

NeuroDesign

Welcome to the neurodesign documentation!

We have built a GUI for this package, in the form of an online toolbox available at `www.neuropowertools.org<http://www.neuropowertools.org>`_. The GUI uses functions from the neurodesign package.

	Getting started
	Installing NeuroDesign

	About Design Optimisation Using the Genetic Algorithm

	Design efficiency

	Neurodesign documentation
	Geneticalgorithm: design optimisation

	Generate: generating stimulus order and ITI’s

	Msequence: generating msequences

	Report: summarise results from geneticalgorithm

[image: _images/screenshot.png]

NeuroDesign

Getting started

Installing NeuroDesign

neurodesign is available on pypi. To install, run:

pip install neurodesign

About Design Optimisation Using the Genetic Algorithm

This toolbox is for the optimization of experimental designs for fMRI. Minimizing the variance of the design matrix will help detect or estimate (depending on the outcome of interest) the effect researchers are looking for. The genetic algorithm for experimental designs was introduced by Wager and Nichols (2002) and further improved by Kao, Mandal, Lazar and Stufken (2009). We implemented these methods in a python package and a userfriendly web-application and introduced some improvements and allows more flexibility for the experimental setup.

Design efficiency

The core idea of this package is to run an optimization algorithm that (among others) optimizes the design efficiency of an fMRI design using A-optimality, with this formula:

NeuroDesign

Neurodesign documentation

Geneticalgorithm: design optimisation

	
class src.geneticalgorithm.design(order, ITI, experiment, onsets=None)

	This class represents an experimental design for an fMRI experiment.

	Parameters:	
	order (list of integers) – The stimulus order.

	ITI (list of floats) – The ITI’s between all stimuli.

	experiment (experiment object) – The experimental setup.

	onsets (list of floats) – The onsets of all stimuli.

	
FCalc(weights, Aoptimality=True, confoundorder=3)

	Compute weighted average of efficiencies.

	Parameters:	weights (list of floats) – Weights given to each of the efficiency metrics in this order: Estimation, Detection, Frequencies, Confounders.

	
FcCalc(confoundorder=3)

	Compute confounding efficiency.

	Parameters:	confoundorder (integer) – To what order should confounding be protected

	
FdCalc(Aoptimality=True)

	Compute detection power.

	Parameters:	Aoptimality (boolean) – Kind of optimality to optimize: A- or D-optimality

	
FeCalc(Aoptimality=True)

	Compute estimation efficiency.

	Parameters:	Aoptimality (boolean) – Kind of optimality to optimize, A- or D-optimality

	
FfCalc()

	Compute efficiency of frequencies.

	
check_hardprob()

	Function to check whether frequencies of stimuli are exactly the prespecified frequencies.

	Returns probcheck:

	 	Boolean indicating probabilities are respected

	
check_maxrep(maxrep)

	Function to check whether design does not exceed maximum repeats within design.

	Parameters:	maxrep (integer) – How many times should a stimulus maximally be repeated.

	Returns repcheck:

	 	Boolean indicating maximum repeats are respected

	
crossover(other, seed=1234)

	Function to crossover design with other design and create offspring.

	Parameters:	
	other (design object) – The design with which the design will be mixed

	seed (integer or None) – The seed with which the change point will be sampled.

	Returns offspring:

	 	List of two offspring designs.

	
designmatrix()

	Expand from order of stimuli to a fMRI timeseries.

	
mutation(q, seed=1234)

	Function to mutate q% of the stimuli with another stimulus.

	Parameters:	
	q (float) – The percentage of stimuli that should be mutated

	seed (integer or None) – The seed with which the mutation points are sampled.

	Returns mutated:

	 	Mutated design

	
class src.geneticalgorithm.experiment(TR, P, C, rho, stim_duration, n_stimuli, ITImodel=None, ITImin=None, ITImax=None, ITImean=None, restnum=0, restdur=0, t_pre=0, t_post=0, n_trials=None, duration=None, resolution=0.1, FeMax=1, FdMax=1, FcMax=1, FfMax=1, maxrep=None, hardprob=False, confoundorder=3)

	This class represents an fMRI experiment.

	Parameters:	
	TR (float) – The repetition time.

	P (ndarray) – The probabilities of each trialtype.

	C (ndarray) – The contrast matrix. Example: np.array([[1,-1,0],[0,1,-1]])

	rho (float) – AR(1) correlation coefficient

	n_stimuli (integer) – The number of stimuli (or conditions) in the experiment.

	n_trials (integer) – The number of trials in the experiment. Either specify n_trials or duration.

	duration (float) – The total duration (seconds) of the experiment. Either specify n_trials or duration.

	resolution (float) – the maximum resolution of design matrix

	stim_duration (float) – duration (seconds) of stimulus

	t_pre (float) – duration (seconds) of trial part before stimulus presentation (eg. fixation cross)

	t_post (float) – duration (seconds) of trial part after stimulus presentation

	maxrep (integer or None) – maximum number of repetitions

	hardprob (boolean) – can the probabilities differ from the nominal value?

	confoundorder (integer) – The order to which confounding is controlled.

	restnum (integer) – Number of trials between restblocks

	restdur (float) – duration (seconds) of the rest blocks

	ITImodel (string) – Which model to sample from. Possibilities: “fixed”,”uniform”,”exponential”

	ITImin (float) – The minimum ITI (required with “uniform” or “exponential”)

	ITImean (float) – The mean ITI (required with “fixed” or “exponential”)

	ITImax (float) – The max ITI (required with “uniform” or “exponential”)

	
CreateLmComp()

	This function generates components for the linear model: hrf, whitening matrix, autocorrelation matrix and CX

	
CreateTsComp()

	This function computes the number of scans and timpoints (in seconds and resolution units)

	
canonical(resolution)

	This function generates the canonical hrf

	Parameters:	resolution (float) – resolution to sample the canonical hrf

	
countstim()

	Function to compute some arguments depending on other arguments.

	
static drift(s, deg=3)

	Function to compute a drift component

	
max_eff()

	Function to compute maximum efficiency for Confounding and Frequency efficiency.

	
static spm_Gpdf(s, h, l)

	Function to generate gamma pdf

	
class src.geneticalgorithm.population(experiment, weights, preruncycles, cycles, seed=None, I=4, G=20, R=[0.4, 0.4, 0.2], q=0.01, Aoptimality=True, folder=None, outdes=3, convergence=1000)

	This class represents the population of experimental designs for fMRI.

	Parameters:	
	experiment (experiment) – The experimental setup of the fMRI experiment.

	G (integer) – The size of the generation

	R (list) – with which rate are the orders generated from [‘blocked’,’random’,’mseq’]

	q (float) – percentage of mutations

	weights (list) – weights attached to Fe, Fd, Ff, Fc

	I (integer) – number of immigrants

	preruncycles (integer) – number of prerun cycles (to find maximum Fe and Fd)

	cycles (integer) – number of cycles

	seed (integer) – seed

	Aoptimality (boolean) – optimises A-optimality if true, else D-optimality

	convergence (integer) – after how many stable iterations is there convergence

	folder (string) – folder to save output

	outdes (integer) – number of designs to be saved

	
add_new_designs(weights=None, R=None)

	This function generates the population.

	Parameters:	
	experiment (experiment) – The experimental setup of the fMRI experiment.

	weights (list of floats, summing to 1) – weights for efficiency calculation.

	seed (integer or None) – The seed for ramdom processes.

	
change_seed()

	Function to change the seed.

	
check_develop(design, weights=None)

	Function to check and develop a design to the population. Function will check design against strict options and develop the design if valid.

	Parameters:	
	design (design object) – Design to be added to population.

	weights (list of floats, summing to 1) – weights for efficiency calculation.

	
clear()

	Function to clear results between optimalisations (maximum Fe, Fd or opt)

	
naturalselection()

	Function to run natural selection for design optimization

	
to_next_generation(weights=None, seed=1234)

	This function goes from one generation to the next.

	Parameters:	
	weights (list of floats, summing to 1) – weights for efficiency calculation.

	seed (integer or None) – The seed for random processes.

Generate: generating stimulus order and ITI’s

	
src.generate.iti(ntrials, model, min=None, mean=None, max=None, lam=None, seed=1234)

	Function will generate an order of stimuli.

	Parameters:	
	ntrials (integer) – The total number of trials

	model (string) – Which model to sample from. Possibilities: “fixed”,”uniform”,”exponential”

	min (float) – The minimum ITI (required with “uniform” or “exponential”)

	mean (float) – The mean ITI (required with “fixed” or “exponential”)

	max (float) – The max ITI (required with “uniform” or “exponential”)

	seed (integer or None) – The seed with which the change point will be sampled.

	Returns iti:	A list with the created ITI’s

	
src.generate.order(nstim, ntrials, probabilities, ordertype, seed=1234)

	Function will generate an order of stimuli.

	Parameters:	
	nstim (integer) – The number of different stimuli (or conditions)

	ntrials (integer) – The total number of trials

	probabilities (list) – The probabilities of each stimulus

	ordertype (string) – Which model to sample from. Possibilities: “blocked”, “random” or “msequence”

	seed (integer or None) – The seed with which the change point will be sampled.

	Returns order:	A list with the created order of stimuli

Msequence: generating msequences

	
class src.msequence.Msequence

	A class for an order of experimental trials.

	
GenMseq(mLen, stimtypeno, seed)

	Function to generate a random msequence given the length of the desired sequence and the number of different values.

	Parameters:	
	stimtypeno (integer) – Number of different stimulus types

	mLen – The length of the requested msequence (will be shorter than full msequence)

	seed (integer) – Seed with which msequence is sampled.

	
Mseq(baseVal, powerVal, shift=None, whichSeq=None, userTaps=None)

	Function to generate a specific msequence given the base and power values.

	Parameters:	
	powerVal (integer) – The power of the msequence

	baseVal (integer) – The base value of the msequence (equivalent to number of stimuli)

	shift (integer) – Shift of the msequence

	whichSeq (integer) – Index of the sequence desired in the taps file.

	userTaps (list) – if user wants to specify own polynomial taps

	
tapsfnc()

	Function to generate taps leading to msequences.

Report: summarise results from geneticalgorithm

	
src.report.make_report(POP, outfile='NeuroDesign.pdf')

	Function to create a report of a finished design optimisation.

NeuroDesign

Index

 nav.xhtml

 Table of Contents

 		Welcome to the neurodesign documentation!

 		Getting started

 		Installing NeuroDesign

 		About Design Optimisation Using the Genetic Algorithm

 		Design efficiency

 		Neurodesign documentation

 		Geneticalgorithm: design optimisation

 		Generate: generating stimulus order and ITI's

 		Msequence: generating msequences

 		Report: summarise results from geneticalgorithm

_static/up.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_images/screenshot.png
NeuroPowerTools ~ NeuroPower ~ NeuroDesign ~

Welcome

During the design of an fMRI experiment, many parameters have to be decided prior to any data collection.
Examples include: sample size, order of stimuli, timing of stimuli,... These parameters all have an effect on the
outcome. A good design will optimise the balance between the power and the cost of the study. The results from a
well planned design are more trustworthy and reproducible than any (pseudo-) random design.

This website is a collection of small toolboxes to help design an fMRI study. NeuroPower helps deciding on the

sample size, while NeuroDesign finds optimal order and spacing of stimuli.

Everything happens online, so there's no need to download or install anything. Try it out now, or be sure to check

back for our newest developments.

NeuroPower

NeuroPower is a toolbox that allows you to compute the necessary sample
size for your fMRI study to obtain a certain level of statistical power. Our
method can be used for whole-brain analyses, as well as for region-of-
interest analyses. All you need is a statistical map and some information
about the research. Try it here.

NeuroPower »

Support for Neuropower kindly provided by:

Ajaf

laura and john arnold foundation

NeuroDesign

NeuroDesign searches for an experimental design to help researchers
obtain the optimal detection power or estimation effeciency. The method
is based on a Genetic Algorithm to optimize different optimisation goals.

NeuroDesign »

Stanford Center For
Reproducible Neuroscience

_static/down.png

_static/screenshot.png
NeuroPowerTools ~ NeuroPower ~ NeuroDesign ~

Welcome

During the design of an fMRI experiment, many parameters have to be decided prior to any data collection.
Examples include: sample size, order of stimuli, timing of stimuli,... These parameters all have an effect on the
outcome. A good design will optimise the balance between the power and the cost of the study. The results from a
well planned design are more trustworthy and reproducible than any (pseudo-) random design.

This website is a collection of small toolboxes to help design an fMRI study. NeuroPower helps deciding on the

sample size, while NeuroDesign finds optimal order and spacing of stimuli.

Everything happens online, so there's no need to download or install anything. Try it out now, or be sure to check

back for our newest developments.

NeuroPower

NeuroPower is a toolbox that allows you to compute the necessary sample
size for your fMRI study to obtain a certain level of statistical power. Our
method can be used for whole-brain analyses, as well as for region-of-
interest analyses. All you need is a statistical map and some information
about the research. Try it here.

NeuroPower »

Support for Neuropower kindly provided by:

Ajaf

laura and john arnold foundation

NeuroDesign

NeuroDesign searches for an experimental design to help researchers
obtain the optimal detection power or estimation effeciency. The method
is based on a Genetic Algorithm to optimize different optimisation goals.

NeuroDesign »

Stanford Center For
Reproducible Neuroscience

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-close.png

