFieldErrors()

Returns errors that aren’t associated with a particular field - i.e., errors generated by
Form#clean(), or by calling Form#addError() and passing null instead of a field
name. Will be an empty error list object if there are none.

Form#setErrors(errors)
This method’s intended use is replacing a Form’s errors with those received from another source, such as
an API call which performs additional validation.

Arguments

• errors (ErrorObject) –

Changes: methods for working with changed data.

Form#changedData()

Returns a list of the names of fields which have differences between their initial and currently
bound values.

Form#hasChanged()

Returns true if data differs from initial, false otherwise.

Status: methods for determining the form’s status:

Form#isAsync()

82 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

Returns true if the form’s prototype defines any custom cleaning methods which have an arity
of 1 (which is assumed to mean they have defined an async callback parameter).

New in version 0.10.

Form#isComplete()
Determines whether or not the form has valid input data for all required fields. This can be used to indicate
to the user that a form which is being validated as they fill it in is ready for submission.

A form which has any errors or is pending async validation will not be considered complete.

The distinction between isComplete() and Form#isValid() is that a form which has had, for
example, a single field filled in and validated is valid according to the partial validation which has been
performed so far (i.e. it doesn’t have any error messages) but isn’t yet complete.

New in version 0.6.

Changed in version 0.10: A form which isPending() will not be considered complete.

Form#isMultipart()
Determines if the form needs to be multipart-encoded in other words, if it has a FileInput().

Returns true if the form needs to be multipart-encoded.

Form#isPending()

Returns true if true if the form is waiting for async validation to complete.

Form#isValid()
Determines whether or not the form has errors, triggering cleaning of the form first if necessary.

When user input is being incrementally validated as it’s given, this function gives you the current state of
validation (i.e. whether or not there are any errors). It will not reflect the validity of the whole form until a
method which performs whole-form validation (Form#validate() or setData()) has been called.

Returns true if the form is has input data and has no errors, false otherwise. If errors are
being ignored, returns false.

Form#nonFieldPending()

Returns true‘ if the form is waiting for async validation of its clean(callback) method to
complete.

New in version 0.10.

Form#notEmpty()
Determines if a form which is an extra form in a FormSet has changed from its initial values. Extra forms
are allowed to be empty, so required fields in them do not become truly required until the form has been
modified.

Returns true if a form has emptyPermitted and has changed from its initial values.

New in version 0.9.

Prefixes: Methods for working with form prefixes.

Form#addPrefix(fieldName)

Returns the given field name with a prefix added, if this Form has a prefix.

Form#addInitialPrefix(fieldName)
Adds an initial prefix for checking dynamic initial values.

Form#removePrefix(fieldName)

3.2. API Reference 83

newforms Documentation, Release 0.13.2

Returns the given field name with a prefix-size chunk chopped off the start if this form has a
prefix set and the field name starts with it.

Utilities

DeclarativeFieldsMeta(prototypeProps)
This mixin function is responsible for setting up form fields when a new Form constructor is being created.

It pops any Fields it finds off the form’s prototype properties object, determines if any forms are also being
mixed-in via a __mixins__ property and handles inheritance of Fields from any form which is being directly
extended, such that fields will be given the following order of precedence should there be a naming conflict with
any of these three sources:

1.Fields specified in prototypeProps

2.Fields from a mixed-in form

3.Fields from the Form being inherited from

If multiple forms are provided via __mixins__, they will be processed from left to right in order of precedence
for mixing in fields and prototype properties.

Forms can prevent fields from being inherited or mixed in by adding a same-named property to their prototype,
which isn’t a Field. It’s suggested that you use null as the value when shadowing to make this intent more
explicit.

isFormAsync(Form)

Arguments

• Form (Form) – a Form constructor

Returns true if the given Form constructor’s prototype defines any custom cleaning methods
which have an arity of 1 (which is assumed to mean they have defined an async callback pa-
rameter).

3.2.2 BoundField API

BoundField

class BoundField(form, field, name)
A helper for rendering a field.

This is the primary means of generating components such as labels and input fields in the default form rendering
methods.

Its attributes and methods will be of particular use when implementing custom form layout and rndering.

Arguments

• form (Form) – the form instance the field is a part of.

• field (Field) – the field to be rendered.

• name (String) – the name name associated with the field in the form.

Instance Attributes

boundField.form

boundField.field

84 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

boundField.name

boundField.htmlName
A version of the field’s name including any prefix the form has been configured with.

Assuming your forms are configured with prefixes when needed, this should be a unique identifier for any
particular field (e.g. if you need something to pass as a key prop to a React component).

Type String

boundField.label
The label the field is configured with, or a label automatically generated from the field’s name.

Type String

boundField.helpText
Help text the field is configured with, otherwise an empty string.

Type String

Prototype Functions

Status: methods for determining the field’s status.

BoundField#status()
Returns a string representing the field’s curent status.

Statuses are determined by checking the following conditions in order:

•’pending’ – the field has a pending async validation.

•’error’ – the field has a validation error.

•’valid’ – the field has a value in form.cleanedData.

•’default’ – the field meets none of the above criteria, i.e. it hasn’t been interacted with yet, or the
whole form hasn’t been validated yet.

BoundField#isCleaned()

Returns true if the field has some data in its form’s cleanedData.

BoundField#isEmpty()

Returns true true if the value which will be displayed in the field’s widget is empty.

BoundField#isPending()

Returns true if the field has a pending asynchronous validation.

BoundField#isHidden()

Returns true if the field is configured with a hidden widget.

Field data: methods for accessing data related to the field.

BoundField#autoId()
Calculates and returns the id attribute for this BoundField if the associated form has an autoId set, or
set to true. Returns an empty string otherwise.

BoundField#data()

Returns Raw input data for the field or null if it wasn’t given.

BoundField#errors()

Returns validation errors for the field - if there were none, an empty error list object will be
returned.

3.2. API Reference 85

newforms Documentation, Release 0.13.2

Type ErrorList() (by default, but configurable via Form()
kwargs.errorConstructor)

BoundField#errorMessage()
Convenience method for getting the first error message for the field, as a single error message is the most
common error scenario for a field.

Returns the first validation error message for the field - if there were none, returns undefined.

BoundField#errorMessages()

Returns all validation error messages for the field - if there were none, returns an empty list.

BoundField#idForLabel()
Wrapper around the field widget’s Widget#idForLabel(). Useful, for example, for focusing on this
field regardless of whether it has a single widget or a MutiWidget().

BoundField#initialValue()
Returns the initial value for the field, will be null if none was configured on the field or given to the form.

BoundField#value()
Returns the value to be displayed in the field’s widget.

Rendering:: methods for, and related to, rendering a widget for the field.

BoundField#asWidget([kwargs])
Renders a widget for the field.

Arguments

• kwargs (Object) – widget options, which are as follows:

• kwargs.widget (Widget) – an override for the widget used to render the field - if not
provided, the field’s configured widget will be used.

• kwargs.attrs (Object) – additional HTML attributes to be added to the field’s widget.

BoundField#asHidden([kwargs])
Renders the field as a hidden field.

Arguments

• kwargs (Object) – widget options, which are as follows

• kwargs.attrs (Object) – additional HTML attributes to be added to the field’s widget.

BoundField#asText([kwargs])
Renders the field as a text input.

Arguments

• kwargs (Object) – widget options, which are as follows:

• kwargs.attrs (Object) – additional HTML attributes to be added to the field’s widget.

BoundField#asTextarea([kwargs])
Renders the field as a textarea.

Arguments

• kwargs (Object) – widget options, which are as follows:

• kwargs.attrs (Object) – additional HTML attributes to be added to the field’s widget.

BoundField#cssClasses([extraClasses])
Returns a string of space-separated CSS classes to be applied to the field.

86 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

Arguments

• extraClasses (String) – additional CSS classes to be applied to the field

BoundField#helpTextTag([kwargs])
Renders a tag containing help text for the field.

Arguments

• kwargs (Object) – help text tag options, which are as follows:

• kwargs.tagName (String) – allows overriding the type of tag – defaults to ’span’.

• kwargs.contents (String|Object) – help text contents – if not provided, contents will
be taken from the field itself.

To render raw HTML in help text, it should be specified using the React convention for
raw HTML, which is to provide an object with a __html property:

{__html: 'But be careful!'}

• kwargs.attrs (Object) – additional attributes to be added to the tag – by default it will
get a className of ’helpText’.

BoundField#labelTag([kwargs])
Creates a <label> for the field if it has an id attribute, otherwise generates a text label.

Arguments

• kwargs (Object) – label options, which are as follows:

• kwargs.contents (String) – custom contents for the label – if not provided, label
contents will be generated from the field itself.

• kwargs.attrs (Object) – additional HTML attributes to be added to the label tag.

• kwargs.labelSuffix (String) – a custom suffix for the label.

BoundField#render([kwargs])
Default rendering method - if the field has showHiddenInitial set, renders the default widget and a
hidden version, otherwise just renders the default widget for the field.

Arguments

• kwargs (Object) – widget options as per BoundField#asWidget().

BoundField#subWidgets()

Returns a list of SubWidget() objects that comprise all widgets in this BoundField. This re-
ally is only useful for RadioSelect() and CheckboxSelectMultiple() widgets,
so that you can iterate over individual inputs when rendering.

3.2.3 Fields API

Field

class Field([kwargs])
An object that is responsible for doing validation and normalisation, or “cleaning” – for example: an
EmailField() makes sure its data is a valid e-mail address – and makes sure that acceptable “blank” values
all have the same representation.

Arguments

3.2. API Reference 87

http://facebook.github.io/react/docs/jsx-gotchas.html#html-entities
http://facebook.github.io/react/docs/jsx-gotchas.html#html-entities

newforms Documentation, Release 0.13.2

• kwargs (Object) – field options, which are as follows:

• kwargs.required (Boolean) – determines if the field is required – defaults to true.

• kwargs.widget (Widget) – overrides the widget used to render the field – if not pro-
vided, the field’s default will be used.

• kwargs.label (String) – the label to be displayed for the field - if not provided, will be
generated from the field’s name.

• kwargs.initial – an initial value for the field to be used if none is specified by the
field’s form.

• kwargs.helpText (String) – help text for the field.

• kwargs.errorMessages (Object) – custom error messages for the field, by error code.

• kwargs.showHiddenInitial (Boolean) – specifies if it is necessary to render a hid-
den widget with initial value after the widget.

• kwargs.validators (Array.<Function>) – list of addtional validators to use - a val-
idator is a function which takes a single value and throws a ValidationError if it’s invalid.

• kwargs.widgetAttrs (Object) – additional attributes for the field’s rendered widget.

New in version 0.11.

• kwargs.cssClass (String) – space-separated CSS classes to be applied to the field’s
container when default rendering fuctions are used.

• kwargs.custom – this argument is provided to pass any custom metadata you require
on the field, e.g. extra per-field options for a custom layout you’ve implemented. Newforms
will set anything you pass for this argument in a custom instance property on the field.

New in version 0.5.

• kwargs.validation – Configures validation when the user interacts with this field’s
widget in the browser.

This can be used to configure validation for only specific fields, or to override any form-wide
validation that’s been configured.

Takes the same arguments as Form’s validation configuration

If validation configuration is given, the Form containing the Field must be configured with
an onChange callback, or an Error will be thrown.

New in version 0.6.

• controlled (Boolean) – Configures whether or not the field will render a controlled
component

This can be used to configure creation of controlled components for only specific fields, or
to override any form-wide controlled that’s been configured.

New in version 0.6.

Prototype Functions

Field#prepareValue(value)
Hook for any pre-preparation required before a value can be used.

Field#toJavaScript(value)
Hook for coercing a value to an appropriate JavaScript object.

88 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

Field#isEmptyValue(value)
Checks for the given value being === one of the configured empty values for this field, plus any additional
checks required due to JavaScript’s lack of a generic object equality checking mechanism.

This function will use the field’s emptyValues property for the === check – this defaults to [null,
undefined, ’’] via Field.prototype.

If the field has an emptyValueArray property which is true, the value’s type and length will be
checked to see if it’s an empty Array – this defaults to true via Field.prototype.

Field#validate(value)
Hook for validating a value.

Field#clean(value)
Validates the given value and returns its “cleaned” value as an appropriate JavaScript object.

Raises ValidationError() for any errors.

class CharField([kwargs])
Validates that its input is a valid string.

Arguments

• kwargs (Object) – field options additional to those specified in Field():

• kwargs.maxLength (Number) – a maximum valid length for the input string.

• kwargs.minLength (Number) – a minimum valid length for the input string.

Numeric fields

class IntegerField([kwargs])
Validates that its input is a valid integer.

Arguments

• kwargs (Object) – field options additional to those specified in Field():

• kwargs.maxValue (Number) – a maximum valid value for the input.

• kwargs.minValue (Number) – a minimum valid value for the input.

class FloatField([kwargs])
Validates that its input is a valid float.

Arguments

• kwargs (Object) – field options additional to those specified in Field():

• kwargs.maxValue (Number) – a maximum valid value for the input.

• kwargs.minValue (Number) – a minimum valid value for the input.

class DecimalField([kwargs])
Validates that its input is a decimal number.

Arguments

• kwargs (Object) – field options additional to those specified in Field():

• kwargs.maxValue (Number) – a maximum value for the input.

• kwargs.minValue (Number) – a minimum value for the input.

• kwargs.maxDigits (Number) – the maximum number of digits the input may contain.

3.2. API Reference 89

newforms Documentation, Release 0.13.2

• kwargs.decimalPlaces (Number) – the maximum number of decimal places the input
may contain.

Date/Time fields

class DateField([kwargs])
Validates that its input is a date.

Normalises to a Date with its time fields set to zero.

Arguments

• kwargs (Object) – field options additional to those specified in Field():

• kwargs.inputFormats (Array.<String>) – a list of time.strptime() format strings
which are considered valid.

class TimeField([kwargs])
Validates that its input is a time.

Normalises to a Date with its date fields set to 1900-01-01.

Arguments

• kwargs (Object) – field options additional to those specified in Field():

• kwargs.inputFormats (Array.<String>) – a list of time.strptime() format strings
which are considered valid.

class DateTimeField([kwargs])
Validates that its input is a date/time.

Normalises to a Date.

Arguments

• kwargs (Object) – field options additional to those specified in Field():

• kwargs.inputFormats (Array.<String>) – a list of time.strptime() format strings
which are considered valid.

Format fields

class RegexField(regex[, kwargs])
Validates that its input matches a given regular expression.

Arguments

• regex (RegExp or String) – a regular expression to validate input against. If a string is
given, it will be compiled to a RegExp.

• kwargs (Object) – field options, as in CharField()

class EmailField([kwargs])
Validates that its input appears to be a valid e-mail address.

Arguments

• kwargs (Object) – field options, as in CharField()

90 Chapter 3. Documentation Contents

https://github.com/insin/isomorph#formatting-directives
https://github.com/insin/isomorph#formatting-directives
https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

class IPAddressField([kwargs])
Validates that its input is a valid IPv4 address.

Deprecated since version 0.5: use GenericIPAddressField() instead.

class GenericIPAddressField([kwargs])
Validates that its input is a valid IPv4 or IPv6 address.

Arguments

• kwargs (Object) – field options additional to those specified in CharField()

• kwargs.protocol (String) – determines which protocols are accepted as input. One of:

– ’both’

– ’ipv4’

– ’ipv6’

Defaults to ’both’.

• kwargs.unpackIPv4 (Boolean) – Determines if an IPv4 address that was mapped in a
compressed IPv6 address will be unpacked. Defaults to false and can only be set to true
if kwargs.protocol is ’both’.

class SlugField([kwargs])
Validates that its input is a valid slug - i.e. that it contains only letters, numbers, underscores, and hyphens.

Arguments

• kwargs (Object) – field options, as in CharField()

File fields

class FileField([kwargs])
Validates that its input is a valid file – the behaviour of this field varies depending on the environmnet newforms
is running in:

On the client

If the browser supports the File API, form.files will be populated with a File object and
validation will be performed on its name and size. The File object will be available via
form.cleanedData when valid.

Otherwise, this field can only validate that a file has been selected at all, if the field is required‘.

On the server

Validates uploaded file data from form.files.

The contents of form.files are expected to have a name property corresponding to the uploaded
file’s name and a size property corresponding to it size.

You will need write a wrapper to provide this information depending on how you’re handling file
uploads.

Arguments

• kwargs (Object) – field options additional to those specified in Field()

• kwargs.maxLength (Number) – maximum length of the uploaded file anme.

• kwargs.allowEmptyFile (Boolean) – if true, empty files will be allowed – defaults
to false.

3.2. API Reference 91

http://www.w3.org/TR/FileAPI/
https://developer.mozilla.org/en-US/docs/Web/API/File

newforms Documentation, Release 0.13.2

class MultipleFileField([kwargs])
A version of FileField which expects to receive a list of files as input and renders to an <input
type="file" multiple> by default.

Arguments

• kwargs (Object) – field options, as in FileField()

class ImageField([kwargs])
Validates that its input is a valid uploaded image – the behaviour of this field varies depending on the environm-
net newforms is running in:

On the client

Validates that a file has been selected if the field is required.

On the server

Note: As of newform 0.5, server-side image validation has not been implemented yet –
ImageField performs the same validation as FileField.

Adds an accept="image/*" attribute to its <input type="file"> widget.

class URLField([kwargs])
Validates that its input appears to be a valid URL.

Arguments

• kwargs (Object) – field options, as in CharField()

Boolean fields

class BooleanField([kwargs])
Normalises its input to a boolean primitive.

Arguments

• kwargs (Object) – field options, as in Field()

class NullBooleanField([kwargs])
A field whose valid values are null, true and false.

Invalid values are cleaned to null.

Arguments

• kwargs (Object) – field options, as in Field()

Choice fields

class ChoiceField([kwargs])
Validates that its input is one of a valid list of choices.

Arguments

• kwargs (Object) – field options additional to those specified in Field():

• kwargs.choices (Array) – a list of choices - each choice should be specified as a list
containing two items; the first item is a value which should be validated against, the second
item is a display value for that choice, for example:

92 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

{choices: [[1, 'One'], [2, 'Two']]}

Defaults to [].

Prototype Functions

ChoiceField#choices()
Returns the current list of choices.

ChoiceField#setChoices(choices)
Updates the list of choices on this field and on its configured widget.

class TypedChoiceField([kwargs])
A ChoiceField which returns a value coerced by some provided function.

Arguments

• kwargs (Object) – field options additional to those specified in ChoiceField():

• kwargs.coerce (Function(String)) – a function which takes the string value output from
ChoiceField‘s clean method and coerces it to another type – defaults to a function which
returns the given value unaltered.

• kwargs.emptyValue – the value which should be returned if the selected value can be
validly empty – defaults to ’’.

class MultipleChoiceField([kwargs])
Validates that its input is one or more of a valid list of choices.

class TypedMultipleChoiceField([kwargs])
A MultipleChoiceField} which returns values coerced by some provided function.

Arguments

• kwargs (Object) – field options additional to those specified in MultipleChoiceField.

• kwargs.coerce – (Function)

function which takes the String values output by MultipleChoiceField’s toJavaScript method
and coerces it to another type – defaults to a function which returns the given value unaltered.

• kwargs.emptyValue – (Object)

the value which should be returned if the selected value can be validly empty – defaults to
’’.

class FilePathField([kwargs])

Note: As of newform 0.5, server-side logic for FilePathField hasn’t been implemented yet.

As such, this field isn’t much use yet and the API documentation below is speculative.

Allows choosing from files inside a certain directory.

Arguments

• path (String) – The absolute path to the directory whose contents you want listed - this
directory must exist.

• kwargs (Object) – field options additional to those supplied in ChoiceField().

3.2. API Reference 93

newforms Documentation, Release 0.13.2

• kwargs.match (String or RegExp) – a regular expression pattern – if provided, only files
with names matching this expression will be allowed as choices. If a string is given, it will
be compiled to a RegExp.

• kwargs.recursive (Boolean) – if true, the directory will be descended into recur-
sively and all allowed descendants will be listed as choices – defaults to false.

• kwargs.allowFiles (Boolean) – if true, files will be listed as choices. Defaults to
true.

• kwargs.allowFolders (Boolean) – if true, folders will be listed as choices. Defaults
to false.

Slightly complex fields

class ComboField([kwargs])
A Field whose clean() method calls multiple Field clean() methods.

Arguments

• kwargs (Object) – field options additional to those specified in Field().

• kwargs.fields (Array.<Field>) – fields which will be used to perform cleaning, in the
order they’re given.

class MultiValueField([kwargs])
A Field that aggregates the logic of multiple Fields.

Its clean()method takes a “decompressed” list of values, which are then cleaned into a single value according
to this.fields. Each value in this list is cleaned by the corresponding field – the first value is cleaned by
the first field, the second value is cleaned by the second field, etc. Once all fields are cleaned, the list of clean
values is “compressed” into a single value.

Subclasses should not have to implement clean(). Instead, they must implement compress(), which takes
a list of valid values and returns a “compressed” version of those values – a single value.

You’ll probably want to use this with MultiWidget().

Arguments

• kwargs (Object) – field options

• kwargs.fields (Array.<Field>) – a list of fields to be used to clean a “decompressed”
list of values.

• kwargs.requireAllFields (Boolean) – when set to false, allows optional sub-
fields. The required attribute for each individual field will be respected, and a new
’incomplete’ validation error will be raised when any required fields are empty. De-
faults to true.

class SplitDateTimeField([kwargs])
A MultiValueField consisting of a DateField() and a TimeField().

3.2.4 Validation API

ValidationError

ValidationError is part of the validators module, but is so commonly used when implementing custom validation that
it’s exposed as part of the top-level newforms API.

94 Chapter 3. Documentation Contents

https://github.com/insin/validators

newforms Documentation, Release 0.13.2

class ValidationError(message[, kwargs])
A validation error, containing validation messages.

Single messages (e.g. those produced by validators) may have an associated error code and error message
parameters to allow customisation by fields.

Arguments

• message – the message argument can be a single error, a list of errors, or an object that
maps field names to lists of errors.

What we define as an “error” can be either a simple string or an instance of ValidationError
with its message attribute set, and what we define as list or object can be an actual list or
object, or an instance of ValidationError with its errorList or errorObj property set.

• kwargs (Object) – validation error options.

• kwargs.code (String) – a code identifying the type of single message this validation error
is.

• kwargs.params (Object) – parameters to be interpolated into the validation error mes-
sage. where the message contains curly-bracketed {placeholders} for parameter properties.

Prototype Functions

ValidationError#messageObj()
Returns validation messages as an object with field names as properties.

Throws an error if this validation error was not created with a field error object.

ValidationError#messages()
Returns validation messages as a list. If the ValidationError was constructed with an object, its error
messages will be flattened into a list.

Errors

Validation errors for a whole form are held in an ErrorObject, while each field’s validation errors are (by default)
held im an ErrorList.

class ErrorObject()
A collection of field errors that knows how to display itself in various formats.

Static Functions

ErrorObject.fromJSON(jsonObj[, errorConstructor])
Creates a new ErrorObject and populates it from an object with the same structure as that produced by this
object’s toJSON() method.

Arguments

• jsonObj (Object) –

• errorConstructor (Function) – Constructor for creating field errors - defaults to
ErrorList().

Prototype Functions

ErrorObject#set(fieldName, errors)
Sets a field’s errors.

Arguments

• fieldName (String) –

3.2. API Reference 95

newforms Documentation, Release 0.13.2

• errors (ErrorList) – validation errors for the field.

ErrorObject#get(fieldName)
Gets a field’s errors.

Arguments

• fieldName (String) –

ErrorObject#remove(fieldName)
Removes errors for a field.

Arguments

• fieldName (String) –

Returns Boolean true if there were errors for the field.

ErrorObject#removeAll(fieldNames)
Removes errors for multiple fields.

Arguments

• fieldNames (Array) –

ErrorObject#hasField(fieldName)

Arguments

• fieldName (String) –

Returns Boolean true if errors have been set for the given field.

ErrorObject#length()
Returns the number of fields errors have been set for.

ErrorObject#isPopulated()

Returns Boolean true if any fields have validation errors set.

ErrorObject#render([kwargs])
Default rendering is as a . See below for arguments.

ErrorObject#asUl([kwargs])
Displays error details as a . Returns undefined if this object isn’t populated with any errors.

Arguments

• kwargs (Object) – rendering options, which are as follows:

• kwargs.className (Object) – CSS class name(s) for the , defaults to
’errorlist’.

ErrorObject#asText()
Displays error details as text.

ErrorObject#asData()
Creates an “unwrapped” version of the data in the ErrorObject - a plain Object with lists of ValidationErrors
as its properties.

ErrorObject#toJSON()
Creates a representation of all the contents of the ErrorObject for serialisation, to be called by
JSON.stringify() if this object is passed to it.

ErrorObject#fromJSON(jsonObj[, errorConstructor])
Populates this ErrorObject from an object with the same structure as that produced by this object’s
toJSON() method.

96 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

Arguments

• jsonObj (Object) –

• errorConstructor (Function) – Constructor for creating field errors - defaults to
ErrorList().

class ErrorList(list)
A list of errors which knows how to display itself in various formats.

Static Functions

ErrorList.fromJSON(jsonList)
Creates a new ErrorList and populates it from a list with the same structure as that produced by this object’s
toJSON() method.

Prototype Functions

ErrorList#extend(errorList)
Adds more errors from the given list.

ErrorList#first()
Returns the first error message held in the list, or undefined if the list was empty.

New in version 0.9.

ErrorList#messages()
Returns the list of error messages held in the list, converting them from ValidationErrors to strings first if
necessary.

ErrorList#length()
Returns the number of errors in the list.

ErrorList#isPopulated()
Returns true if the list contains any errors.

ErrorList#first()
Returns the first error message in the list.

ErrorList#messages()
Returns all error message in the list.

ErrorObject#render([kwargs])
Default rendering is as a . See below for arguments.

ErrorObject#asUl([kwargs])
Displays error details as a . Returns undefined if this object isn’t populated with any errors.

Arguments

• kwargs (Object) – rendering options, which are as follows:

• kwargs.className (Object) – CSS class name(s) for the , defaults to
’errorlist’.

ErrorList#render([kwargs])
Default rendering is as a . See below for arguments.

ErrorList#asUl([kwargs])
Displays errors as a . Returns undefined if this list isn’t populated with any errors.

Arguments

• kwargs (Object) – rendering options, which are as follows:

3.2. API Reference 97

newforms Documentation, Release 0.13.2

• kwargs.className (Object) – CSS class name(s) for the , defaults to
’errorlist’.

ErrorList#asText()
Displays errors as text.

ErrorList#asData()
Creates an “unwrapped” version of the data in the ErrorList - a plain Array containing ValidationErrors.

ErrorList#toJSON()
Creates a representation of all the contents of the ErrorList for serialisation, to be called by
JSON.stringify() if this object is passed to it.

ErrorList#fromJSON(jsonList)
Populates this ErrorList from a list with the same structure as that produced by this object’s toJSON()
method.

Validators

Newforms depends on the validators module and exposes its version of it as forms.validators.

Constructors in the validators module are actually validation function factories – they can be called with or without
new and will return a Function which performs the configured validation when called.

class RegexValidator(kwargs)
Creates a validator which validates that input matches a regular expression.

Arguments

• kwargs (Object) – validator options, which are as follows:

• kwargs.regex (RegExp or String) – the regular expression pattern to search for the pro-
vided value, or a pre-compiled RegExp. By default, matches any string (including an empty
string)

• kwargs.message (String) – the error message used by ValidationError if valida-
tion fails. Defaults to "Enter a valid value".

• kwargs.code (String) – the error code used by ValidationError if validation fails.
Defaults to "invalid".

• kwargs.inverseMatch (Boolean) – the match mode for regex. Defaults to false.

class URLValidator(kwargs)
Creates a validator which validates that input looks like a valid URL.

Arguments

• kwargs (Object) – validator options, which are as follows:

• kwargs.schemes (Array.<String>) – allowed URL schemes. Defaults to [’http’,
’https’, ’ftp’, ’ftps’].

class EmailValidator(kwargs)
Creates a validator which validates that input looks like a valid e-mail address.

Arguments

• kwargs (Object) – validator options, which are as follows:

• kwargs.message (String) – error message to be used in any generated
ValidationError.

• kwargs.code (String) – error code to be used in any generated ValidationError.

98 Chapter 3. Documentation Contents

https://github.com/insin/validators

newforms Documentation, Release 0.13.2

• kwargs.whitelist (Array.<String>) – a whitelist of domains which are allowed to be
the only thing to the right of the @ in a valid email address – defaults to [’localhost’].

validateEmail(value)
Validates that input looks like a valid e-mail address – this is a preconfigured instance of an
EmailValidator().

validateSlug(value)
Validates that input consists of only letters, numbers, underscores or hyphens.

validateIPv4Address(value)
Validates that input looks like a valid IPv4 address.

validateIPv6Address(value)
Validates that input is a valid IPv6 address.

validateIPv46Address(value)
Validates that input is either a valid IPv4 or IPv6 address.

validateCommaSeparatedIntegerList(value)
Validates that input is a comma-separated list of integers.

class MaxValueValidator(maxValue)
Throws a ValidationError with a code of ’maxValue’ if its input is greater than maxValue.

class MinValueValidator(minValue)
Throws a ValidationError with a code of ’minValue’ if its input is less than maxValue.

class MaxLengthValidator(maxLength)
Throws a ValidationError with a code of ’maxLength’ if its input’s length is greater than maxLength.

class MinLengthValidator(minLength)
Throws a ValidationError with a code of ’minLength’ if its input’s length is less than minLength.

3.2.5 Widgets API

Widget

class Widget([kwargs])
An HTML form widget.

A widget handles the rendering of HTML, and the extraction of data from an object that corresponds to the
widget.

This base widget cannot be rendered, but provides the basic attribute widget.attrs. You must implement
the Widget#render‘() method when extending this base widget.

Arguments

• kwargs (Object) – widget options, which are as follows:

• kwargs.attrs (Object) – HTML attributes for the rendered widget.

Instance Properties

widget.attrs
Base HTML attributes for the rendered widget.

Type Object

Prototype Properties

3.2. API Reference 99

newforms Documentation, Release 0.13.2

Widget#isHidden
Determines whether this corresponds to an <input type="hidden">.

Type Boolean

Widget#needsMultipartForm
Determines whether this widget needs a multipart-encoded form.

Type Boolean

Widget#needsInitialValue
Determines whether this widget’s render logic always needs to use the initial value.

Type Boolean

Widget#isRequired
Determines whether this widget is for a required field.

Type Boolean

Prototype Functions

Widget#subWidgets(name, value[, kwargs])
Yields all “subwidgets” of this widget. Used by:

•RadioSelect() to allow access to individual radio inputs.

•CheckboxSelectMultiple() to allow access to individual checkbox inputs.

Arguments are the same as for Widget#render().

Widget#render(name, value[, kwargs])
Returns a rendered representation of this Widget as a ReactElement object.

The default implementation throws an Error – extending widgets must provide an implementation.

The value given is not guaranteed to be valid input, so inheriting implementations should program de-
fensively.

Arguments

• name (String) – the name to give to the rendered widget, or to be used as the basis for
other, unique names when the widget needs to render multiple inputs.

• value – the value to be disaplyed in the widget.

• kwargs (Object) – rendering options, which are:

• kwargs.attrs (Object) – additonal HTML attributes for the rendered widget.

• kwargs.controlled (Boolean) – true if the Widget should render a controlled com-
ponent.

• kwargs.initialValue – if the widget has Widget#needsInitialValue con-
figured to true, its initial value will always be passed

Widget#buildAttrs(kwargAttrs, renderAttrs)
Helper function for building an HTML attributes object using widget.attrs and the given arguments.

Arguments

• kwargsAttrs (Object) – any extra HTML attributes passed to the Widget’s render()
method.

• renderAttrs (Object) – any other attributes which should be included in a Widget’s
HTML attributes by default – provided by the render() method for attributes related to
the type of widget being implemented.

100 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

Widget#valueFromData(data, files, name)
Retrieves a value for this widget from the given form data.

Returns a value for this widget, or null if no value was provided.

Widget#idForLabel(id)
Determines the HTML id attribute of this Widget for use by a <label>, given the id of the field.

This hook is necessary because some widgets have multiple HTML elements and, thus, multiple ids. In
that case, this method should return an id value that corresponds to the first id in the widget’s tags.

class SubWidget(parentWidget, name, value[, kwargs])
Some widgets are made of multiple HTML elements – namely, RadioSelect(). This represents the “inner”
HTML element of a widget.

Prototype Functions

SubWidget#render()
Calls the parent widget’s render function with this Subwidget’s details.

MultiWidget

class MultiWidget(widgets[, kwargs])
A widget that is composed of multiple widgets.

You’ll probably want to use this class with MultiValueField().

Arguments

• widgets (Array) – the list of widgets composing this widget.

• kwargs (Object) – widget options.

Prototype Functions

MultiWidget#render(name, value[, kwargs])
Arguments

• name (String) – the name be used as the basis for unique names for the multiple inputs
this widget must render.

• value – the value to be disaplyed in the widget – may be a list of values or a single value
which needs to be split for display.

• kwargs (Object) – rendering options, which are:

• kwargs.attrs (Object) – additonal HTML attributes.

MultiWidget#formatOutput(renderedWidgets)
Creates an element containing a given list of rendered widgets.

This hook allows you to format the HTML design of the widgets, if needed – by default, they are wrapped
in a <div>.

Arguments

• renderedWidgets (Array) – a list of rendered widgets.

MultiWidget#decompress(value)
This method takes a single “compressed” value from the field and returns a list of “decompressed” values.
The input value can be assumed valid, but not necessarily non-empty.

This method must be implemented when extending MultiWidget, and since the value may be empty, the
implementation must be defensive.

3.2. API Reference 101

newforms Documentation, Release 0.13.2

The rationale behind “decompression” is that it is necessary to “split” the combined value of the form field
into the values for each widget.

An example of this is how SplitDateTimeWidget() turns a Date value into a list with date and
time split into two separate values.

Text input widgets

class Input([kwargs])
An <input> widget.

class TextInput([kwargs])
An <input type="text"> widget

class NumberInput([kwargs])
An <input type="number"> widget

New in version 0.5.

class EmailInput([kwargs])
An <input type="email"> widget

New in version 0.5.

class URLInput([kwargs])
An <input type="url"> widget

New in version 0.5.

class PasswordInput([kwargs])
An <input type="password"> widget.

Arguments

• kwargs (Object) – widget options

• kwargs.renderValue (Boolean) – if false a value will not be rendered for this field
– defaults to false.

class HiddenInput([kwargs])
An <input type="hidden"> widget.

class Textarea([kwargs])
A <textarea> widget.

Default rows and cols HTML attributes will be used if not provided in kwargs.attrs.

Date-formatting text input widgets

class DateInput([kwargs])
An <input type="text"> which, if given a Date object to display, formats it as an appropriate date string.

Arguments

• kwargs (Object) – widget options

• kwargs.format (String) – a time.strftime() format string for a date.

class DateTimeInput([kwargs])
An <input type="text"> which, if given a Date object to display, formats it as an appropriate datetime
string.

102 Chapter 3. Documentation Contents

https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

Arguments

• kwargs (Object) – widget options

• kwargs.format (String) – a time.strftime() format string for a datetime.

class TimeInput([kwargs])
An <input type="text"> which, if given a Date object to display, formats it as an appropriate time string.

Arguments

• kwargs (Object) – widget options

• kwargs.format (String) – a time.strftime() format string for a time.

Selector and checkbox widgets

class CheckboxInput([kwargs])
An <input type="checkbox"> widget.

Arguments

• kwargs (Object) – widget options

• kwargs.checkTest (Function) – a function which takes a value and returns true if the
checkbox should be checked for that value.

class Select([kwargs])
An HTML <select> widget.

Arguments

• kwargs (Object) – widget options

• kwargs.choices (Array) – choices to be used when rendering the widget, with each
choice specified as pair in [value, text] format – defaults to [].

class NullBooleanSelect([kwargs])
A <select> widget intended to be used with NullBooleanField().

Any kwargs.choices provided will be overrridden with the specific choices this widget requires.

class SelectMultiple([kwargs])
An HTML <select> widget which allows multiple selections.

Arguments

• kwargs (Object) – widget options, as per Select().

class RadioSelect([kwargs])
Renders a single select as a list of <input type="radio"> elements.

Arguments

• kwargs (Object) – widget options

• kwargs.renderer (Function) – a custom RadioFieldRenderer() constructor.

Prototype Functions

RadioSelect#getRenderer(name, value[, kwargs])
Returns an instance of the renderer to be used to render this widget.

RadioSelect#subWidgets(name, value[, kwargs])
Returns a list of RadioChoiceInput() objects created by this widget’s renderer.

3.2. API Reference 103

https://github.com/insin/isomorph#formatting-directives
https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

class RadioFieldRenderer(name, value, attrs, choices)
An object used by RadioSelect() to enable customisation of radio widgets.

Arguments

• name (String) – the field name.

• value (String) – the selected value.

• attrs (Object) – HTML attributes for the widget.

• choices (Array) – choices to be used when rendering the widget, with each choice speci-
fied as an Array in [value, text] format.

RadioFieldRenderer#choiceInputs()
gets all RadioChoiceInput inputs created by this renderer.

RadioFieldRenderer#choiceInput(i)
gets the i-th RadioChoiceInput created by this renderer.

class RadioChoiceInput(name, value, attrs, choice, index)
An object used by RadioFieldRenderer() that represents a single <input type="radio">.

Arguments

• name (String) – the field name.

• value (String) – the selected value.

• attrs (Object) – HTML attributes for the widget.

• choice (Array) – choice details to be used when rendering the widget, specified as an
Array in [value, text] format.

• index (Number) – the index of the radio button this widget represents.

class CheckboxSelectMultiple([kwargs])
Multiple selections represented as a list of <input type="checkbox"> widgets.

Arguments

• kwargs (Object) – widget options

• kwargs.renderer (Function) – a custom CheckboxFieldRenderer() construc-
tor.

Prototype Functions

CheckboxSelectMultiple#getRenderer(name, value[, kwargs])
Returns an instance of the renderer to be used to render this widget.

CheckboxSelectMultiple#subWidgets(name, value[, kwargs])
Returns a list of CheckboxChoiceInput() objects created by this widget’s renderer.

class CheckboxFieldRenderer(name, value, attrs, choices)
An object used by CheckboxSelectMultiple() to enable customisation of checkbox widgets.

Arguments

• name (String) – the field name.

• value (Array) – a list of selected values.

• attrs (Object) – HTML attributes for the widget.

104 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• choices (Array) – choices to be used when rendering the widget, with each choice speci-
fied as an Array in [value, text] format.

CheckboxFieldRenderer#choiceInputs()
gets all CheckboxChoiceInput inputs created by this renderer.

CheckboxFieldRenderer#choiceInput(i)
gets the i-th CheckboxChoiceInput created by this renderer.

class CheckboxChoiceInput(name, value, attrs, choice, index)
An object used by CheckboxFieldRenderer() that represents a single <input type="checkbox">.

Arguments

• name (String) – the field name.

• value (Array) – a list of selected values.

• attrs (Object) – HTML attributes for the widget.

• choice (Array) – choice details to be used when rendering the widget, specified as an
Array in [value, text] format.

• index (Number) – the index of the chckbox this widget represents.

File upload widgets

class FileInput([kwargs])
An <input type="file"> widget.

class ClearableFileInput([kwargs])
A file widget which also has a checkbox to indicate that the field should be cleared.

Composite widgets

class MultipleHiddenInput([kwargs])
A widget that handles <input type="hidden"> for fields that have a list of values.

class SplitDateTimeWidget([kwargs])
Splits Date input into two <input type="text"> elements.

Arguments

• kwargs (Object) – widget options additional to those specified in MultiWidget().

• kwargs.dateFormat (String) – a time.strftime() format string for a date.

• kwargs.timeFormat (String) – a time.strftime() format string for a time.

class SplitHiddenDateTimeWidget([kwargs])
Splits Date input into two <input type="hidden"> elements.

3.2.6 Formsets API

FormSet

class FormSet([kwargs])
A collection of instances of the same Form.

3.2. API Reference 105

https://github.com/insin/isomorph#formatting-directives
https://github.com/insin/isomorph#formatting-directives

newforms Documentation, Release 0.13.2

Arguments

• kwargs (Object) – configuration options.

FormSet options

New in version 0.11: FormSet options and defaulting from the prototype replace the use of formsetFactory,
which was removed in version 0.12.

The following options configure the FormSet itself.

Default values can be pre-configured by extending the FormSet with FormSet.extend() to set them as
prototype props.

Alternatively the base FormSet can be used directly, passing all FormSet and Form arguments at the same
time.

Arguments

• form (Function) – the constructor for the Form to be managed.

• kwargs.extra (Number) – the number of extra forms to be displayed – defaults to 1.

• kwargs.canOrder (Boolean) – if true, forms can be ordered – defaults to false.

• kwargs.canDelete (Boolean) – if true, forms can be deleted – defaults to false.

• kwargs.maxNum (Number) – the maximum number of forms to be displayed – defaults
to DEFAULT_MAX_NUM .

• kwargs.validateMax (Boolean) – if true, validation will also check that the number
of forms in the data set, minus those marked for deletion, is less than or equal to maxNum.

• kwargs.minNum (Number) – the minimum number of forms to be displayed – defaults to
0.

• kwargs.validateMin (Boolean) – if true, validation will also check that the number
of forms in the data set, minus those marked for deletion, is greater than or equal to minNum.

Form options

The following options are used when constructing forms for the formset.

Arguments

• kwargs.data (Array.<Object>) – list of input form data for each form, where property
names are field names. A formset with data is considered to be “bound” and ready for use
validating and coercing the given data.

• kwargs.files (Array.<Object>) – list of input file data for each form.

• kwargs.autoId (String) – a template for use when automatically generating id at-
tributes for fields, which should contain a {name} placeholder for the field name. Defaults
to id_{name}.

• kwargs.prefix (String) – a prefix to be applied to the name of each field in each form
instance.

• kwargs.onChange (Function) – A callback to indicate to the a React component that the
formset has changed, e.g. when another form is added to the formset.

This will be passed as the Form constructor’s onChange argument when creating the form-
set’s forms.

New in version 0.9: Replaces kwargs.onStateChange

106 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• kwargs.initial (Array.<Object>) – a list of initial form data objects, where property
names are field names – if a field’s value is not specified in data, these values will be used
when rendering field widgets.

• kwargs.errorConstructor (Function) – the constructor function to be used when
creating error details - defaults to ErrorList().

• kwargs.validation (Function) – A value to be passed as the Form constructor’s vali-
dation argument when creating the formset’s forms – defaults to null.

New in version 0.6.

• kwargs.managementFormCssClass (String) – a CSS class to be applied when ren-
dering FormSet#managementForm(), as default rendering methods place its hidden
fields in an additonal form row just for hidden fields, to ensure valid markup is generated.

FormSet.extend(prototypeProps[, constructorProps])
Creates a new constructor which inherits from FormSet.

Arguments

• prototypeProps (Object) – Default FormSet options and other prototype properties
for the new formset, such as a custom clean method.

• constructorProps (Object) – properties to be set directly on the new constructor
function.

Prototype Properties

FormSet#prefixFormat
This string defines the format used to generate a prefix for forms in the formset to ensure they have
unique name attributes. It must contain {prefix} and {index} placeholders.

The default format is ’{prefix}-{index}’.

Type String

Instance Properties

Formset options documented in kwargs above are set as instance properties.

The following instance properties are also available:

formset.isInitialRender
Determines if this formset has been given input data which can be validated, or if it will display as blank
or with configured initial values the first time it’s redered.

false if the formset was instantiated with kwargs.data or kwargs.files, true otherwise.

Prototype Functions

Prototype functions for retrieving forms and information about forms which will be displayed.

FormSet#managementForm()
Creates and returns the ManagementForm instance for this formset.

A ManagementForm contains hidden fields which are used to keep track of how many form instances are
displayed on the page.

Browser-specific On the browser, ManagementForms will only ever contain initial data reflecting the
formset’s own configuration properties.

FormSet#totalFormCount()
Determines the number of form instances this formset contains, based on either submitted management
data or initial configuration, as appropriate.

3.2. API Reference 107

newforms Documentation, Release 0.13.2

Browser-specific On the browser, only the formset’s own form count configuration will be consulted.

FormSet#initialFormCount()
Determines the number of initial form instances this formset contains, based on either submitted manage-
ment data or initial configuration, as appropriate.

Browser-specific On the browser, only the formset’s own form count configuration will be consulted.

FormSet#forms()
Returns a list of this formset’s form instances.

FormSet#addAnother()
Increments formset.extra and adds another form to the formset.

FormSet#removeForm(index)
Decrements formset.extra and removes the form at the specified index from the formset.

You must ensure the UI never lets the user remove anything but extra forms.

New in version 0.9.

FormSet#initialForms()
Returns a list of all the initial forms in this formset.

FormSet#extraForms()
Returns a list of all the extra forms in this formset.

FormSet#emptyForm()
Creates an empty version of one of this formset’s forms which uses a placeholder ’__prefix__’ prefix
– this is intended for cloning on the client to add more forms when newforms is only being used on the
server.

Prototype functions for validating and getting information about the results of validation, and for retrieving
forms based on submitted data:

FormSet#validate([form[, callback(err, isValid, cleanedData)]])
Forces the formset to revalidate from scratch. If a <form> is given, data from it will be set on the formset’s
forms. Otherwise, validation will be done with each form’s current input data.

Arguments

• form – a <form> DOM node – if React’s representation of the <form> is given, its
getDOMNode() function will be called to get the real DOM node.

• Boolean, Object) callback (function(Error,) – Callback for asynchronous vali-
dation.

This argument is required if the formdet or its form uses asynchronous validation - an
Error will be thrown if it’s not given in this case.

The callback should be an errback with the signature (err, isValid,
cleanedData).

Returns true if the formset’s forms’ data is valid, false otherwise.

New in version 0.9.

Changed in version 0.10: Added callback argument for async validation.

FormSet#setData(data)
Updates the formset’s formset.data (and formset.isInitialRender, if necessary) and trig-
gers form cleaning and validation, returning the result of formset.isValid().

Arguments

108 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• data (Object) – new input data for the formset.

Returns true if the formset has no errors after validating the updated data, false otherwise.

New in version 0.5.

FormSet#setFormData(formData)
Alias for FormSet#setData(), to keep the FormSet API consistent with the Form API.

New in version 0.6.

FormSet#cleanedData()
Returns a list of form.cleanedData objects for every form in FormSet#forms().

Changed in version 0.9: No longer returns cleaned data for extra forms which haven’t been modified.

Changed in version 0.10: No longer includes cleaned data from incomplete extra forms.

FormSet#deletedForms()
Returns a list of forms that have been marked for deletion.

FormSet#orderedForms()
Returns a list of forms in the order specified by the incoming data.

Throws an Error if ordering is not allowed.

FormSet#addError(errpr)
Adds an error that isn’t associated with a particular form.

The error argument can be a simple string, or an instance of ValidationError().

New in version 0.9.

FormSet#nonFormErrors()
Returns an ErrorList() of errors that aren’t associated with a particular form – i.e., from
FormSet#clean() or externally via FormSet#addError().

Returns an empty ErrorList() if there are none.

FormSet#errors()
Returns a list of form error for every form in the formset.

FormSet#totalErrorCount()
Returns the number of errors across all forms in the formset.

FormSet#isValid()
Returns true if every form in the formset is valid.

FormSet#fullClean()
Cleans all of this.data and populates formset error objects.

FormSet#clean()
Hook for doing any extra formset-wide cleaning after Form.clean() has been called on every form.

Any ValidationError() raised by this method will not be associated with a particular form; it will
be accesible via :js:func:FormSet#nonFormErrors

FormSet#hasChanged()
Returns true if any form differs from initial.

Prototype functions for use in rendering forms.

FormSet#getDefaultPrefix()
Returns the default base prefix for each form: ’form’.

3.2. API Reference 109

newforms Documentation, Release 0.13.2

FormSet#addFields(form, index)
A hook for adding extra fields on to a form instance.

Arguments

• form (Form) – the form fields will be added to.

• index (Number) – the index of the given form in the formset.

FormSet#addPrefix(index)
Returns a formset prefix with the given form index appended.

Arguments

• index (Number) – the index of a form in the formset.

FormSet#isMultipart()
Returns true if the formset needs to be multipart-encoded, i.e. it has a FileInput(). Otherwise,
false.

DEFAULT_MAX_NUM
The default maximum number of forms in a formet is 1000, to protect against memory exhaustion.

3.2.7 Utilities

Newforms exposes various utilities you may want to make use of when working with forms, as well as some imple-
mentation details which you may need to make use of for customisation purposes.

getFormData(form)

Arguments

• form – a form DOM node or ReactElement.

Returns an object containing the submittable value(s) held in each of the form’s elements, with
element names as properties.

validateAll(form, formsAndFormsets)
Extracts data from a <form> and validates it with a list of Forms and/or FormSets.

Arguments

• form – the <form> into which any given forms and formsets have been rendered – this
can be a React <form> component or a real <form> DOM node.

• formsAndFormsets (Array) – a list of Form and/or FormSet instances to be used to
validate the <form>‘s input data.

Returns true if the <form>‘s input data are valid according to all given forms and formsets

util.formatToArray(str, obj[, options])
Replaces ’{placeholders}’ in a string with same-named properties from a given Object, but interpolates
into and returns an Array instead of a String.

By default, any resulting empty strings are stripped out of the Array before it is returned. To disable this, pass
an options object with a ’strip’ property which is false.

This is useful for simple templating which needs to include ReactElement objects.

Arguments

• str (String) – a String containing placeholder names surrounded by { }

• obj (Object) – an Object whose properties will provide replacements for placeholders

110 Chapter 3. Documentation Contents

newforms Documentation, Release 0.13.2

• options (Object) – an options Object which can be used to disable stripping of empty
strings from the resulting Array before it is returned by passing {strip: false}

util.makeChoices(list, submitValueProp, displayValueProp)
Creates a list of [submitValue, displayValue] choice pairs from a list of objects.

If any of the property names correspond to a function in an object, the function will be called with the object as
the this context.

Arguments

• list (Array) – a list of objects

• submitValueProp (String) – the name of the property in each object holding the value
to be submitted/returned when it’s a selected choice.

• displayValueProp (String) – the name of the property in each object holding the value
to be displayed for selection by the user.

3.2. API Reference 111

newforms Documentation, Release 0.13.2

112 Chapter 3. Documentation Contents

Index

B
BooleanField() (class), 92
BoundField() (class), 84
boundField.field (boundField attribute), 84
boundField.form (boundField attribute), 84
boundField.helpText (boundField attribute), 85
boundField.htmlName (boundField attribute), 85
boundField.label (boundField attribute), 85
boundField.name (boundField attribute), 84
BoundField#asHidden() (built-in function), 86
BoundField#asText() (built-in function), 86
BoundField#asTextarea() (built-in function), 86
BoundField#asWidget() (built-in function), 86
BoundField#autoId() (built-in function), 85
BoundField#cssClasses() (built-in function), 86
BoundField#data() (built-in function), 85
BoundField#errorMessage() (built-in function), 86
BoundField#errorMessages() (built-in function), 86
BoundField#errors() (built-in function), 85
BoundField#helpTextTag() (built-in function), 87
BoundField#idForLabel() (built-in function), 86
BoundField#initialValue() (built-in function), 86
BoundField#isCleaned() (built-in function), 85
BoundField#isEmpty() (built-in function), 85
BoundField#isHidden() (built-in function), 85
BoundField#isPending() (built-in function), 85
BoundField#labelTag() (built-in function), 87
BoundField#render() (built-in function), 87
BoundField#status() (built-in function), 85
BoundField#subWidgets() (built-in function), 87
BoundField#value() (built-in function), 86

C
CharField() (class), 89
CheckboxChoiceInput() (class), 105
CheckboxFieldRenderer() (class), 104
CheckboxFieldRenderer#choiceInput() (built-in func-

tion), 105
CheckboxFieldRenderer#choiceInputs() (built-in func-

tion), 105

CheckboxInput() (class), 103
CheckboxSelectMultiple() (class), 104
CheckboxSelectMultiple#getRenderer() (built-in func-

tion), 104
CheckboxSelectMultiple#subWidgets() (built-in func-

tion), 104
ChoiceField() (class), 92
ChoiceField#choices() (built-in function), 93
ChoiceField#setChoices() (built-in function), 93
ClearableFileInput() (class), 105
ComboField() (class), 94

D
DateField() (class), 90
DateInput() (class), 102
DateTimeField() (class), 90
DateTimeInput() (class), 102
DecimalField() (class), 89
DeclarativeFieldsMeta() (built-in function), 84
DEFAULT_MAX_NUM (global variable or constant),

110

E
EmailField() (class), 90
EmailInput() (class), 102
EmailValidator() (class), 98
ErrorList() (class), 97
ErrorList.fromJSON() (ErrorList method), 97
ErrorList#asData() (built-in function), 98
ErrorList#asText() (built-in function), 98
ErrorList#asUl() (built-in function), 97
ErrorList#extend() (built-in function), 97
ErrorList#first() (built-in function), 97
ErrorList#fromJSON() (built-in function), 98
ErrorList#isPopulated() (built-in function), 97
ErrorList#length() (built-in function), 97
ErrorList#messages() (built-in function), 97
ErrorList#render() (built-in function), 97
ErrorList#toJSON() (built-in function), 98
ErrorObject() (class), 95
ErrorObject.fromJSON() (ErrorObject method), 95

113

newforms Documentation, Release 0.13.2

ErrorObject#asData() (built-in function), 96
ErrorObject#asText() (built-in function), 96
ErrorObject#asUl() (built-in function), 96, 97
ErrorObject#fromJSON() (built-in function), 96
ErrorObject#get() (built-in function), 96
ErrorObject#hasField() (built-in function), 96
ErrorObject#isPopulated() (built-in function), 96
ErrorObject#length() (built-in function), 96
ErrorObject#remove() (built-in function), 96
ErrorObject#removeAll() (built-in function), 96
ErrorObject#render() (built-in function), 96, 97
ErrorObject#set() (built-in function), 95
ErrorObject#toJSON() (built-in function), 96

F
Field() (class), 87
Field#clean() (built-in function), 89
Field#isEmptyValue() (built-in function), 88
Field#prepareValue() (built-in function), 88
Field#toJavaScript() (built-in function), 88
Field#validate() (built-in function), 89
FileField() (class), 91
FileInput() (class), 105
FilePathField() (class), 93
FloatField() (class), 89
Form() (class), 77
form.cleanedData (form attribute), 79
Form.extend() (Form method), 77
form.fields (form attribute), 79
form.isInitialRender (form attribute), 79
Form#addError() (built-in function), 82
Form#addInitialPrefix() (built-in function), 83
Form#addPrefix() (built-in function), 83
Form#boundField() (built-in function), 81
Form#boundFields() (built-in function), 81
Form#boundFieldsObj() (built-in function), 81
Form#changedData() (built-in function), 82
Form#clean() (built-in function), 80
Form#errors() (built-in function), 82
Form#fullClean() (built-in function), 79
Form#hasChanged() (built-in function), 82
Form#hiddenFields() (built-in function), 81
Form#isAsync() (built-in function), 82
Form#isComplete() (built-in function), 83
Form#isMultipart() (built-in function), 83
Form#isPending() (built-in function), 83
Form#isValid() (built-in function), 83
Form#nonFieldErrors() (built-in function), 82
Form#nonFieldPending() (built-in function), 83
Form#notEmpty() (built-in function), 83
Form#partialClean() (built-in function), 80
Form#prefixFormat (None attribute), 78
Form#removePrefix() (built-in function), 83
Form#reset() (built-in function), 80

Form#setData() (built-in function), 80
Form#setErrors() (built-in function), 82
Form#setFormData() (built-in function), 80
Form#updateData() (built-in function), 81
Form#validate() (built-in function), 79
Form#visibleFields() (built-in function), 81
FormSet() (class), 105
FormSet.extend() (FormSet method), 107
formset.isInitialRender (formset attribute), 107
FormSet#addAnother() (built-in function), 108
FormSet#addError() (built-in function), 109
FormSet#addFields() (built-in function), 109
FormSet#addPrefix() (built-in function), 110
FormSet#clean() (built-in function), 109
FormSet#cleanedData() (built-in function), 109
FormSet#deletedForms() (built-in function), 109
FormSet#emptyForm() (built-in function), 108
FormSet#errors() (built-in function), 109
FormSet#extraForms() (built-in function), 108
FormSet#forms() (built-in function), 108
FormSet#fullClean() (built-in function), 109
FormSet#getDefaultPrefix() (built-in function), 109
FormSet#hasChanged() (built-in function), 109
FormSet#initialFormCount() (built-in function), 108
FormSet#initialForms() (built-in function), 108
FormSet#isMultipart() (built-in function), 110
FormSet#isValid() (built-in function), 109
FormSet#managementForm() (built-in function), 107
FormSet#nonFormErrors() (built-in function), 109
FormSet#orderedForms() (built-in function), 109
FormSet#prefixFormat (None attribute), 107
FormSet#removeForm() (built-in function), 108
FormSet#setData() (built-in function), 108
FormSet#setFormData() (built-in function), 109
FormSet#totalErrorCount() (built-in function), 109
FormSet#totalFormCount() (built-in function), 107
FormSet#validate() (built-in function), 108

G
GenericIPAddressField() (class), 91
getFormData() (built-in function), 110

H
HiddenInput() (class), 102

I
ImageField() (class), 92
Input() (class), 102
IntegerField() (class), 89
IPAddressField() (class), 90
isFormAsync() (built-in function), 84

M
MaxLengthValidator() (class), 99

114 Index

newforms Documentation, Release 0.13.2

MaxValueValidator() (class), 99
MinLengthValidator() (class), 99
MinValueValidator() (class), 99
MultipleChoiceField() (class), 93
MultipleFileField() (class), 92
MultipleHiddenInput() (class), 105
MultiValueField() (class), 94
MultiWidget() (class), 101
MultiWidget#decompress() (built-in function), 101
MultiWidget#formatOutput() (built-in function), 101
MultiWidget#render() (built-in function), 101

N
NullBooleanField() (class), 92
NullBooleanSelect() (class), 103
NumberInput() (class), 102

P
PasswordInput() (class), 102

R
RadioChoiceInput() (class), 104
RadioFieldRenderer() (class), 104
RadioFieldRenderer#choiceInput() (built-in function),

104
RadioFieldRenderer#choiceInputs() (built-in function),

104
RadioSelect() (class), 103
RadioSelect#getRenderer() (built-in function), 103
RadioSelect#subWidgets() (built-in function), 103
RegexField() (class), 90
RegexValidator() (class), 98
RFC

RFC 4291#section-2.2, 49

S
Select() (class), 103
SelectMultiple() (class), 103
SlugField() (class), 91
SplitDateTimeField() (class), 94
SplitDateTimeWidget() (class), 105
SplitHiddenDateTimeWidget() (class), 105
SubWidget() (class), 101
SubWidget#render() (built-in function), 101

T
Textarea() (class), 102
TextInput() (class), 102
TimeField() (class), 90
TimeInput() (class), 103
TypedChoiceField() (class), 93
TypedMultipleChoiceField() (class), 93

U
URLField() (class), 92
URLInput() (class), 102
URLValidator() (class), 98
util.formatToArray() (util method), 110
util.makeChoices() (util method), 111

V
validateAll() (built-in function), 110
validateCommaSeparatedIntegerList() (built-in function),

99
validateEmail() (built-in function), 99
validateIPv46Address() (built-in function), 99
validateIPv4Address() (built-in function), 99
validateIPv6Address() (built-in function), 99
validateSlug() (built-in function), 99
ValidationError() (class), 94
ValidationError#messageObj() (built-in function), 95
ValidationError#messages() (built-in function), 95

W
Widget() (class), 99
widget.attrs (widget attribute), 99
Widget#buildAttrs() (built-in function), 100
Widget#idForLabel() (built-in function), 101
Widget#isHidden (None attribute), 99
Widget#isRequired (None attribute), 100
Widget#needsInitialValue (None attribute), 100
Widget#needsMultipartForm (None attribute), 100
Widget#render() (built-in function), 100
Widget#subWidgets() (built-in function), 100
Widget#valueFromData() (built-in function), 100

Index 115

	Getting newforms
	Documentation
	Documentation Contents
	Guide Documentation
	API Reference

