
Neutrino Documentation
Release 1.0

Ram

Mar 13, 2018

Contents

1 Neutrino User Guide 3
1.1 Requirements . 3

1.1.1 Hardware Requirements . 3
1.1.2 Operating Systems . 3
1.1.3 Essential Components . 4
1.1.4 GUI Mode Requirements . 4

1.2 Installation . 4
1.3 Interface . 4

1.3.1 Toolbars . 5
1.3.2 Scene Inspector . 6
1.3.3 Property Editor . 7
1.3.4 Scene Builder . 8
1.3.5 System Inspector . 9
1.3.6 Timeline . 11
1.3.7 Connection Inspector . 12
1.3.8 Script Editor . 13
1.3.9 Node Graph Editor . 14
1.3.10 Interactive View Window . 14
1.3.11 Neutrino Nodes . 17
1.3.12 Spatial Nodes . 17
1.3.13 Rigid Nodes . 17
1.3.14 Emitter Nodes . 18
1.3.15 Volume Fluid Emitters . 20
1.3.16 Block Emitter . 20
1.3.17 Volume Emitter . 20
1.3.18 Volume Nodes . 21
1.3.19 Particle Killer Nodes . 21
1.3.20 Particle Fluid Solver Nodes . 23
1.3.21 Neutrino WCSPH Solver Node . 23
1.3.22 Measurement Field Nodes . 24
1.3.23 Visualization Nodes . 25
1.3.24 Measurement Data Output . 28
1.3.25 Visualization/Playback and Recording . 28
1.3.26 Rendering/Export to VTK/Renderers . 32
1.3.27 Neutrino Scene Data . 32

1.4 Video Tutorials . 33

i

1.4.1 General Capabilties . 33
1.4.2 Pipe Flow Problem Setup . 33
1.4.3 Internal Flooding Problem Setup . 34

1.5 Tutorials . 34
1.5.1 Basic Scene . 34
1.5.2 Dam Break Scene . 35
1.5.3 Periodic Boundary Conditions Scene . 41
1.5.4 Sloshing Box Scene . 42
1.5.5 Wave Tank Scene . 42
1.5.6 Flow Under Door Scenario Scene . 43
1.5.7 Coupling Simulations Scene (Coupling with Shallow Water Solvers) 44

1.6 Common Questions . 44
1.6.1 Core . 44
1.6.2 Rigid Properties . 44

1.7 Some Simulation Guidelines . 46
1.7.1 Setting-up the simulation . 46
1.7.2 Stabilizing the simulation . 47
1.7.3 Accelerating the simulation . 47
1.7.4 Improving the simulation accuracy . 48

2 Neutrino API Guide 49
2.1 Introduction . 49
2.2 Plugin Types . 49

2.2.1 Particle Solvers . 49
2.3 Neutrino Classes . 51
2.4 Particle Cache Format . 52

3 Neutrino Physics 55
3.1 Introduction . 55
3.2 SPH Theory . 55
3.3 SPH Approximation . 56
3.4 SPH Kernels . 56
3.5 SPH Navier-Stokes Equations . 56
3.6 SPH Solvers . 57

3.6.1 Implicit Incompressible SPH (IISPH) . 57
3.6.2 Time Integration . 58

3.7 Momentum Equation . 58
3.7.1 Artificial Viscosity . 58
3.7.2 Laminar Viscosity . 59

3.8 Boundary Handling . 59
3.8.1 Single Layer Boundary Mode . 59
3.8.2 Multi Layer Boundary Mode . 59

3.9 Fluid Structure Interactions . 60
3.9.1 IISPH vs Position Based Dynamics (PBD) . 60

3.10 Sample Cases & Validations . 60
3.10.1 Dam Break . 60
3.10.2 Aureli Dam Break . 62
3.10.3 Poisuelle Flow . 63
3.10.4 Faltisen - Wave Sloshing Experiment . 63
3.10.5 Falling Body in Water . 63
3.10.6 Solitary Wave Past Shore . 63

3.11 References . 63

Bibliography 65

ii

Neutrino Documentation, Release 1.0

Contents:

Contents 1

Neutrino Documentation, Release 1.0

2 Contents

CHAPTER 1

Neutrino User Guide

Neutrino is a general purpose simulation and visualization environment developed by Neutrino Dynamics Initiative.
Neutrino Dynamics is composed of a group of diverse scientific research team distributed around the world. Neutrino
currently provides research organizations, academia, various industries a full-featured simulation and visualization en-
vironment for the most demanding tasks and problems. Neutrino is currently in use in many diverse sectors, including
energy research, risk analysis, flooding & bio fuel catalysis.

1.1 Requirements

1.1.1 Hardware Requirements

Neutrino runs on the following hardware

• PC/Mac with atleast 8 GB Memory, Intel/AMD processors

• HPC Cluster

1.1.2 Operating Systems

Neutrino currently runs on the following platforms more platforms are in the works of being supported

• Microsoft Windows 7/8/10

• Microsoft Windows 2012/2016 Server R1/R2

• CentOS 7.x +

• Ubuntu 13.x +

• SuSE Enterprise 11.x +

• Red Hat Enterprise Linux 7+

• Fedora Linux 16+

3

Neutrino Documentation, Release 1.0

• OS X 10.9+

1.1.3 Essential Components

• OpenGL 4.x Compatibility mode drivers.

– If OpenGL Software drivers (Mesa) are used - Mesa 11.x +

1.1.4 GUI Mode Requirements

Recommended Graphics Cards

• NVIDIA Kepler Architecture and above

Optional

• CUDA

• OpenCL

1.2 Installation

Please run the downloadable binary (.run file for Linux/OS-X platforms , .exe for Windows platforms) and specify the
install path for the binaries. The rest of the setup is automatic.

1.3 Interface

Neutrino’s user friendly interface enables easy setup of models for simulation. Parameters and operators can be added
easily to perform the various operations. Interface items are depicted below.

4 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

1.3.1 Toolbars

Scene Inspector

1.3. Interface 5

Neutrino Documentation, Release 1.0

Description of Various Tools in Neutrino.

1.3.2 Scene Inspector

Scene Inspector

The Scene Inspector contains all the items in the scene which can be selected. The selected item’s properties are
displayed in the property editor. Context menu items appear as the right mouse button is pressed with the object
being selected.

6 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

1.3.3 Property Editor

Property Editor

Property Editor is an user editable list of properties for the selected scene item. The properties of the rigid vary
according to the type of item selected.

1.3. Interface 7

Neutrino Documentation, Release 1.0

1.3.4 Scene Builder

Scene Builder

Scene Builder is a panel where entries in the scene can be constructed easily without navigating through the menu
items. | The various categories of neutrino nodes are on the side shelf panel and upon selection they reveal the
nodes. Nodes are created and placed in the scene upon click on that button.

8 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

1.3.5 System Inspector

System Inspector

System Inspector is a list of global system entries whose properties can be edited as well.

By default there are four(4) entries in the System Inspector. Selecting each of these entries in the Object Browser will
reveal the properties of them. System Inspector are global entities during each session.

• Base

Parameter Description
OpenMP Threads Number of Threads Neutrino will use for Simulation (8)
Server Port If Neutrino is controlled by external communication protocol the socket number (20200)
Scene Path Specify the information needed to be exported.
Data Read Direc-
tory

Specifies the directory where all the caches for entries in the scene reside

Data Write Direc-
tory

Specifies where the cache data will be written onto

Optimize Net
Caches

In certain cases setting this will optimize block writes onto network drives

Compress Fluid
Caches

This will create fluid caches with compression but for large particle counts this might result
in performance loss

• GUI

Parameter Description
Timeline Units Number of Threads Neutrino will use for Simulation (8)
Save OpenGL Frames If Neutrino is controlled by external communication protocol the socket number (20200)

1.3. Interface 9

Neutrino Documentation, Release 1.0

GL Properties

A Neutrino session can have several interactive views for visualization and model setup and the main engine to render
them is OpenGL. Its properties are as follows

Rendering Properties .

Many of the global rendering parameters can be controlled using these. These include Ambient occlusion, trans-
parency etc.

• OpenGL

There can be many OpenGL objects depending on how many views are present in the scene. By default this is 1. The
views can be split according to user specification and the View menu described later controls the splits and usage of
multiple visualization/model setup views.

The main properties control the render of each of these views.

10 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

Parameter Description
Camera The Camera used for rendering this view
On Screen Display Whether or not to display statistics
Manipulator Space Local Space operates with respect to the center of the object .
World Axes The axes ON/OFF in the visualization window
World Grid Whether a flat grid is drawn in the visualization or not
Clipping Uses a normal for clipping objects - Deprecated in favor of a Clipping Object
Silhouette Unused and deprecated
Ambient Occlusion Turning this on produces self shadows and better looking renders (HBAO)
Antialiasing The method used for improving quality of lines etc in the gl/visualization window
Transparency The transparency method used - different modes are a trade-off between quality/time
Environment Type The background image used in visualization (either cube 6 sides or sphere
Quality Profile The render quality used for preview/visualization. Some features are turned off/on for
Draw Render Area Not used
Save Frames Save the frames displayed in this specific visualization window/GL to file (png)
Save Motion Maps DEPRECATED

1.3.6 Timeline

Timeline

TimeLine, used to record and playback the simulation.

The two modes are Simulate and Playback. Simulate mode is activated by the button. The play button is then used to
either simulate (Simulate Mode) or Play (Playback Mode).

1.3. Interface 11

Neutrino Documentation, Release 1.0

Turns Green when armed and ready to simulate Simulation is Armed to proceed. Next Play would actually Simulate
the scene.

Run simulation if Armed or just playback the recorded simulation from caches if not armed.

1.3.7 Connection Inspector

Connections

View and Modify input/output connection to/from nodes. Connection Inspector is used to connect various inputs
and outputs from nodes to process during simulate/playback mode. The emitter’s creates Particles (kIOParticles)

12 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

which is connected to the solver’s input. Solver’s output (kIOParticles) can be connected to the Measurement Field’s
input (kIOParticles).

In Neutrino you can consider all the objects displayed in the Scene Inspector to have inputs and outputs
and they are evaluated during a simulation. For example the output of a particle emitter would be particles
(kIOParticles) and that is automatically connected to the input of a solver (kIOParticles) . Some connec-
tions are automatically made for example in this case. But for some other cases the user has to make the
connections manually depending on what the scenario is. If the particle emitter’s kIOParticles to the solver
connection is deleted then there would be no particles input to the solver and hence no solve. Neutrino
node’s most common inputs/outputs are the following kIOParticles, kIOTriangleMesh kIOVolumes

1.3.8 Script Editor

Script Editor

Python based command window.

1.3. Interface 13

Neutrino Documentation, Release 1.0

Script Editor Commands

Script Editor could be used for performing any action in Neutrino but through the python interface. The python
interface to Neutrino’s system is explained in a separate section.

1.3.9 Node Graph Editor

Node Graph Editor, used to visualize various connections. It can be seen clearly that all fluid objects go to IISPHSolver
and measurement field takes data from IISPHSolver to determine the parameter we are interested in.

Currently its still under works and not recommended for use.

1.3.10 Interactive View Window

Objects can be selected, transformed in the world space visible throught the selected camera in the GL
Widget View. There can be many such views which can be created and deleted in the scene and they are
synchronized with each other.

Each view can be split into 2 duplicated and assigned different cameras on the View Menu on top of this
window

14 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

If you select an object and select the translate (toolbar) on the left side a translate handle appears in the gl
preview window. you can select each of the arrows in the axes and move them around and that moves the
object. Same goes for scale and rotate, their tools are in the left toolbar.

1.3. Interface 15

Neutrino Documentation, Release 1.0

The camera for the view is selected from the Camera Menu item at the top of the View Window

Camera

Alt and mouse will turn the camera around

Alt + middle will pan the camera

Alt + Right will zoom in.out

16 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

If a camera gets stuck somewhere you can reset it by selecting the camera in the scene builder and third
mouse button and reset camera.

1.3.11 Neutrino Nodes

Neutrino nodes are entities which can be created in Neutrino which exist in the scene and their properties could be
modified by the user. They can be connected/created/deleted etc.

Common to all Neutrino nodes are the following properties

Property Description
Behavior Active: Participate, Cache: Just Load Data, Inactive: Dont participate
CacheData Whether data for this node should be cached/not

1.3.12 Spatial Nodes

Spatial nodes are nodes in Neutrino which can be positioned and modified in Space and exist in 3D/2D space in the
view. Examples of Spatial Nodes include Rigid Nodes, Cameras, Lights Fields etc. For some of these nodes positions
matter and some others they dont.

The common properties to spatial nodes are the following

1.3.13 Rigid Nodes

For Model setup and 3D Geometry various rigids can be imported into Neutrino which can then serve as active
boundary conditions for the simulation.

Edit → Add → Physical → Rigid

performs this task.

Or the scene builder could be used to accomplish this.

Neutrino accepts various types of implicit and explicit geometry. The basic ones are 1. Box 1. Cuboid 1. Sphere 1.
Cylinder

However external geometry modeled in another package such as strata, Sketchup could be imported by

1.3. Interface 17

Neutrino Documentation, Release 1.0

Edit → Add → Physical → Rigid Custom

or through

Scene Builder → Physical → Rigid → Rigid Custom

Neutrino currently supports the following subset of file formats

COMMON INTERCHANGE FORMATS

1. Autodesk (.fbx) 1. Collada (.dae) 1. Blender 3D (.blend) 1. 3ds Max 3DS (.3ds) 1. 3ds Max ASE (.ase) 1.
Wavefront Object (.obj) 1. Industry Foundation Classes (IFC/Step) (.ifc) 1. XGL (.xgl,.zgl) 1. Stanford Polygon
Library (.ply) 1. AutoCAD DXF (.dxf) 1. LightWave (.lwo) 1. LightWave Scene (.lws) 1. Modo (.lxo) 1.
Stereolithography (.stl)

Future extensions are planned as to import various architectural and engineering formats such as DWG and STEP

The Property editor of the new rigid object added has a file name property to import the rigid geometry.

When Rigid Custom is used with STL file, there might be a difference in scale in which the imported geometry might
have to be scaled by 0.01 on all axes to match the units or appropriate unit conversions need to be performed from the
STL modeling units since Neutrino just assumes the units in the input STL file as meters.

Import of Rigids creates a rigid body seeded with rigid SPH particles.

Some of the properties, like viscosity, adhesion, density and so on, can also be modified easily in the scene inspector
window. The rigid body can either move with the fluid (dynamic) or stay at constant position (static).

Bounding Box

The bounding box display can be activated by

1.3.14 Emitter Nodes

Various particle emitters that emits particles can be created using

18 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

Edit → Add → Daemons → Emitter

Please note For emitters to emit particles a solver needs to be present.

Planar Emitters

Flow Particle emitter

Flow emitter is a particle emitter rectangular in shape which will emit particles at a constant flow as specified by the
flow rate in properties or by a time varying input file.

The rate is specified as part of the properties. If there is a time dependent file specifying various flow rates at times
that can be loaded as well from the file parameters.

The flow input file of Flow Emitter has the following format: time, flow rate, width, height; within a line, all are
separated by a comma. The file name extension must be “.csv”. An example of such a csv file can be Downloaded at
FlowRate.csv

The velocity is calculated from the flow rate, width and height. Only flow in the normal direction to the emitter plane
can be created.

Edit → Add → Daemons → Emitter → Flow Particle Emitter

The properties of the Flow Particle Emitter are as follows

Property Description
Shape Number of Threads Neutrino will use for Simulation (8)
Flow Setting Flow Rate Mode

Velocity is controlled by rate
Flow Rate Flow Rate in m^3/s of the fluid injected into the system
Speed Mode
Magnitude of velocity Setting, Flow rate is adjusted
Flow Rate & Speed Mode
Area is adjusted appropriately
Flow Speed Magnitude of the velocity in m/s of the flow
Pipe Pressure Mode
Flow based on static pressure
Upstream Pressure
Downstream Pressure
Particle Data Mode
Input can be time dependent number of particles injected
Flow Data Mode
Time dependent input of flowrates vs time as described
Data File Mode
Flow rates in a data file (csv)

Connected Inputs The Input connections coming into this node
Advanced Properties

Torricelli Particle Emitter

Torricelli Particle Emitter is an emitter which models a hydrostatic cuboid source such as a container of fluid enclosing
it and a hole punched in through it.

Torricelli particle emitters can be coupled by laying several in a row and by connecting output kIOParticles of one to
another to serve as input.

1.3. Interface 19

Neutrino Documentation, Release 1.0

The Torricelli Particle Emitters can be created from

Edit → Add → Daemons → Emitter → Torricelli Particle Emitter

1.3.15 Volume Fluid Emitters

The following section describes volume emitters. This operates a bit differently than the other emitters and is usually
used when needing to fill containers with fluid. Rather than use dynamic emitters which take a certain amount of time
to fill a container with fluid and settle down, the following emitters in Neutrino could be used as a starting point.

1.3.16 Block Emitter

Block Emitter fills a closed rigid object like a cuboid with fluid. To create a block emitter

Edit → Add → Daemons → Emitter → Block Particle Emitter

1.3.17 Volume Emitter

We can also build fluid bulk with imported closed geometry by converting the rigid body into fluid particles. The
interior of the geometry could be filled with particles.

This is useful for example, if a container of an arbitrary shape needs to be filled with fluid.

Several boolean operations could be performed and daisy chained together using the volume tools in Neutrino to create
a desired container of fluid to be filled with. The emission can be started/stopped at a given time/frame of simulation
by the node parameters.

The various volume nodes which can be used are described in the next section.

First the rigid object needs to be converted into a signed distance field (volume) by adding Mesh to Volume

Edit → Add → Volume → MeshtoVolume

Several cases can be considered after this step

1. Basic Container fluid emitter

Volume Particle Emitter

Add → Daemon → Volume Particle Emitter

and finally making the appropriate connections.

Rigid Objects kIOTriangleMesh (output) is connected to MeshToVolume’s kIOTriangleMesh (input) then MeshToVol-
ume kIOVolume (output) is connected to Volume Particle Emitter’s kIOVolume (input)

Firstly a mesh can be converted to a volume . When you import a rigid object or create one in Neutrino - one of
the output of that is kIOTriangleMesh and when you create a MeshToVolume node in Neutrino - one of its inputs is
kIOTriangleMesh. So a Rigid Objects output kIOTriangleMesh could be connected to input of MeshToVolumeNode
kIOTriangleMesh. The output of MeshToVolume is kIOVolume . This output would be connected to a Volume Emitter
daemon (kIOVolume). and the output of that is kIOParticles which is automatically connected to the solver.

So when a simulation is run in this case the mesh is sampled into a volume filed on the inside then particles are
instantiated from the volume and then sent to the solver.

The volume nodes are explained below.

20 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

1.3.18 Volume Nodes

Volume nodes in Neutrino are a set of nodes which have an input or an output as kIOVolume. The volume output from
Neutrino are OpenVDB volumes. OpenVDB is a sparse volume representation. These nodes can be created by

Edit → Add → Volume

MeshToVolume

This node accepts kIOTriangleMesh as input and sends kIOVolume as output. The input mesh can be an open or closed
mesh. In case of an open mesh, only the boundaries are converted into a volume.

PartToVolume

This node accepts kIOParticles as input and sends kIOVolume as output. The particles are converted into an implicit
surface by this node.

VolumeFilter

This node accepts kIOVolume as input and outputs kIOVolume. Several topological operations are availabe under this
node. Erode, Dilate, Open, Close etc.

VolumeCombine

This node accepts one or two input kIOVolume inputs and outputs a combined kIOVolume. Some of the operations
available under this node are Union, Intersection, Sum, Difference etc. This is a node in which the connection order
matters as the operation is performed on the first node by the second node.

1.3.19 Particle Killer Nodes

There are different kinds of killers . Killers can be used to save computational time by removing particles outside the
domain or for other purposes like teleporting and/or transporting particles through obstacles etc. The particles killers
can be added by

Edit → Add → Daemons

Extent Particle Killer

Particle Killer daemon eliminates particles inside or outside a specified bounding box. and all particle entering the
region of particle killer will be eliminated.

Flow Particle Killer

Just a brief guide on the Flow Particle Killer, its differences compared to the Teleport Particle Killer, and how to use it
with the Flow Particle Emitter altogether.

The Flow Particle Killer is a killer that kills the particles crossing its finite plane section; compared to the Teleport
Particle Killer, it does not kill all the particles within the other side of the infinite plane. An outflow boundary is
simulated using ghost particles when the permeable mode is activated. There is no need of a Ghost Volume. It also
includes a flow rate computation, and the corresponding value can be read.

1.3. Interface 21

https://www.openvdb.org/
https://www.openvdb.org/

Neutrino Documentation, Release 1.0

You can connect a Flow Particle Killer to a Flow Particle Emitter. The connection comes in two modes: flow rate mode
and teleport mode. The former is realised if kIOData is the input-output type, and the latter in the case of kIOParticles.
You can check the connection mode of the emitter in its Property Editor window.

In the flow rate mode, the emitter generates particles according to the flow rate computed by the killer. The advantage
of this mode is that the killer and emitter scales do not need to be the same. It currently tends to be unstable and does
not conserve mass that well; use with caution. I might test a few things to have it working properly in the future.

In the teleport mode, the emitter generates the particles as if they teleported from the killer. This mode requires the
dimensions of the killer and emitter to be the same; prefer it to the flow rate mode when applicable.

Finally, you can specify a delay between the killing and emission through the Property Editor of the emitter.

Coupler Nodes

Inflow Coupler

Inflow shallow water (SW) coupler is now functional.

Description

Given the topology of the inflow boundary and SW data at gauge positions, the inflow SW coupler generates particles
accordingly, enforcing inflow boundary conditions (Dirichlet for the velocity and Neumann for the pressure) and mass
conservation, and also avoiding the particle deficiency issue of SPH near boundaries.

Method

The boundary topology is defined by the positions of the gauges and extremity points and the connections between
gauges/extremity point. If the boundary is assumed to be along a rectangle, the connections are automatically com-
puted. The boundary is partitioned into several “sources”, one for each pair of gauges or gauge/extremity point. A
source generates particles with a given inflow velocity and height at a time. Interpolations in space and time are
performed for Enforcement of the boundary conditions is realised through the use of ghost particles, with velocity pre-
scribed according to the SW data and pressure extrapolated from the neighbouring fluid particles. The ghost particles
are generated as far from the boundary as needed in order to avoid the particle deficiency issue. Minimal deviation
from mass conservation is ensured with a particle generation minimising the deviation from a rest density, Cartesian
grid configuration within a volume defined by the source width, inflow height and velocity, provided by the SW data,
and time step.

Assumptions

1. The gravity is in the y-direction, while the fluid displacement is in the x- and z- directions.

2. The flow direction is perpendicular to the boundary.

3. The boundary topology can be defined as a set of simple, connected, undirected graphs with vertex degrees not
higher than two.

4. The ground floor is flat at the boundary location.

22 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

1.3.20 Particle Fluid Solver Nodes

Setup

Fluid solver is key to SPH simulation, particles movements and key properties are determined the solver. The Solver
can be added by

Edit → Add → Physics → Particle Fluid →

or through the scene builder by

Physical → Particle Fluid →

Implicit Incompressible Solver Nodes

Neutrino IISPH Solver

There are many key parameters of simulation that can be easily changed in Neutrino Solver.

Table : Key factors of IISPH Solver and how they can be changed in specific simulation conditions

Factors | Choices & Comments
Integration
Scheme

Verlet (second order integration)/Euler Cromer

Viscosity
Model

Laminar (a more physical model)/ Artificial

Solver toler-
ance

Max. compressibility allowed as a percentage

Max. Itera-
tion

Max number iterations steps to calculate pressure Usually set to 100 but convergence is reached
in usually < 20 more than 20 iterations is usually a sign of slowness/prob

Max. Time
Step

Max. unit time step allowed defaults to 0.02 but can be increased to more if blowups and high
velocity projectiles/splashes are not encountered

Viscosity Fluid-fluid viscosity
Cohe-
sion/Adhesion
Coefficient

Surface tension/wettability coefficient

Particle In-
teraction Ra-
dius/Particle
Rest Distance

Any change here will be automatically synchronized elsewhere Interaction Radius is usually 2
times interparticle distance if cubic spline kernel is used Interaction Radius is modifiable and rest
distance will be set automatically based on the kernel and other factors This is the main parameter
indicating resolution of simulations

Kernel Model Cubic Spline (Quintic and Weindland kernel support planned
Particle Visu-
alization

Different parameter-base coloring; Max./Min. coloring limit

1.3.21 Neutrino WCSPH Solver Node

Neutrino’s Weakly Compressible SPH Solver can be created by NWCSPH Solver. In certain cases of gas flows/wind
fields and non-isothermal flows

1.3. Interface 23

Neutrino Documentation, Release 1.0

1.3.22 Measurement Field Nodes

Sometimes, we would like to measure some parameters in certain area of interests, in Neutrino additional measurement
can be set up onto any position by Add -> Daemons -> MeasurementField and moving the field to desired position.
The volume enclosed by the measurement field will be taken into consideration for measurement.

Rigid Force Measurement and Data Export

Measurement

Measures Various Quantities of fluid and rigids in the simulation.

To export the force applied by the fluid onto a rigid, do the following:

1) Before simulating, turn on Show Total Force/Torque, to force the solver performing the fluid->solid force compu-
tations. This step is not necessary if the rigid object is dynamic.

2. When your simulation is done, first turn on Export Force and enter a path to Export File Path, then playback the
simulation.

3) The force data can be found under the repository Measurements. Let me know if this works for you. You could also
export the pressure and friction components of the force by turning on Export Force Decomposition.

Also in the rigid body Compute Forces/Compute Torque has to be checked to be able to check the forces on the rigid.

The output file contains a header that specifies what are the units. Something like:

Time (s), Position X,Y,Z (m), Linear Velocity X,Y,Z (m/s), Angular Velocity X,Y,Z (rad/s), Force X,Y,Z (N), Torque
X,Y,Z (N.m) ##

24 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

Fluid Properties Measurement and Data Export

After we put the measurement field in desired position, we can export the measured parameters by checking the
“Export Stats” box in Scene Inspector. The Measurement field’s input kIOParticles has to be connected to Solver’s
output (kIOParticles) by means of the Connection editor in order for measurement field to start measuring particle
quantities.

Also we can visualize the velocity field inside the measurement field. Available options of measured data are listed as
following:

Op-
tions

Meaning

Export
Per
Particle

If checked, information for all particles will be exported at each time step. Or an average will be taken
and exported with time If not checked then averaged information for the measurement field will be
written for all timesteps in one file.

Export
Path

No need to add extension or the full path name. The measurements will be stored under the Measure-
ments subfolder under the current scene folder.

Export
Type

Specify the kind of information to be exported . (Not for Per Particle Output)

Subdi-
vide

Divide the measurement field with specified mesh division. If checked, resolution of grid in each
direction can be designated by entering the number you want. Then information will be averaged
across each grid to the center of the mesh.

Velocity
arrow
scale

Specify the length of arrow in velocity field. Larger value will give a longer arrow.

1.3.23 Visualization Nodes

Edit → Add → Visual

Any node specically used for Visualization and Rendering only are created from this section.

Camera Node

Edit → Add → Visual → Cameras → Camera

This creates a new perspective camera in the scene. The cameras view can be altered interactively or through the
properties and the camera can be assigned to a specific view.

1.3. Interface 25

Neutrino Documentation, Release 1.0

Light Nodes

Directional Light

Edit → Add → Visual → Lights → Directional Light

The default light in the scene is a directional light and it shades objects based on direction of the light .

Spot Light

Edit → Add → Visual → Lights → Spot Light

Spot lights with cone and varying intensity based on distance to light can be created using this light. Creates a more
realistic lighting scenario

Area Light

Edit → Add → Visual → Lights → Area Light

Not functional yet

Image Based Light

Edit → Add → Visual → Cameras → Camera

Not functional yet

Sky Light

Edit → Add → Visual → Cameras → Camera

Not functional yet

Material Nodes

PBR

Edit → Add → Visual → Materials → PBR

Physically based shading/rendering of rigid objects. Can be used for metals and other diffuse surfaces

Phong

Edit → Add → Visual → Materials → Phong

Structure

Edit → Add → Visual → Materials → Structure

Not functional

26 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

Toon

Edit → Add → Visual → Materials → Toon

Shades rigid objects

Tone

Edit → Add → Visual → Materials → Tone

Shades rigid objects with tone varying based on a primary color.

Ocean

Edit → Add → Visual → Materials → Structure

Not functional yet.

Clear Water

Edit → Add → Visual → Materials → Clear Water

Assigned only to fluid surfaces. Not functional yet.

Fluid Water

Edit → Add → Visual → Materials → Fluid Water

This is the material which is assigned to particles for fluid to emulate fluid/water like shading with transparency,
reflection and refraction.

Gizmos

Null Gizmo

:menuselection:‘Edit –> Add –> Visual –> Gizmo –> Null Gizmo‘

Null Objects could be placed in the scene.

Interactive Measurement Gizmo

Edit → Add → Visual → Gizmo → Interactive Measurement Gizmo

Measurement can be made in the scene in default scene units (m) using this gizmo. Place the first null at the start point
and the second one at the end point and measurement will be shown.

Clip Plane Node

Edit → Add → Visual → Clip Plane

Objects in the scene can be clipped according to where the clipping plane is placed.

1.3. Interface 27

Neutrino Documentation, Release 1.0

1.3.24 Measurement Data Output

The output can be a text file or a csv file and the output can be either one file / frame of simulation or output for all
frames for all particles. To make it work. Make sure that the kIOParticles of the solver is connected to kIOParticles of
the MeasurementField in the connection editor which it looks like you are already doing since the property editor is
displaying those values.

Then check the Export Stats to ON Then set the Export Path to a some name, by default the name would be the name
of the measurement field. For example MeasurementField_0

TXT files are stored with the extention .txt and CSV files are stored with an extension .csv

If particle data for all frames is desired then check the box Export Per Particle should be set to ON.

Then Rewind the simulation to the beginning.

Then either run the simulation or playback.

The per particle data is stored per frame under Measurements folder with the prefix Measurement File Name and frame
number with .txt

For Example MeasurementField_0.000000.txt etc

1.3.25 Visualization/Playback and Recording

Visualization results are in the Visualization directory.

1. OpenGL visualizations are under GLFrames/<Camera Name> folder and stored as a png sequence.

2. Recording of these images are described in the following sections.

Viewing Results

As Neutrino proceeds with the simulation, the results are displayed in the interactive GL Visualization Window. There
are several sections to the Visualization window

On Screen Displays

The On Screen Displays displays (OSD), display various properties of the nodes in the simulation. There’s a integrated
OSD from the Neutrino Dynamic System and there are various user created OSDs.

Integrated OSD

The integrated OSD displays information about the various nodes in the Neutrino Scene and Global Nodes as well.
Each Neutrino node has an OSD property indicating the location of the OSD and some nodes have a toggle to Display
Statistics ON/OFF which will turn ON/OFF the display of that node’s OSD. The integrated OSD is depicted in the
figure Fig. 1.3.25

The integrated OSD is toggled ON/OFF for display as depicted in the figure Fig. 1.3.25

User Defined OSD

There’s another OSD which could be user defined and placed in the scene interactively. Its display is depicted by figure
Fig. 1.3.25. The properties of this OSD could be configured to display user defined custom text labels and Option to
turn on/off global time display.

28 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

1.3. Interface 29

Neutrino Documentation, Release 1.0

Image recording

Current OpenGL Window used for viewing can be exported as a sequence of frames for playback later.

First check “saveGLFrames” under GUI system inspector and then check “Save Frames” under the Camera system
inspector.

Their resolution also can be set as follows

After this is set when either Simulation is either “Run” or “PlayBack” the frames are stored as png files under the
appropriate Camera Name folder under Visualization sub folder under the Scene Folder. The images are prefixed by
the padded frame number and its stored as an image sequence. To convert it into movies for playback, ffmpeg could
be used.

For example to store the image sequence as a movie file (MPEG4) for playback in VLC Player or web sites or
presentations the following command could be used.

30 Chapter 1. Neutrino User Guide

https://www.ffmpeg.org/

Neutrino Documentation, Release 1.0

1.3. Interface 31

Neutrino Documentation, Release 1.0

ffmpeg -i %06d.png -c:v libx264 -r 15 -pix_fmt yuv420p out.mp4

1.3.26 Rendering/Export to VTK/Renderers

Neutrino data can also be exported to VTK or other third party visualization packages like ParaView .

VTK/ParaView Export

To export the scene data for ParaView VTK files have to be exported. To setup VTK export open Render->External

Renderer Settings. The Renderer is set to VTK . Then
playback or simulate the simulation in Neutrino. By default the VTK files go under RenderData subfolder under the
Scene folder.

Static Rigid Geometry are exported with .vtp extension Measurement Fields if subdivided are exported as volume files
(structured grid) .vts Particles are exported as vtp as well. Particle data is exported once per frame to be loaded into
ParaView easily.

1.3.27 Neutrino Scene Data

Results

The results of the simulation are all placed under a directory under the scene directory with the scene
name

1. Log 1. Measurements 1. RenderData 1. SceneGeometry 1. SimData 1. Visualization

32 Chapter 1. Neutrino User Guide

http://www.vtk.org
http://www.paraview.org/
http://www.paraview.org/
http://www.vtk.org
http://www.vtk.org
http://www.paraview.org/

Neutrino Documentation, Release 1.0

Scene Directory Structure

The following is an example of the directory structure of a sample scene.

All of Neutrino data pertaining to a scene reside in a directory with the same scene name as the .nescene file currently
open.

• Logs

– Messages - Where the log of simulation runs are stored by data

• Measurements

– MeasurementFieldName - Directory under which measurement data are cached

• RenderData

– Where data exported to a third party renderer like VTK etc are stored

• SceneGeometry

– All the local geometry obj, stl files etc stored for use in the scene are here. Rigid pathnames without
a path refer to a file stored here.

• SimData

– SphData

* SolverName

· The particle caches are stored here ######.neparticles - Particle data is cached here
per frame. Particle data format is documented in the following section ######.sinf -
information pertaining to a frame of particles

* EmitterName

· Various data pertaining to particle emitters in the scene are stored here.

1.4 Video Tutorials

1.4.1 General Capabilties

1.4.2 Pipe Flow Problem Setup

You can Download CylinderFlowPipe.nescene - the Neutrino scene file in this setup to compare the setups.

1.4. Video Tutorials 33

Neutrino Documentation, Release 1.0

1.4.3 Internal Flooding Problem Setup

The Assets for this tutorial can be downloaded from :download Torricelli_Tutorial_Models.zip
<static/Internal_Flooding/Torricelli_Tutorial_Models.zip> . The Neutrino scene file used to construct this is
at

1.5 Tutorials

1.5.1 Basic Scene

This is a very simple scenario containing a box and a fluid emitter with a solver to emulate a very basic flow.

1. Create a Rigid Box 2. Position the Rigid Box and Scale

3. Create the Solver 4. Create an flow emitter

• Position the emitter Use the scale, rotate and position toolbar to position the emitter at the appropriate place.

• Adjust the flow rate

Fig. 1.1: The flow rate units is cc/m^3.

• Simulation

34 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

Arm the simulation and Simulate

• Results

Further analysis can be done using a measurement field or visualized using sections described
above.

1.5.2 Dam Break Scene

Dam Break Simulation and force measurement

Download dam_break.nescene - the Neutrino scene file in this setup.

The simulation is set up based on work from Cummins et al. 2012 and the configuration is shown as followed:

Fig. 1.2: Simulation setup by Cummins et al 2012

Setup of this problem is described in steps. The model is depicted as a box container to hold the fluid

1.5. Tutorials 35

Neutrino Documentation, Release 1.0

Setup in Neutrino

1. Create Geometry

• A Rigid box is set to be the simulation domain. Its created and positioned as follows

• Then a rigid cuboid is set as the dam structure. Rigid cuboid is created and positioned as follows.

• A rigid plane is also set as the gate. Rigid Plane is created and positioned as follows.

36 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

2. Fluid Containers

Five blocks of water are put inside the domain. The position and dimension of these objects are shown in Table 1.
Block Particle emitters are created as follows

3. Positioning

The positions and scales are set to the following values. For positioning objects

• Select the object in the GL Window or in the Scene Inspector

• Look at its properties in the property editor

• Adjust the parameters of Position and Scale as indicated by the table

1.5. Tutorials 37

Neutrino Documentation, Release 1.0

Position Scale
Rigid Box (0, 0, 0) 1.6 * 0.75 * 0.61
Rigid Cuboid (- 0.1, 0, 0) 0.12 * 0.75 * 0.12
Rigid Plane (0.4, 0, 0) 0.75 * 1 * 0.61
Fluid Source #1 (0.6, - 0.23, 0) 0.39 * 0.28 * 0.6
Fluid Source #2 (- 0.48, - 0.365, 0) 0.6 * 0.02 * 0.6
Fluid Source #3 (0.18, - 0.365, 0) 0.42 * 0.02 * 0.59
Fluid Source #4 (- 0.1, - 0.365, - 0.18) 0.16 * 0.02 * 0.23
Fluid Source #5 (- 0.1, - 0.365, 0.18) 0.16 * 0.02 * 0.23

widths auto

align center

4. Solvers

Create a Solver (NIISPH Solver) as follows. The following figure indicates two different ways of creating the solver.
The solver used in this scene is IISPHSolver but its better to use the Neutrino IISPH Solver as indicated in the picture
if the scene is created from scratch.

Table : Value of coefficient in simulation setup

38 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

Coefficient Value
Rigid Body
Viscosity 1 * 10^{- 6}
Fluid
Initial Velocity 0
IISPH Solver
Viscosity type Laminar
Viscosity 1 * 10^{- 6}
Cohesion Model None
Adhesion Model None
Particle Interaction Radius 0.01
Maximum Timestep 0.002

Note that the simulation is very sensitive to the Timestep, large time will cause fluid to be very unstable. Please make
sure to check Maximum Timestep (effective when Adaptive Timestep is checked) and Timestep settings every time
before the simulation starts.

Simulation:

After finishing the setup, simulation is run for 1sec (50 frames in default) until all particles are settled down.

5. Run Simulation To Run the simulation please take a look at the following guide

* First Arm the simulation (Simulate)
* Then Run the Simulation (Proceed)

1.5. Tutorials 39

Neutrino Documentation, Release 1.0

If the simulation is run for 1 second, the status would be looking like the following.

Then the gate (rigid plane) is open by translate the rigid plane up.

• Then continue the simulation.

Fluid will flow under the effect of gravity. The force acting on the column at each frame can be found by checking the
“Export Stats” of Rigid Cuboid inspector. A file will be created in designated path with magnitude of force, torque
and angular velocity at each frame.

Simulation Progress

40 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

6. Estimating Rigid Forces and Output to file

The rigid force data exerted by the fluid on the solid can be exported by enabling Export in the Rigid Properties as
follows

1.5.3 Periodic Boundary Conditions Scene

Download PoiseuilleFlow5m.nescene - the Neutrino scene file in this setup.

The scene is an example of a poiseuille flow

1.5. Tutorials 41

Neutrino Documentation, Release 1.0

1. Setup

The following image shows a sample periodic boundary setup

Fig. 1.3: Periodic Boundary Depiction

Periodic Boundary is enforced by ghost particles and in this scene there is a force constantly applied in the flow
direction and eventually due to non slip boundary conditions a steady state is reached. Higher reynolds number flows
are simulated by increasing the force or reducing viscosity. In this case laminar viscosity is used with carefully tweaked
dynamic viscosity and kinematic visosity settings

• Create Four Planes enclosing the volume

• Create a Block Source emitter

• Create a Periodic Boundary Node * Edit -> Add -> Periodic Boundaries*

• Position the periodic boundary node to closely enclose the

• volume of the Block Source Emitter

Set it up, so it surrounds the particles nicely.

• Run the Simulation

The flow profile displays an arc where the boundary conditions are enforced by a non-slip condition and eventually
reaches steady state

1.5.4 Sloshing Box Scene

Download SloshingBox.nescene - the Neutrino scene file in this setup.

The scene is an example of a sloshing box setup to do some validations.

1.5.5 Wave Tank Scene

Download wavetank.nescene - the Neutrino scene file in this setup.

This scene depicts a movement of a wavetank affecting a simulation domain. The wave tank motion is prescribed
using keyframes as noted in the orientation property of the Wave Machine which is a rigid plane whose rotation would
be in the direction of the tank.

This is a 3D setup which depicts the 2D setup from SPHERIC.

42 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

Fig. 1.4: Poiseulle Flow

The setup of the keyframes is done by invoking the python script waveflap.py . Also Flap.dat which is a
description of the motion of the flap as a data file. The python script loads this data file and sets the various keyframes
in Neutrino to mimic the motion according to the data file.

However the scene file already has this loaded so its not necessary to invoke these scripts and data . The python and
the data file is just given as a description on how to setup something similar.

1.5.6 Flow Under Door Scenario Scene

In cases of simulating flow of fluid under doors, the particle sizes have to be sufficiently small in order for the flow to
seep through the openings of the doors. This might result in added computation time. However there are some shortcuts
to modeling this scenario and still preserving the accuracy by adding flow killers and flow emitters as depicted in the
following figure.

Download differentialFlow_v1.nescene - the Neutrino scene file in this setup.

This setup consists of a description on how to setup the various Emitters/Killers to couple flow on one room to be
transported into another when the gap under the door is small or when flow is needed through drains and/or when the
drain size is smaller with respect to the particle size.

This file also is an example setup of how killers and emitters can be connected to each other thereby providing a
transport mechanism of particles.

The procedure can be broadly described as follows

1. Create a Flow Killer, a Torricelli Source, and two Measurement Fields.

2. Adjust their positions, orientations, and scales, with the Flow Killer and one of the Measurement Field upstream,
and the other Measurement Field downstream.

3. Set the connections: Measurement Field upstream -> Torricelli Source (kIOFluidHeight), Measurement Field
downstream -> Torricelli Source (kIOHydrostaticPressure), and TorricelliSource -> Flow Killer (kIONumParti-
cles).

4. Set the properties Acc. Floor and Discharge Coefficient under Torricelli Input Parameters.

1.5. Tutorials 43

Neutrino Documentation, Release 1.0

1.5.7 Coupling Simulations Scene (Coupling with Shallow Water Solvers)

Download coupling.nescene - the Neutrino scene file in this setup.

Neutrino allows simulation to be performed on a narrow 3D domain with inputs from another Solver providing bound-
ary inflow conditions.

Setup

You can load the .obj file of the terrain in Neutrino by: 1. creating a Rigid Custom node; then 1. entering the path to
that file for the property “File Path”.

In order to use coupling of Neurino with external Depth Averaged Solvers, you have to convert your gauge data and
shallow-water data outputs to the data format readable by the Inflow Coupler of Neutrino. A Python script could do
that.

The gauge data file is simply a set of lines “x-coordinate,z-coordinate”, with as many lines as gauges. x- and z-
coordinates are Cartesian coordinates in the local coordinate system of the Inflow Coupler. If you want to define a
linear or rectangular boundary, these have to be normalized in the range [-0.5,0.5].

The shallow-water data file is a set of lines “time,x-velocity,z-velocity,height”, each corresponding to a gauge and with
a chronologically ascending order.

There also are two optional files used by the Inflow Coupler. One is for defining “extremity points” of the boundary;
an other, used in the case of an arbitrary boundary-shape, is for explicitly specifying connections between the gauges.
Depending on what to achieve, you may or may not need these two files.

The file format for the connecions is very simple. Here’s an example connection file. Download: :download: connex-
ions.csv <static/connexions.csv> Note that the indexing of the gauges starts with 0, not 1.

In the property editor of the inflow coupler in Neutrino, do the following: 1) Choose “Arbitrary” for Boundary Shape;
2) Set the path of the corresponding files for Gauge Input File, Connexion Input File, and Shallow Water Data Input
File; 3) Adjust the values of Scale (x and z) to recover the size in meters of the coupling boundary; 4) Choose between
“Interior Velocity” and “Exterior Velocity” for Flow Direction, depending on if you expect the flow to go inwards or
outwards. That is it, basically.

Also, note that if you right-click on the inflow coupler in the scene inspector there are options that show up for
reloading or clearing the files.

1.6 Common Questions

1.6.1 Core

1. What are Neutrino’s Units ?

Unless specified otherwise, all parameter values in Neutrino are to be expressed according to the international unit
system (i.e., in meters for distance, seconds for time, meters per second for speed, and so on). However, in the specific
case of the property “Uniform Scale”, it is a pure scaling factor, hence it does not have any actual unit. Basically,
if your rigid object has been modeled in a modeling software with a size of, let us say, about 1 cm, you could set
“Uniform Scale” to 100 in order to get a size of about 1 m for your rigid object. This is somewhat equivalent to set the
three values of “Scale” to 100. In the future this property will be removed, as there is redundancy with “Scale”.

1.6.2 Rigid Properties

1. What is remesh sampling of a rigid custom ?

44 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

This feature is deprecated and not working.

2. What is Surface offset ?

The property “Surface Offset” offsets the position of each solid particle towards either the interior (if the value set is
negative) or exterior (if the value set is positive) of the rigid object. It is used for rigid of analytical shapes (Rigid
Cuboid, Rigid Box, etc.), but does only have an effect for Rigid Custom when “Volume Sampling” is turned on. This
is important for fine-tuning the location of the fluid-solid interface.

3. What’s the rigid body? What’s the difference by selecting dynamic/static/kinematic in rigid body type?

“Static” means the rigid body is completely fixed and won’t “feel” the fluid (e.g., a wall). “Kinematic” means the rigid
body can move (according to user input) but still won’t “feel” the fluid (e.g., a door that can slide). “Dynamic” means
the rigid body will “feel” the fluid and move accordingly (e.g., a ship floating on water).

4. What’s Collision shape type and its options?

These are some advanced stuff about algorithms for collision. Just defaults are good . There is no need to play with
this.

5. What’s localize transforms?

Usually when rigid CAD geometry is imported they might not be placed at the origin. They might be modeled at an arbitrary location. When they are imported in Neutrino, they are in world coordinates and Scale/Rotate etc work with respect to the origin . When this option is ON the center point is made relative to the Center of the object. The center is calculated by two means

1. Polyhedral mass properties (Takes into account the concavity of the object)

2. Average of vertices

Usually option b is ok.

6. What is rigid friction used for? In what case can I use more than one rigid?

That property represents a coefficient of rigid-rigid friction. Obviously, that won’t have any effect unless you have at
least two rigid objects among which at least one is dynamic and collide with others.

7. Is the rigid not an idealized domain but a real thing that has mass and density?

It becomes a “real thing” when you set “Rigid Body Type” to “Dynamic”. In the other cases, you do not have to
specify a density.

8. Why cannot I make changes in Linear and Angular velocity?

If “Rigid Body Type” is set either to “Kinematic” or “Dynamic”, these values are computed from their motion unless
its at the beginning of the simulation where you can set it.

9. What is per-vertex velocities?

When turned on, the velocities of each vertex is calculated. This is used mainly for advanced rendering/visualization
with motion blur. You can keep it turned off.

Solver Properties

1. Does the particle spacing refer to the size of the particle? What does boundary particle mean?

Yes, the property “Particle Spacing” is automatically adjusted to the “size” of the fluid particles. You do not have to
manually change its value. The boundary particles refer here to the solid particles of the rigid object. These are used
to represent the wall/solid boundaries and enforce boundary conditions with respect to the fluid.

2. Where can I set the density of the fluid?

Among the properties of Neutrino IISPH solver, you normally have “Fluid Preset” and “Rest Density”. The property
“Fluid Preset” set pre-defined values for the density and viscosity, such as those for water at 293 K. If you want to

1.6. Common Questions 45

Neutrino Documentation, Release 1.0

freely choose the density (and viscosity) of the fluid, first choose “No Preset” for “Fluid Preset”, then set the value you
want to “Rest Density”.

3. I found time step settings in both NIIsphsolver and inflowcoupler and terrain. Are they independent?

The inflow coupler and terrain should not have any property “Time Step” visible. I guess you have a relatively old
version of Neutrino.

4. What assumptions did you use, is there any introduction about them?

The inflow coupler assumes that the vertical axis is the y-axis and that the gravity acceleration is along the minus
y-direction. Neutrino IISPH solver solves the Navier-Stokes equations with the following assumptions on the fluid
and flow: isothermal, incompressible, Newtonian, and viscosity constant in space.

5. Right now my computing is too slow, even on a 100 x 100 m area. Is there any way that can speed it up?

Possibly. There might be several ways to speed it up. What are your machine and its specifications? What is the “size”
of the particles (i.e., the value of the property “Particle Rest Distance”)? How many fluid particles do you have? These
are some of the factors which should be taken into consideration

1.7 Some Simulation Guidelines

Expert knowledge and experience are required for properly setting-up a simulation, so that the best compromise
between stability, accuracy, computational efficiency and memory usage is achieved. This section provides some
pieces of advice and warning on setting-up the simulation and what can be done in the case the simulation is running
unstably, too slowly or inaccurately.

1.7.1 Setting-up the simulation

• Be sure the solid particles are correctly positioned with regards to the solid boundaries. Have the solid particles
displayed (property “Show Particles” of the solids) and adjust their positions (properties “Position” or “Surface
Offset” of the solids) so that they are in contact with their corresponding solid mesh but not overlapping with it.
E.g., in the case of a rigid box: if the simulation domain is contained inside, offset the surface by half the rest
inter-particle distance (property “Particle Rest Distance” of the fluid solver”); if the simulation domain is on the
outside, offset the surface by minus half the rest inter-particle distance; if both the inside and outside are part of
the simulation domain, set the surface offset to zero.

• Be sure there is no extreme oversampling of rigid customs with solid particles. Have the solid particles displayed
(property “Show Particles” of the rigid customs) to check it. Use the volume-based sampling (property “Volume
Sampling” of the rigid customs) to remedy it.

• Be sure there is no extreme overlapping of solid particles due to solids too close to each others. Put the solids
further apart, or use a more appropriate combination of solid shapes.

• Be sure there is no overlapping at all between fluid and solid particles. Adjust the positions of the fluid emitters
and solids.

• Be sure that a correct volume/mass of fluid is generated. The number of fluid particles should be close enough to
the ratio of the expected volume of fluid by the cube of the rest inter-particle distance (property “Rest Distance”
of the fluid solver).

• Let the fluid rest down for a certain duration before starting the actual simulation. The process can be accelerated
by temporarily increasing the fluid viscosity (property “Kinematic Viscosity” of the fluid solver) and the fluid-
solid friction coefficients (property “Fluid Viscosity” of the solids). Be aware that too strong viscosity and
friction may yield instabilities.

46 Chapter 1. Neutrino User Guide

Neutrino Documentation, Release 1.0

• Be sure there is no significant up-and-down oscillation of the fluid surface. If it is the case, increase the level
of incompressibility enforcement by reducing the allowed density deviation (property “Stop Threshold” of the
fluid solver). Note that it might be necessary to start with a relatively large compressibility before progressively
makes the fluid more incompressible, in order to avoid strong instabilities.

• Use the cubic B-spline kernel (property “SPH Kernel” of the fluid solver) until the fluid is approximately at rest;
starting directly with the quintic Wendland kernel tends to result in unstable behaviors. Later on, both choices
should be reasonable.

1.7.2 Stabilizing the simulation

• Decrease the CFL coefficient of the adaptive time-stepping scheme (property “Time-Step CFL Coeff.” of Neu-
trino IISPH solver). Be aware that the simulation will normally be slowed down.

• Decrease the viscosity coefficient of the adaptive time-stepping scheme (property “Time-Step Visc. Coeff.” of
Neutrino IISPH solver). This is relevant only for flows at low Reynolds number. Be aware that the simulation
will normally be slowed down.

• Increase the maximum allowed number of pressure iterations (property “Max. Iter. Num.” of Neutrino IISPH
solver). This is relevant only when the pressure solver has trouble to converge sufficiently; check that the stats
“Num. Pressure Iter.” is always below the maximum allowed number of iterations. Be aware that the simulation
might be slowed down.

• Increase the level of incompressibility enforcement, by decreasing the allowed density deviation (property “Stop
Threshold” of Neutrino IISPH solver). This is relevant mostly in the case the fluid surface oscillates up-and-
down too significantly. Be aware that the simulation might be slowed down.

• Add some amount of artificial viscosity (property “Add Artificial Viscosity” of Neutrino IISPH solver). This is
relevant only for nearly inviscid fluids. The amount of artificial viscosity can be controlled (property “Artificial
Viscosity Const.” of Neutrino IISPH solver). Be aware that the simulation accuracy might be affected, positively
or negatively.

• Use the particle shifting technique (property “Particle Shifting” of Neutrino IISPH solver) to regularize the
particle distribution. Be aware that the simulation will be slowed down, and that the simulation accuracy will
normally be impacted, positively or negatively, with a more regularized particle distribution but the loos or
worsening of some desirable properties of the solver, such as conservation of mechanical energy. Getting the best
from this feature requires fine tuning of the numerical parameters calibrating its strength (properties “Diffusion
Constant” and “Max. Displ. Length Coeff.” of Neutrino IISPH solver).

1.7.3 Accelerating the simulation

• Adjust the number of threads (property “OpenMP Threads” of “Base” under the system inspector) in accordance
with the hardware and programs concurrently running.

• Be sure the simulation has not severely blown up. Check that the following stats does not have the following:
for “Max. Velocity”, an unexpectedly high value, infinity or NaN; for “Time-Step”, an unexpectedly low value,
zero or NaN; for “Num. Pressure Iter.”, the value set to property “Max. Num. of Iter.” of Neutrino IISPH solver.

• Be sure there is no particle leaving the simulation domain and free-falling outside by gravity. Check that the
stats “Max. Velocity” does not continuously increase linearly. Use an extent particle killer to kill the particles
exiting the simulation domain.

• Increase the size of the hash table of the collider (property “Hash Table Size” of the sorted hashing collider). A
value above twice the number of fluid particles plus once the number of solid particles is advised. Be aware that
the memory usage will increase.

1.7. Some Simulation Guidelines 47

Neutrino Documentation, Release 1.0

• Adjust the pressure iteration coefficient of the adaptive time-stepping scheme (property “Time-Step Pressure Iter.
Coeff.” of Neutrino IISPH solver). The number of iterations of the pressure solver (stats “Num. Pressure Iter.”)
should ideally be around 10 to 15 per time step in average. If setting a very large value to the pressure iteration
coefficient leads to an average number lower than 10, using such a large value, equivalent to deactivating the
pressure iteration constraint on the time step, is optimal; conversely, if it gives an average number above 15,
reduce the pressure iteration coefficient to be in the range 10 to 15. Be aware that the simulation accuracy might
be slightly affected.

• Increase the CFL coefficient of the adaptive time-stepping scheme (property “Time-Step CFL Coeff.” of Neu-
trino IISPH solver). Be aware that both the simulation stability and accuracy might become reduced.

• Decrease the level of incompressibility enforcement, by increasing the allowed density deviation (property “Stop
Threshold” of Neutrino IISPH solver). Be aware that the simulation stability and accuracy might become re-
duced.

• Increase the rest inter-particle distance (property “Particle Rest Distance” of Neutrino IISPH solver). Be aware
that the simulation accuracy will become reduced, potentially severely.

1.7.4 Improving the simulation accuracy

• Decrease the rest inter-particle distance (property “Particle Rest Distance” of the fluid solver). Be aware that the
simulation will be slowed down, potentially severely.

• Decrease the CFL coefficient of the adaptive time-stepping scheme (property “Time-Step CFL Coeff.” of Neu-
trino IISPH solver). Be aware that the simulation will normally be slowed down.

• Increase the level of incompressibility enforcement, by decreasing the allowed density deviation (property “Stop
Threshold” of Neutrino IISPH solver). Be aware that the simulation might be slowed down.

• Adjust the amount of artificial viscosity (properties “Add Artificial Viscosity” and “Artificial Viscosity Const.”
of Neutrino IISPH solver). This is relevant only for nearly inviscid fluids. Too less viscosity might result in
instabilities, while too much will yield excessive damping.

• Use the particle shifting technique to regularize the particle distribution (property “Particle Shifting” of Neu-
trino IISPH solver). Be aware that the simulation will be slowed down, and that there is the possibility of a loos
of accuracy instead of a gain, due to the loos or worsening of some desirable properties of the solver, such as
conservation of mechanical energy. Getting the best from this feature requires fine tuning of the numerical pa-
rameters calibrating its strength (properties “Diffusion Constant” and “Max. Displ. Length Coeff.” of Neutrino
IISPH solver).

48 Chapter 1. Neutrino User Guide

CHAPTER 2

Neutrino API Guide

2.1 Introduction

Neutrino supports dynamic loading of various kinds of plugins which are recognized as they are placed in the appro-
priate folder under Neutrino Data.

2.2 Plugin Types

1. Solvers

(a) Particle Solvers

2. Emitters

(a) Particle Emitters

3. Force Fields

4. Surface Generation

5. Materials

2.2.1 Particle Solvers

Its best to explain plugins in Neutrino with the help of an example plugin.

In this case lets take an example of an implementation of a sample solver plugin Look at the example in
Data/Plugins/SampleSPHSolver

This implements a solver based on predictive corrective SPH.

49

Neutrino Documentation, Release 1.0

Building the plugin

A sample qmake pro file is included in the plugin. Please update the NE_BINARY_PATH to where the binary Neutrino
is installed. Typically this is the directory containing the file neutrino.lib or neutrino.so depending on the Operating
System.

Execute qmake and build/make.

The dlls or so of the plugin is installed in Neutrino_Install_Directory/Data/Plugins

Next time neutrino is started it loads the plugins from this directory structure. The various kinds of plugins supported
by neutrino are indicated by the subfolders under Plugins.

For example a solver plugin would be under

Neutrino Data Folder (Neutrino Install Dir/Data) | Plugins -> release -> Spatial -> Physical -> SphFluid (For Release
build)

Neutrino finds the plugin type from the directory structure and the type of plugin written and loads it in the Plugin
Manager

Simulation Init

* NESceneManager::startUpdateTimer()

* NESceneManager::prepareSceneForSimulation()

* NESimulationManager::preparePhysicalsForSimulation

* NERigidManager::prepareRigidsForSimulation()

* Ex: NESphBox::generateBoundaryParticles

* NECollisionManager::update()

* NECollider::update()

* NEUniformGridCollider::update()

* Ex:
→˓NESortedHashingCollider::constructGrid()

* Ex:
→˓NESortedHashingCollider::insertRigidsIntoGrid()

* Ex:
→˓NESortedHashingCollider::insertStaticRigidIntoGrid()

* NEGeometryManager::update()

* NEPostProcessManager::update()

Simulation Update

* NESceneManager::update()

* NESimulationManger::update()

* NELiquidManager::updateForces()

* NESphLiquidSolver::update()

* NESphLiquidManager::integrate()

* NESphLiquidSolver::integrate()

* NECollisionManager::update()

* NECollider::update()

Classes

class NESampleSimpleSolver
Implementation of a simple particle solver.

50 Chapter 2. Neutrino API Guide

Neutrino Documentation, Release 1.0

A Simple Solver which moves particles

Inherits from NESphLiquidSolver

Public Functions

uint NESampleSimpleSolverinit(uint initMode = NE::kInitOnCreate)
Node initialization function, should be called from all inheriting classes.

virtual void NESampleSimpleSolverdeleteParticles()
Deletes all marked particles out of the vector.

virtual void NESampleSimpleSolverdeleteParticle(NEParticle *particle)
Deletes the particle.

virtual bool NESampleSimpleSolverexplicitBoundaryHandling() const
Returns true if explicit boundary handling is required used when integrating particles.

virtual uint NESampleSimpleSolvermemoryConsumption()
Returns the memory consumption of the particles.

Public Slots

virtual void NESampleSimpleSolveraddParticles(NEParticleSource *source,
std::vector<NEParticle> &newParticles,
const vec3f vel)

For adding particles to the fluid, for example by a source that is connected to the fluid.

void NESampleSimpleSolverupdate()
The main update routine for single-phase fluids, called by Liquid Manager.

NESphUpdatePart NESampleSimpleSolverupdateMultiPhase(NESphUpdatePart currentStep)
The main update routine for multiphase fluids.

virtual qreal NESampleSimpleSolverupdateTimeStep()
Computes the required time step and sets it.

virtual uint NESampleSimpleSolversaveFrameData(QString path, const int frameNumber)
Overloaded function, to additionally save the timestep.

virtual uint NESampleSimpleSolverloadFrameData(QString path, const int frameNumber)
Overloaded function, to additionally load the timestep.

void NESampleSimpleSolversetRadius(qreal r)
Overloaded function for modifying fluid radius.

void NESampleSimpleSolversetRestDensity(qreal density)
Overloaded function for modifying rest density of the fluid.

2.3 Neutrino Classes

The full class documentation can be found under classes

2.3. Neutrino Classes 51

file:static/html/index.html

Neutrino Documentation, Release 1.0

2.4 Particle Cache Format

Download NEParticleLoader.cpp - sample code which loads an NEParticle cache file and displays information.

The particle cache file is divided into the following sections

1. Header

1 struct NEBinaryDataSection
2 {
3 short Id;
4 int contentFlag;
5 int nParticles;
6 long long Offset;
7 };

2. Section Data

Particle as stored sequentially with their corresponding data described as follows.

1 enum NEParticleDataType
2 {
3 IdPosition = 1,
4 Color = 2,
5 Velocity = 4,
6 Density = 8,
7 Pressure = 16,
8 Vorticity = 32,
9 Normal = 64,

10 Neighbors = 128,
11 Type = 256
12 };

struct Color32
{

inline Color32(){}
inline Color32(uchar r, uchar g, uchar b, uchar a)
{

red = r; green = g; blue = b; alpha = a;
}
uchar red;
uchar green;
uchar blue;
uchar alpha;
inline void Set(uchar r, uchar g, uchar b, uchar a)
{

red = r; green = g; blue = b; alpha = a;
}

// Some preset colors
static Color32 kRed;
static Color32 kGreen;
static Color32 kBlue;
static Color32 kMagenta;
static Color32 kYellow;
static Color32 kCyan;
static Color32 kOrange;
static Color32 kWhite;

(continues on next page)

52 Chapter 2. Neutrino API Guide

Neutrino Documentation, Release 1.0

(continued from previous page)

static Color32 kBlack;
};

Data structure describing per particle data.

class NEParticle
{
public:

NEParticle() : m_Id(0), m_Color(200,200,255,255), m_Position(0,0,0), m_
→˓Velocity(0,0,0),

m_Density(0), m_Pressure(0), m_Normal(0,0,0){}

virtual ~NEParticle() {}

inline const vec3f& position() const { return m_Position; }
vec3f& position() { return m_Position; }
inline void setPosition(const vec3f& position) { m_Position = position; }

inline const vec3f& velocity() const { return m_Velocity; }
inline vec3f& velocity() { return m_Velocity; }
inline void setVelocity(const vec3f& velocity) { m_Velocity = velocity; }

inline uint id() const {return m_Id; }
inline void setId(const uint id){m_Id = id; }

inline const Color32& color() const { return m_Color; }
inline void setColor(Color32 color) { m_Color = color; }

inline float density() const { return m_Density; }
inline float& density() { return m_Density; }
inline void setDensity(const float density){m_Density = density; }

inline float pressure() const {return m_Pressure; }
inline float& pressure() { return m_Pressure; }
inline void setPressure(float pressure){m_Pressure = pressure; }

vec3f normal() const { return m_Normal; }
void setNormal(vec3f val) { m_Normal = val; }

uint type() const { return m_Type; }
void setType(const uint &Type) { m_Type = Type; }

protected:

uint m_Id;
// Modifying the relative order of color and position will break the

→˓renderer
// NEW: keep these variables at the end of the member variables list
Color32 m_Color;
vec3f m_Position;
vec3f m_Velocity;
float m_Density;
float m_Pressure;
vec3f m_Normal;
uint m_Type;

(continues on next page)

2.4. Particle Cache Format 53

Neutrino Documentation, Release 1.0

(continued from previous page)

};

54 Chapter 2. Neutrino API Guide

CHAPTER 3

Neutrino Physics

This document is a rough guide for the internal physics implementation of the Neutrino SPH solver. More details of
the implementation could be found in [SAMPATH2016], [AKINCI2012] and [IHMSEN2014] and [MKSIISPH].

3.1 Introduction

Smoothed Particle hydrodynamics (SPH) is a common mesh-free Lagrangian method. It was originally introduced for
dealing with astrophysical, compressible fluid flows [MM1994], and later, its range of application domain extended
to a wider variety of flows, such as non-Newtonian fluids , granular flows , and even solid deformation and fracture
. SPH has been applied to incompressible, free-surface flows for more than two decades along with the closely
related moving particle semi-implicit (MPS) method. Mainly, two approaches have been used in SPH for enforcing
incompressibility: (1) state equation-based SPH (SESPH), in which a compressible approach is employed with an
equation of state, relating density, pressure and speed of sound in the fluid, and (2) in incompressible SPH (ISPH), in
which pressure forces are implicitly computed and iteratively refined by solving a pressure Poisson equation until the
desired compressibility is reached.

SPH requires the computation of sums over dynamically changing sets of neighboring particles. Spatial data structures
are employed to accelerate the neighborhood search, and efficient construction and query are thus essential. While
hierarchical data structures are used in simulations with a variable particle interaction radius , uniform grids are more
efficient when the radius is fixed. The cell size is usually set to the interaction radius. Index sort-based grids are often
preferred, because the basic grid suffers from low-cache-hit rate and race conditions during parallel construction.

3.2 SPH Theory

SPH is a numerical method for both interpolating quantities and approximating spatial differential operators from a
set of known quantities at sampled positions. Among the different ways to interpolate from scattered data, SPH relies
on the use of radial basis functions. The value of a field at any point of space is estimated based on the value of this
field at neighbor sampling points and its distance to them.

Usually a particle in physics is a minute quantity of matter and could be one of the following

55

Neutrino Documentation, Release 1.0

• Smallest constituents of matter (Standard Model)

• Nanoparticles, colloidal particles

• Dust, powder, ashes

• Sediment grains, water droplets etc.

However the particles in SPH have the following properties

• They are material points

• They have volume, mass, pressure, density, etc.

3.3 SPH Approximation

Particle a has position ra, mass ma, volume Va, etc. * Particle interaction are computed using the ’kernel’ w(r) * Cubic
Spline Kernel is used in Neutrino

3.4 SPH Kernels

The kernel function used for interpolation in SPH must satisfy a certain number of properties. * It must be defined
on a compact support * It must also be radial, feature a Gaussian-like shape, be sufficiently smooth * It is even and
normalized leads to a first-order consistent continuous SPH interpolation. * Note that the particle distribution has an
impact on the accuracy. * A regular and isotropic distribution is desired.

In Neutrino, the cubic B-spline kernel like the following is employed.

Fig. 3.1: Cubic Spline Kernel

3.5 SPH Navier-Stokes Equations

The single-phase, isothermal, incompressible, Newtonian fluid flows are the considered physical model. In addition,
the viscosity is assumed constant in space, and the surface tension forces are ignored. The Navier-Stokes equations in
their Lagrangian, velocity-pressure formulation then reads:

𝑑𝑣

𝑑𝑡
= −1

𝜌
∇𝑝+ 𝜈∇2v + g (3.1)

𝑑𝜌

𝑑𝑡
= −𝜌∇.𝑣 (3.2)

v = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

56 Chapter 3. Neutrino Physics

Neutrino Documentation, Release 1.0

p = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝜈 = 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦

and

g = 𝑔𝑟𝑎𝑣𝑖𝑡𝑦

Equation (3.1) comes from the momentum conservation, and involves pressure, viscosity, and gravity forces. Equation
(3.2) is derived from the mass conservation. The incompressibility condition is satisfied either by

𝑑𝜌

𝑑𝑡
= 0

or

∇.𝑣 = 0;

these two ways are equivalent in the continuous representation.

3.6 SPH Solvers

3.6.1 Implicit Incompressible SPH (IISPH)

Neutrino base solver is named as IISPH. IISPH solver computes pressure by iteratively solving a linear system to meet
the incompressibility criterion. IISPH is based on semi-implicit form of the density prediction using the time rate of
change of the density. By discretizing the continuity equation

𝐷𝜌

𝐷𝑡
= −𝜌∇

𝜌𝑖(𝑡+ 𝑡)

𝑡
=
∑︁
𝑗

𝑚𝑗vij (𝑡+ 𝑡) ∙∇𝑊ij(𝑡)

The unknown velocities vij (𝑡+ 𝑡) depend on unknown pressure values at time , it’s firstly predicted using any known
non-pressure forces such as gravity, surface tension and viscosity. Then the predicted velocity is used to determine a
predicted density.

vadv
ij = vi (𝑡) + 𝑡

Fadv
𝑖 (𝑖)

𝑚𝑖

𝜌adv
𝑖 = 𝜌𝑖 (𝑡) + 𝑡

∑︁
𝑗

𝑚𝑗v
adv
ij ∙∇𝑊ij(𝑡)

Now the pressure forces to resolve the compression is searched based on:

𝑡2
∑︁
𝑗

𝑚𝑗

(︃
F𝑝

𝑖 (𝑡)

𝑚𝑖
−

F𝑝
𝑗 (𝑡)

𝑚𝑗

)︃
∙∇𝑊ij (𝑡) = 𝜌0 − 𝜌adv

𝑖

Where F𝑝
𝑖 (𝑡) is calculated by1:

F𝑝
𝑖 (𝑡) = −𝑚𝑖

∑︁
𝑗

𝑚𝑗

(︃
𝑝𝑖 (𝑡)

𝜌2𝑖 (𝑡)
+

𝑝𝑗 (𝑡)

𝜌2𝑗 (𝑡)

)︃
∇𝑊ij(𝑡)

3.6. SPH Solvers 57

Neutrino Documentation, Release 1.0

From this point, a linear system can be got with unknown pressure value for each particle with the form:∑︁
𝑗

𝑎ij𝑝𝑗 = 𝑏𝑖 = 𝜌𝑜 − 𝜌adv
𝑖

With the calculated pressure on each particle, the unknown velocity vij (𝑡+ 𝑡) can be calculated as:

vi (𝑡+ 𝑡) = vadv
ij + 𝑡F𝑝

i (𝑡)/𝑚𝑖

Then we will need this velocity to calculate the position of each particle. In Neutrino, different time integration
schemes are applied.

3.6.2 Time Integration

a. Euler Cromer Integration

In Euler Cromer integration scheme, the new position of particle is calculated as:

xi (𝑡+ 𝑡) = xi(𝑡) + 𝑡v𝑖(𝑡+ 𝑡)

Verlet Integration

Verlet scheme calculate the new position as:

xi (𝑡+ 𝑡) = xi (𝑡) + 𝑡v𝑖 (𝑡+ 𝑡) + 0.5𝑡2F𝑖

The numerical tests show Verlet scheme has less numerical dissipation than Euler Cromer, this is because Verlet has a
higher order calculation of position.

3.7 Momentum Equation

The conservation of momentum equation can be described as:

𝐷v

Dt
= −1

𝜌
∇𝑃 + g + 𝑣0∇2vab

𝜏 represents the viscosity term. In Neutrino, two different viscosity models are applied: a. Artificial viscosity; b.
Laminar Viscosity.

3.7.1 Artificial Viscosity

The particle acceleration due to artificial viscosity proposed by Monaghan[MM1994] is defined as:

With

𝜇ab =
ℎvabrab

r2ab + 𝜂

Distance between particles a and b is

rab

58 Chapter 3. Neutrino Physics

Neutrino Documentation, Release 1.0

Average sound speed of particle pair a & b

𝑐ab =
𝑐𝑎 + 𝑐𝑏

2

Average density of particle pair a & b

𝜌ab =
𝜌𝑎 + 𝜌𝑏

2

𝜂 = 0.01ℎ2, 𝛼 is the artificial viscosity parameter and it can be understand in term of kinematic viscosity as[LIU03]:

𝑣0 =
hc
8

3.7.2 Laminar Viscosity

The laminar viscosity proposed by Morris[MORRIS97] is defined as:

𝑑𝑣𝑎
𝑑𝑡

= −
∑︁
𝑏

𝑚𝑏

(︂
4𝑣0rab∙∇𝑊𝑎𝑏

(𝜌𝑎 + 𝜌𝑏)r2ab

)︂
v𝑎𝑏

𝑣0 is the kinematic viscosity of fluid simulated

3.8 Boundary Handling

The fluid-rigid boundaries require special attention. First, discontinuities of physical quantities that occur at bound-
aries are problematic for the usual forms of SPH. Proper boundary handling is necessary to avoid underestimated
densities and non-physical pressure forces. Furthermore, pressure and friction forces between the fluid and the rigid
bodies must be accounted for, and non-penetration must be ensured. Handling of thin objects or with complex ge-
ometries is particularly challenging, as well as when multiple dynamic objects are involved. Different strategies have
been proposed through use of distance-based penalty forces, frozen particles , mirror particles [LIU03] or a wall
renormalisation factor.

In Neutrino an efficient technique based on frozen particles and able to cope with complex boundaries, multiple bodies
and the discontinuity issue is employed. Moreover, the technique uses fluid-rigid pressure and friction force models
conserving linear and angular momentum.

3.8.1 Single Layer Boundary Mode

Appropriate adjustments are made to the boundary conditions to ensure the particle deficiency in using a single layer
of particles.

The boundary coefficient is impacting the magnitude of the pressure forces, and it was empirically calibrated.

3.8.2 Multi Layer Boundary Mode

Currently Under Development

3.8. Boundary Handling 59

Neutrino Documentation, Release 1.0

3.9 Fluid Structure Interactions

Using a standard SPH method in the sense that the time-integrated scheme works as classically done, with the following
chronological steps (at each time step) :

1. compute the accelerations using the positions and velocities;

2. update the velocities using the accelerations;

3. update the positions using the velocities;

Typically, the steps 2) and 3) consists in a variant of Euler, Runge-Kutta, or velocity Verlet method.

3.9.1 IISPH vs Position Based Dynamics (PBD)

Conversely, PBD reformulates the force computations as a set of constraints on the positions and updates the positions
directly without using the velocities. 1) compute the constraints using the positions and velocities; 2) update the
positions by solving for the constraints; 3) update the velocities using the positions. Typically, the Stormer-Verlet
method, or a higher-order equivalent one, is used.

3.10 Sample Cases & Validations

3.10.1 Dam Break

Dam break is simulated by lots of SPH program or software to demonstrate the SPH’s power of dealing free-surface
slamming phenomena. In this case, we measure the force exerted by fluid particles onto the dam structure and compare
the results with experimental data. The simulation is one-to-one scale to real experiments and set up as in Figure 1
according to Cummins work[CUMMINS12]. In neutrino, we firstly put the gate in position and wait for 1 sec until all
fluid particles are settled down. Then we open the gate and let the fluid flow under the effects of gravity.

Figure : Comparison of the forces (Simulated Vs Experiment)

60 Chapter 3. Neutrino Physics

Neutrino Documentation, Release 1.0

Figure : schematic diagram of the dam geometry[CUMMINS12]

Dual-Sphysics, Neutrino and LAMMPS-SPH can all fulfill dam-break case, which make it possible to compare their
accuracy and time consuming. Besides, the force exerted from fluid particles to rigid body is an important factor
to our purpose, by comparing the simulation data to the real experimental data, the feature of each software can be
clearly seen. Table 2 shows the comparison of key parameters for each program. A comparison of simulated force to
experimental data is shown in Figure 2 and a good agreement is found.

Table : comparison of experimental measurement, neutrino, LAMMPS-SPH and Dual-SPHysics

Force Measure-
ment

Parti-
cles

Time Consumption
(sec/step)

Avg. unit Time step
(sec)

Experimental
Data

Yes

Neutrino Yes 67053 0.057 (4 cores) 0.00102
LAMMPS-SPH Need post-

processing
64906 0.136 (8 cores) 0.00025

Dual-SPHysics Need post-
processing

116795 1.454 (4 cores) 0.00004

Figure : comparison of Neutrino output to experimental data

3.10. Sample Cases & Validations 61

Neutrino Documentation, Release 1.0

Figure: Comparison of forces using several particle sizes in Neutrino.

The first peak, representing the first slamming from fluid to the dam structure, is higher than the experimental data.
This is mainly caused by the repulsive boundary treatment at fluid-solid interface. This also shows SPH is capable of
determining fluid-solid interaction accurately.

Figure: Estimate on the error based on the particle resolution

3.10.2 Aureli Dam Break

The Aureli dam break experiment is based the experiment from [Aureli2015]. The impact forces are about 5x lesser
than the previous damn break experiment and there’s a significant amount of air entrapment.

The measurement of the impact forces is done by smoothing out the highest frequency noise . It seems like the forces
are overestimated by about 1N and the secondary shock not captured very well.

62 Chapter 3. Neutrino Physics

Neutrino Documentation, Release 1.0

3.10.3 Poisuelle Flow

3.10.4 Faltisen - Wave Sloshing Experiment

3.10.5 Falling Body in Water

3.10.6 Solitary Wave Past Shore

3.11 References

3.11. References 63

Neutrino Documentation, Release 1.0

64 Chapter 3. Neutrino Physics

Bibliography

[SAMPATH2016] Sampath, R. Montanari, N. Akinci, N. Prescott, S. Smith, C., Large-scale solitary wave simulation
with implicit incompressible SPH, Journal of Ocean Engineering and Marine Energy, 2016, 1-17, 10.1007/s40722-
016-0060-8, http://dx.doi.org/10.1007/s40722-016-0060-8

[AKINCI2012] N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler, M. Teschner, “Versatile Rigid-Fluid Coupling for
Incompressible SPH”, ACM Transactions on Graphics (Proc. SIGGRAPH 2012), vol. 31, no. 4, pp. 62:1-62:8,
July 2012

[IHMSEN2014] Ihmsen, M. and Cornelis, J. Solenthaler, B. Horvath, C. Teschner, M, Implicit Incompressible {SPH},
IEEE Transactions on Visualization and Computer Graphics, 2014

[MM1994] Monaghan, J. J., “Smoothed particle hydrodynamics”, Annual Rev. Astron. Appl., 30: 543- 574., 1992

[MKSIISPH] Markus, I, etc., Implicit Incompressible SPH,

[MORRIS97] Morris, J. P, etc., “Modeling Low Reynolds Number Incompressible Flows Using SPH”, Journal of
Computational Physics 136, 214-226., 1997

[LIU03] Liu. G. R., etc., “Smoothed Particl Hydrodynamics: a meshfree particle method”, World Scientific, 2003.

[CUMMINS12] S. J. Cummins., etc., “Three-dimensional wave impact on a rigid structure using smoothed par-
ticle hydrodynamics”, International Journal for Numerical Methods in Fluids (2012); 68: 1471-1496, http:
//onlinelibrary.wiley.com/doi/10.1002/fld.2539/epdf

[CHERN] Chern, M.J., Borthwick, A.G.L. and Eatock Taylor, R. “Pseudospectral element model for free surface
viscous flows”, Int. J. Num. Meth. For Heat & Fluid Flow (2005), 15(6), 517 – 554, http://www.researchgate.net/
publication/235263308_Pseudospectral_element_model_for_free_surface_viscous_flows

[GHIA82] Ghia, U., etc., “High-Re solutions for incompressible flow using the Navier-Stokes equations and a multi-
grid method”, Journal of Computational Physics, v. 5, n. 48, p.387-411, 1982

[Aureli2015] Aureli, Francesca and Dazzi, Susanna and Maranzoni, Andrea and Mignosa, Paolo and Vacondio, Re-
nato, 10.1016/j.advwatres.2014.11.009}, Adv. Water Resources, Volume 76, January, 2015

65

http://dx.doi.org/10.1007/s40722-016-0060-8
http://onlinelibrary.wiley.com/doi/10.1002/fld.2539/epdf
http://onlinelibrary.wiley.com/doi/10.1002/fld.2539/epdf
http://www.researchgate.net/publication/235263308_Pseudospectral_element_model_for_free_surface_viscous_flows
http://www.researchgate.net/publication/235263308_Pseudospectral_element_model_for_free_surface_viscous_flows

Neutrino Documentation, Release 1.0

66 Bibliography

Index

N
NESampleSimpleSolver (C++ class), 50
NESampleSimpleSolver::addParticles (C++ function), 51
NESampleSimpleSolver::deleteParticle (C++ function),

51
NESampleSimpleSolver::deleteParticles (C++ function),

51
NESampleSimpleSolver::explicitBoundaryHandling

(C++ function), 51
NESampleSimpleSolver::init (C++ function), 51
NESampleSimpleSolver::loadFrameData (C++ function),

51
NESampleSimpleSolver::memoryConsumption (C++

function), 51
NESampleSimpleSolver::saveFrameData (C++ function),

51
NESampleSimpleSolver::setRadius (C++ function), 51
NESampleSimpleSolver::setRestDensity (C++ function),

51
NESampleSimpleSolver::update (C++ function), 51
NESampleSimpleSolver::updateMultiPhase (C++ func-

tion), 51
NESampleSimpleSolver::updateTimeStep (C++ func-

tion), 51

67

	Neutrino User Guide
	Requirements
	Hardware Requirements
	Operating Systems
	Essential Components
	GUI Mode Requirements

	Installation
	Interface
	Toolbars
	Scene Inspector
	Property Editor
	Scene Builder
	System Inspector
	Timeline
	Connection Inspector
	Script Editor
	Node Graph Editor
	Interactive View Window
	Neutrino Nodes
	Spatial Nodes
	Rigid Nodes
	Emitter Nodes
	Volume Fluid Emitters
	Block Emitter
	Volume Emitter
	Volume Nodes
	Particle Killer Nodes
	Particle Fluid Solver Nodes
	Neutrino WCSPH Solver Node
	Measurement Field Nodes
	Visualization Nodes
	Measurement Data Output
	Visualization/Playback and Recording
	Rendering/Export to VTK/Renderers
	Neutrino Scene Data

	Video Tutorials
	General Capabilties
	Pipe Flow Problem Setup
	Internal Flooding Problem Setup

	Tutorials
	Basic Scene
	Dam Break Scene
	Periodic Boundary Conditions Scene
	Sloshing Box Scene
	Wave Tank Scene
	Flow Under Door Scenario Scene
	Coupling Simulations Scene (Coupling with Shallow Water Solvers)

	Common Questions
	Core
	Rigid Properties

	Some Simulation Guidelines
	Setting-up the simulation
	Stabilizing the simulation
	Accelerating the simulation
	Improving the simulation accuracy

	Neutrino API Guide
	Introduction
	Plugin Types
	Particle Solvers

	Neutrino Classes
	Particle Cache Format

	Neutrino Physics
	Introduction
	SPH Theory
	SPH Approximation
	SPH Kernels
	SPH Navier-Stokes Equations
	SPH Solvers
	Implicit Incompressible SPH (IISPH)
	Time Integration

	Momentum Equation
	Artificial Viscosity
	Laminar Viscosity

	Boundary Handling
	Single Layer Boundary Mode
	Multi Layer Boundary Mode

	Fluid Structure Interactions
	IISPH vs Position Based Dynamics (PBD)

	Sample Cases & Validations
	Dam Break
	Aureli Dam Break
	Poisuelle Flow
	Faltisen - Wave Sloshing Experiment
	Falling Body in Water
	Solitary Wave Past Shore

	References

	Bibliography

