Neutrino Audiomatic Documentation
Release 1.0

Neutrino

Jun 17, 2017

Contents

1 Contents 3
1.1 HTTPAPL . . . o e e e e e 3
1.1.1 NeutrinoAudiomatic Response 3

1.2 NeutrinoAudiomaticRails e 4
1.2.1 Configuration o L e e e e e e e 4

1.2.2 0 Getting Start v v v v e 4

1.2.3 Setsanalyze o o i e e e e e e e e e e e e e e 5

1.2.4 Saving directly to ActiveRecord field oo oo 5

1.2.5 Handleanswer e e e e e e e e 6

1.2.6 With CarrierWave o e e 6

1.2.7 Storesfiles e 6

1.2.8 NeutrinoAudiomatiC €ITOIS« t v v vt e e e e e e e e e e e e 7

1.2.9 Response authentication i i e e e e e 7

1.3 Heroku Add-on e e e e e e e e 7
1.3.1 Provisioning theadd-on L. 7

1.3.2 UsingwithRails 4.X,5.X o e 8
1.3.2.1 Configuration v i e e e e e e e e e e e e 8

1.3.2.2 Using with ActiveRecord 8

14 Support . . . oo e e e e e e e e e 9

Neutrino Audiomatic Documentation, Release 1.0

Audiomatic provides power of professional music studio as a service. Lightning fast generation of waveform? Check!
Duration of audio file in millisecond precision? No problem. Conversion of any obscure format to web-ready mp3?
3.. 2... 1... Done! Say ‘no’ to hours of googling, installing hundreds of plugins or obscure software. Leave these bad
parts of audio editing to us, so you have time for the important stuff.

Audiomatic is accessible via an API and has supported client libraries for Ruby. More coming soon.

Contents 1

Neutrino Audiomatic Documentation, Release 1.0

2 Contents

CHAPTER 1

Contents

HTTP API

Scheduling file processing requires POSTing two parameters to audiomatic api: - url - location of processed file, -
callback_url - location where results of analysis should be returned as JSON.

Url depends on desired processor. Root of API2.0 requests: - https://audiomatic.radiokitapp.org/api/process/v2.0
should be concatenated with processor’s path:

Processors | Path

duration: “/analysis/audio/duration”,
replaygain: “/analysis/audio/replaygain”,
tags: “/analysis/audio/tags”,
webbrowser: | “/transcode/audio/webbrowser”,
waveform: “/visualisation/audio/waveform”

In short, to obtain duration, POST to: - https://audiomatic.radiokitapp.org/api/process/v2.0/analysis/audio/duration
JSON body: {
“callback_url”:’https://example.org/callback”, “url”:”https://example.org/file. mp3*

}

Don’t forget about authentication. Use Basic Auth with login and token you obtained during registration. You
can use either Authorization Header or URL encoding. For details, see https://en.wikipedia.org/wiki/Basic_access_
authentication#Client_side

NeutrinoAudiomatic Response

<!— TODO: Describe both immediate response, with reference, and give specific examples of every processor. Write
about response audiomatic expects. —> After sends request to NeutrinoAudiomatic, server answers twice. First re-
sponse will be sent immediately and it will contain status of request. Second, will be sent results of analyze.

First response:

https://audiomatic.radiokitapp.org/api/process/v2.0
https://audiomatic.radiokitapp.org/api/process/v2.0/analysis/audio/duration
https://example.org/callback
https://example.org/file.mp3
https://en.wikipedia.org/wiki/Basic_access_authentication#Client_side
https://en.wikipedia.org/wiki/Basic_access_authentication#Client_side

Neutrino Audiomatic Documentation, Release 1.0

If status is 202, mean that NeutrinoAudiomatic get your request and start working on it. Body of successful response
contain reference number which is unique attribute of single analyze. Otherwise, something went wrong.

Seccond response:

Results are in json similar to:

{“result”=>[{*“value”=>"122323", “key”’=>"duration” }]} # => duration
{“result”=>[{“value”=>"AC/DC”, “key”’=>"artist”}, {“value”’=>"T.N.T”, “key”’=>"title” }]} # => tags
{“result”=>[{“value”=>"http://www.example.org/file.mp3”, “key”=>"webbrowser” }]} # => webbrowser

{“result”’=>[{*value”=>0.05550943315029144, “key”’=>"replaygain-track-peak”}, {“value”=>20.32999999999999,
“key”=>"replaygain-track-gain”}, {“value”’=>89, “key”’=>"replaygain-reference-level”’}]} # => replay gain

9% ¢

{“result”=>[{*“value”=>"http://www.example.org/file.png”, “key”’=>"waveform”}]} # => waveform

Processor | Results

duration “duration” [ms]

replaygain “replaygain-track-peak” “replaygain-track-gain” “replaygain-reference-level”
tags all tags of audio file

webbrowser | url to mp3 file

waveform url to png file

NeutrinoAudiomaticRails

Ruby on Rails applications will need to add the following entry into their Gemfi 1e specifying the Audiomatic client
library.

’gem 'audiomatic-rails'

Update application dependencies with bundler.

Configuration

For heroku users, configuration is really easy. Just install Neutrino_Audiomatic (url) plugin and paste code-block
below to config/initializer/audiomatic_config.rb:

.config do |c|

c.processor_host = ["AUDIOMATIC_URL']
c.audiomatic_secret = ["AUDIOMATIC_SHARED_SECRET']
end

you can also provide your own unique url:

.config do |c|

c.processor_host = "https://login:password@audiomatic.radiokitapp.org/api/process"
c.audiomatic_secret = ["AUDIOMATIC_SHARED_SECRET']
end

also you have to set the routes default_url_options in environments/production.rb

Getting start

1. Store file which you want to analyze. This gem provides method store which simplifies it. Example of controller:

4 Chapter 1. Contents

http://www.example.org/file.mp3
http://www.example.org/file.png

Neutrino Audiomatic Documentation, Release 1.0

def create

lio_file = .new
o _file.store params|[:audio_file][:audio]
~file.save

2. Include AudiomaticRails::Model in your ActiveRecord Model

class YourModel <

include

end

3. Configure processors. Set field where result should be saved (don’t forget to adding column to database):

model should have 'duration' field
analyze :duration, [:duration]

or (if file is named different then result)
analyze :duration {duration: {field: :duration_field}}

4. Keep adding processors:

analyze :duration, {duration: {transformation: to_second= }}

analyze :tags, [:artist, :title]
analyze :waveform, mount_on: :waveform
analyze :browser, mount_on: :mp3_file

analyze :replaygain, save_to: replaygain_method=

S.Last step: tell Audiomatic where results should be sent back. Add to your routes.rb:

config/routes.rb
.application.routes.draw do
audiomatic_for()

end

And that’s it!

Sets analyze
NeutrinoAudiomaticRails gives many possibilities of processors configuration which will be done on your files. Gem

has a lot of default configuration, but also gives capabilities to customize it. Method analyze describes which result
we want to get, and how the result is handled.

Saving directly to ActiveRecord field

The most default option: Select processor and put result to Array. It saves results to fields in yourModel (name of
result must be the same as name of field)

#processor #result
analyze :duration, [:duration]

1.2. NeutrinoAudiomaticRails 5

Neutrino Audiomatic Documentation, Release 1.0

To customize this strategy you can use Hash instead of Array, and select extra options:
« :field - allows select field for result
* :transformation - allows convert result before saving to db, transformations methods have to be in Array

Example:

analyze :replaygain, {'replaygain-track-peak': {field: :replaygain_track_peak},

—'replaygain—-track-gain': {field: :'replaygain_track_gain', transformation: [:to_s=]}
<}
analyze :duration, {duration: {transformation: [:to_s=]}}

Handle answer

If you want to get all results from processor and save or interpret it on your own, you have to use option :save_to
which lets you write own method that would get result and do everything you want. Example:

#processor #result
analyze :tags, save_to: :tags=

def tags= result # result is json {'key': name, 'value': value }
#your code. ..
end

With CarrierWave

Because in some cases NeutrinoAudiomatic returns file, neutrino_audiomatic_rails provides easy way to store this file
in your Uploader. Example:

mount_uploader :waveform,
mount_uploader :mp3_file,

analyze :webbrowser, mount_on: :mp3_file
analyze :waveform, mount_on: :waveform

It means mount_on: :uploader is equl to self.uploader.store! file. Now, results are in your Uploader.

Stores files

To analyze file NeutrinoAudiomatic needs an url to your file. Neutrino_audiomatic_rails provides store method which
saves your file in tmp folder and creates routes to get it. It will be used during sending request to NeutrinoAudiomatic.

def create

@audio_file = .new
@audio_file.store params|:audio_file] [:audio]
Qaudio_file.save

end

If you already have audio file stored. you can provide your own method which would return url to file to analyze.

audiomatic_file_url :set_url
def set_url

6 Chapter 1. Contents

Neutrino Audiomatic Documentation, Release 1.0

#your code
end

NeutrinoAudiomatic errors

Sending request to NeutrinoAudiomac starts after saving instance of yourModel. While sending request to Neutri-
noAudiomatic something can go wrong. In default configuration if server sends response with status diffrent then 202,
method in gem raises exception, rollbacks transaction and method save returns false.

Second strategy allows you write your own reaction on error. All you have to do is to write method and set it as
audiomatic_error. This method needs to have one argument. If your method returns true, then gem uses ActiveJob and
tries sending request to server again after 15 minutes. If method returns false then gem raises excepction and deletes
transaction.

audiomatic_error :handle_error=

def handle_error= error
#your code
end

Response authentication

Response sent from NeutrinoAudiomatic can be verified by calculation a signature.

All response contain HITP_X_NEUTRINO_AUDIOMATIC_HMAC_SHA256 header which is generated using the
app’s shared secret and body of response.

To verify that the request come from NeutrinoAudiomatic, compute the HMAC digest and then compere value and
HTTP_X_NEUTRINO_AUDIOMATIC_HMAC_SHA256 header. If they the same, you can be sure the response come
from NeutrinoAudiomatic.

Simple example:

def self.verify_neutrino(data, hmac_header)

secret = ["AUDIOMATIC_SHARED_SECRET']
calculated_hmac = - .hexdigest (data + ":" + secret)
calculated_hmac == hmac_header

end

def self.verify_response request

request .body.rewind

data = request.body.read

verified = verify_neutrino(data, request.headers|["HTTP_X_ NEUTRINO_AUDIOMATIC_HMAC_
—SHA256"])
end

Gem neutrino_audiomatic_rails authenticates response for you

Heroku Add-on

Provisioning the add-on

Audiomatic can be attached to a Heroku application via the CLI:

1.3. Heroku Add-on 7

Neutrino Audiomatic Documentation, Release 1.0

Once Neutrino Audiomatic has been added a NEUTRINO_AUDIOMATIC_URL setting will be available in the app
configuration and will contain the canonical URL used to access the newly provisioned Neutrino Audiomatic service
instance. This can be confirmed using the heroku config:get command.

After installing Neutrino Audiomatic the application should be configured to fully integrate with the add-on.

Using with Rails 4.x, 5.x

Ruby on Rails applications will need to add the following entry into their Gemfile specifying the Neutrino Au-
diomatic client library.

gem 'neutrino-—audiomatic-rails'

Update application dependencies with bundler.

Configuration

For heroku users, configuration is really easy.Just install Neutrino Audiomatic (url) plugin and paste code-block below
toconfig/initializer/neutrino_audiomatic_config.rb:

.config do |c|
c.processor_host = ["NEUTRINO_AUDIOMATIC_URL']

end

You can also provide your own unique url:

.config do |c|

c.processor_host = "https://login:password@neutrino—audiomatic.radiokitapp.org/api/
—process"

end

Using with ActiveRecord

1. Include NeutrinoAudiomaticRails::Model in your Model

class YourModel <

include

end

2. Tell Neutrino Audiomatic where your files are stored. Just pass method name to neutrino_audiomatic_file_url

neutrino_audiomatic_file_url :file_url

Example method returning URL

def file_url

8 Chapter 1. Contents

Neutrino Audiomatic Documentation, Release 1.0

"www.example.org/files/#{file.slug}.mp3"

end

3. Configure processors. Set field where result should be saved (don’t forget to about adding column to database):

model should have 'duration value' field

analyze :duration, [:duration_value]

4. Keep adding processors:

analyze :duration, [:duration]

analyze :tags, [:artist, :title]

5. Last step: tell Neutrino Audiomatic where results should be sent back. Add to your routes.rb:

config/routes.rb

.application.routes.draw do
neutrino_audiomatic_for ()

end

And that’s it!

In short:

config/initializer/neutrino_audiomatic_config.rb
NeutrinoAudiomatic.config do \|c\|
c.processor_host = ENV[‘NEUTRINO_AUDIOMATIC_URL’]
end

config/routes.rb

Rails.application.routes.draw do
neutrino—audiomatic_for (YourModel)
end

your_model.rb

Support

If you need any support while using Neutrino Audiomatic, please do not hestitate to contact us at ad-
min@neutrino.audio

1.4. Support 9

mailto:admin@neutrino.audio
mailto:admin@neutrino.audio

	Contents
	HTTP API
	NeutrinoAudiomatic Response

	NeutrinoAudiomaticRails
	Configuration
	Getting start
	Sets analyze
	Saving directly to ActiveRecord field
	Handle answer
	With CarrierWave
	Stores files
	NeutrinoAudiomatic errors
	Response authentication

	Heroku Add-on
	Provisioning the add-on
	Using with Rails 4.x, 5.x
	Configuration
	Using with ActiveRecord

	Support

