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Neutrino is one of the most interesting particles in our world. The first proposal of such a new particle was given
by Pauli. He managed to explain the spectrum of beta decay. In 1956, neutrinos was first detected in Cowan–Reines
neutrino experiment.1 Later on a lot of neutrino experiments have been carried out.

Solar Neutrino Problem

The sun produce neutrinos inside it and the neutrinos propagate out. On the earth we can detect them. The problem
was that the detected neutrinos was only one third of the total neutrino flux predicted which causes some people to
think that the solar had shut down. The solution, however, is the neutrino oscillation.

As far as we know, we have three flavours of neutrinos and their anti particles and they are orthogonal to each other,

⟨𝜈𝑙′ | 𝜈𝑙⟩ = 𝛿𝑙′𝑙

⟨𝜈𝑙′ | 𝜈𝑙⟩ = 𝛿𝑙′𝑙

⟨𝜈𝑙′ | 𝜈𝑙⟩ = 0.

The interesting thing about neutrinos is that it oscillates.

Table of Contents:

1 Cowan–Reines neutrino experiment

Contents 1
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CHAPTER 1

Preliminary

This chapter is about the preliminary knowledge required by this topic.

Reactions Related to Neutrinos

1. Beta decays, 𝑛→ 𝑝+ 𝑒− + 𝜈 and 𝑝→ 𝑛+ 𝑒+ + 𝜈

2. Electron capture and positron capture, 𝑒− + 𝑝→ 𝑛+ 𝜈 and 𝑒+ + 𝑛→ 𝑝+ 𝜈.

3. Inverse beta decays, 𝜈 + 𝑛→ 𝑝+ 𝑒− and 𝜈 + 𝑝→ 𝑛+ 𝑒+.

4. Inverses of beta decays, 𝜈 + 𝑒− + 𝑝→ 𝑛 and 𝑛+ 𝑒+ + 𝜈 → 𝑛.

What is a Neutrino Particle?

As Wigner said, a physical particle is an irreducible representation of the Poincaré group. A characteristic of Poincaré
group is that mass comes in.

A neutrino particle is better recognized as its mass eigenstate.

In QFT, there are 3 different forms of neutrino mass term, left-handed Majorana, right-handed Majorana and Dirac
mass terms.

Chirality and Helicity

Helicity

Helicity is the projection of spin onto direction of momentum,

ℎ = 𝐽 · 𝑝 = �⃗� · 𝑝+ �⃗� · 𝑝 = �⃗� · 𝑝,

3
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where

𝑝 =
𝑝

|𝑝|

A state is called right-handed if helicity is positive, i.e., spin has the same direction as momentum.

Chirality

Chirality is the eigenstate of the Dirac 𝛾5 matrix, which is explicitly,1

𝛾5 =

(︂
0 I
I 0

)︂

=

⎛⎜⎜⎝
0 0 1 0
0 0 01
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ .

Majorana or Dirac

Double Beta Decay

States

Wigner Function

Fig. 1.1: A ensemble of classical harmonic oscillators can be described using such phase-space probability distribution.

Wigner function is an analogue of the classical phase-space probability distribution function though it is not really
probability.3 The mean of Wigner function lies in the two quadratures, i.e., space distribution and momentum distri-
bution.

1 *Chirality and Helicity In Depth* by Robert D. Klauber
3 http://www.iqst.ca/quantech/wigner.php

4 Chapter 1. Preliminary
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There is a collection of Wigner functions on this site.3

.. admonition:: Question

class warning

How do one describe a system of neutrinos using Wigner function? What is the effect of statistics.

Statistics

Fermi-Dirac distribution

𝑓(𝑝, 𝜉) =
1

1 + exp(𝑝/𝑇 − 𝜉)
,

where 𝜉 = 𝜇/𝑇 is the degeneracy parameter.

The neutrino-neutrino forward scattering is2

𝜈𝛼(𝑝) + 𝜈𝛽(𝑘) → 𝜈𝛼(𝑘) + 𝜈𝛽(𝑝)

Question

Meaning of each term in Liouville equation ?

Refs & Notes

2 Pantaleone (1992), Friedland & Lunardini (2003).

1.6. Statistics 5
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CHAPTER 2

Common Sense

Units

Natural units makes the calculation of neutrinos convinient. The consequences are

1. The energy-mass-momentum relations becomes 𝐸2 = 𝑝2 + 𝑚2. Thus mass 𝑚, momentum p and energy 𝐸
have the same units.

2. Angular momentum in quantum mechanics is 𝐿𝑧 = 𝑚~ where 𝑚 is a number. ~ is of unit angular momentum.

3. A plane wave in quantum mechanics is Ψ = 𝐴𝑒
𝐸𝑡−𝑝𝑥

~ . 𝐸𝑡−𝑝𝑥
~ should be unitless, which means 𝑝𝑥 has unit

angular momentum, which is obvious, while 𝐸𝑡 also has the unit of angular momentum. Previously we noticed
momentum has the same unit with energy, we should have time 𝑡 has the same unit as length 𝑥. Also we can
conclude that length and time has the unit of 1/𝐸.

One should notice that charge is unit 1 in natural units since

𝐹 =
𝑄𝑞

4𝜋𝑟2
.

The conversion between natural units and SI can be down by using the following relations.

1GeV = 5.08 × 1015m−1

1GeV = 1.8 × 10−27kg

7
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CHAPTER 3

Mathematics Related

The Equations

For 2 flavor oscillations, the equation for flavor neutrinos is

𝑖
𝑑

𝑑𝑡

(︂
𝜈𝑒
𝜈𝑥

)︂
=

∆𝑚2

4𝐸

(︂
− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃

)︂(︂
𝜈𝑒
𝜈𝑥

)︂
and with matter

𝑖
𝑑

𝑑𝑡

(︂
𝜈𝑒
𝜈𝑥

)︂
=

∆𝑚2

4𝐸

(︂
4𝐸

Δ𝑚2

√
2𝐺𝐹𝑛𝑒 − cos 2𝜃 sin 2𝜃

sin 2𝜃 cos 2𝜃

)︂(︂
𝜈𝑒
𝜈𝑥

)︂

Qualititative Analysis

The vacuum oscillation is determined by autonomous equations. A fixed point of an autonomous system is defined by

𝑑

𝑑𝑡

(︂
𝜈𝑒
𝜈𝑥

)︂
= 0,

which means the so called “velocity” is 0. For vacuum oscillation, we set(︂
− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃

)︂(︂
𝜈𝑒
𝜈𝑥

)︂
= 0.

Thus we find the fixed points,

𝜈𝑒 = 0

𝜈𝑥 = 0.

If we have only the *i*th function with derivative 0, the line is called the *i*th-nullcline. Thus the fixed points are the
interaction points of all the nullclines.

9
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These fixed points are very useful. In general, for a set of autonomous equations,

𝑓 ′(𝑥) = 𝐹 (𝑓, 𝑔)

𝑔′(𝑥) = 𝐺(𝑓, 𝑔),

by definition the fixed point in phase space {𝑓𝑖, 𝑔𝑖} leads to the result

𝐹 (𝑓, 𝑔) = 0

𝐺(𝑓, 𝑔) = 0.

Thus the equations can be approximated using Taylor expansion near the point {𝑓𝑖, 𝑔𝑖}, since at the fixed points the
derivatives are small.

𝑑

𝑑𝑥
= 𝐹 (𝑓, 𝑔)

= 𝐹 (𝑓𝑖, 𝑔𝑖) +
𝜕𝐹 (𝑓, 𝑔)

𝜕𝑓
|𝑓=𝑓𝑖,𝑔=𝑔𝑖(𝑓 − 𝑓𝑖) +

𝜕𝐹 (𝑓, 𝑔)

𝜕𝑔
|𝑓=𝑓𝑖,𝑔=𝑔𝑖(𝑔 − 𝑔𝑖) + 𝒪(2).

The equations are simplified to linear equations whose coefficient matrix is simply the Jacobian matrix of the original
system at the fixed point {𝑓𝑖, 𝑔𝑖}. In this example, the coefficient matrix for the linearized system is

C =

(︃
𝜕𝐹 (𝑓,𝑔)
𝜕𝑓 |𝑓=𝑓𝑖,𝑔=𝑔𝑖

𝜕𝐹 (𝑓,𝑔)
𝜕𝑔 |𝑓=𝑓𝑖,𝑔=𝑔𝑖

𝜕𝐺(𝑓,𝑔)
𝜕𝑓 |𝑓=𝑓𝑖,𝑔=𝑔𝑖

𝜕𝐺(𝑓,𝑔)
𝜕𝑔 |𝑓=𝑓𝑖,𝑔=𝑔𝑖

)︃
.

As a comparison, the Jacobian matrix for the orginal equations at the fixed point is also the same which quite makes
sense because Jacobian itself is telling the first order approximation of the velocity.

This linearization is only valid for hyperbolic fixed points which means that the eigenvalues of Jacobian matrix at fixed
point has non-zero real part. Suppose the Jacobian is J with eigenvalues are 𝜆𝑗 , a hyperbolic fixed point requires that
ℛ⌉𝜆𝑗 ̸= 0.

For more analysis, checkout Poincare-Lyapunov Theorem.[1]_

Define 𝑝 = Tr(J(𝑓𝑖, 𝑔𝑖)) and 𝑞 = det(J(𝑓𝑖, 𝑔𝑖)) then the systems can be categorized into 3 different categories given
the case that the fixed point isa hyperbolic one.

10 Chapter 3. Mathematics Related
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Fig. 3.1: A diagram that shows the different categorizations given p and q values. Repellers and saddle points are
unstable points but attractors are stable. Or in simple ways, given the eigenvalues of the Jacobian 𝜆1, 𝜆2, 𝑅𝑒(𝜆1) >
0, 𝑅𝑒(𝜆2) > 0 gives us a repeller, 𝑅𝑒(𝜆1) < 0, 𝑅𝑒(𝜆2) < 0 gives us an attractor while 𝑅𝑒(𝜆1) < 0, 𝑅𝑒(𝜆2) > 0
gives us the saddle point.

3.2. Qualititative Analysis 11
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CHAPTER 4

Masses of Neutrinos

Neutrino masses are still not determined completely. However we have some possible patterns.

Fig. 4.1: Source: http://projects.fnal.gov/nuss/lectures/RabiM_1.pdf

One of the questions we have about the masses of neutrinos is the generation of it.

13
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Note: This figure also gives the terms: normal hierarchy (NH) and invertd hierarchy (IH).

Lepton mixing matrix, can be written as the product of three matrices which stands for a rotation in 23, 13(with a CP
phase), 12 respectively. This is called the PMNS mixing matrix.

U = U23 ×U13,𝛿 ×U12

=

⎛⎝ 1 0 0
0 cos 𝜃23 sin 𝜃23

0 − sin 𝜃23 cos 𝜃23

⎞⎠⎛⎝ cos 𝜃13 0 𝑒𝑖𝛿 sin 𝜃13
0 1 0

−𝑒𝑖𝛿 sin 𝜃13 0 cos 𝜃13

⎞⎠⎛⎝ cos 𝜃12 sin 𝜃12 0
− sin 𝜃12 cos 𝜃12 0

0 0 1

⎞⎠

See-saw Mechanism

RH neutrinos term in Lagrangian breaks the symmetry.

.

14 Chapter 4. Masses of Neutrinos



CHAPTER 5

How Do Neutrinos Propagate

Question

How to interpret neutrino propagation and scattering using wave packet formalism?

In the book of Principles of Quantum Mechanics, Shankar shows how to deal with scattering using just wave packet.

What I can do is to check the following questions.

1. How do wave packet formalism help us understanding the scattering of neutrinos.

2. How do relativistic case change the results?

3. What if the packet is a combination of Gaussian packets?

Wave Packet Treatment

From uncertainty principle we know it’s not good enough to treat neutrinos as mono-momentum particles because
our measurement measures the momentum with an accuracy and the position of the neutrinos are not completely
determined. We have both momentum width and position width which looks a lot like a wave packet.

The caveats are

1. What are the energies, momenta, velocities of neutrinos and the average of them?

2. How to find the amplitude of wave packet? What’s the geometry of the wave packet?

3. The time evolution should reduce to the single particle formalism in some limits.

In principle we need all the information about the generation of neutrinos. However, we can use some unknown
paramters to derive the formalism of the wave packets then investigate the unknown paramters.

A wave packet is constructed with a distribution of amplitude at each momentum and position and time.

15
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Note: A wave packet in wave dynamics is bunch of plane waves that makes a localized packet. For example one of
the general form of wave packets is

𝑢(𝑥, 𝑡) =
1√
2𝜋

∫︁ ∞

−∞
𝐴(𝑘) 𝑒𝑖(𝑘𝑥−𝜔(𝑘)𝑡) 𝑑𝑘.

Basically, one needs a lot of frequencies/wavenumbers/momenta to construct some localized waves.

As an application of this general wave packet, we can write down the wave packet of neutrinos using an assumed
initial distribution over all possible momenta. The problem is that we have no idea what the amplitude should be.

Some Questions

Some questions should be answered in this formalism.

1. What are 𝜈𝑓 and 𝜈𝑚 in this formalism?

Question

What is 𝜈𝑓 , i.e., the flavour state, in the formalism of wave packet?

Answer

In the view of math, the flavour state is a superposition of all mass states,

𝜓(𝑥, 𝑡) =

∫︁ 𝑢𝑝𝑝𝑒𝑟

𝑙𝑜𝑤𝑒𝑟

𝑑𝑝′𝜈
∑︁
𝑚

𝑈𝑓𝑚𝑎(𝑝𝑚𝜋 (𝑝′𝜈))𝜈𝑚𝑒
𝑖𝑝′𝜈𝑥𝑒−𝑖𝐸𝑚(𝑝′𝜈)𝑡

In other words, as long as we can measure the wave packet in a sense that the position difference is large enough, the
wave packet still.

Question

What does decoherence mean then?

Answer

An first idea can be that the wave packets of different mass eigen states are travelling at different speed thus they get
very far apart after some travelling time.

However we should be careful with the wave packet formalism. This treatment is infact an effective treatment in my
understanding, to reconcile the fact that the neutrinos are actually not at a definite position and momentum state due
to quantum uncertainty principle.

So any discussion about the decoherence of the wave packets should make clear of the measurements including the
production procedure.

.

16 Chapter 5. How Do Neutrinos Propagate



CHAPTER 6

Oscillations - In General

Evidence of Oscillations

A lot of experiments have been done to research on neutrino oscillations. In summary there are three types,

1. Solar neutrinos,

2. Reactor and accelerator neutrinos,

3. Atmospheric neutrinos.

Results of Experiments

1. Difference between masses from data

|∆𝑚2
21|

|∆𝑚2
31(32)|

≈ 0.03.

We also have

|∆𝑚2
21| ≪ |∆𝑚2

31(32)|.

By some convention, people would use numbers so that ∆𝑚2
21 > 0 or 𝑚1 < 𝑚2.

Determine |Δ𝑚2| and 𝜃

The neutrino experimantal data shows the mixing angles are1

1. 𝜃23 = 39∘ ± 2∘;

2. 𝜃13 = 8.9∘ ± 0.5∘;

3. 𝜃12 = 34∘ ± 1∘.
1 Neutrino tomography by Margaret A. Millhouse & David C. Latimer, American Journal of Physics 81, 646 (2013); doi: 10.1119/1.4817314 .

17
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Experimental result of the :math:‘ delta m^2 _{ij}‘s are1

1. 𝛿2𝑚21 = 7.5+0.3
−0.2 × 10−5𝑒𝑉 2;

2. |𝛿2𝑚32| = 2.4+0.1
−0.1 × 10−3𝑒𝑉 2.

Definition of Mass-squared Difference

:math:‘ delta m^2 _{ij}=m_i^2-m_j^2‘. Obviously, 𝛿2𝑚31 = 𝛿2𝑚32 − 𝛿2𝑚21.

As |𝛿2𝑚21| ≪ |𝛿2𝑚32|, we should have 𝛿2𝑚31 ≈ 𝛿2𝑚32.

Atmospheric Results

Accelerator Results

Reactor Results

Vacuum Theory

Neutrinos evolve in mass eigenstates. So we need to describe flavour states |𝜈𝛼⟩ using mass eigenstates |𝜈𝑗⟩.

|𝜈𝛼⟩ =
∑︁
𝑗

𝑈*
𝛼𝑗 |𝜈𝑗 ; 𝑝𝑗⟩ ,

where 𝑈*
𝛼𝑗 is the element of neutrino mixing matrix.

PMNS Mixing Matrix

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix is the product of three rotation matrices, in addition to an
extra phase,

U = U23 ×U13,𝛿 ×U12

=

⎛⎝ 1 0 0
0 cos 𝜃23 sin 𝜃23

0 − sin 𝜃23 cos 𝜃23

⎞⎠⎛⎝ cos 𝜃13 0 𝑒𝑖𝛿 sin 𝜃13
0 1 0

−𝑒𝑖𝛿 sin 𝜃13 0 cos 𝜃13

⎞⎠⎛⎝ cos 𝜃12 sin 𝜃12 0
− sin 𝜃12 cos 𝜃12 0

0 0 1

⎞⎠
The 𝛿 is the CP violation phase.

The origin of the phase is from the fact that we need 4 degrees of freedom for this mixing matrix while a convinient
way is to write down the SO(3) rotation matrix then put this extra phase here.

More About Phase of Nutrinos

The mixing of mass eigenstates is⎛⎝𝜈𝑒𝜈𝜇
𝜈𝜏

⎞⎠ =

⎛⎝𝑒𝑖𝛼1 0 0
0 𝑒𝑖𝛼2 0
0 0 𝑒𝑖𝛼3

⎞⎠Some Unitary Matrix

⎛⎝1 0 0
0 𝑒𝑖𝛽2 0
0 0 𝑒𝑖𝛽3

⎞⎠
Since the phase of neutrinos can be redefined, we have 3 phases for each flavour and a global phase being arbitary. The
first matrix on the RHS can be eliminated. The third matrix on the RHS is not important for neutrino oscillations
so it can be neglected. (Proof required)

18 Chapter 6. Oscillations - In General
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In ultra relativistic case, we can simply find out the time evolution, which is equivalent to distance evolution,

|𝜓(𝑡)⟩ =
∑︁
𝑗

𝑈*
𝛼𝑗𝐺𝑗(𝑡, 𝑡0) |𝜈𝑗 ; 𝑝𝑗⟩ .

The survival probability means how much neutrinos of a flavour left after some time or distance, which is calculated
by

𝑃 (𝜈𝑙 → 𝜈𝑙′) = |⟨𝜈𝑙′ | 𝜓(𝑡)⟩|2.

We can see clearly that the survival probability depends on some parameters.

Two Flavour Oscillation

To write down this clearly, we need to write down the mixing matrix and propagator. For simplicity, we calculate the
example of two flavour (a, b) oscillation.

It’s easier to write down the propagation in mass eiginstates so the first thing to work out is the mixing matrix.

Suppose we have only a flavour neutrino initially,

|𝜓(0)⟩ = |𝜈𝑎⟩

Mixing Matrix

The mixing matrix is an rotation of eigenbasis.

The flavour states can be expressed in terms of mass eigenstates,(︂
𝜈𝑎
𝜈𝑏

)︂
=

(︂
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)︂(︂
𝜈1
𝜈2

)︂
where the matrix

U =

(︂
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)︂
is the mixing matrix which is a rotation of basis geometrically. In other words, this matrix is the representation of the
rotation 𝑒𝑖𝜃.

Survival Probability

With the mixing matrix, the propagation of an initial state of only flavour a is

|𝜓(𝑡)⟩ = cos 𝜃 |𝜈1⟩ 𝑒−𝑖𝐸1𝑡 + sin 𝜃 |𝜈2⟩ 𝑒−𝑖𝐸2𝑡.

To find out the amplitude of flavour a, we need to project the state |𝜓(𝑡)⟩ onto a flavour eigenstate, say, |𝜈𝑎⟩,

⟨𝜈𝑎 | 𝜓(𝑡)⟩ = ⟨𝜈𝑎|
(︀
cos 𝜃 |𝜈1⟩ 𝑒−𝑖𝐸1𝑡 + sin 𝜃 |𝜈2⟩ 𝑒−𝑖𝐸2𝑡

)︀
= (cos 𝜃 |𝜈1⟩ + sin 𝜃 |𝜈2⟩)

(︀
cos 𝜃 |𝜈1⟩ 𝑒−𝑖𝐸1𝑡 + sin 𝜃 |𝜈2⟩ 𝑒−𝑖𝐸2𝑡

)︀
= cos2 𝜃𝑒−𝑖𝐸1𝑡 + sin2 𝜃𝑒−𝑖𝐸2𝑡

6.2. Vacuum Theory 19
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Fig. 6.1: Two flavour neutrino mixing diagram with 𝜃 being the mixing angle
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The survival probability is the amplitude squared,

𝑃𝑎𝑎 = |⟨𝜈𝑎 | 𝜓(𝑡)⟩|2

= |cos2 𝜃𝑒−𝑖𝐸1𝑡 + sin2 𝜃𝑒−𝑖𝐸2𝑡|2

=
(︀
cos2 𝜃𝑒−𝑖𝐸1𝑡 + sin2 𝜃𝑒−𝑖𝐸2𝑡

)︀* (︀
cos2 𝜃𝑒−𝑖𝐸1𝑡 + sin2 𝜃𝑒−𝑖𝐸2𝑡

)︀
= cos4 𝜃 + sin4 𝜃 + cos2 𝜃 sin2 𝜃𝑒𝑖(𝐸1−𝐸2)𝑡 + sin2 𝜃 cos2 𝜃𝑒−𝑖(𝐸1−𝐸2)𝑡

= cos4 𝜃 + sin4 𝜃 + cos2 𝜃 sin2 𝜃𝑒𝑖Δ𝐸𝑡 + sin2 𝜃 cos2 𝜃𝑒−𝑖Δ𝐸𝑡

= cos4 𝜃 + sin4 𝜃 + 2 cos2 𝜃 sin2 𝜃 cos(∆𝐸𝑡)

= (cos2 𝜃 + sin2 𝜃)2 − 2 cos2 𝜃 sin2 𝜃 + 2 cos2 𝜃 sin2 𝜃 cos(∆𝐸𝑡)

= 1 − 2 cos2 𝜃 sin2 𝜃(1 − cos(∆𝐸𝑡))

= 1 − sin2(2𝜃) sin2

(︂
∆𝐸𝑡

2

)︂
with the definition ∆𝐸 = 𝐸1 − 𝐸2 ≈ 𝑝1 + 1

2
𝑚2

1

𝑝1
− 𝑝2 − 1

2
𝑚2

2

𝑝2
. We usually calculate the case 𝑝1 = 𝑝2 = 𝑝 , which

takes us to

∆𝐸 ≈ 𝑚2
1 −𝑚2

2

2𝑝

=
𝛿2𝑚

2𝑝
.

with 𝛿2𝑚 = 𝑚2
1 −𝑚2

2. Most of the time we would like to know the oscillation with respect to distance. Using the
approximation 𝑡 = 𝐿 and ∆𝐸 ≈ 𝑚2

1−𝑚
2
2

2𝑝 , we have

𝑃𝑎𝑎 = 1 − sin2(2𝜃) sin2

(︂
∆𝐸𝐿

2

)︂
= 1 − sin2(2𝜃) sin2

(︂
𝛿𝑚2𝐿

4𝑝

)︂
.

This is the survival probability of flavour a neutrino with an initial state of flavour a.

There are several things to be noticed,

1. 𝜃 = 0 leads to oscillation free neutrinos.

2. ∆𝐸 = 0 or 𝛿2𝑚 = 0 (in the case of same momentum) also gives us no oscillation.

3. At 𝐿 = 0 the survival probability is 1, which means no oscillation is done.

Hamiltonian

It’s easy to write down the Hamiltonian for the mass state stationary Schrödinger equation. As we have proven, to first
order approximation,

𝐸 = 𝑝+
1

2

𝑚2

𝑝

H𝑗 =

(︃
𝑝+ 1

2
𝑚2

1

𝑝 0

0 𝑝+ 1
2
𝑚2

2

𝑝

)︃

= 𝑝I +
1

2𝑝

(︂
𝑚2

1 0
0 𝑚2

2

)︂

6.2. Vacuum Theory 21
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However, the Hamiltonian we prefer is the one for flavour eigenstates. To achieve this, we only need to rotate this
previous Hamiltonian using the mixing matrix U.

H𝛼 = U�̂�𝑗U
𝑇

=

(︂
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)︂(︂
𝑝I +

1

2𝑝

(︂
𝑚2

1 0
0 𝑚2

2

)︂)︂(︂
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

)︂
= 𝑝I +

1

2𝑝

(︂
cos2 𝜃𝑚2

1 + sin2 𝜃𝑚2
2 − sin 𝜃 cos 𝜃𝑚2

1 + sin 𝜃 cos 𝜃𝑚2
2

− sin 𝜃 cos 𝜃𝑚2
1 + sin 𝜃 cos 𝜃𝑚2

2 sin2 𝜃𝑚2
1 + cos2 𝜃𝑚2

2

)︂
= 𝑝I +

1

2𝑝

(︂
𝑚2

1 − 𝛿2𝑚 sin2 𝜃 − 1
2 sin 2𝜃𝛿𝑚2

− 1
2 sin 2𝜃𝛿𝑚2 𝑚2

2 + 𝛿𝑚2 sin2 𝜃

)︂
= 𝑝I +

1

2𝑝

(︂
1

2
(𝑚2

1 +𝑚2
2)I− 1

2

(︂
−𝛿𝑚2 cos 2𝜃 𝛿2𝑚 sin 2𝜃
𝛿𝑚2 sin 2𝜃 𝛿2𝑚 cos 2𝜃

)︂)︂
=

(︂
𝑝+

𝑚2
1 +𝑚2

2

4𝑝

)︂
I− 1

4𝑝

(︂
−𝛿𝑚2 cos 2𝜃 𝛿2𝑚 sin 2𝜃
𝛿𝑚2 sin 2𝜃 𝛿2𝑚 cos 2𝜃

)︂
Again we see clearly, no oscillation will apear as long as mixing angle 𝜃 = 0 or 𝛿𝑚2 = 0.

Note: The reason we can do this is that this mixing matrix is time and space independent. To see this, we first write
down the Schrödinger equation for mass eigenstates,

𝑖𝑑𝑡 |Φ𝑗⟩ = �̂�𝑗 |Φ𝑗⟩ .

Applying the mixing matrix,

𝑖𝑑𝑡U
−1 |Φ𝛼⟩ = �̂�𝑗U

−1 |Φ𝛼⟩ .

Notice that the mixing matrix, which is a rotation, is orthonormal, UU𝑇 = I. Then we have inverse of this matrix is
the same as the transpose.

𝑖𝑑𝑡U
𝑇 |Φ𝛼⟩ = �̂�𝑗U

𝑇 |Φ𝛼⟩ .

Multiply on both sides U and remember the fact that the mixing matrix is orthonormal, we have

𝑖𝑑𝑡 |Φ𝛼⟩ = U�̂�𝑗U
𝑇 |Φ𝛼⟩ .

Now we can define the Hamiltonian for flavour states,

H𝛼 = UH𝑗U
𝑇 .

Since Pauli matrices plus identity forms a complete basis for all 2 by 2 matrices, it our Hamiltonian can be written as

H =
𝛿2𝑚

4𝐸

(︂
− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃

)︂
=
𝛿2𝑚

4𝐸
(− cos 2𝜃𝜎z + sin 2𝜃𝜎x) .

Note: Pauli matrices are

𝜎𝑥 =

(︂
0 1
1 0

)︂
𝜎𝑦 =

(︂
0 −𝑖
𝑖 0

)︂
𝜎𝑥 =

(︂
1 0
0 −1

)︂
.
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In a more compact way,

𝜎𝑗 =

(︂
𝛿𝑗3 𝛿𝑗1 − 𝑖𝛿𝑗2

𝛿𝑗1 + 𝑖𝛿𝑗2 −𝛿𝑗3

)︂
.

Equation of Motion in Matter

Hamiltonian

We have already derived the Hamiltonian for vacuum oscillatioin,

𝐻𝑣 =
𝛿𝑚2

2𝐸

1

2

(︂
− cos 2𝜃𝑣 sin 2𝜃𝑣
sin 2𝜃𝑣 cos 2𝜃𝑣

)︂
,

where we would like to define a new matrix,

B =
1

2

(︂
− cos 2𝜃𝑣 sin 2𝜃𝑣
sin 2𝜃𝑣 cos 2𝜃𝑣

)︂
,

so that the vacuum Hamiltonian can be written as

𝐻𝑣 =
𝛿𝑚2

2𝐸
B

The effect of matter, as we have already discussed before, adds an extra term

𝐻𝑚 =
√

2𝐺𝐹𝑛𝑒𝐿.

Here we have

𝐿 =

(︂
1 0
0 0

)︂
.

Note: Previously in the MSW effect section, we have 𝐿 = 1
2𝜎3. The reason, as explained there, is that we can

always write down a 2 by 2 matrix using Pauli matrices and indentity matrix and identity matrix only shifts the overall
eigenvalue not the eigenvector so we can just drop the identity term.

One other term is the self-interaction of neutrinos, i.e., neutral-current neutrino-neutrino forward exchange scattering,

𝐻𝜈 =
√

2𝐺𝐹

∫︁
𝑑3p′(1 − p̂ · p̂′)(𝜌𝑝′ − 𝜌𝑝′).

The overall Hamiltonian is

𝐻 = 𝐻0 +𝐻𝑚 +𝐻𝜈 ,

where the vacuum Hamiltonian is

𝐻0 =
𝛿2𝑚

2𝐸
B

=
𝛿2𝑚

2𝐸
𝑈

(︂
1

2
𝜎3

)︂
𝑈†.
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Equation of Motion

From the Hamiltonian, Von Neumann equation is

𝑖
𝜕

𝜕𝑡
𝜌 = [𝐻, 𝜌]

In Picture chapter we have seen the definition of a polarization matrix. The components of a polarization vector (for
neutrinos) is given by

𝑃𝜔,𝑖 ∝ Tr(𝜌𝐸𝜎𝑖)

=
1

𝑛𝜈

|𝛿2𝑚|
2𝜔2

× Tr(𝜌𝐸𝜎𝑖).

For anitneutrinos, we have a negative 𝜔 which is defined as 𝜔 = 𝛿𝑚2

2𝐸 (neutrinos) and 𝜔𝜈 = − 𝛿𝑚2

2𝐸 (anitneutrinos).
The polarization is defined as

𝑃𝜔,𝑖 = − 1

𝑛𝜈

|𝛿2𝑚|
2𝜔2

× Tr(𝜌𝐸𝜎𝑖).

With all these definitions, Von Neumann equation multiply by �⃗� = 𝜎1𝑒1 + 𝜎2𝑒2 + 𝜎3𝑒3, we have

𝑖�̇�
∑︁
𝑖

𝜎𝑖𝑒𝑖 = [𝐻, 𝜌]
∑︁
𝑖

𝜎𝑖𝑒𝑖.

Notice that Pauli matrices are Hermitian and Unitary, we can alway insert the identity I = 𝜎𝑗𝜎
†
𝑗 .

Commutator and Cross Product

Commutator of two vectors,

�⃗�× �⃗� = (𝐴2𝐵3 −𝐴3𝐵2)𝑒1 + (𝐴3𝐵1 −𝐴1𝐵2)𝑒2 + (𝐴1𝐵2 −𝐴2𝐵3)𝑒3

Trace of Pauli Matrices

All Pauli matrices have vanishing trace. And what makes our calculation more convinient is that the trace of matrices
is invariant under cyclic permutation, that is

Tr(𝜎𝑖H𝜎𝑗) = Tr(H𝜎𝑗𝜎𝑖)

Notice that to have a non-vanishing trace we need 𝑖 = 𝑗. This property really saves our life.

As the definition, we have

H = �⃗� · �⃗�
𝜌 = �⃗� · �⃗�
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Using these we can rewrite the commutator

[𝐻, 𝜌] = [�⃗� · �⃗�, �⃗� · �⃗�]

=
∑︁
𝑖𝑘

(𝐻𝑖𝜎𝑖𝜌𝑘𝜎𝑘 − 𝜌𝑘𝜎𝑘𝐻𝑖𝜎𝑖)

=
∑︁
𝑖𝑘

(𝐻𝑖𝜌𝑘𝜎𝑖𝜎𝑘 − 𝜌𝑘𝐻𝑖𝜎𝑘𝜎𝑖)

=
∑︁
𝑖𝑘

𝐻𝑖𝜌𝑘(𝜎𝑖𝜎𝑘 − 𝜎𝑘𝜎𝑖)

=
∑︁
𝑖𝑘

𝐻𝑖𝜌𝑘[𝜎𝑖, 𝜎𝑘]

=
∑︁
𝑖𝑘

𝐻𝑖𝜌𝑘2𝑖𝜖𝑖𝑘𝑛𝜎𝑛

= 2𝑖
∑︁
𝑖𝑘

𝜖𝑖𝑘𝑛𝜎𝑛𝐻𝑖𝜌𝑘

Multiply by 𝜎𝑗 and take the trace, we get,

Tr(𝜎𝑗 [𝐻, 𝜌]) = 2𝑖Tr(
∑︁
𝑖𝑘

𝜖𝑖𝑘𝑛𝜎𝑗𝜎𝑛𝐻𝑖𝜌𝑘)

= 2𝑖
∑︁
𝑖𝑘

Tr(𝜖𝑖𝑘𝑗I𝐻𝑖𝜌𝑘)

= 2𝑖
∑︁
𝑖𝑘

𝜖𝑗𝑖𝑘𝐻𝑖𝜌𝑘Tr(I)

= 4𝑖𝜖𝑗𝑖𝑘𝐻𝑖𝜌𝑘.

The corresponding LHS after these work becomes

𝑖Tr(𝜎𝑗 �̇�𝑖𝜎𝑖) = 𝑖𝜕𝑡𝜌𝑗Tr(𝐼)

= 2𝑖𝑃𝑗

The Von Neuman equation becomes

˙⃗
𝑃 = 2�⃗� × 𝑃 .

We know explicitly what polarization vector is

𝑃𝑗 = ConstantTr(𝜌𝜎𝑗)

for neutrinos while

𝑃𝑗 = −ConstantTr(𝜌𝜎𝑗).

The vectorized Hamiltonian is

𝐻 = 𝐻𝑖𝜎𝑖.

Multiply by 𝜎𝑗 and take the trace,

Tr(𝐻𝜎𝑗) = 𝐻𝑗Tr(I),

that is,

Tr(𝐻𝜎𝑗) = 2𝐻𝑗 .
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Hamiltonian

The Hamiltonian for homogeneous isotropic environment is

𝐻 = 𝐻0 +𝐻𝑚 +𝐻𝜈

= 𝜔B + 𝜆L +
√︀
𝐺𝐹

∫︁ ∞

0

𝑑𝐸′(𝜌′𝐸 − 𝜌′𝐸).

Then the equation we need becomes

˙⃗
𝜔𝑃 = (𝜔�⃗� + 𝜆�⃗�+ 𝜇�⃗�) × 𝑃𝜔.

where �⃗� = Tr(B�⃗�), �⃗� = Tr(L�⃗�), �⃗� =
∫︀∞
−∞ 𝑑𝜔𝑃𝜔 .

Q&A

Question

What are some of the conventions used in liturature?

Answer

1. ∆𝑚2
𝑖𝑗 = 𝑚2

𝑖 −𝑚2
𝑗 .

2. Flavours of left hand neutrinos are mixing of mass eigen states, 𝜈𝑙𝐿 =
∑︀3
𝑗=1 𝑈𝑙𝑗𝜈𝑗𝐿(𝑥).

Question

Why can we use just quantum mechanics on relativistic neutrinos? In principle one should use quantum field theory
or at least relativistic quantum mechanics?

Answer

To be answered.

Question

What does the mixing angle mean exactly both in vacuum and matter environment?

Answer

There are several ways to illustrate this.

1. Rotation angle in flavour space. For simplicity I use a two component neutrino model.
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|𝜈1⟩ = cos 𝜃 |𝜈𝑒⟩ + sin 𝜃 |𝜈𝜇⟩
|𝜈2⟩ = − sin 𝜃 |𝜈𝑒⟩ + cos 𝜃 |𝜈𝜇⟩

This is a rotation in a plane with a generator 𝑒−𝑖𝜃. (Make a figure for this.) + (Write down the 3 components
model.)

2. Oscillation probability involves this angle too. It is a suppression of the oscillation probability.

3. From the view of quantum states, this angle determines how the flavour states are composed with mass eigen-
states, i.e., the fraction or probability of each mass eiginstates in a flavour state.

Question

What does wave packet in neutrino oscillation mean?

Answer

To Be Answered.

Question

How would a wave packet spread?

Answer

A Gaussian wave packet would spread or shrink. The key of this spreading or shrinking is the dispersion relation.

For non-relativistic Gaussian wave packet 𝜓(𝑥, 𝑡) = 𝑒−𝛼(𝑘−𝑘0)
2

in momentum basis with dispersion relation ~𝜔 =
~2𝑘2

2𝑚 , the expansion of packet is

∆𝑥 =

√︃
𝛼2 +

(︂
~𝑡
2𝑚

)︂2

.

Obviously, the RMS width spreads according to group velocity 𝑣𝑔 = ~0/𝑚.

However, the situation could be different for a relativistic neutrino.

Question

What will scattering do to a wave packet.

Answer

Momentum transfer for a plan wave case in Born approximation is

Refs & Notes
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CHAPTER 7

Vacuum Oscillation

Schrodinger equation is

𝑖𝜕𝑡 |Ψ⟩ = H |Ψ⟩ ,

where for relativistic neutrinos, the energy is

H𝑣𝑚 =

⎛⎝
√︀
𝑝2 +𝑚2

1 0 0

0
√︀
𝑝2 +𝑚2

2 0

0 0
√︀
𝑝2 +𝑚2

3

⎞⎠ ,

in which the energy terms are simplified using the relativistic condition

√︁
𝑝2 +𝑚2

𝑖 = 𝑝

√︃
1 +

𝑚2
𝑖

𝑝2

≈ 𝑝(1 +
1

2

𝑚2
𝑖

𝑝2
).

So Called Decoherence

Here we assume that they all have the same energy but different mass. The thing is we assume they have the same
velocity since the mass is very small. To have an idea of the velocity difference, we can calculate the distance travelled
by another neutrino in the frame of one neutrino.

Assuming the mass of a neutrino is 1eV with energy 10MeV, we will get a speed of 1 − 10−14 c. This 10−14 c will
make a difference about 3𝜇m in 1s.

Will decoherence happen due to this? For high energy neutrinos this won’t be a problem however for low energy
neutrinos this will definitely cause a problem for the wave function approach.Because the different mass eigenstates
will become decoherent gradually along the path.

A estimation of the decoherence length is

𝑙coh =
𝑣𝑔

∆𝑣𝑔
𝜎.
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To obtain the relation,

∆𝑥 = |𝑣1 − 𝑣2|𝑡coh
~𝑐

∆𝐸
= | 𝑚

2
1

2𝐸2
1

− 𝑚2
2

2𝐸2
2

|𝑡coh

~𝑐
∆𝐸

=
1

2𝐸
|∆𝑚2

12|𝑡coh

It should be made clear that this is not really decoherence but in the view of wave packet formalism different
propagation eigenstates will be far away from each other. As long as we put them together again we can overlap
and oscillate again. No quantum decoherence is happening at all.

In general the flavor eigenstates are the mixing of the mass eigenstates with a unitary matrix $mathbf U$, that is

|𝜈𝛼⟩ = 𝑈𝛼𝑖 |𝜈𝑖⟩ ,

where the 𝛼 s are indices for flavor states while the $i$s are indices for mass eigenstates.

To find out the equation of motion for flavor states, plugin in the initary tranformation,

𝑖𝑈𝛼𝑖𝜕𝑡 |𝜈𝑖⟩ = 𝑈𝛼𝑖𝐻
𝑚
𝑖𝑗 |𝜈𝑗⟩ .

We use index :math:{}^{vm}$ for representation of Hamiltonian in mass eigenstates in vacuum oscillations. Applying
the unitary condition of the transformation,

I = U†U,

I get

𝑖𝑈𝛼𝑖𝜕𝑡 |𝜈𝑖⟩ = 𝑈𝛼𝑖𝐻
𝑚
𝑖𝑗 𝑈

†
𝑗𝛽𝑈𝛽𝑘 |𝜈𝑘⟩ ,

which is simplified to

𝑖𝜕𝑡 |𝜈𝛼⟩ = 𝐻𝑓
𝛼𝛽 |𝜈𝛽⟩ ,

since the transformation is time independent.

The new Hamiltonian in the representations of flavor eigenstates reads

𝐻𝑓
𝛼𝛽 = 𝑈†

𝛼𝑖𝐻
𝑚
𝑖𝑗 𝑈𝑗𝛽 .

Survival Problem

The neutrino states at any time can be written as

|Ψ(𝑡)⟩ = 𝑋1 |𝜈1⟩ 𝑒−𝑖𝐸1𝑡 +𝑋2 |𝜈2⟩ 𝑒−𝑖𝐸2𝑡,

where 𝑋1 and $X_2$ are the initial conditions which are determined using the neutrino initial states.

Survival probalility is the squrare of the projection on an flavor eigenstate,

𝑃𝛼(𝑡) = |⟨𝜈𝛼 | Ψ(𝑡)⟩|2.

The calculation of this expression requires our knowledge of the relation between mass eigenstates and flavor eigen-
states which we have already found out.
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Recall that the transformation between flavor and mass states is

|𝜈𝑖⟩ = 𝑈−1
𝑖𝛼 |𝜈𝛼⟩ ,

which leads to the inner product of mass eigenstates and flavor eigenstates,

⟨𝜈𝛼 | 𝜈𝑖⟩ = ⟨𝜈𝛼|𝑈−1
𝑖𝛽 |𝜈𝛽⟩

= 𝑈−1
𝑖𝛽 𝛿𝛼𝛽

= 𝑈−1
𝑖𝛼 .

The survival probability becomes

𝑃𝛼(𝑡) = |⟨𝜈𝛼 | 𝑋1 |𝜈1⟩ 𝑒−𝑖𝐸1𝑡𝑋2 |𝜈2⟩ 𝑒−𝑖𝐸2𝑡⟩|2

= |𝑋1𝑒
−𝑖𝐸1𝑡⟨𝜈𝛼 | |𝜈1⟩⟩ +𝑋2𝑒

−𝑖𝐸2𝑡⟨𝜈𝛼 | 𝜈2⟩|2

= |
∑︁
𝑖

𝑋𝑖𝑒
−𝑖𝐸𝑖𝑡𝑈−1

𝑖𝛼 |2

=
∑︁
𝑖

𝑋*
1𝑒
𝑖𝐸𝑖𝑡𝑈†*

𝑖𝛼

∑︁
𝑖

𝑋𝑖𝑒
−𝑖𝐸𝑖𝑡𝑈†

𝑖𝛼

= |𝑋1|2𝑈†*
1𝛼𝑈

†
1𝛼 + |𝑋2|2𝑈†*

2𝛼𝑈
†
2𝛼 +𝑋*

1𝑋2𝑈
†*
1𝛼𝑈

†
2𝛼𝑒

𝑖𝐸1𝑡−𝑖𝐸2𝑡 +𝑋*
2𝑋1𝑈

†*
2𝛼𝑈

†
1𝛼𝑒

𝑖𝐸2𝑡−𝑖𝐸1𝑡

𝑈†*
𝑖𝛼 stands for the $i$th row and the 𝛼 th column of the matrix 𝑈†*.

Two Flavor States

Suppose the neutrinos are prepared in electron flavor initially, the survival probability of electron flavor neutrinos is
calculated using the result I get previously.

Electron neutrinos are the lighter ones, then I have 𝑎 = 𝑒 and denote 𝑏 = 𝑥.

Meaning of Mixing

In the small mixing angle limit, (︂
𝜈𝑒
𝜈𝑥

)︂
→
(︂

1 𝜃
−𝜃 1

)︂(︂
𝜈1
𝜈2

)︂
which is very close to an identity matrix. This implies that electron neutrino is more like mass eigenstate 𝜈1 . By 𝜈1
we mean the state with energy 𝛿𝑚2

4𝐸 in vacuum.

In fact the dynamics of the system is very easily solved without dive into the math. Suppose we have |𝜈𝑒⟩ initially,
which is

Ψ(𝑥 = 0) = |𝜈𝑒⟩ = cos 𝜃𝑣 |𝜈1⟩ − sin 𝜃𝑣 |𝜈2⟩ ,

the state of the system at distance 𝑥 is directly written down

Ψ(𝑥) = cos 𝜃𝑣 |𝜈1⟩ 𝑒−𝑖𝐸1𝑥 − sin 𝜃𝑣 |𝜈2⟩ 𝑒−𝑖𝐸2𝑥

= 𝑒−𝑖𝐸1𝑥(cos 𝜃𝑣 |𝜈1⟩ − sin 𝜃𝑣 |𝜈2⟩ 𝑒𝑖(𝐸1−𝐸2)𝑥).

Since a global phase doesn’t change the detection, we write the state as

Ψ(𝑥) = cos 𝜃𝑣 |𝜈1⟩ − sin 𝜃𝑣 |𝜈2⟩ 𝑒𝑖(𝐸1−𝐸2)𝑥.
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Notice that the period of the expression is

𝑙𝑣 =
2𝜋

𝐸1 − 𝐸2
= − 4𝜋𝐸

∆𝑚12
.

Then the state becomes

Ψ(𝑥) = cos 𝜃𝑣 |𝜈1⟩ − sin 𝜃𝑣 |𝜈2⟩ 𝑒𝑖2𝜋𝑥/𝑙𝑣 .

The survival probability for electron neutrinos is

𝑃 (𝜈𝑒, 𝐿) = 1 − sin2(2𝜃𝑣) sin2

(︂
∆𝑚2𝐿

4𝐸

)︂
= 1 − 1

2
sin2 2𝜃𝑣

(︂
1 − cos

(︂
2𝜋𝑥

𝑙𝑣

)︂)︂

Refs and Notes
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CHAPTER 8

Interaction With Matter

MSW Effect

Physics of MSW

As neutrinos passing by matter, the effective mass coming from energy change becomes important thus changing it’s
eigenstates and propagation.

Neutrinos do interact with matter, mostly electrons in most cases.

\begin{fmfgraph*}(200,180)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{fermion}{i1,v1,o1}
\fmf{fermion}{i2,v2,o2}
\fmf{photon}{v1,v2}
\fmflabel{$v_e$}{i2}
\fmflabel{$e^-$}{i1}
\fmflabel{$v_e$}{o2}
\fmflabel{$e^-$}{o1}
\fmf{photon,label=$Z$}{v1,v2}

\end{fmfgraph*}

\begin{fmfgraph*}(200,180)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{fermion}{i1,v1,o1}
\fmf{fermion}{i2,v2,o2}
\fmf{photon}{v1,v2}
\fmflabel{$v_\tau$}{i2}
\fmflabel{$e^-$}{i1}
\fmflabel{$v_\tau$}{o2}
\fmflabel{$e^-$}{o1}
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\fmf{photon,label=$Z$}{v1,v2}
\end{fmfgraph*}

\begin{fmfgraph*}(200,180)
\fmfleft{i1,i2}
\fmfright{o1,o2}
\fmf{fermion}{i1,v1,o1}
\fmf{fermion}{i2,v2,o2}
\fmf{photon}{v1,v2}
\fmflabel{$v_e$}{i2}
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\fmflabel{$e^-$}{i1}
\fmflabel{$v_e$}{o1}
\fmflabel{$e^-$}{o2}
\fmf{photon,label=$W^{-}$}{v1,v2}

\end{fmfgraph*}

The one that is missing is the charged current for 𝑛𝑢𝜏 and 𝑒− interaction because of lepton number conservation.

The first two diagrams will add two equal terms on the diagonal terms of Hamiltonian, which can be viewed as adding
a number times identity matrix thus conserves the eigenstates while shifts the eigenvalues. However, the third diagram
will only add a term to the first diagonal term of Hamiltonian, which is the weak coupling ∆ =

√
2𝐺𝐹𝑛(𝑥) with 𝑛(𝑥)

being the number density of electrons.

Identity Matrix and Survival Probability

Identity matrix shifts the eigenvalues up and down homogeneously which changes the evolution of the state. However,
since this is only a phase, the calculation of the survival probability will kill this phase.

Weak Interaction

We can guess this interaction term using physics picture. This interaction should be proportional to density of electrons
with a coupling constant 𝐺𝐹 . Then check the dimensions.

[𝐺𝐹 ] = [𝐸]−2

[𝑛(𝑥)] = [𝐸]3

So the dimension is right. The missing constant is
√

2.

This symmetry breaking will change the evolution and makes the states more electron neutrino.

This is the reason of MSW effect.

In other words, the first requirement of MSW effect is that the electrons interacts with neutrinos and makes it in a
specific state that is heavy if the electron density is strong enough. Meanwhile, if the mixing angle is not that large,
a level crossing could happen making the state a light state as the density becomes vacuum. The other requirement,
which is obvious, is that the density change should be adiabatic, the meaning of which is the density profile of matter
gently reduces to vacuum, leaving enough reaction time for the neutrinos.

The MSW effect itself can be made clear using the example of neutrino oscillations in our sun.

Small Mixing Angle

Take two flavour mixing as an example. (︂
𝜈𝑒
𝜈𝑥

)︂
=

(︂
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

)︂(︂
𝜈1
𝜈2

)︂
In the small mixing angle limit, (︂

𝜈𝑒
𝜈𝑥

)︂
→
(︂

1 𝜃
−𝜃 1

)︂(︂
𝜈1
𝜈2

)︂
which is very close to an identity matrix. This implies that electron neutrino is more like mass eigenstate 𝜈1. By 𝜈1
we mean the state with energy 𝛿𝑚2

4𝐸 in vacuum.
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We need this intuitive picture to understand MSW effect. Electron neutrinos are almost identical to the low mass
neutrino mass eigenstate. However, as we will see, due to the matter interaction, the electron flavour neutrino is
corresponding to the HEAVY mass eigenstate. This is the key idea in physics of MSW effect.

The Hamiltonian for neutinos with neutrino-matter interaction (in flavour basis) is

H =
𝛿𝑚2

4𝐸

(︂
− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃

)︂
+

∆

2
𝜎3+∆I,

where the last term (green part) can be neglected because this term will only shift all the eigenvalues with the same
amount without changing the eigenvectors.

Define a quantities like 𝜔 = 𝛿𝑚2

2𝐸 for neutrinos ( �̄� = 𝛿𝑚2

−2𝐸 for antineutrinos) and ∆ =
√

2𝐺𝐹𝑛(𝑥) (which might be
denoted by 𝜈 =

√
2𝐺𝐹𝑛𝜈 in other lituratures).

Using Pauli matrices, I can decompose this to

H =
𝜔

2
= (− cos 2𝜃𝜎3 + sin 2𝜃𝜎1)+

∆

2
𝜎3+∆I

Note: As a reminder, ∆ =
√

2𝐺𝐹𝑛(𝑥).

Note: The red part is from the charged current Feynman diagram. We have a 𝜎3 matrix instead of an matrix like(︂
1 0
0 0

)︂
because we rewrite this matrix with Pauli matrices and identy. Then the identities are neglected.

This can be done properly because Pauli matrice and Identy matrix form a complete basis.

In a more compact form, this Hamiltonian is

H =
𝛿𝑚2

4𝐸
(− cos 2𝜃𝜎3 + sin 2𝜃𝜎1) +

∆

2
𝜎3

=

(︂
∆

2
− 𝛿𝑚2

4𝐸
cos 2𝜃

)︂
𝜎3 +

𝛿𝑚2

4𝐸
sin 2𝜃𝜎1

Note: Eigenvalues of 𝜎3 are 1 and -1 with corresponding eigenvectors(︂
1
0

)︂
and (︂

0
1

)︂
.

As we have mentioned, this Hamiltonian is in flavour basis. When mixing angle 𝜃 → 0, the eigenvectors are almost
eigenvectors of 𝜎3 which are electron neutrinos and x type neutrinos.

Interesting Limits
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Before we really solve the equation of motion, some interesting limits can be shown here.

Interaction ∆ is much larger than cacuum mixing terms. In this case, the Hamiltonian becomes diagonalized and
the neutrinos will stay on it’s flavour eigenstates in the propagation.

Interaction ∆ is much smaller than vacuum mixing terms. The propagation reduces to vacuum case.

To see this effect quantitively, we need to diagonalize this Hamiltonian (Can we actually diagonalize the equation
of motion? NO!). Equivalently, we can rewrite it in the basis of mass eigenstates {|𝜈𝐿(𝑥)⟩ , |𝜈𝐻(𝑥)⟩},

|𝜈𝐿(𝑥)⟩ = cos 𝜃(𝑥) |𝜈𝑒⟩ − sin 𝜃(𝑥) |𝜈𝜇⟩
|𝜈𝐻(𝑥)⟩ = sin 𝜃(𝑥) |𝜈𝑒⟩ − cos 𝜃(𝑥) |𝜈𝜇⟩ .

This new rotation in matrix form is(︂
|𝜈𝐿(𝑥)⟩
|𝜈𝐻(𝑥)⟩

)︂
=

(︂
cos 𝜃(𝑥) − sin 𝜃(𝑥)
sin 𝜃(𝑥) cos 𝜃(𝑥)

)︂(︂
|𝜈𝑒⟩
|𝜈𝑥⟩

)︂
= U−1

x

(︂
|𝜈𝑒⟩
|𝜈𝑥⟩

)︂

Diagonalize Hamiltonian

To diagonilize it, we need to multiply on both sides the rotation matrix and its inverse,

Hxd = U−1
x HUx.

The second step is to set the off diagonal elements to zero. By solving the equaions we can find the sin 2𝜃(𝑥) and
cos 2𝜃(𝑥).

Hxd = U−1
x (𝐴1𝜎1 +𝐴3𝜎3)Ux

=

(︂
𝐴3 cos 2𝜃(𝑥) −𝐴1 sin 2𝜃(𝑥) 𝐴3 sin 2𝜃(𝑥) +𝐴1 cos 2𝜃(𝑥)
𝐴3 sin 2𝜃(𝑥) +𝐴1 cos 2𝜃(𝑥) −𝐴3 cos 2𝜃(𝑥) +𝐴1 sin 2𝜃(𝑥)

)︂
,

where

𝐴3 =
∆

2
− 𝛿2𝑚

4𝐸
cos 2𝜃

𝐴1 =
𝛿2𝑚

4𝐸
sin 2𝜃.

Set the off-diagonal elements to zero,

𝐴3 sin 2𝜃(𝑥) +𝐴1 cos 2𝜃(𝑥) = 0

So the solutions are

sin 2𝜃(𝑥) =
𝐴1√︀

𝐴2
1 +𝐴2

3

cos 2𝜃(𝑥) =
−𝐴3√︀
𝐴2

1 +𝐴2
3

.

Plug in 𝐴1 and 𝐴3

sin 2𝜃(𝑥) =
sin 2𝜃𝑣√︁(︀

Δ
𝜔

)︀2
+ 1 − 2Δ

𝜔 cos 2𝜃𝑣

cos 2𝜃(𝑥) =
cos 2𝜃𝑣 − Δ

𝜔√︁(︀
Δ
𝜔

)︀2
+ 1 − 2Δ

𝜔 cos 2𝜃𝑣

.
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Define ∆̂ = Δ
𝜔 with 𝜔 = Δ𝑚2

2𝐸 , which represents the matter interaction strength compared to the vacuum oscillation.

sin 2𝜃(𝑥) =
sin 2𝜃𝑣√︀

∆̂2 + 1 − 2∆̂ cos 2𝜃𝑣

cos 2𝜃(𝑥) =
cos 2𝜃𝑣 − ∆̂√︀

∆̂2 + 1 − 2∆̂ cos 2𝜃𝑣
.

This diagonalize the Hamiltonian LOCALLY. It’s not possible to diagonalize the Hamiltonian globally if the
electron number density is not a constant.

The point is, for equation of motion, we have a differentiation with respect to position 𝑥! So even we diagonalize
the Hamiltonian, the equation of motion won’t be diagonalized. An extra matrix will occur on the LHS and
de-diagonalize the Hamiltonian on RHS.

Note: As ∆ → ∞, 𝐴3 → ∞ and sin 2𝜃(𝑥) vanishes. Thus the neutrino will stay on flavour eigenstates.

With the newly defined heavy-light mass eigenstates, we can calculate the propagatioin of neutrinos,

𝑖~𝜕𝑡 |𝜓𝑥(𝑡)⟩ = ExtraMatrixFromLHS ·H𝑥𝑑 |𝜓𝑥(𝑡)⟩ ,

where the ExtraMatrixFromLHS comes from the fact that changing from flavor basis Ψ(𝑥) to heavy-light basis
Ψ𝑚(𝑥) using Um,

𝑖𝜕𝑥(UmΨ𝑚(𝑥)) = 𝐻(UmΨ𝑚(𝑥))

only returns

𝑖𝜕𝑥Ψ𝑚(𝑥) = HmdΨ𝑚(𝑥) − 𝑖U−1
m (𝜕𝑥Um)Ψ𝑚(𝑥).

We imediately know the propagation is on the heavy-light mass eigenstates under adiabatic condition WITHOUT
solving the equation. The eigenvalue of these states are −

√︀
𝐴2

3 +𝐴2
1 and

√︀
𝐴2

3 +𝐴2
1. The absolute value of these

solutions grow as ∆ becomes large.

Combining the two terms on RHS,

𝑖𝜕𝑥Ψ𝑚(𝑥) = HmΨ𝑚(𝑥),

where

Hm = Hmd − 𝑖U−1
m (𝜕𝑥Um).

The only part inside Um(x) that is space dependent is the number density of the electrons 𝑛(𝑥). Thus we know
immediately that the Hamiltonian is diagonalized if the number density is constant.

Is Adabatic Condition Valid Here?

Haxton’s paper.

Before going into the system, here is a discussion of adiabatic in thermodynamics.

From the two solutions we know there is a gap between the two trajectories. We draw a figure with electron number
density as the horizontal axis and energy as the vertical axis.
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Fig. 8.1: Neutrino physics by Wick C. Haxton and Barry R. Holstein.
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MSW Refraction, Resonance and More

Hysteresis Loops of Neutrino Oscillations Due to MSW Effect

Due to MSW effect, a system that is close to adiabaticity but not exactly adiabaticity could exhibit hysteresis effect,
i.e., neutrinos going from high density region to low density region then coming back could form a hysteresis loop.

TODO

1. Write down the effective potential 𝑉 (𝑥) which depends on the position. Refractive index is defined as 𝑛𝑟𝑒𝑓−1 =
𝑉
𝑝 .

2. Two characteristic length: 𝑙𝑣 = 4𝜋𝐸
𝛿𝑚2 as the vacuum oscillation length and 𝑙0 = 2𝜋

𝑉 as the refraction length.
As the becomes comparable resonance occurs. For small mixing angle cases, resonance happens when vacuum
length is about the length of refraction.

There are three different matrix representatioins that is useful to the calculations.

1. Flavor basis;

2. Vacuum mass eigenstate basis;

3. Instataneous mass eigenstate basis.

Basis of Hamiltonian

In vacuum mass eigenstate basis, the Hamiltonian without matter and self-interaction is easy and straightforward,

Hvmv = Hvp =
1

2𝐸

⎛⎝𝑚2
1 0 0

0 𝑚2
2 0

0 0 𝑚2
3

⎞⎠ .

To remove the trace, we can subtract a identity matrix

H− 𝑚2
1

2𝐸
I

=
1

2𝐸

⎛⎝𝑚2
1 0 0

0 𝑚2
2 0

0 0 𝑚2
3

⎞⎠− 𝑚2
1

2𝐸
I

=
1

2𝐸

⎛⎝0 0 0
0 ∆𝑚2

12 0
0 0 ∆𝑚2

13

⎞⎠
The interaction in flavor basis is

Vf =

⎛⎝√
2𝐺𝐹𝑛 0 0

0 0 0
0 0 0

⎞⎠ .

To write down the Hamiltonian in vacuum mass eigenstates, we transform the interaction term to vacuum mass
eigenstates by

Vvm = U−1VU,

where 𝑈 is the PMNS matrix.
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To write down the Hamiltonian in flavor basis, we transform the vacuum Hamiltonian to flavor basis after remove
the trace, which is

Hfv = UHvmvU
−1.

We could also write down the Hamiltonian matrix in instantaneous mass eigenstates, which requires a instanta-
neous diagonalization.

2 Flavor Neutrino Oscillations and Matter Effect

Solar Neutrinos

Electron neutrinos are produced in the core of the sun then the neutrinos would propagate out to the surface of the sun
without much difficulty. What is the predicted neutrino survival probability?

Interaction with matter plays a big role in neutrino oscillation. As shown previously, the interaction only affects (anti)
electron neutrinos. In other words, the interaction term in flavor basis is

𝑉𝑓 =

(︂
∆ 0
0 0

)︂
.

where ∆ =
√

2𝐺𝐹𝑛 and 𝑛 is the number density of the electrons. However, to do calculations, since identity matrix
doesn’t change the survival probability, we can always make the hamiltonian traceless, which becomes

𝐻𝑖 =
∆

2
𝜎3.

Constant Electron Number Density

Suppose we have an environment with constant electron number density, the term −𝑖U−1
m (𝜕𝑥Um) goes away. All we

have is the diagonalized new Hamiltonian Hmd and the eigenvalues are easily obtained which are

𝐸1 = 𝐴3 cos 2𝜃(𝑥) −𝐴1 sin 2𝜃(𝑥)

𝐸2 = −𝐴3 cos 2𝜃(𝑥) +𝐴1 sin 2𝜃(𝑥).

The final result for these two eigenvalues are

𝐸1 = −
√︂

∆2 + 𝜔2

4
− ∆𝜔

2
cos 2𝜃𝑣.

𝐸2 =

√︂
∆2 + 𝜔2

4
− ∆𝜔

2
cos 2𝜃𝑣..

Meanwhile the eigenstates are denoted as |𝜈𝑐1⟩ ‘𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ :ket{nu_{c2}}‘.

Two Special Cases

Two special cases,

1. cos 2𝜃𝑣 → 0;

2. cos 2𝜃𝑣 → 1.
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As for the survival probability for the initial condition that Ψ(𝑥 = 0) = |𝜈𝑐1⟩, the result has the same form as the
vacuum case, which is

𝑃𝑥(𝜈𝑒, 𝐿) = 1 − sin2(2𝜃𝑚) sin2

(︂
𝜔𝑚𝐿

2

)︂
,

where

sin 2𝜃(𝑥) =
𝜔 sin 2𝜃𝑣√

𝜔2 + ∆2 − 2𝜔∆ cos 2𝜃𝑣
.

𝜃𝑚 = 𝜃(𝑥) is the effective mixing angle which in fact doesn’t depend on 𝑥 if the matter profile is constant.

Vacuum Survival Probability

As an comparison, the vacuum result is

𝑃𝑥(𝜈𝑒, 𝐿) = 1 − sin2(2𝜃) sin2

(︂
𝜔𝐿

2

)︂
,

for all electron flavor initial condition.

Adiabatic Limit

In some astrophysical environments the electron number density changes very slowly which means the term
U−1

m 𝜕𝑥Um is much smaller than Hmd. By intuition we would expect that this term could be dropped to the low-
est order.

The eigen energies are slowing changing with the position of neutrinos,

𝐸1 = −𝜔
2

√︁
∆̂2 + 1 − 2∆̂ cos 2𝜃𝑣

𝐸2 =
𝜔

2

√︁
∆̂2 + 1 − 2∆̂ cos 2𝜃𝑣.

When the term ∆̂ is very small 1 − 2∆̂ cos 2𝜃𝑣 will dominate and the whole term decreases. On the other hand as ∆̂
becomes large, ∆̂2 will dominate and the whole term grows. Mathematically we could find the region when the part√︀

∆̂2 + 1 − 2∆̂ cos 2𝜃𝑣 decreases and increases.

The survival probability for the light neutrinos would be

𝑃𝑥(𝜈𝐿, 𝐿) = 1 − sin2(2𝜃(𝑥)) sin2

(︂
𝜔𝐿

2

)︂
.

The survival probability for electron flavor neutrino is

𝑃𝑥(𝜈𝑒, 𝐿) =
1

2
+

1

2
cos 2𝜃(𝑥0) cos 2𝜃𝑣,

if the neutrinos are produced in dense region and the detection happens in vacuum.

Adiabatic Limit of Nuetrino Oscillations in Matter

Before we move on to higher order corrections, it would be nice to understand this phenomenon.

1. The vacuum oscillation length can be extracted from vacuum oscillation survival probability. It is 𝐿𝑣 = 2𝜋
𝜔 .
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Fig. 8.2: Energy Levels for MSW effect. We have the up-down symmetry since we shifted the energy by a constant to
remove the identity matrix in the Hamiltonian.
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2. In this problem we have another energy scale which is the interaction, ∆. Here we can define another character-
istic length 𝑙𝑚 = 2𝜋

Δ .

3. MSW resonance happens when the two character lengths are matching with each other. Another way to put it
is that the term sin 2𝜃(𝑥) is minimized so that we have the smallest energy gap which leads to ∆̂ = cos 2𝜃𝑣 .
Equivalently this is the relation

𝑙0 = 𝑙𝑚 cos 2𝜃𝑣.

4. At resonance, we have

cos 2𝜃(𝑥) = 1

sin 2𝜃(𝑥) = 0.

This is max mixing of the states which means that at the resonance point(︂
𝜈𝐿(𝑥𝑟)
𝜈𝐻(𝑥𝑟)

)︂
=

√
2

2

(︂
1 −1
1 1

)︂(︂
𝜈𝑒
𝜈𝑥

)︂
5. Resonance conditions corresponds to a resonance density which is given by

𝑛𝑒(𝑥) =
𝜔√
2𝐺𝐹

cos 2𝜃𝑣 ≡ 𝑛0(𝐸,∆𝑚2) cos 2𝜃𝑣,

where 𝑛0(𝐸,∆𝑚2) = 𝜔√
2𝐺𝐹

is a characteristic number density which depends on the energy mixing angles and
∆𝑚2 of the neutrinos.

6. One should notice that if the condition sin2 2𝜃(𝑥) = sin2 2𝜃𝑣 is satisfied, the survival probability for |𝜈1⟩ has
the same the form of vacuum oscillation survival probability for electron neutrinos. The condition is solved,

∆̂2 + 1 − 2∆̂ cos 2𝜃𝑣 = 1,

which leads to

∆̂ = 0 or 2 cos 2𝜃𝑣.

The first condition is trivial which corresponds to vacuum however the second condition $Delta = 2cos 2theta_v
omega$ means the interaction oscillation length is doubled compared to resonance point.

Nevertheless, we should always remember to check what survival probability the expression is describing.
Here we have survival probability for :math:‘nu_L(x)‘. At 𝑛(𝑥) → 0 the oscillation becomes vacuum
oscillation.

General Discussion of Matter Effect

This part is a very general discussion of the matter effect [Parke1986].

To work in flavor basis, we use the subscript 𝑚𝑓 to denote the flavor basis representation with mass effect. The equation
of motion in flavor basis can be written down as

𝑖𝜕𝑥Ψ𝑚𝑓 (𝑥) = HmfΨ𝑚𝑓 (𝑥)

where

Hmf =

(︂
∆

2
− 𝜔

2
cos 2𝜃𝑣

)︂
𝜎3 +

𝜔

2
sin 2𝜃𝑣𝜎1.

There are three stages for neutrinos to travel from the core of the sun to vacuum.
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1. At the core, electron neutrinos are produced. The electron flavor state should be projected onto heavy and light
instantaneous mass eigenstates. What fallows is the that the propagation is adiabatic until the transition happens.
As we have seen in adiabatic situation, the states will stay in heavy and light states all along the evolution if the
system starts from heavy or light state,

|𝜈𝑎1(𝑥)⟩ = exp(−𝑖
∫︁ 𝑥

0

𝜔𝑚(𝑥)

2
𝑑𝑥) |𝜈𝐿(𝑥)⟩

|𝜈𝑎2(𝑥)⟩ = exp(𝑖

∫︁ 𝑥

0

𝜔𝑚(𝑥)

2
𝑑𝑥) |𝜈𝐻(𝑥)⟩ ,

where the heavy and light states are defined in the adiabatic situation previously. This is what happens before
the passing through of the resonance.

2. At the resonance point, light instantaneous mass eigenstate has a probability to jump to the heavy state and vice
versa. When it comes to the resonance point which is non-adiabatic propagation, the transition between the
states |𝜈𝐿⟩ → 𝑎𝐿 |𝜈𝐿(𝑥)⟩ + 𝑎𝐻 |𝜈𝐻(𝑥)⟩ |𝜈1(𝑥)⟩ and |𝜈𝐻⟩ → 𝑏𝐿 |𝜈𝐿(𝑥)⟩ + 𝑏𝐻 |𝜈𝐻(𝑥)⟩ will mix the heavy and
light state up.

|𝜈1(𝑥)⟩ = 𝑎𝐿 exp(−𝑖
∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)/2𝑑𝑥′) |𝜈𝐿(𝑥)⟩ + 𝑎𝐻 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)/2𝑑𝑥′) |𝜈𝐻(𝑥)⟩

|𝜈2(𝑥)⟩ = 𝑏𝐿 exp(−𝑖
∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)/2𝑑𝑥′) |𝜈𝐿(𝑥)⟩ + 𝑏𝐻 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)/2𝑑𝑥′) |𝜈𝐻(𝑥)⟩ ,

where the relations between the constants are determined using the condition that |𝜈1(𝑥)⟩ and |𝜈2(𝑥)⟩ are or-
thonormal, which leads to the conclusion that

𝑏𝐿 = −𝑎*𝐻
𝑏𝐻 = 𝑎*𝐿

|𝑎𝐿|2 = −|𝑎𝐻 |2.

3. After the resonance point, the heavy and light states will continue on their adiabatic propagation.

Helpful Notes

The relation between 𝜃𝑚 and 𝜃𝑣 is given by

𝜔𝑚 sin 2𝜃𝑚 = 𝜔 sin 2𝜃𝑣.

Electron neutrinos are produced in a dense region as |𝜈𝑒⟩, which are partially transformed to other the other neutrinos
due to matter and the resonance then it propagates as if it satisfies the adiabatic condition again. The initial state in
terms of light and heavy state is

|Ψ𝑚(𝑥0)⟩ = |𝜈𝑒⟩ = cos 𝜃𝑚(𝑥0) |𝜈𝐿(𝑥0)⟩ + sin 𝜃𝑚(𝑥0) |𝜈𝐻(𝑥0)⟩ .

The final state right before the resonance is

|Ψ𝑚(𝑥𝑟−)⟩ = cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂
|𝜈𝐿(𝑥𝑟−)⟩ + sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂
|𝜈𝐻(𝑥𝑟−)⟩

After the resonance the state is described by the general jumping

|Ψ𝑚(𝑥)⟩ = cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂(︂
𝑎𝐿 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′) |𝜈𝐿(𝑥)⟩ + 𝑎𝐻 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′) |𝜈𝐻(𝑥)⟩

)︂
+ sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂(︂
−𝑎*𝐻 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′) |𝜈𝐿(𝑥)⟩ + 𝑎*𝐿 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′) |𝜈𝐻(𝑥)⟩

)︂
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in which the 𝑥𝑟− is actually 𝑥𝑟 thus

|Ψ𝑚(𝑥)⟩ = cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂(︂
𝑎𝐿 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′) |𝜈𝐿(𝑥)⟩ + 𝑎𝐻 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′) |𝜈𝐻(𝑥)⟩

)︂
+ sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂(︂
−𝑎*𝐻 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′) |𝜈𝐿(𝑥)⟩ + 𝑎*𝐿 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′) |𝜈𝐻(𝑥)⟩

)︂
To calculate the survival probability it is easier to use flavor basis, hence we have another form of |Ψ𝑚(𝑥)⟩ which is

|Ψ𝑚(𝑥)⟩ =

[︂
cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
𝑎𝐿 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

− sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
𝑎*𝐻 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

]︂
|𝜈𝐿(𝑥)⟩

+

[︂
cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂
𝑎𝐻 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

+ sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂
𝑎*𝐿 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

]︂
|𝜈𝐻(𝑥)⟩

=

[︂
cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂
𝑎𝐿 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

− sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂
𝑎*𝐻 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

]︂
(cos 𝜃𝑚(𝑥) |𝜈𝑒⟩ − sin 𝜃𝑚(𝑥) |𝜈𝑥⟩)

+

[︂
cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂
𝑎𝐻 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

+ sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟−

𝑥0

𝜔𝑚(𝑥)

2
𝑑𝑥

)︂
𝑎*𝐿 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

]︂
(sin 𝜃𝑚(𝑥) |𝜈𝑒⟩ + cos 𝜃𝑚(𝑥) |𝜈𝑥⟩)

Since cos 𝜃𝑚, sin 𝜃𝑚 and 𝜔𝑚 are real while 𝑎𝐿 and 𝑎𝐻 are complex, survival amplitude of electron neutrinos is given
by

⟨Ψ𝑚(0) | Ψ𝑚(𝑥)⟩
=⟨𝜈𝑒 | Ψ𝑚(𝑥)⟩

=

[︂
cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
𝑎𝐿 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

− sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
𝑎*𝐻 exp(−𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

]︂
cos 𝜃𝑚(𝑥)

+

[︂
cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
𝑎𝐻 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

+ sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
𝑎*𝐿 exp(𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′)

]︂
sin 𝜃𝑚(𝑥)

=𝐴𝐿 exp

(︂
−𝑖
∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂

+𝐴𝐻 exp

(︂
𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
,

where the coefficients are

𝐴𝐿(𝑥) = cos 𝜃𝑚(𝑥)

[︂
𝑎𝐿 cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
− 𝑎*𝐻 sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂]︂

𝐴𝐻(𝑥) = sin 𝜃𝑚(𝑥)

[︂
𝑎𝐻 cos 𝜃𝑚(𝑥0) exp

(︂
−𝑖
∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂

+ 𝑎*𝐿 sin 𝜃𝑚(𝑥0) exp

(︂
𝑖

∫︁ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂]︂

.

The detection is in a region where matter density is very small, thus we use 𝑥→ ∞ which means the effective mixing
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angle becomes vacuum mixing angle. The probability is the square of the amplitude,

𝑃 (𝜈𝑒, 𝑥) = |⟨Ψ𝑚(0) | Ψ𝑚(𝑥)⟩|2

= |𝐴𝐿(𝑥) exp

(︂
−𝑖
∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂

+𝐴𝐻(𝑥) exp

(︂
𝑖

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′
)︂
|2

= |𝐴𝐿(𝑥)|2 + |𝐴𝐻(𝑥)|2 +𝐴*
𝐿(𝑥)𝐴𝐻(𝑥) exp(2𝑖𝜑) +𝐴*

𝐻(𝑥)𝐴𝐿(𝑥) exp(−2𝑖𝜑)

= |𝐴𝐿(𝑥)|2 + |𝐴𝐻(𝑥)|2 + 2Re(𝐴*
𝐿(𝑥)𝐴𝐻(𝑥) exp(2𝑖𝜑)),

where 𝜑 is defined as

𝜑 =

∫︁ 𝑥

𝑥𝑟

𝜔𝑚(𝑥′)

2
𝑑𝑥′.

Note that for any complex number (𝑎+ 𝑖𝑏)𝑒𝑖𝜑 ≡ 𝜌𝑒𝑖𝜓 ,

(𝑎+ 𝑖𝑏)𝑒𝑖𝜑 + 𝑐.𝑐. = 2𝜌 cos(𝜓 + 𝜑),

which means that the previous result can be simplified to

𝑃 (𝜈𝑒, 𝑥) = |𝐴𝐿(𝑥)|2 + |𝐴𝐻(𝑥)|2 + 2Re(𝐴*
𝐿(𝑥)𝐴𝐻(𝑥) exp(2𝑖𝜑))

= |𝐴𝐿(𝑥)|2 + |𝐴𝐻(𝑥)|2 + 2|𝐴*
𝐿(𝑥)𝐴𝐻(𝑥)| cos (2𝜑+ 𝜓𝐿𝐻) ,

with the definition that 𝜓𝐿𝐻(𝑥) is the argument of $A_L^*(x)A_H(x)$.

However the coefficients 𝑎𝐿 and 𝑎𝐻 are still not known yet. The trick is to average over the detection and production
position. The average over 𝑥 removes the cos term due to the dependent of 𝑥 for 𝜑 and averages cos2 𝜃𝑚(𝑥) to 1

2 ,
which results in

⟨𝑃 (𝜈𝑒, 𝑥)⟩𝑥 = cos2 𝜃𝑚(𝑥)(|𝑎𝐻 |2 cos2 𝜃𝑚(𝑥0) + |𝑎𝐿|2 sin2 𝜃𝑚(𝑥0))

+ sin2 𝜃𝑚(𝑥)(|𝑎𝐻 |2 cos2 𝜃𝑚(𝑥0) + |𝑎𝐿|2 sin2 𝜃𝑚(𝑥0))

+ (− cos2 𝜃𝑚(𝑥) + sin2 𝜃𝑚(𝑥)) cos 𝜃𝑚(𝑥0) sin 𝜃𝑚(𝑥0)(𝑎𝐻𝑎𝐿𝑒
−2𝑖𝜑′

+ c.c).

Applying the condition that |𝑎𝐿|2 + |𝑎𝐻 |2 = 1, the probability becomes

⟨𝑃 (𝜈𝑒, 𝑥)⟩𝑥 =
1

2
+

1

2
(1 − 2|𝑎𝐻 |2) cos 2𝜃𝑚(𝑥0) cos 2𝜃𝑣 − |𝑎𝐻𝑎𝐿| sin 2𝜃𝑚(𝑥0) cos 2𝜃𝑣 cos(2𝜑′ + 𝜓𝐿𝐻),

where 𝜓𝐿𝐻 is the argument of 𝑎𝐻𝑎𝐿 and 𝜑 is
∫︀ 𝑥𝑟

𝑥0

𝜔𝑚(𝑥′)
2 𝑑𝑥′ .

The average over production removes the last part.

Notice that in fact the detection happens in vacuum, which means 𝜃𝑚(𝑥) = 𝜃𝑣 .

⟨⟨𝑃 (𝜈𝑒, 𝑥)⟩𝑥⟩𝑥0
=

1

2
+

1

2
(1 − 2|𝑎𝐻 |2) cos 2𝜃𝑚(𝑥0) cos 2𝜃𝑣.

This means that the adiabatic result is of the form

𝑃 (𝜈𝑒, 𝑥)adiabatic =
1

2
(1 + cos 2𝜃𝑚 cos 2𝜃𝑣).

Define a transition probability at resonance

𝑃𝑟(𝜈𝐿 → 𝜈𝐻) = |𝑎2|2,

which can be determined by the Landau-Zener transition analytically (first order) to the first order.

8.2. MSW Refraction, Resonance and More 49
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CHAPTER 9

Collective Behavior

In a dense neutrino environment, neutrino oscillations could exhibit collective behaviors or synchronized behaviors.

The key of such a behavior is the self interaction between neutrinos.

Phonon

In solid state physics, phonons are the collective behavior of atom or molecule oscillations. The necessary condition
for such a behavior is the interaction between atoms or molecules.

Backgrounds of collective effect:

1. Matter background

2. Neutrino background a) sychronized oscillations: neutrino neutrino interaction potential is large compared to-
ordinary oscillation frequencies in vacuum/medium + large asymmetry between neutrino and antineutrino dis-
tributions b) bipolar oscillations: neutrino and antineutrino oscillate in opposite directions; non-zero vacuum
mixing angle + some conditions of mass hierarchy. neutrino-neutrino interaction ( 𝜇 =

√
2𝐺𝐹𝑛𝜈 ) is larger than

vacuum oscillatioin frequency 𝜔 = ∆𝑚 . like a torque applys to a top where instabilities happpen as the torque
force is too big (top wobbles and flips).

Ref

1. Raffelt, G. & Smirnov, A. Self-induced spectral splits in supernova neutrino fluxes. Phys. Rev. D 76, (2007).
(This paper includes a very brief summary of sychronized and bipolar.)

Collective Phenomenon

Neutrino-neutrino interaction can be described by the following Feymann diagram.

Electron neutrinos can exchange momentum with other neutrinos including itself. Suppose we have a muon neutrino
moving forward, and vacuum oscillations,
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Fig. 9.1: They just exchange their momenta.
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Fig. 9.2: Toy model

9.1. Collective Phenomenon 53
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At site 1, electron neutrino becomes muon neutrino after 1 oscillation length and moving top, while the muon neutrino
coming from the left becomes electron neutrino. If they interact, their momenta will be exchanged, leaving a muon
neutrino moving to the right and carrying the momentum of the neutrino moving up.

After the interaction at site 1, a electron neutrino is moving up and transforms to a muon neutrino at site 2. The
interaction at site 1 will be repeated all the way along the trajectory. And we have all muon neutrinos coming out right
of the sites which should be electron neutrinos if we only have vacuum oscillation.

This is a toy model of collective oscillation.

Spectral Split

A spectral split phenomenon has been observed in calculations.1

Fig. 9.3: Spectral split due to neutrino self interaction. Total flavour content is not changed however the flavour
exchange momentum which is refered to spectral split.

1 Duan, H., Fuller, G., Carlson, J. & Qian, Y.-Z. Simulation of coherent nonlinear neutrino flavor transformation in the supernova environment:
Correlated neutrino trajectories. Phys. Rev. D 74, (2006).
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Bipolar Model

Fig. 9.4: Biplar

The neutrinos are generated in two classes with the same number density thus making up two total flavour isospins.
Neutrino-neutrino interaction could make the oscillation unstable if it is too large.2

Dense Homogeneous Isotropic Neutrino Gas

The total flavour isospin could precess around effective hamiltonian like the precession of gyroscope with all the
indvidual flavour isospin precess around the total flavour isospin.

Refs & Notes

Some papers:

1. Collective neutrino flavor transformation in supernovae

2 Raffelt, G. & Smirnov, A. Self-induced spectral splits in supernova neutrino fluxes. Phys. Rev. D 76, (2007).
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CHAPTER 10

Qualitative Analysis

57
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CHAPTER 11

Instability

Instability of neutrino oscillation means the rapid growth of the oscillations.

Question

Where do we get the perturbations?

Answer

TBD.

Linear Stability Analysis

Bimodal Instability

An example of such intability happens in a system composed of equal amounts of neutrinos and antineutrinos. Flavour
transform occurs due to

𝜈𝑒 + 𝜈𝑒 ↔ 𝜈𝑥 + 𝜈𝑥.

Vacuum mixing angle triggers the flavour instability.

Neutrino oscillatioins are synchronized but with a small amplitude inside a SN core (suppressed by matter effects),1

which basically pin down the flavour transformation. As the flux reaches

1 Wolfenstein, L. Neutrino oscillations in matter. Phys. Rev. D 17, 23692374 (1978). Or check papers of MSW effect such as Wick Haxton’s
excellent review.
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Multi-angle Instability

Non-isotropic neutrino gas would have velocity (or momentum) related interactions, 1 − �⃗�𝑝 · �⃗�𝑞 , which is in fact a
1 − 2

√
𝜋√
3
𝑌 0
1 (𝜃, 𝜑) term.

A small anisotropy leads to a runaway flavor equipartition.2

MAA

Multi-azimuth angle (MAA) instability, first discovered by Georg Raffelt et al, in the work Axial Symmetry Breaking
in Self-Induced Flavor Conversion of Supernova Neutrino Fluxes ,3 is an intrinsic symmetry breaking. The point is to
allow angle modes to evolve independently.

This instability may come from the term that is related to the velocity of neutrinos in the Hamiltonian.

This could happen even for a perfectly symmetric emission.

Neutrino Self Interaction and Instability

Refs & Notes

.

2 Raffelt, G. & Smirnov, A. Self-induced spectral splits in supernova neutrino fluxes. Phys. Rev. D 76, (2007). In this paper the author adds a
small perturbation to a perfectly isotropic neutrino antineutrino gas. The results show multi-angle instability.

3 Raffelt, G., Sarikas, S. & Seixas, D. Axial Symmetry Breaking in Self-Induced Flavor Conversionof Supernova Neutrino Fluxes.
<http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.091101> Phys. Rev. Lett. 111, (2013).
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Fig. 11.1: A figure from Raffelt & Simirnov (2007) shows the instability from anisotropic small perturbations. Poten-
tial energy grows expotentially, where −𝐸1 = 𝜇/4�⃗�1

2
.

11.6. Refs & Notes 61
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CHAPTER 12

Pictures

There are several pictures to visualize the oscillations of neutrinos.

Magnetic Spin

Fig. 12.1: Image source: Larmor Precession .

Recall that torque of a magnetic spin in a magnetic field is calculated as

�⃗� = �⃗�× �⃗�,

while torque is by definition �⃗� = 𝑑
𝑑𝑡 �⃗�. So we have, for such a system, the equation of motion is

𝑑

𝑑𝑡
�⃗� = �⃗�× �⃗�.

In the case of electron quantum magnetic spin, �⃗� is proportional to the angular momentum �⃗�, i.e., �⃗� = −𝑒
2𝑚𝑒

�⃗� ∝ �⃗�.

So the equation of motion becomes

𝑑

𝑑𝑡
�⃗� ∝ �⃗�× �⃗�.

Equation of Motion for Neutrino Flavor Polarization Vector

That EoM is
𝑑

𝑑𝑡
𝑃𝜔 = (𝜔�⃗� + 𝜆�⃗�+ 𝜇�⃗�) × 𝑃𝜔,

where the quantities can be found in Duan, H., Fuller, G. & Qian, Y.-Z. Collective Neutrino Oscillations. Annu. Rev.
Nucl. Part. Sci. 60, 569–594 (2010).

Now it is clear that the two system has very similar EoM.
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Neutrino Flavour Isospin

Neutrino flavour isospin3

s = 𝜓𝑓†
𝜎

2
𝜓𝑓 ,

where

𝜓𝑓𝜈 =

(︂
𝑎𝜈𝑒
𝑎𝜈𝑥

)︂
𝜓𝑓𝜈 =

(︂
−𝑎𝜈𝑥
𝑎𝜈𝑒

)︂
The equation of motion for isospin is

𝑑

𝑑𝑡
s = s×Heff .

Previously we have already seen the equations for a spinning top,

𝑑

𝑑𝑡
�⃗� =

𝜕

𝜕𝑡
�⃗� − �⃗� × Ω⃗,

where Ω⃗ = �⃗��̇�. Consider conservation of momentum, we have

𝜕

𝜕𝑡
�⃗� = �⃗� × Ω⃗,

which is similar to the neutrino isospin equation of motion. Ω⃗ corresponds to Heff .

Coupled Pendulum

The equation of motion is (︃
− 𝑑2

𝑑𝑡2 −
(︀
𝑔
𝑙 + 𝑘

𝑚

)︀
𝑘
𝑚

𝑘
𝑚 − 𝑑2

𝑑𝑡2 −
(︀
𝑔
𝑙 + 𝑘

𝑚

)︀)︃(︂𝑥
𝑦

)︂
=

(︂
0
0

)︂
Using Fourier transform, we will get the solutions,(︂

𝑥
𝑦

)︂
=

(︂
1
1

)︂
𝐴1 cos(𝜔1𝑡+ 𝜑1) +

(︂
1
−1

)︂
𝐴2 cos(𝜔2𝑡+ 𝜑2)

Recall that the state of neutrino after time 𝑡 is

|𝜓(𝑡)⟩ = 𝐴1 |𝜈1⟩ 𝑒−𝑖𝐸1𝑡 +𝐴2 |𝜈2⟩ 𝑒−𝑖𝐸2𝑡,

where 𝐴1 and 𝐴2 are determined by initial condition. The real part of this, is exactly the same as the solution to
coupled pendulum, where the physics is the transfer from one eigenstate to another.

3 Collective neutrino flavor transformation in supernovae

64 Chapter 12. Pictures

http://journals.aps.org/prd/abstract/10.1103/PhysRevD.74.123004


Neutrino Documentation, Release Pi

Gyroscope or Spinning Top Picture

A Classical Top

The key concept of a classical gyroscope is the balance between gravity and angular momentum conservation, i.e.,
angular conservation in specific directions.

Angular momentum for a 3D rigid body with a axial symmetry in a ˙⃗
𝐼 = 0 frame is

�⃗� →

⎛⎝𝐼0𝜔𝑥𝐼0𝜔𝑦
𝐼𝜔𝑧

⎞⎠
The gyroscope should obey Euler’s equations with extra Coriolis terms since we have decided to work in a rotation

frame ( ˙⃗
𝐼 = 0),1

𝑀𝑥 = 𝐼0(𝜃 − �̇�2 sin 𝜃 cos 𝜃) + 𝐼�̇� sin 𝜃(�̇� cos 𝜃 + �̇�)

𝑀𝑦 = 𝐼0(𝜑 sin 𝜃 + 2�̇�𝜃 cos 𝜃) − 𝐼𝜃(�̇� cos 𝜃 + �̇�)

𝑀𝑧 = 𝐼(𝜓 + 𝜑 cos 𝜃 − �̇�𝜃 sin 𝜃)

with the torque for a top being

𝑀𝑥 = 𝑚𝑔𝑧𝐺 sin 𝜃

𝑀𝑦 = 0

𝑀𝑧 = 0.

Note: �̇� is the spin of the top itself. More generally, the Euler equation is

I · �̇� + 𝜔 × (I · 𝜔) = M.

1 Read Carl’s lecture notes of Classical Mechanics for this derivation.
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Steady Precession

A steady precession maintains the angle 𝜃.

Now we have 𝜃 = 0 so the Euler’s equations reduces to,

�̇�(𝐼(�̇� cos 𝜃 + �̇�) − 𝐼0�̇� cos 𝜃) = 𝑀𝑥 ≡ 𝑚𝑔𝑧𝐺

For a steady state usually we can use this approximation �̇� ≫ �̇�.

�̇� =
𝑚𝑔𝑧𝐺

𝐼�̇�
.

Now define Ω = �̇� and 𝜔 = �̇�. Our approximation becomes 𝜔 ≫ Ω.
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Unsteady Precession

Polarization Vector

Polarization (for a two state system) is the difference of the probabilities of finding the system in the two difference
normal states (spin up and spin down for example).

Density Matrix

For a two-state system, an example of density matrix is

𝜌 = 𝑊1 |𝜓𝑎⟩ ⟨𝜓𝑎| +𝑊2 |𝜓𝑏⟩ ⟨𝜓𝑏| .

When {|𝜓𝑎⟩ , |𝜓𝑏⟩} basis is chosen, density matrix can be written as a matrix,

𝜌 =

(︂
𝑊1 0
0 𝑊2

)︂
,

in which the two constants are the probability to find the system in each states respectively and they are called the
population.

Rewrite the density matrix with Pauli matrices and identity,

𝜌 =
1

2
(I + �⃗�𝑃 ).

Note: The reason we have a 1
2 is that by definition polarization vector is

𝜌 = 𝑎0I + 𝜎x𝑎𝑥 + 𝜎y𝑎𝑦 + 𝜎z𝑎𝑧

= 𝑎0I + �⃗��⃗�.

However, trace of density matrix should be 1, which means Tr𝜌 = 𝑎02 = 1 and we can find 𝑎0 = 1
2 noting that

Tr𝜎𝑖 = 0.

The important fact is that the values of polarization depends on the choice of basis.

More physical meanings can be obtained by chosing a good basis so that the density matrix is diagonalised by express-
ing it with components of polarization.4

4 Read quantum statistics book if more is needed.
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Polarization, as the name indicates, should equal to

𝑃 = 𝑊1 −𝑊2

when it is aligned with z direction of Pauli matrices. Polarization vector is not a vector in real space but a vector of an
imagined space.

Take Out The Components

How to project out the components of polarization vector? By multiplying on both sides the Pauli matrices.

Note that for Pauli matrices

𝜎𝑖𝜎𝑗 = 𝜖𝑖𝑗𝑘𝜎𝑘 + 𝛿𝑖𝑗I.

Multiplying by 𝜎𝑗 on both sides of 𝜌 = 1
2 (I + 𝑃 · �⃗�), we get

𝜌𝜎𝑗 =
1

2
(I + 𝑃 · �⃗�)𝜎𝑘.

Apply the sigma algebra we discussed there, the result of this is

𝜌𝜎𝑗 =
1

2
(𝜎𝑘 + 𝑃𝑖𝜎𝑖𝜎𝑗)

2𝜌𝜎𝑗 − 𝜎𝑘 = 𝑃𝑖(𝜖𝑖𝑗𝑘𝜎𝑘 + 𝛿𝑖𝑗I)

We know that the trace of any Pauli matrix is zero. Take the trace of the equation,

Tr𝜎𝑗 = 𝑃𝑗 .

All done.

Neutrino-neutrino Interaction and BCS Theory

BCS

BCS Hamiltonian is

�̂�𝐵𝐶𝑆 =
∑︁
𝑘

2𝜖𝑘𝑡
0
𝑘 − |𝐺|𝑇 †𝑇

Neutrino self interaction Hamiltonian is

�̂� =
∑︁
𝑝

𝛿2𝑚

2𝑝
�̂� · 𝐽𝜌|

√
2𝐺𝐹
𝑉

𝐽 · 𝐽.
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CHAPTER 13

Models

Homogeneous and Isotropic Neutrino Gas

𝑃𝜔 can be time-independent.

Regarding the discussion in Pictures, we know immediately that �⃗� is aligned or anti-aligned with 𝑃𝜔 since

�⃗� × 𝑃𝜔 = 0,

as 𝑃𝜔 is time-independent.

Anyway the equation we need to solve is then

�⃗�

What to expect?

Without solving the equation, we know that

Solving Eqns
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CHAPTER 14

Neutrino Oscillation And Master Equation

Question

Why do we think about master equation?

Answer

The terms we care the most are the populations of the states. One of the treatment of quantum master equation is to
write down the closed equations for population terms only. A very beautiful example is the projection method invented
by Zwawzig and Nakajiwa.

WHY

Why do you need a master equation approach? IDK.

Quantum Master Equation

Projection Technique

First of all define a diagonalizing operator �̂� which just keeps the diagonal elements and simply drops the off diagonal
elements. We see that 1 − �̂� will element all diagonal elements.

We can define the diagonalized density matrix as 𝜌𝑑 = �̂�𝜌 and off-diagonalized density matrix as 𝜌𝑜𝑑 = (1 − �̂�)𝜌.
As an application,

𝜌 = 𝜌𝑑 + 𝜌𝑜𝑑.
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Starting from the von Neumann equation,

𝑖~𝜕𝑡𝜌 =
[︁
�̂�, 𝜌

]︁
.

By using the Liouville operator,

𝜕𝑡𝜌 = −𝑖�̂�𝜌.

Apply �̂� and 1 − �̂� to the von Neumann equation,

𝜕𝑡𝜌𝑑 = −𝑖�̂��̂�𝜌
𝜕𝑡𝜌𝑜𝑑 = −𝑖(1 − �̂�)�̂�𝜌.

Use the relation that 𝜌 = 𝜌𝑑 + 𝜌𝑜𝑑, we have

𝜕𝑡𝜌𝑑 = −𝑖�̂��̂�𝜌𝑑 − 𝑖�̂��̂�𝜌𝑜𝑑

𝜕𝑡𝜌𝑜𝑑 = −𝑖(1 − �̂�)�̂�𝜌𝑑 − 𝑖(1 − �̂�)�̂�𝜌𝑜𝑑.

Solve the second equation using Green function technique,

𝜌𝑜𝑑 = 𝑒−𝑖(1−�̂�)�̂�𝑡 +

∫︁ 𝑡

0

𝑑𝑡′𝑒−𝑖(1−�̂�)�̂�(𝑡−𝑡′)(−𝑖(1 − �̂�)�̂�𝜌𝑑(𝑡
′)).

Hint: Recall that the solution for

�̇� + 𝛼𝑦 = 𝑓

is

𝑦 = 𝑒−𝛼𝑡𝑦(0) +

∫︁ 𝑡

0

𝑑𝑡′𝑒−𝛼(𝑡−𝑡
′)𝑓(𝑡′).

Insert this solution to the equation of 𝜌𝑑,

𝜕𝑡𝜌𝑑 = −𝑖�̂��̂�𝜌𝑑 − �̂��̂�

∫︁ 𝑡

0

𝑑𝑡′𝑒−𝑖(1−�̂�)�̂�(𝑡−𝑡′)(1 − �̂�)�̂�𝜌𝑑(𝑡
′)−𝑖�̂��̂�𝑒−𝑖(1−�̂�)�̂�𝑡𝜌𝑜𝑑(0).

What happened to the blue term? It disapears when we apply the initial random phase condition.

When it happens we get our closed master equation for 𝜌𝑑, which is an equation for the probability.

In our case of neutrinos, random phase condition is not really needed since we usually deal with the situation that
electron neutrinos are appearant only.

In details, we have such a density matrix,

𝜌 =

(︂
𝜌𝑎𝑎 𝜌𝑎𝑏
𝜌𝑏𝑎 𝜌𝑏𝑏

)︂
.

The quantum master equation we would like to use is

𝜕𝑡𝜌𝑑 = −𝑖�̂��̂�𝜌𝑑 − �̂��̂�

∫︁ 𝑡

0

𝑑𝑡′𝑒−𝑖(1−�̂�)�̂�(𝑡−𝑡′)(1 − �̂�)�̂�𝜌𝑑(𝑡
′).
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Vacuum Oscillation Master Equation

Using this projection method, one can find out the master equation for vacuum oscillations.

Pauli Matrices

We will use Pauli matrices in the following part. Here is a review of them.

1. Pauli Matrices,

𝜎1 =

(︂
0 1
1 0

)︂
𝜎2 =

(︂
0 −𝑖
𝑖 0

)︂
𝜎3 =

(︂
1 0
0 −1

)︂
.

2. Commutation Relations,

[𝜎1, 𝜎2] = 2𝑖𝜎3

[𝜎2, 𝜎3] = 2𝑖𝜎1

[𝜎3, 𝜎1] = 2𝑖𝜎2.

The general form is

[𝜎𝑖, 𝜎𝑗 ] = 2𝑖𝜖𝑖𝑗𝑘𝜎𝑘.

All the Pauli matrices plus identity form a complate basis for 2 by 2 matrices. Vacuum oscillation Hamiltonian is

H → 𝛿2𝑚

4𝐸

(︂
− cos 2𝜃 sin 2𝜃
sin 2𝜃 cos 2𝜃

)︂
≡
(︂
−𝑐 𝑠
𝑠 𝑐

)︂
= −𝑐

(︂
1 0
0 −1

)︂
+ 𝑠

(︂
0 1
1 0

)︂
= −𝑐𝜎3 + 𝑠𝜎1,

where 𝑐 ≡ 𝛿2𝑚
4𝐸 cos 2𝜃 and similarly for s.

Liouville Operator

Liouville operator in quantum mechanics is

�̂� = [𝐻, *],

where the asterisk is the slot for an operator.

In the case of vacuum oscillation, we can calculate the following results,

�̂�𝜎1 = [𝐻,𝜎1] = −2𝑖𝑐𝜎2

�̂�𝜎2 = [𝐻,𝜎2] = 2𝑖𝑐𝜎1 + 2𝑖𝑠𝜎3.
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Notice that 𝜎3 has diagonal terms only. It will dispear when we apply 1 − D which removes the diagonal elements,
i.e.,

(1 − D)�̂�𝜎1 = −2𝑖𝑐𝜎2

(1 − D)�̂�𝜎2 = 2𝑖𝑐𝜎1.

Diagonalized density matrix 𝜌𝑑 = diag(𝜌1, 𝜌2) is

𝜌d =

(︂
𝜌1 0
0 𝜌2

)︂
=

1

2

(︂(︂
𝜌1 − 𝜌2 0

0 𝜌2 − 𝜌1

)︂
+

(︂
𝜌1 + 𝜌2 0

0 𝜌1 + 𝜌2

)︂)︂
=

1

2
((𝜌1 − 𝜌2)𝜎3 + (𝜌1 + 𝜌2)I)

Note: Actually 𝜌1 + 𝜌2 = 1 for such a system. We’ll see the proof of this later.

Apply (1 − D)�̂� we get

(1 − D)�̂�𝜌𝑑 = 𝑖𝑠(𝜌2 − 𝜌1)𝜎2,

D�̂�𝜌𝑑 = −1

2
𝑐(𝜌1 + 𝜌2)𝜎3.

Exponential Operator

Exponential operator is understood when series expansion is done,

𝑒𝐴 = 𝐼 +𝐴+
1

2!
𝐴2 +

1

3!
𝐴3 + · · ·

Recall that the master equation is

𝜕𝑡𝜌𝑑(𝑡) = −𝑖D�̂�𝜌𝑑 − D�̂�

∫︁ 𝑡

0

𝑑𝑡′𝑒−𝑖(1−D)�̂�(𝑡−𝑡′)(1 − D)�̂�𝜌𝑑(𝑡
′)

=
1

2
𝑖𝑐(𝜌1 + 𝜌2)𝜎3 − D�̂�

∫︁ 𝑡

0

𝑑𝑡′
(︁
𝑖𝑠(𝜌2 − 𝜌1)𝑒−𝑖(1−D)�̂�(𝑡−𝑡′)𝜎2

)︁
So we need to calculate

𝑒−𝑖(1−D)�̂�(𝑡−𝑡′)𝜎2 =

[︂
1 − 𝑖(1 − D)�̂�(𝑡− 𝑡′) +

1

2
(−𝑖(1 − D)�̂�(𝑡− 𝑡′))2 +

1

3!
(−𝑖(1 − D)�̂�(𝑡− 𝑡′))3 + · · ·

]︂
𝜎2

≡ 𝑇0 + 𝑇1 +
1

2
𝑇2 +

1

3!
𝑇3 + · · · .

We will calculate it term by term and find the pattern.

𝑇0 = 𝜎2

𝑇1 = −𝑖(1 − D)�̂�(𝑡− 𝑡′)𝜎2

= 2𝑐𝜎1(𝑡− 𝑡′)
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𝑇2 = −𝑖(1 − D)�̂�(𝑡− 𝑡′)(2𝑐𝜎1(𝑡− 𝑡′))

= −𝑖(𝑡− 𝑡′)22𝑐(−2𝑖𝑐𝜎2)

= −22𝑐2(𝑡− 𝑡′)2𝜎2

𝑇3 = −𝑖(1 − D)�̂�(𝑡− 𝑡′)(−4𝑐2(𝑡− 𝑡′)2𝜎2)

= −23𝑐3(𝑡− 𝑡′)3𝜎1

𝑇4 = −𝑖(1 − D)�̂�(𝑡− 𝑡′)(−23𝑐3(𝑡− 𝑡′)3𝜎1)

= −𝑖(𝑡− 𝑡′)(−23𝑐3(𝑡− 𝑡′)3)(−2𝑖𝑐𝜎2)

= 24𝑐4(𝑡− 𝑡′)4𝜎2

𝑇5 = −𝑖(1 − D)�̂�(𝑡− 𝑡′)24𝑐4(𝑡− 𝑡′)4𝜎2

= −𝑖(𝑡− 𝑡′)24𝑐4(𝑡− 𝑡′)42𝑖𝑐𝜎1

= 25𝑐5(𝑡− 𝑡′)5𝜎1

Carry on this calculation we can infer that

𝑒−𝑖(1−D)�̂�(𝑡−𝑡′)𝜎2 = 𝜎2 + 2𝑐𝜎1(𝑡− 𝑡′) +
1

2
(−22𝑐2(𝑡− 𝑡′)2𝜎2) +

1

3!
(−23𝑐3(𝑡− 𝑡′)3𝜎1) +

1

4!
24𝑐4(𝑡− 𝑡′)4𝜎2 +

1

5!
25𝑐5(𝑡− 𝑡′)5𝜎1 + · · ·

Taylor Series

Taylor series of sin𝑥 and cos𝑥 around 𝑥 = 0 are

sin𝑥 = 𝑥− 1

3!
𝑥3 +

1

5!
𝑥5 + · · ·

cos𝑥 = 1 − 1

2!
𝑥2 +

1

4!
𝑥4 + · · · .

Now we see that

𝑒−𝑖(1−D)�̂�(𝑡−𝑡′)𝜎2 = 𝜎1 sin(𝑀) + 𝜎2 cos(𝑀),

where 𝑀 ≡ 2𝑐(𝑡− 𝑡′).

The master equation we need is

𝜕𝑡𝜌𝑑(𝑡) =
1

2
𝑖𝑐(𝜌1 + 𝜌2)𝜎3 − D�̂�

∫︁ 𝑡

0

𝑑𝑡′𝑖𝑠(𝜌2 − 𝜌1) (𝜎1 sin(2𝑐(𝑡− 𝑡′)) + 𝜎2 cos(2𝑐(𝑡− 𝑡′)))

=
1

2
𝑖𝑐(𝜌1 + 𝜌2)𝜎3 − D�̂�𝑖𝑠

∫︁ 𝑡

0

𝑑𝑡′(𝜌2 − 𝜌1) (𝜎2 cos(2𝑐(𝑡− 𝑡′)))

=
1

2
𝑖𝑐(𝜌1 + 𝜌2)𝜎3 − 𝑖𝑠𝐺(𝑡)D�̂�𝜎2

=
1

2
𝑖𝑐(𝜌1 + 𝜌2)𝜎3 + 2𝑠2𝐺(𝑡)𝜎3

=
1

2
𝑖𝑐(𝜌1 + 𝜌2)𝜎3 + 2𝑠2

∫︁ 𝑡

0

𝑑𝑡′(𝜌2 − 𝜌1)𝜎3 cos(2𝑐(𝑡− 𝑡′))

=
1

2
𝑖𝑐(𝜌1 + 𝜌2)𝜎3 + 2𝑠2

∫︁ 𝑡

0

𝑑𝑡′ (−2𝜌𝑑(𝑡
′) + (𝜌1 + 𝜌2)I) cos(2𝑐(𝑡− 𝑡′))

=
1

2
𝑖𝑐𝜎3 + 2𝑠2

∫︁ 𝑡

0

𝑑𝑡′ (−2𝜌𝑑(𝑡
′) + I) cos(2𝑐(𝑡− 𝑡′))

In the calculation, 𝐺 =
∫︀ 𝑡
0
𝑑𝑡′(𝜌2 − 𝜌1) cos(2𝑐(𝑡− 𝑡′)).
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What to Do?

I don’t see anything good about this method. What to do next? I can predict that it’s also won’t cost a lot to solve the
MSW effect. But what’s the point? These problems are not very hard to solve even using wave function method.

I am just leaving this result here and move on to other topics.

Neutrino Oscillation in Matter - A Possible Master Equation Approach

Self Interaction Between Neutrinos

The neutrino-neutrino interaction Hamiltonian involves the density matrix, which makes it very hard to find a closed
equation.

.
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CHAPTER 15

Effect of Gravitation

The effect of gravitation on neutrino oscillation could be great around a neutron star.

The spacetime are distorted around the neutron star.

• Time gradient/delay; Shapiro delay;

• Space geometry/trajectory; self-interaction �⃗� · �⃗�′;

• Redshift;

• Tidal effect;

• Coupling of space and time due to cross terms (might need quantum field theory in curved spacetime);

• Lense-Thirring effect.

Evaluation

The equation of motion in a linear approximation (with respect to 𝜅) is

𝑑

𝑑𝜏
𝑢𝜇 +

(︁
𝜅ℎ𝜇𝛼,𝛽𝑢

𝛼𝑢𝛽 − 𝜅

2
ℎ𝛼𝛽,𝜇𝑢

𝛼𝑢𝛽
)︁

= 0,

where 𝜅 = 8𝜋𝐺, ℎ𝛼𝛽 is the metric tensor of the gravitational field, that is,

𝑔𝛼𝛽 = 𝜂𝛼𝛽 + 𝜅ℎ𝛼.

Another useful form is to multiply on both side 𝑚𝑑𝜏 and substitute mass terms with 4-momentum 𝑝𝜇 = 𝑚𝑢𝜇.

𝑑𝑝𝜇 +
(︁
𝜅ℎ𝜇𝛼,𝛽𝑝

𝛼 − 𝜅

2
ℎ𝛼𝛽,𝜇𝑝

𝛼
)︁
𝑑𝑥𝛽 = 0
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Deflection in The Trajectory

For the trajectory of photons, we only need to find out the geodesic. Neutrinos are massive particles which are different
from photons. However, the neutrinos we are considering have energy as high as several MeVs or even more while
their mass are less than 1eV. In this case, they are relativistic so their trajectory are close to photons’.

The deflection of photons near a star is,

𝛿 ≈ −4𝐺𝑀⊙

𝑏𝑐2
.

Derivation

Suppose we have a photon coming along z axis from infinite, the deflected angle at infinite is, by first order approxi-
mation tan 𝛿 ≈ 𝛿, the change of momentum in x direction over the momentum in z direction,

𝛿 ≈ ∆𝑝𝑥
𝑝𝑧

.

Momentum in this coordinate system is

𝑝𝛼 = (𝑐𝑝3, 0, 0, 𝑝3).

Displacement is

𝑑𝑥𝛽 = (𝑑𝑧/𝑐, 0, 0, 𝑑𝑧).

Then the change in momentum can be calculated using the equation of motion,

∆𝑝1 = −𝜅𝑝𝛼
∫︁ ∞

−∞

(︂
ℎ1𝛼,𝛽 − 1

2
ℎ𝛼𝛽,1

)︂
𝑑𝑥𝛽 .

This is the deflection angle of a photon coming from infinite. However, the angle deflected for a photon emitted at
tangent is different.
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A detailed calculation shows,1

With an impact parameter of 𝑏 = 10km, the angle will eventually become larger than 0.4, which is very significant.

Refs & Notes

Here is a list of papers on the gravitational effects of neutrino oscillations,

1. Gravitational Effects on the Neutrino Oscillation

2. Neutrino oscillations in curved spacetime: an heuristic treatment

3. Neutrino Oscillations in Gravitational Field

4. Neutrino oscillations in Kerr-Newman space-time

5. Neutrino oscillations in strong gravitational fields by Dardo Píriz, Mou Roy, and José Wudka

6. Can Gravity Distinguish Between Dirac and Majorana Neutrinos? (on PRL )

And related topics

1. A comparison between matter wave and light wave interferometers for the detection of gravitational waves

2. Matter waves in a gravitational field: An index of refraction for massive particles in general relativity

1 The MMA file is here .
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Fig. 15.1: The deflection angle of a photon starting from a tangent position at 𝑧 = 𝑟𝑧 with tangent momentum and
impact parameter 𝑏.
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Fig. 15.2: As we can see the angle becomes very big at about 10km.
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elegent way to calculate the decohrence.

Review of Collective Oscillations

• Duan, H., Fuller, G. M., & Qian, Y.-Z. (2010). Collective Neutrino Oscillations.
doi:10.1146/annurev.nucl.012809.104524

Raffelt has a paper about axial symmetry breaking here.

• Raffelt, G., Sarikas, S., & Seixas, D. D. S. (2013). Axial Symmetry Breaking in Self-Induced Flavor Conversion
of Supernova Neutrino Fluxes, 091101(August), 1–5. doi:10.1103/PhysRevLett.111.091101

Boris Kayser wrote a bad typesetted paper explaining the fundamental question of neutrinos.

• Kayser, B. (2009). Are Neutrinos Their Own Antiparticles?, 012013, 8. doi:10.1088/1742-6596/173/1/012013
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http://arxiv.org/abs/hep-ph/9905257v1
http://arxiv.org/abs/hep-ph/0306282v1
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.59.671
http://pdg.lbl.gov/2012/reviews/rpp2012-rev-neutrino-mixing.pdf
http://journals.aps.org/prd/abstract/10.1103/PhysRevD.58.017301
http://arxiv.org/abs/1001.2799
http://arxiv.org/abs/1001.2799
http://arxiv.org/abs/1305.7140
http://arxiv.org/abs/1305.7140
http://arxiv.org/abs/0903.0899
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CHAPTER 17

From Neutrinos to Cosmos

Neutrinos, or rather weak interactions, play a very important role in cosmology.
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CHAPTER 18

MISC

Neutrino & Transport
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CHAPTER 19

Questions

Question

Is neutrino its own antiparticle? Or is neutrino Majorana or dirac?

Question

What’s the mass hierarchy?

Question

What are the mixing angles?

Question

How many different flavours of neutrinos?
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CHAPTER 20

Definition

∆ =
√

2𝐺𝐹𝑛(𝑥)

𝜔 =
∆𝑚2

2𝐸
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CHAPTER 21

Support
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CHAPTER 22

DOI
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CHAPTER 23

Footnote
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