
neurtu Documentation
Release 0.3.0

Roman Yurchak

Sep 25, 2019

Contents:

1 Installation 3

2 Quickstart 5

3 Examples 7
3.1 Time complexity of numpy.sort . 7
3.2 LogisticRegression scaling in scikit-learn . 9

4 API Reference 17
4.1 neurtu.timeit . 17
4.2 neurtu.memit . 18
4.3 neurtu.Benchmark . 18
4.4 neurtu.delayed . 19

5 Release notes 21
5.1 Version 0.3 . 21
5.2 Version 0.2 . 21
5.3 Version 0.1 . 22

Index 23

i

ii

neurtu Documentation, Release 0.3.0

Simple performance measurement tool

neurtu is a Python package providing a common interface for multi-metric benchmarks (including time and memory
measurements). It can can be used to estimate time and space complexity of algorithms, while pandas integration
allows quick analysis and visualization of the results.

Setting the number of threads at runtime in OpenBlas, and MKL is also supported on Linux and MacOS.

neurtu means “to measure / evaluate” in Basque language.

Contents: 1

neurtu Documentation, Release 0.3.0

2 Contents:

CHAPTER 1

Installation

neurtu requires Python 2.7 or 3.4+, it can be installed with,

pip install neurtu

pandas is an optional (but highly recommended) dependency.

Note: the above command will install memory_profiler, shutil (to measure memory use) and tqdm (to make progress
bars) mostly for convinience. However, neurtu does not have any hard depedencies, it you don’t need these function-
alites, you can install it with pip install --no-deps neurtu

3

https://pandas.pydata.org/pandas-docs/stable/install.html#installation

neurtu Documentation, Release 0.3.0

4 Chapter 1. Installation

CHAPTER 2

Quickstart

To illustrate neurtu usage, will will benchmark array sorting in numpy. First, we will generator of cases,

import numpy as np
import neurtu

def cases()
rng = np.random.RandomState(42)

for N in [1000, 10000, 100000]:
X = rng.rand(N)
tags = {'N' : N}
yield neurtu.delayed(X, tags=tags).sort()

that yields a sequence of delayed calculations, each tagged with the parameters defining individual runs.

We can evaluate the run time with,

>>> df = neurtu.timeit(cases())
>>> print(df)

wall_time
N
1000 0.000014
10000 0.000134
100000 0.001474

which will internally use timeit module with a sufficient number of evaluation to work around the timer precision
limitations (similarly to IPython’s %timeit). It will also display a progress bar for long running benchmarks, and
return the results as a pandas.DataFrame (if pandas is installed).

By default, all evaluations are run with repeat=1. If more statistical confidence is required, this value can be
increased,

>>> neurtu.timeit(cases(), repeat=3)
wall_time

mean max std
(continues on next page)

5

neurtu Documentation, Release 0.3.0

(continued from previous page)

N
1000 0.000012 0.000014 0.000002
10000 0.000116 0.000149 0.000029
100000 0.001323 0.001714 0.000339

In this case we will get a frame with a pandas.MultiIndex for columns, where the first level represents the met-
ric name (wall_time) and the second – the aggregation method. By default neurtu.timeit is called with
aggregate=['mean', 'max', 'std'] methods, as supported by the pandas aggregation API. To disable,
aggregation and obtains timings for individual runs, use aggregate=False. See neurtu.timeit documentation for
more details.

To evaluate the peak memory usage, one can use the neurtu.memit function with the same API,

>>> neurtu.memit(cases(), repeat=3)
peak_memory

mean max std
N
10000 0.0 0.0 0.0
100000 0.0 0.0 0.0
1000000 0.0 0.0 0.0

More generally neurtu.Benchmark supports a wide number of evaluation metrics,

>>> bench = neurtu.Benchmark(wall_time=True, cpu_time=True, peak_memory=True)
>>> bench(cases())

cpu_time peak_memory wall_time
N
10000 0.000100 0.0 0.000142
100000 0.001149 0.0 0.001680
1000000 0.013677 0.0 0.018347

including [psutil process metrics](https://psutil.readthedocs.io/en/latest/#psutil.Process).

For more information see the Examples.

6 Chapter 2. Quickstart

https://pandas.pydata.org/pandas-docs/stable/advanced.html#multiindex-advanced-indexing
https://pandas.pydata.org/pandas-docs/version/0.22.0/groupby.html#aggregation
https://neurtu.readthedocs.io/generated/neurtu.timeit.html
https://psutil.readthedocs.io/en/latest/#psutil.Process

CHAPTER 3

Examples

The following examples illustrate neurtu usage

Note: Click here to download the full example code

3.1 Time complexity of numpy.sort

In this example we will look into the time complexity of numpy.sort()

import numpy as np
from neurtu import timeit, delayed

rng = np.random.RandomState(42)

df = timeit(delayed(np.sort, tags={'N': N, 'kind': kind})(rng.rand(N), kind=kind)
for N in np.logspace(2, 5, num=5).astype('int')
for kind in ["quicksort", "mergesort", "heapsort"])

print(df.to_string())

Out:

wall_time
N kind
100 quicksort 0.000005

mergesort 0.000006
heapsort 0.000006

562 quicksort 0.000011
mergesort 0.000017

(continues on next page)

7

neurtu Documentation, Release 0.3.0

(continued from previous page)

heapsort 0.000037
3162 quicksort 0.000170

mergesort 0.000199
heapsort 0.000296

17782 quicksort 0.001223
mergesort 0.001389
heapsort 0.002012

100000 quicksort 0.007667
mergesort 0.009005
heapsort 0.014728

we can use the pandas plotting API (that requires matplotlib)

ax = df.wall_time.unstack().plot(marker='o')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_ylabel('Wall time (s)')
ax.set_title('Time complexity of numpy.sort')

Total running time of the script: (0 minutes 3.379 seconds)

Note: Click here to download the full example code

8 Chapter 3. Examples

neurtu Documentation, Release 0.3.0

3.2 LogisticRegression scaling in scikit-learn

In this example we will look into the time and space complexity of sklearn.linear_model.
LogisticRegression

from collections import OrderedDict

import numpy as np
from sklearn.linear_model import LogisticRegression
from neurtu import Benchmark, delayed

rng = np.random.RandomState(42)

n_samples, n_features = 50000, 100

X = rng.rand(n_samples, n_features)
y = rng.randint(2, size=(n_samples))

def benchmark_cases():
for N in np.logspace(np.log10(100), np.log10(n_samples), 5).astype('int'):

for solver in ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']:
tags = OrderedDict(N=N, solver=solver)
model = delayed(LogisticRegression, tags=tags)(

solver=solver, random_state=rng)

yield model.fit(X[:N], y[:N])

bench = Benchmark(wall_time=True, peak_memory=True)
df = bench(benchmark_cases())

print(df.tail())

Out:

0%| | 0/50 [00:00<?, ?it/s]
4%|4 | 2/50 [00:00<00:04, 11.74it/s]
6%|6 | 3/50 [00:00<00:07, 6.39it/s]
8%|8 | 4/50 [00:00<00:08, 5.56it/s]

10%|# | 5/50 [00:00<00:08, 5.11it/s]/home/docs/checkouts/readthedocs.org/
→˓user_builds/neurtu/envs/stable/lib/python3.7/site-packages/sklearn/linear_model/sag.
→˓py:337: ConvergenceWarning: The max_iter was reached which means the coef_ did not
→˓converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

14%|#4 | 7/50 [00:01<00:08, 5.08it/s]

(continues on next page)

3.2. LogisticRegression scaling in scikit-learn 9

neurtu Documentation, Release 0.3.0

(continued from previous page)

16%|#6 | 8/50 [00:01<00:07, 5.84it/s]/home/docs/checkouts/readthedocs.org/
→˓user_builds/neurtu/envs/stable/lib/python3.7/site-packages/sklearn/linear_model/sag.
→˓py:337: ConvergenceWarning: The max_iter was reached which means the coef_ did not
→˓converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

(continues on next page)

10 Chapter 3. Examples

neurtu Documentation, Release 0.3.0

(continued from previous page)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

18%|#8 | 9/50 [00:01<00:08, 4.85it/s]/home/docs/checkouts/readthedocs.org/
→˓user_builds/neurtu/envs/stable/lib/python3.7/site-packages/sklearn/linear_model/sag.
→˓py:337: ConvergenceWarning: The max_iter was reached which means the coef_ did not
→˓converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

20%|## | 10/50 [00:01<00:07, 5.54it/s]
22%|##2 | 11/50 [00:02<00:08, 4.77it/s]
24%|##4 | 12/50 [00:02<00:06, 5.54it/s]
26%|##6 | 13/50 [00:02<00:07, 4.97it/s]
28%|##8 | 14/50 [00:02<00:06, 5.64it/s]
30%|### | 15/50 [00:02<00:07, 4.95it/s]/home/docs/checkouts/readthedocs.org/
→˓user_builds/neurtu/envs/stable/lib/python3.7/site-packages/sklearn/linear_model/sag.
→˓py:337: ConvergenceWarning: The max_iter was reached which means the coef_ did not
→˓converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

(continues on next page)

3.2. LogisticRegression scaling in scikit-learn 11

neurtu Documentation, Release 0.3.0

(continued from previous page)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

34%|###4 | 17/50 [00:03<00:06, 5.06it/s]/home/docs/checkouts/readthedocs.org/
→˓user_builds/neurtu/envs/stable/lib/python3.7/site-packages/sklearn/linear_model/sag.
→˓py:337: ConvergenceWarning: The max_iter was reached which means the coef_ did not
→˓converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

36%|###6 | 18/50 [00:03<00:05, 5.39it/s]/home/docs/checkouts/readthedocs.org/
→˓user_builds/neurtu/envs/stable/lib/python3.7/site-packages/sklearn/linear_model/sag.
→˓py:337: ConvergenceWarning: The max_iter was reached which means the coef_ did not
→˓converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

38%|###8 | 19/50 [00:03<00:06, 4.67it/s]/home/docs/checkouts/readthedocs.org/
→˓user_builds/neurtu/envs/stable/lib/python3.7/site-packages/sklearn/linear_model/sag.
→˓py:337: ConvergenceWarning: The max_iter was reached which means the coef_ did not
→˓converge
"the coef_ did not converge", ConvergenceWarning)

/home/docs/checkouts/readthedocs.org/user_builds/neurtu/envs/stable/lib/python3.7/
→˓site-packages/sklearn/linear_model/sag.py:337: ConvergenceWarning: The max_iter was
→˓reached which means the coef_ did not converge
"the coef_ did not converge", ConvergenceWarning)

40%|#### | 20/50 [00:03<00:06, 4.94it/s]
42%|####2 | 21/50 [00:04<00:06, 4.21it/s]
44%|####4 | 22/50 [00:04<00:05, 4.70it/s]
46%|####6 | 23/50 [00:04<00:05, 4.63it/s]
48%|####8 | 24/50 [00:04<00:05, 5.03it/s]
50%|##### | 25/50 [00:05<00:05, 4.60it/s]
52%|#####2 | 26/50 [00:05<00:04, 5.16it/s]
54%|#####4 | 27/50 [00:05<00:05, 4.02it/s]
56%|#####6 | 28/50 [00:05<00:05, 3.93it/s]
58%|#####8 | 29/50 [00:06<00:06, 3.48it/s]
60%|###### | 30/50 [00:06<00:05, 3.38it/s]
62%|######2 | 31/50 [00:06<00:05, 3.55it/s]
64%|######4 | 32/50 [00:07<00:06, 2.76it/s]
66%|######6 | 33/50 [00:07<00:05, 2.88it/s]

(continues on next page)

12 Chapter 3. Examples

neurtu Documentation, Release 0.3.0

(continued from previous page)

68%|######8 | 34/50 [00:07<00:05, 3.05it/s]
70%|####### | 35/50 [00:08<00:04, 3.02it/s]
72%|#######2 | 36/50 [00:08<00:04, 3.41it/s]
74%|#######4 | 37/50 [00:08<00:04, 2.66it/s]
76%|#######6 | 38/50 [00:09<00:05, 2.35it/s]
78%|#######8 | 39/50 [00:09<00:04, 2.46it/s]
80%|######## | 40/50 [00:10<00:04, 2.47it/s]
82%|########2 | 41/50 [00:12<00:08, 1.03it/s]
84%|########4 | 42/50 [00:14<00:10, 1.34s/it]
86%|########6 | 43/50 [00:15<00:07, 1.07s/it]
88%|########8 | 44/50 [00:15<00:04, 1.21it/s]
90%|######### | 45/50 [00:16<00:03, 1.29it/s]
92%|#########2| 46/50 [00:16<00:02, 1.36it/s]
94%|#########3| 47/50 [00:19<00:04, 1.38s/it]
96%|#########6| 48/50 [00:22<00:03, 1.90s/it]
98%|#########8| 49/50 [00:24<00:01, 1.92s/it]

100%|##########| 50/50 [00:26<00:00, 1.89s/it]

wall_time peak_memory
N solver
49999 newton-cg 2.245351 75.835938

lbfgs 0.189091 0.003906
liblinear 0.596465 79.875000
sag 2.844747 0.007812
saga 1.905433 0.000000

The above section will run in approximately 1min, a progress bar will be displayed.

We can use the pandas plotting API (that requires matplotlib) to visualize the results,

ax = df.wall_time.unstack().plot(marker='o')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_ylabel('Wall time (s)')
ax.set_title('Run time scaling for LogisticRegression.fit')

3.2. LogisticRegression scaling in scikit-learn 13

neurtu Documentation, Release 0.3.0

The solver with the best scalability in this example is “lbfgs”.

Similarly the memory scaling is represented below,

ax = df.peak_memory.unstack().plot(marker='o')
ax.set_xscale('log')
ax.set_yscale('log')
ax.set_ylabel('Peak memory (MB)')
ax.set_title('Peak memory usage for LogisticRegression.fit')

14 Chapter 3. Examples

neurtu Documentation, Release 0.3.0

Peak memory usage for “liblinear” and “newton-cg” appear to be significant above 10000 samples, while the other
solvers use less memory than the detection threshold. Note that these benchmarks do not account for the memory used
by X and y arrays.

Total running time of the script: (0 minutes 28.220 seconds)

3.2. LogisticRegression scaling in scikit-learn 15

neurtu Documentation, Release 0.3.0

16 Chapter 3. Examples

CHAPTER 4

API Reference

neurtu.timeit(obj[, timer, number, repeat, . . .]) A benchmark decorator
neurtu.memit(obj[, repeat, aggregate, . . .]) Measure the memory use.
neurtu.Benchmark([wall_time, cpu_time, . . .]) Benchmark calculations
neurtu.delayed(obj[, tags, env]) Delayed object evaluation

4.1 neurtu.timeit

neurtu.timeit(obj, timer=’wall_time’, number=1, repeat=1, aggregate=(’mean’, ’max’, ’std’),
to_dataframe=None, progress_bar=5.0)

A benchmark decorator

This is an alias for Benchmark with wall_time=True.

Parameters

• obj ({Delayed, iterable of Delayed}) – delayed object to compute, or an iter-
able of Delayed objects

• number (int, default=1) – number of runs to pass to timeit.Timer

• repeat (int, default=1) – number of repeated measurements

• aggregate ({collection, False}, default=('mean', 'max',
'std')) – when repeat > 1, different runs are indexed by the runid key. If pan-
das is installed and aggregate is a collection, aggregate repeated runs with the provided
methods.

• to_dataframe (bool, default=None) – whether to convert parametric results to a
daframe. By default convert to dataframe is pandas is installed.

• progress_bar ({bool, float}, default=5.0) – if a number, and tqdm is in-
stalled, display the progress bar when the estimated benchmark time is larger than the given
number of seconds. If False, the progress bar will not be displayed.

Returns res – computed timing

17

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

neurtu Documentation, Release 0.3.0

Return type dict, list or pandas.DataFrame

4.2 neurtu.memit

neurtu.memit(obj, repeat=1, aggregate=(’mean’, ’max’, ’std’), interval=0.01, to_dataframe=None,
progress_bar=5.0)

Measure the memory use.

This is an alias for Benchmark with peak_memory=True).

Parameters

• repeat (int, default=1) – number of repeated measurements

• aggregate ({collection, False}, default=('mean', 'max',
'std')) – when repeat > 1, different runs are indexed by the runid key. If pan-
das is installed and aggregate is a collection, aggregate repeated runs with the provided
methods.

• to_dataframe (bool, default=None) – whether to convert parametric results to a
daframe. By default convert to dataframe is pandas is installed.

• progress_bar ({bool, float}, default=5.0) – if a number, and tqdm is in-
stalled, display the progress bar when the estimated benchmark time is larger than the given
number of seconds. If False, the progress bar will not be displayed.

Returns res – computed memory usage

Return type dict, list or pandas.DataFrame

4.3 neurtu.Benchmark

class neurtu.Benchmark(wall_time=None, cpu_time=False, peak_memory=False, repeat=1, ag-
gregate=(’mean’, ’max’, ’std’), to_dataframe=None, progress_bar=5.0,
**kwargs)

Benchmark calculations

Parameters

• wall_time ({bool, dict}, default=None) – measure wall time. When a dic-
tionary, it is passed as parameters to the func:measure_wall_time function. Will default to
True, unless some other metric is enabled.

• cpu_time ({bool, dict}, default=False) – measure CPU time. When a dic-
tionary, it is passed as parameters to the measure_cpu_time() function.

• peak_memory ({bool, dict}, default=False) – measure peak memory usage.
When a dictionary, it is passed as parameters to the measure_peak_memory() function.

• repeat (int, default=1) – number of repeated measurements

• aggregate ({collection, False}, default=('mean', 'max',
'std')) – when repeat > 1, different runs are indexed by the runid key. If pan-
das is installed and aggregate is a collection, aggregate repeated runs with the provided
methods.

• to_dataframe (bool, default=None) – whether to convert parametric results to a
daframe. By default convert to dataframe is pandas is installed.

18 Chapter 4. API Reference

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

neurtu Documentation, Release 0.3.0

• progress_bar ({bool, float}, default=5.0) – if a number, and tqdm is in-
stalled, display the progress bar when the estimated benchmark time is larger than the given
number of seconds. If False, the progress bar will not be displayed.

• **kwargs (dict) – custom evaluation metrics of the form key=func, where key is
the metric name, and the func is the evaluation metric that accepts a Delayed object:
func(obj).

__init__(wall_time=None, cpu_time=False, peak_memory=False, repeat=1, aggregate=(’mean’,
’max’, ’std’), to_dataframe=None, progress_bar=5.0, **kwargs)

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([wall_time, cpu_time, peak_memory,
. . .])

Initialize self.

4.4 neurtu.delayed

neurtu.delayed(obj, tags=None, env=None)
Delayed object evaluation

Parameters

• obj (object) – object or function to wrap

• tags (dict) – optional tags for the produced delayed object

• env (dict) – optional environment variables to set when evaluating the delayed object

Returns result – a delayed object

Return type class:neurtu.Delayed

Example

>>> x = delayed('some string').split(' ')[::-1]
>>> x
<Delayed('some string').split(' ')[slice(None, None, -1)]>
>>> x.compute()
['string', 'some']

Using tags

>>> x = delayed([2, 3], tags={'a': 0}).sum()
>>> x.get_tags()
{'a': 0}

4.4. neurtu.delayed 19

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

neurtu Documentation, Release 0.3.0

20 Chapter 4. API Reference

CHAPTER 5

Release notes

5.1 Version 0.3

July 21, 2019

5.1.1 API changes

• Functions to set the number of BLAS threads at runtime were removed in favour of using threadpoolctl.

5.1.2 Enhancements

• Add get_args and get_kwargs to Delayed object.

• Better progress bars in Jupyter notebooks with the tqdm.auto backend.

5.1.3 Bug fixes

• Fix progress bar rendering when repeat>1.

• Fix warnings due to collection.abc.

5.2 Version 0.2

August 28, 2018

21

https://github.com/joblib/threadpoolctl

neurtu Documentation, Release 0.3.0

5.2.1 New features

• Runtime detection of the BLAS used by numpy #14

• Ability to set the number of threads in OpenBlas and MKL BLAS at runtime on Linux. #15.

5.2.2 Enhancements

• Better test coverage

• Documentation improvements

• In depth refactoring of the benchmarking code

5.2.3 API changes

• The API of timeit, memit, Benchmark changed significantly with respect to v0.1

5.3 Version 0.1

March 4, 2018

First release, with support for,

• wall time, cpu time and peak memory measurements

• parametric benchmarks using delayed objects

22 Chapter 5. Release notes

https://github.com/symerio/neurtu/pull/14
https://github.com/symerio/neurtu/pull/15

Index

Symbols
__init__() (neurtu.Benchmark method), 19

B
Benchmark (class in neurtu), 18

D
delayed() (in module neurtu), 19

M
memit() (in module neurtu), 18

T
timeit() (in module neurtu), 17

23

	Installation
	Quickstart
	Examples
	Time complexity of numpy.sort
	LogisticRegression scaling in scikit-learn

	API Reference
	neurtu.timeit
	neurtu.memit
	neurtu.Benchmark
	neurtu.delayed

	Release notes
	Version 0.3
	Version 0.2
	Version 0.1

	Index

