

NetworkX

NetworkX documentation

	Release

	1.11

	Date

	Jul 05, 2017

	Overview
	Who uses NetworkX?

	Goals

	The Python programming language

	Free software

	History

	Download
	Software

	Documentation

	Installing
	Quick install

	Installing from source

	Requirements

	Optional packages

	Tutorial
	Creating a graph

	Nodes

	Edges

	What to use as nodes and edges

	Accessing edges

	Adding attributes to graphs, nodes, and edges

	Directed graphs

	Multigraphs

	Graph generators and graph operations

	Analyzing graphs

	Drawing graphs

	Reference
	Introduction

	Graph types

	Algorithms

	Functions

	Graph generators

	Linear algebra

	Converting to and from other data formats

	Relabeling nodes

	Reading and writing graphs

	Drawing

	Exceptions

	Utilities

	License

	Citing

	Credits

	Glossary

	Testing
	Requirements for testing

	Testing a source distribution

	Testing an installed package

	Testing for developers

	Developer Guide
	Working with networkx source code

	History
	API changes

	Release Log

	Bibliography

	NetworkX Examples
	3D_Drawing

	Advanced

	Algorithms

	Basic

	Drawing

	Graph

	Javascript

	Multigraph

	Pygraphviz

	Subclass

	Gallery

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

NetworkX

Overview

NetworkX is a Python language software package for the creation,
manipulation, and study of the structure, dynamics, and function of complex networks.

With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of random and classic networks, analyze network structure, build network models, design new network algorithms, draw networks, and much more.

Who uses NetworkX?

The potential audience for NetworkX includes mathematicians,
physicists, biologists, computer scientists, and social scientists. Good
reviews of the state-of-the-art in the science of
complex networks are presented in Albert and Barabási [BA02], Newman
[Newman03], and Dorogovtsev and Mendes [DM03]. See also the classic
texts [Bollobas01], [Diestel97] and [West01] for graph theoretic
results and terminology. For basic graph algorithms, we recommend the
texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the
survey of Brandes and Erlebach [BE05].

Goals

NetworkX is intended to provide

	tools for the study of the structure and
dynamics of social, biological, and infrastructure networks,

	a standard programming interface and graph implementation that is suitable
for many applications,

	a rapid development environment for collaborative, multidisciplinary
projects,

	an interface to existing numerical algorithms and code written in C,
C++, and FORTRAN,

	the ability to painlessly slurp in large nonstandard data sets.

The Python programming language

Python is a powerful programming language that allows simple and flexible representations of networks, and clear and concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition
Python is also an excellent “glue” language for putting together pieces of software from other languages which allows reuse of legacy code and engineering of high-performance algorithms [Langtangen04].

Equally important, Python is free, well-supported, and a joy to use.

In order to make the most out of NetworkX you will want to know how to write basic programs in Python.
Among the many guides to Python, we recommend the documentation at
http://www.python.org and the text by Alex Martelli [Martelli03].

Free software

NetworkX is free software; you can redistribute it and/or
modify it under the terms of the BSD License.
We welcome contributions from the community. Information on
NetworkX development is found at the NetworkX Developer Zone at Github
https://github.com/networkx/networkx

History

NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and Pieter Swart in 2002 and 2003.
The first public release was in April 2005.

Many people have contributed to the success of NetworkX. Some of the contributors are listed in the credits.

What Next

	A Brief Tour

	Installing

	Reference

	Examples

NetworkX

Download

Software

Source and binary releases: http://cheeseshop.python.org/pypi/networkx/

Github (latest development): https://github.com/networkx/networkx/

Documentation

PDF

https://media.readthedocs.org/pdf/networkx/stable/networkx.pdf

HTML in zip file

https://readthedocs.org/projects/networkx/downloads/htmlzip/stable/

NetworkX

Installing

Before installing NetworkX, you need to have
setuptools [https://pypi.python.org/pypi/setuptools] installed.

Quick install

Get NetworkX from the Python Package Index at
http://pypi.python.org/pypi/networkx

or install it with

pip install networkx

and an attempt will be made to find and install an appropriate version
that matches your operating system and Python version.

You can install the development version (at github.com) with

pip install git://github.com/networkx/networkx.git#egg=networkx

More download file options are at http://networkx.github.io/download.html.

Installing from source

You can install from source by downloading a source archive file
(tar.gz or zip) or by checking out the source files from the
Mercurial source code repository.

NetworkX is a pure Python package; you don’t need a compiler to build
or install it.

Source archive file

	Download the source (tar.gz or zip file) from
https://pypi.python.org/pypi/networkx/
or get the latest development version from
https://github.com/networkx/networkx/

	Unpack and change directory to the source directory
(it should have the files README.txt and setup.py).

	Run python setup.py install to build and install

	(Optional) Run nosetests to execute the tests if you have
nose [https://pypi.python.org/pypi/nose] installed.

GitHub

	Clone the networkx repostitory
(see https://github.com/networkx/networkx/ for options)

git clone https://github.com/networkx/networkx.git

	Change directory to networkx

	Run python setup.py install to build and install

	(Optional) Run nosetests to execute the tests if you have
nose [https://pypi.python.org/pypi/nose] installed.

If you don’t have permission to install software on your
system, you can install into another directory using
the --user, --prefix, or --home flags to setup.py.

For example

python setup.py install --prefix=/home/username/python

or

python setup.py install --home=~

or

python setup.py install --user

If you didn’t install in the standard Python site-packages directory
you will need to set your PYTHONPATH variable to the alternate location.
See http://docs.python.org/2/install/index.html#search-path for further details.

Requirements

Python

To use NetworkX you need Python 2.7, 3.2 or later.

The easiest way to get Python and most optional packages is to install
the Enthought Python distribution “Canopy [https://www.enthought.com/products/canopy/]”.

There are several other distributions that contain the key packages you need for scientific computing. See http://scipy.org/install.html for a list.

Optional packages

The following are optional packages that NetworkX can use to
provide additional functions.

NumPy

Provides matrix representation of graphs and is used in some graph algorithms for high-performance matrix computations.

	Download: http://scipy.org/Download

SciPy

Provides sparse matrix representation of graphs and many numerical scientific tools.

	Download: http://scipy.org/Download

Matplotlib

Provides flexible drawing of graphs.

	Download: http://matplotlib.sourceforge.net/

GraphViz

In conjunction with either

	PyGraphviz: http://pygraphviz.github.io/

or

	pydotplus: https://github.com/carlos-jenkins/pydotplus

provides graph drawing and graph layout algorithms.

	Download: http://graphviz.org/

PyYAML

http://pyyaml.org/

Required for YAML format reading and writing.

Other packages

These are extra packages you may consider using with NetworkX

	IPython, interactive Python shell, http://ipython.scipy.org/

NetworkX

Tutorial

	Creating a graph

	Nodes

	Edges

	What to use as nodes and edges

	Accessing edges

	Adding attributes to graphs, nodes, and edges
	Graph attributes

	Node attributes

	Edge Attributes

	Directed graphs

	Multigraphs

	Graph generators and graph operations

	Analyzing graphs

	Drawing graphs

What Next

Now that you have an idea of what the NetworkX package provides,
you should investigate the parts of the package most useful for
you.

Reference Section provides details on NetworkX.

NetworkX Examples provides some example programs written using NetworkX.

NetworkX

 Start here to begin working with NetworkX.

Creating a graph

Create an empty graph with no nodes and no edges.

>>> import networkx as nx
>>> G=nx.Graph()

By definition, a Graph is a collection of nodes (vertices)
along with identified pairs of nodes (called edges, links, etc).
In NetworkX, nodes can be any hashable object e.g. a text string, an
image, an XML object, another Graph, a customized node object, etc.
(Note: Python’s None object should not be used as a node as it
determines whether optional function arguments have been assigned
in many functions.)

Nodes

The graph G can be grown in several ways.
NetworkX includes many graph generator functions
and facilities to read and write graphs in many formats.
To get started though we’ll look at simple manipulations.
You can add one node at a time,

>>> G.add_node(1)

add a list of nodes,

>>> G.add_nodes_from([2,3])

or add any nbunch of nodes.
An nbunch is any iterable container
of nodes that is not itself a node
in the graph. (e.g. a list, set, graph, file, etc..)

>>> H=nx.path_graph(10)
>>> G.add_nodes_from(H)

Note that G now contains the nodes of H as nodes of G.
In contrast, you could use the graph H as a node in G.

>>> G.add_node(H)

The graph G now contains H as a node. This flexibility
is very powerful as it allows graphs of graphs, graphs of
files, graphs of functions and much more. It is worth
thinking about how to structure your application so that
the nodes are useful entities. Of course you can always
use a unique identifier in G and have a separate dictionary
keyed by identifier to the node information if you prefer.
(Note: You should not change the node object if the hash
depends on its contents.)

Edges

G can also be grown by adding one edge at a time,

>>> G.add_edge(1,2)
>>> e=(2,3)
>>> G.add_edge(*e) # unpack edge tuple*

by adding a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or by adding any ebunch of edges.
An ebunch is any iterable container
of edge-tuples. An edge-tuple can be a 2-tuple
of nodes or a 3-tuple with 2 nodes followed by
an edge attribute dictionary, e.g. (2,3,{‘weight’:3.1415}).
Edge attributes are discussed further below

>>> G.add_edges_from(H.edges())

One can demolish the graph in a similar fashion; using
Graph.remove_node(),
Graph.remove_nodes_from(),
Graph.remove_edge()
and
Graph.remove_edges_from(), e.g.

>>> G.remove_node(H)

There are no complaints when adding existing nodes or edges. For example,
after removing all nodes and edges,

>>> G.clear()

we add new nodes/edges and NetworkX quietly ignores any that are
already present.

>>> G.add_edges_from([(1,2),(1,3)])
>>> G.add_node(1)
>>> G.add_edge(1,2)
>>> G.add_node("spam") # adds node "spam"
>>> G.add_nodes_from("spam") # adds 4 nodes: 's', 'p', 'a', 'm'

At this stage the graph G consists of 8 nodes and 2 edges, as can be seen by:

>>> G.number_of_nodes()
8
>>> G.number_of_edges()
2

We can examine them with

>>> G.nodes()
['a', 1, 2, 3, 'spam', 'm', 'p', 's']
>>> G.edges()
[(1, 2), (1, 3)]
>>> G.neighbors(1)
[2, 3]

Removing nodes or edges has similar syntax to adding:

>>> G.remove_nodes_from("spam")
>>> G.nodes()
[1, 2, 3, 'spam']
>>> G.remove_edge(1,3)

When creating a graph structure by instantiating one of the graph
classes you can specify data in several formats.

>>> H=nx.DiGraph(G) # create a DiGraph using the connections from G
>>> H.edges()
[(1, 2), (2, 1)]
>>> edgelist=[(0,1),(1,2),(2,3)]
>>> H=nx.Graph(edgelist)

What to use as nodes and edges

You might notice that nodes and edges are not specified as NetworkX
objects. This leaves you free to use meaningful items as nodes and
edges. The most common choices are numbers or strings, but a node can
be any hashable object (except None), and an edge can be associated
with any object x using G.add_edge(n1,n2,object=x).

As an example, n1 and n2 could be protein objects from the RCSB Protein
Data Bank, and x could refer to an XML record of publications detailing
experimental observations of their interaction.

We have found this power quite useful, but its abuse
can lead to unexpected surprises unless one is familiar with Python.
If in doubt, consider using convert_node_labels_to_integers() to obtain
a more traditional graph with integer labels.

Accessing edges

In addition to the methods
Graph.nodes(),
Graph.edges(), and
Graph.neighbors(),
iterator versions (e.g. Graph.edges_iter()) can save you from
creating large lists when you are just going to iterate
through them anyway.

Fast direct access to the graph data structure is also possible
using subscript notation.

Warning

Do not change the returned dict–it is part of
the graph data structure and direct manipulation may leave the
graph in an inconsistent state.

>>> G[1] # Warning: do not change the resulting dict
{2: {}}
>>> G[1][2]
{}

You can safely set the attributes of an edge using subscript notation
if the edge already exists.

>>> G.add_edge(1,3)
>>> G[1][3]['color']='blue'

Fast examination of all edges is achieved using adjacency iterators.
Note that for undirected graphs this actually looks at each edge twice.

>>> FG=nx.Graph()
>>> FG.add_weighted_edges_from([(1,2,0.125),(1,3,0.75),(2,4,1.2),(3,4,0.375)])
>>> for n,nbrs in FG.adjacency_iter():
... for nbr,eattr in nbrs.items():
... data=eattr['weight']
... if data<0.5: print('(%d, %d, %.3f)' % (n,nbr,data))
(1, 2, 0.125)
(2, 1, 0.125)
(3, 4, 0.375)
(4, 3, 0.375)

Convenient access to all edges is achieved with the edges method.

>>> for (u,v,d) in FG.edges(data='weight'):
... if d<0.5: print('(%d, %d, %.3f)'%(n,nbr,d))
(1, 2, 0.125)
(3, 4, 0.375)

Adding attributes to graphs, nodes, and edges

Attributes such as weights, labels, colors, or whatever
Python object you like, can be attached to graphs, nodes, or edges.

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but attributes can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named G.graph, G.node and G.edge for a graph G.

Graph attributes

Assign graph attributes when creating a new graph

>>> G = nx.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Or you can modify attributes later

>>> G.graph['day']='Monday'
>>> G.graph
{'day': 'Monday'}

Node attributes

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> G.nodes(data=True)
[(1, {'room': 714, 'time': '5pm'}), (3, {'time': '2pm'})]

Note that adding a node to G.node does not add it to the graph,
use G.add_node() to add new nodes.

Edge Attributes

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

The special attribute ‘weight’
should be numeric and holds values used by algorithms requiring weighted edges.

Directed graphs

The DiGraph class provides additional methods specific to directed
edges, e.g.
DiGraph.out_edges(),
DiGraph.in_degree(),
DiGraph.predecessors(),
DiGraph.successors() etc.
To allow algorithms to work with both classes easily, the directed
versions of neighbors() and degree() are equivalent to successors()
and the sum of in_degree() and out_degree() respectively even though
that may feel inconsistent at times.

>>> DG=nx.DiGraph()
>>> DG.add_weighted_edges_from([(1,2,0.5), (3,1,0.75)])
>>> DG.out_degree(1,weight='weight')
0.5
>>> DG.degree(1,weight='weight')
1.25
>>> DG.successors(1)
[2]
>>> DG.neighbors(1)
[2]

Some algorithms work only for directed graphs and others are not well
defined for directed graphs. Indeed the tendency to lump directed
and undirected graphs together is dangerous. If you want to treat
a directed graph as undirected for some measurement you should probably
convert it using Graph.to_undirected() or with

>>> H = nx.Graph(G) # convert G to undirected graph

Multigraphs

NetworkX provides classes for graphs which allow multiple edges
between any pair of nodes. The MultiGraph and
MultiDiGraph
classes allow you to add the same edge twice, possibly with different
edge data. This can be powerful for some applications, but many
algorithms are not well defined on such graphs. Shortest path is one
example. Where results are well defined,
e.g. MultiGraph.degree() we provide the function. Otherwise you
should convert to a standard graph in a way that makes the measurement
well defined.

>>> MG=nx.MultiGraph()
>>> MG.add_weighted_edges_from([(1,2,.5), (1,2,.75), (2,3,.5)])
>>> MG.degree(weight='weight')
{1: 1.25, 2: 1.75, 3: 0.5}
>>> GG=nx.Graph()
>>> for n,nbrs in MG.adjacency_iter():
... for nbr,edict in nbrs.items():
... minvalue=min([d['weight'] for d in edict.values()])
... GG.add_edge(n,nbr, weight = minvalue)
...
>>> nx.shortest_path(GG,1,3)
[1, 2, 3]

Graph generators and graph operations

In addition to constructing graphs node-by-node or edge-by-edge, they
can also be generated by

	Applying classic graph operations, such as:

subgraph(G, nbunch) - induce subgraph of G on nodes in nbunch
union(G1,G2) - graph union
disjoint_union(G1,G2) - graph union assuming all nodes are different
cartesian_product(G1,G2) - return Cartesian product graph
compose(G1,G2) - combine graphs identifying nodes common to both
complement(G) - graph complement
create_empty_copy(G) - return an empty copy of the same graph class
convert_to_undirected(G) - return an undirected representation of G
convert_to_directed(G) - return a directed representation of G

	Using a call to one of the classic small graphs, e.g.

>>> petersen=nx.petersen_graph()
>>> tutte=nx.tutte_graph()
>>> maze=nx.sedgewick_maze_graph()
>>> tet=nx.tetrahedral_graph()

	Using a (constructive) generator for a classic graph, e.g.

>>> K_5=nx.complete_graph(5)
>>> K_3_5=nx.complete_bipartite_graph(3,5)
>>> barbell=nx.barbell_graph(10,10)
>>> lollipop=nx.lollipop_graph(10,20)

	Using a stochastic graph generator, e.g.

>>> er=nx.erdos_renyi_graph(100,0.15)
>>> ws=nx.watts_strogatz_graph(30,3,0.1)
>>> ba=nx.barabasi_albert_graph(100,5)
>>> red=nx.random_lobster(100,0.9,0.9)

	Reading a graph stored in a file using common graph formats,
such as edge lists, adjacency lists, GML, GraphML, pickle, LEDA and others.

>>> nx.write_gml(red,"path.to.file")
>>> mygraph=nx.read_gml("path.to.file")

Details on graph formats: Reading and writing graphs

Details on graph generator functions: Graph generators

Analyzing graphs

The structure of G can be analyzed using various graph-theoretic
functions such as:

>>> G=nx.Graph()
>>> G.add_edges_from([(1,2),(1,3)])
>>> G.add_node("spam") # adds node "spam"

>>> nx.connected_components(G)
[[1, 2, 3], ['spam']]

>>> sorted(nx.degree(G).values())
[0, 1, 1, 2]

>>> nx.clustering(G)
{1: 0.0, 2: 0.0, 3: 0.0, 'spam': 0.0}

Functions that return node properties return dictionaries keyed by node label.

>>> nx.degree(G)
{1: 2, 2: 1, 3: 1, 'spam': 0}

For values of specific nodes, you can provide a single node or an nbunch
of nodes as argument. If a single node is specified, then a single value
is returned. If an nbunch is specified, then the function will
return a dictionary.

>>> nx.degree(G,1)
2
>>> G.degree(1)
2
>>> G.degree([1,2])
{1: 2, 2: 1}
>>> sorted(G.degree([1,2]).values())
[1, 2]
>>> sorted(G.degree().values())
[0, 1, 1, 2]

Details on graph algorithms supported: Algorithms

Drawing graphs

NetworkX is not primarily a graph drawing package but
basic drawing with Matplotlib as well as an interface to use the
open source Graphviz software package are included.
These are part of the networkx.drawing package
and will be imported if possible.
See Drawing for details.

Note that the drawing package in NetworkX is not yet compatible with
Python versions 3.0 and above.

First import Matplotlib’s plot interface (pylab works too)

>>> import matplotlib.pyplot as plt

You may find it useful to interactively test code using “ipython -pylab”,
which combines the power of ipython and matplotlib and provides a convenient
interactive mode.

To test if the import of networkx.drawing was successful
draw G using one of

>>> nx.draw(G)
>>> nx.draw_random(G)
>>> nx.draw_circular(G)
>>> nx.draw_spectral(G)

when drawing to an interactive display.
Note that you may need to issue a Matplotlib

>>> plt.show()

command if you are not using matplotlib in interactive mode: (See
Matplotlib FAQ [http://matplotlib.org/faq/installing_faq.html#matplotlib-compiled-fine-but-nothing-shows-up-when-i-use-it]
)

To save drawings to a file, use, for example

>>> nx.draw(G)
>>> plt.savefig("path.png")

writes to the file “path.png” in the local directory. If Graphviz
and PyGraphviz, or pydotplus, are available on your system, you can also use

>>> from networkx.drawing.nx_pydot import write_dot
>>> nx.draw_graphviz(G)
>>> write_dot(G,'file.dot')

Details on drawing graphs: Drawing

NetworkX

Reference

	Release

	1.11

	Date

	Jul 05, 2017

	Introduction
	NetworkX Basics

	Nodes and Edges

	Graph types
	Which graph class should I use?

	Basic graph types

	Algorithms
	Approximation

	Assortativity

	Bipartite

	Blockmodeling

	Boundary

	Centrality

	Chordal

	Clique

	Clustering

	Coloring

	Communities

	Components

	Connectivity

	Cores

	Cycles

	Directed Acyclic Graphs

	Distance Measures

	Distance-Regular Graphs

	Dominance

	Dominating Sets

	Eulerian

	Flows

	Graphical degree sequence

	Hierarchy

	Hybrid

	Isolates

	Isomorphism

	Link Analysis

	Link Prediction

	Matching

	Minors

	Maximal independent set

	Minimum Spanning Tree

	Operators

	Rich Club

	Shortest Paths

	Simple Paths

	Swap

	Traversal

	Tree

	Triads

	Vitality

	Functions
	Graph

	Nodes

	Edges

	Attributes

	Freezing graph structure

	Graph generators
	Atlas

	Classic

	Expanders

	Small

	Random Graphs

	Degree Sequence

	Random Clustered

	Directed

	Geometric

	Line Graph

	Ego Graph

	Stochastic

	Intersection

	Social Networks

	Community

	Non Isomorphic Trees

	Linear algebra
	Graph Matrix

	Laplacian Matrix

	Spectrum

	Algebraic Connectivity

	Attribute Matrices

	Converting to and from other data formats
	To NetworkX Graph

	Dictionaries

	Lists

	Numpy

	Scipy

	Pandas

	Relabeling nodes
	Relabeling

	Reading and writing graphs
	Adjacency List

	Multiline Adjacency List

	Edge List

	GEXF

	GML

	Pickle

	GraphML

	JSON

	LEDA

	YAML

	SparseGraph6

	Pajek

	GIS Shapefile

	Drawing
	Matplotlib

	Graphviz AGraph (dot)

	Graphviz with pydot

	Graph Layout

	Exceptions
	Exceptions

	Utilities
	Helper Functions

	Data Structures and Algorithms

	Random Sequence Generators

	Decorators

	Cuthill-Mckee Ordering

	Context Managers

	License

	Citing

	Credits
	Contributions

	Support

	Glossary

NetworkX

Introduction

NetworkX provides data structures for graphs (or networks)
along with graph algorithms, generators, and drawing tools.

The structure of NetworkX can be seen by the organization of its source code.
The package provides classes for graph objects, generators to create standard
graphs, IO routines for reading in existing datasets, algorithms to analyse
the resulting networks and some basic drawing tools.

Most of the NetworkX API is provided by functions which take a graph object
as an argument. Methods of the graph object are limited to basic manipulation
and reporting. This provides modularity of code and documentation.
It also makes it easier for newcomers to learn about the package in stages.
The source code for each module is meant to be easy to read and reading
this Python code is actually a good way to learn more about network algorithms,
but we have put a lot of effort into making the documentation sufficient and friendly.
If you have suggestions or questions please contact us by joining the
NetworkX Google group [http://groups.google.com/group/networkx-discuss].

Classes are named using CamelCase (capital letters at the start of each word).
functions, methods and variable names are lower_case_underscore (lowercase with
an underscore representing a space between words).

NetworkX Basics

After starting Python, import the networkx module with (the recommended way)

>>> import networkx as nx

To save repetition, in the documentation we assume that
NetworkX has been imported this way.

If importing networkx fails, it means that Python cannot find the installed
module. Check your installation and your PYTHONPATH.

The following basic graph types are provided as Python classes:

	Graph

	This class implements an undirected graph. It ignores
multiple edges between two nodes. It does allow self-loop
edges between a node and itself.

	DiGraph

	Directed graphs, that is, graphs with directed edges.
Operations common to directed graphs,
(a subclass of Graph).

	MultiGraph

	A flexible graph class that allows multiple undirected edges between
pairs of nodes. The additional flexibility leads to some degradation
in performance, though usually not significant.

	MultiDiGraph

	A directed version of a MultiGraph.

Empty graph-like objects are created with

>>> G=nx.Graph()
>>> G=nx.DiGraph()
>>> G=nx.MultiGraph()
>>> G=nx.MultiDiGraph()

All graph classes allow any hashable object as a node. Hashable
objects include strings, tuples, integers, and more.
Arbitrary edge attributes such as weights and labels
can be associated with an edge.

The graph internal data structures are based on an
adjacency list representation and implemented using
Python dictionary datastructures.
The graph adjaceny structure is
implemented as a Python dictionary of
dictionaries; the outer dictionary is keyed by nodes to values that are
themselves dictionaries keyed by neighboring node to the
edge attributes associated with that edge. This “dict-of-dicts” structure
allows fast addition, deletion, and lookup of nodes and neighbors in
large graphs. The underlying datastructure is accessed directly
by methods (the programming interface “API”) in the class definitions.
All functions, on the other hand, manipulate graph-like objects
solely via those API methods and not by acting directly on the datastructure.
This design allows for possible replacement of the ‘dicts-of-dicts’-based
datastructure with an alternative datastructure that implements the
same methods.

Graphs

The first choice to be made when using NetworkX is what type of graph
object to use. A graph (network) is a collection of nodes together
with a collection of edges that are pairs of nodes. Attributes are
often associated with nodes and/or edges. NetworkX graph objects come in
different flavors depending on two main properties of the network:

	Directed: Are the edges directed? Does the order of the edge
pairs (u,v) matter? A directed graph is specified by the “Di”
prefix in the class name, e.g. DiGraph(). We make this distinction
because many classical graph properties are defined differently for
directed graphs.

	Multi-edges: Are multiple edges allowed between each pair of nodes?
As you might imagine, multiple edges requires a different data
structure, though tricky users could design edge data objects to
support this functionality. We provide a standard data structure
and interface for this type of graph using the prefix “Multi”,
e.g. MultiGraph().

The basic graph classes are named:
Graph,
DiGraph,
MultiGraph, and
MultiDiGraph

Nodes and Edges

The next choice you have to make when specifying a graph is what kinds
of nodes and edges to use.

If the topology of the network is all you
care about then using integers or strings as the nodes makes sense and
you need not worry about edge data. If you have a data structure
already in place to describe nodes you can simply use that structure
as your nodes provided it is hashable. If it is not hashable you can
use a unique identifier to represent the node and assign the data
as a node attribute.

Edges often have data associated with them. Arbitrary data
can associated with edges as an edge attribute.
If the data is numeric and the intent is to represent
a weighted graph then use the ‘weight’ keyword for the attribute.
Some of the graph algorithms, such as
Dijkstra’s shortest path algorithm, use this attribute
name to get the weight for each edge.

Other attributes can be assigned to an edge by using keyword/value
pairs when adding edges. You can use any keyword except ‘weight’
to name your attribute and can then easily query the edge
data by that attribute keyword.

Once you’ve decided how to encode the nodes and edges, and whether you have
an undirected/directed graph with or without multiedges you are ready to build
your network.

Graph Creation

NetworkX graph objects can be created in one of three ways:

	Graph generators – standard algorithms to create network topologies.

	Importing data from pre-existing (usually file) sources.

	Adding edges and nodes explicitly.

Explicit addition and removal of nodes/edges is the easiest to describe.
Each graph object supplies methods to manipulate the graph. For example,

>>> import networkx as nx
>>> G=nx.Graph()
>>> G.add_edge(1,2) # default edge data=1
>>> G.add_edge(2,3,weight=0.9) # specify edge data

Edge attributes can be anything:

>>> import math
>>> G.add_edge('y','x',function=math.cos)
>>> G.add_node(math.cos) # any hashable can be a node

You can add many edges at one time:

>>> elist=[('a','b',5.0),('b','c',3.0),('a','c',1.0),('c','d',7.3)]
>>> G.add_weighted_edges_from(elist)

See the Tutorial for more examples.

Some basic graph operations such as union and intersection
are described in the Operators module documentation.

Graph generators such as binomial_graph and powerlaw_graph are provided in the
Graph generators subpackage.

For importing network data from formats such as GML, GraphML, edge list text files
see the Reading and writing graphs subpackage.

Graph Reporting

Class methods are used for the basic reporting functions neighbors, edges and degree.
Reporting of lists is often needed only to iterate through that list so we supply
iterator versions of many property reporting methods. For example edges() and
nodes() have corresponding methods edges_iter() and nodes_iter().
Using these methods when you can will save memory and often time as well.

The basic graph relationship of an edge can be obtained in two basic ways.
One can look for neighbors of a node or one can look for edges incident to
a node. We jokingly refer to people who focus on nodes/neighbors as node-centric
and people who focus on edges as edge-centric. The designers of NetworkX
tend to be node-centric and view edges as a relationship between nodes.
You can see this by our avoidance of notation like G[u,v] in favor of G[u][v].
Most data structures for sparse graphs are essentially adjacency lists and so
fit this perspective. In the end, of course, it doesn’t really matter which way
you examine the graph. G.edges() removes duplicate representations of each edge
while G.neighbors(n) or G[n] is slightly faster but doesn’t remove duplicates.

Any properties that are more complicated than edges, neighbors and degree are
provided by functions. For example nx.triangles(G,n) gives the number of triangles
which include node n as a vertex. These functions are grouped in the code and
documentation under the term algorithms.

Algorithms

A number of graph algorithms are provided with NetworkX.
These include shortest path, and breadth first search
(see traversal),
clustering and isomorphism algorithms and others. There are
many that we have not developed yet too. If you implement a
graph algorithm that might be useful for others please let
us know through the
NetworkX Google group [http://groups.google.com/group/networkx-discuss]
or the Github Developer Zone [https://github.com/networkx/networkx].

As an example here is code to use Dijkstra’s algorithm to
find the shortest weighted path:

>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']

Drawing

While NetworkX is not designed as a network layout tool, we provide
a simple interface to drawing packages and some simple layout algorithms.
We interface to the excellent Graphviz layout tools like dot and neato
with the (suggested) pygraphviz package or the pydot interface.
Drawing can be done using external programs or the Matplotlib Python
package. Interactive GUI interfaces are possible though not provided.
The drawing tools are provided in the module drawing.

The basic drawing functions essentially place the nodes on a scatterplot
using the positions in a dictionary or computed with a layout function. The
edges are then lines between those dots.

>>> G=nx.cubical_graph()
>>> nx.draw(G) # default spring_layout
>>> nx.draw(G,pos=nx.spectral_layout(G), nodecolor='r',edge_color='b')

See the
examples
for more ideas.

Data Structure

NetworkX uses a “dictionary of dictionaries of dictionaries” as the
basic network data structure. This allows fast lookup with reasonable
storage for large sparse networks. The keys are nodes so G[u] returns
an adjacency dictionary keyed by neighbor to the edge attribute
dictionary.
The expression G[u][v] returns the edge attribute dictionary itself. A
dictionary of lists would have also been possible, but not allowed
fast edge detection nor convenient storage of edge data.

Advantages of dict-of-dicts-of-dicts data structure:

	Find edges and remove edges with two dictionary look-ups.

	Prefer to “lists” because of fast lookup with sparse storage.

	Prefer to “sets” since data can be attached to edge.

	G[u][v] returns the edge attribute dictionary.

	n in G tests if node n is in graph G.

	for n in G: iterates through the graph.

	for nbr in G[n]: iterates through neighbors.

As an example, here is a representation of an undirected graph with the
edges (‘A’,’B’), (‘B’,’C’)

>>> G=nx.Graph()
>>> G.add_edge('A','B')
>>> G.add_edge('B','C')
>>> print(G.adj)
{'A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}, 'C': {}}}

The data structure gets morphed slightly for each base graph class.
For DiGraph two dict-of-dicts-of-dicts structures are provided, one
for successors and one for predecessors.
For MultiGraph/MultiDiGraph we use a dict-of-dicts-of-dicts-of-dicts 1
where the third dictionary is keyed by an edge key identifier to the fourth
dictionary which contains the edge attributes for that edge between
the two nodes.

Graphs use a dictionary of attributes for each edge.
We use a dict-of-dicts-of-dicts data structure with the inner
dictionary storing “name-value” relationships for that edge.

>>> G=nx.Graph()
>>> G.add_edge(1,2,color='red',weight=0.84,size=300)
>>> print(G[1][2]['size'])
300

Footnotes

	1

	“It’s dictionaries all the way down.”

NetworkX

Graph types

NetworkX provides data structures and methods for storing graphs.

All NetworkX graph classes allow (hashable) Python objects as nodes.
and any Python object can be assigned as an edge attribute.

The choice of graph class depends on the structure of the
graph you want to represent.

Which graph class should I use?

	Graph Type

	NetworkX Class

	Undirected Simple

	Graph

	Directed Simple

	DiGraph

	With Self-loops

	Graph, DiGraph

	With Parallel edges

	MultiGraph, MultiDiGraph

Basic graph types

	Graph – Undirected graphs with self loops
	Overview

	Methods
	Adding and removing nodes and edges

	Iterating over nodes and edges

	Information about graph structure

	Making copies and subgraphs

	DiGraph - Directed graphs with self loops
	Overview

	Methods
	Adding and removing nodes and edges

	Iterating over nodes and edges

	Information about graph structure

	Making copies and subgraphs

	MultiGraph - Undirected graphs with self loops and parallel edges
	Overview

	Methods
	Adding and removing nodes and edges

	Iterating over nodes and edges

	Information about graph structure

	Making copies and subgraphs

	MultiDiGraph - Directed graphs with self loops and parallel edges
	Overview

	Methods
	Adding and Removing Nodes and Edges

	Iterating over nodes and edges

	Information about graph structure

	Making copies and subgraphs

NetworkX

Graph – Undirected graphs with self loops

Overview

	
Graph(data=None, **attr)

	Base class for undirected graphs.

A Graph stores nodes and edges with optional data, or attributes.

Graphs hold undirected edges. Self loops are allowed but multiple
(parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes.

Edges are represented as links between nodes with optional
key/value attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

DiGraph(), MultiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and
no edges.

>>> G = nx.Graph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes
are added automatically. There are no errors when adding
nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5

The fastest way to traverse all edges of a graph is via
adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 1, 4)
(2, 3, 8)
(3, 2, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods.
Iterator versions of many reporting methods exist for efficiency.
Methods exist for reporting nodes(), edges(), neighbors() and degree()
as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The Graph class uses a dict-of-dict-of-dict data structure.
The outer dict (node_dict) holds adjacency lists keyed by node.
The next dict (adjlist) represents the adjacency list and holds
edge data keyed by neighbor. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced by a user defined
dict-like object. In general, the dict-like features should be
maintained but extra features can be added. To replace one of the
dicts create a new graph class by changing the class(!) variable
holding the factory for that dict-like structure. The variable names
are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

	node_dict_factoryfunction, (default: dict)

	Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node.
It should require no arguments and return a dict-like object.

	adjlist_dict_factoryfunction, (default: dict)

	Factory function to be used to create the adjacency list
dict which holds edge data keyed by neighbor.
It should require no arguments and return a dict-like object

	edge_attr_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge attribute
dict which holds attrbute values keyed by attribute name.
It should require no arguments and return a dict-like object.

Examples

Create a graph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
... node_dict_factory=OrderedDict
>>> G=OrderedNodeGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 2), (1, 1)]

Create a graph object that tracks the order nodes are added
and for each node track the order that neighbors are added.

>>> class OrderedGraph(nx.Graph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 2), (2, 1), (1, 1)]

Create a low memory graph class that effectively disallows edge
attributes by using a single attribute dict for all edges.
This reduces the memory used, but you lose edge attributes.

>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2,1)
>>> G.edges(data= True)
[(1, 2, {'weight': 1})]
>>> G.add_edge(2,2)
>>> G[2][1] is G[2][2]
True

Methods

Adding and removing nodes and edges

	Graph.__init__([data])

	Initialize a graph with edges, name, graph attributes.

	Graph.add_node(n[, attr_dict])

	Add a single node n and update node attributes.

	Graph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Graph.remove_node(n)

	Remove node n.

	Graph.remove_nodes_from(nodes)

	Remove multiple nodes.

	Graph.add_edge(u, v[, attr_dict])

	Add an edge between u and v.

	Graph.add_edges_from(ebunch[, attr_dict])

	Add all the edges in ebunch.

	Graph.add_weighted_edges_from(ebunch[, weight])

	Add all the edges in ebunch as weighted edges with specified weights.

	Graph.remove_edge(u, v)

	Remove the edge between u and v.

	Graph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Graph.add_star(nodes, **attr)

	Add a star.

	Graph.add_path(nodes, **attr)

	Add a path.

	Graph.add_cycle(nodes, **attr)

	Add a cycle.

	Graph.clear()

	Remove all nodes and edges from the graph.

Iterating over nodes and edges

	Graph.nodes([data])

	Return a list of the nodes in the graph.

	Graph.nodes_iter([data])

	Return an iterator over the nodes.

	Graph.__iter__()

	Iterate over the nodes.

	Graph.edges([nbunch, data, default])

	Return a list of edges.

	Graph.edges_iter([nbunch, data, default])

	Return an iterator over the edges.

	Graph.get_edge_data(u, v[, default])

	Return the attribute dictionary associated with edge (u,v).

	Graph.neighbors(n)

	Return a list of the nodes connected to the node n.

	Graph.neighbors_iter(n)

	Return an iterator over all neighbors of node n.

	Graph.__getitem__(n)

	Return a dict of neighbors of node n.

	Graph.adjacency_list()

	Return an adjacency list representation of the graph.

	Graph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

	Graph.nbunch_iter([nbunch])

	Return an iterator of nodes contained in nbunch that are also in the graph.

Information about graph structure

	Graph.has_node(n)

	Return True if the graph contains the node n.

	Graph.__contains__(n)

	Return True if n is a node, False otherwise.

	Graph.has_edge(u, v)

	Return True if the edge (u,v) is in the graph.

	Graph.order()

	Return the number of nodes in the graph.

	Graph.number_of_nodes()

	Return the number of nodes in the graph.

	Graph.__len__()

	Return the number of nodes.

	Graph.degree([nbunch, weight])

	Return the degree of a node or nodes.

	Graph.degree_iter([nbunch, weight])

	Return an iterator for (node, degree).

	Graph.size([weight])

	Return the number of edges.

	Graph.number_of_edges([u, v])

	Return the number of edges between two nodes.

	Graph.nodes_with_selfloops()

	Return a list of nodes with self loops.

	Graph.selfloop_edges([data, default])

	Return a list of selfloop edges.

	Graph.number_of_selfloops()

	Return the number of selfloop edges.

Making copies and subgraphs

	Graph.copy()

	Return a copy of the graph.

	Graph.to_undirected()

	Return an undirected copy of the graph.

	Graph.to_directed()

	Return a directed representation of the graph.

	Graph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

NetworkX

__init__

	
Graph.__init__(data=None, **attr)

	Initialize a graph with edges, name, graph attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	name (string [https://docs.python.org/2/library/string.html#module-string], optional (default='')) – An optional name for the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

NetworkX

add_node

	
Graph.add_node(n, attr_dict=None, **attr)

	Add a single node n and update node attributes.

	Parameters

	
	n (node) – A node can be any hashable Python object except None.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will
update existing data associated with the node.

	attr (keyword arguments, optional) – Set or change attributes using key=value.

See also

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.

On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn’t change on mutables.

NetworkX

add_nodes_from

	
Graph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

	attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See also

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific
nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

NetworkX

remove_node

	
Graph.remove_node(n)

	Remove node n.

Removes the node n and all adjacent edges.
Attempting to remove a non-existent node will raise an exception.

	Parameters

	n (node) – A node in the graph

	Raises

	NetworkXError – If n is not in the graph.

See also

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

NetworkX

remove_nodes_from

	
Graph.remove_nodes_from(nodes)

	Remove multiple nodes.

	Parameters

	nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.

See also

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

NetworkX

add_edge

	
Graph.add_edge(u, v, attr_dict=None, **attr)

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by providing
a dictionary with key/value pairs. See examples below.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edges_from()

	add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as
the edge weight a numerical value assigned to a keyword
which by default is ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

NetworkX

add_edges_from

	
Graph.add_edges_from(ebunch, attr_dict=None, **attr)

	Add all the edges in ebunch.

	Parameters

	
	ebunch (container of edges) – Each edge given in the container will be added to the
graph. The edges must be given as as 2-tuples (u,v) or
3-tuples (u,v,d) where d is a dictionary containing edge
data.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with each edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edge()

	add a single edge

	add_weighted_edges_from()

	convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence
over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

NetworkX

add_weighted_edges_from

	
Graph.add_weighted_edges_from(ebunch, weight='weight', **attr)

	Add all the edges in ebunch as weighted edges with specified
weights.

	Parameters

	
	ebunch (container of edges) – Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u,v,w)
where w is a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – The attribute name for the edge weights to be added.

	attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also

	add_edge()

	add a single edge

	add_edges_from()

	add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

NetworkX

remove_edge

	
Graph.remove_edge(u, v)

	Remove the edge between u and v.

	Parameters

	v (u,) – Remove the edge between nodes u and v.

	Raises

	NetworkXError – If there is not an edge between u and v.

See also

	remove_edges_from()

	remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple

NetworkX

remove_edges_from

	
Graph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Parameters

	ebunch (list or container of edge tuples) – Each edge given in the list or container will be removed
from the graph. The edges can be:

	2-tuples (u,v) edge between u and v.

	3-tuples (u,v,k) where k is ignored.

See also

	remove_edge()

	remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

NetworkX

add_star

	
Graph.add_star(nodes, **attr)

	Add a star.

The first node in nodes is the middle of the star. It is connected
to all other nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in star.

See also

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

NetworkX

add_path

	
Graph.add_path(nodes, **attr)

	Add a path.

	Parameters

	
	nodes (iterable container) – A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.

See also

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

NetworkX

add_cycle

	
Graph.add_cycle(nodes, **attr)

	Add a cycle.

	Parameters

	
	nodes (iterable container) – A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.

See also

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

NetworkX

clear

	
Graph.clear()

	Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX

nodes

	
Graph.nodes(data=False)

	Return a list of the nodes in the graph.

	Parameters

	data (boolean, optional (default=False)) – If False return a list of nodes. If True return a
two-tuple of node and node data dictionary

	Returns

	nlist – A list of nodes. If data=True a list of two-tuples containing
(node, node data dictionary).

	Return type

	list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

NetworkX

nodes_iter

	
Graph.nodes_iter(data=False)

	Return an iterator over the nodes.

	Parameters

	data (boolean, optional (default=False)) – If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary

	Returns

	niter – An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)

	Return type

	iterator

Notes

If the node data is not required it is simpler and equivalent
to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

NetworkX

__iter__

	
Graph.__iter__()

	Iterate over the nodes. Use the expression ‘for n in G’.

	Returns

	niter – An iterator over all nodes in the graph.

	Return type

	iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

NetworkX

edges

	
Graph.edges(nbunch=None, data=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

edges_iter

	
Graph.edges_iter(nbunch=None, data=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

get_edge_data

	
Graph.get_edge_data(u, v, default=None)

	Return the attribute dictionary associated with edge (u,v).

	Parameters

	
	v (u,) –

	default (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

	Returns

	edge_dict – The edge attribute dictionary.

	Return type

	dictionary

Notes

It is faster to use G[u][v].

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{}

Warning: Assigning G[u][v] corrupts the graph data structure.
But it is safe to assign attributes to that dictionary,

>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

NetworkX

neighbors

	
Graph.neighbors(n)

	Return a list of the nodes connected to the node n.

	Parameters

	n (node) – A node in the graph

	Returns

	nlist – A list of nodes that are adjacent to n.

	Return type

	list

	Raises

	NetworkXError – If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the
adjacency dictionary as G[n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]

NetworkX

neighbors_iter

	
Graph.neighbors_iter(n)

	Return an iterator over all neighbors of node n.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]

Notes

It is faster to use the idiom “in G[0]”, e.g.

>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]

NetworkX

__getitem__

	
Graph.__getitem__(n)

	Return a dict of neighbors of node n. Use the expression ‘G[n]’.

	Parameters

	n (node) – A node in the graph.

	Returns

	adj_dict – The adjacency dictionary for nodes connected to n.

	Return type

	dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary
is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure.
Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

NetworkX

adjacency_list

	
Graph.adjacency_list()

	Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes().
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_list – The adjacency structure of the graph as a list of lists.

	Return type

	lists of lists

See also

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

NetworkX

adjacency_iter

	
Graph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge.
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_iter – An iterator of (node, adjacency dictionary) for all nodes in
the graph.

	Return type

	iterator

See also

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

NetworkX

nbunch_iter

	
Graph.nbunch_iter(nbunch=None)

	Return an iterator of nodes contained in nbunch that are
also in the graph.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

NetworkX

has_node

	
Graph.has_node(n)

	Return True if the graph contains the node n.

	Parameters

	n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

NetworkX

__contains__

	
Graph.__contains__(n)

	Return True if n is a node, False otherwise. Use the expression
‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

NetworkX

has_edge

	
Graph.has_edge(u, v)

	Return True if the edge (u,v) is in the graph.

	Parameters

	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	Returns

	edge_ind – True if edge is in the graph, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

NetworkX

order

	
Graph.order()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_nodes(), __len__()

NetworkX

number_of_nodes

	
Graph.number_of_nodes()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

NetworkX

__len__

	
Graph.__len__()

	Return the number of nodes. Use the expression ‘len(G)’.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

NetworkX

degree

	
Graph.degree(nbunch=None, weight=None)

	Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

NetworkX

degree_iter

	
Graph.degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, degree).

	Return type

	an iterator

See also

degree()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

NetworkX

size

	
Graph.size(weight=None)

	Return the number of edges.

	Parameters

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.

	Returns

	nedges – The number of edges or sum of edge weights in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

NetworkX

number_of_edges

	
Graph.number_of_edges(u=None, v=None)

	Return the number of edges between two nodes.

	Parameters

	v (u,) – If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.

	Returns

	nedges – The number of edges in the graph. If nodes u and v are specified
return the number of edges between those nodes.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

NetworkX

nodes_with_selfloops

	
Graph.nodes_with_selfloops()

	Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent
to that node.

	Returns

	nodelist – A list of nodes with self loops.

	Return type

	list

See also

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

NetworkX

selfloop_edges

	
Graph.selfloop_edges(data=False, default=None)

	Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

	Parameters

	
	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False)
or three-tuples (u,v,datadict) (data=True)
or three-tuples (u,v,datavalue) (data=’attrname’)

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edgelist – A list of all selfloop edges.

	Return type

	list of edge tuples

See also

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]

NetworkX

number_of_selfloops

	
Graph.number_of_selfloops()

	Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

	Returns

	nloops – The number of selfloops.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

NetworkX

copy

	
Graph.copy()

	Return a copy of the graph.

	Returns

	G – A copy of the graph.

	Return type

	Graph

See also

	to_directed()

	return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the
node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

NetworkX

to_undirected

	
Graph.to_undirected()

	Return an undirected copy of the graph.

	Returns

	G – A deepcopy of the graph.

	Return type

	Graph/MultiGraph

See also

copy(), add_edge(), add_edges_from()

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]

NetworkX

to_directed

	
Graph.to_directed()

	Return a directed representation of the graph.

	Returns

	G – A directed graph with the same name, same nodes, and with
each edge (u,v,data) replaced by two directed edges
(u,v,data) and (v,u,data).

	Return type

	DiGraph

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed Graph to use dict-like objects in the
data structure, those changes do not transfer to the DiGraph
created by this method.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

NetworkX

subgraph

	
Graph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch
and the edges between those nodes.

	Parameters

	nbunch (list, iterable) – A container of nodes which will be iterated through once.

	Returns

	G – A subgraph of the graph with the same edge attributes.

	Return type

	Graph

Notes

The graph, edge or node attributes just point to the original graph.
So changes to the node or edge structure will not be reflected in
the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use:
nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using:
G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

NetworkX

DiGraph - Directed graphs with self loops

Overview

	
DiGraph(data=None, **attr)

	Base class for directed graphs.

A DiGraph stores nodes and edges with optional data, or attributes.

DiGraphs hold directed edges. Self loops are allowed but multiple
(parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes.

Edges are represented as links between nodes with optional
key/value attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

Graph(), MultiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and
no edges.

>>> G = nx.DiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes
are added automatically. There are no errors when adding
nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.DiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5

The fastest way to traverse all edges of a graph is via
adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods.
Iterator versions of many reporting methods exist for efficiency.
Methods exist for reporting nodes(), edges(), neighbors() and degree()
as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The Graph class uses a dict-of-dict-of-dict data structure.
The outer dict (node_dict) holds adjacency lists keyed by node.
The next dict (adjlist) represents the adjacency list and holds
edge data keyed by neighbor. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced by a user defined
dict-like object. In general, the dict-like features should be
maintained but extra features can be added. To replace one of the
dicts create a new graph class by changing the class(!) variable
holding the factory for that dict-like structure. The variable names
are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

	node_dict_factoryfunction, optional (default: dict)

	Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node.
It should require no arguments and return a dict-like object.

	adjlist_dict_factoryfunction, optional (default: dict)

	Factory function to be used to create the adjacency list
dict which holds edge data keyed by neighbor.
It should require no arguments and return a dict-like object

	edge_attr_dict_factoryfunction, optional (default: dict)

	Factory function to be used to create the edge attribute
dict which holds attrbute values keyed by attribute name.
It should require no arguments and return a dict-like object.

Examples

Create a graph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
... node_dict_factory=OrderedDict
>>> G=OrderedNodeGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 2), (1, 1)]

Create a graph object that tracks the order nodes are added
and for each node track the order that neighbors are added.

>>> class OrderedGraph(nx.Graph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 2), (2, 1), (1, 1)]

Create a low memory graph class that effectively disallows edge
attributes by using a single attribute dict for all edges.
This reduces the memory used, but you lose edge attributes.

>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2,1)
>>> G.edges(data= True)
[(1, 2, {'weight': 1})]
>>> G.add_edge(2,2)
>>> G[2][1] is G[2][2]
True

Methods

Adding and removing nodes and edges

	DiGraph.__init__([data])

	Initialize a graph with edges, name, graph attributes.

	DiGraph.add_node(n[, attr_dict])

	Add a single node n and update node attributes.

	DiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	DiGraph.remove_node(n)

	Remove node n.

	DiGraph.remove_nodes_from(nbunch)

	Remove multiple nodes.

	DiGraph.add_edge(u, v[, attr_dict])

	Add an edge between u and v.

	DiGraph.add_edges_from(ebunch[, attr_dict])

	Add all the edges in ebunch.

	DiGraph.add_weighted_edges_from(ebunch[, weight])

	Add all the edges in ebunch as weighted edges with specified weights.

	DiGraph.remove_edge(u, v)

	Remove the edge between u and v.

	DiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	DiGraph.add_star(nodes, **attr)

	Add a star.

	DiGraph.add_path(nodes, **attr)

	Add a path.

	DiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	DiGraph.clear()

	Remove all nodes and edges from the graph.

Iterating over nodes and edges

	DiGraph.nodes([data])

	Return a list of the nodes in the graph.

	DiGraph.nodes_iter([data])

	Return an iterator over the nodes.

	DiGraph.__iter__()

	Iterate over the nodes.

	DiGraph.edges([nbunch, data, default])

	Return a list of edges.

	DiGraph.edges_iter([nbunch, data, default])

	Return an iterator over the edges.

	DiGraph.out_edges([nbunch, data, default])

	Return a list of edges.

	DiGraph.out_edges_iter([nbunch, data, default])

	Return an iterator over the edges.

	DiGraph.in_edges([nbunch, data])

	Return a list of the incoming edges.

	DiGraph.in_edges_iter([nbunch, data])

	Return an iterator over the incoming edges.

	DiGraph.get_edge_data(u, v[, default])

	Return the attribute dictionary associated with edge (u,v).

	DiGraph.neighbors(n)

	Return a list of successor nodes of n.

	DiGraph.neighbors_iter(n)

	Return an iterator over successor nodes of n.

	DiGraph.__getitem__(n)

	Return a dict of neighbors of node n.

	DiGraph.successors(n)

	Return a list of successor nodes of n.

	DiGraph.successors_iter(n)

	Return an iterator over successor nodes of n.

	DiGraph.predecessors(n)

	Return a list of predecessor nodes of n.

	DiGraph.predecessors_iter(n)

	Return an iterator over predecessor nodes of n.

	DiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

	DiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

	DiGraph.nbunch_iter([nbunch])

	Return an iterator of nodes contained in nbunch that are also in the graph.

Information about graph structure

	DiGraph.has_node(n)

	Return True if the graph contains the node n.

	DiGraph.__contains__(n)

	Return True if n is a node, False otherwise.

	DiGraph.has_edge(u, v)

	Return True if the edge (u,v) is in the graph.

	DiGraph.order()

	Return the number of nodes in the graph.

	DiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	DiGraph.__len__()

	Return the number of nodes.

	DiGraph.degree([nbunch, weight])

	Return the degree of a node or nodes.

	DiGraph.degree_iter([nbunch, weight])

	Return an iterator for (node, degree).

	DiGraph.in_degree([nbunch, weight])

	Return the in-degree of a node or nodes.

	DiGraph.in_degree_iter([nbunch, weight])

	Return an iterator for (node, in-degree).

	DiGraph.out_degree([nbunch, weight])

	Return the out-degree of a node or nodes.

	DiGraph.out_degree_iter([nbunch, weight])

	Return an iterator for (node, out-degree).

	DiGraph.size([weight])

	Return the number of edges.

	DiGraph.number_of_edges([u, v])

	Return the number of edges between two nodes.

	DiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

	DiGraph.selfloop_edges([data, default])

	Return a list of selfloop edges.

	DiGraph.number_of_selfloops()

	Return the number of selfloop edges.

Making copies and subgraphs

	DiGraph.copy()

	Return a copy of the graph.

	DiGraph.to_undirected([reciprocal])

	Return an undirected representation of the digraph.

	DiGraph.to_directed()

	Return a directed copy of the graph.

	DiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

	DiGraph.reverse([copy])

	Return the reverse of the graph.

NetworkX

__init__

	
DiGraph.__init__(data=None, **attr)

	Initialize a graph with edges, name, graph attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	name (string [https://docs.python.org/2/library/string.html#module-string], optional (default='')) – An optional name for the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

NetworkX

add_node

	
DiGraph.add_node(n, attr_dict=None, **attr)

	Add a single node n and update node attributes.

	Parameters

	
	n (node) – A node can be any hashable Python object except None.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will
update existing data associated with the node.

	attr (keyword arguments, optional) – Set or change attributes using key=value.

See also

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.

On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn’t change on mutables.

NetworkX

add_nodes_from

	
DiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

	attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See also

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific
nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

NetworkX

remove_node

	
DiGraph.remove_node(n)

	Remove node n.

Removes the node n and all adjacent edges.
Attempting to remove a non-existent node will raise an exception.

	Parameters

	n (node) – A node in the graph

	Raises

	NetworkXError – If n is not in the graph.

See also

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

NetworkX

remove_nodes_from

	
DiGraph.remove_nodes_from(nbunch)

	Remove multiple nodes.

	Parameters

	nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.

See also

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

NetworkX

add_edge

	
DiGraph.add_edge(u, v, attr_dict=None, **attr)

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by providing
a dictionary with key/value pairs. See examples below.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edges_from()

	add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as
the edge weight a numerical value assigned to a keyword
which by default is ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

NetworkX

add_edges_from

	
DiGraph.add_edges_from(ebunch, attr_dict=None, **attr)

	Add all the edges in ebunch.

	Parameters

	
	ebunch (container of edges) – Each edge given in the container will be added to the
graph. The edges must be given as as 2-tuples (u,v) or
3-tuples (u,v,d) where d is a dictionary containing edge
data.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with each edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edge()

	add a single edge

	add_weighted_edges_from()

	convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence
over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

NetworkX

add_weighted_edges_from

	
DiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

	Add all the edges in ebunch as weighted edges with specified
weights.

	Parameters

	
	ebunch (container of edges) – Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u,v,w)
where w is a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – The attribute name for the edge weights to be added.

	attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also

	add_edge()

	add a single edge

	add_edges_from()

	add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

NetworkX

remove_edge

	
DiGraph.remove_edge(u, v)

	Remove the edge between u and v.

	Parameters

	v (u,) – Remove the edge between nodes u and v.

	Raises

	NetworkXError – If there is not an edge between u and v.

See also

	remove_edges_from()

	remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple

NetworkX

remove_edges_from

	
DiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Parameters

	ebunch (list or container of edge tuples) – Each edge given in the list or container will be removed
from the graph. The edges can be:

	2-tuples (u,v) edge between u and v.

	3-tuples (u,v,k) where k is ignored.

See also

	remove_edge()

	remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

NetworkX

add_star

	
DiGraph.add_star(nodes, **attr)

	Add a star.

The first node in nodes is the middle of the star. It is connected
to all other nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in star.

See also

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

NetworkX

add_path

	
DiGraph.add_path(nodes, **attr)

	Add a path.

	Parameters

	
	nodes (iterable container) – A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.

See also

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

NetworkX

add_cycle

	
DiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	Parameters

	
	nodes (iterable container) – A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.

See also

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

NetworkX

clear

	
DiGraph.clear()

	Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX

nodes

	
DiGraph.nodes(data=False)

	Return a list of the nodes in the graph.

	Parameters

	data (boolean, optional (default=False)) – If False return a list of nodes. If True return a
two-tuple of node and node data dictionary

	Returns

	nlist – A list of nodes. If data=True a list of two-tuples containing
(node, node data dictionary).

	Return type

	list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

NetworkX

nodes_iter

	
DiGraph.nodes_iter(data=False)

	Return an iterator over the nodes.

	Parameters

	data (boolean, optional (default=False)) – If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary

	Returns

	niter – An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)

	Return type

	iterator

Notes

If the node data is not required it is simpler and equivalent
to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

NetworkX

__iter__

	
DiGraph.__iter__()

	Iterate over the nodes. Use the expression ‘for n in G’.

	Returns

	niter – An iterator over all nodes in the graph.

	Return type

	iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

NetworkX

edges

	
DiGraph.edges(nbunch=None, data=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

edges_iter

	
DiGraph.edges_iter(nbunch=None, data=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

out_edges

	
DiGraph.out_edges(nbunch=None, data=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

out_edges_iter

	
DiGraph.out_edges_iter(nbunch=None, data=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

in_edges

	
DiGraph.in_edges(nbunch=None, data=False)

	Return a list of the incoming edges.

See also

	edges()

	return a list of edges

NetworkX

in_edges_iter

	
DiGraph.in_edges_iter(nbunch=None, data=False)

	Return an iterator over the incoming edges.

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge attribute dict in 3-tuple (u,v,data).

	Returns

	in_edge_iter – An iterator of (u,v) or (u,v,d) tuples of incoming edges.

	Return type

	iterator

See also

	edges_iter()

	return an iterator of edges

NetworkX

get_edge_data

	
DiGraph.get_edge_data(u, v, default=None)

	Return the attribute dictionary associated with edge (u,v).

	Parameters

	
	v (u,) –

	default (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

	Returns

	edge_dict – The edge attribute dictionary.

	Return type

	dictionary

Notes

It is faster to use G[u][v].

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{}

Warning: Assigning G[u][v] corrupts the graph data structure.
But it is safe to assign attributes to that dictionary,

>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

NetworkX

neighbors

	
DiGraph.neighbors(n)

	Return a list of successor nodes of n.

neighbors() and successors() are the same function.

NetworkX

neighbors_iter

	
DiGraph.neighbors_iter(n)

	Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

NetworkX

__getitem__

	
DiGraph.__getitem__(n)

	Return a dict of neighbors of node n. Use the expression ‘G[n]’.

	Parameters

	n (node) – A node in the graph.

	Returns

	adj_dict – The adjacency dictionary for nodes connected to n.

	Return type

	dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary
is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure.
Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

NetworkX

successors

	
DiGraph.successors(n)

	Return a list of successor nodes of n.

neighbors() and successors() are the same function.

NetworkX

successors_iter

	
DiGraph.successors_iter(n)

	Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

NetworkX

predecessors

	
DiGraph.predecessors(n)

	Return a list of predecessor nodes of n.

NetworkX

predecessors_iter

	
DiGraph.predecessors_iter(n)

	Return an iterator over predecessor nodes of n.

NetworkX

adjacency_list

	
DiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes().
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_list – The adjacency structure of the graph as a list of lists.

	Return type

	lists of lists

See also

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

NetworkX

adjacency_iter

	
DiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge.
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_iter – An iterator of (node, adjacency dictionary) for all nodes in
the graph.

	Return type

	iterator

See also

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

NetworkX

nbunch_iter

	
DiGraph.nbunch_iter(nbunch=None)

	Return an iterator of nodes contained in nbunch that are
also in the graph.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

NetworkX

has_node

	
DiGraph.has_node(n)

	Return True if the graph contains the node n.

	Parameters

	n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

NetworkX

__contains__

	
DiGraph.__contains__(n)

	Return True if n is a node, False otherwise. Use the expression
‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

NetworkX

has_edge

	
DiGraph.has_edge(u, v)

	Return True if the edge (u,v) is in the graph.

	Parameters

	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	Returns

	edge_ind – True if edge is in the graph, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

NetworkX

order

	
DiGraph.order()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_nodes(), __len__()

NetworkX

number_of_nodes

	
DiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

NetworkX

__len__

	
DiGraph.__len__()

	Return the number of nodes. Use the expression ‘len(G)’.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

NetworkX

degree

	
DiGraph.degree(nbunch=None, weight=None)

	Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

NetworkX

degree_iter

	
DiGraph.degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), in_degree_iter(), out_degree_iter()

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

NetworkX

in_degree

	
DiGraph.in_degree(nbunch=None, weight=None)

	Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and in-degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

See also

degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]

NetworkX

in_degree_iter

	
DiGraph.in_degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, in-degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), out_degree_iter()

Examples

>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0)) # node 0 with degree 0
[(0, 0)]
>>> list(G.in_degree_iter([0,1]))
[(0, 0), (1, 1)]

NetworkX

out_degree

	
DiGraph.out_degree(nbunch=None, weight=None)

	Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and out-degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]

NetworkX

out_degree_iter

	
DiGraph.out_degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, out-degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]

NetworkX

size

	
DiGraph.size(weight=None)

	Return the number of edges.

	Parameters

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.

	Returns

	nedges – The number of edges or sum of edge weights in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

NetworkX

number_of_edges

	
DiGraph.number_of_edges(u=None, v=None)

	Return the number of edges between two nodes.

	Parameters

	v (u,) – If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.

	Returns

	nedges – The number of edges in the graph. If nodes u and v are specified
return the number of edges between those nodes.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

NetworkX

nodes_with_selfloops

	
DiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent
to that node.

	Returns

	nodelist – A list of nodes with self loops.

	Return type

	list

See also

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

NetworkX

selfloop_edges

	
DiGraph.selfloop_edges(data=False, default=None)

	Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

	Parameters

	
	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False)
or three-tuples (u,v,datadict) (data=True)
or three-tuples (u,v,datavalue) (data=’attrname’)

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edgelist – A list of all selfloop edges.

	Return type

	list of edge tuples

See also

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]

NetworkX

number_of_selfloops

	
DiGraph.number_of_selfloops()

	Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

	Returns

	nloops – The number of selfloops.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

NetworkX

copy

	
DiGraph.copy()

	Return a copy of the graph.

	Returns

	G – A copy of the graph.

	Return type

	Graph

See also

	to_directed()

	return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the
node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

NetworkX

to_undirected

	
DiGraph.to_undirected(reciprocal=False)

	Return an undirected representation of the digraph.

	Parameters

	reciprocal (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – If True only keep edges that appear in both directions
in the original digraph.

	Returns

	G – An undirected graph with the same name and nodes and
with edge (u,v,data) if either (u,v,data) or (v,u,data)
is in the digraph. If both edges exist in digraph and
their edge data is different, only one edge is created
with an arbitrary choice of which edge data to use.
You must check and correct for this manually if desired.

	Return type

	Graph

Notes

If edges in both directions (u,v) and (v,u) exist in the
graph, attributes for the new undirected edge will be a combination of
the attributes of the directed edges. The edge data is updated
in the (arbitrary) order that the edges are encountered. For
more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed DiGraph to use dict-like objects
in the data structure, those changes do not transfer to the Graph
created by this method.

NetworkX

to_directed

	
DiGraph.to_directed()

	Return a directed copy of the graph.

	Returns

	G – A deepcopy of the graph.

	Return type

	DiGraph

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

NetworkX

subgraph

	
DiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch
and the edges between those nodes.

	Parameters

	nbunch (list, iterable) – A container of nodes which will be iterated through once.

	Returns

	G – A subgraph of the graph with the same edge attributes.

	Return type

	Graph

Notes

The graph, edge or node attributes just point to the original graph.
So changes to the node or edge structure will not be reflected in
the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use:
nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using:
G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

NetworkX

reverse

	
DiGraph.reverse(copy=True)

	Return the reverse of the graph.

The reverse is a graph with the same nodes and edges
but with the directions of the edges reversed.

	Parameters

	copy (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges.
If False, reverse the reverse graph is created using
the original graph (this changes the original graph).

NetworkX

MultiGraph - Undirected graphs with self loops and parallel edges

Overview

	
MultiGraph(data=None, **attr)

	An undirected graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge
can hold optional data or attributes.

A MultiGraph holds undirected edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes.

Edges are represented as links between nodes with optional
key/value attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

Graph(), DiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and
no edges.

>>> G = nx.MultiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes
are added automatically. If an edge already exists, an additional
edge is created and stored using a key to identify the edge.
By default the key is the lowest unused integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.MultiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
... # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via
adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,keydict in nbrsdict.items():
... for key,eattr in keydict.items():
... if 'weight' in eattr:
... (n,nbr,key,eattr['weight'])
(1, 2, 0, 4)
(2, 1, 0, 4)
(2, 3, 0, 8)
(3, 2, 0, 8)
>>> G.edges(data='weight', keys=True)
[(1, 2, 0, 4), (1, 2, 1, None), (2, 3, 0, 8), (3, 4, 0, None), (4, 5, 0, None)]

Reporting:

Simple graph information is obtained using methods.
Iterator versions of many reporting methods exist for efficiency.
Methods exist for reporting nodes(), edges(), neighbors() and degree()
as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure.
The outer dict (node_dict) holds adjacency lists keyed by node.
The next dict (adjlist) represents the adjacency list and holds
edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr
dict keyed by edge key. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict
structure can be replaced by a user defined dict-like object.
In general, the dict-like features should be maintained but
extra features can be added. To replace one of the dicts create
a new graph class by changing the class(!) variable holding the
factory for that dict-like structure. The variable names
are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory
and edge_attr_dict_factory.

	node_dict_factoryfunction, (default: dict)

	Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node.
It should require no arguments and return a dict-like object.

	adjlist_dict_factoryfunction, (default: dict)

	Factory function to be used to create the adjacency list
dict which holds multiedge key dicts keyed by neighbor.
It should require no arguments and return a dict-like object.

	edge_key_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge key dict
which holds edge data keyed by edge key.
It should require no arguments and return a dict-like object.

	edge_attr_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge attribute
dict which holds attrbute values keyed by attribute name.
It should require no arguments and return a dict-like object.

Examples

Create a multigraph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiGraph):
... node_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]

Create a multgraph object that tracks the order nodes are added
and for each node track the order that neighbors are added and for
each neighbor tracks the order that multiedges are added.

>>> class OrderedGraph(nx.MultiGraph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
... edge_key_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)))
>>> G.edges(keys=True)
[(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]

Methods

Adding and removing nodes and edges

	MultiGraph.__init__([data])

	

	MultiGraph.add_node(n[, attr_dict])

	Add a single node n and update node attributes.

	MultiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	MultiGraph.remove_node(n)

	Remove node n.

	MultiGraph.remove_nodes_from(nodes)

	Remove multiple nodes.

	MultiGraph.add_edge(u, v[, key, attr_dict])

	Add an edge between u and v.

	MultiGraph.add_edges_from(ebunch[, attr_dict])

	Add all the edges in ebunch.

	MultiGraph.add_weighted_edges_from(ebunch[, …])

	Add all the edges in ebunch as weighted edges with specified weights.

	MultiGraph.remove_edge(u, v[, key])

	Remove an edge between u and v.

	MultiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	MultiGraph.add_star(nodes, **attr)

	Add a star.

	MultiGraph.add_path(nodes, **attr)

	Add a path.

	MultiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	MultiGraph.clear()

	Remove all nodes and edges from the graph.

Iterating over nodes and edges

	MultiGraph.nodes([data])

	Return a list of the nodes in the graph.

	MultiGraph.nodes_iter([data])

	Return an iterator over the nodes.

	MultiGraph.__iter__()

	Iterate over the nodes.

	MultiGraph.edges([nbunch, data, keys, default])

	Return a list of edges.

	MultiGraph.edges_iter([nbunch, data, keys, …])

	Return an iterator over the edges.

	MultiGraph.get_edge_data(u, v[, key, default])

	Return the attribute dictionary associated with edge (u,v).

	MultiGraph.neighbors(n)

	Return a list of the nodes connected to the node n.

	MultiGraph.neighbors_iter(n)

	Return an iterator over all neighbors of node n.

	MultiGraph.__getitem__(n)

	Return a dict of neighbors of node n.

	MultiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

	MultiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

	MultiGraph.nbunch_iter([nbunch])

	Return an iterator of nodes contained in nbunch that are also in the graph.

Information about graph structure

	MultiGraph.has_node(n)

	Return True if the graph contains the node n.

	MultiGraph.__contains__(n)

	Return True if n is a node, False otherwise.

	MultiGraph.has_edge(u, v[, key])

	Return True if the graph has an edge between nodes u and v.

	MultiGraph.order()

	Return the number of nodes in the graph.

	MultiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	MultiGraph.__len__()

	Return the number of nodes.

	MultiGraph.degree([nbunch, weight])

	Return the degree of a node or nodes.

	MultiGraph.degree_iter([nbunch, weight])

	Return an iterator for (node, degree).

	MultiGraph.size([weight])

	Return the number of edges.

	MultiGraph.number_of_edges([u, v])

	Return the number of edges between two nodes.

	MultiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

	MultiGraph.selfloop_edges([data, keys, default])

	Return a list of selfloop edges.

	MultiGraph.number_of_selfloops()

	Return the number of selfloop edges.

Making copies and subgraphs

	MultiGraph.copy()

	Return a copy of the graph.

	MultiGraph.to_undirected()

	Return an undirected copy of the graph.

	MultiGraph.to_directed()

	Return a directed representation of the graph.

	MultiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

NetworkX

__init__

	
MultiGraph.__init__(data=None, **attr)

	

NetworkX

add_node

	
MultiGraph.add_node(n, attr_dict=None, **attr)

	Add a single node n and update node attributes.

	Parameters

	
	n (node) – A node can be any hashable Python object except None.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will
update existing data associated with the node.

	attr (keyword arguments, optional) – Set or change attributes using key=value.

See also

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.

On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn’t change on mutables.

NetworkX

add_nodes_from

	
MultiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

	attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See also

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific
nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

NetworkX

remove_node

	
MultiGraph.remove_node(n)

	Remove node n.

Removes the node n and all adjacent edges.
Attempting to remove a non-existent node will raise an exception.

	Parameters

	n (node) – A node in the graph

	Raises

	NetworkXError – If n is not in the graph.

See also

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

NetworkX

remove_nodes_from

	
MultiGraph.remove_nodes_from(nodes)

	Remove multiple nodes.

	Parameters

	nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.

See also

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

NetworkX

add_edge

	
MultiGraph.add_edge(u, v, key=None, attr_dict=None, **attr)

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by providing
a dictionary with key/value pairs. See examples below.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	key (hashable identifier, optional (default=lowest unused integer)) – Used to distinguish multiedges between a pair of nodes.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edges_from()

	add a collection of edges

Notes

To replace/update edge data, use the optional key argument
to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use
multigraphs directly because it is not clear how to handle
multiedge weights. Convert to Graph using edge attribute
‘weight’ to enable weighted graph algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

NetworkX

add_edges_from

	
MultiGraph.add_edges_from(ebunch, attr_dict=None, **attr)

	Add all the edges in ebunch.

	Parameters

	
	ebunch (container of edges) – Each edge given in the container will be added to the
graph. The edges can be:

	2-tuples (u,v) or

	3-tuples (u,v,d) for an edge attribute dict d, or

	4-tuples (u,v,k,d) for an edge identified by key k

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with each edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edge()

	add a single edge

	add_weighted_edges_from()

	convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence
over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

NetworkX

add_weighted_edges_from

	
MultiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

	Add all the edges in ebunch as weighted edges with specified
weights.

	Parameters

	
	ebunch (container of edges) – Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u,v,w)
where w is a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – The attribute name for the edge weights to be added.

	attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also

	add_edge()

	add a single edge

	add_edges_from()

	add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

NetworkX

remove_edge

	
MultiGraph.remove_edge(u, v, key=None)

	Remove an edge between u and v.

	Parameters

	
	v (u,) – Remove an edge between nodes u and v.

	key (hashable identifier, optional (default=None)) – Used to distinguish multiple edges between a pair of nodes.
If None remove a single (abritrary) edge between u and v.

	Raises

	NetworkXError – If there is not an edge between u and v, or
if there is no edge with the specified key.

See also

	remove_edges_from()

	remove a collection of edges

Examples

>>> G = nx.MultiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiGraph() # or MultiDiGraph, etc
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge

For edges with keys

>>> G = nx.MultiGraph() # or MultiDiGraph, etc
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')

NetworkX

remove_edges_from

	
MultiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Parameters

	ebunch (list or container of edge tuples) – Each edge given in the list or container will be removed
from the graph. The edges can be:

	2-tuples (u,v) All edges between u and v are removed.

	3-tuples (u,v,key) The edge identified by key is removed.

	4-tuples (u,v,key,data) where data is ignored.

See also

	remove_edge()

	remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]

NetworkX

add_star

	
MultiGraph.add_star(nodes, **attr)

	Add a star.

The first node in nodes is the middle of the star. It is connected
to all other nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in star.

See also

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

NetworkX

add_path

	
MultiGraph.add_path(nodes, **attr)

	Add a path.

	Parameters

	
	nodes (iterable container) – A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.

See also

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

NetworkX

add_cycle

	
MultiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	Parameters

	
	nodes (iterable container) – A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.

See also

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

NetworkX

clear

	
MultiGraph.clear()

	Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX

nodes

	
MultiGraph.nodes(data=False)

	Return a list of the nodes in the graph.

	Parameters

	data (boolean, optional (default=False)) – If False return a list of nodes. If True return a
two-tuple of node and node data dictionary

	Returns

	nlist – A list of nodes. If data=True a list of two-tuples containing
(node, node data dictionary).

	Return type

	list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

NetworkX

nodes_iter

	
MultiGraph.nodes_iter(data=False)

	Return an iterator over the nodes.

	Parameters

	data (boolean, optional (default=False)) – If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary

	Returns

	niter – An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)

	Return type

	iterator

Notes

If the node data is not required it is simpler and equivalent
to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

NetworkX

__iter__

	
MultiGraph.__iter__()

	Iterate over the nodes. Use the expression ‘for n in G’.

	Returns

	niter – An iterator over all nodes in the graph.

	Return type

	iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

NetworkX

edges

	
MultiGraph.edges(nbunch=None, data=False, keys=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True,keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

edges_iter

	
MultiGraph.edges_iter(nbunch=None, data=False, keys=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

get_edge_data

	
MultiGraph.get_edge_data(u, v, key=None, default=None)

	Return the attribute dictionary associated with edge (u,v).

	Parameters

	
	v (u,) –

	default (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

	key (hashable identifier, optional (default=None)) – Return data only for the edge with specified key.

	Returns

	edge_dict – The edge attribute dictionary.

	Return type

	dictionary

Notes

It is faster to use G[u][v][key].

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure.
But it is safe to assign attributes to that dictionary,

>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

NetworkX

neighbors

	
MultiGraph.neighbors(n)

	Return a list of the nodes connected to the node n.

	Parameters

	n (node) – A node in the graph

	Returns

	nlist – A list of nodes that are adjacent to n.

	Return type

	list

	Raises

	NetworkXError – If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the
adjacency dictionary as G[n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]

NetworkX

neighbors_iter

	
MultiGraph.neighbors_iter(n)

	Return an iterator over all neighbors of node n.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]

Notes

It is faster to use the idiom “in G[0]”, e.g.

>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]

NetworkX

__getitem__

	
MultiGraph.__getitem__(n)

	Return a dict of neighbors of node n. Use the expression ‘G[n]’.

	Parameters

	n (node) – A node in the graph.

	Returns

	adj_dict – The adjacency dictionary for nodes connected to n.

	Return type

	dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary
is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure.
Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

NetworkX

adjacency_list

	
MultiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes().
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_list – The adjacency structure of the graph as a list of lists.

	Return type

	lists of lists

See also

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

NetworkX

adjacency_iter

	
MultiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge.
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_iter – An iterator of (node, adjacency dictionary) for all nodes in
the graph.

	Return type

	iterator

See also

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

NetworkX

nbunch_iter

	
MultiGraph.nbunch_iter(nbunch=None)

	Return an iterator of nodes contained in nbunch that are
also in the graph.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

NetworkX

has_node

	
MultiGraph.has_node(n)

	Return True if the graph contains the node n.

	Parameters

	n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

NetworkX

__contains__

	
MultiGraph.__contains__(n)

	Return True if n is a node, False otherwise. Use the expression
‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

NetworkX

has_edge

	
MultiGraph.has_edge(u, v, key=None)

	Return True if the graph has an edge between nodes u and v.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.

	key (hashable identifier, optional (default=None)) – If specified return True only if the edge with
key is found.

	Returns

	edge_ind – True if edge is in the graph, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

Can be called either using two nodes u,v, an edge tuple (u,v),
or an edge tuple (u,v,key).

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True

The following syntax are equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

NetworkX

order

	
MultiGraph.order()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_nodes(), __len__()

NetworkX

number_of_nodes

	
MultiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

NetworkX

__len__

	
MultiGraph.__len__()

	Return the number of nodes. Use the expression ‘len(G)’.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

NetworkX

degree

	
MultiGraph.degree(nbunch=None, weight=None)

	Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

NetworkX

degree_iter

	
MultiGraph.degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, degree).

	Return type

	an iterator

See also

degree()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

NetworkX

size

	
MultiGraph.size(weight=None)

	Return the number of edges.

	Parameters

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.

	Returns

	nedges – The number of edges or sum of edge weights in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

NetworkX

number_of_edges

	
MultiGraph.number_of_edges(u=None, v=None)

	Return the number of edges between two nodes.

	Parameters

	v (u,) – If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.

	Returns

	nedges – The number of edges in the graph. If nodes u and v are specified
return the number of edges between those nodes.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

NetworkX

nodes_with_selfloops

	
MultiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent
to that node.

	Returns

	nodelist – A list of nodes with self loops.

	Return type

	list

See also

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

NetworkX

selfloop_edges

	
MultiGraph.selfloop_edges(data=False, keys=False, default=None)

	Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

	Parameters

	
	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False)
or three-tuples (u,v,datadict) (data=True)
or three-tuples (u,v,datavalue) (data=’attrname’)

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	edgelist – A list of all selfloop edges.

	Return type

	list of edge tuples

See also

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]

NetworkX

number_of_selfloops

	
MultiGraph.number_of_selfloops()

	Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

	Returns

	nloops – The number of selfloops.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

NetworkX

copy

	
MultiGraph.copy()

	Return a copy of the graph.

	Returns

	G – A copy of the graph.

	Return type

	Graph

See also

	to_directed()

	return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the
node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

NetworkX

to_undirected

	
MultiGraph.to_undirected()

	Return an undirected copy of the graph.

	Returns

	G – A deepcopy of the graph.

	Return type

	Graph/MultiGraph

See also

copy(), add_edge(), add_edges_from()

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]

NetworkX

to_directed

	
MultiGraph.to_directed()

	Return a directed representation of the graph.

	Returns

	G – A directed graph with the same name, same nodes, and with
each edge (u,v,data) replaced by two directed edges
(u,v,data) and (v,u,data).

	Return type

	MultiDiGraph

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects
in the data structure, those changes do not transfer to the MultiDiGraph
created by this method.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

NetworkX

subgraph

	
MultiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch
and the edges between those nodes.

	Parameters

	nbunch (list, iterable) – A container of nodes which will be iterated through once.

	Returns

	G – A subgraph of the graph with the same edge attributes.

	Return type

	Graph

Notes

The graph, edge or node attributes just point to the original graph.
So changes to the node or edge structure will not be reflected in
the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use:
nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using:
G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

NetworkX

MultiDiGraph - Directed graphs with self loops and parallel edges

Overview

	
MultiDiGraph(data=None, **attr)

	A directed graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge
can hold optional data or attributes.

A MultiDiGraph holds directed edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes.

Edges are represented as links between nodes with optional
key/value attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

Graph(), DiGraph(), MultiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and
no edges.

>>> G = nx.MultiDiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes
are added automatically. If an edge already exists, an additional
edge is created and stored using a key to identify the edge.
By default the key is the lowest unused integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.MultiDiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
... # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via
adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,keydict in nbrsdict.items():
... for key,eattr in keydict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (1, 2, None), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods.
Iterator versions of many reporting methods exist for efficiency.
Methods exist for reporting nodes(), edges(), neighbors() and degree()
as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
The outer dict (node_dict) holds adjacency lists keyed by node.
The next dict (adjlist) represents the adjacency list and holds
edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr
dict keyed by edge key. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict
structure can be replaced by a user defined dict-like object.
In general, the dict-like features should be maintained but
extra features can be added. To replace one of the dicts create
a new graph class by changing the class(!) variable holding the
factory for that dict-like structure. The variable names
are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory
and edge_attr_dict_factory.

	node_dict_factoryfunction, (default: dict)

	Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node.
It should require no arguments and return a dict-like object.

	adjlist_dict_factoryfunction, (default: dict)

	Factory function to be used to create the adjacency list
dict which holds multiedge key dicts keyed by neighbor.
It should require no arguments and return a dict-like object.

	edge_key_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge key dict
which holds edge data keyed by edge key.
It should require no arguments and return a dict-like object.

	edge_attr_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge attribute
dict which holds attrbute values keyed by attribute name.
It should require no arguments and return a dict-like object.

Examples

Create a multigraph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiDiGraph):
... node_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]

Create a multdigraph object that tracks the order nodes are added
and for each node track the order that neighbors are added and for
each neighbor tracks the order that multiedges are added.

>>> class OrderedGraph(nx.MultiDiGraph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
... edge_key_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)))
>>> G.edges(keys=True)
[(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]

Methods

Adding and Removing Nodes and Edges

	MultiDiGraph.__init__([data])

	

	MultiDiGraph.add_node(n[, attr_dict])

	Add a single node n and update node attributes.

	MultiDiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	MultiDiGraph.remove_node(n)

	Remove node n.

	MultiDiGraph.remove_nodes_from(nbunch)

	Remove multiple nodes.

	MultiDiGraph.add_edge(u, v[, key, attr_dict])

	Add an edge between u and v.

	MultiDiGraph.add_edges_from(ebunch[, attr_dict])

	Add all the edges in ebunch.

	MultiDiGraph.add_weighted_edges_from(ebunch)

	Add all the edges in ebunch as weighted edges with specified weights.

	MultiDiGraph.remove_edge(u, v[, key])

	Remove an edge between u and v.

	MultiDiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	MultiDiGraph.add_star(nodes, **attr)

	Add a star.

	MultiDiGraph.add_path(nodes, **attr)

	Add a path.

	MultiDiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	MultiDiGraph.clear()

	Remove all nodes and edges from the graph.

Iterating over nodes and edges

	MultiDiGraph.nodes([data])

	Return a list of the nodes in the graph.

	MultiDiGraph.nodes_iter([data])

	Return an iterator over the nodes.

	MultiDiGraph.__iter__()

	Iterate over the nodes.

	MultiDiGraph.edges([nbunch, data, keys, default])

	Return a list of edges.

	MultiDiGraph.edges_iter([nbunch, data, …])

	Return an iterator over the edges.

	MultiDiGraph.out_edges([nbunch, keys, data])

	Return a list of the outgoing edges.

	MultiDiGraph.out_edges_iter([nbunch, data, …])

	Return an iterator over the edges.

	MultiDiGraph.in_edges([nbunch, keys, data])

	Return a list of the incoming edges.

	MultiDiGraph.in_edges_iter([nbunch, data, keys])

	Return an iterator over the incoming edges.

	MultiDiGraph.get_edge_data(u, v[, key, default])

	Return the attribute dictionary associated with edge (u,v).

	MultiDiGraph.neighbors(n)

	Return a list of successor nodes of n.

	MultiDiGraph.neighbors_iter(n)

	Return an iterator over successor nodes of n.

	MultiDiGraph.__getitem__(n)

	Return a dict of neighbors of node n.

	MultiDiGraph.successors(n)

	Return a list of successor nodes of n.

	MultiDiGraph.successors_iter(n)

	Return an iterator over successor nodes of n.

	MultiDiGraph.predecessors(n)

	Return a list of predecessor nodes of n.

	MultiDiGraph.predecessors_iter(n)

	Return an iterator over predecessor nodes of n.

	MultiDiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

	MultiDiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

	MultiDiGraph.nbunch_iter([nbunch])

	Return an iterator of nodes contained in nbunch that are also in the graph.

Information about graph structure

	MultiDiGraph.has_node(n)

	Return True if the graph contains the node n.

	MultiDiGraph.__contains__(n)

	Return True if n is a node, False otherwise.

	MultiDiGraph.has_edge(u, v[, key])

	Return True if the graph has an edge between nodes u and v.

	MultiDiGraph.order()

	Return the number of nodes in the graph.

	MultiDiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	MultiDiGraph.__len__()

	Return the number of nodes.

	MultiDiGraph.degree([nbunch, weight])

	Return the degree of a node or nodes.

	MultiDiGraph.degree_iter([nbunch, weight])

	Return an iterator for (node, degree).

	MultiDiGraph.in_degree([nbunch, weight])

	Return the in-degree of a node or nodes.

	MultiDiGraph.in_degree_iter([nbunch, weight])

	Return an iterator for (node, in-degree).

	MultiDiGraph.out_degree([nbunch, weight])

	Return the out-degree of a node or nodes.

	MultiDiGraph.out_degree_iter([nbunch, weight])

	Return an iterator for (node, out-degree).

	MultiDiGraph.size([weight])

	Return the number of edges.

	MultiDiGraph.number_of_edges([u, v])

	Return the number of edges between two nodes.

	MultiDiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

	MultiDiGraph.selfloop_edges([data, keys, …])

	Return a list of selfloop edges.

	MultiDiGraph.number_of_selfloops()

	Return the number of selfloop edges.

Making copies and subgraphs

	MultiDiGraph.copy()

	Return a copy of the graph.

	MultiDiGraph.to_undirected([reciprocal])

	Return an undirected representation of the digraph.

	MultiDiGraph.to_directed()

	Return a directed copy of the graph.

	MultiDiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

	MultiDiGraph.reverse([copy])

	Return the reverse of the graph.

NetworkX

__init__

	
MultiDiGraph.__init__(data=None, **attr)

	

NetworkX

add_node

	
MultiDiGraph.add_node(n, attr_dict=None, **attr)

	Add a single node n and update node attributes.

	Parameters

	
	n (node) – A node can be any hashable Python object except None.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will
update existing data associated with the node.

	attr (keyword arguments, optional) – Set or change attributes using key=value.

See also

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.

On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn’t change on mutables.

NetworkX

add_nodes_from

	
MultiDiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

	attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See also

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific
nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

NetworkX

remove_node

	
MultiDiGraph.remove_node(n)

	Remove node n.

Removes the node n and all adjacent edges.
Attempting to remove a non-existent node will raise an exception.

	Parameters

	n (node) – A node in the graph

	Raises

	NetworkXError – If n is not in the graph.

See also

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

NetworkX

remove_nodes_from

	
MultiDiGraph.remove_nodes_from(nbunch)

	Remove multiple nodes.

	Parameters

	nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.

See also

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

NetworkX

add_edge

	
MultiDiGraph.add_edge(u, v, key=None, attr_dict=None, **attr)

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by providing
a dictionary with key/value pairs. See examples below.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	key (hashable identifier, optional (default=lowest unused integer)) – Used to distinguish multiedges between a pair of nodes.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edges_from()

	add a collection of edges

Notes

To replace/update edge data, use the optional key argument
to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use
multigraphs directly because it is not clear how to handle
multiedge weights. Convert to Graph using edge attribute
‘weight’ to enable weighted graph algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.MultiDiGraph()
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

NetworkX

add_edges_from

	
MultiDiGraph.add_edges_from(ebunch, attr_dict=None, **attr)

	Add all the edges in ebunch.

	Parameters

	
	ebunch (container of edges) – Each edge given in the container will be added to the
graph. The edges can be:

	2-tuples (u,v) or

	3-tuples (u,v,d) for an edge attribute dict d, or

	4-tuples (u,v,k,d) for an edge identified by key k

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with each edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edge()

	add a single edge

	add_weighted_edges_from()

	convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence
over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

NetworkX

add_weighted_edges_from

	
MultiDiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

	Add all the edges in ebunch as weighted edges with specified
weights.

	Parameters

	
	ebunch (container of edges) – Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u,v,w)
where w is a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – The attribute name for the edge weights to be added.

	attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also

	add_edge()

	add a single edge

	add_edges_from()

	add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

NetworkX

remove_edge

	
MultiDiGraph.remove_edge(u, v, key=None)

	Remove an edge between u and v.

	Parameters

	
	v (u,) – Remove an edge between nodes u and v.

	key (hashable identifier, optional (default=None)) – Used to distinguish multiple edges between a pair of nodes.
If None remove a single (abritrary) edge between u and v.

	Raises

	NetworkXError – If there is not an edge between u and v, or
if there is no edge with the specified key.

See also

	remove_edges_from()

	remove a collection of edges

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge

For edges with keys

>>> G = nx.MultiDiGraph()
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')

NetworkX

remove_edges_from

	
MultiDiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Parameters

	ebunch (list or container of edge tuples) – Each edge given in the list or container will be removed
from the graph. The edges can be:

	2-tuples (u,v) All edges between u and v are removed.

	3-tuples (u,v,key) The edge identified by key is removed.

	4-tuples (u,v,key,data) where data is ignored.

See also

	remove_edge()

	remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]

NetworkX

add_star

	
MultiDiGraph.add_star(nodes, **attr)

	Add a star.

The first node in nodes is the middle of the star. It is connected
to all other nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in star.

See also

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

NetworkX

add_path

	
MultiDiGraph.add_path(nodes, **attr)

	Add a path.

	Parameters

	
	nodes (iterable container) – A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.

See also

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

NetworkX

add_cycle

	
MultiDiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	Parameters

	
	nodes (iterable container) – A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.

See also

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

NetworkX

clear

	
MultiDiGraph.clear()

	Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX

nodes

	
MultiDiGraph.nodes(data=False)

	Return a list of the nodes in the graph.

	Parameters

	data (boolean, optional (default=False)) – If False return a list of nodes. If True return a
two-tuple of node and node data dictionary

	Returns

	nlist – A list of nodes. If data=True a list of two-tuples containing
(node, node data dictionary).

	Return type

	list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

NetworkX

nodes_iter

	
MultiDiGraph.nodes_iter(data=False)

	Return an iterator over the nodes.

	Parameters

	data (boolean, optional (default=False)) – If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary

	Returns

	niter – An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)

	Return type

	iterator

Notes

If the node data is not required it is simpler and equivalent
to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

NetworkX

__iter__

	
MultiDiGraph.__iter__()

	Iterate over the nodes. Use the expression ‘for n in G’.

	Returns

	niter – An iterator over all nodes in the graph.

	Return type

	iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

NetworkX

edges

	
MultiDiGraph.edges(nbunch=None, data=False, keys=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True,keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

edges_iter

	
MultiDiGraph.edges_iter(nbunch=None, data=False, keys=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

out_edges

	
MultiDiGraph.out_edges(nbunch=None, keys=False, data=False)

	Return a list of the outgoing edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge attribute dict with each edge.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	out_edges – An listr of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	list

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs edges() is the same as out_edges().

See also

	in_edges()

	return a list of incoming edges

NetworkX

out_edges_iter

	
MultiDiGraph.out_edges_iter(nbunch=None, data=False, keys=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

in_edges

	
MultiDiGraph.in_edges(nbunch=None, keys=False, data=False)

	Return a list of the incoming edges.

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge attribute dict with each edge.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	in_edges – A list of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	list

See also

	out_edges()

	return a list of outgoing edges

NetworkX

in_edges_iter

	
MultiDiGraph.in_edges_iter(nbunch=None, data=False, keys=False)

	Return an iterator over the incoming edges.

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge attribute dict with each edge.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	in_edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	iterator

See also

	edges_iter()

	return an iterator of edges

NetworkX

get_edge_data

	
MultiDiGraph.get_edge_data(u, v, key=None, default=None)

	Return the attribute dictionary associated with edge (u,v).

	Parameters

	
	v (u,) –

	default (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

	key (hashable identifier, optional (default=None)) – Return data only for the edge with specified key.

	Returns

	edge_dict – The edge attribute dictionary.

	Return type

	dictionary

Notes

It is faster to use G[u][v][key].

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure.
But it is safe to assign attributes to that dictionary,

>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

NetworkX

neighbors

	
MultiDiGraph.neighbors(n)

	Return a list of successor nodes of n.

neighbors() and successors() are the same function.

NetworkX

neighbors_iter

	
MultiDiGraph.neighbors_iter(n)

	Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

NetworkX

__getitem__

	
MultiDiGraph.__getitem__(n)

	Return a dict of neighbors of node n. Use the expression ‘G[n]’.

	Parameters

	n (node) – A node in the graph.

	Returns

	adj_dict – The adjacency dictionary for nodes connected to n.

	Return type

	dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary
is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure.
Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

NetworkX

successors

	
MultiDiGraph.successors(n)

	Return a list of successor nodes of n.

neighbors() and successors() are the same function.

NetworkX

successors_iter

	
MultiDiGraph.successors_iter(n)

	Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

NetworkX

predecessors

	
MultiDiGraph.predecessors(n)

	Return a list of predecessor nodes of n.

NetworkX

predecessors_iter

	
MultiDiGraph.predecessors_iter(n)

	Return an iterator over predecessor nodes of n.

NetworkX

adjacency_list

	
MultiDiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes().
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_list – The adjacency structure of the graph as a list of lists.

	Return type

	lists of lists

See also

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

NetworkX

adjacency_iter

	
MultiDiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge.
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_iter – An iterator of (node, adjacency dictionary) for all nodes in
the graph.

	Return type

	iterator

See also

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

NetworkX

nbunch_iter

	
MultiDiGraph.nbunch_iter(nbunch=None)

	Return an iterator of nodes contained in nbunch that are
also in the graph.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

NetworkX

has_node

	
MultiDiGraph.has_node(n)

	Return True if the graph contains the node n.

	Parameters

	n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

NetworkX

__contains__

	
MultiDiGraph.__contains__(n)

	Return True if n is a node, False otherwise. Use the expression
‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

NetworkX

has_edge

	
MultiDiGraph.has_edge(u, v, key=None)

	Return True if the graph has an edge between nodes u and v.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.

	key (hashable identifier, optional (default=None)) – If specified return True only if the edge with
key is found.

	Returns

	edge_ind – True if edge is in the graph, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

Can be called either using two nodes u,v, an edge tuple (u,v),
or an edge tuple (u,v,key).

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True

The following syntax are equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

NetworkX

order

	
MultiDiGraph.order()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_nodes(), __len__()

NetworkX

number_of_nodes

	
MultiDiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

NetworkX

__len__

	
MultiDiGraph.__len__()

	Return the number of nodes. Use the expression ‘len(G)’.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

NetworkX

degree

	
MultiDiGraph.degree(nbunch=None, weight=None)

	Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

NetworkX

degree_iter

	
MultiDiGraph.degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights.

	Returns

	nd_iter – The iterator returns two-tuples of (node, degree).

	Return type

	an iterator

See also

degree()

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

NetworkX

in_degree

	
MultiDiGraph.in_degree(nbunch=None, weight=None)

	Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and in-degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

See also

degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]

NetworkX

in_degree_iter

	
MultiDiGraph.in_degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, in-degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), out_degree_iter()

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0)) # node 0 with degree 0
[(0, 0)]
>>> list(G.in_degree_iter([0,1]))
[(0, 0), (1, 1)]

NetworkX

out_degree

	
MultiDiGraph.out_degree(nbunch=None, weight=None)

	Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and out-degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]

NetworkX

out_degree_iter

	
MultiDiGraph.out_degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights.

	Returns

	nd_iter – The iterator returns two-tuples of (node, out-degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]

NetworkX

size

	
MultiDiGraph.size(weight=None)

	Return the number of edges.

	Parameters

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.

	Returns

	nedges – The number of edges or sum of edge weights in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

NetworkX

number_of_edges

	
MultiDiGraph.number_of_edges(u=None, v=None)

	Return the number of edges between two nodes.

	Parameters

	v (u,) – If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.

	Returns

	nedges – The number of edges in the graph. If nodes u and v are specified
return the number of edges between those nodes.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

NetworkX

nodes_with_selfloops

	
MultiDiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent
to that node.

	Returns

	nodelist – A list of nodes with self loops.

	Return type

	list

See also

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

NetworkX

selfloop_edges

	
MultiDiGraph.selfloop_edges(data=False, keys=False, default=None)

	Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

	Parameters

	
	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False)
or three-tuples (u,v,datadict) (data=True)
or three-tuples (u,v,datavalue) (data=’attrname’)

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	edgelist – A list of all selfloop edges.

	Return type

	list of edge tuples

See also

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]

NetworkX

number_of_selfloops

	
MultiDiGraph.number_of_selfloops()

	Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

	Returns

	nloops – The number of selfloops.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

NetworkX

copy

	
MultiDiGraph.copy()

	Return a copy of the graph.

	Returns

	G – A copy of the graph.

	Return type

	Graph

See also

	to_directed()

	return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the
node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

NetworkX

to_undirected

	
MultiDiGraph.to_undirected(reciprocal=False)

	Return an undirected representation of the digraph.

	Parameters

	reciprocal (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – If True only keep edges that appear in both directions
in the original digraph.

	Returns

	G – An undirected graph with the same name and nodes and
with edge (u,v,data) if either (u,v,data) or (v,u,data)
is in the digraph. If both edges exist in digraph and
their edge data is different, only one edge is created
with an arbitrary choice of which edge data to use.
You must check and correct for this manually if desired.

	Return type

	MultiGraph

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects
in the data structure, those changes do not transfer to the MultiDiGraph
created by this method.

NetworkX

to_directed

	
MultiDiGraph.to_directed()

	Return a directed copy of the graph.

	Returns

	G – A deepcopy of the graph.

	Return type

	MultiDiGraph

Notes

If edges in both directions (u,v) and (v,u) exist in the
graph, attributes for the new undirected edge will be a combination of
the attributes of the directed edges. The edge data is updated
in the (arbitrary) order that the edges are encountered. For
more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

NetworkX

subgraph

	
MultiDiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch
and the edges between those nodes.

	Parameters

	nbunch (list, iterable) – A container of nodes which will be iterated through once.

	Returns

	G – A subgraph of the graph with the same edge attributes.

	Return type

	Graph

Notes

The graph, edge or node attributes just point to the original graph.
So changes to the node or edge structure will not be reflected in
the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use:
nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using:
G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

NetworkX

reverse

	
MultiDiGraph.reverse(copy=True)

	Return the reverse of the graph.

The reverse is a graph with the same nodes and edges
but with the directions of the edges reversed.

	Parameters

	copy (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges.
If False, reverse the reverse graph is created using
the original graph (this changes the original graph).

NetworkX

Algorithms

	Approximation
	Connectivity

	K-components

	Clique

	Clustering

	Dominating Set

	Independent Set

	Matching

	Ramsey

	Vertex Cover

	Assortativity
	Assortativity

	Average neighbor degree

	Average degree connectivity

	Mixing

	Bipartite
	Basic functions

	Matching

	Matrix

	Projections

	Spectral

	Clustering

	Redundancy

	Centrality

	Generators

	Blockmodeling
	blockmodel

	Boundary
	edge_boundary

	node_boundary

	Centrality
	Degree

	Closeness

	Betweenness

	Current Flow Closeness

	Current-Flow Betweenness

	Eigenvector

	Communicability

	Load

	Dispersion

	Chordal
	is_chordal

	chordal_graph_cliques

	chordal_graph_treewidth

	find_induced_nodes

	Clique
	Cliques

	enumerate_all_cliques

	find_cliques

	make_max_clique_graph

	make_clique_bipartite

	graph_clique_number

	graph_number_of_cliques

	node_clique_number

	number_of_cliques

	cliques_containing_node

	Clustering
	triangles

	transitivity

	clustering

	average_clustering

	square_clustering

	Coloring
	greedy_color

	Communities
	K-Clique

	Components
	Connectivity

	Strong connectivity

	Weak connectivity

	Attracting components

	Biconnected components

	Semiconnectedness

	Connectivity
	K-node-components

	K-node-cutsets

	Flow-based Connectivity

	Flow-based Minimum Cuts

	Stoer-Wagner minimum cut

	Utils for flow-based connectivity

	Cores
	core_number

	k_core

	k_shell

	k_crust

	k_corona

	Cycles
	Cycle finding algorithms

	cycle_basis

	simple_cycles

	find_cycle

	Directed Acyclic Graphs
	ancestors

	descendants

	topological_sort

	topological_sort_recursive

	is_directed_acyclic_graph

	is_aperiodic

	transitive_closure

	antichains

	dag_longest_path

	dag_longest_path_length

	Distance Measures
	center

	diameter

	eccentricity

	periphery

	radius

	Distance-Regular Graphs
	Distance-regular graphs

	is_distance_regular

	intersection_array

	global_parameters

	Dominance
	immediate_dominators

	dominance_frontiers

	Dominating Sets
	dominating_set

	is_dominating_set

	Eulerian
	is_eulerian

	eulerian_circuit

	Flows
	Maximum Flow

	Edmonds-Karp

	Shortest Augmenting Path

	Preflow-Push

	Utils

	Network Simplex

	Capacity Scaling Minimum Cost Flow

	Graphical degree sequence
	is_graphical

	is_digraphical

	is_multigraphical

	is_pseudographical

	is_valid_degree_sequence_havel_hakimi

	is_valid_degree_sequence_erdos_gallai

	Hierarchy
	flow_hierarchy

	Hybrid
	kl_connected_subgraph

	is_kl_connected

	Isolates
	is_isolate

	isolates

	Isomorphism
	is_isomorphic

	could_be_isomorphic

	fast_could_be_isomorphic

	faster_could_be_isomorphic

	Advanced Interface to VF2 Algorithm

	Link Analysis
	PageRank

	Hits

	Link Prediction
	resource_allocation_index

	jaccard_coefficient

	adamic_adar_index

	preferential_attachment

	cn_soundarajan_hopcroft

	ra_index_soundarajan_hopcroft

	within_inter_cluster

	Matching
	Matching

	maximal_matching

	max_weight_matching

	Minors
	contracted_edge

	contracted_nodes

	identified_nodes

	quotient_graph

	Maximal independent set
	maximal_independent_set

	Minimum Spanning Tree
	minimum_spanning_tree

	minimum_spanning_edges

	Operators
	complement

	reverse

	compose

	union

	disjoint_union

	intersection

	difference

	symmetric_difference

	compose_all

	union_all

	disjoint_union_all

	intersection_all

	cartesian_product

	lexicographic_product

	strong_product

	tensor_product

	power

	Rich Club
	rich_club_coefficient

	Shortest Paths
	shortest_path

	all_shortest_paths

	shortest_path_length

	average_shortest_path_length

	has_path

	Advanced Interface

	Dense Graphs

	A* Algorithm

	Simple Paths
	all_simple_paths

	shortest_simple_paths

	Swap
	double_edge_swap

	connected_double_edge_swap

	Traversal
	Depth First Search

	Breadth First Search

	Depth First Search on Edges

	Tree
	Recognition

	Branchings and Spanning Arborescences

	Triads
	triadic_census

	Vitality
	closeness_vitality

NetworkX

Approximation

Connectivity

Fast approximation for node connectivity

	all_pairs_node_connectivity(G[, nbunch, cutoff])

	Compute node connectivity between all pairs of nodes.

	local_node_connectivity(G, source, target[, …])

	Compute node connectivity between source and target.

	node_connectivity(G[, s, t])

	Returns an approximation for node connectivity for a graph or digraph G.

K-components

Fast approximation for k-component structure

	k_components(G[, min_density])

	Returns the approximate k-component structure of a graph G.

Clique

Cliques.

	max_clique(G)

	Find the Maximum Clique

	clique_removal(G)

	Repeatedly remove cliques from the graph.

Clustering

	average_clustering(G[, trials])

	Estimates the average clustering coefficient of G.

Dominating Set

Functions for finding node and edge dominating sets.

A `dominating set`_[1] for an undirected graph *G with vertex set V
and edge set E is a subset D of V such that every vertex not in
D is adjacent to at least one member of D. An `edge dominating
set`_[2] is a subset *F of E such that every edge not in F is
incident to an endpoint of at least one edge in F.

	1

	dominating set: https://en.wikipedia.org/wiki/Dominating_set

	2

	edge dominating set: https://en.wikipedia.org/wiki/Edge_dominating_set

	min_weighted_dominating_set(G[, weight])

	Returns a dominating set that approximates the minimum weight node dominating set.

	min_edge_dominating_set(G)

	Return minimum cardinality edge dominating set.

Independent Set

Independent Set

Independent set or stable set is a set of vertices in a graph, no two of
which are adjacent. That is, it is a set I of vertices such that for every
two vertices in I, there is no edge connecting the two. Equivalently, each
edge in the graph has at most one endpoint in I. The size of an independent
set is the number of vertices it contains.

A maximum independent set is a largest independent set for a given graph G
and its size is denoted α(G). The problem of finding such a set is called
the maximum independent set problem and is an NP-hard optimization problem.
As such, it is unlikely that there exists an efficient algorithm for finding
a maximum independent set of a graph.

http://en.wikipedia.org/wiki/Independent_set_(graph_theory)

Independent set algorithm is based on the following paper:

\(O(|V|/(log|V|)^2)\) apx of maximum clique/independent set.

Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.
doi:10.1007/BF01994876

	maximum_independent_set(G)

	Return an approximate maximum independent set.

Matching

Graph Matching

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent
edges; that is, no two edges share a common vertex.

http://en.wikipedia.org/wiki/Matching_(graph_theory)

	min_maximal_matching(G)

	Returns the minimum maximal matching of G.

Ramsey

Ramsey numbers.

	ramsey_R2(G)

	Approximately computes the Ramsey number \(R(2;s,t)\) for graph.

Vertex Cover

Vertex Cover

Given an undirected graph \(G = (V, E)\) and a function w assigning nonnegative
weights to its vertices, find a minimum weight subset of V such that each edge
in E is incident to at least one vertex in the subset.

http://en.wikipedia.org/wiki/Vertex_cover

	min_weighted_vertex_cover(G[, weight])

	2-OPT Local Ratio for Minimum Weighted Vertex Cover

NetworkX

all_pairs_node_connectivity

	
all_pairs_node_connectivity(G, nbunch=None, cutoff=None)

	Compute node connectivity between all pairs of nodes.

Pairwise or local node connectivity between two distinct and nonadjacent
nodes is the minimum number of nodes that must be removed (minimum
separating cutset) to disconnect them. By Menger’s theorem, this is equal
to the number of node independent paths (paths that share no nodes other
than source and target). Which is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower
bound on the actual number of node independent paths between two nodes 1.
It works for both directed and undirected graphs.

	Parameters

	
	G (NetworkX graph) –

	nbunch (container) – Container of nodes. If provided node connectivity will be computed
only over pairs of nodes in nbunch.

	cutoff (integer) – Maximum node connectivity to consider. If None, the minimum degree
of source or target is used as a cutoff in each pair of nodes.
Default value None.

	Returns

	K – Dictionary, keyed by source and target, of pairwise node connectivity

	Return type

	dictionary

See also

local_node_connectivity(), all_pairs_node_connectivity()

References

	1

	White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX

local_node_connectivity

	
local_node_connectivity(G, source, target, cutoff=None)

	Compute node connectivity between source and target.

Pairwise or local node connectivity between two distinct and nonadjacent
nodes is the minimum number of nodes that must be removed (minimum
separating cutset) to disconnect them. By Menger’s theorem, this is equal
to the number of node independent paths (paths that share no nodes other
than source and target). Which is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower
bound on the actual number of node independent paths between two nodes 1.
It works for both directed and undirected graphs.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for node connectivity

	target (node) – Ending node for node connectivity

	cutoff (integer) – Maximum node connectivity to consider. If None, the minimum degree
of source or target is used as a cutoff. Default value None.

	Returns

	k – pairwise node connectivity

	Return type

	integer

Examples

>>> # Platonic icosahedral graph has node connectivity 5
>>> # for each non adjacent node pair
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.local_node_connectivity(G, 0, 6)
5

Notes

This algorithm 1 finds node independents paths between two nodes by
computing their shortest path using BFS, marking the nodes of the path
found as ‘used’ and then searching other shortest paths excluding the
nodes marked as used until no more paths exist. It is not exact because
a shortest path could use nodes that, if the path were longer, may belong
to two different node independent paths. Thus it only guarantees an
strict lower bound on node connectivity.

Note that the authors propose a further refinement, losing accuracy and
gaining speed, which is not implemented yet.

See also

all_pairs_node_connectivity(), node_connectivity()

References

	1(1,2)

	White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX

node_connectivity

	
node_connectivity(G, s=None, t=None)

	Returns an approximation for node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that
must be removed to disconnect G or render it trivial. By Menger’s theorem,
this is equal to the number of node independent paths (paths that
share no nodes other than source and target).

If source and target nodes are provided, this function returns the
local node connectivity: the minimum number of nodes that must be
removed to break all paths from source to target in G.

This algorithm is based on a fast approximation that gives an strict lower
bound on the actual number of node independent paths between two nodes 1.
It works for both directed and undirected graphs.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	Returns

	K – Node connectivity of G, or local node connectivity if source
and target are provided.

	Return type

	integer

Examples

>>> # Platonic icosahedral graph is 5-node-connected
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.node_connectivity(G)
5

Notes

This algorithm 1 finds node independents paths between two nodes by
computing their shortest path using BFS, marking the nodes of the path
found as ‘used’ and then searching other shortest paths excluding the
nodes marked as used until no more paths exist. It is not exact because
a shortest path could use nodes that, if the path were longer, may belong
to two different node independent paths. Thus it only guarantees an
strict lower bound on node connectivity.

See also

all_pairs_node_connectivity(), local_node_connectivity()

References

	1(1,2)

	White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX

k_components

	
k_components(G, min_density=0.95)

	Returns the approximate k-component structure of a graph G.

A \(k\)-component is a maximal subgraph of a graph G that has, at least,
node connectivity \(k\): we need to remove at least \(k\) nodes to break it
into more components. \(k\)-components have an inherent hierarchical
structure because they are nested in terms of connectivity: a connected
graph can contain several 2-components, each of which can contain
one or more 3-components, and so forth.

This implementation is based on the fast heuristics to approximate
the \(k\)-component sturcture of a graph 1. Which, in turn, it is based on
a fast approximation algorithm for finding good lower bounds of the number
of node independent paths between two nodes 2.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	min_density (Float) – Density relaxation treshold. Default value 0.95

	Returns

	k_components – Dictionary with connectivity level \(k\) as key and a list of
sets of nodes that form a k-component of level \(k\) as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> from networkx.algorithms import approximation as apxa
>>> G = nx.petersen_graph()
>>> k_components = apxa.k_components(G)

Notes

The logic of the approximation algorithm for computing the \(k\)-component
structure 1 is based on repeatedly applying simple and fast algorithms
for \(k\)-cores and biconnected components in order to narrow down the
number of pairs of nodes over which we have to compute White and Newman’s
approximation algorithm for finding node independent paths 2. More
formally, this algorithm is based on Whitney’s theorem, which states
an inclusion relation among node connectivity, edge connectivity, and
minimum degree for any graph G. This theorem implies that every
\(k\)-component is nested inside a \(k\)-edge-component, which in turn,
is contained in a \(k\)-core. Thus, this algorithm computes node independent
paths among pairs of nodes in each biconnected part of each \(k\)-core,
and repeats this procedure for each \(k\) from 3 to the maximal core number
of a node in the input graph.

Because, in practice, many nodes of the core of level \(k\) inside a
bicomponent actually are part of a component of level k, the auxiliary
graph needed for the algorithm is likely to be very dense. Thus, we use
a complement graph data structure (see \(AntiGraph\)) to save memory.
AntiGraph only stores information of the edges that are not present
in the actual auxiliary graph. When applying algorithms to this
complement graph data structure, it behaves as if it were the dense
version.

See also

k_components()

References

	1(1,2)

	Torrents, J. and F. Ferraro (2015) Structural Cohesion:
Visualization and Heuristics for Fast Computation.
http://arxiv.org/pdf/1503.04476v1

	2(1,2)

	White, Douglas R., and Mark Newman (2001) A Fast Algorithm for
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

	3

	Moody, J. and D. White (2003). Social cohesion and embeddedness:
A hierarchical conception of social groups.
American Sociological Review 68(1), 103–28.
http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf

NetworkX

max_clique

	
max_clique(G)

	Find the Maximum Clique

Finds the \(O(|V|/(log|V|)^2)\) apx of maximum clique/independent set
in the worst case.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	clique – The apx-maximum clique of the graph

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

A clique in an undirected graph G = (V, E) is a subset of the vertex set
\(C \subseteq V\), such that for every two vertices in C, there exists an edge
connecting the two. This is equivalent to saying that the subgraph
induced by C is complete (in some cases, the term clique may also refer
to the subgraph).

A maximum clique is a clique of the largest possible size in a given graph.
The clique number \(\omega(G)\) of a graph G is the number of
vertices in a maximum clique in G. The intersection number of
G is the smallest number of cliques that together cover all edges of G.

http://en.wikipedia.org/wiki/Maximum_clique

References

	1

	Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.
doi:10.1007/BF01994876

NetworkX

clique_removal

	
clique_removal(G)

	Repeatedly remove cliques from the graph.

Results in a \(O(|V|/(\log |V|)^2)\) approximation of maximum clique
& independent set. Returns the largest independent set found, along
with found maximal cliques.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	max_ind_cliques – Maximal independent set and list of maximal cliques (sets) in the graph.

	Return type

	(set [https://docs.python.org/2/library/stdtypes.html#set], list) tuple [https://docs.python.org/2/library/functions.html#tuple]

References

	1

	Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.

NetworkX

average_clustering

	
average_clustering(G, trials=1000)

	Estimates the average clustering coefficient of G.

The local clustering of each node in \(G\) is the fraction of triangles
that actually exist over all possible triangles in its neighborhood.
The average clustering coefficient of a graph \(G\) is the mean of
local clusterings.

This function finds an approximate average clustering coefficient
for G by repeating \(n\) times (defined in \(trials\)) the following
experiment: choose a node at random, choose two of its neighbors
at random, and check if they are connected. The approximate
coefficient is the fraction of triangles found over the number
of trials 1.

	Parameters

	
	G (NetworkX graph) –

	trials (integer) – Number of trials to perform (default 1000).

	Returns

	c – Approximated average clustering coefficient.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

References

	1

	Schank, Thomas, and Dorothea Wagner. Approximating clustering
coefficient and transitivity. Universität Karlsruhe, Fakultät für
Informatik, 2004.
http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf

NetworkX

min_weighted_dominating_set

	
min_weighted_dominating_set(G, weight=None)

	Returns a dominating set that approximates the minimum weight node
dominating set.

	Parameters

	
	G (NetworkX graph) – Undirected graph.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – The node attribute storing the weight of an edge. If provided,
the node attribute with this key must be a number for each
node. If not provided, each node is assumed to have weight one.

	Returns

	min_weight_dominating_set – A set of nodes, the sum of whose weights is no more than \((\log
w(V)) w(V^*)\), where \(w(V)\) denotes the sum of the weights of
each node in the graph and \(w(V^*)\) denotes the sum of the
weights of each node in the minimum weight dominating set.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

This algorithm computes an approximate minimum weighted dominating
set for the graph G. The returned solution has weight \((\log
w(V)) w(V^*)\), where \(w(V)\) denotes the sum of the weights of each
node in the graph and \(w(V^*)\) denotes the sum of the weights of
each node in the minimum weight dominating set for the graph.

This implementation of the algorithm runs in \(O(m)\) time, where \(m\)
is the number of edges in the graph.

References

	1

	Vazirani, Vijay V.
Approximation Algorithms.
Springer Science & Business Media, 2001.

NetworkX

min_edge_dominating_set

	
min_edge_dominating_set(G)

	Return minimum cardinality edge dominating set.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	min_edge_dominating_set – Returns a set of dominating edges whose size is no more than 2 * OPT.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

The algorithm computes an approximate solution to the edge dominating set
problem. The result is no more than 2 * OPT in terms of size of the set.
Runtime of the algorithm is \(O(|E|)\).

NetworkX

maximum_independent_set

	
maximum_independent_set(G)

	Return an approximate maximum independent set.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	iset – The apx-maximum independent set

	Return type

	Set

Notes

Finds the \(O(|V|/(log|V|)^2)\) apx of independent set in the worst case.

References

	1

	Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.

NetworkX

min_maximal_matching

	
min_maximal_matching(G)

	Returns the minimum maximal matching of G. That is, out of all maximal
matchings of the graph G, the smallest is returned.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	min_maximal_matching – Returns a set of edges such that no two edges share a common endpoint
and every edge not in the set shares some common endpoint in the set.
Cardinality will be 2*OPT in the worst case.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

The algorithm computes an approximate solution fo the minimum maximal
cardinality matching problem. The solution is no more than 2 * OPT in size.
Runtime is \(O(|E|)\).

References

	1

	Vazirani, Vijay Approximation Algorithms (2001)

NetworkX

ramsey_R2

	
ramsey_R2(G)

	Approximately computes the Ramsey number \(R(2;s,t)\) for graph.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	max_pair – Maximum clique, Maximum independent set.

	Return type

	(set [https://docs.python.org/2/library/stdtypes.html#set], set [https://docs.python.org/2/library/stdtypes.html#set]) tuple [https://docs.python.org/2/library/functions.html#tuple]

NetworkX

min_weighted_vertex_cover

	
min_weighted_vertex_cover(G, weight=None)

	2-OPT Local Ratio for Minimum Weighted Vertex Cover

Find an approximate minimum weighted vertex cover of a graph.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1. If a string, use this
edge attribute as the edge weight. Any edge attribute not present
defaults to 1.

	Returns

	min_weighted_cover – Returns a set of vertices whose weight sum is no more than 2 * OPT.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

Local-Ratio algorithm for computing an approximate vertex cover.
Algorithm greedily reduces the costs over edges and iteratively
builds a cover. Worst-case runtime is \(O(|E|)\).

References

	1

	Bar-Yehuda, R., & Even, S. (1985). A local-ratio theorem for
approximating the weighted vertex cover problem.
Annals of Discrete Mathematics, 25, 27–46
http://www.cs.technion.ac.il/~reuven/PDF/vc_lr.pdf

NetworkX

Assortativity

Assortativity

	degree_assortativity_coefficient(G[, x, y, …])

	Compute degree assortativity of graph.

	attribute_assortativity_coefficient(G, attribute)

	Compute assortativity for node attributes.

	numeric_assortativity_coefficient(G, attribute)

	Compute assortativity for numerical node attributes.

	degree_pearson_correlation_coefficient(G[, …])

	Compute degree assortativity of graph.

Average neighbor degree

	average_neighbor_degree(G[, source, target, …])

	Returns the average degree of the neighborhood of each node.

Average degree connectivity

	average_degree_connectivity(G[, source, …])

	Compute the average degree connectivity of graph.

	k_nearest_neighbors(G[, source, target, …])

	Compute the average degree connectivity of graph.

Mixing

	attribute_mixing_matrix(G, attribute[, …])

	Return mixing matrix for attribute.

	degree_mixing_matrix(G[, x, y, weight, …])

	Return mixing matrix for attribute.

	degree_mixing_dict(G[, x, y, weight, nodes, …])

	Return dictionary representation of mixing matrix for degree.

	attribute_mixing_dict(G, attribute[, nodes, …])

	Return dictionary representation of mixing matrix for attribute.

NetworkX

degree_assortativity_coefficient

	
degree_assortativity_coefficient(G, x='out', y='in', weight=None, nodes=None)

	Compute degree assortativity of graph.

Assortativity measures the similarity of connections
in the graph with respect to the node degree.

	Parameters

	
	G (NetworkX graph) –

	x (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for source node (directed graphs only).

	y (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for target node (directed graphs only).

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	nodes (list or iterable (optional)) – Compute degree assortativity only for nodes in container.
The default is all nodes.

	Returns

	r – Assortativity of graph by degree.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.path_graph(4)
>>> r=nx.degree_assortativity_coefficient(G)
>>> print("%3.1f"%r)
-0.5

See also

attribute_assortativity_coefficient(), numeric_assortativity_coefficient(), neighbor_connectivity(), degree_mixing_dict(), degree_mixing_matrix()

Notes

This computes Eq. (21) in Ref. 1 , where e is the joint
probability distribution (mixing matrix) of the degrees. If G is
directed than the matrix e is the joint probability of the
user-specified degree type for the source and target.

References

	1

	M. E. J. Newman, Mixing patterns in networks,
Physical Review E, 67 026126, 2003

	2

	Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M.
Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).

NetworkX

attribute_assortativity_coefficient

	
attribute_assortativity_coefficient(G, attribute, nodes=None)

	Compute assortativity for node attributes.

Assortativity measures the similarity of connections
in the graph with respect to the given attribute.

	Parameters

	
	G (NetworkX graph) –

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Node attribute key

	nodes (list or iterable (optional)) – Compute attribute assortativity for nodes in container.
The default is all nodes.

	Returns

	r – Assortativity of graph for given attribute

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.attribute_assortativity_coefficient(G,'color'))
1.0

Notes

This computes Eq. (2) in Ref. 1 , trace(M)-sum(M))/(1-sum(M),
where M is the joint probability distribution (mixing matrix)
of the specified attribute.

References

	1

	M. E. J. Newman, Mixing patterns in networks,
Physical Review E, 67 026126, 2003

NetworkX

numeric_assortativity_coefficient

	
numeric_assortativity_coefficient(G, attribute, nodes=None)

	Compute assortativity for numerical node attributes.

Assortativity measures the similarity of connections
in the graph with respect to the given numeric attribute.

	Parameters

	
	G (NetworkX graph) –

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Node attribute key

	nodes (list or iterable (optional)) – Compute numeric assortativity only for attributes of nodes in
container. The default is all nodes.

	Returns

	r – Assortativity of graph for given attribute

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],size=2)
>>> G.add_nodes_from([2,3],size=3)
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.numeric_assortativity_coefficient(G,'size'))
1.0

Notes

This computes Eq. (21) in Ref. 1 , for the mixing matrix of
of the specified attribute.

References

	1

	M. E. J. Newman, Mixing patterns in networks
Physical Review E, 67 026126, 2003

NetworkX

degree_pearson_correlation_coefficient

	
degree_pearson_correlation_coefficient(G, x='out', y='in', weight=None, nodes=None)

	Compute degree assortativity of graph.

Assortativity measures the similarity of connections
in the graph with respect to the node degree.

This is the same as degree_assortativity_coefficient but uses the
potentially faster scipy.stats.pearsonr function.

	Parameters

	
	G (NetworkX graph) –

	x (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for source node (directed graphs only).

	y (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for target node (directed graphs only).

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	nodes (list or iterable (optional)) – Compute pearson correlation of degrees only for specified nodes.
The default is all nodes.

	Returns

	r – Assortativity of graph by degree.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.path_graph(4)
>>> r=nx.degree_pearson_correlation_coefficient(G)
>>> print("%3.1f"%r)
-0.5

Notes

This calls scipy.stats.pearsonr.

References

	1

	M. E. J. Newman, Mixing patterns in networks
Physical Review E, 67 026126, 2003

	2

	Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M.
Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).

NetworkX

average_neighbor_degree

	
average_neighbor_degree(G, source='out', target='out', nodes=None, weight=None)

	Returns the average degree of the neighborhood of each node.

The average degree of a node \(i\) is

\[k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j\]

where \(N(i)\) are the neighbors of node \(i\) and \(k_j\) is
the degree of node \(j\) which belongs to \(N(i)\). For weighted
graphs, an analogous measure can be defined 1,

\[k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j\]

where \(s_i\) is the weighted degree of node \(i\), \(w_{ij}\)
is the weight of the edge that links \(i\) and \(j\) and
\(N(i)\) are the neighbors of node \(i\).

	Parameters

	
	G (NetworkX graph) –

	source (string [https://docs.python.org/2/library/string.html#module-string] ("in"|"out")) – Directed graphs only.
Use “in”- or “out”-degree for source node.

	target (string [https://docs.python.org/2/library/string.html#module-string] ("in"|"out")) – Directed graphs only.
Use “in”- or “out”-degree for target node.

	nodes (list or iterable, optional) – Compute neighbor degree for specified nodes. The default is
all nodes in the graph.

	weightstring or None, optional (default=None)

	The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	Returns

	d – A dictionary keyed by node with average neighbors degree value.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> G.edge[0][1]['weight'] = 5
>>> G.edge[2][3]['weight'] = 3

>>> nx.average_neighbor_degree(G)
{0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}
>>> nx.average_neighbor_degree(G, weight='weight')
{0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0}

>>> G=nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> nx.average_neighbor_degree(G, source='in', target='in')
{0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0}

>>> nx.average_neighbor_degree(G, source='out', target='out')
{0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}

Notes

For directed graphs you can also specify in-degree or out-degree
by passing keyword arguments.

See also

average_degree_connectivity()

References

	1

	A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks”.
PNAS 101 (11): 3747–3752 (2004).

NetworkX

average_degree_connectivity

	
average_degree_connectivity(G, source='in+out', target='in+out', nodes=None, weight=None)

	Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of
nodes with degree k. For weighted graphs, an analogous measure can
be computed using the weighted average neighbors degree defined in
1, for a node \(i\), as

\[k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j\]

where \(s_i\) is the weighted degree of node \(i\),
\(w_{ij}\) is the weight of the edge that links \(i\) and \(j\),
and \(N(i)\) are the neighbors of node \(i\).

	Parameters

	
	G (NetworkX graph) –

	source ("in"|"out"|"in+out" (default:"in+out")) – Directed graphs only. Use “in”- or “out”-degree for source node.

	target ("in"|"out"|"in+out" (default:"in+out") – Directed graphs only. Use “in”- or “out”-degree for target node.

	nodes (list or iterable (optional)) – Compute neighbor connectivity for these nodes. The default is all
nodes.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	Returns

	d – A dictionary keyed by degree k with the value of average connectivity.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}

See also

neighbors_average_degree()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also
available as k_nearest_neighbors.

References

	1

	A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks”.
PNAS 101 (11): 3747–3752 (2004).

NetworkX

k_nearest_neighbors

	
k_nearest_neighbors(G, source='in+out', target='in+out', nodes=None, weight=None)

	Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of
nodes with degree k. For weighted graphs, an analogous measure can
be computed using the weighted average neighbors degree defined in
1, for a node \(i\), as

\[k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j\]

where \(s_i\) is the weighted degree of node \(i\),
\(w_{ij}\) is the weight of the edge that links \(i\) and \(j\),
and \(N(i)\) are the neighbors of node \(i\).

	Parameters

	
	G (NetworkX graph) –

	source ("in"|"out"|"in+out" (default:"in+out")) – Directed graphs only. Use “in”- or “out”-degree for source node.

	target ("in"|"out"|"in+out" (default:"in+out") – Directed graphs only. Use “in”- or “out”-degree for target node.

	nodes (list or iterable (optional)) – Compute neighbor connectivity for these nodes. The default is all
nodes.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	Returns

	d – A dictionary keyed by degree k with the value of average connectivity.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}

See also

neighbors_average_degree()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also
available as k_nearest_neighbors.

References

	1

	A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks”.
PNAS 101 (11): 3747–3752 (2004).

NetworkX

attribute_mixing_matrix

	
attribute_mixing_matrix(G, attribute, nodes=None, mapping=None, normalized=True)

	Return mixing matrix for attribute.

	Parameters

	
	G (graph) – NetworkX graph object.

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Node attribute key.

	nodes (list or iterable (optional)) – Use only nodes in container to build the matrix. The default is
all nodes.

	mapping (dictionary, optional) – Mapping from node attribute to integer index in matrix.
If not specified, an arbitrary ordering will be used.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – Return counts if False or probabilities if True.

	Returns

	m – Counts or joint probability of occurrence of attribute pairs.

	Return type

	numpy array

NetworkX

degree_mixing_matrix

	
degree_mixing_matrix(G, x='out', y='in', weight=None, nodes=None, normalized=True)

	Return mixing matrix for attribute.

	Parameters

	
	G (graph) – NetworkX graph object.

	x (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for source node (directed graphs only).

	y (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for target node (directed graphs only).

	nodes (list or iterable (optional)) – Build the matrix using only nodes in container.
The default is all nodes.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – Return counts if False or probabilities if True.

	Returns

	m – Counts, or joint probability, of occurrence of node degree.

	Return type

	numpy array

NetworkX

degree_mixing_dict

	
degree_mixing_dict(G, x='out', y='in', weight=None, nodes=None, normalized=False)

	Return dictionary representation of mixing matrix for degree.

	Parameters

	
	G (graph) – NetworkX graph object.

	x (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for source node (directed graphs only).

	y (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for target node (directed graphs only).

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – Return counts if False or probabilities if True.

	Returns

	d – Counts or joint probability of occurrence of degree pairs.

	Return type

	dictionary

NetworkX

attribute_mixing_dict

	
attribute_mixing_dict(G, attribute, nodes=None, normalized=False)

	Return dictionary representation of mixing matrix for attribute.

	Parameters

	
	G (graph) – NetworkX graph object.

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Node attribute key.

	nodes (list or iterable (optional)) – Unse nodes in container to build the dict. The default is all nodes.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – Return counts if False or probabilities if True.

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edge(1,3)
>>> d=nx.attribute_mixing_dict(G,'color')
>>> print(d['red']['blue'])
1
>>> print(d['blue']['red']) # d symmetric for undirected graphs
1

	Returns

	d – Counts or joint probability of occurrence of attribute pairs.

	Return type

	dictionary

NetworkX

Bipartite

This module provides functions and operations for bipartite
graphs. Bipartite graphs \(B = (U, V, E)\) have two node sets \(U,V\) and edges in
\(E\) that only connect nodes from opposite sets. It is common in the literature
to use an spatial analogy referring to the two node sets as top and bottom nodes.

The bipartite algorithms are not imported into the networkx namespace
at the top level so the easiest way to use them is with:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite

NetworkX does not have a custom bipartite graph class but the Graph()
or DiGraph() classes can be used to represent bipartite graphs. However,
you have to keep track of which set each node belongs to, and make
sure that there is no edge between nodes of the same set. The convention used
in NetworkX is to use a node attribute named “bipartite” with values 0 or 1 to
identify the sets each node belongs to.

For example:

>>> B = nx.Graph()
>>> B.add_nodes_from([1,2,3,4], bipartite=0) # Add the node attribute "bipartite"
>>> B.add_nodes_from(['a','b','c'], bipartite=1)
>>> B.add_edges_from([(1,'a'), (1,'b'), (2,'b'), (2,'c'), (3,'c'), (4,'a')])

Many algorithms of the bipartite module of NetworkX require, as an argument, a
container with all the nodes that belong to one set, in addition to the bipartite
graph \(B\). If \(B\) is connected, you can find the node sets using a two-coloring
algorithm:

>>> nx.is_connected(B)
True
>>> bottom_nodes, top_nodes = bipartite.sets(B)

list(top_nodes)
[1, 2, 3, 4]
list(bottom_nodes)
[‘a’, ‘c’, ‘b’]

However, if the input graph is not connected, there are more than one possible
colorations. Thus, the following result is correct:

>>> B.remove_edge(2,'c')
>>> nx.is_connected(B)
False
>>> bottom_nodes, top_nodes = bipartite.sets(B)

list(top_nodes)
[1, 2, 4, ‘c’]
list(bottom_nodes)
[‘a’, 3, ‘b’]

Using the “bipartite” node attribute, you can easily get the two node sets:

>>> top_nodes = set(n for n,d in B.nodes(data=True) if d['bipartite']==0)
>>> bottom_nodes = set(B) - top_nodes

list(top_nodes)
[1, 2, 3, 4]
list(bottom_nodes)
[‘a’, ‘c’, ‘b’]

So you can easily use the bipartite algorithms that require, as an argument, a
container with all nodes that belong to one node set:

>>> print(round(bipartite.density(B, bottom_nodes),2))
0.42
>>> G = bipartite.projected_graph(B, top_nodes)
>>> G.edges()
[(1, 2), (1, 4)]

All bipartite graph generators in NetworkX build bipartite graphs with the
“bipartite” node attribute. Thus, you can use the same approach:

>>> RB = bipartite.random_graph(5, 7, 0.2)
>>> RB_top = set(n for n,d in RB.nodes(data=True) if d['bipartite']==0)
>>> RB_bottom = set(RB) - RB_top
>>> list(RB_top)
[0, 1, 2, 3, 4]
>>> list(RB_bottom)
[5, 6, 7, 8, 9, 10, 11]

For other bipartite graph generators see the bipartite section of
Graph generators.

Basic functions

Bipartite Graph Algorithms

	is_bipartite(G)

	Returns True if graph G is bipartite, False if not.

	is_bipartite_node_set(G, nodes)

	Returns True if nodes and G/nodes are a bipartition of G.

	sets(G)

	Returns bipartite node sets of graph G.

	color(G)

	Returns a two-coloring of the graph.

	density(B, nodes)

	Return density of bipartite graph B.

	degrees(B, nodes[, weight])

	Return the degrees of the two node sets in the bipartite graph B.

Matching

Provides functions for computing a maximum cardinality matching in a
bipartite graph.

If you don’t care about the particular implementation of the maximum matching
algorithm, simply use the maximum_matching(). If you do care, you can
import one of the named maximum matching algorithms directly.

For example, to find a maximum matching in the complete bipartite graph with
two vertices on the left and three vertices on the right:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> left, right = nx.bipartite.sets(G)
>>> list(left)
[0, 1]
>>> list(right)
[2, 3, 4]
>>> nx.bipartite.maximum_matching(G)
{0: 2, 1: 3, 2: 0, 3: 1}

The dictionary returned by maximum_matching() includes a mapping for
vertices in both the left and right vertex sets.

	eppstein_matching(G)

	Returns the maximum cardinality matching of the bipartite graph \(G\).

	hopcroft_karp_matching(G)

	Returns the maximum cardinality matching of the bipartite graph \(G\).

	to_vertex_cover(G, matching)

	Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph \(G\).

Matrix

Biadjacency matrices

	biadjacency_matrix(G, row_order[, …])

	Return the biadjacency matrix of the bipartite graph G.

	from_biadjacency_matrix(A[, create_using, …])

	Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix.

Projections

One-mode (unipartite) projections of bipartite graphs.

	projected_graph(B, nodes[, multigraph])

	Returns the projection of B onto one of its node sets.

	weighted_projected_graph(B, nodes[, ratio])

	Returns a weighted projection of B onto one of its node sets.

	collaboration_weighted_projected_graph(B, nodes)

	Newman’s weighted projection of B onto one of its node sets.

	overlap_weighted_projected_graph(B, nodes[, …])

	Overlap weighted projection of B onto one of its node sets.

	generic_weighted_projected_graph(B, nodes[, …])

	Weighted projection of B with a user-specified weight function.

Spectral

Spectral bipartivity measure.

	spectral_bipartivity(G[, nodes, weight])

	Returns the spectral bipartivity.

Clustering

	clustering(G[, nodes, mode])

	Compute a bipartite clustering coefficient for nodes.

	average_clustering(G[, nodes, mode])

	Compute the average bipartite clustering coefficient.

	latapy_clustering(G[, nodes, mode])

	Compute a bipartite clustering coefficient for nodes.

	robins_alexander_clustering(G)

	Compute the bipartite clustering of G.

Redundancy

Node redundancy for bipartite graphs.

	node_redundancy(G[, nodes])

	Computes the node redundancy coefficients for the nodes in the bipartite graph G.

Centrality

	closeness_centrality(G, nodes[, normalized])

	Compute the closeness centrality for nodes in a bipartite network.

	degree_centrality(G, nodes)

	Compute the degree centrality for nodes in a bipartite network.

	betweenness_centrality(G, nodes)

	Compute betweenness centrality for nodes in a bipartite network.

Generators

Generators and functions for bipartite graphs.

	complete_bipartite_graph(n1, n2[, create_using])

	Return the complete bipartite graph \(K_{n_1,n_2}\).

	configuration_model(aseq, bseq[, …])

	Return a random bipartite graph from two given degree sequences.

	havel_hakimi_graph(aseq, bseq[, create_using])

	Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

	reverse_havel_hakimi_graph(aseq, bseq[, …])

	Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

	alternating_havel_hakimi_graph(aseq, bseq[, …])

	Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.

	preferential_attachment_graph(aseq, p[, …])

	Create a bipartite graph with a preferential attachment model from a given single degree sequence.

	random_graph(n, m, p[, seed, directed])

	Return a bipartite random graph.

	gnmk_random_graph(n, m, k[, seed, directed])

	Return a random bipartite graph G_{n,m,k}.

NetworkX

is_bipartite

	
is_bipartite(G)

	Returns True if graph G is bipartite, False if not.

	Parameters

	G (NetworkX graph) –

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> print(bipartite.is_bipartite(G))
True

See also

color(), is_bipartite_node_set()

NetworkX

is_bipartite_node_set

	
is_bipartite_node_set(G, nodes)

	Returns True if nodes and G/nodes are a bipartition of G.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or container) – Check if nodes are a one of a bipartite set.

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X = set([1,3])
>>> bipartite.is_bipartite_node_set(G,X)
True

Notes

For connected graphs the bipartite sets are unique. This function handles
disconnected graphs.

NetworkX

sets

	
sets(G)

	Returns bipartite node sets of graph G.

Raises an exception if the graph is not bipartite.

	Parameters

	G (NetworkX graph) –

	Returns

	(X,Y) – One set of nodes for each part of the bipartite graph.

	Return type

	two-tuple of sets

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]

See also

color()

NetworkX

color

	
color(G)

	Returns a two-coloring of the graph.

Raises an exception if the graph is not bipartite.

	Parameters

	G (NetworkX graph) –

	Returns

	color – A dictionary keyed by node with a 1 or 0 as data for each node color.

	Return type

	dictionary

	Raises

	NetworkXError if the graph is not two-colorable.

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> c = bipartite.color(G)
>>> print(c)
{0: 1, 1: 0, 2: 1, 3: 0}

You can use this to set a node attribute indicating the biparite set:

>>> nx.set_node_attributes(G, 'bipartite', c)
>>> print(G.node[0]['bipartite'])
1
>>> print(G.node[1]['bipartite'])
0

NetworkX

density

	
density(B, nodes)

	Return density of bipartite graph B.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or container) – Nodes in one set of the bipartite graph.

	Returns

	d – The bipartite density

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
1.0
>>> Y=set([3,4])
>>> bipartite.density(G,Y)
1.0

See also

color()

NetworkX

degrees

	
degrees(B, nodes, weight=None)

	Return the degrees of the two node sets in the bipartite graph B.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or container) – Nodes in one set of the bipartite graph.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	(degX,degY) – The degrees of the two bipartite sets as dictionaries keyed by node.

	Return type

	tuple of dictionaries

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> Y=set([3,4])
>>> degX,degY=bipartite.degrees(G,Y)
>>> degX
{0: 2, 1: 2, 2: 2}

See also

color(), density()

NetworkX

eppstein_matching

	
eppstein_matching(G)

	Returns the maximum cardinality matching of the bipartite graph \(G\).

	Parameters

	G (NetworkX graph) – Undirected bipartite graph

	Returns

	matches – The matching is returned as a dictionary, \(matches\), such that
matches[v] == w if node v is matched to node w. Unmatched
nodes do not occur as a key in mate.

	Return type

	dictionary

Notes

This function is implemented with David Eppstein’s version of the algorithm
Hopcroft–Karp algorithm (see hopcroft_karp_matching()), which
originally appeared in the Python Algorithms and Data Structures library
(PADS) [http://www.ics.uci.edu/~eppstein/PADS/ABOUT-PADS.txt].

See also

hopcroft_karp_matching()

NetworkX

hopcroft_karp_matching

	
hopcroft_karp_matching(G)

	Returns the maximum cardinality matching of the bipartite graph \(G\).

	Parameters

	G (NetworkX graph) – Undirected bipartite graph

	Returns

	matches – The matching is returned as a dictionary, \(matches\), such that
matches[v] == w if node v is matched to node w. Unmatched
nodes do not occur as a key in mate.

	Return type

	dictionary

Notes

This function is implemented with the Hopcroft–Karp matching algorithm [https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm] for
bipartite graphs.

See also

eppstein_matching()

References

	1

	John E. Hopcroft and Richard M. Karp. “An n^{5 / 2} Algorithm for
Maximum Matchings in Bipartite Graphs” In: SIAM Journal of Computing
2.4 (1973), pp. 225–231. <https://dx.doi.org/10.1137/0202019>.

NetworkX

to_vertex_cover

	
to_vertex_cover(G, matching)

	Returns the minimum vertex cover corresponding to the given maximum
matching of the bipartite graph \(G\).

	Parameters

	
	G (NetworkX graph) – Undirected bipartite graph

	matching (dictionary) – A dictionary whose keys are vertices in \(G\) and whose values are the
distinct neighbors comprising the maximum matching for \(G\), as returned
by, for example, maximum_matching(). The dictionary must
represent the maximum matching.

	Returns

	vertex_cover – The minimum vertex cover in \(G\).

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

This function is implemented using the procedure guaranteed by Konig’s
theorem [http://en.wikipedia.org/wiki/K%C3%B6nig%27s_theorem_%28graph_theory%29],
which proves an equivalence between a maximum matching and a minimum vertex
cover in bipartite graphs.

Since a minimum vertex cover is the complement of a maximum independent set
for any graph, one can compute the maximum independent set of a bipartite
graph this way:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> matching = nx.bipartite.maximum_matching(G)
>>> vertex_cover = nx.bipartite.to_vertex_cover(G, matching)
>>> independent_set = set(G) - vertex_cover
>>> print(list(independent_set))
[2, 3, 4]

NetworkX

biadjacency_matrix

	
biadjacency_matrix(G, row_order, column_order=None, dtype=None, weight='weight', format='csr')

	Return the biadjacency matrix of the bipartite graph G.

Let \(G = (U, V, E)\) be a bipartite graph with node sets
\(U = u_{1},...,u_{r}\) and \(V = v_{1},...,v_{s}\). The biadjacency
matrix 1 is the \(r\) x \(s\) matrix \(B\) in which \(b_{i,j} = 1\)
if, and only if, \((u_i, v_j) \in E\). If the parameter \(weight\) is
not \(None\) and matches the name of an edge attribute, its value is
used instead of 1.

	Parameters

	
	G (graph) – A NetworkX graph

	row_order (list of nodes) – The rows of the matrix are ordered according to the list of nodes.

	column_order (list, optional) – The columns of the matrix are ordered according to the list of nodes.
If column_order is None, then the ordering of columns is arbitrary.

	dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array. If None, then the
NumPy default is used.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to provide each value in the matrix.
If None, then each edge has weight 1.

	format (str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}) – The type of the matrix to be returned (default ‘csr’). For
some algorithms different implementations of sparse matrices
can perform better. See 2 for details.

	Returns

	M – Biadjacency matrix representation of the bipartite graph G.

	Return type

	SciPy sparse matrix

Notes

No attempt is made to check that the input graph is bipartite.

For directed bipartite graphs only successors are considered as neighbors.
To obtain an adjacency matrix with ones (or weight values) for both
predecessors and successors you have to generate two biadjacency matrices
where the rows of one of them are the columns of the other, and then add
one to the transpose of the other.

See also

adjacency_matrix(), from_biadjacency_matrix()

References

	1

	http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph

	2

	Scipy Dev. References, “Sparse Matrices”,
http://docs.scipy.org/doc/scipy/reference/sparse.html

NetworkX

from_biadjacency_matrix

	
from_biadjacency_matrix(A, create_using=None, edge_attribute='weight')

	Creates a new bipartite graph from a biadjacency matrix given as a
SciPy sparse matrix.

	Parameters

	
	A (scipy sparse matrix) – A biadjacency matrix representation of a graph

	create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

	edge_attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Name of edge attribute to store matrix numeric value. The data will
have the same type as the matrix entry (int, float, (real,imag)).

Notes

The nodes are labeled with the attribute \(bipartite\) set to an integer
0 or 1 representing membership in part 0 or part 1 of the bipartite graph.

If \(create_using\) is an instance of networkx.MultiGraph or
networkx.MultiDiGraph and the entries of \(A\) are of type int,
then this function returns a multigraph (of the same type as
\(create_using\)) with parallel edges. In this case, \(edge_attribute\) will be
ignored.

See also

biadjacency_matrix(), from_numpy_matrix()

References

[1] http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph

NetworkX

projected_graph

	
projected_graph(B, nodes, multigraph=False)

	Returns the projection of B onto one of its node sets.

Returns the graph G that is the projection of the bipartite graph B
onto the specified nodes. They retain their attributes and are connected
in G if they have a common neighbor in B.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	multigraph (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – If True return a multigraph where the multiple edges represent multiple
shared neighbors. They edge key in the multigraph is assigned to the
label of the neighbor.

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph or multigraph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges())
[(1, 3)]

If nodes \(a\), and \(b\) are connected through both nodes 1 and 2 then
building a multigraph results in two edges in the projection onto
[\(a\),`b`]:

>>> B = nx.Graph()
>>> B.add_edges_from([('a', 1), ('b', 1), ('a', 2), ('b', 2)])
>>> G = bipartite.projected_graph(B, ['a', 'b'], multigraph=True)
>>> print([sorted((u,v)) for u,v in G.edges()])
[['a', 'b'], ['a', 'b']]

Notes

No attempt is made to verify that the input graph B is bipartite.
Returns a simple graph that is the projection of the bipartite graph B
onto the set of nodes given in list nodes. If multigraph=True then
a multigraph is returned with an edge for every shared neighbor.

Directed graphs are allowed as input. The output will also then
be a directed graph with edges if there is a directed path between
the nodes.

The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), generic_weighted_projected_graph()

NetworkX

weighted_projected_graph

	
weighted_projected_graph(B, nodes, ratio=False)

	Returns a weighted projection of B onto one of its node sets.

The weighted projected graph is the projection of the bipartite
network B onto the specified nodes with weights representing the
number of shared neighbors or the ratio between actual shared
neighbors and possible shared neighbors if ratio=True 1. The
nodes retain their attributes and are connected in the resulting graph
if they have an edge to a common node in the original graph.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	ratio (Bool (default=False)) – If True, edge weight is the ratio between actual shared neighbors
and possible shared neighbors. If False, edges weight is the number
of shared neighbors.

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.weighted_projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges(data=True))
[(1, 3, {'weight': 1})]
>>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True)
>>> print(G.edges(data=True))
[(1, 3, {'weight': 0.5})]

Notes

No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), generic_weighted_projected_graph(), projected_graph()

References

	1

	Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation
Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.

NetworkX

collaboration_weighted_projected_graph

	
collaboration_weighted_projected_graph(B, nodes)

	Newman’s weighted projection of B onto one of its node sets.

The collaboration weighted projection is the projection of the
bipartite network B onto the specified nodes with weights assigned
using Newman’s collaboration model 1:

\[w_{v,u} = \sum_k \frac{\delta_{v}^{w} \delta_{w}^{k}}{k_w - 1}\]

where \(v\) and \(u\) are nodes from the same bipartite node set,
and \(w\) is a node of the opposite node set.
The value \(k_w\) is the degree of node \(w\) in the bipartite
network and \(\delta_{v}^{w}\) is 1 if node \(v\) is
linked to node \(w\) in the original bipartite graph or 0 otherwise.

The nodes retain their attributes and are connected in the resulting
graph if have an edge to a common node in the original bipartite
graph.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> B.add_edge(1,5)
>>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5])
>>> print(G.nodes())
[0, 2, 4, 5]
>>> for edge in G.edges(data=True): print(edge)
...
(0, 2, {'weight': 0.5})
(0, 5, {'weight': 0.5})
(2, 4, {'weight': 1.0})
(2, 5, {'weight': 0.5})

Notes

No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), overlap_weighted_projected_graph(), generic_weighted_projected_graph(), projected_graph()

References

	1

	Scientific collaboration networks: II.
Shortest paths, weighted networks, and centrality,
M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).

NetworkX

overlap_weighted_projected_graph

	
overlap_weighted_projected_graph(B, nodes, jaccard=True)

	Overlap weighted projection of B onto one of its node sets.

The overlap weighted projection is the projection of the bipartite
network B onto the specified nodes with weights representing
the Jaccard index between the neighborhoods of the two nodes in the
original bipartite network 1:

\[w_{v,u} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}\]

or if the parameter ‘jaccard’ is False, the fraction of common
neighbors by minimum of both nodes degree in the original
bipartite graph 1:

\[w_{v,u} = \frac{|N(u) \cap N(v)|}{min(|N(u)|,|N(v)|)}\]

The nodes retain their attributes and are connected in the resulting
graph if have an edge to a common node in the original bipartite graph.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	jaccard (Bool (default=True)) –

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4])
>>> print(G.nodes())
[0, 2, 4]
>>> print(G.edges(data=True))
[(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})]
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False)
>>> print(G.edges(data=True))
[(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})]

Notes

No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), generic_weighted_projected_graph(), projected_graph()

References

	1(1,2)

	Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation
Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.

NetworkX

generic_weighted_projected_graph

	
generic_weighted_projected_graph(B, nodes, weight_function=None)

	Weighted projection of B with a user-specified weight function.

The bipartite network B is projected on to the specified nodes
with weights computed by a user-specified function. This function
must accept as a parameter the neighborhood sets of two nodes and
return an integer or a float.

The nodes retain their attributes and are connected in the resulting graph
if they have an edge to a common node in the original graph.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	weight_function (function) – This function must accept as parameters the same input graph
that this function, and two nodes; and return an integer or a float.
The default function computes the number of shared neighbors.

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> # Define some custom weight functions
>>> def jaccard(G, u, v):
... unbrs = set(G[u])
... vnbrs = set(G[v])
... return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs)
...
>>> def my_weight(G, u, v, weight='weight'):
... w = 0
... for nbr in set(G[u]) & set(G[v]):
... w += G.edge[u][nbr].get(weight, 1) + G.edge[v][nbr].get(weight, 1)
... return w
...
>>> # A complete bipartite graph with 4 nodes and 4 edges
>>> B = nx.complete_bipartite_graph(2,2)
>>> # Add some arbitrary weight to the edges
>>> for i,(u,v) in enumerate(B.edges()):
... B.edge[u][v]['weight'] = i + 1
...
>>> for edge in B.edges(data=True):
... print(edge)
...
(0, 2, {'weight': 1})
(0, 3, {'weight': 2})
(1, 2, {'weight': 3})
(1, 3, {'weight': 4})
>>> # Without specifying a function, the weight is equal to # shared partners
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1])
>>> print(G.edges(data=True))
[(0, 1, {'weight': 2})]
>>> # To specify a custom weight function use the weight_function parameter
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=jaccard)
>>> print(G.edges(data=True))
[(0, 1, {'weight': 1.0})]
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=my_weight)
>>> print(G.edges(data=True))
[(0, 1, {'weight': 10})]

Notes

No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), projected_graph()

NetworkX

spectral_bipartivity

	
spectral_bipartivity(G, nodes=None, weight='weight')

	Returns the spectral bipartivity.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or container optional(default is all nodes)) – Nodes to return value of spectral bipartivity contribution.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default = 'weight')) – Edge data key to use for edge weights. If None, weights set to 1.

	Returns

	sb – A single number if the keyword nodes is not specified, or
a dictionary keyed by node with the spectral bipartivity contribution
of that node as the value.

	Return type

	float [https://docs.python.org/2/library/functions.html#float] or dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> bipartite.spectral_bipartivity(G)
1.0

Notes

This implementation uses Numpy (dense) matrices which are not efficient
for storing large sparse graphs.

See also

color()

References

	1

	E. Estrada and J. A. Rodríguez-Velázquez, “Spectral measures of
bipartivity in complex networks”, PhysRev E 72, 046105 (2005)

NetworkX

clustering

	
clustering(G, nodes=None, mode='dot')

	Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density
of connections defined as 1:

\[c_u = \frac{\sum_{v \in N(N(v))} c_{uv} }{|N(N(u))|}\]

where \(N(N(u))\) are the second order neighbors of \(u\) in \(G\) excluding \(u\),
and \(c_{uv}\) is the pairwise clustering coefficient between nodes
\(u\) and \(v\).

The mode selects the function for \(c_{uv}\) which can be:

\(dot\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{|N(u) \cup N(v)|}\]

\(min\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{min(|N(u)|,|N(v)|)}\]

\(max\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{max(|N(u)|,|N(v)|)}\]

	Parameters

	
	G (graph) – A bipartite graph

	nodes (list or iterable (optional)) – Compute bipartite clustering for these nodes. The default
is all nodes in G.

	mode (string [https://docs.python.org/2/library/string.html#module-string]) – The pariwise bipartite clustering method to be used in the computation.
It must be “dot”, “max”, or “min”.

	Returns

	clustering – A dictionary keyed by node with the clustering coefficient value.

	Return type

	dictionary

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G,mode='min')
>>> c[0]
1.0

See also

robins_alexander_clustering(), square_clustering(), average_clustering()

References

	1

	Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31–48.

NetworkX

average_clustering

	
average_clustering(G, nodes=None, mode='dot')

	Compute the average bipartite clustering coefficient.

A clustering coefficient for the whole graph is the average,

\[C = \frac{1}{n}\sum_{v \in G} c_v,\]

where \(n\) is the number of nodes in \(G\).

Similar measures for the two bipartite sets can be defined 1

\[C_X = \frac{1}{|X|}\sum_{v \in X} c_v,\]

where \(X\) is a bipartite set of \(G\).

	Parameters

	
	G (graph) – a bipartite graph

	nodes (list or iterable, optional) – A container of nodes to use in computing the average.
The nodes should be either the entire graph (the default) or one of the
bipartite sets.

	mode (string [https://docs.python.org/2/library/string.html#module-string]) – The pariwise bipartite clustering method.
It must be “dot”, “max”, or “min”

	Returns

	clustering – The average bipartite clustering for the given set of nodes or the
entire graph if no nodes are specified.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> from networkx.algorithms import bipartite
>>> G=nx.star_graph(3) # star graphs are bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X,Y=bipartite.sets(G)
>>> bipartite.average_clustering(G,X)
0.0
>>> bipartite.average_clustering(G,Y)
1.0

See also

clustering()

Notes

The container of nodes passed to this function must contain all of the nodes
in one of the bipartite sets (“top” or “bottom”) in order to compute
the correct average bipartite clustering coefficients.

References

	1

	Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31–48.

NetworkX

latapy_clustering

	
latapy_clustering(G, nodes=None, mode='dot')

	Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density
of connections defined as 1:

\[c_u = \frac{\sum_{v \in N(N(v))} c_{uv} }{|N(N(u))|}\]

where \(N(N(u))\) are the second order neighbors of \(u\) in \(G\) excluding \(u\),
and \(c_{uv}\) is the pairwise clustering coefficient between nodes
\(u\) and \(v\).

The mode selects the function for \(c_{uv}\) which can be:

\(dot\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{|N(u) \cup N(v)|}\]

\(min\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{min(|N(u)|,|N(v)|)}\]

\(max\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{max(|N(u)|,|N(v)|)}\]

	Parameters

	
	G (graph) – A bipartite graph

	nodes (list or iterable (optional)) – Compute bipartite clustering for these nodes. The default
is all nodes in G.

	mode (string [https://docs.python.org/2/library/string.html#module-string]) – The pariwise bipartite clustering method to be used in the computation.
It must be “dot”, “max”, or “min”.

	Returns

	clustering – A dictionary keyed by node with the clustering coefficient value.

	Return type

	dictionary

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G,mode='min')
>>> c[0]
1.0

See also

robins_alexander_clustering(), square_clustering(), average_clustering()

References

	1

	Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31–48.

NetworkX

robins_alexander_clustering

	
robins_alexander_clustering(G)

	Compute the bipartite clustering of G.

Robins and Alexander 1 defined bipartite clustering coefficient as
four times the number of four cycles \(C_4\) divided by the number of
three paths \(L_3\) in a bipartite graph:

\[CC_4 = \frac{4 * C_4}{L_3}\]

	Parameters

	G (graph) – a bipartite graph

	Returns

	clustering – The Robins and Alexander bipartite clustering for the input graph.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.davis_southern_women_graph()
>>> print(round(bipartite.robins_alexander_clustering(G), 3))
0.468

See also

latapy_clustering(), square_clustering()

References

	1

	Robins, G. and M. Alexander (2004). Small worlds among interlocking
directors: Network structure and distance in bipartite graphs.
Computational & Mathematical Organization Theory 10(1), 69–94.

NetworkX

node_redundancy

	
node_redundancy(G, nodes=None)

	Computes the node redundancy coefficients for the nodes in the bipartite
graph G.

The redundancy coefficient of a node \(v\) is the fraction of pairs of
neighbors of \(v\) that are both linked to other nodes. In a one-mode
projection these nodes would be linked together even if \(v\) were
not there.

More formally, for any vertex \(v\), the redundancy coefficient of `v` is
defined by

\[rc(v) = \frac{|\{\{u, w\} \subseteq N(v),
\: \exists v' \neq v,\: (v',u) \in E\:
\mathrm{and}\: (v',w) \in E\}|}{ \frac{|N(v)|(|N(v)|-1)}{2}},\]

where \(N(v)\) is the set of neighbors of \(v\) in G.

	Parameters

	
	G (graph) – A bipartite graph

	nodes (list or iterable (optional)) – Compute redundancy for these nodes. The default is all nodes in G.

	Returns

	redundancy – A dictionary keyed by node with the node redundancy value.

	Return type

	dictionary

Examples

Compute the redundancy coefficient of each node in a graph:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> rc[0]
1.0

Compute the average redundancy for the graph:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> sum(rc.values()) / len(G)
1.0

Compute the average redundancy for a set of nodes:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> nodes = [0, 2]
>>> sum(rc[n] for n in nodes) / len(nodes)
1.0

	Raises

	NetworkXError – If any of the nodes in the graph (or in nodes, if specified) has
(out-)degree less than two (which would result in division by zero,
according to the definition of the redundancy coefficient).

References

	1

	Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31–48.

NetworkX

closeness_centrality

	
closeness_centrality(G, nodes, normalized=True)

	Compute the closeness centrality for nodes in a bipartite network.

The closeness of a node is the distance to all other nodes in the
graph or in the case that the graph is not connected to all other nodes
in the connected component containing that node.

	Parameters

	
	G (graph) – A bipartite network

	nodes (list or container) – Container with all nodes in one bipartite node set.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True (default) normalize by connected component size.

	Returns

	closeness – Dictionary keyed by node with bipartite closeness centrality
as the value.

	Return type

	dictionary

See also

betweenness_centrality(), degree_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must conatin all nodes in one bipartite node set,
but the dictionary returned contains all nodes from both node sets.

Closeness centrality is normalized by the minimum distance possible.
In the bipartite case the minimum distance for a node in one bipartite
node set is 1 from all nodes in the other node set and 2 from all
other nodes in its own set 1. Thus the closeness centrality
for node \(v\) in the two bipartite sets \(U\) with
\(n\) nodes and \(V\) with \(m\) nodes is

\[\begin{align}\begin{aligned}c_{v} = \frac{m + 2(n - 1)}{d}, \mbox{for} v \in U,\\c_{v} = \frac{n + 2(m - 1)}{d}, \mbox{for} v \in V,\end{aligned}\end{align} \]

where \(d\) is the sum of the distances from \(v\) to all
other nodes.

Higher values of closeness indicate higher centrality.

As in the unipartite case, setting normalized=True causes the
values to normalized further to n-1 / size(G)-1 where n is the
number of nodes in the connected part of graph containing the
node. If the graph is not completely connected, this algorithm
computes the closeness centrality for each connected part
separately.

References

	1

	Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation
Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.
http://www.steveborgatti.com/papers/bhaffiliations.pdf

NetworkX

degree_centrality

	
degree_centrality(G, nodes)

	Compute the degree centrality for nodes in a bipartite network.

The degree centrality for a node \(v\) is the fraction of nodes
connected to it.

	Parameters

	
	G (graph) – A bipartite network

	nodes (list or container) – Container with all nodes in one bipartite node set.

	Returns

	centrality – Dictionary keyed by node with bipartite degree centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), closeness_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must conatin all nodes in one bipartite node set,
but the dictionary returned contains all nodes from both bipartite node
sets.

For unipartite networks, the degree centrality values are
normalized by dividing by the maximum possible degree (which is
\(n-1\) where \(n\) is the number of nodes in G).

In the bipartite case, the maximum possible degree of a node in a
bipartite node set is the number of nodes in the opposite node set
1. The degree centrality for a node \(v\) in the bipartite
sets \(U\) with \(n\) nodes and \(V\) with \(m\) nodes is

\[\begin{align}\begin{aligned}d_{v} = \frac{deg(v)}{m}, \mbox{for} v \in U ,\\d_{v} = \frac{deg(v)}{n}, \mbox{for} v \in V ,\end{aligned}\end{align} \]

where \(deg(v)\) is the degree of node \(v\).

References

	1

	Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation
Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.
http://www.steveborgatti.com/papers/bhaffiliations.pdf

NetworkX

betweenness_centrality

	
betweenness_centrality(G, nodes)

	Compute betweenness centrality for nodes in a bipartite network.

Betweenness centrality of a node \(v\) is the sum of the
fraction of all-pairs shortest paths that pass through \(v\).

Values of betweenness are normalized by the maximum possible
value which for bipartite graphs is limited by the relative size
of the two node sets 1.

Let \(n\) be the number of nodes in the node set \(U\) and
\(m\) be the number of nodes in the node set \(V\), then
nodes in \(U\) are normalized by dividing by

\[\frac{1}{2} [m^2 (s + 1)^2 + m (s + 1)(2t - s - 1) - t (2s - t + 3)] ,\]

where

\[s = (n - 1) \div m , t = (n - 1) \mod m ,\]

and nodes in \(V\) are normalized by dividing by

\[\frac{1}{2} [n^2 (p + 1)^2 + n (p + 1)(2r - p - 1) - r (2p - r + 3)] ,\]

where,

\[p = (m - 1) \div n , r = (m - 1) \mod n .\]

	Parameters

	
	G (graph) – A bipartite graph

	nodes (list or container) – Container with all nodes in one bipartite node set.

	Returns

	betweenness – Dictionary keyed by node with bipartite betweenness centrality
as the value.

	Return type

	dictionary

See also

degree_centrality(), closeness_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must contain all nodes in one bipartite node set,
but the dictionary returned contains all nodes from both node sets.

References

	1

	Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation
Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.
http://www.steveborgatti.com/papers/bhaffiliations.pdf

NetworkX

complete_bipartite_graph

	
complete_bipartite_graph(n1, n2, create_using=None)

	Return the complete bipartite graph \(K_{n_1,n_2}\).

Composed of two partitions with \(n_1\) nodes in the first
and \(n_2\) nodes in the second. Each node in the first is
connected to each node in the second.

	Parameters

	
	n1 (integer) – Number of nodes for node set A.

	n2 (integer) – Number of nodes for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

Notes

Node labels are the integers 0 to \(n_1 + n_2 - 1\).

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

NetworkX

configuration_model

	
configuration_model(aseq, bseq, create_using=None, seed=None)

	Return a random bipartite graph from two given degree sequences.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	bseq (list) – Degree sequence for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

	seed (integer, optional) – Seed for random number generator.

	from the set A are connected to nodes in the set B by (Nodes) –

	randomly from the possible free stubs, one in A and (choosing) –

	in B. (one) –

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
If no graph type is specified use MultiGraph with parallel edges.
If you want a graph with no parallel edges use create_using=Graph()
but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

NetworkX

havel_hakimi_graph

	
havel_hakimi_graph(aseq, bseq, create_using=None)

	Return a bipartite graph from two given degree sequences using a
Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by
connecting the highest degree nodes in set A to the highest degree
nodes in set B until all stubs are connected.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	bseq (list) – Degree sequence for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
If no graph type is specified use MultiGraph with parallel edges.
If you want a graph with no parallel edges use create_using=Graph()
but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

NetworkX

reverse_havel_hakimi_graph

	
reverse_havel_hakimi_graph(aseq, bseq, create_using=None)

	Return a bipartite graph from two given degree sequences using a
Havel-Hakimi style construction.

Nodes from set A are connected to nodes in the set B by connecting
the highest degree nodes in set A to the lowest degree nodes in
set B until all stubs are connected.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	bseq (list) – Degree sequence for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
If no graph type is specified use MultiGraph with parallel edges.
If you want a graph with no parallel edges use create_using=Graph()
but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

NetworkX

alternating_havel_hakimi_graph

	
alternating_havel_hakimi_graph(aseq, bseq, create_using=None)

	Return a bipartite graph from two given degree sequences using
an alternating Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by
connecting the highest degree nodes in set A to alternatively the
highest and the lowest degree nodes in set B until all stubs are
connected.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	bseq (list) – Degree sequence for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
If no graph type is specified use MultiGraph with parallel edges.
If you want a graph with no parallel edges use create_using=Graph()
but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

NetworkX

preferential_attachment_graph

	
preferential_attachment_graph(aseq, p, create_using=None, seed=None)

	Create a bipartite graph with a preferential attachment model from
a given single degree sequence.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability that a new bottom node is added.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

	seed (integer, optional) – Seed for random number generator.

References

	1

	Jean-Loup Guillaume and Matthieu Latapy,
Bipartite structure of all complex networks,
Inf. Process. Lett. 90, 2004, pg. 215-221
http://dx.doi.org/10.1016/j.ipl.2004.03.007

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

NetworkX

random_graph

	
random_graph(n, m, p, seed=None, directed=False)

	Return a bipartite random graph.

This is a bipartite version of the binomial (Erdős-Rényi) graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set.

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True return a directed graph

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

The bipartite random graph algorithm chooses each of the n*m (undirected)
or 2*nm (directed) possible edges with probability p.

This algorithm is O(n+m) where m is the expected number of edges.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

See also

gnp_random_graph(), configuration_model()

References

	1

	Vladimir Batagelj and Ulrik Brandes,
“Efficient generation of large random networks”,
Phys. Rev. E, 71, 036113, 2005.

NetworkX

gnmk_random_graph

	
gnmk_random_graph(n, m, k, seed=None, directed=False)

	Return a random bipartite graph G_{n,m,k}.

Produces a bipartite graph chosen randomly out of the set of all graphs
with n top nodes, m bottom nodes, and k edges.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set.

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set.

	k (int [https://docs.python.org/2/library/functions.html#int]) – The number of edges

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True return a directed graph

Examples

from networkx.algorithms import bipartite
G = bipartite.gnmk_random_graph(10,20,50)

See also

gnm_random_graph()

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

If k > m * n then a complete bipartite graph is returned.

This graph is a bipartite version of the \(G_{nm}\) random graph model.

NetworkX

Blockmodeling

Functions for creating network blockmodels from node partitions.

Created by Drew Conway <drew.conway@nyu.edu>
Copyright (c) 2010. All rights reserved.

	blockmodel(G, partitions[, multigraph])

	Returns a reduced graph constructed using the generalized block modeling technique.

NetworkX

blockmodel

	
blockmodel(G, partitions, multigraph=False)

	Returns a reduced graph constructed using the generalized block modeling
technique.

The blockmodel technique collapses nodes into blocks based on a
given partitioning of the node set. Each partition of nodes
(block) is represented as a single node in the reduced graph.

Edges between nodes in the block graph are added according to the
edges in the original graph. If the parameter multigraph is False
(the default) a single edge is added with a weight equal to the
sum of the edge weights between nodes in the original graph
The default is a weight of 1 if weights are not specified. If the
parameter multigraph is True then multiple edges are added each
with the edge data from the original graph.

	Parameters

	
	G (graph) – A networkx Graph or DiGraph

	partitions (list of lists, or list of sets) – The partition of the nodes. Must be non-overlapping.

	multigraph (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True return a MultiGraph with the edge data of the original
graph applied to each corresponding edge in the new graph.
If False return a Graph with the sum of the edge weights, or a
count of the edges if the original graph is unweighted.

	Returns

	blockmodel

	Return type

	a Networkx graph object

Examples

>>> G=nx.path_graph(6)
>>> partition=[[0,1],[2,3],[4,5]]
>>> M=nx.blockmodel(G,partition)

References

	1

	Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj
“Generalized Blockmodeling”,Cambridge University Press, 2004.

NetworkX

Boundary

Routines to find the boundary of a set of nodes.

Edge boundaries are edges that have only one end
in the set of nodes.

Node boundaries are nodes outside the set of nodes
that have an edge to a node in the set.

	edge_boundary(G, nbunch1[, nbunch2])

	Return the edge boundary.

	node_boundary(G, nbunch1[, nbunch2])

	Return the node boundary.

NetworkX

edge_boundary

	
edge_boundary(G, nbunch1, nbunch2=None)

	Return the edge boundary.

Edge boundaries are edges that have only one end
in the given set of nodes.

	Parameters

	
	G (graph) – A networkx graph

	nbunch1 (list, container) – Interior node set

	nbunch2 (list, container) – Exterior node set. If None then it is set to all of the
nodes in G not in nbunch1.

	Returns

	elist – List of edges

	Return type

	list

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint,
but in the interest of speed and generality, that is
not required here.

NetworkX

node_boundary

	
node_boundary(G, nbunch1, nbunch2=None)

	Return the node boundary.

The node boundary is all nodes in the edge boundary of a given
set of nodes that are in the set.

	Parameters

	
	G (graph) – A networkx graph

	nbunch1 (list, container) – Interior node set

	nbunch2 (list, container) – Exterior node set. If None then it is set to all of the
nodes in G not in nbunch1.

	Returns

	nlist – List of nodes.

	Return type

	list

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint,
but in the interest of speed and generality, that is
not required here.

NetworkX

Centrality

Degree

	degree_centrality(G)

	Compute the degree centrality for nodes.

	in_degree_centrality(G)

	Compute the in-degree centrality for nodes.

	out_degree_centrality(G)

	Compute the out-degree centrality for nodes.

Closeness

	closeness_centrality(G[, u, distance, …])

	Compute closeness centrality for nodes.

Betweenness

	betweenness_centrality(G[, k, normalized, …])

	Compute the shortest-path betweenness centrality for nodes.

	edge_betweenness_centrality(G[, k, …])

	Compute betweenness centrality for edges.

Current Flow Closeness

	current_flow_closeness_centrality(G[, …])

	Compute current-flow closeness centrality for nodes.

Current-Flow Betweenness

	current_flow_betweenness_centrality(G[, …])

	Compute current-flow betweenness centrality for nodes.

	edge_current_flow_betweenness_centrality(G)

	Compute current-flow betweenness centrality for edges.

	approximate_current_flow_betweenness_centrality(G)

	Compute the approximate current-flow betweenness centrality for nodes.

Eigenvector

	eigenvector_centrality(G[, max_iter, tol, …])

	Compute the eigenvector centrality for the graph G.

	eigenvector_centrality_numpy(G[, weight])

	Compute the eigenvector centrality for the graph G.

	katz_centrality(G[, alpha, beta, max_iter, …])

	Compute the Katz centrality for the nodes of the graph G.

	katz_centrality_numpy(G[, alpha, beta, …])

	Compute the Katz centrality for the graph G.

Communicability

	communicability(G)

	Return communicability between all pairs of nodes in G.

	communicability_exp(G)

	Return communicability between all pairs of nodes in G.

	communicability_centrality(G)

	Return communicability centrality for each node in G.

	communicability_centrality_exp(G)

	Return the communicability centrality for each node of G

	communicability_betweenness_centrality(G[, …])

	Return communicability betweenness for all pairs of nodes in G.

	estrada_index(G)

	Return the Estrada index of a the graph G.

Load

	load_centrality(G[, v, cutoff, normalized, …])

	Compute load centrality for nodes.

	edge_load(G[, nodes, cutoff])

	Compute edge load.

Dispersion

	dispersion(G[, u, v, normalized, alpha, b, c])

	Calculate dispersion between \(u\) and \(v\) in \(G\).

NetworkX

degree_centrality

	
degree_centrality(G)

	Compute the degree centrality for nodes.

The degree centrality for a node v is the fraction of nodes it
is connected to.

	Parameters

	G (graph) – A networkx graph

	Returns

	nodes – Dictionary of nodes with degree centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), load_centrality(), eigenvector_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum
possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might
be higher than n-1 and values of degree centrality greater than 1
are possible.

NetworkX

in_degree_centrality

	
in_degree_centrality(G)

	Compute the in-degree centrality for nodes.

The in-degree centrality for a node v is the fraction of nodes its
incoming edges are connected to.

	Parameters

	G (graph) – A NetworkX graph

	Returns

	nodes – Dictionary of nodes with in-degree centrality as values.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is undirected.

See also

degree_centrality(), out_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum
possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might
be higher than n-1 and values of degree centrality greater than 1
are possible.

NetworkX

out_degree_centrality

	
out_degree_centrality(G)

	Compute the out-degree centrality for nodes.

The out-degree centrality for a node v is the fraction of nodes its
outgoing edges are connected to.

	Parameters

	G (graph) – A NetworkX graph

	Returns

	nodes – Dictionary of nodes with out-degree centrality as values.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is undirected.

See also

degree_centrality(), in_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum
possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might
be higher than n-1 and values of degree centrality greater than 1
are possible.

NetworkX

closeness_centrality

	
closeness_centrality(G, u=None, distance=None, normalized=True)

	Compute closeness centrality for nodes.

Closeness centrality 1 of a node \(u\) is the reciprocal of the
sum of the shortest path distances from \(u\) to all \(n-1\) other nodes.
Since the sum of distances depends on the number of nodes in the
graph, closeness is normalized by the sum of minimum possible
distances \(n-1\).

\[C(u) = \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)},\]

where \(d(v, u)\) is the shortest-path distance between \(v\) and \(u\),
and \(n\) is the number of nodes in the graph.

Notice that higher values of closeness indicate higher centrality.

	Parameters

	
	G (graph) – A NetworkX graph

	u (node, optional) – Return only the value for node u

	distance (edge attribute key, optional (default=None)) – Use the specified edge attribute as the edge distance in shortest
path calculations

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True (default) normalize by the number of nodes in the connected
part of the graph.

	Returns

	nodes – Dictionary of nodes with closeness centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), load_centrality(), eigenvector_centrality(), degree_centrality()

Notes

The closeness centrality is normalized to \((n-1)/(|G|-1)\) where
\(n\) is the number of nodes in the connected part of graph
containing the node. If the graph is not completely connected,
this algorithm computes the closeness centrality for each
connected part separately.

If the ‘distance’ keyword is set to an edge attribute key then the
shortest-path length will be computed using Dijkstra’s algorithm with
that edge attribute as the edge weight.

References

	1

	Linton C. Freeman: Centrality in networks: I.
Conceptual clarification. Social Networks 1:215-239, 1979.
http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf

NetworkX

betweenness_centrality

	
betweenness_centrality(G, k=None, normalized=True, weight=None, endpoints=False, seed=None)

	Compute the shortest-path betweenness centrality for nodes.

Betweenness centrality of a node \(v\) is the sum of the
fraction of all-pairs shortest paths that pass through \(v\)

\[c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}\]

where \(V\) is the set of nodes, \(\sigma(s, t)\) is the number of
shortest \((s, t)\)-paths, and \(\sigma(s, t|v)\) is the number of those
paths passing through some node \(v\) other than \(s, t\).
If \(s = t\), \(\sigma(s, t) = 1\), and if \(v \in {s, t}\),
\(\sigma(s, t|v) = 0\) 2.

	Parameters

	
	G (graph) – A NetworkX graph

	k (int [https://docs.python.org/2/library/functions.html#int], optional (default=None)) – If k is not None use k node samples to estimate betweenness.
The value of k <= n where n is the number of nodes in the graph.
Higher values give better approximation.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True the betweenness values are normalized by \(2/((n-1)(n-2))\)
for graphs, and \(1/((n-1)(n-2))\) for directed graphs where \(n\)
is the number of nodes in G.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	endpoints (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True include the endpoints in the shortest path counts.

	Returns

	nodes – Dictionary of nodes with betweenness centrality as the value.

	Return type

	dictionary

See also

edge_betweenness_centrality(), load_centrality()

Notes

The algorithm is from Ulrik Brandes 1.
See 4 for the original first published version and 2 for details on
algorithms for variations and related metrics.

For approximate betweenness calculations set k=#samples to use
k nodes (“pivots”) to estimate the betweenness values. For an estimate
of the number of pivots needed see 3.

For weighted graphs the edge weights must be greater than zero.
Zero edge weights can produce an infinite number of equal length
paths between pairs of nodes.

References

	1

	Ulrik Brandes:
A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology 25(2):163-177, 2001.
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

	2(1,2)

	Ulrik Brandes:
On Variants of Shortest-Path Betweenness
Centrality and their Generic Computation.
Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

	3

	Ulrik Brandes and Christian Pich:
Centrality Estimation in Large Networks.
International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007.
http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf

	4

	Linton C. Freeman:
A set of measures of centrality based on betweenness.
Sociometry 40: 35–41, 1977
http://moreno.ss.uci.edu/23.pdf

NetworkX

edge_betweenness_centrality

	
edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None)

	Compute betweenness centrality for edges.

Betweenness centrality of an edge \(e\) is the sum of the
fraction of all-pairs shortest paths that pass through \(e\)

\[c_B(e) =\sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)}\]

where \(V\) is the set of nodes,`sigma(s, t)` is the number of
shortest \((s, t)\)-paths, and \(\sigma(s, t|e)\) is the number of
those paths passing through edge \(e\) 2.

	Parameters

	
	G (graph) – A NetworkX graph

	k (int [https://docs.python.org/2/library/functions.html#int], optional (default=None)) – If k is not None use k node samples to estimate betweenness.
The value of k <= n where n is the number of nodes in the graph.
Higher values give better approximation.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True the betweenness values are normalized by \(2/(n(n-1))\)
for graphs, and \(1/(n(n-1))\) for directed graphs where \(n\)
is the number of nodes in G.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	Returns

	edges – Dictionary of edges with betweenness centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), edge_load()

Notes

The algorithm is from Ulrik Brandes 1.

For weighted graphs the edge weights must be greater than zero.
Zero edge weights can produce an infinite number of equal length
paths between pairs of nodes.

References

	1

	A Faster Algorithm for Betweenness Centrality. Ulrik Brandes,
Journal of Mathematical Sociology 25(2):163-177, 2001.
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

	2

	Ulrik Brandes: On Variants of Shortest-Path Betweenness
Centrality and their Generic Computation.
Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

NetworkX

current_flow_closeness_centrality

	
current_flow_closeness_centrality(G, weight='weight', dtype=<type 'float'>, solver='lu')

	Compute current-flow closeness centrality for nodes.

Current-flow closeness centrality is variant of closeness
centrality based on effective resistance between nodes in
a network. This metric is also known as information centrality.

	Parameters

	
	G (graph) – A NetworkX graph

	dtype (data type (float [https://docs.python.org/2/library/functions.html#float])) – Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

	solver (string [https://docs.python.org/2/library/string.html#module-string] (default='lu')) – Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and
“cg” (uses least memory).

	Returns

	nodes – Dictionary of nodes with current flow closeness centrality as the value.

	Return type

	dictionary

See also

closeness_centrality()

Notes

The algorithm is from Brandes 1.

See also 2 for the original definition of information centrality.

References

	1

	Ulrik Brandes and Daniel Fleischer,
Centrality Measures Based on Current Flow.
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

	2

	Karen Stephenson and Marvin Zelen:
Rethinking centrality: Methods and examples.
Social Networks 11(1):1-37, 1989.
http://dx.doi.org/10.1016/0378-8733(89)90016-6

NetworkX

current_flow_betweenness_centrality

	
current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full')

	Compute current-flow betweenness centrality for nodes.

Current-flow betweenness centrality uses an electrical current
model for information spreading in contrast to betweenness
centrality which uses shortest paths.

Current-flow betweenness centrality is also known as
random-walk betweenness centrality 2.

	Parameters

	
	G (graph) – A NetworkX graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

	dtype (data type (float [https://docs.python.org/2/library/functions.html#float])) – Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

	solver (string [https://docs.python.org/2/library/string.html#module-string] (default='lu')) – Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and
“cg” (uses least memory).

	Returns

	nodes – Dictionary of nodes with betweenness centrality as the value.

	Return type

	dictionary

See also

approximate_current_flow_betweenness_centrality(), betweenness_centrality(), edge_betweenness_centrality(), edge_current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in \(O(I(n-1)+mn \log n)\)
time 1, where \(I(n-1)\) is the time needed to compute the
inverse Laplacian. For a full matrix this is \(O(n^3)\) but using
sparse methods you can achieve \(O(nm{\sqrt k})\) where \(k\) is the
Laplacian matrix condition number.

The space required is \(O(nw)\) where \(w\) is the width of the sparse
Laplacian matrix. Worse case is \(w=n\) for \(O(n^2)\).

If the edges have a ‘weight’ attribute they will be used as
weights in this algorithm. Unspecified weights are set to 1.

References

	1

	Centrality Measures Based on Current Flow.
Ulrik Brandes and Daniel Fleischer,
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

	2

	A measure of betweenness centrality based on random walks,
M. E. J. Newman, Social Networks 27, 39-54 (2005).

NetworkX

edge_current_flow_betweenness_centrality

	
edge_current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full')

	Compute current-flow betweenness centrality for edges.

Current-flow betweenness centrality uses an electrical current
model for information spreading in contrast to betweenness
centrality which uses shortest paths.

Current-flow betweenness centrality is also known as
random-walk betweenness centrality 2.

	Parameters

	
	G (graph) – A NetworkX graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

	dtype (data type (float [https://docs.python.org/2/library/functions.html#float])) – Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

	solver (string [https://docs.python.org/2/library/string.html#module-string] (default='lu')) – Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and
“cg” (uses least memory).

	Returns

	nodes – Dictionary of edge tuples with betweenness centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), edge_betweenness_centrality(), current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in \(O(I(n-1)+mn \log n)\)
time 1, where \(I(n-1)\) is the time needed to compute the
inverse Laplacian. For a full matrix this is \(O(n^3)\) but using
sparse methods you can achieve \(O(nm{\sqrt k})\) where \(k\) is the
Laplacian matrix condition number.

The space required is \(O(nw) where `w\) is the width of the sparse
Laplacian matrix. Worse case is \(w=n\) for \(O(n^2)\).

If the edges have a ‘weight’ attribute they will be used as
weights in this algorithm. Unspecified weights are set to 1.

References

	1

	Centrality Measures Based on Current Flow.
Ulrik Brandes and Daniel Fleischer,
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

	2

	A measure of betweenness centrality based on random walks,
M. E. J. Newman, Social Networks 27, 39-54 (2005).

NetworkX

approximate_current_flow_betweenness_centrality

	
approximate_current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full', epsilon=0.5, kmax=10000)

	Compute the approximate current-flow betweenness centrality for nodes.

Approximates the current-flow betweenness centrality within absolute
error of epsilon with high probability 1.

	Parameters

	
	G (graph) – A NetworkX graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

	dtype (data type (float [https://docs.python.org/2/library/functions.html#float])) – Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

	solver (string [https://docs.python.org/2/library/string.html#module-string] (default='lu')) – Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and
“cg” (uses least memory).

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Absolute error tolerance.

	kmax (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of sample node pairs to use for approximation.

	Returns

	nodes – Dictionary of nodes with betweenness centrality as the value.

	Return type

	dictionary

See also

current_flow_betweenness_centrality()

Notes

The running time is \(O((1/\epsilon^2)m{\sqrt k} \log n)\)
and the space required is \(O(m)\) for n nodes and m edges.

If the edges have a ‘weight’ attribute they will be used as
weights in this algorithm. Unspecified weights are set to 1.

References

	1

	Ulrik Brandes and Daniel Fleischer:
Centrality Measures Based on Current Flow.
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

NetworkX

eigenvector_centrality

	
eigenvector_centrality(G, max_iter=100, tol=1e-06, nstart=None, weight='weight')

	Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the
centrality of its neighbors. The eigenvector centrality for node \(i\) is

\[\mathbf{Ax} = \lambda \mathbf{x}\]

where \(A\) is the adjacency matrix of the graph G with eigenvalue \(\lambda\).
By virtue of the Perron–Frobenius theorem, there is a unique and positive
solution if \(\lambda\) is the largest eigenvalue associated with the
eigenvector of the adjacency matrix \(A\) (2).

	Parameters

	
	G (graph) – A networkx graph

	max_iter (integer, optional) – Maximum number of iterations in power method.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method iteration.

	nstart (dictionary, optional) – Starting value of eigenvector iteration for each node.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	Returns

	nodes – Dictionary of nodes with eigenvector centrality as the value.

	Return type

	dictionary

Examples

>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']

See also

eigenvector_centrality_numpy(), pagerank(), hits()

Notes

The measure was introduced by 1.

The eigenvector calculation is done by the power iteration method and has
no guarantee of convergence. The iteration will stop after max_iter
iterations or an error tolerance of number_of_nodes(G)*tol has been
reached.

For directed graphs this is “left” eigenvector centrality which corresponds
to the in-edges in the graph. For out-edges eigenvector centrality
first reverse the graph with G.reverse().

References

	1

	Phillip Bonacich:
Power and Centrality: A Family of Measures.
American Journal of Sociology 92(5):1170–1182, 1986
http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

	2

	Mark E. J. Newman:
Networks: An Introduction.
Oxford University Press, USA, 2010, pp. 169.

NetworkX

eigenvector_centrality_numpy

	
eigenvector_centrality_numpy(G, weight='weight')

	Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the
centrality of its neighbors. The eigenvector centrality for node \(i\) is

\[\mathbf{Ax} = \lambda \mathbf{x}\]

where \(A\) is the adjacency matrix of the graph G with eigenvalue \(\lambda\).
By virtue of the Perron–Frobenius theorem, there is a unique and positive
solution if \(\lambda\) is the largest eigenvalue associated with the
eigenvector of the adjacency matrix \(A\) (2).

	Parameters

	
	G (graph) – A networkx graph

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – The name of the edge attribute used as weight.
If None, all edge weights are considered equal.

	Returns

	nodes – Dictionary of nodes with eigenvector centrality as the value.

	Return type

	dictionary

Examples

>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality_numpy(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']

See also

eigenvector_centrality(), pagerank(), hits()

Notes

The measure was introduced by 1.

This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to
find the largest eigenvalue/eigenvector pair.

For directed graphs this is “left” eigenvector centrality which corresponds
to the in-edges in the graph. For out-edges eigenvector centrality
first reverse the graph with G.reverse().

References

	1

	Phillip Bonacich:
Power and Centrality: A Family of Measures.
American Journal of Sociology 92(5):1170–1182, 1986
http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

	2

	Mark E. J. Newman:
Networks: An Introduction.
Oxford University Press, USA, 2010, pp. 169.

NetworkX

katz_centrality

	
katz_centrality(G, alpha=0.1, beta=1.0, max_iter=1000, tol=1e-06, nstart=None, normalized=True, weight='weight')

	Compute the Katz centrality for the nodes of the graph G.

Katz centrality computes the centrality for a node based on the centrality
of its neighbors. It is a generalization of the eigenvector centrality. The
Katz centrality for node \(i\) is

\[x_i = \alpha \sum_{j} A_{ij} x_j + \beta,\]

where \(A\) is the adjacency matrix of the graph G with eigenvalues \(\lambda\).

The parameter \(\beta\) controls the initial centrality and

\[\alpha < \frac{1}{\lambda_{max}}.\]

Katz centrality computes the relative influence of a node within a
network by measuring the number of the immediate neighbors (first
degree nodes) and also all other nodes in the network that connect
to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the
parameter \(\beta\). Connections made with distant neighbors
are, however, penalized by an attenuation factor \(\alpha\) which
should be strictly less than the inverse largest eigenvalue of the
adjacency matrix in order for the Katz centrality to be computed
correctly. More information is provided in 1 .

	Parameters

	
	G (graph) – A NetworkX graph

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Attenuation factor

	beta (scalar or dictionary, optional (default=1.0)) – Weight attributed to the immediate neighborhood. If not a scalar, the
dictionary must have an value for every node.

	max_iter (integer, optional (default=1000)) – Maximum number of iterations in power method.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional (default=1.0e-6)) – Error tolerance used to check convergence in power method iteration.

	nstart (dictionary, optional) – Starting value of Katz iteration for each node.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – If True normalize the resulting values.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	Returns

	nodes – Dictionary of nodes with Katz centrality as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the parameter \(beta\) is not a scalar but lacks a value for at least
one node

Examples

>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality(G,1/phi-0.01)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37

See also

katz_centrality_numpy(), eigenvector_centrality(), eigenvector_centrality_numpy(), pagerank(), hits()

Notes

Katz centrality was introduced by 2.

This algorithm it uses the power method to find the eigenvector
corresponding to the largest eigenvalue of the adjacency matrix of G.
The constant alpha should be strictly less than the inverse of largest
eigenvalue of the adjacency matrix for the algorithm to converge.
The iteration will stop after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.

When \(\alpha = 1/\lambda_{max}\) and \(\beta=0\), Katz centrality is the same
as eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds
to the in-edges in the graph. For out-edges Katz centrality
first reverse the graph with G.reverse().

References

	1

	Mark E. J. Newman:
Networks: An Introduction.
Oxford University Press, USA, 2010, p. 720.

	2

	Leo Katz:
A New Status Index Derived from Sociometric Index.
Psychometrika 18(1):39–43, 1953
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

NetworkX

katz_centrality_numpy

	
katz_centrality_numpy(G, alpha=0.1, beta=1.0, normalized=True, weight='weight')

	Compute the Katz centrality for the graph G.

Katz centrality computes the centrality for a node based on the centrality
of its neighbors. It is a generalization of the eigenvector centrality. The
Katz centrality for node \(i\) is

\[x_i = \alpha \sum_{j} A_{ij} x_j + \beta,\]

where \(A\) is the adjacency matrix of the graph G with eigenvalues \(\lambda\).

The parameter \(\beta\) controls the initial centrality and

\[\alpha < \frac{1}{\lambda_{max}}.\]

Katz centrality computes the relative influence of a node within a
network by measuring the number of the immediate neighbors (first
degree nodes) and also all other nodes in the network that connect
to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the
parameter \(\beta\). Connections made with distant neighbors
are, however, penalized by an attenuation factor \(\alpha\) which
should be strictly less than the inverse largest eigenvalue of the
adjacency matrix in order for the Katz centrality to be computed
correctly. More information is provided in 1 .

	Parameters

	
	G (graph) – A NetworkX graph

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Attenuation factor

	beta (scalar or dictionary, optional (default=1.0)) – Weight attributed to the immediate neighborhood. If not a scalar the
dictionary must have an value for every node.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool]) – If True normalize the resulting values.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	Returns

	nodes – Dictionary of nodes with Katz centrality as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the parameter \(beta\) is not a scalar but lacks a value for at least
one node

Examples

>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality_numpy(G,1/phi)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37

See also

katz_centrality(), eigenvector_centrality_numpy(), eigenvector_centrality(), pagerank(), hits()

Notes

Katz centrality was introduced by 2.

This algorithm uses a direct linear solver to solve the above equation.
The constant alpha should be strictly less than the inverse of largest
eigenvalue of the adjacency matrix for there to be a solution. When
\(\alpha = 1/\lambda_{max}\) and \(\beta=0\), Katz centrality is the same as
eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds
to the in-edges in the graph. For out-edges Katz centrality
first reverse the graph with G.reverse().

References

	1

	Mark E. J. Newman:
Networks: An Introduction.
Oxford University Press, USA, 2010, p. 720.

	2

	Leo Katz:
A New Status Index Derived from Sociometric Index.
Psychometrika 18(1):39–43, 1953
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

NetworkX

communicability

	
communicability(G)

	Return communicability between all pairs of nodes in G.

The communicability between pairs of nodes in G is the sum of
closed walks of different lengths starting at node u and ending at node v.

	Parameters

	G (graph) –

	Returns

	comm – Dictionary of dictionaries keyed by nodes with communicability
as the value.

	Return type

	dictionary of dictionaries

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability_centrality_exp()

	Communicability centrality for each node of G using matrix exponential.

	communicability_centrality()

	Communicability centrality for each node in G using spectral decomposition.

	communicability()

	Communicability between pairs of nodes in G.

Notes

This algorithm uses a spectral decomposition of the adjacency matrix.
Let G=(V,E) be a simple undirected graph. Using the connection between
the powers of the adjacency matrix and the number of walks in the graph,
the communicability between nodes \(u\) and \(v\) based on the graph spectrum
is 1

\[C(u,v)=\sum_{j=1}^{n}\phi_{j}(u)\phi_{j}(v)e^{\lambda_{j}},\]

where \(\phi_{j}(u)\) is the \(u\rm{th}\) element of the \(j\rm{th}\) orthonormal
eigenvector of the adjacency matrix associated with the eigenvalue
\(\lambda_{j}\).

References

	1

	Ernesto Estrada, Naomichi Hatano,
“Communicability in complex networks”,
Phys. Rev. E 77, 036111 (2008).
http://arxiv.org/abs/0707.0756

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability(G)

NetworkX

communicability_exp

	
communicability_exp(G)

	Return communicability between all pairs of nodes in G.

Communicability between pair of node (u,v) of node in G is the sum of
closed walks of different lengths starting at node u and ending at node v.

	Parameters

	G (graph) –

	Returns

	comm – Dictionary of dictionaries keyed by nodes with communicability
as the value.

	Return type

	dictionary of dictionaries

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability_centrality_exp()

	Communicability centrality for each node of G using matrix exponential.

	communicability_centrality()

	Communicability centrality for each node in G using spectral decomposition.

	communicability_exp()

	Communicability between all pairs of nodes in G using spectral decomposition.

Notes

This algorithm uses matrix exponentiation of the adjacency matrix.

Let G=(V,E) be a simple undirected graph. Using the connection between
the powers of the adjacency matrix and the number of walks in the graph,
the communicability between nodes u and v is 1,

\[C(u,v) = (e^A)_{uv},\]

where \(A\) is the adjacency matrix of G.

References

	1

	Ernesto Estrada, Naomichi Hatano,
“Communicability in complex networks”,
Phys. Rev. E 77, 036111 (2008).
http://arxiv.org/abs/0707.0756

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability_exp(G)

NetworkX

communicability_centrality

	
communicability_centrality(G)

	Return communicability centrality for each node in G.

Communicability centrality, also called subgraph centrality, of a node \(n\)
is the sum of closed walks of all lengths starting and ending at node \(n\).

	Parameters

	G (graph) –

	Returns

	nodes – Dictionary of nodes with communicability centrality as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability()

	Communicability between all pairs of nodes in G.

	communicability_centrality()

	Communicability centrality for each node of G.

Notes

This version of the algorithm computes eigenvalues and eigenvectors
of the adjacency matrix.

Communicability centrality of a node \(u\) in G can be found using
a spectral decomposition of the adjacency matrix 1 2,

\[SC(u)=\sum_{j=1}^{N}(v_{j}^{u})^2 e^{\lambda_{j}},\]

where \(v_j\) is an eigenvector of the adjacency matrix \(A\) of G
corresponding corresponding to the eigenvalue \(\lambda_j\).

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality(G)

References

	1

	Ernesto Estrada, Juan A. Rodriguez-Velazquez,
“Subgraph centrality in complex networks”,
Physical Review E 71, 056103 (2005).
http://arxiv.org/abs/cond-mat/0504730

	2

	Ernesto Estrada, Naomichi Hatano,
“Communicability in complex networks”,
Phys. Rev. E 77, 036111 (2008).
http://arxiv.org/abs/0707.0756

NetworkX

communicability_centrality_exp

	
communicability_centrality_exp(G)

	Return the communicability centrality for each node of G

Communicability centrality, also called subgraph centrality, of a node \(n\)
is the sum of closed walks of all lengths starting and ending at node \(n\).

	Parameters

	G (graph) –

	Returns

	nodes – Dictionary of nodes with communicability centrality as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability()

	Communicability between all pairs of nodes in G.

	communicability_centrality()

	Communicability centrality for each node of G.

Notes

This version of the algorithm exponentiates the adjacency matrix.
The communicability centrality of a node \(u\) in G can be found using
the matrix exponential of the adjacency matrix of G 1 2,

\[SC(u)=(e^A)_{uu} .\]

References

	1

	Ernesto Estrada, Juan A. Rodriguez-Velazquez,
“Subgraph centrality in complex networks”,
Physical Review E 71, 056103 (2005).
http://arxiv.org/abs/cond-mat/0504730

	2

	Ernesto Estrada, Naomichi Hatano,
“Communicability in complex networks”,
Phys. Rev. E 77, 036111 (2008).
http://arxiv.org/abs/0707.0756

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality_exp(G)

NetworkX

communicability_betweenness_centrality

	
communicability_betweenness_centrality(G, normalized=True)

	Return communicability betweenness for all pairs of nodes in G.

Communicability betweenness measure makes use of the number of walks
connecting every pair of nodes as the basis of a betweenness centrality
measure.

	Parameters

	G (graph) –

	Returns

	nodes – Dictionary of nodes with communicability betweenness as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability()

	Communicability between all pairs of nodes in G.

	communicability_centrality()

	Communicability centrality for each node of G using matrix exponential.

	communicability_centrality_exp()

	Communicability centrality for each node in G using spectral decomposition.

Notes

Let \(G=(V,E)\) be a simple undirected graph with \(n\) nodes and \(m\) edges,
and \(A\) denote the adjacency matrix of \(G\).

Let \(G(r)=(V,E(r))\) be the graph resulting from
removing all edges connected to node \(r\) but not the node itself.

The adjacency matrix for \(G(r)\) is \(A+E(r)\), where \(E(r)\) has nonzeros
only in row and column \(r\).

The communicability betweenness of a node \(r\) is 1

\[\omega_{r} = \frac{1}{C}\sum_{p}\sum_{q}\frac{G_{prq}}{G_{pq}},
p\neq q, q\neq r,\]

where
\(G_{prq}=(e^{A}_{pq} - (e^{A+E(r)})_{pq}\) is the number of walks
involving node r,
\(G_{pq}=(e^{A})_{pq}\) is the number of closed walks starting
at node \(p\) and ending at node \(q\),
and \(C=(n-1)^{2}-(n-1)\) is a normalization factor equal to the
number of terms in the sum.

The resulting \(\omega_{r}\) takes values between zero and one.
The lower bound cannot be attained for a connected
graph, and the upper bound is attained in the star graph.

References

	1

	Ernesto Estrada, Desmond J. Higham, Naomichi Hatano,
“Communicability Betweenness in Complex Networks”
Physica A 388 (2009) 764-774.
http://arxiv.org/abs/0905.4102

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> cbc = nx.communicability_betweenness_centrality(G)

NetworkX

estrada_index

	
estrada_index(G)

	Return the Estrada index of a the graph G.

	Parameters

	G (graph) –

	Returns

	estrada index

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

estrada_index_exp()

Notes

Let \(G=(V,E)\) be a simple undirected graph with \(n\) nodes and let
\(\lambda_{1}\leq\lambda_{2}\leq\cdots\lambda_{n}\)
be a non-increasing ordering of the eigenvalues of its adjacency
matrix \(A\). The Estrada index is

\[EE(G)=\sum_{j=1}^n e^{\lambda _j}.\]

References

	1

	E. Estrada, Characterization of 3D molecular structure,
Chem. Phys. Lett. 319, 713 (2000).

Examples

>>> G=nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> ei=nx.estrada_index(G)

NetworkX

load_centrality

	
load_centrality(G, v=None, cutoff=None, normalized=True, weight=None)

	Compute load centrality for nodes.

The load centrality of a node is the fraction of all shortest
paths that pass through that node.

	Parameters

	
	G (graph) – A networkx graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True the betweenness values are normalized by b=b/(n-1)(n-2) where
n is the number of nodes in G.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, edge weights are ignored.
Otherwise holds the name of the edge attribute used as weight.

	cutoff (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If specified, only consider paths of length <= cutoff.

	Returns

	nodes – Dictionary of nodes with centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality()

Notes

Load centrality is slightly different than betweenness. It was originally
introduced by 2. For this load algorithm see 1.

References

	1

	Mark E. J. Newman:
Scientific collaboration networks. II.
Shortest paths, weighted networks, and centrality.
Physical Review E 64, 016132, 2001.
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132

	2

	Kwang-Il Goh, Byungnam Kahng and Doochul Kim
Universal behavior of Load Distribution in Scale-Free Networks.
Physical Review Letters 87(27):1–4, 2001.
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

NetworkX

edge_load

	
edge_load(G, nodes=None, cutoff=False)

	Compute edge load.

WARNING:

This module is for demonstration and testing purposes.

NetworkX

dispersion

	
dispersion(G, u=None, v=None, normalized=True, alpha=1.0, b=0.0, c=0.0)

	Calculate dispersion between \(u\) and \(v\) in \(G\).

A link between two actors (\(u\) and \(v\)) has a high dispersion when their
mutual ties (\(s\) and \(t\)) are not well connected with each other.

	Parameters

	
	G (graph) – A NetworkX graph.

	u (node, optional) – The source for the dispersion score (e.g. ego node of the network).

	v (node, optional) – The target of the dispersion score if specified.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool]) – If True (default) normalize by the embededness of the nodes (u and v).

	Returns

	nodes – If u (v) is specified, returns a dictionary of nodes with dispersion
score for all “target” (“source”) nodes. If neither u nor v is
specified, returns a dictionary of dictionaries for all nodes ‘u’ in the
graph with a dispersion score for each node ‘v’.

	Return type

	dictionary

Notes

This implementation follows Lars Backstrom and Jon Kleinberg 1. Typical
usage would be to run dispersion on the ego network \(G_u\) if \(u\) were
specified. Running dispersion() with neither \(u\) nor \(v\) specified
can take some time to complete.

References

	1

	Romantic Partnerships and the Dispersion of Social Ties:
A Network Analysis of Relationship Status on Facebook.
Lars Backstrom, Jon Kleinberg.
http://arxiv.org/pdf/1310.6753v1.pdf

NetworkX

Chordal

Algorithms for chordal graphs.

A graph is chordal if every cycle of length at least 4 has a chord
(an edge joining two nodes not adjacent in the cycle).
http://en.wikipedia.org/wiki/Chordal_graph

	is_chordal(G)

	Checks whether G is a chordal graph.

	chordal_graph_cliques(G)

	Returns the set of maximal cliques of a chordal graph.

	chordal_graph_treewidth(G)

	Returns the treewidth of the chordal graph G.

	find_induced_nodes(G, s, t[, treewidth_bound])

	Returns the set of induced nodes in the path from s to t.

NetworkX

is_chordal

	
is_chordal(G)

	Checks whether G is a chordal graph.

A graph is chordal if every cycle of length at least 4 has a chord
(an edge joining two nodes not adjacent in the cycle).

	Parameters

	G (graph) – A NetworkX graph.

	Returns

	chordal – True if G is a chordal graph and False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises

	NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.

Examples

>>> import networkx as nx
>>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
>>> G=nx.Graph(e)
>>> nx.is_chordal(G)
True

Notes

The routine tries to go through every node following maximum cardinality
search. It returns False when it finds that the separator for any node
is not a clique. Based on the algorithms in 1.

References

	1

	R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
pp. 566–579.

NetworkX

chordal_graph_cliques

	
chordal_graph_cliques(G)

	Returns the set of maximal cliques of a chordal graph.

The algorithm breaks the graph in connected components and performs a
maximum cardinality search in each component to get the cliques.

	Parameters

	G (graph) – A NetworkX graph

	Returns

	cliques

	Return type

	A set containing the maximal cliques in G.

	Raises

	NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If the
input graph is found to be non-chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx
>>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> setlist = nx.chordal_graph_cliques(G)

NetworkX

chordal_graph_treewidth

	
chordal_graph_treewidth(G)

	Returns the treewidth of the chordal graph G.

	Parameters

	G (graph) – A NetworkX graph

	Returns

	treewidth – The size of the largest clique in the graph minus one.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	Raises

	NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If
the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx
>>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> nx.chordal_graph_treewidth(G)
3

References

	1

	http://en.wikipedia.org/wiki/Tree_decomposition#Treewidth

NetworkX

find_induced_nodes

	
find_induced_nodes(G, s, t, treewidth_bound=9223372036854775807)

	Returns the set of induced nodes in the path from s to t.

	Parameters

	
	G (graph) – A chordal NetworkX graph

	s (node) – Source node to look for induced nodes

	t (node) – Destination node to look for induced nodes

	treewith_bound (float [https://docs.python.org/2/library/functions.html#float]) – Maximum treewidth acceptable for the graph H. The search
for induced nodes will end as soon as the treewidth_bound is exceeded.

	Returns

	I – The set of induced nodes in the path from s to t in G

	Return type

	Set of nodes

	Raises

	NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If
the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx
>>> G=nx.Graph()
>>> G = nx.generators.classic.path_graph(10)
>>> I = nx.find_induced_nodes(G,1,9,2)
>>> list(I)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Notes

G must be a chordal graph and (s,t) an edge that is not in G.

If a treewidth_bound is provided, the search for induced nodes will end
as soon as the treewidth_bound is exceeded.

The algorithm is inspired by Algorithm 4 in 1.
A formal definition of induced node can also be found on that reference.

References

	1

	Learning Bounded Treewidth Bayesian Networks.
Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699–2731, 2008.
http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf

NetworkX

Clique

Cliques

Find and manipulate cliques of graphs.

Note that finding the largest clique of a graph has been
shown to be an NP-complete problem; the algorithms here
could take a long time to run.

http://en.wikipedia.org/wiki/Clique_problem

	enumerate_all_cliques(G)

	Returns all cliques in an undirected graph.

	find_cliques(G)

	Search for all maximal cliques in a graph.

	make_max_clique_graph(G[, create_using, name])

	Create the maximal clique graph of a graph.

	make_clique_bipartite(G[, fpos, …])

	Create a bipartite clique graph from a graph G.

	graph_clique_number(G[, cliques])

	Return the clique number (size of the largest clique) for G.

	graph_number_of_cliques(G[, cliques])

	Returns the number of maximal cliques in G.

	node_clique_number(G[, nodes, cliques])

	Returns the size of the largest maximal clique containing each given node.

	number_of_cliques(G[, nodes, cliques])

	Returns the number of maximal cliques for each node.

	cliques_containing_node(G[, nodes, cliques])

	Returns a list of cliques containing the given node.

NetworkX

enumerate_all_cliques

	
enumerate_all_cliques(G)

	Returns all cliques in an undirected graph.

This method returns cliques of size (cardinality)
k = 1, 2, 3, …, maxDegree - 1.

Where maxDegree is the maximal degree of any node in the graph.

	Parameters

	G (undirected graph) –

	Returns

	generator of lists

	Return type

	generator of list for each clique.

Notes

To obtain a list of all cliques, use
list(enumerate_all_cliques(G)).

Based on the algorithm published by Zhang et al. (2005) 1
and adapted to output all cliques discovered.

This algorithm is not applicable on directed graphs.

This algorithm ignores self-loops and parallel edges as
clique is not conventionally defined with such edges.

There are often many cliques in graphs.
This algorithm however, hopefully, does not run out of memory
since it only keeps candidate sublists in memory and
continuously removes exhausted sublists.

References

	1

	Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J.,
Langston, M.A., Samatova, N.F.,
Genome-Scale Computational Approaches to Memory-Intensive
Applications in Systems Biology.
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005
Conference, pp. 12, 12-18 Nov. 2005.
doi: 10.1109/SC.2005.29.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559964&isnumber=33129

NetworkX

find_cliques

	
find_cliques(G)

	Search for all maximal cliques in a graph.

Maximal cliques are the largest complete subgraph containing
a given node. The largest maximal clique is sometimes called
the maximum clique.

	Returns

	generator of lists

	Return type

	genetor of member list for each maximal clique

See also

find_cliques_recursive(), A()

Notes

To obtain a list of cliques, use list(find_cliques(G)).

Based on the algorithm published by Bron & Kerbosch (1973) 1
as adapted by Tomita, Tanaka and Takahashi (2006) 2
and discussed in Cazals and Karande (2008) 3.
The method essentially unrolls the recursion used in
the references to avoid issues of recursion stack depth.

This algorithm is not suitable for directed graphs.

This algorithm ignores self-loops and parallel edges as
clique is not conventionally defined with such edges.

There are often many cliques in graphs. This algorithm can
run out of memory for large graphs.

References

	1

	Bron, C. and Kerbosch, J. 1973.
Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16, 9 (Sep. 1973), 575-577.
http://portal.acm.org/citation.cfm?doid=362342.362367

	2

	Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi,
The worst-case time complexity for generating all maximal
cliques and computational experiments,
Theoretical Computer Science, Volume 363, Issue 1,
Computing and Combinatorics,
10th Annual International Conference on
Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28-42
http://dx.doi.org/10.1016/j.tcs.2006.06.015

	3

	F. Cazals, C. Karande,
A note on the problem of reporting maximal cliques,
Theoretical Computer Science,
Volume 407, Issues 1-3, 6 November 2008, Pages 564-568,
http://dx.doi.org/10.1016/j.tcs.2008.05.010

NetworkX

make_max_clique_graph

	
make_max_clique_graph(G, create_using=None, name=None)

	Create the maximal clique graph of a graph.

Finds the maximal cliques and treats these as nodes.
The nodes are connected if they have common members in
the original graph. Theory has done a lot with clique
graphs, but I haven’t seen much on maximal clique graphs.

Notes

This should be the same as make_clique_bipartite followed
by project_up, but it saves all the intermediate steps.

NetworkX

make_clique_bipartite

	
make_clique_bipartite(G, fpos=None, create_using=None, name=None)

	Create a bipartite clique graph from a graph G.

Nodes of G are retained as the “bottom nodes” of B and
cliques of G become “top nodes” of B.
Edges are present if a bottom node belongs to the clique
represented by the top node.

Returns a Graph with additional attribute dict B.node_type
which is keyed by nodes to “Bottom” or “Top” appropriately.

if fpos is not None, a second additional attribute dict B.pos
is created to hold the position tuple of each node for viewing
the bipartite graph.

NetworkX

graph_clique_number

	
graph_clique_number(G, cliques=None)

	Return the clique number (size of the largest clique) for G.

An optional list of cliques can be input if already computed.

NetworkX

graph_number_of_cliques

	
graph_number_of_cliques(G, cliques=None)

	Returns the number of maximal cliques in G.

An optional list of cliques can be input if already computed.

NetworkX

node_clique_number

	
node_clique_number(G, nodes=None, cliques=None)

	Returns the size of the largest maximal clique containing
each given node.

Returns a single or list depending on input nodes.
Optional list of cliques can be input if already computed.

NetworkX

number_of_cliques

	
number_of_cliques(G, nodes=None, cliques=None)

	Returns the number of maximal cliques for each node.

Returns a single or list depending on input nodes.
Optional list of cliques can be input if already computed.

NetworkX

cliques_containing_node

	
cliques_containing_node(G, nodes=None, cliques=None)

	Returns a list of cliques containing the given node.

Returns a single list or list of lists depending on input nodes.
Optional list of cliques can be input if already computed.

NetworkX

Clustering

Algorithms to characterize the number of triangles in a graph.

	triangles(G[, nodes])

	Compute the number of triangles.

	transitivity(G)

	Compute graph transitivity, the fraction of all possible triangles present in G.

	clustering(G[, nodes, weight])

	Compute the clustering coefficient for nodes.

	average_clustering(G[, nodes, weight, …])

	Compute the average clustering coefficient for the graph G.

	square_clustering(G[, nodes])

	Compute the squares clustering coefficient for nodes.

NetworkX

triangles

	
triangles(G, nodes=None)

	Compute the number of triangles.

Finds the number of triangles that include a node as one vertex.

	Parameters

	
	G (graph) – A networkx graph

	nodes (container of nodes, optional (default= all nodes in G)) – Compute triangles for nodes in this container.

	Returns

	out – Number of triangles keyed by node label.

	Return type

	dictionary

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.triangles(G,0))
6
>>> print(nx.triangles(G))
{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
>>> print(list(nx.triangles(G,(0,1)).values()))
[6, 6]

Notes

When computing triangles for the entire graph each triangle is counted
three times, once at each node. Self loops are ignored.

NetworkX

transitivity

	
transitivity(G)

	Compute graph transitivity, the fraction of all possible triangles
present in G.

Possible triangles are identified by the number of “triads”
(two edges with a shared vertex).

The transitivity is

\[T = 3\frac{\#triangles}{\#triads}.\]

	Parameters

	G (graph) –

	Returns

	out – Transitivity

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G = nx.complete_graph(5)
>>> print(nx.transitivity(G))
1.0

NetworkX

clustering

	
clustering(G, nodes=None, weight=None)

	Compute the clustering coefficient for nodes.

For unweighted graphs, the clustering of a node \(u\)
is the fraction of possible triangles through that node that exist,

\[c_u = \frac{2 T(u)}{deg(u)(deg(u)-1)},\]

where \(T(u)\) is the number of triangles through node \(u\) and
\(deg(u)\) is the degree of \(u\).

For weighted graphs, the clustering is defined
as the geometric average of the subgraph edge weights 1,

\[c_u = \frac{1}{deg(u)(deg(u)-1))}
 \sum_{uv} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.\]

The edge weights \(\hat{w}_{uv}\) are normalized by the maximum weight in the
network \(\hat{w}_{uv} = w_{uv}/\max(w)\).

The value of \(c_u\) is assigned to 0 if \(deg(u) < 2\).

	Parameters

	
	G (graph) –

	nodes (container of nodes, optional (default=all nodes in G)) – Compute clustering for nodes in this container.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	Returns

	out – Clustering coefficient at specified nodes

	Return type

	float [https://docs.python.org/2/library/functions.html#float], or dictionary

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.clustering(G,0))
1.0
>>> print(nx.clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

Notes

Self loops are ignored.

References

	1

	Generalizations of the clustering coefficient to weighted
complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
http://jponnela.com/web_documents/a9.pdf

NetworkX

average_clustering

	
average_clustering(G, nodes=None, weight=None, count_zeros=True)

	Compute the average clustering coefficient for the graph G.

The clustering coefficient for the graph is the average,

\[C = \frac{1}{n}\sum_{v \in G} c_v,\]

where \(n\) is the number of nodes in \(G\).

	Parameters

	
	G (graph) –

	nodes (container of nodes, optional (default=all nodes in G)) – Compute average clustering for nodes in this container.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	count_zeros (bool [https://docs.python.org/2/library/functions.html#bool]) – If False include only the nodes with nonzero clustering in the average.

	Returns

	avg – Average clustering

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.average_clustering(G))
1.0

Notes

This is a space saving routine; it might be faster
to use the clustering function to get a list and then take the average.

Self loops are ignored.

References

	1

	Generalizations of the clustering coefficient to weighted
complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
http://jponnela.com/web_documents/a9.pdf

	2

	Marcus Kaiser, Mean clustering coefficients: the role of isolated
nodes and leafs on clustering measures for small-world networks.
http://arxiv.org/abs/0802.2512

NetworkX

square_clustering

	
square_clustering(G, nodes=None)

	Compute the squares clustering coefficient for nodes.

For each node return the fraction of possible squares that exist at
the node 1

\[C_4(v) = \frac{ \sum_{u=1}^{k_v}
\sum_{w=u+1}^{k_v} q_v(u,w) }{ \sum_{u=1}^{k_v}
\sum_{w=u+1}^{k_v} [a_v(u,w) + q_v(u,w)]},\]

where \(q_v(u,w)\) are the number of common neighbors of \(u\) and \(w\)
other than \(v\) (ie squares), and
\(a_v(u,w) = (k_u - (1+q_v(u,w)+\theta_{uv}))(k_w - (1+q_v(u,w)+\theta_{uw}))\),
where \(\theta_{uw} = 1\) if \(u\) and \(w\) are connected and 0 otherwise.

	Parameters

	
	G (graph) –

	nodes (container of nodes, optional (default=all nodes in G)) – Compute clustering for nodes in this container.

	Returns

	c4 – A dictionary keyed by node with the square clustering coefficient value.

	Return type

	dictionary

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.square_clustering(G,0))
1.0
>>> print(nx.square_clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

Notes

While \(C_3(v)\) (triangle clustering) gives the probability that
two neighbors of node v are connected with each other, \(C_4(v)\) is
the probability that two neighbors of node v share a common
neighbor different from v. This algorithm can be applied to both
bipartite and unipartite networks.

References

	1

	Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005
Cycles and clustering in bipartite networks.
Physical Review E (72) 056127.

NetworkX

Coloring

	greedy_color(G[, strategy, interchange])

	Color a graph using various strategies of greedy graph coloring.

NetworkX

greedy_color

	
greedy_color(G, strategy=<function strategy_largest_first>, interchange=False)

	Color a graph using various strategies of greedy graph coloring.
The strategies are described in 1.

Attempts to color a graph using as few colors as possible, where no
neighbours of a node can have same color as the node itself.

	Parameters

	
	G (NetworkX graph) –

	strategy (function(G, colors)) – A function that provides the coloring strategy, by returning nodes
in the ordering they should be colored. G is the graph, and colors
is a dict of the currently assigned colors, keyed by nodes.

You can pass your own ordering function, or use one of the built in:

	strategy_largest_first

	strategy_random_sequential

	strategy_smallest_last

	strategy_independent_set

	strategy_connected_sequential_bfs

	strategy_connected_sequential_dfs

	strategy_connected_sequential
(alias of strategy_connected_sequential_bfs)

	strategy_saturation_largest_first (also known as DSATUR)

	interchange (bool [https://docs.python.org/2/library/functions.html#bool]) – Will use the color interchange algorithm described by 2 if set
to true.

Note that saturation largest first and independent set do not
work with interchange. Furthermore, if you use interchange with
your own strategy function, you cannot rely on the values in the
colors argument.

	Returns

	
	A dictionary with keys representing nodes and values representing

	corresponding coloring.

Examples

>>> G = nx.cycle_graph(4)
>>> d = nx.coloring.greedy_color(G, strategy=nx.coloring.strategy_largest_first)
>>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}]
True

References

	1

	Adrian Kosowski, and Krzysztof Manuszewski,
Classical Coloring of Graphs, Graph Colorings, 2-19, 2004.
ISBN 0-8218-3458-4.

	2

	Maciej M. Syslo, Marsingh Deo, Janusz S. Kowalik,
Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983.
ISBN 0-486-45353-7.

NetworkX

Communities

K-Clique

	k_clique_communities(G, k[, cliques])

	Find k-clique communities in graph using the percolation method.

NetworkX

k_clique_communities

	
k_clique_communities(G, k, cliques=None)

	Find k-clique communities in graph using the percolation method.

A k-clique community is the union of all cliques of size k that
can be reached through adjacent (sharing k-1 nodes) k-cliques.

	Parameters

	
	G (NetworkX graph) –

	k (int [https://docs.python.org/2/library/functions.html#int]) – Size of smallest clique

	cliques (list or generator) – Precomputed cliques (use networkx.find_cliques(G))

	Returns

	

	Return type

	Yields sets of nodes, one for each k-clique community.

Examples

>>> G = nx.complete_graph(5)
>>> K5 = nx.convert_node_labels_to_integers(G,first_label=2)
>>> G.add_edges_from(K5.edges())
>>> c = list(nx.k_clique_communities(G, 4))
>>> list(c[0])
[0, 1, 2, 3, 4, 5, 6]
>>> list(nx.k_clique_communities(G, 6))
[]

References

	1

	Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek,
Uncovering the overlapping community structure of complex networks
in nature and society Nature 435, 814-818, 2005,
doi:10.1038/nature03607

NetworkX

Components

Connectivity

Connected components.

	is_connected(G)

	Return True if the graph is connected, false otherwise.

	number_connected_components(G)

	Return the number of connected components.

	connected_components(G)

	Generate connected components.

	connected_component_subgraphs(G[, copy])

	Generate connected components as subgraphs.

	node_connected_component(G, n)

	Return the nodes in the component of graph containing node n.

Strong connectivity

Strongly connected components.

	is_strongly_connected(G)

	Test directed graph for strong connectivity.

	number_strongly_connected_components(G)

	Return number of strongly connected components in graph.

	strongly_connected_components(G)

	Generate nodes in strongly connected components of graph.

	strongly_connected_component_subgraphs(G[, copy])

	Generate strongly connected components as subgraphs.

	strongly_connected_components_recursive(G)

	Generate nodes in strongly connected components of graph.

	kosaraju_strongly_connected_components(G[, …])

	Generate nodes in strongly connected components of graph.

	condensation(G[, scc])

	Returns the condensation of G.

Weak connectivity

Weakly connected components.

	is_weakly_connected(G)

	Test directed graph for weak connectivity.

	number_weakly_connected_components(G)

	Return the number of weakly connected components in G.

	weakly_connected_components(G)

	Generate weakly connected components of G.

	weakly_connected_component_subgraphs(G[, copy])

	Generate weakly connected components as subgraphs.

Attracting components

Attracting components.

	is_attracting_component(G)

	Returns True if \(G\) consists of a single attracting component.

	number_attracting_components(G)

	Returns the number of attracting components in \(G\).

	attracting_components(G)

	Generates a list of attracting components in \(G\).

	attracting_component_subgraphs(G[, copy])

	Generates a list of attracting component subgraphs from \(G\).

Biconnected components

Biconnected components and articulation points.

	is_biconnected(G)

	Return True if the graph is biconnected, False otherwise.

	biconnected_components(G)

	Return a generator of sets of nodes, one set for each biconnected

	biconnected_component_edges(G)

	Return a generator of lists of edges, one list for each biconnected component of the input graph.

	biconnected_component_subgraphs(G[, copy])

	Return a generator of graphs, one graph for each biconnected component of the input graph.

	articulation_points(G)

	Return a generator of articulation points, or cut vertices, of a graph.

Semiconnectedness

Semiconnectedness.

	is_semiconnected(G)

	Return True if the graph is semiconnected, False otherwise.

NetworkX

is_connected

	
is_connected(G)

	Return True if the graph is connected, false otherwise.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	connected – True if the graph is connected, false otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> G = nx.path_graph(4)
>>> print(nx.is_connected(G))
True

See also

connected_components()

Notes

For undirected graphs only.

NetworkX

number_connected_components

	
number_connected_components(G)

	Return the number of connected components.

	Parameters

	G (NetworkX graph) – An undirected graph.

	Returns

	n – Number of connected components

	Return type

	integer

See also

connected_components()

Notes

For undirected graphs only.

NetworkX

connected_components

	
connected_components(G)

	Generate connected components.

	Parameters

	G (NetworkX graph) – An undirected graph

	Returns

	comp – A generator of sets of nodes, one for each component of G.

	Return type

	generator of sets

Examples

Generate a sorted list of connected components, largest first.

>>> G = nx.path_graph(4)
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
[4, 3]

If you only want the largest connected component, it’s more
efficient to use max instead of sort.

>>> largest_cc = max(nx.connected_components(G), key=len)

See also

strongly_connected_components()

Notes

For undirected graphs only.

NetworkX

connected_component_subgraphs

	
connected_component_subgraphs(G, copy=True)

	Generate connected components as subgraphs.

	Parameters

	
	G (NetworkX graph) – An undirected graph.

	copy (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – If True make a copy of the graph attributes

	Returns

	comp – A generator of graphs, one for each connected component of G.

	Return type

	generator

Examples

>>> G = nx.path_graph(4)
>>> G.add_edge(5,6)
>>> graphs = list(nx.connected_component_subgraphs(G))

If you only want the largest connected component, it’s more
efficient to use max than sort.

>>> Gc = max(nx.connected_component_subgraphs(G), key=len)

See also

connected_components()

Notes

For undirected graphs only.
Graph, node, and edge attributes are copied to the subgraphs by default.

NetworkX

node_connected_component

	
node_connected_component(G, n)

	Return the nodes in the component of graph containing node n.

	Parameters

	
	G (NetworkX Graph) – An undirected graph.

	n (node label) – A node in G

	Returns

	comp – A set of nodes in the component of G containing node n.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

See also

connected_components()

Notes

For undirected graphs only.

NetworkX

is_strongly_connected

	
is_strongly_connected(G)

	Test directed graph for strong connectivity.

	Parameters

	G (NetworkX Graph) – A directed graph.

	Returns

	connected – True if the graph is strongly connected, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

See also

strongly_connected_components()

Notes

For directed graphs only.

NetworkX

number_strongly_connected_components

	
number_strongly_connected_components(G)

	Return number of strongly connected components in graph.

	Parameters

	G (NetworkX graph) – A directed graph.

	Returns

	n – Number of strongly connected components

	Return type

	integer

See also

connected_components()

Notes

For directed graphs only.

NetworkX

strongly_connected_components

	
strongly_connected_components(G)

	Generate nodes in strongly connected components of graph.

	Parameters

	G (NetworkX Graph) – An directed graph.

	Returns

	comp – A generator of sets of nodes, one for each strongly connected
component of G.

	Return type

	generator of sets

	Raises

	NetworkXNotImplemented: – If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.strongly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> largest = max(nx.strongly_connected_components(G), key=len)

See also

connected_components(), weakly_connected_components()

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications.
Nonrecursive version of algorithm.

References

	1

	Depth-first search and linear graph algorithms, R. Tarjan
SIAM Journal of Computing 1(2):146-160, (1972).

	2

	On finding the strongly connected components in a directed graph.
E. Nuutila and E. Soisalon-Soinen
Information Processing Letters 49(1): 9-14, (1994)..

NetworkX

strongly_connected_component_subgraphs

	
strongly_connected_component_subgraphs(G, copy=True)

	Generate strongly connected components as subgraphs.

	Parameters

	
	G (NetworkX Graph) – A directed graph.

	copy (boolean, optional) – if copy is True, Graph, node, and edge attributes are copied to
the subgraphs.

	Returns

	comp – A generator of graphs, one for each strongly connected component of G.

	Return type

	generator of graphs

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(Gc) for Gc in sorted(nx.strongly_connected_component_subgraphs(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> Gc = max(nx.strongly_connected_component_subgraphs(G), key=len)

See also

connected_component_subgraphs(), weakly_connected_component_subgraphs()

NetworkX

strongly_connected_components_recursive

	
strongly_connected_components_recursive(G)

	Generate nodes in strongly connected components of graph.

Recursive version of algorithm.

	Parameters

	G (NetworkX Graph) – An directed graph.

	Returns

	comp – A generator of sets of nodes, one for each strongly connected
component of G.

	Return type

	generator of sets

	Raises

	NetworkXNotImplemented: – If G is undirected

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.strongly_connected_components_recursive(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> largest = max(nx.strongly_connected_components_recursive(G), key=len)

See also

connected_components()

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications.

References

	1

	Depth-first search and linear graph algorithms, R. Tarjan
SIAM Journal of Computing 1(2):146-160, (1972).

	2

	On finding the strongly connected components in a directed graph.
E. Nuutila and E. Soisalon-Soinen
Information Processing Letters 49(1): 9-14, (1994)..

NetworkX

kosaraju_strongly_connected_components

	
kosaraju_strongly_connected_components(G, source=None)

	Generate nodes in strongly connected components of graph.

	Parameters

	G (NetworkX Graph) – An directed graph.

	Returns

	comp – A genrator of sets of nodes, one for each strongly connected
component of G.

	Return type

	generator of sets

	Raises

	NetworkXNotImplemented: – If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.kosaraju_strongly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len)

See also

connected_components(), weakly_connected_components()

Notes

Uses Kosaraju’s algorithm.

NetworkX

condensation

	
condensation(G, scc=None)

	Returns the condensation of G.

The condensation of G is the graph with each of the strongly connected
components contracted into a single node.

	Parameters

	
	G (NetworkX DiGraph) – A directed graph.

	scc (list or generator (optional, default=None)) – Strongly connected components. If provided, the elements in
\(scc\) must partition the nodes in \(G\). If not provided, it will be
calculated as scc=nx.strongly_connected_components(G).

	Returns

	C – The condensation graph C of G. The node labels are integers
corresponding to the index of the component in the list of
strongly connected components of G. C has a graph attribute named
‘mapping’ with a dictionary mapping the original nodes to the
nodes in C to which they belong. Each node in C also has a node
attribute ‘members’ with the set of original nodes in G that
form the SCC that the node in C represents.

	Return type

	NetworkX DiGraph

	Raises

	NetworkXNotImplemented: – If G is not directed

Notes

After contracting all strongly connected components to a single node,
the resulting graph is a directed acyclic graph.

NetworkX

is_weakly_connected

	
is_weakly_connected(G)

	Test directed graph for weak connectivity.

A directed graph is weakly connected if, and only if, the graph
is connected when the direction of the edge between nodes is ignored.

	Parameters

	G (NetworkX Graph) – A directed graph.

	Returns

	connected – True if the graph is weakly connected, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

See also

is_strongly_connected(), is_semiconnected(), is_connected()

Notes

For directed graphs only.

NetworkX

number_weakly_connected_components

	
number_weakly_connected_components(G)

	Return the number of weakly connected components in G.

	Parameters

	G (NetworkX graph) – A directed graph.

	Returns

	n – Number of weakly connected components

	Return type

	integer

See also

connected_components()

Notes

For directed graphs only.

NetworkX

weakly_connected_components

	
weakly_connected_components(G)

	Generate weakly connected components of G.

	Parameters

	G (NetworkX graph) – A directed graph

	Returns

	comp – A generator of sets of nodes, one for each weakly connected
component of G.

	Return type

	generator of sets

Examples

Generate a sorted list of weakly connected components, largest first.

>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.weakly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> largest_cc = max(nx.weakly_connected_components(G), key=len)

See also

strongly_connected_components()

Notes

For directed graphs only.

NetworkX

weakly_connected_component_subgraphs

	
weakly_connected_component_subgraphs(G, copy=True)

	Generate weakly connected components as subgraphs.

	Parameters

	
	G (NetworkX graph) – A directed graph.

	copy (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – If True make a copy of the graph attributes

	Returns

	comp – A generator of graphs, one for each weakly connected component of G.

	Return type

	generator

Examples

Generate a sorted list of weakly connected components, largest first.

>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.weakly_connected_component_subgraphs(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> Gc = max(nx.weakly_connected_component_subgraphs(G), key=len)

See also

strongly_connected_components(), connected_components()

Notes

For directed graphs only.
Graph, node, and edge attributes are copied to the subgraphs by default.

NetworkX

is_attracting_component

	
is_attracting_component(G)

	Returns True if \(G\) consists of a single attracting component.

	Parameters

	G (DiGraph, MultiDiGraph) – The graph to be analyzed.

	Returns

	attracting – True if \(G\) has a single attracting component. Otherwise, False.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

See also

attracting_components(), number_attracting_components(), attracting_component_subgraphs()

NetworkX

number_attracting_components

	
number_attracting_components(G)

	Returns the number of attracting components in \(G\).

	Parameters

	G (DiGraph, MultiDiGraph) – The graph to be analyzed.

	Returns

	n – The number of attracting components in G.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

attracting_components(), is_attracting_component(), attracting_component_subgraphs()

NetworkX

attracting_components

	
attracting_components(G)

	Generates a list of attracting components in \(G\).

An attracting component in a directed graph \(G\) is a strongly connected
component with the property that a random walker on the graph will never
leave the component, once it enters the component.

The nodes in attracting components can also be thought of as recurrent
nodes. If a random walker enters the attractor containing the node, then
the node will be visited infinitely often.

	Parameters

	G (DiGraph, MultiDiGraph) – The graph to be analyzed.

	Returns

	attractors – A generator of sets of nodes, one for each attracting component of G.

	Return type

	generator of sets

See also

number_attracting_components(), is_attracting_component(), attracting_component_subgraphs()

NetworkX

attracting_component_subgraphs

	
attracting_component_subgraphs(G, copy=True)

	Generates a list of attracting component subgraphs from \(G\).

	Parameters

	G (DiGraph, MultiDiGraph) – The graph to be analyzed.

	Returns

	
	subgraphs (list) – A list of node-induced subgraphs of the attracting components of \(G\).

	copy (bool) – If copy is True, graph, node, and edge attributes are copied to the
subgraphs.

See also

attracting_components(), number_attracting_components(), is_attracting_component()

NetworkX

is_biconnected

	
is_biconnected(G)

	Return True if the graph is biconnected, False otherwise.

A graph is biconnected if, and only if, it cannot be disconnected by
removing only one node (and all edges incident on that node). If
removing a node increases the number of disconnected components
in the graph, that node is called an articulation point, or cut
vertex. A biconnected graph has no articulation points.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	biconnected – True if the graph is biconnected, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.path_graph(4)
>>> print(nx.is_biconnected(G))
False
>>> G.add_edge(0, 3)
>>> print(nx.is_biconnected(G))
True

See also

biconnected_components(), articulation_points(), biconnected_component_edges(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

biconnected_components

	
biconnected_components(G)

	Return a generator of sets of nodes, one set for each biconnected
component of the graph

Biconnected components are maximal subgraphs such that the removal of a
node (and all edges incident on that node) will not disconnect the
subgraph. Note that nodes may be part of more than one biconnected
component. Those nodes are articulation points, or cut vertices. The
removal of articulation points will increase the number of connected
components of the graph.

Notice that by convention a dyad is considered a biconnected component.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	nodes – Generator of sets of nodes, one set for each biconnected component.

	Return type

	generator

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
1

You can generate a sorted list of biconnected components, largest
first, using sort.

>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
[5, 2]

If you only want the largest connected component, it’s more
efficient to use max instead of sort.

>>> Gc = max(nx.biconnected_components(G), key=len)

See also

is_biconnected(), articulation_points(), biconnected_component_edges(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

biconnected_component_edges

	
biconnected_component_edges(G)

	Return a generator of lists of edges, one list for each biconnected
component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a
node (and all edges incident on that node) will not disconnect the
subgraph. Note that nodes may be part of more than one biconnected
component. Those nodes are articulation points, or cut vertices. However,
each edge belongs to one, and only one, biconnected component.

Notice that by convention a dyad is considered a biconnected component.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	edges – Generator of lists of edges, one list for each bicomponent.

	Return type

	generator of lists

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
5
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
1

See also

is_biconnected(), biconnected_components(), articulation_points(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

biconnected_component_subgraphs

	
biconnected_component_subgraphs(G, copy=True)

	Return a generator of graphs, one graph for each biconnected component
of the input graph.

Biconnected components are maximal subgraphs such that the removal of a
node (and all edges incident on that node) will not disconnect the
subgraph. Note that nodes may be part of more than one biconnected
component. Those nodes are articulation points, or cut vertices. The
removal of articulation points will increase the number of connected
components of the graph.

Notice that by convention a dyad is considered a biconnected component.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	graphs – Generator of graphs, one graph for each biconnected component.

	Return type

	generator

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
>>> len(bicomponents)
1

You can generate a sorted list of biconnected components, largest
first, using sort.

>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_component_subgraphs(G),
... key=len, reverse=True)]
[5, 2]

If you only want the largest connected component, it’s more
efficient to use max instead of sort.

>>> Gc = max(nx.biconnected_component_subgraphs(G), key=len)

See also

is_biconnected(), articulation_points(), biconnected_component_edges(), biconnected_components()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

Graph, node, and edge attributes are copied to the subgraphs.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

articulation_points

	
articulation_points(G)

	Return a generator of articulation points, or cut vertices, of a graph.

An articulation point or cut vertex is any node whose removal (along with
all its incident edges) increases the number of connected components of
a graph. An undirected connected graph without articulation points is
biconnected. Articulation points belong to more than one biconnected
component of a graph.

Notice that by convention a dyad is considered a biconnected component.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	articulation points – generator of nodes

	Return type

	generator

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> len(list(nx.articulation_points(G)))
4
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> len(list(nx.articulation_points(G)))
0

See also

is_biconnected(), biconnected_components(), biconnected_component_edges(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

is_semiconnected

	
is_semiconnected(G)

	Return True if the graph is semiconnected, False otherwise.

A graph is semiconnected if, and only if, for any pair of nodes, either one
is reachable from the other, or they are mutually reachable.

	Parameters

	G (NetworkX graph) – A directed graph.

	Returns

	semiconnected – True if the graph is semiconnected, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises

	
	NetworkXNotImplemented : – If the input graph is not directed.

	NetworkXPointlessConcept : – If the graph is empty.

Examples

>>> G=nx.path_graph(4,create_using=nx.DiGraph())
>>> print(nx.is_semiconnected(G))
True
>>> G=nx.DiGraph([(1, 2), (3, 2)])
>>> print(nx.is_semiconnected(G))
False

See also

is_strongly_connected(), is_weakly_connected()

NetworkX

Connectivity

Connectivity and cut algorithms

K-node-components

Moody and White algorithm for k-components

	k_components(G[, flow_func])

	Returns the k-component structure of a graph G.

K-node-cutsets

Kanevsky all minimum node k cutsets algorithm.

	all_node_cuts(G[, k, flow_func])

	Returns all minimum k cutsets of an undirected graph G.

Flow-based Connectivity

Flow based connectivity algorithms

	average_node_connectivity(G[, flow_func])

	Returns the average connectivity of a graph G.

	all_pairs_node_connectivity(G[, nbunch, …])

	Compute node connectivity between all pairs of nodes of G.

	edge_connectivity(G[, s, t, flow_func])

	Returns the edge connectivity of the graph or digraph G.

	local_edge_connectivity(G, u, v[, …])

	Returns local edge connectivity for nodes s and t in G.

	local_node_connectivity(G, s, t[, …])

	Computes local node connectivity for nodes s and t.

	node_connectivity(G[, s, t, flow_func])

	Returns node connectivity for a graph or digraph G.

Flow-based Minimum Cuts

Flow based cut algorithms

	minimum_edge_cut(G[, s, t, flow_func])

	Returns a set of edges of minimum cardinality that disconnects G.

	minimum_node_cut(G[, s, t, flow_func])

	Returns a set of nodes of minimum cardinality that disconnects G.

	minimum_st_edge_cut(G, s, t[, flow_func, …])

	Returns the edges of the cut-set of a minimum (s, t)-cut.

	minimum_st_node_cut(G, s, t[, flow_func, …])

	Returns a set of nodes of minimum cardinality that disconnect source from target in G.

Stoer-Wagner minimum cut

Stoer-Wagner minimum cut algorithm.

	stoer_wagner(G[, weight, heap])

	Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

Utils for flow-based connectivity

Utilities for connectivity package

	build_auxiliary_edge_connectivity(G)

	Auxiliary digraph for computing flow based edge connectivity

	build_auxiliary_node_connectivity(G)

	Creates a directed graph D from an undirected graph G to compute flow based node connectivity.

NetworkX

k_components

	
k_components(G, flow_func=None)

	Returns the k-component structure of a graph G.

A \(k\)-component is a maximal subgraph of a graph G that has, at least,
node connectivity \(k\): we need to remove at least \(k\) nodes to break it
into more components. \(k\)-components have an inherent hierarchical
structure because they are nested in terms of connectivity: a connected
graph can contain several 2-components, each of which can contain
one or more 3-components, and so forth.

	Parameters

	
	G (NetworkX graph) –

	flow_func (function) – Function to perform the underlying flow computations. Default value
edmonds_karp(). This function performs better in sparse graphs with
right tailed degree distributions. shortest_augmenting_path() will
perform better in denser graphs.

	Returns

	k_components – Dictionary with all connectivity levels \(k\) in the input Graph as keys
and a list of sets of nodes that form a k-component of level \(k\) as
values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises

	NetworkXNotImplemented: – If the input graph is directed.

Examples

>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> G = nx.petersen_graph()
>>> k_components = nx.k_components(G)

Notes

Moody and White 1 (appendix A) provide an algorithm for identifying
k-components in a graph, which is based on Kanevsky’s algorithm 2
for finding all minimum-size node cut-sets of a graph (implemented in
all_node_cuts() function):

	Compute node connectivity, k, of the input graph G.

	Identify all k-cutsets at the current level of connectivity using
Kanevsky’s algorithm.

	Generate new graph components based on the removal of
these cutsets. Nodes in a cutset belong to both sides
of the induced cut.

	If the graph is neither complete nor trivial, return to 1;
else end.

This implementation also uses some heuristics (see 3 for details)
to speed up the computation.

See also

node_connectivity(), all_node_cuts()

References

	1

	Moody, J. and D. White (2003). Social cohesion and embeddedness:
A hierarchical conception of social groups.
American Sociological Review 68(1), 103–28.
http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf

	2

	Kanevsky, A. (1993). Finding all minimum-size separating vertex
sets in a graph. Networks 23(6), 533–541.
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract

	3

	Torrents, J. and F. Ferraro (2015). Structural Cohesion:
Visualization and Heuristics for Fast Computation.
http://arxiv.org/pdf/1503.04476v1

NetworkX

all_node_cuts

	
all_node_cuts(G, k=None, flow_func=None)

	Returns all minimum k cutsets of an undirected graph G.

This implementation is based on Kanevsky’s algorithm 1 for finding all
minimum-size node cut-sets of an undirected graph G; ie the set (or sets)
of nodes of cardinality equal to the node connectivity of G. Thus if
removed, would break G into two or more connected components.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	k (Integer) – Node connectivity of the input graph. If k is None, then it is
computed. Default value: None.

	flow_func (function) – Function to perform the underlying flow computations. Default value
edmonds_karp. This function performs better in sparse graphs with
right tailed degree distributions. shortest_augmenting_path will
perform better in denser graphs.

	Returns

	cuts – Each node cutset has cardinality equal to the node connectivity of
the input graph.

	Return type

	a generator of node cutsets

Examples

>>> # A two-dimensional grid graph has 4 cutsets of cardinality 2
>>> G = nx.grid_2d_graph(5, 5)
>>> cutsets = list(nx.all_node_cuts(G))
>>> len(cutsets)
4
>>> all(2 == len(cutset) for cutset in cutsets)
True
>>> nx.node_connectivity(G)
2

Notes

This implementation is based on the sequential algorithm for finding all
minimum-size separating vertex sets in a graph 1. The main idea is to
compute minimum cuts using local maximum flow computations among a set
of nodes of highest degree and all other non-adjacent nodes in the Graph.
Once we find a minimum cut, we add an edge between the high degree
node and the target node of the local maximum flow computation to make
sure that we will not find that minimum cut again.

See also

node_connectivity(), edmonds_karp(), shortest_augmenting_path()

References

	1(1,2)

	Kanevsky, A. (1993). Finding all minimum-size separating vertex
sets in a graph. Networks 23(6), 533–541.
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract

NetworkX

average_node_connectivity

	
average_node_connectivity(G, flow_func=None)

	Returns the average connectivity of a graph G.

The average connectivity \(\bar{\kappa}\) of a graph G is the average
of local node connectivity over all pairs of nodes of G 1 .

\[\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}}\]

	Parameters

	
	G (NetworkX graph) – Undirected graph

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See local_node_connectivity()
for details. The choice of the default function may change from
version to version and should not be relied on. Default value: None.

	Returns

	K – Average node connectivity

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

See also

local_node_connectivity(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Beineke, L., O. Oellermann, and R. Pippert (2002). The average
connectivity of a graph. Discrete mathematics 252(1-3), 31-45.
http://www.sciencedirect.com/science/article/pii/S0012365X01001807

NetworkX

all_pairs_node_connectivity

	
all_pairs_node_connectivity(G, nbunch=None, flow_func=None)

	Compute node connectivity between all pairs of nodes of G.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	nbunch (container) – Container of nodes. If provided node connectivity will be computed
only over pairs of nodes in nbunch.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	all_pairs – A dictionary with node connectivity between all pairs of nodes
in G, or in nbunch if provided.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

See also

local_node_connectivity(), edge_connectivity(), local_edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

NetworkX

edge_connectivity

	
edge_connectivity(G, s=None, t=None, flow_func=None)

	Returns the edge connectivity of the graph or digraph G.

The edge connectivity is equal to the minimum number of edges that
must be removed to disconnect G or render it trivial. If source
and target nodes are provided, this function returns the local edge
connectivity: the minimum number of edges that must be removed to
break all paths from source to target in G.

	Parameters

	
	G (NetworkX graph) – Undirected or directed graph

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	K – Edge connectivity for G, or local edge connectivity if source
and target were provided

	Return type

	integer

Examples

>>> # Platonic icosahedral graph is 5-edge-connected
>>> G = nx.icosahedral_graph()
>>> nx.edge_connectivity(G)
5

You can use alternative flow algorithms for the underlying
maximum flow computation. In dense networks the algorithm
shortest_augmenting_path() will usually perform better
than the default edmonds_karp(), which is faster for
sparse networks with highly skewed degree distributions.
Alternative flow functions have to be explicitly imported
from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path)
5

If you specify a pair of nodes (source and target) as parameters,
this function returns the value of local edge connectivity.

>>> nx.edge_connectivity(G, 3, 7)
5

If you need to perform several local computations among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
local_edge_connectivity() for details.

Notes

This is a flow based implementation of global edge connectivity.
For undirected graphs the algorithm works by finding a ‘small’
dominating set of nodes of G (see algorithm 7 in 1) and
computing local maximum flow (see local_edge_connectivity())
between an arbitrary node in the dominating set and the rest of
nodes in it. This is an implementation of algorithm 6 in 1 .
For directed graphs, the algorithm does n calls to the maximum
flow function. This is an implementation of algorithm 8 in 1 .

See also

local_edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1(1,2,3)

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

local_edge_connectivity

	
local_edge_connectivity(G, u, v, flow_func=None, auxiliary=None, residual=None, cutoff=None)

	Returns local edge connectivity for nodes s and t in G.

Local edge connectivity for two nodes s and t is the minimum number
of edges that must be removed to disconnect them.

This is a flow based implementation of edge connectivity. We compute the
maximum flow on an auxiliary digraph build from the original
network (see below for details). This is equal to the local edge
connectivity because the value of a maximum s-t-flow is equal to the
capacity of a minimum s-t-cut (Ford and Fulkerson theorem) 1 .

	Parameters

	
	G (NetworkX graph) – Undirected or directed graph

	s (node) – Source node

	t (node) – Target node

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	auxiliary (NetworkX DiGraph) – Auxiliary digraph for computing flow based edge connectivity. If
provided it will be reused instead of recreated. Default value: None.

	residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.

	cutoff (integer, float [https://docs.python.org/2/library/functions.html#float]) – If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This is only for the
algorithms that support the cutoff parameter: edmonds_karp()
and shortest_augmenting_path(). Other algorithms will ignore
this parameter. Default value: None.

	Returns

	K – local edge connectivity for nodes s and t.

	Return type

	integer

Examples

This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:

>>> from networkx.algorithms.connectivity import local_edge_connectivity

We use in this example the platonic icosahedral graph, which has edge
connectivity 5.

>>> G = nx.icosahedral_graph()
>>> local_edge_connectivity(G, 0, 6)
5

If you need to compute local connectivity on several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for edge connectivity, and the residual
network for the underlying maximum flow computation.

Example of how to compute local edge connectivity among
all pairs of nodes of the platonic icosahedral graph reusing
the data structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

You can also use alternative flow algorithms for computing edge
connectivity. For instance, in dense networks the algorithm
shortest_augmenting_path() will usually perform better than
the default edmonds_karp() which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5

Notes

This is a flow based implementation of edge connectivity. We compute the
maximum flow using, by default, the edmonds_karp() algorithm on an
auxiliary digraph build from the original input graph:

If the input graph is undirected, we replace each edge (\(u\),`v`) with
two reciprocal arcs (\(u\), \(v\)) and (\(v\), \(u\)) and then we set the attribute
‘capacity’ for each arc to 1. If the input graph is directed we simply
add the ‘capacity’ attribute. This is an implementation of algorithm 1
in 1.

The maximum flow in the auxiliary network is equal to the local edge
connectivity because the value of a maximum s-t-flow is equal to the
capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

See also

edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1(1,2)

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

local_node_connectivity

	
local_node_connectivity(G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None)

	Computes local node connectivity for nodes s and t.

Local node connectivity for two non adjacent nodes s and t is the
minimum number of nodes that must be removed (along with their incident
edges) to disconnect them.

This is a flow based implementation of node connectivity. We compute the
maximum flow on an auxiliary digraph build from the original input
graph (see below for details).

	Parameters

	
	G (NetworkX graph) – Undirected graph

	s (node) – Source node

	t (node) – Target node

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice
of the default function may change from version to version and
should not be relied on. Default value: None.

	auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node connectivity. It has
to have a graph attribute called mapping with a dictionary mapping
node names in G and in the auxiliary digraph. If provided
it will be reused instead of recreated. Default value: None.

	residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.

	cutoff (integer, float [https://docs.python.org/2/library/functions.html#float]) – If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This is only for the
algorithms that support the cutoff parameter: edmonds_karp()
and shortest_augmenting_path(). Other algorithms will ignore
this parameter. Default value: None.

	Returns

	K – local node connectivity for nodes s and t

	Return type

	integer

Examples

This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:

>>> from networkx.algorithms.connectivity import local_node_connectivity

We use in this example the platonic icosahedral graph, which has node
connectivity 5.

>>> G = nx.icosahedral_graph()
>>> local_node_connectivity(G, 0, 6)
5

If you need to compute local connectivity on several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for node connectivity, and the residual
network for the underlying maximum flow computation.

Example of how to compute local node connectivity among
all pairs of nodes of the platonic icosahedral graph reusing
the data structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_node_connectivity)
...
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
...
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

You can also use alternative flow algorithms for computing node
connectivity. For instance, in dense networks the algorithm
shortest_augmenting_path() will usually perform better than
the default edmonds_karp() which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5

Notes

This is a flow based implementation of node connectivity. We compute the
maximum flow using, by default, the edmonds_karp() algorithm (see:
maximum_flow()) on an auxiliary digraph build from the original
input graph:

For an undirected graph G having \(n\) nodes and \(m\) edges we derive a
directed graph H with \(2n\) nodes and \(2m+n\) arcs by replacing each
original node \(v\) with two nodes \(v_A\), \(v_B\) linked by an (internal)
arc in H. Then for each edge (\(u\), \(v\)) in G we add two arcs
(\(u_B\), \(v_A\)) and (\(v_B\), \(u_A\)) in H. Finally we set the attribute
capacity = 1 for each arc in H 1 .

For a directed graph G having \(n\) nodes and \(m\) arcs we derive a
directed graph H with \(2n\) nodes and \(m+n\) arcs by replacing each
original node \(v\) with two nodes \(v_A\), \(v_B\) linked by an (internal)
arc (\(v_A\), \(v_B\)) in H. Then for each arc (\(u\), \(v\)) in G we add one arc
(\(u_B\), \(v_A\)) in H. Finally we set the attribute capacity = 1 for
each arc in H.

This is equal to the local node connectivity because the value of
a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.

See also

local_edge_connectivity(), node_connectivity(), minimum_node_cut(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
Erlebach, ‘Network Analysis: Methodological Foundations’, Lecture
Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf

NetworkX

node_connectivity

	
node_connectivity(G, s=None, t=None, flow_func=None)

	Returns node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that
must be removed to disconnect G or render it trivial. If source
and target nodes are provided, this function returns the local node
connectivity: the minimum number of nodes that must be removed to break
all paths from source to target in G.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	K – Node connectivity of G, or local node connectivity if source
and target are provided.

	Return type

	integer

Examples

>>> # Platonic icosahedral graph is 5-node-connected
>>> G = nx.icosahedral_graph()
>>> nx.node_connectivity(G)
5

You can use alternative flow algorithms for the underlying maximum
flow computation. In dense networks the algorithm
shortest_augmenting_path() will usually perform better
than the default edmonds_karp(), which is faster for
sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.node_connectivity(G, flow_func=shortest_augmenting_path)
5

If you specify a pair of nodes (source and target) as parameters,
this function returns the value of local node connectivity.

>>> nx.node_connectivity(G, 3, 7)
5

If you need to perform several local computations among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
local_node_connectivity() for details.

Notes

This is a flow based implementation of node connectivity. The
algorithm works by solving \(O((n-\delta-1+\delta(\delta-1)/2))\)
maximum flow problems on an auxiliary digraph. Where \(\delta\)
is the minimum degree of G. For details about the auxiliary
digraph and the computation of local node connectivity see
local_node_connectivity(). This implementation is based
on algorithm 11 in 1.

See also

local_node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

minimum_edge_cut

	
minimum_edge_cut(G, s=None, t=None, flow_func=None)

	Returns a set of edges of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the
set of edges of minimum cardinality that, if removed, would break
all paths among source and target in G. If not, it returns a set of
edges of minimum cardinality that disconnects G.

	Parameters

	
	G (NetworkX graph) –

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	cutset – Set of edges that, if removed, would disconnect G. If source
and target nodes are provided, the set contians the edges that
if removed, would destroy all paths between source and target.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Examples

>>> # Platonic icosahedral graph has edge connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_edge_cut(G))
5

You can use alternative flow algorithms for the underlying
maximum flow computation. In dense networks the algorithm
shortest_augmenting_path() will usually perform better
than the default edmonds_karp(), which is faster for
sparse networks with highly skewed degree distributions.
Alternative flow functions have to be explicitly imported
from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path))
5

If you specify a pair of nodes (source and target) as parameters,
this function returns the value of local edge connectivity.

>>> nx.edge_connectivity(G, 3, 7)
5

If you need to perform several local computations among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
local_edge_connectivity() for details.

Notes

This is a flow based implementation of minimum edge cut. For
undirected graphs the algorithm works by finding a ‘small’ dominating
set of nodes of G (see algorithm 7 in 1) and computing the maximum
flow between an arbitrary node in the dominating set and the rest of
nodes in it. This is an implementation of algorithm 6 in 1. For
directed graphs, the algorithm does n calls to the max flow function.
It is an implementation of algorithm 8 in 1.

See also

minimum_st_edge_cut(), minimum_node_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1(1,2,3)

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

minimum_node_cut

	
minimum_node_cut(G, s=None, t=None, flow_func=None)

	Returns a set of nodes of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the
set of nodes of minimum cardinality that, if removed, would destroy
all paths among source and target in G. If not, it returns a set
of nodes of minimum cardinality that disconnects G.

	Parameters

	
	G (NetworkX graph) –

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	cutset – Set of nodes that, if removed, would disconnect G. If source
and target nodes are provided, the set contians the nodes that
if removed, would destroy all paths between source and target.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Examples

>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> node_cut = nx.minimum_node_cut(G)
>>> len(node_cut)
5

You can use alternative flow algorithms for the underlying maximum
flow computation. In dense networks the algorithm
shortest_augmenting_path() will usually perform better
than the default edmonds_karp(), which is faster for
sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path)
True

If you specify a pair of nodes (source and target) as parameters,
this function returns a local st node cut.

>>> len(nx.minimum_node_cut(G, 3, 7))
5

If you need to perform several local st cuts among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
minimum_st_node_cut() for details.

Notes

This is a flow based implementation of minimum node cut. The algorithm
is based in solving a number of maximum flow computations to determine
the capacity of the minimum cut on an auxiliary directed network that
corresponds to the minimum node cut of G. It handles both directed
and undirected graphs. This implementation is based on algorithm 11
in 1.

See also

minimum_st_node_cut(), minimum_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

minimum_st_edge_cut

	
minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None)

	Returns the edges of the cut-set of a minimum (s, t)-cut.

This function returns the set of edges of minimum cardinality that,
if removed, would destroy all paths among source and target in G.
Edge weights are not considered

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node connectivity. It has
to have a graph attribute called mapping with a dictionary mapping
node names in G and in the auxiliary digraph. If provided
it will be reused instead of recreated. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See node_connectivity() for
details. The choice of the default function may change from version
to version and should not be relied on. Default value: None.

	residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.

	Returns

	cutset – Set of edges that, if removed from the graph, will disconnect it.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

See also

minimum_cut(), minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Examples

This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:

>>> from networkx.algorithms.connectivity import minimum_st_edge_cut

We use in this example the platonic icosahedral graph, which has edge
connectivity 5.

>>> G = nx.icosahedral_graph()
>>> len(minimum_st_edge_cut(G, 0, 6))
5

If you need to compute local edge cuts on several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for edge connectivity, and the residual
network for the underlying maximum flow computation.

Example of how to compute local edge cuts among all pairs of
nodes of the platonic icosahedral graph reusing the data
structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R))
... result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

You can also use alternative flow algorithms for computing edge
cuts. For instance, in dense networks the algorithm
shortest_augmenting_path() will usually perform better than
the default edmonds_karp() which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5

NetworkX

minimum_st_node_cut

	
minimum_st_node_cut(G, s, t, flow_func=None, auxiliary=None, residual=None)

	Returns a set of nodes of minimum cardinality that disconnect source
from target in G.

This function returns the set of nodes of minimum cardinality that,
if removed, would destroy all paths among source and target in G.

	Parameters

	
	G (NetworkX graph) –

	s (node) – Source node.

	t (node) – Target node.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice
of the default function may change from version to version and
should not be relied on. Default value: None.

	auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node connectivity. It has
to have a graph attribute called mapping with a dictionary mapping
node names in G and in the auxiliary digraph. If provided
it will be reused instead of recreated. Default value: None.

	residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.

	Returns

	cutset – Set of nodes that, if removed, would destroy all paths between
source and target in G.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Examples

This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:

>>> from networkx.algorithms.connectivity import minimum_st_node_cut

We use in this example the platonic icosahedral graph, which has node
connectivity 5.

>>> G = nx.icosahedral_graph()
>>> len(minimum_st_node_cut(G, 0, 6))
5

If you need to compute local st cuts between several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for node connectivity and node cuts, and the
residual network for the underlying maximum flow computation.

Example of how to compute local st node cuts reusing the data
structures:

>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_node_connectivity)
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R))
5

You can also use alternative flow algorithms for computing minimum st
node cuts. For instance, in dense networks the algorithm
shortest_augmenting_path() will usually perform better than
the default edmonds_karp() which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5

Notes

This is a flow based implementation of minimum node cut. The algorithm
is based in solving a number of maximum flow computations to determine
the capacity of the minimum cut on an auxiliary directed network that
corresponds to the minimum node cut of G. It handles both directed
and undirected graphs. This implementation is based on algorithm 11
in 1.

See also

minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

stoer_wagner

	
stoer_wagner(G, weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>)

	Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

Determine the minimum edge cut of a connected graph using the
Stoer-Wagner algorithm. In weighted cases, all weights must be
nonnegative.

The running time of the algorithm depends on the type of heaps used:

	Type of heap

	Running time

	Binary heap

	\(O(n (m + n) \log n)\)

	Fibonacci heap

	\(O(nm + n^2 \log n)\)

	Pairing heap

	\(O(2^{2 \sqrt{\log \log n}} nm + n^2 \log n)\)

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute named by the
weight parameter below. If this attribute is not present, the edge is
considered to have unit weight.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the weight attribute of the edges. If the attribute is not
present, unit weight is assumed. Default value: ‘weight’.

	heap (class) – Type of heap to be used in the algorithm. It should be a subclass of
MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is
recommeded over PairingHeap for Python implementations without
optimized attribute accesses (e.g., CPython) despite a slower
asymptotic running time. For Python implementations with optimized
attribute accesses (e.g., PyPy), PairingHeap provides better
performance. Default value: BinaryHeap.

	Returns

	
	cut_value (integer or float) – The sum of weights of edges in a minimum cut.

	partition (pair of node lists) – A partitioning of the nodes that defines a minimum cut.

	Raises

	
	NetworkXNotImplemented – If the graph is directed or a multigraph.

	NetworkXError – If the graph has less than two nodes, is not connected or has a
negative-weighted edge.

Examples

>>> G = nx.Graph()
>>> G.add_edge('x','a', weight=3)
>>> G.add_edge('x','b', weight=1)
>>> G.add_edge('a','c', weight=3)
>>> G.add_edge('b','c', weight=5)
>>> G.add_edge('b','d', weight=4)
>>> G.add_edge('d','e', weight=2)
>>> G.add_edge('c','y', weight=2)
>>> G.add_edge('e','y', weight=3)
>>> cut_value, partition = nx.stoer_wagner(G)
>>> cut_value
4

NetworkX

build_auxiliary_edge_connectivity

	
build_auxiliary_edge_connectivity(G)

	Auxiliary digraph for computing flow based edge connectivity

If the input graph is undirected, we replace each edge (\(u\),`v`) with
two reciprocal arcs (\(u\), \(v\)) and (\(v\), \(u\)) and then we set the attribute
‘capacity’ for each arc to 1. If the input graph is directed we simply
add the ‘capacity’ attribute. Part of algorithm 1 in 1 .

References

	1

	Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a
chapter, look for the reference of the book).
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

build_auxiliary_node_connectivity

	
build_auxiliary_node_connectivity(G)

	Creates a directed graph D from an undirected graph G to compute flow
based node connectivity.

For an undirected graph G having \(n\) nodes and \(m\) edges we derive a
directed graph D with \(2n\) nodes and \(2m+n\) arcs by replacing each
original node \(v\) with two nodes \(vA\), \(vB\) linked by an (internal)
arc in D. Then for each edge (\(u\), \(v\)) in G we add two arcs (\(uB\), \(vA\))
and (\(vB\), \(uA\)) in D. Finally we set the attribute capacity = 1 for each
arc in D 1.

For a directed graph having \(n\) nodes and \(m\) arcs we derive a
directed graph D with \(2n\) nodes and \(m+n\) arcs by replacing each
original node \(v\) with two nodes \(vA\), \(vB\) linked by an (internal)
arc (\(vA\), \(vB\)) in D. Then for each arc (\(u\), \(v\)) in G we add one
arc (\(uB\), \(vA\)) in D. Finally we set the attribute capacity = 1 for
each arc in D.

A dictionary with a mapping between nodes in the original graph and the
auxiliary digraph is stored as a graph attribute: H.graph[‘mapping’].

References

	1

	Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
Erlebach, ‘Network Analysis: Methodological Foundations’, Lecture
Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf

NetworkX

Cores

Find the k-cores of a graph.

The k-core is found by recursively pruning nodes with degrees less than k.

See the following reference for details:

An O(m) Algorithm for Cores Decomposition of Networks
Vladimir Batagelj and Matjaz Zaversnik, 2003.
http://arxiv.org/abs/cs.DS/0310049

	core_number(G)

	Return the core number for each vertex.

	k_core(G[, k, core_number])

	Return the k-core of G.

	k_shell(G[, k, core_number])

	Return the k-shell of G.

	k_crust(G[, k, core_number])

	Return the k-crust of G.

	k_corona(G, k[, core_number])

	Return the k-corona of G.

NetworkX

core_number

	
core_number(G)

	Return the core number for each vertex.

A k-core is a maximal subgraph that contains nodes of degree k or more.

The core number of a node is the largest value k of a k-core containing
that node.

	Parameters

	G (NetworkX graph) – A graph or directed graph

	Returns

	core_number – A dictionary keyed by node to the core number.

	Return type

	dictionary

	Raises

	NetworkXError – The k-core is not defined for graphs with self loops or parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

References

	1

	An O(m) Algorithm for Cores Decomposition of Networks
Vladimir Batagelj and Matjaz Zaversnik, 2003.
http://arxiv.org/abs/cs.DS/0310049

NetworkX

k_core

	
k_core(G, k=None, core_number=None)

	Return the k-core of G.

A k-core is a maximal subgraph that contains nodes of degree k or more.

	Parameters

	
	G (NetworkX graph) – A graph or directed graph

	k (int [https://docs.python.org/2/library/functions.html#int], optional) – The order of the core. If not specified return the main core.

	core_number (dictionary, optional) – Precomputed core numbers for the graph G.

	Returns

	G – The k-core subgraph

	Return type

	NetworkX graph

	Raises

	NetworkXError – The k-core is not defined for graphs with self loops or parallel edges.

Notes

The main core is the core with the largest degree.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also

core_number()

References

	1

	An O(m) Algorithm for Cores Decomposition of Networks
Vladimir Batagelj and Matjaz Zaversnik, 2003.
http://arxiv.org/abs/cs.DS/0310049

NetworkX

k_shell

	
k_shell(G, k=None, core_number=None)

	Return the k-shell of G.

The k-shell is the subgraph of nodes in the k-core but not in the (k+1)-core.

	Parameters

	
	G (NetworkX graph) – A graph or directed graph.

	k (int [https://docs.python.org/2/library/functions.html#int], optional) – The order of the shell. If not specified return the main shell.

	core_number (dictionary, optional) – Precomputed core numbers for the graph G.

	Returns

	G – The k-shell subgraph

	Return type

	NetworkX graph

	Raises

	NetworkXError – The k-shell is not defined for graphs with self loops or parallel edges.

Notes

This is similar to k_corona but in that case only neighbors in the
k-core are considered.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also

core_number(), k_corona()

References

	1

	A model of Internet topology using k-shell decomposition
Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt,
and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
http://www.pnas.org/content/104/27/11150.full

NetworkX

k_crust

	
k_crust(G, k=None, core_number=None)

	Return the k-crust of G.

The k-crust is the graph G with the k-core removed.

	Parameters

	
	G (NetworkX graph) – A graph or directed graph.

	k (int [https://docs.python.org/2/library/functions.html#int], optional) – The order of the shell. If not specified return the main crust.

	core_number (dictionary, optional) – Precomputed core numbers for the graph G.

	Returns

	G – The k-crust subgraph

	Return type

	NetworkX graph

	Raises

	NetworkXError – The k-crust is not defined for graphs with self loops or parallel edges.

Notes

This definition of k-crust is different than the definition in 1.
The k-crust in 1 is equivalent to the k+1 crust of this algorithm.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also

core_number()

References

	1(1,2)

	A model of Internet topology using k-shell decomposition
Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt,
and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
http://www.pnas.org/content/104/27/11150.full

NetworkX

k_corona

	
k_corona(G, k, core_number=None)

	Return the k-corona of G.

The k-corona is the subgraph of nodes in the k-core which have
exactly k neighbours in the k-core.

	Parameters

	
	G (NetworkX graph) – A graph or directed graph

	k (int [https://docs.python.org/2/library/functions.html#int]) – The order of the corona.

	core_number (dictionary, optional) – Precomputed core numbers for the graph G.

	Returns

	G – The k-corona subgraph

	Return type

	NetworkX graph

	Raises

	NetworkXError – The k-cornoa is not defined for graphs with self loops or
parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also

core_number()

References

	1

	k -core (bootstrap) percolation on complex networks:
Critical phenomena and nonlocal effects,
A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes,
Phys. Rev. E 73, 056101 (2006)
http://link.aps.org/doi/10.1103/PhysRevE.73.056101

NetworkX

Cycles

Cycle finding algorithms

	cycle_basis(G[, root])

	Returns a list of cycles which form a basis for cycles of G.

	simple_cycles(G)

	Find simple cycles (elementary circuits) of a directed graph.

	find_cycle(G[, source, orientation])

	Returns the edges of a cycle found via a directed, depth-first traversal.

NetworkX

cycle_basis

	
cycle_basis(G, root=None)

	Returns a list of cycles which form a basis for cycles of G.

A basis for cycles of a network is a minimal collection of
cycles such that any cycle in the network can be written
as a sum of cycles in the basis. Here summation of cycles
is defined as “exclusive or” of the edges. Cycle bases are
useful, e.g. when deriving equations for electric circuits
using Kirchhoff’s Laws.

	Parameters

	
	G (NetworkX Graph) –

	root (node, optional) – Specify starting node for basis.

	Returns

	
	A list of cycle lists. Each cycle list is a list of nodes

	which forms a cycle (loop) in G.

Examples

>>> G=nx.Graph()
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([0,3,4,5])
>>> print(nx.cycle_basis(G,0))
[[3, 4, 5, 0], [1, 2, 3, 0]]

Notes

This is adapted from algorithm CACM 491 1.

References

	1

	Paton, K. An algorithm for finding a fundamental set of
cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.

See also

simple_cycles()

NetworkX

simple_cycles

	
simple_cycles(G)

	Find simple cycles (elementary circuits) of a directed graph.

An simple cycle, or elementary circuit, is a closed path where no
node appears twice, except that the first and last node are the same.
Two elementary circuits are distinct if they are not cyclic permutations
of each other.

This is a nonrecursive, iterator/generator version of Johnson’s
algorithm 1. There may be better algorithms for some cases 2 3.

	Parameters

	G (NetworkX DiGraph) – A directed graph

	Returns

	cycle_generator – A generator that produces elementary cycles of the graph. Each cycle is
a list of nodes with the first and last nodes being the same.

	Return type

	generator

Examples

>>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)])
>>> len(list(nx.simple_cycles(G)))
5

To filter the cycles so that they don’t include certain nodes or edges,
copy your graph and eliminate those nodes or edges before calling

>>> copyG = G.copy()
>>> copyG.remove_nodes_from([1])
>>> copyG.remove_edges_from([(0, 1)])
>>> len(list(nx.simple_cycles(copyG)))
3

Notes

The implementation follows pp. 79-80 in 1.

The time complexity is \(O((n+e)(c+1))\) for \(n\) nodes, \(e\) edges and \(c\)
elementary circuits.

References

	1(1,2)

	Finding all the elementary circuits of a directed graph.
D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.
http://dx.doi.org/10.1137/0204007

	2

	Enumerating the cycles of a digraph: a new preprocessing strategy.
G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982.

	3

	A search strategy for the elementary cycles of a directed graph.
J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS,
v. 16, no. 2, 192-204, 1976.

See also

cycle_basis()

NetworkX

find_cycle

	
find_cycle(G, source=None, orientation='original')

	Returns the edges of a cycle found via a directed, depth-first traversal.

	Parameters

	
	G (graph) – A directed/undirected graph/multigraph.

	source (node, list of nodes) – The node from which the traversal begins. If None, then a source
is chosen arbitrarily and repeatedly until all edges from each node in
the graph are searched.

	orientation ('original' | 'reverse' | 'ignore') – For directed graphs and directed multigraphs, edge traversals need not
respect the original orientation of the edges. When set to ‘reverse’,
then every edge will be traversed in the reverse direction. When set to
‘ignore’, then each directed edge is treated as a single undirected
edge that can be traversed in either direction. For undirected graphs
and undirected multigraphs, this parameter is meaningless and is not
consulted by the algorithm.

	Returns

	edges – A list of directed edges indicating the path taken for the loop. If
no cycle is found, then edges will be an empty list. For graphs, an
edge is of the form (u, v) where u and v are the tail and head
of the edge as determined by the traversal. For multigraphs, an edge is
of the form (u, v, key), where key is the key of the edge. When the
graph is directed, then u and v are always in the order of the
actual directed edge. If orientation is ‘ignore’, then an edge takes
the form (u, v, key, direction) where direction indicates if the edge
was followed in the forward (tail to head) or reverse (head to tail)
direction. When the direction is forward, the value of direction
is ‘forward’. When the direction is reverse, the value of direction
is ‘reverse’.

	Return type

	directed edges

Examples

In this example, we construct a DAG and find, in the first call, that there
are no directed cycles, and so an exception is raised. In the second call,
we ignore edge orientations and find that there is an undirected cycle.
Note that the second call finds a directed cycle while effectively
traversing an undirected graph, and so, we found an “undirected cycle”.
This means that this DAG structure does not form a directed tree (which
is also known as a polytree).

>>> import networkx as nx
>>> G = nx.DiGraph([(0,1), (0,2), (1,2)])
>>> try:
... find_cycle(G, orientation='original')
... except:
... pass
...
>>> list(find_cycle(G, orientation='ignore'))
[(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')]

NetworkX

Directed Acyclic Graphs

	ancestors(G, source)

	Return all nodes having a path to \(source\) in G.

	descendants(G, source)

	Return all nodes reachable from \(source\) in G.

	topological_sort(G[, nbunch, reverse])

	Return a list of nodes in topological sort order.

	topological_sort_recursive(G[, nbunch, reverse])

	Return a list of nodes in topological sort order.

	is_directed_acyclic_graph(G)

	Return True if the graph G is a directed acyclic graph (DAG) or False if not.

	is_aperiodic(G)

	Return True if G is aperiodic.

	transitive_closure(G)

	Returns transitive closure of a directed graph

	antichains(G)

	Generates antichains from a DAG.

	dag_longest_path(G)

	Returns the longest path in a DAG

	dag_longest_path_length(G)

	Returns the longest path length in a DAG

NetworkX

ancestors

	
ancestors(G, source)

	Return all nodes having a path to \(source\) in G.

	Parameters

	
	G (NetworkX DiGraph) –

	source (node in G) –

	Returns

	ancestors – The ancestors of source in G

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]()

NetworkX

descendants

	
descendants(G, source)

	Return all nodes reachable from \(source\) in G.

	Parameters

	
	G (NetworkX DiGraph) –

	source (node in G) –

	Returns

	des – The descendants of source in G

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]()

NetworkX

topological_sort

	
topological_sort(G, nbunch=None, reverse=False)

	Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes
such that an edge from u to v implies that u appears before v in the
topological sort order.

	Parameters

	
	G (NetworkX digraph) – A directed graph

	nbunch (container of nodes (optional)) – Explore graph in specified order given in nbunch

	reverse (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Return postorder instead of preorder if True.
Reverse mode is a bit more efficient.

	Raises

	
	NetworkXError – Topological sort is defined for directed graphs only. If the
graph G is undirected, a NetworkXError is raised.

	NetworkXUnfeasible – If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised.

Notes

This algorithm is based on a description and proof in
The Algorithm Design Manual 1 .

See also

is_directed_acyclic_graph()

References

	1

	Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998).
http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/

NetworkX

topological_sort_recursive

	
topological_sort_recursive(G, nbunch=None, reverse=False)

	Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such
that an edge from u to v implies that u appears before v in the
topological sort order.

	Parameters

	
	G (NetworkX digraph) –

	nbunch (container of nodes (optional)) – Explore graph in specified order given in nbunch

	reverse (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Return postorder instead of preorder if True.
Reverse mode is a bit more efficient.

	Raises

	
	NetworkXError – Topological sort is defined for directed graphs only. If the
graph G is undirected, a NetworkXError is raised.

	NetworkXUnfeasible – If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised.

Notes

This is a recursive version of topological sort.

See also

topological_sort(), is_directed_acyclic_graph()

NetworkX

is_directed_acyclic_graph

	
is_directed_acyclic_graph(G)

	Return True if the graph G is a directed acyclic graph (DAG) or
False if not.

	Parameters

	G (NetworkX graph) – A graph

	Returns

	is_dag – True if G is a DAG, false otherwise

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

NetworkX

is_aperiodic

	
is_aperiodic(G)

	Return True if G is aperiodic.

A directed graph is aperiodic if there is no integer k > 1 that
divides the length of every cycle in the graph.

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	aperiodic – True if the graph is aperiodic False otherwise

	Return type

	boolean

	Raises

	NetworkXError – If G is not directed

Notes

This uses the method outlined in 1, which runs in O(m) time
given m edges in G. Note that a graph is not aperiodic if it is
acyclic as every integer trivial divides length 0 cycles.

References

	1

	Jarvis, J. P.; Shier, D. R. (1996),
Graph-theoretic analysis of finite Markov chains,
in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
A Multidisciplinary Approach, CRC Press.

NetworkX

transitive_closure

	
transitive_closure(G)

	Returns transitive closure of a directed graph

The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
for all v,w in V there is an edge (v,w) in E+ if and only if there
is a non-null path from v to w in G.

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	TC – Graph

	Return type

	NetworkX DiGraph

	Raises

	NetworkXNotImplemented – If G is not directed

References

	1

	http://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py

NetworkX

antichains

	
antichains(G)

	Generates antichains from a DAG.

An antichain is a subset of a partially ordered set such that any
two elements in the subset are incomparable.

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	antichain

	Return type

	generator object

	Raises

	
	NetworkXNotImplemented – If G is not directed

	NetworkXUnfeasible – If G contains a cycle

Notes

This function was originally developed by Peter Jipsen and Franco Saliola
for the SAGE project. It’s included in NetworkX with permission from the
authors. Original SAGE code at:

https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py

References

	1

	Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
AMS, Vol 42, 1995, p. 226.

NetworkX

dag_longest_path

	
dag_longest_path(G)

	Returns the longest path in a DAG

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	path – Longest path

	Return type

	list

	Raises

	NetworkXNotImplemented – If G is not directed

See also

dag_longest_path_length()

NetworkX

dag_longest_path_length

	
dag_longest_path_length(G)

	Returns the longest path length in a DAG

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	path_length – Longest path length

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	Raises

	NetworkXNotImplemented – If G is not directed

See also

dag_longest_path()

NetworkX

Distance Measures

Graph diameter, radius, eccentricity and other properties.

	center(G[, e])

	Return the center of the graph G.

	diameter(G[, e])

	Return the diameter of the graph G.

	eccentricity(G[, v, sp])

	Return the eccentricity of nodes in G.

	periphery(G[, e])

	Return the periphery of the graph G.

	radius(G[, e])

	Return the radius of the graph G.

NetworkX

center

	
center(G, e=None)

	Return the center of the graph G.

The center is the set of nodes with eccentricity equal to radius.

	Parameters

	
	G (NetworkX graph) – A graph

	e (eccentricity dictionary, optional) – A precomputed dictionary of eccentricities.

	Returns

	c – List of nodes in center

	Return type

	list

NetworkX

diameter

	
diameter(G, e=None)

	Return the diameter of the graph G.

The diameter is the maximum eccentricity.

	Parameters

	
	G (NetworkX graph) – A graph

	e (eccentricity dictionary, optional) – A precomputed dictionary of eccentricities.

	Returns

	d – Diameter of graph

	Return type

	integer

See also

eccentricity()

NetworkX

eccentricity

	
eccentricity(G, v=None, sp=None)

	Return the eccentricity of nodes in G.

The eccentricity of a node v is the maximum distance from v to
all other nodes in G.

	Parameters

	
	G (NetworkX graph) – A graph

	v (node, optional) – Return value of specified node

	sp (dict of dicts, optional) – All pairs shortest path lengths as a dictionary of dictionaries

	Returns

	ecc – A dictionary of eccentricity values keyed by node.

	Return type

	dictionary

NetworkX

periphery

	
periphery(G, e=None)

	Return the periphery of the graph G.

The periphery is the set of nodes with eccentricity equal to the diameter.

	Parameters

	
	G (NetworkX graph) – A graph

	e (eccentricity dictionary, optional) – A precomputed dictionary of eccentricities.

	Returns

	p – List of nodes in periphery

	Return type

	list

NetworkX

radius

	
radius(G, e=None)

	Return the radius of the graph G.

The radius is the minimum eccentricity.

	Parameters

	
	G (NetworkX graph) – A graph

	e (eccentricity dictionary, optional) – A precomputed dictionary of eccentricities.

	Returns

	r – Radius of graph

	Return type

	integer

NetworkX

Distance-Regular Graphs

Distance-regular graphs

	is_distance_regular(G)

	Returns True if the graph is distance regular, False otherwise.

	intersection_array(G)

	Returns the intersection array of a distance-regular graph.

	global_parameters(b, c)

	Return global parameters for a given intersection array.

NetworkX

is_distance_regular

	
is_distance_regular(G)

	Returns True if the graph is distance regular, False otherwise.

A connected graph G is distance-regular if for any nodes x,y
and any integers i,j=0,1,…,d (where d is the graph
diameter), the number of vertices at distance i from x and
distance j from y depends only on i,j and the graph distance
between x and y, independently of the choice of x and y.

	Parameters

	G (Networkx graph (undirected)) –

	Returns

	True if the graph is Distance Regular, False otherwise

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> G=nx.hypercube_graph(6)
>>> nx.is_distance_regular(G)
True

See also

intersection_array(), global_parameters()

Notes

For undirected and simple graphs only

References

	1

	Brouwer, A. E.; Cohen, A. M.; and Neumaier, A.
Distance-Regular Graphs. New York: Springer-Verlag, 1989.

	2

	Weisstein, Eric W. “Distance-Regular Graph.”
http://mathworld.wolfram.com/Distance-RegularGraph.html

NetworkX

intersection_array

	
intersection_array(G)

	Returns the intersection array of a distance-regular graph.

Given a distance-regular graph G with integers b_i, c_i,i = 0,….,d
such that for any 2 vertices x,y in G at a distance i=d(x,y), there
are exactly c_i neighbors of y at a distance of i-1 from x and b_i
neighbors of y at a distance of i+1 from x.

A distance regular graph’sintersection array is given by,
[b_0,b_1,…..b_{d-1};c_1,c_2,…..c_d]

	Parameters

	G (Networkx graph (undirected)) –

	Returns

	b,c

	Return type

	tuple of lists

Examples

>>> G=nx.icosahedral_graph()
>>> nx.intersection_array(G)
([5, 2, 1], [1, 2, 5])

References

	1

	Weisstein, Eric W. “Intersection Array.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/IntersectionArray.html

See also

global_parameters()

NetworkX

global_parameters

	
global_parameters(b, c)

	Return global parameters for a given intersection array.

Given a distance-regular graph G with integers b_i, c_i,i = 0,….,d
such that for any 2 vertices x,y in G at a distance i=d(x,y), there
are exactly c_i neighbors of y at a distance of i-1 from x and b_i
neighbors of y at a distance of i+1 from x.

Thus, a distance regular graph has the global parameters,
[[c_0,a_0,b_0],[c_1,a_1,b_1],……,[c_d,a_d,b_d]] for the
intersection array [b_0,b_1,…..b_{d-1};c_1,c_2,…..c_d]
where a_i+b_i+c_i=k , k= degree of every vertex.

	Parameters

	b,c (tuple of lists) –

	Returns

	p

	Return type

	list of three-tuples

Examples

>>> G=nx.dodecahedral_graph()
>>> b,c=nx.intersection_array(G)
>>> list(nx.global_parameters(b,c))
[(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]

References

	1

	Weisstein, Eric W. “Global Parameters.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GlobalParameters.html

See also

intersection_array()

NetworkX

Dominance

Dominance algorithms.

	immediate_dominators(G, start)

	Returns the immediate dominators of all nodes of a directed graph.

	dominance_frontiers(G, start)

	Returns the dominance frontiers of all nodes of a directed graph.

NetworkX

immediate_dominators

	
immediate_dominators(G, start)

	Returns the immediate dominators of all nodes of a directed graph.

	Parameters

	
	G (a DiGraph or MultiDiGraph) – The graph where dominance is to be computed.

	start (node) – The start node of dominance computation.

	Returns

	idom – A dict containing the immediate dominators of each node reachable from
start.

	Return type

	dict keyed by nodes

	Raises

	
	NetworkXNotImplemented – If G is undirected.

	NetworkXError – If start is not in G.

Notes

Except for start, the immediate dominators are the parents of their
corresponding nodes in the dominator tree.

Examples

>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted(nx.immediate_dominators(G, 1).items())
[(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)]

References

	1

	K. D. Cooper, T. J. Harvey, and K. Kennedy.
A simple, fast dominance algorithm.
Software Practice & Experience, 4:110, 2001.

NetworkX

dominance_frontiers

	
dominance_frontiers(G, start)

	Returns the dominance frontiers of all nodes of a directed graph.

	Parameters

	
	G (a DiGraph or MultiDiGraph) – The graph where dominance is to be computed.

	start (node) – The start node of dominance computation.

	Returns

	df – A dict containing the dominance frontiers of each node reachable from
start as lists.

	Return type

	dict keyed by nodes

	Raises

	
	NetworkXNotImplemented – If G is undirected.

	NetworkXError – If start is not in G.

Examples

>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items())
[(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])]

References

	1

	K. D. Cooper, T. J. Harvey, and K. Kennedy.
A simple, fast dominance algorithm.
Software Practice & Experience, 4:110, 2001.

NetworkX

Dominating Sets

	dominating_set(G[, start_with])

	Finds a dominating set for the graph G.

	is_dominating_set(G, nbunch)

	Checks if nodes in nbunch are a dominating set for G.

NetworkX

dominating_set

	
dominating_set(G, start_with=None)

	Finds a dominating set for the graph G.

A dominating set for a graph \(G = (V, E)\) is a node subset \(D\) of \(V\)
such that every node not in \(D\) is adjacent to at least one member
of \(D\) 1.

	Parameters

	
	G (NetworkX graph) –

	start_with (Node (default=None)) – Node to use as a starting point for the algorithm.

	Returns

	D – A dominating set for G.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

This function is an implementation of algorithm 7 in 2 which
finds some dominating set, not necessarily the smallest one.

See also

is_dominating_set()

References

	1

	http://en.wikipedia.org/wiki/Dominating_set

	2

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

is_dominating_set

	
is_dominating_set(G, nbunch)

	Checks if nodes in nbunch are a dominating set for G.

A dominating set for a graph \(G = (V, E)\) is a node subset \(D\) of \(V\)
such that every node not in \(D\) is adjacent to at least one member
of \(D\) 1.

	Parameters

	
	G (NetworkX graph) –

	nbunch (Node container) –

See also

dominating_set()

References

	1

	http://en.wikipedia.org/wiki/Dominating_set

NetworkX

Eulerian

Eulerian circuits and graphs.

	is_eulerian(G)

	Return True if G is an Eulerian graph, False otherwise.

	eulerian_circuit(G[, source])

	Return the edges of an Eulerian circuit in G.

NetworkX

is_eulerian

	
is_eulerian(G)

	Return True if G is an Eulerian graph, False otherwise.

An Eulerian graph is a graph with an Eulerian circuit.

	Parameters

	G (graph) – A NetworkX Graph

Examples

>>> nx.is_eulerian(nx.DiGraph({0:[3], 1:[2], 2:[3], 3:[0, 1]}))
True
>>> nx.is_eulerian(nx.complete_graph(5))
True
>>> nx.is_eulerian(nx.petersen_graph())
False

Notes

This implementation requires the graph to be connected
(or strongly connected for directed graphs).

NetworkX

eulerian_circuit

	
eulerian_circuit(G, source=None)

	Return the edges of an Eulerian circuit in G.

An Eulerian circuit is a path that crosses every edge in G exactly once
and finishes at the starting node.

	Parameters

	
	G (NetworkX Graph or DiGraph) – A directed or undirected graph

	source (node, optional) – Starting node for circuit.

	Returns

	edges – A generator that produces edges in the Eulerian circuit.

	Return type

	generator

	Raises

	NetworkXError – If the graph is not Eulerian.

See also

is_eulerian()

Notes

Linear time algorithm, adapted from 1.
General information about Euler tours 2.

References

	1

	J. Edmonds, E. L. Johnson.
Matching, Euler tours and the Chinese postman.
Mathematical programming, Volume 5, Issue 1 (1973), 111-114.

	2

	http://en.wikipedia.org/wiki/Eulerian_path

Examples

>>> G=nx.complete_graph(3)
>>> list(nx.eulerian_circuit(G))
[(0, 2), (2, 1), (1, 0)]
>>> list(nx.eulerian_circuit(G,source=1))
[(1, 2), (2, 0), (0, 1)]
>>> [u for u,v in nx.eulerian_circuit(G)] # nodes in circuit
[0, 2, 1]

NetworkX

Flows

Maximum Flow

	maximum_flow(G, s, t[, capacity, flow_func])

	Find a maximum single-commodity flow.

	maximum_flow_value(G, s, t[, capacity, …])

	Find the value of maximum single-commodity flow.

	minimum_cut(G, s, t[, capacity, flow_func])

	Compute the value and the node partition of a minimum (s, t)-cut.

	minimum_cut_value(G, s, t[, capacity, flow_func])

	Compute the value of a minimum (s, t)-cut.

Edmonds-Karp

	edmonds_karp(G, s, t[, capacity, residual, …])

	Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

Shortest Augmenting Path

	shortest_augmenting_path(G, s, t[, …])

	Find a maximum single-commodity flow using the shortest augmenting path algorithm.

Preflow-Push

	preflow_push(G, s, t[, capacity, residual, …])

	Find a maximum single-commodity flow using the highest-label preflow-push algorithm.

Utils

	build_residual_network(G, capacity)

	Build a residual network and initialize a zero flow.

Network Simplex

	network_simplex(G[, demand, capacity, weight])

	Find a minimum cost flow satisfying all demands in digraph G.

	min_cost_flow_cost(G[, demand, capacity, weight])

	Find the cost of a minimum cost flow satisfying all demands in digraph G.

	min_cost_flow(G[, demand, capacity, weight])

	Return a minimum cost flow satisfying all demands in digraph G.

	cost_of_flow(G, flowDict[, weight])

	Compute the cost of the flow given by flowDict on graph G.

	max_flow_min_cost(G, s, t[, capacity, weight])

	Return a maximum (s, t)-flow of minimum cost.

Capacity Scaling Minimum Cost Flow

	capacity_scaling(G[, demand, capacity, …])

	Find a minimum cost flow satisfying all demands in digraph G.

NetworkX

maximum_flow

	
maximum_flow(G, s, t, capacity='capacity', flow_func=None, **kwargs)

	Find a maximum single-commodity flow.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three
parameters: a Graph or Digraph, a source node, and a target node.
And return a residual network that follows NetworkX conventions
(see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for
alternative algorithms. The choice of the default function may change
from version to version and should not be relied on. Default value:
None.

	kwargs (Any other keyword parameter is passed to the function that) – computes the maximum flow.

	Returns

	
	flow_value (integer, float) – Value of the maximum flow, i.e., net outflow from the source.

	flow_dict (dict) – A dictionary containing the value of the flow that went through
each edge.

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow_value(), minimum_cut(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual
network that follows NetworkX conventions:

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When
True, it can optionally terminate the algorithm as soon as the maximum flow
value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)

maximum_flow returns both the value of the maximum flow and a
dictionary with all flows.

>>> flow_value, flow_dict = nx.maximum_flow(G, 'x', 'y')
>>> flow_value
3.0
>>> print(flow_dict['x']['b'])
1.0

You can also use alternative algorithms for computing the
maximum flow by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow(G, 'x', 'y',
... flow_func=shortest_augmenting_path)[0]
True

NetworkX

maximum_flow_value

	
maximum_flow_value(G, s, t, capacity='capacity', flow_func=None, **kwargs)

	Find the value of maximum single-commodity flow.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three
parameters: a Graph or Digraph, a source node, and a target node.
And return a residual network that follows NetworkX conventions
(see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for
alternative algorithms. The choice of the default function may change
from version to version and should not be relied on. Default value:
None.

	kwargs (Any other keyword parameter is passed to the function that) – computes the maximum flow.

	Returns

	flow_value – Value of the maximum flow, i.e., net outflow from the source.

	Return type

	integer, float [https://docs.python.org/2/library/functions.html#float]

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow(), minimum_cut(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual
network that follows NetworkX conventions:

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When
True, it can optionally terminate the algorithm as soon as the maximum flow
value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)

maximum_flow_value computes only the value of the
maximum flow:

>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0

You can also use alternative algorithms for computing the
maximum flow by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow_value(G, 'x', 'y',
... flow_func=shortest_augmenting_path)
True

NetworkX

minimum_cut

	
minimum_cut(G, s, t, capacity='capacity', flow_func=None, **kwargs)

	Compute the value and the node partition of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum
capacity cut is equal to the flow value of a maximum flow.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three
parameters: a Graph or Digraph, a source node, and a target node.
And return a residual network that follows NetworkX conventions
(see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for
alternative algorithms. The choice of the default function may change
from version to version and should not be relied on. Default value:
None.

	kwargs (Any other keyword parameter is passed to the function that) – computes the maximum flow.

	Returns

	
	cut_value (integer, float) – Value of the minimum cut.

	partition (pair of node sets) – A partitioning of the nodes that defines a minimum cut.

	Raises

	NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have
infinite capacity and the function raises a NetworkXError.

See also

maximum_flow(), maximum_flow_value(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual
network that follows NetworkX conventions:

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When
True, it can optionally terminate the algorithm as soon as the maximum flow
value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)

minimum_cut computes both the value of the
minimum cut and the node partition:

>>> cut_value, partition = nx.minimum_cut(G, 'x', 'y')
>>> reachable, non_reachable = partition

‘partition’ here is a tuple with the two sets of nodes that define
the minimum cut. You can compute the cut set of edges that induce
the minimum cut as follows:

>>> cutset = set()
>>> for u, nbrs in ((n, G[n]) for n in reachable):
... cutset.update((u, v) for v in nbrs if v in non_reachable)
>>> print(sorted(cutset))
[('c', 'y'), ('x', 'b')]
>>> cut_value == sum(G.edge[u][v]['capacity'] for (u, v) in cutset)
True

You can also use alternative algorithms for computing the
minimum cut by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut(G, 'x', 'y',
... flow_func=shortest_augmenting_path)[0]
True

NetworkX

minimum_cut_value

	
minimum_cut_value(G, s, t, capacity='capacity', flow_func=None, **kwargs)

	Compute the value of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum
capacity cut is equal to the flow value of a maximum flow.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three
parameters: a Graph or Digraph, a source node, and a target node.
And return a residual network that follows NetworkX conventions
(see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for
alternative algorithms. The choice of the default function may change
from version to version and should not be relied on. Default value:
None.

	kwargs (Any other keyword parameter is passed to the function that) – computes the maximum flow.

	Returns

	cut_value – Value of the minimum cut.

	Return type

	integer, float [https://docs.python.org/2/library/functions.html#float]

	Raises

	NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have
infinite capacity and the function raises a NetworkXError.

See also

maximum_flow(), maximum_flow_value(), minimum_cut(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual
network that follows NetworkX conventions:

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When
True, it can optionally terminate the algorithm as soon as the maximum flow
value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)

minimum_cut_value computes only the value of the
minimum cut:

>>> cut_value = nx.minimum_cut_value(G, 'x', 'y')
>>> cut_value
3.0

You can also use alternative algorithms for computing the
minimum cut by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut_value(G, 'x', 'y',
... flow_func=shortest_augmenting_path)
True

NetworkX

edmonds_karp

	
edmonds_karp(G, s, t, capacity='capacity', residual=None, value_only=False, cutoff=None)

	Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

This function returns the residual network resulting after computing
the maximum flow. See below for details about the conventions
NetworkX uses for defining residual networks.

This algorithm has a running time of \(O(n m^2)\) for \(n\) nodes and \(m\)
edges.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	residual (NetworkX graph) – Residual network on which the algorithm is to be executed. If None, a
new residual network is created. Default value: None.

	value_only (bool [https://docs.python.org/2/library/functions.html#bool]) – If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.

	cutoff (integer, float [https://docs.python.org/2/library/functions.html#float]) – If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately
determine a minimum cut. Default value: None.

	Returns

	R – Residual network after computing the maximum flow.

	Return type

	NetworkX DiGraph

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path()

Notes

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. If cutoff is not
specified, reachability to t using only edges (u, v) such
that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import edmonds_karp

The functions that implement flow algorithms and output a residual
network, such as this one, are not imported to the base NetworkX
namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = edmonds_karp(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
>>> flow_value == R.graph['flow_value']
True

NetworkX

shortest_augmenting_path

	
shortest_augmenting_path(G, s, t, capacity='capacity', residual=None, value_only=False, two_phase=False, cutoff=None)

	Find a maximum single-commodity flow using the shortest augmenting path
algorithm.

This function returns the residual network resulting after computing
the maximum flow. See below for details about the conventions
NetworkX uses for defining residual networks.

This algorithm has a running time of \(O(n^2 m)\) for \(n\) nodes and \(m\)
edges.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	residual (NetworkX graph) – Residual network on which the algorithm is to be executed. If None, a
new residual network is created. Default value: None.

	value_only (bool [https://docs.python.org/2/library/functions.html#bool]) – If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.

	two_phase (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a two-phase variant is used. The two-phase variant improves
the running time on unit-capacity networks from \(O(nm)\) to
\(O(\min(n^{2/3}, m^{1/2}) m)\). Default value: False.

	cutoff (integer, float [https://docs.python.org/2/library/functions.html#float]) – If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately
determine a minimum cut. Default value: None.

	Returns

	R – Residual network after computing the maximum flow.

	Return type

	NetworkX DiGraph

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow(), minimum_cut(), edmonds_karp(), preflow_push()

Notes

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. If cutoff is not
specified, reachability to t using only edges (u, v) such
that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import shortest_augmenting_path

The functions that implement flow algorithms and output a residual
network, such as this one, are not imported to the base NetworkX
namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = shortest_augmenting_path(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
>>> flow_value == R.graph['flow_value']
True

NetworkX

preflow_push

	
preflow_push(G, s, t, capacity='capacity', residual=None, global_relabel_freq=1, value_only=False)

	Find a maximum single-commodity flow using the highest-label
preflow-push algorithm.

This function returns the residual network resulting after computing
the maximum flow. See below for details about the conventions
NetworkX uses for defining residual networks.

This algorithm has a running time of \(O(n^2 \sqrt{m})\) for \(n\) nodes and
\(m\) edges.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	residual (NetworkX graph) – Residual network on which the algorithm is to be executed. If None, a
new residual network is created. Default value: None.

	global_relabel_freq (integer, float [https://docs.python.org/2/library/functions.html#float]) – Relative frequency of applying the global relabeling heuristic to speed
up the algorithm. If it is None, the heuristic is disabled. Default
value: 1.

	value_only (bool [https://docs.python.org/2/library/functions.html#bool]) – If False, compute a maximum flow; otherwise, compute a maximum preflow
which is enough for computing the maximum flow value. Default value:
False.

	Returns

	R – Residual network after computing the maximum flow.

	Return type

	NetworkX DiGraph

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow(), minimum_cut(), edmonds_karp(), shortest_augmenting_path()

Notes

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G. For each node u in R,
R.node[u]['excess'] represents the difference between flow into
u and flow out of u.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import preflow_push

The functions that implement flow algorithms and output a residual
network, such as this one, are not imported to the base NetworkX
namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = preflow_push(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value == R.graph['flow_value']
True
>>> # preflow_push also stores the maximum flow value
>>> # in the excess attribute of the sink node t
>>> flow_value == R.node['y']['excess']
True
>>> # For some problems, you might only want to compute a
>>> # maximum preflow.
>>> R = preflow_push(G, 'x', 'y', value_only=True)
>>> flow_value == R.graph['flow_value']
True
>>> flow_value == R.node['y']['excess']
True

NetworkX

build_residual_network

	
build_residual_network(G, capacity)

	Build a residual network and initialize a zero flow.

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. If cutoff is not
specified, reachability to t using only edges (u, v) such
that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

NetworkX

network_simplex

	
network_simplex(G, demand='demand', capacity='capacity', weight='weight')

	Find a minimum cost flow satisfying all demands in digraph G.

This is a primal network simplex algorithm that uses the leaving
arc rule to prevent cycling.

G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	demand (string [https://docs.python.org/2/library/string.html#module-string]) – Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: ‘demand’.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	Returns

	
	flowCost (integer, float) – Cost of a minimum cost flow satisfying all demands.

	flowDict (dictionary) – Dictionary of dictionaries keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed,
not connected or is a multigraph.

	NetworkXUnfeasible – This exception is raised in the following situations:

	The sum of the demands is not zero. Then, there is no
flow satisfying all demands.

	There is no flow satisfying all demand.

	NetworkXUnbounded – This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.

Notes

This algorithm is not guaranteed to work if edge weights
are floating point numbers (overflows and roundoff errors can
cause problems).

See also

cost_of_flow(), max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand=-5)
>>> G.add_node('d', demand=5)
>>> G.add_edge('a', 'b', weight=3, capacity=4)
>>> G.add_edge('a', 'c', weight=6, capacity=10)
>>> G.add_edge('b', 'd', weight=1, capacity=9)
>>> G.add_edge('c', 'd', weight=2, capacity=5)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}

The mincost flow algorithm can also be used to solve shortest path
problems. To find the shortest path between two nodes u and v,
give all edges an infinite capacity, give node u a demand of -1 and
node v a demand a 1. Then run the network simplex. The value of a
min cost flow will be the distance between u and v and edges
carrying positive flow will indicate the path.

>>> G=nx.DiGraph()
>>> G.add_weighted_edges_from([('s', 'u' ,10), ('s' ,'x' ,5),
... ('u', 'v' ,1), ('u' ,'x' ,2),
... ('v', 'y' ,1), ('x' ,'u' ,3),
... ('x', 'v' ,5), ('x' ,'y' ,2),
... ('y', 's' ,7), ('y' ,'v' ,6)])
>>> G.add_node('s', demand = -1)
>>> G.add_node('v', demand = 1)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost == nx.shortest_path_length(G, 's', 'v', weight='weight')
True
>>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0])
[('s', 'x'), ('u', 'v'), ('x', 'u')]
>>> nx.shortest_path(G, 's', 'v', weight = 'weight')
['s', 'x', 'u', 'v']

It is possible to change the name of the attributes used for the
algorithm.

>>> G = nx.DiGraph()
>>> G.add_node('p', spam=-4)
>>> G.add_node('q', spam=2)
>>> G.add_node('a', spam=-2)
>>> G.add_node('d', spam=-1)
>>> G.add_node('t', spam=2)
>>> G.add_node('w', spam=3)
>>> G.add_edge('p', 'q', cost=7, vacancies=5)
>>> G.add_edge('p', 'a', cost=1, vacancies=4)
>>> G.add_edge('q', 'd', cost=2, vacancies=3)
>>> G.add_edge('t', 'q', cost=1, vacancies=2)
>>> G.add_edge('a', 't', cost=2, vacancies=4)
>>> G.add_edge('d', 'w', cost=3, vacancies=4)
>>> G.add_edge('t', 'w', cost=4, vacancies=1)
>>> flowCost, flowDict = nx.network_simplex(G, demand='spam',
... capacity='vacancies',
... weight='cost')
>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}

References

	1

	Z. Kiraly, P. Kovacs.
Efficient implementation of minimum-cost flow algorithms.
Acta Universitatis Sapientiae, Informatica 4(1):67–118. 2012.

	2

	R. Barr, F. Glover, D. Klingman.
Enhancement of spanning tree labeling procedures for network
optimization.
INFOR 17(1):16–34. 1979.

NetworkX

min_cost_flow_cost

	
min_cost_flow_cost(G, demand='demand', capacity='capacity', weight='weight')

	Find the cost of a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	demand (string [https://docs.python.org/2/library/string.html#module-string]) – Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: ‘demand’.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	Returns

	flowCost – Cost of a minimum cost flow satisfying all demands.

	Return type

	integer, float [https://docs.python.org/2/library/functions.html#float]

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed or
not connected.

	NetworkXUnfeasible – This exception is raised in the following situations:

	The sum of the demands is not zero. Then, there is no
flow satisfying all demands.

	There is no flow satisfying all demand.

	NetworkXUnbounded – This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.

See also

cost_of_flow(), max_flow_min_cost(), min_cost_flow(), network_simplex()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost = nx.min_cost_flow_cost(G)
>>> flowCost
24

NetworkX

min_cost_flow

	
min_cost_flow(G, demand='demand', capacity='capacity', weight='weight')

	Return a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	demand (string [https://docs.python.org/2/library/string.html#module-string]) – Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: ‘demand’.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	Returns

	flowDict – Dictionary of dictionaries keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).

	Return type

	dictionary

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed or
not connected.

	NetworkXUnfeasible – This exception is raised in the following situations:

	The sum of the demands is not zero. Then, there is no
flow satisfying all demands.

	There is no flow satisfying all demand.

	NetworkXUnbounded – This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.

See also

cost_of_flow(), max_flow_min_cost(), min_cost_flow_cost(), network_simplex()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowDict = nx.min_cost_flow(G)

NetworkX

cost_of_flow

	
cost_of_flow(G, flowDict, weight='weight')

	Compute the cost of the flow given by flowDict on graph G.

Note that this function does not check for the validity of the
flow flowDict. This function will fail if the graph G and the
flow don’t have the same edge set.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	flowDict (dictionary) – Dictionary of dictionaries keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).

	Returns

	cost – The total cost of the flow. This is given by the sum over all
edges of the product of the edge’s flow and the edge’s weight.

	Return type

	Integer, float [https://docs.python.org/2/library/functions.html#float]

See also

max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost(), network_simplex()

NetworkX

max_flow_min_cost

	
max_flow_min_cost(G, s, t, capacity='capacity', weight='weight')

	Return a maximum (s, t)-flow of minimum cost.

G is a digraph with edge costs and capacities. There is a source
node s and a sink node t. This function finds a maximum flow from
s to t whose total cost is minimized.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	s (node label) – Source of the flow.

	t (node label) – Destination of the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	Returns

	flowDict – Dictionary of dictionaries keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).

	Return type

	dictionary

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed or
not connected.

	NetworkXUnbounded – This exception is raised if there is an infinite capacity path
from s to t in G. In this case there is no maximum flow. This
exception is also raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
is unbounded below.

See also

cost_of_flow(), min_cost_flow(), min_cost_flow_cost(), network_simplex()

Examples

>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2, {'capacity': 12, 'weight': 4}),
... (1, 3, {'capacity': 20, 'weight': 6}),
... (2, 3, {'capacity': 6, 'weight': -3}),
... (2, 6, {'capacity': 14, 'weight': 1}),
... (3, 4, {'weight': 9}),
... (3, 5, {'capacity': 10, 'weight': 5}),
... (4, 2, {'capacity': 19, 'weight': 13}),
... (4, 5, {'capacity': 4, 'weight': 0}),
... (5, 7, {'capacity': 28, 'weight': 2}),
... (6, 5, {'capacity': 11, 'weight': 1}),
... (6, 7, {'weight': 8}),
... (7, 4, {'capacity': 6, 'weight': 6})])
>>> mincostFlow = nx.max_flow_min_cost(G, 1, 7)
>>> mincost = nx.cost_of_flow(G, mincostFlow)
>>> mincost
373
>>> from networkx.algorithms.flow import maximum_flow
>>> maxFlow = maximum_flow(G, 1, 7)[1]
>>> nx.cost_of_flow(G, maxFlow) >= mincost
True
>>> mincostFlowValue = (sum((mincostFlow[u][7] for u in G.predecessors(7)))
... - sum((mincostFlow[7][v] for v in G.successors(7))))
>>> mincostFlowValue == nx.maximum_flow_value(G, 1, 7)
True

NetworkX

capacity_scaling

	
capacity_scaling(G, demand='demand', capacity='capacity', weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>)

	Find a minimum cost flow satisfying all demands in digraph G.

This is a capacity scaling successive shortest augmenting path algorithm.

G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.

	Parameters

	
	G (NetworkX graph) – DiGraph or MultiDiGraph on which a minimum cost flow satisfying all
demands is to be found.

	demand (string [https://docs.python.org/2/library/string.html#module-string]) – Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: ‘demand’.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	heap (class) – Type of heap to be used in the algorithm. It should be a subclass of
MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is
recommeded over PairingHeap for Python implementations without
optimized attribute accesses (e.g., CPython) despite a slower
asymptotic running time. For Python implementations with optimized
attribute accesses (e.g., PyPy), PairingHeap provides better
performance. Default value: BinaryHeap.

	Returns

	
	flowCost (integer) – Cost of a minimum cost flow satisfying all demands.

	flowDict (dictionary) – If G is a DiGraph, a dict-of-dicts keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).
If G is a MultiDiGraph, a dict-of-dictsof-dicts keyed by nodes
so that flowDict[u][v][key] is the flow edge (u, v, key).

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed,
not connected.

	NetworkXUnfeasible – This exception is raised in the following situations:

	The sum of the demands is not zero. Then, there is no
flow satisfying all demands.

	There is no flow satisfying all demand.

	NetworkXUnbounded – This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.

Notes

This algorithm does not work if edge weights are floating-point numbers.

See also

network_simplex()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost, flowDict = nx.capacity_scaling(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}

It is possible to change the name of the attributes used for the
algorithm.

>>> G = nx.DiGraph()
>>> G.add_node('p', spam = -4)
>>> G.add_node('q', spam = 2)
>>> G.add_node('a', spam = -2)
>>> G.add_node('d', spam = -1)
>>> G.add_node('t', spam = 2)
>>> G.add_node('w', spam = 3)
>>> G.add_edge('p', 'q', cost = 7, vacancies = 5)
>>> G.add_edge('p', 'a', cost = 1, vacancies = 4)
>>> G.add_edge('q', 'd', cost = 2, vacancies = 3)
>>> G.add_edge('t', 'q', cost = 1, vacancies = 2)
>>> G.add_edge('a', 't', cost = 2, vacancies = 4)
>>> G.add_edge('d', 'w', cost = 3, vacancies = 4)
>>> G.add_edge('t', 'w', cost = 4, vacancies = 1)
>>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam',
... capacity = 'vacancies',
... weight = 'cost')
>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}

NetworkX

Graphical degree sequence

Test sequences for graphiness.

	is_graphical(sequence[, method])

	Returns True if sequence is a valid degree sequence.

	is_digraphical(in_sequence, out_sequence)

	Returns True if some directed graph can realize the in- and out-degree sequences.

	is_multigraphical(sequence)

	Returns True if some multigraph can realize the sequence.

	is_pseudographical(sequence)

	Returns True if some pseudograph can realize the sequence.

	is_valid_degree_sequence_havel_hakimi(…)

	Returns True if deg_sequence can be realized by a simple graph.

	is_valid_degree_sequence_erdos_gallai(…)

	Returns True if deg_sequence can be realized by a simple graph.

NetworkX

is_graphical

	
is_graphical(sequence, method='eg')

	Returns True if sequence is a valid degree sequence.

A degree sequence is valid if some graph can realize it.

	Parameters

	sequence (list or iterable container) – A sequence of integer node degrees

	method“eg” | “hh”

	The method used to validate the degree sequence.
“eg” corresponds to the Erdős-Gallai algorithm, and
“hh” to the Havel-Hakimi algorithm.

	Returns

	valid – True if the sequence is a valid degree sequence and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> G = nx.path_graph(4)
>>> sequence = G.degree().values()
>>> nx.is_valid_degree_sequence(sequence)
True

References

	Erdős-Gallai

	[EG1960], [choudum1986]

	Havel-Hakimi

	[havel1955], [hakimi1962], [CL1996]

NetworkX

is_digraphical

	
is_digraphical(in_sequence, out_sequence)

	Returns True if some directed graph can realize the in- and out-degree
sequences.

	Parameters

	
	in_sequence (list or iterable container) – A sequence of integer node in-degrees

	out_sequence (list or iterable container) – A sequence of integer node out-degrees

	Returns

	valid – True if in and out-sequences are digraphic False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

This algorithm is from Kleitman and Wang 1.
The worst case runtime is O(s * log n) where s and n are the sum and length
of the sequences respectively.

References

	1

	D.J. Kleitman and D.L. Wang
Algorithms for Constructing Graphs and Digraphs with Given Valences
and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973)

NetworkX

is_multigraphical

	
is_multigraphical(sequence)

	Returns True if some multigraph can realize the sequence.

	Parameters

	deg_sequence (list) – A list of integers

	Returns

	valid – True if deg_sequence is a multigraphic degree sequence and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

The worst-case run time is O(n) where n is the length of the sequence.

References

	1

	S. L. Hakimi. “On the realizability of a set of integers as
degrees of the vertices of a linear graph”, J. SIAM, 10, pp. 496-506
(1962).

NetworkX

is_pseudographical

	
is_pseudographical(sequence)

	Returns True if some pseudograph can realize the sequence.

Every nonnegative integer sequence with an even sum is pseudographical
(see 1).

	Parameters

	sequence (list or iterable container) – A sequence of integer node degrees

	Returns

	valid – True if the sequence is a pseudographic degree sequence and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

The worst-case run time is O(n) where n is the length of the sequence.

References

	1

	F. Boesch and F. Harary. “Line removal algorithms for graphs
and their degree lists”, IEEE Trans. Circuits and Systems, CAS-23(12),
pp. 778-782 (1976).

NetworkX

is_valid_degree_sequence_havel_hakimi

	
is_valid_degree_sequence_havel_hakimi(deg_sequence)

	Returns True if deg_sequence can be realized by a simple graph.

The validation proceeds using the Havel-Hakimi theorem.
Worst-case run time is: O(s) where s is the sum of the sequence.

	Parameters

	deg_sequence (list) – A list of integers where each element specifies the degree of a node
in a graph.

	Returns

	valid – True if deg_sequence is graphical and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

The ZZ condition says that for the sequence d if

\[|d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)}\]

then d is graphical. This was shown in Theorem 6 in 1.

References

	1

	I.E. Zverovich and V.E. Zverovich. “Contributions to the theory
of graphic sequences”, Discrete Mathematics, 105, pp. 292-303 (1992).

[havel1955], [hakimi1962], [CL1996]

NetworkX

is_valid_degree_sequence_erdos_gallai

	
is_valid_degree_sequence_erdos_gallai(deg_sequence)

	Returns True if deg_sequence can be realized by a simple graph.

The validation is done using the Erdős-Gallai theorem [EG1960].

	Parameters

	deg_sequence (list) – A list of integers

	Returns

	valid – True if deg_sequence is graphical and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

This implementation uses an equivalent form of the Erdős-Gallai criterion.
Worst-case run time is: O(n) where n is the length of the sequence.

Specifically, a sequence d is graphical if and only if the
sum of the sequence is even and for all strong indices k in the sequence,

\[\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k)
 = k(n-1) - (k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j)\]

A strong index k is any index where \(d_k \geq k\) and the value \(n_j\) is the
number of occurrences of j in d. The maximal strong index is called the
Durfee index.

This particular rearrangement comes from the proof of Theorem 3 in 2.

The ZZ condition says that for the sequence d if

\[|d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)}\]

then d is graphical. This was shown in Theorem 6 in 2.

References

	1

	A. Tripathi and S. Vijay. “A note on a theorem of Erdős & Gallai”,
Discrete Mathematics, 265, pp. 417-420 (2003).

	2(1,2)

	I.E. Zverovich and V.E. Zverovich. “Contributions to the theory
of graphic sequences”, Discrete Mathematics, 105, pp. 292-303 (1992).

[EG1960], [choudum1986]

NetworkX

Hierarchy

Flow Hierarchy.

	flow_hierarchy(G[, weight])

	Returns the flow hierarchy of a directed network.

NetworkX

flow_hierarchy

	
flow_hierarchy(G, weight=None)

	Returns the flow hierarchy of a directed network.

Flow hierarchy is defined as the fraction of edges not participating
in cycles in a directed graph 1.

	Parameters

	
	G (DiGraph or MultiDiGraph) – A directed graph

	weight (key,optional (default=None)) – Attribute to use for node weights. If None the weight defaults to 1.

	Returns

	h – Flow heirarchy value

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Notes

The algorithm described in 1 computes the flow hierarchy through
exponentiation of the adjacency matrix. This function implements an
alternative approach that finds strongly connected components.
An edge is in a cycle if and only if it is in a strongly connected
component, which can be found in \(O(m)\) time using Tarjan’s algorithm.

References

	1(1,2)

	Luo, J.; Magee, C.L. (2011),
Detecting evolving patterns of self-organizing networks by flow
hierarchy measurement, Complexity, Volume 16 Issue 6 53-61.
DOI: 10.1002/cplx.20368
http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf

NetworkX

Hybrid

Provides functions for finding and testing for locally \((k, l)\)-connected
graphs.

	kl_connected_subgraph(G, k, l[, low_memory, …])

	Returns the maximum locally \((k, l)\)-connected subgraph of G.

	is_kl_connected(G, k, l[, low_memory])

	Returns True if and only if G is locally \((k, l)\)-connected.

NetworkX

kl_connected_subgraph

	
kl_connected_subgraph(G, k, l, low_memory=False, same_as_graph=False)

	Returns the maximum locally \((k, l)\)-connected subgraph of G.

A graph is locally \((k, l)\)-connected if for each edge \((u, v)\) in the
graph there are at least \(l\) edge-disjoint paths of length at most \(k\)
joining \(u\) to \(v\).

	Parameters

	
	G (NetworkX graph) – The graph in which to find a maximum locally \((k, l)\)-connected
subgraph.

	k (integer) – The maximum length of paths to consider. A higher number means a looser
connectivity requirement.

	l (integer) – The number of edge-disjoint paths. A higher number means a stricter
connectivity requirement.

	low_memory (bool [https://docs.python.org/2/library/functions.html#bool]) – If this is True, this function uses an algorithm that uses slightly
more time but less memory.

	same_as_graph (bool [https://docs.python.org/2/library/functions.html#bool]) – If this is True then return a tuple of the form (H, is_same),
where H is the maximum locally \((k, l)\)-connected subgraph and
is_same is a Boolean representing whether G is locally \((k,
l)\)-connected (and hence, whether H is simply a copy of the input
graph G).

	Returns

	If same_as_graph is True, then this function returns a
two-tuple as described above. Otherwise, it returns only the maximum
locally \((k, l)\)-connected subgraph.

	Return type

	NetworkX graph or two-tuple

See also

is_kl_connected()

References

NetworkX

is_kl_connected

	
is_kl_connected(G, k, l, low_memory=False)

	Returns True if and only if G is locally \((k, l)\)-connected.

A graph is locally \((k, l)\)-connected if for each edge \((u, v)\) in the
graph there are at least \(l\) edge-disjoint paths of length at most \(k\)
joining \(u\) to \(v\).

	Parameters

	
	G (NetworkX graph) – The graph to test for local \((k, l)\)-connectedness.

	k (integer) – The maximum length of paths to consider. A higher number means a looser
connectivity requirement.

	l (integer) – The number of edge-disjoint paths. A higher number means a stricter
connectivity requirement.

	low_memory (bool [https://docs.python.org/2/library/functions.html#bool]) – If this is True, this function uses an algorithm that uses slightly
more time but less memory.

	Returns

	Whether the graph is locally \((k, l)\)-connected subgraph.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

See also

kl_connected_subgraph()

References

NetworkX

Isolates

Functions for identifying isolate (degree zero) nodes.

	is_isolate(G, n)

	Determine of node n is an isolate (degree zero).

	isolates(G)

	Return list of isolates in the graph.

NetworkX

is_isolate

	
is_isolate(G, n)

	Determine of node n is an isolate (degree zero).

	Parameters

	
	G (graph) – A networkx graph

	n (node) – A node in G

	Returns

	isolate – True if n has no neighbors, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> G=nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.is_isolate(G,2)
False
>>> nx.is_isolate(G,3)
True

NetworkX

isolates

	
isolates(G)

	Return list of isolates in the graph.

Isolates are nodes with no neighbors (degree zero).

	Parameters

	G (graph) – A networkx graph

	Returns

	isolates – List of isolate nodes.

	Return type

	list

Examples

>>> G = nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.isolates(G)
[3]

To remove all isolates in the graph use
>>> G.remove_nodes_from(nx.isolates(G))
>>> G.nodes()
[1, 2]

For digraphs isolates have zero in-degree and zero out_degre
>>> G = nx.DiGraph([(0,1),(1,2)])
>>> G.add_node(3)
>>> nx.isolates(G)
[3]

NetworkX

Isomorphism

	is_isomorphic(G1, G2[, node_match, edge_match])

	Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

	could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

	fast_could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

	faster_could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

Advanced Interface to VF2 Algorithm

	VF2 Algorithm
	VF2 Algorithm

	Graph Matcher

	DiGraph Matcher

	Match helpers

NetworkX

is_isomorphic

	
is_isomorphic(G1, G2, node_match=None, edge_match=None)

	Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

	Parameters

	
	G2 (G1,) – The two graphs G1 and G2 must be the same type.

	node_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True if node n1 in G1 and n2 in G2 should
be considered equal during the isomorphism test.
If node_match is not specified then node attributes are not considered.

The function will be called like

node_match(G1.node[n1], G2.node[n2]).

That is, the function will receive the node attribute dictionaries
for n1 and n2 as inputs.

	edge_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True if the edge attribute dictionary
for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
be considered equal during the isomorphism test. If edge_match is
not specified then edge attributes are not considered.

The function will be called like

edge_match(G1[u1][v1], G2[u2][v2]).

That is, the function will receive the edge attribute dictionaries
of the edges under consideration.

Notes

Uses the vf2 algorithm 1.

Examples

>>> import networkx.algorithms.isomorphism as iso

For digraphs G1 and G2, using ‘weight’ edge attribute (default: 1)

>>> G1 = nx.DiGraph()
>>> G2 = nx.DiGraph()
>>> G1.add_path([1,2,3,4],weight=1)
>>> G2.add_path([10,20,30,40],weight=2)
>>> em = iso.numerical_edge_match('weight', 1)
>>> nx.is_isomorphic(G1, G2) # no weights considered
True
>>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights
False

For multidigraphs G1 and G2, using ‘fill’ node attribute (default: ‘’)

>>> G1 = nx.MultiDiGraph()
>>> G2 = nx.MultiDiGraph()
>>> G1.add_nodes_from([1,2,3],fill='red')
>>> G2.add_nodes_from([10,20,30,40],fill='red')
>>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5)
>>> G2.add_path([10,20,30,40],weight=3)
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, node_match=nm)
True

For multidigraphs G1 and G2, using ‘weight’ edge attribute (default: 7)

>>> G1.add_edge(1,2, weight=7)
>>> G2.add_edge(10,20)
>>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6)
>>> nx.is_isomorphic(G1, G2, edge_match=em)
True

For multigraphs G1 and G2, using ‘weight’ and ‘linewidth’ edge attributes
with default values 7 and 2.5. Also using ‘fill’ node attribute with
default value ‘red’.

>>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5])
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm)
True

See also

numerical_node_match(), numerical_edge_match(), numerical_multiedge_match(), categorical_node_match(), categorical_edge_match(), categorical_multiedge_match()

References

	1

	L. P. Cordella, P. Foggia, C. Sansone, M. Vento,
“An Improved Algorithm for Matching Large Graphs”,
3rd IAPR-TC15 Workshop on Graph-based Representations in
Pattern Recognition, Cuen, pp. 149-159, 2001.
http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf

NetworkX

could_be_isomorphic

	
could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.
True does NOT guarantee isomorphism.

	Parameters

	G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree, triangle, and number of cliques sequences.

NetworkX

fast_could_be_isomorphic

	
fast_could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

	Parameters

	G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree and triangle sequences.

NetworkX

faster_could_be_isomorphic

	
faster_could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

	Parameters

	G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree sequences.

NetworkX

VF2 Algorithm

VF2 Algorithm

An implementation of VF2 algorithm for graph ismorphism testing.

The simplest interface to use this module is to call networkx.is_isomorphic().

Introduction

The GraphMatcher and DiGraphMatcher are responsible for matching
graphs or directed graphs in a predetermined manner. This
usually means a check for an isomorphism, though other checks
are also possible. For example, a subgraph of one graph
can be checked for isomorphism to a second graph.

Matching is done via syntactic feasibility. It is also possible
to check for semantic feasibility. Feasibility, then, is defined
as the logical AND of the two functions.

To include a semantic check, the (Di)GraphMatcher class should be
subclassed, and the semantic_feasibility() function should be
redefined. By default, the semantic feasibility function always
returns True. The effect of this is that semantics are not
considered in the matching of G1 and G2.

Examples

Suppose G1 and G2 are isomorphic graphs. Verification is as follows:

>>> from networkx.algorithms import isomorphism
>>> G1 = nx.path_graph(4)
>>> G2 = nx.path_graph(4)
>>> GM = isomorphism.GraphMatcher(G1,G2)
>>> GM.is_isomorphic()
True

GM.mapping stores the isomorphism mapping from G1 to G2.

>>> GM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}

Suppose G1 and G2 are isomorphic directed graphs
graphs. Verification is as follows:

>>> G1 = nx.path_graph(4, create_using=nx.DiGraph())
>>> G2 = nx.path_graph(4, create_using=nx.DiGraph())
>>> DiGM = isomorphism.DiGraphMatcher(G1,G2)
>>> DiGM.is_isomorphic()
True

DiGM.mapping stores the isomorphism mapping from G1 to G2.

>>> DiGM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}

Subgraph Isomorphism

Graph theory literature can be ambiguious about the meaning of the
above statement, and we seek to clarify it now.

In the VF2 literature, a mapping M is said to be a graph-subgraph
isomorphism iff M is an isomorphism between G2 and a subgraph of G1.
Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say
that a subgraph of G1 is isomorphic to G2.

Other literature uses the phrase ‘subgraph isomorphic’ as in ‘G1 does
not have a subgraph isomorphic to G2’. Another use is as an in adverb
for isomorphic. Thus, to say that G1 and G2 are subgraph isomorphic
is to say that a subgraph of G1 is isomorphic to G2.

Finally, the term ‘subgraph’ can have multiple meanings. In this
context, ‘subgraph’ always means a ‘node-induced subgraph’. Edge-induced
subgraph isomorphisms are not directly supported, but one should be
able to perform the check by making use of nx.line_graph(). For
subgraphs which are not induced, the term ‘monomorphism’ is preferred
over ‘isomorphism’. Currently, it is not possible to check for
monomorphisms.

Let G=(N,E) be a graph with a set of nodes N and set of edges E.

	If G’=(N’,E’) is a subgraph, then:

	N’ is a subset of N
E’ is a subset of E

	If G’=(N’,E’) is a node-induced subgraph, then:

	N’ is a subset of N
E’ is the subset of edges in E relating nodes in N’

	If G’=(N’,E’) is an edge-induced subgrpah, then:

	N’ is the subset of nodes in N related by edges in E’
E’ is a subset of E

References

	[1] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento,

	“A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs”,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 10, pp. 1367-1372, Oct., 2004.
http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf

	[2] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “An Improved

	Algorithm for Matching Large Graphs”, 3rd IAPR-TC15 Workshop
on Graph-based Representations in Pattern Recognition, Cuen,
pp. 149-159, 2001.
http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf

See also

syntactic_feasibliity, semantic_feasibility

Notes

Modified to handle undirected graphs.
Modified to handle multiple edges.

In general, this problem is NP-Complete.

Graph Matcher

	GraphMatcher.__init__(G1, G2[, node_match, …])

	Initialize graph matcher.

	GraphMatcher.initialize()

	Reinitializes the state of the algorithm.

	GraphMatcher.is_isomorphic()

	Returns True if G1 and G2 are isomorphic graphs.

	GraphMatcher.subgraph_is_isomorphic()

	Returns True if a subgraph of G1 is isomorphic to G2.

	GraphMatcher.isomorphisms_iter()

	Generator over isomorphisms between G1 and G2.

	GraphMatcher.subgraph_isomorphisms_iter()

	Generator over isomorphisms between a subgraph of G1 and G2.

	GraphMatcher.candidate_pairs_iter()

	Iterator over candidate pairs of nodes in G1 and G2.

	GraphMatcher.match()

	Extends the isomorphism mapping.

	GraphMatcher.semantic_feasibility(G1_node, …)

	Returns True if mapping G1_node to G2_node is semantically feasible.

	GraphMatcher.syntactic_feasibility(G1_node, …)

	Returns True if adding (G1_node, G2_node) is syntactically feasible.

DiGraph Matcher

	DiGraphMatcher.__init__(G1, G2[, …])

	Initialize graph matcher.

	DiGraphMatcher.initialize()

	Reinitializes the state of the algorithm.

	DiGraphMatcher.is_isomorphic()

	Returns True if G1 and G2 are isomorphic graphs.

	DiGraphMatcher.subgraph_is_isomorphic()

	Returns True if a subgraph of G1 is isomorphic to G2.

	DiGraphMatcher.isomorphisms_iter()

	Generator over isomorphisms between G1 and G2.

	DiGraphMatcher.subgraph_isomorphisms_iter()

	Generator over isomorphisms between a subgraph of G1 and G2.

	DiGraphMatcher.candidate_pairs_iter()

	Iterator over candidate pairs of nodes in G1 and G2.

	DiGraphMatcher.match()

	Extends the isomorphism mapping.

	DiGraphMatcher.semantic_feasibility(G1_node, …)

	Returns True if mapping G1_node to G2_node is semantically feasible.

	DiGraphMatcher.syntactic_feasibility(…)

	Returns True if adding (G1_node, G2_node) is syntactically feasible.

Match helpers

	categorical_node_match(attr, default)

	Returns a comparison function for a categorical node attribute.

	categorical_edge_match(attr, default)

	Returns a comparison function for a categorical edge attribute.

	categorical_multiedge_match(attr, default)

	Returns a comparison function for a categorical edge attribute.

	numerical_node_match(attr, default[, rtol, atol])

	Returns a comparison function for a numerical node attribute.

	numerical_edge_match(attr, default[, rtol, atol])

	Returns a comparison function for a numerical edge attribute.

	numerical_multiedge_match(attr, default[, …])

	Returns a comparison function for a numerical edge attribute.

	generic_node_match(attr, default, op)

	Returns a comparison function for a generic attribute.

	generic_edge_match(attr, default, op)

	Returns a comparison function for a generic attribute.

	generic_multiedge_match(attr, default, op)

	Returns a comparison function for a generic attribute.

NetworkX

__init__

	
GraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)

	Initialize graph matcher.

	Parameters

	
	G2 (G1,) – The graphs to be tested.

	node_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True iff node n1 in G1 and n2 in G2
should be considered equal during the isomorphism test. The
function will be called like:

node_match(G1.node[n1], G2.node[n2])

That is, the function will receive the node attribute dictionaries
of the nodes under consideration. If None, then no attributes are
considered when testing for an isomorphism.

	edge_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True iff the edge attribute dictionary for
the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be
considered equal during the isomorphism test. The function will be
called like:

edge_match(G1[u1][v1], G2[u2][v2])

That is, the function will receive the edge attribute dictionaries
of the edges under consideration. If None, then no attributes are
considered when testing for an isomorphism.

NetworkX

initialize

	
GraphMatcher.initialize()

	Reinitializes the state of the algorithm.

This method should be redefined if using something other than GMState.
If only subclassing GraphMatcher, a redefinition is not necessary.

NetworkX

is_isomorphic

	
GraphMatcher.is_isomorphic()

	Returns True if G1 and G2 are isomorphic graphs.

NetworkX

subgraph_is_isomorphic

	
GraphMatcher.subgraph_is_isomorphic()

	Returns True if a subgraph of G1 is isomorphic to G2.

NetworkX

isomorphisms_iter

	
GraphMatcher.isomorphisms_iter()

	Generator over isomorphisms between G1 and G2.

NetworkX

subgraph_isomorphisms_iter

	
GraphMatcher.subgraph_isomorphisms_iter()

	Generator over isomorphisms between a subgraph of G1 and G2.

NetworkX

candidate_pairs_iter

	
GraphMatcher.candidate_pairs_iter()

	Iterator over candidate pairs of nodes in G1 and G2.

NetworkX

match

	
GraphMatcher.match()

	Extends the isomorphism mapping.

This function is called recursively to determine if a complete
isomorphism can be found between G1 and G2. It cleans up the class
variables after each recursive call. If an isomorphism is found,
we yield the mapping.

NetworkX

semantic_feasibility

	
GraphMatcher.semantic_feasibility(G1_node, G2_node)

	Returns True if mapping G1_node to G2_node is semantically feasible.

NetworkX

syntactic_feasibility

	
GraphMatcher.syntactic_feasibility(G1_node, G2_node)

	Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair
to the current partial isomorphism mapping is allowable. The addition
is allowable if the inclusion of the candidate pair does not make it
impossible for an isomorphism to be found.

NetworkX

__init__

	
DiGraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)

	Initialize graph matcher.

	Parameters

	
	G2 (G1,) – The graphs to be tested.

	node_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True iff node n1 in G1 and n2 in G2
should be considered equal during the isomorphism test. The
function will be called like:

node_match(G1.node[n1], G2.node[n2])

That is, the function will receive the node attribute dictionaries
of the nodes under consideration. If None, then no attributes are
considered when testing for an isomorphism.

	edge_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True iff the edge attribute dictionary for
the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be
considered equal during the isomorphism test. The function will be
called like:

edge_match(G1[u1][v1], G2[u2][v2])

That is, the function will receive the edge attribute dictionaries
of the edges under consideration. If None, then no attributes are
considered when testing for an isomorphism.

NetworkX

initialize

	
DiGraphMatcher.initialize()

	Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState.
If only subclassing GraphMatcher, a redefinition is not necessary.

NetworkX

is_isomorphic

	
DiGraphMatcher.is_isomorphic()

	Returns True if G1 and G2 are isomorphic graphs.

NetworkX

subgraph_is_isomorphic

	
DiGraphMatcher.subgraph_is_isomorphic()

	Returns True if a subgraph of G1 is isomorphic to G2.

NetworkX

isomorphisms_iter

	
DiGraphMatcher.isomorphisms_iter()

	Generator over isomorphisms between G1 and G2.

NetworkX

subgraph_isomorphisms_iter

	
DiGraphMatcher.subgraph_isomorphisms_iter()

	Generator over isomorphisms between a subgraph of G1 and G2.

NetworkX

candidate_pairs_iter

	
DiGraphMatcher.candidate_pairs_iter()

	Iterator over candidate pairs of nodes in G1 and G2.

NetworkX

match

	
DiGraphMatcher.match()

	Extends the isomorphism mapping.

This function is called recursively to determine if a complete
isomorphism can be found between G1 and G2. It cleans up the class
variables after each recursive call. If an isomorphism is found,
we yield the mapping.

NetworkX

semantic_feasibility

	
DiGraphMatcher.semantic_feasibility(G1_node, G2_node)

	Returns True if mapping G1_node to G2_node is semantically feasible.

NetworkX

syntactic_feasibility

	
DiGraphMatcher.syntactic_feasibility(G1_node, G2_node)

	Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair
to the current partial isomorphism mapping is allowable. The addition
is allowable if the inclusion of the candidate pair does not make it
impossible for an isomorphism to be found.

NetworkX

categorical_node_match

	
categorical_node_match(attr, default)

	Returns a comparison function for a categorical node attribute.

The value(s) of the attr(s) must be hashable and comparable via the ==
operator since they are placed into a set([]) object. If the sets from
G1 and G2 are the same, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The categorical node attribute to compare, or a list of categorical
node attributes to compare.

	default (value | list) – The default value for the categorical node attribute, or a list of
default values for the categorical node attributes.

	Returns

	match – The customized, categorical \(node_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_node_match('size', 1)
>>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2])

NetworkX

categorical_edge_match

	
categorical_edge_match(attr, default)

	Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the ==
operator since they are placed into a set([]) object. If the sets from
G1 and G2 are the same, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The categorical edge attribute to compare, or a list of categorical
edge attributes to compare.

	default (value | list) – The default value for the categorical edge attribute, or a list of
default values for the categorical edge attributes.

	Returns

	match – The customized, categorical \(edge_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_edge_match('size', 1)
>>> nm = iso.categorical_edge_match(['color', 'size'], ['red', 2])

NetworkX

categorical_multiedge_match

	
categorical_multiedge_match(attr, default)

	Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the ==
operator since they are placed into a set([]) object. If the sets from
G1 and G2 are the same, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The categorical edge attribute to compare, or a list of categorical
edge attributes to compare.

	default (value | list) – The default value for the categorical edge attribute, or a list of
default values for the categorical edge attributes.

	Returns

	match – The customized, categorical \(edge_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_multiedge_match('size', 1)
>>> nm = iso.categorical_multiedge_match(['color', 'size'], ['red', 2])

NetworkX

numerical_node_match

	
numerical_node_match(attr, default, rtol=1e-05, atol=1e-08)

	Returns a comparison function for a numerical node attribute.

The value(s) of the attr(s) must be numerical and sortable. If the
sorted list of values from G1 and G2 are the same within some
tolerance, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The numerical node attribute to compare, or a list of numerical
node attributes to compare.

	default (value | list) – The default value for the numerical node attribute, or a list of
default values for the numerical node attributes.

	rtol (float [https://docs.python.org/2/library/functions.html#float]) – The relative error tolerance.

	atol (float [https://docs.python.org/2/library/functions.html#float]) – The absolute error tolerance.

	Returns

	match – The customized, numerical \(node_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_node_match('weight', 1.0)
>>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5])

NetworkX

numerical_edge_match

	
numerical_edge_match(attr, default, rtol=1e-05, atol=1e-08)

	Returns a comparison function for a numerical edge attribute.

The value(s) of the attr(s) must be numerical and sortable. If the
sorted list of values from G1 and G2 are the same within some
tolerance, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The numerical edge attribute to compare, or a list of numerical
edge attributes to compare.

	default (value | list) – The default value for the numerical edge attribute, or a list of
default values for the numerical edge attributes.

	rtol (float [https://docs.python.org/2/library/functions.html#float]) – The relative error tolerance.

	atol (float [https://docs.python.org/2/library/functions.html#float]) – The absolute error tolerance.

	Returns

	match – The customized, numerical \(edge_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_edge_match('weight', 1.0)
>>> nm = iso.numerical_edge_match(['weight', 'linewidth'], [.25, .5])

NetworkX

numerical_multiedge_match

	
numerical_multiedge_match(attr, default, rtol=1e-05, atol=1e-08)

	Returns a comparison function for a numerical edge attribute.

The value(s) of the attr(s) must be numerical and sortable. If the
sorted list of values from G1 and G2 are the same within some
tolerance, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The numerical edge attribute to compare, or a list of numerical
edge attributes to compare.

	default (value | list) – The default value for the numerical edge attribute, or a list of
default values for the numerical edge attributes.

	rtol (float [https://docs.python.org/2/library/functions.html#float]) – The relative error tolerance.

	atol (float [https://docs.python.org/2/library/functions.html#float]) – The absolute error tolerance.

	Returns

	match – The customized, numerical \(edge_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_multiedge_match('weight', 1.0)
>>> nm = iso.numerical_multiedge_match(['weight', 'linewidth'], [.25, .5])

NetworkX

generic_node_match

	
generic_node_match(attr, default, op)

	Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified
operators. If all the attributes are equal, then the constructed
function returns True.

	Parameters

	
	attr (string | list) – The node attribute to compare, or a list of node attributes
to compare.

	default (value | list) – The default value for the node attribute, or a list of
default values for the node attributes.

	op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

	Returns

	match – The customized, generic \(node_match\) function.

	Return type

	function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq])

NetworkX

generic_edge_match

	
generic_edge_match(attr, default, op)

	Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified
operators. If all the attributes are equal, then the constructed
function returns True.

	Parameters

	
	attr (string | list) – The edge attribute to compare, or a list of edge attributes
to compare.

	default (value | list) – The default value for the edge attribute, or a list of
default values for the edge attributes.

	op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

	Returns

	match – The customized, generic \(edge_match\) function.

	Return type

	function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_edge_match
>>> nm = generic_edge_match('weight', 1.0, close)
>>> nm = generic_edge_match('color', 'red', eq)
>>> nm = generic_edge_match(['weight', 'color'], [1.0, 'red'], [close, eq])

NetworkX

generic_multiedge_match

	
generic_multiedge_match(attr, default, op)

	Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified
operators. If all the attributes are equal, then the constructed
function returns True. Potentially, the constructed edge_match
function can be slow since it must verify that no isomorphism
exists between the multiedges before it returns False.

	Parameters

	
	attr (string | list) – The edge attribute to compare, or a list of node attributes
to compare.

	default (value | list) – The default value for the edge attribute, or a list of
default values for the dgeattributes.

	op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

	Returns

	match – The customized, generic \(edge_match\) function.

	Return type

	function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'],
... [1.0, 'red'],
... [close, eq])
...

NetworkX

Link Analysis

PageRank

PageRank analysis of graph structure.

	pagerank(G[, alpha, personalization, …])

	Return the PageRank of the nodes in the graph.

	pagerank_numpy(G[, alpha, personalization, …])

	Return the PageRank of the nodes in the graph.

	pagerank_scipy(G[, alpha, personalization, …])

	Return the PageRank of the nodes in the graph.

	google_matrix(G[, alpha, personalization, …])

	Return the Google matrix of the graph.

Hits

Hubs and authorities analysis of graph structure.

	hits(G[, max_iter, tol, nstart, normalized])

	Return HITS hubs and authorities values for nodes.

	hits_numpy(G[, normalized])

	Return HITS hubs and authorities values for nodes.

	hits_scipy(G[, max_iter, tol, normalized])

	Return HITS hubs and authorities values for nodes.

	hub_matrix(G[, nodelist])

	Return the HITS hub matrix.

	authority_matrix(G[, nodelist])

	Return the HITS authority matrix.

NetworkX

pagerank

	
pagerank(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, nstart=None, weight='weight', dangling=None)

	Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.

	Parameters

	
	G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional) – Damping parameter for PageRank, default=0.85.

	personalization (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The “personalization vector” consisting of a dictionary with a
key for every graph node and nonzero personalization value for each node.
By default, a uniform distribution is used.

	max_iter (integer, optional) – Maximum number of iterations in power method eigenvalue solver.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method solver.

	nstart (dictionary, optional) – Starting value of PageRank iteration for each node.

	weight (key, optional) – Edge data key to use as weight. If None weights are set to 1.

	dangling (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified). This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.

	Returns

	pagerank – Dictionary of nodes with PageRank as value

	Return type

	dictionary

Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank(G, alpha=0.9)

Notes

The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.

The PageRank algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs by converting each edge in the
directed graph to two edges.

See also

pagerank_numpy(), pagerank_scipy(), google_matrix()

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf

NetworkX

pagerank_numpy

	
pagerank_numpy(G, alpha=0.85, personalization=None, weight='weight', dangling=None)

	Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.

	Parameters

	
	G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional) – Damping parameter for PageRank, default=0.85.

	personalization (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The “personalization vector” consisting of a dictionary with a
key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.

	weight (key, optional) – Edge data key to use as weight. If None weights are set to 1.

	dangling (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.

	Returns

	pagerank – Dictionary of nodes with PageRank as value.

	Return type

	dictionary

Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_numpy(G, alpha=0.9)

Notes

The eigenvector calculation uses NumPy’s interface to the LAPACK
eigenvalue solvers. This will be the fastest and most accurate
for small graphs.

This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.

See also

pagerank(), pagerank_scipy(), google_matrix()

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf

NetworkX

pagerank_scipy

	
pagerank_scipy(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, weight='weight', dangling=None)

	Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.

	Parameters

	
	G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional) – Damping parameter for PageRank, default=0.85.

	personalization (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The “personalization vector” consisting of a dictionary with a
key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.

	max_iter (integer, optional) – Maximum number of iterations in power method eigenvalue solver.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method solver.

	weight (key, optional) – Edge data key to use as weight. If None weights are set to 1.

	dangling (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.

	Returns

	pagerank – Dictionary of nodes with PageRank as value

	Return type

	dictionary

Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_scipy(G, alpha=0.9)

Notes

The eigenvector calculation uses power iteration with a SciPy
sparse matrix representation.

This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.

See also

pagerank(), pagerank_numpy(), google_matrix()

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf

NetworkX

google_matrix

	
google_matrix(G, alpha=0.85, personalization=None, nodelist=None, weight='weight', dangling=None)

	Return the Google matrix of the graph.

	Parameters

	
	G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The damping factor.

	personalization (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The “personalization vector” consisting of a dictionary with a
key for every graph node and nonzero personalization value for each node.
By default, a uniform distribution is used.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (key, optional) – Edge data key to use as weight. If None weights are set to 1.

	dangling (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes below). It may be common to have the dangling dict to
be the same as the personalization dict.

	Returns

	A – Google matrix of the graph

	Return type

	NumPy matrix

Notes

The matrix returned represents the transition matrix that describes the
Markov chain used in PageRank. For PageRank to converge to a unique
solution (i.e., a unique stationary distribution in a Markov chain), the
transition matrix must be irreducible. In other words, it must be that
there exists a path between every pair of nodes in the graph, or else there
is the potential of “rank sinks.”

This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.

See also

pagerank(), pagerank_numpy(), pagerank_scipy()

NetworkX

hits

	
hits(G, max_iter=100, tol=1e-08, nstart=None, normalized=True)

	Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node.
Authorities estimates the node value based on the incoming links.
Hubs estimates the node value based on outgoing links.

	Parameters

	
	G (graph) – A NetworkX graph

	max_iter (interger, optional) – Maximum number of iterations in power method.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method iteration.

	nstart (dictionary, optional) – Starting value of each node for power method iteration.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Normalize results by the sum of all of the values.

	Returns

	(hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

	Return type

	two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs.

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Jon Kleinberg,
Authoritative sources in a hyperlinked environment
Journal of the ACM 46 (5): 604-32, 1999.
doi:10.1145/324133.324140.
http://www.cs.cornell.edu/home/kleinber/auth.pdf.

NetworkX

hits_numpy

	
hits_numpy(G, normalized=True)

	Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node.
Authorities estimates the node value based on the incoming links.
Hubs estimates the node value based on outgoing links.

	Parameters

	
	G (graph) – A NetworkX graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Normalize results by the sum of all of the values.

	Returns

	(hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

	Return type

	two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

The eigenvector calculation uses NumPy’s interface to LAPACK.

The HITS algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs.

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Jon Kleinberg,
Authoritative sources in a hyperlinked environment
Journal of the ACM 46 (5): 604-32, 1999.
doi:10.1145/324133.324140.
http://www.cs.cornell.edu/home/kleinber/auth.pdf.

NetworkX

hits_scipy

	
hits_scipy(G, max_iter=100, tol=1e-06, normalized=True)

	Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node.
Authorities estimates the node value based on the incoming links.
Hubs estimates the node value based on outgoing links.

	Parameters

	
	G (graph) – A NetworkX graph

	max_iter (interger, optional) – Maximum number of iterations in power method.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method iteration.

	nstart (dictionary, optional) – Starting value of each node for power method iteration.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Normalize results by the sum of all of the values.

	Returns

	(hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

	Return type

	two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

This implementation uses SciPy sparse matrices.

The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs.

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Jon Kleinberg,
Authoritative sources in a hyperlinked environment
Journal of the ACM 46 (5): 604-632, 1999.
doi:10.1145/324133.324140.
http://www.cs.cornell.edu/home/kleinber/auth.pdf.

NetworkX

hub_matrix

	
hub_matrix(G, nodelist=None)

	Return the HITS hub matrix.

NetworkX

authority_matrix

	
authority_matrix(G, nodelist=None)

	Return the HITS authority matrix.

NetworkX

Link Prediction

Link prediction algorithms.

	resource_allocation_index(G[, ebunch])

	Compute the resource allocation index of all node pairs in ebunch.

	jaccard_coefficient(G[, ebunch])

	Compute the Jaccard coefficient of all node pairs in ebunch.

	adamic_adar_index(G[, ebunch])

	Compute the Adamic-Adar index of all node pairs in ebunch.

	preferential_attachment(G[, ebunch])

	Compute the preferential attachment score of all node pairs in ebunch.

	cn_soundarajan_hopcroft(G[, ebunch, community])

	Count the number of common neighbors of all node pairs in ebunch using community information.

	ra_index_soundarajan_hopcroft(G[, ebunch, …])

	Compute the resource allocation index of all node pairs in ebunch using community information.

	within_inter_cluster(G[, ebunch, delta, …])

	Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch.

NetworkX

resource_allocation_index

	
resource_allocation_index(G, ebunch=None)

	Compute the resource allocation index of all node pairs in ebunch.

Resource allocation index of \(u\) and \(v\) is defined as

\[\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – Resource allocation index will be computed for each pair of
nodes given in the iterable. The pairs must be given as
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
is None then all non-existent edges in the graph will be used.
Default value: None.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their resource allocation index.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.resource_allocation_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.75000000'
'(2, 3) -> 0.75000000'

References

	1

	T. Zhou, L. Lu, Y.-C. Zhang.
Predicting missing links via local information.
Eur. Phys. J. B 71 (2009) 623.
http://arxiv.org/pdf/0901.0553.pdf

NetworkX

jaccard_coefficient

	
jaccard_coefficient(G, ebunch=None)

	Compute the Jaccard coefficient of all node pairs in ebunch.

Jaccard coefficient of nodes \(u\) and \(v\) is defined as

\[\frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – Jaccard coefficient will be computed for each pair of nodes
given in the iterable. The pairs must be given as 2-tuples
(u, v) where u and v are nodes in the graph. If ebunch is None
then all non-existent edges in the graph will be used.
Default value: None.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their Jaccard coefficient.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.60000000'
'(2, 3) -> 0.60000000'

References

	1

	D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf

NetworkX

adamic_adar_index

	
adamic_adar_index(G, ebunch=None)

	Compute the Adamic-Adar index of all node pairs in ebunch.

Adamic-Adar index of \(u\) and \(v\) is defined as

\[\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

	Parameters

	
	G (graph) – NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – Adamic-Adar index will be computed for each pair of nodes given
in the iterable. The pairs must be given as 2-tuples (u, v)
where u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their Adamic-Adar index.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 2.16404256'
'(2, 3) -> 2.16404256'

References

	1

	D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf

NetworkX

preferential_attachment

	
preferential_attachment(G, ebunch=None)

	Compute the preferential attachment score of all node pairs in ebunch.

Preferential attachment score of \(u\) and \(v\) is defined as

\[|\Gamma(u)| |\Gamma(v)|\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

	Parameters

	
	G (graph) – NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – Preferential attachment score will be computed for each pair of
nodes given in the iterable. The pairs must be given as
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
is None then all non-existent edges in the graph will be used.
Default value: None.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their preferential attachment score.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
...
'(0, 1) -> 16'
'(2, 3) -> 16'

References

	1

	D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf

NetworkX

cn_soundarajan_hopcroft

	
cn_soundarajan_hopcroft(G, ebunch=None, community='community')

	
	Count the number of common neighbors of all node pairs in ebunch

	using community information.

For two nodes \(u\) and \(v\), this function computes the number of
common neighbors and bonus one for each common neighbor belonging to
the same community as \(u\) and \(v\). Mathematically,

\[|\Gamma(u) \cap \Gamma(v)| + \sum_{w \in \Gamma(u) \cap \Gamma(v)} f(w)\]

where \(f(w)\) equals 1 if \(w\) belongs to the same community as \(u\)
and \(v\) or 0 otherwise and \(\Gamma(u)\) denotes the set of
neighbors of \(u\).

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – The score will be computed for each pair of nodes given in the
iterable. The pairs must be given as 2-tuples (u, v) where u
and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.

	community (string [https://docs.python.org/2/library/string.html#module-string], optional (default = 'community')) – Nodes attribute name containing the community information.
G[u][community] identifies which community u belongs to. Each
node belongs to at most one community. Default value: ‘community’.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their score.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.path_graph(3)
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 0
>>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
...
'(0, 2) -> 2'

References

	1

	Sucheta Soundarajan and John Hopcroft.
Using community information to improve the precision of link
prediction methods.
In Proceedings of the 21st international conference companion on
World Wide Web (WWW ‘12 Companion). ACM, New York, NY, USA, 607-608.
http://doi.acm.org/10.1145/2187980.2188150

NetworkX

ra_index_soundarajan_hopcroft

	
ra_index_soundarajan_hopcroft(G, ebunch=None, community='community')

	Compute the resource allocation index of all node pairs in
ebunch using community information.

For two nodes \(u\) and \(v\), this function computes the resource
allocation index considering only common neighbors belonging to the
same community as \(u\) and \(v\). Mathematically,

\[\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|}\]

where \(f(w)\) equals 1 if \(w\) belongs to the same community as \(u\)
and \(v\) or 0 otherwise and \(\Gamma(u)\) denotes the set of
neighbors of \(u\).

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – The score will be computed for each pair of nodes given in the
iterable. The pairs must be given as 2-tuples (u, v) where u
and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.

	community (string [https://docs.python.org/2/library/string.html#module-string], optional (default = 'community')) – Nodes attribute name containing the community information.
G[u][community] identifies which community u belongs to. Each
node belongs to at most one community. Default value: ‘community’.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their score.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 1
>>> G.node[3]['community'] = 0
>>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 3) -> 0.50000000'

References

	1

	Sucheta Soundarajan and John Hopcroft.
Using community information to improve the precision of link
prediction methods.
In Proceedings of the 21st international conference companion on
World Wide Web (WWW ‘12 Companion). ACM, New York, NY, USA, 607-608.
http://doi.acm.org/10.1145/2187980.2188150

NetworkX

within_inter_cluster

	
within_inter_cluster(G, ebunch=None, delta=0.001, community='community')

	Compute the ratio of within- and inter-cluster common neighbors
of all node pairs in ebunch.

For two nodes \(u\) and \(v\), if a common neighbor \(w\) belongs to the
same community as them, \(w\) is considered as within-cluster common
neighbor of \(u\) and \(v\). Otherwise, it is considered as
inter-cluster common neighbor of \(u\) and \(v\). The ratio between the
size of the set of within- and inter-cluster common neighbors is
defined as the WIC measure. 1

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – The WIC measure will be computed for each pair of nodes given in
the iterable. The pairs must be given as 2-tuples (u, v) where
u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.

	delta (float [https://docs.python.org/2/library/functions.html#float], optional (default = 0.001)) – Value to prevent division by zero in case there is no
inter-cluster common neighbor between two nodes. See 1 for
details. Default value: 0.001.

	community (string [https://docs.python.org/2/library/string.html#module-string], optional (default = 'community')) – Nodes attribute name containing the community information.
G[u][community] identifies which community u belongs to. Each
node belongs to at most one community. Default value: ‘community’.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their WIC measure.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 1
>>> G.node[2]['community'] = 0
>>> G.node[3]['community'] = 0
>>> G.node[4]['community'] = 0
>>> preds = nx.within_inter_cluster(G, [(0, 4)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 4) -> 1.99800200'
>>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 4) -> 1.33333333'

References

	1(1,2)

	Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes.
Link prediction in complex networks based on cluster information.
In Proceedings of the 21st Brazilian conference on Advances in
Artificial Intelligence (SBIA‘12)
http://dx.doi.org/10.1007/978-3-642-34459-6_10

NetworkX

Matching

Matching

	maximal_matching(G)

	Find a maximal cardinality matching in the graph.

	max_weight_matching(G[, maxcardinality])

	Compute a maximum-weighted matching of G.

NetworkX

maximal_matching

	
maximal_matching(G)

	Find a maximal cardinality matching in the graph.

A matching is a subset of edges in which no node occurs more than once.
The cardinality of a matching is the number of matched edges.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	matching – A maximal matching of the graph.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

The algorithm greedily selects a maximal matching M of the graph G
(i.e. no superset of M exists). It runs in \(O(|E|)\) time.

NetworkX

max_weight_matching

	
max_weight_matching(G, maxcardinality=False)

	Compute a maximum-weighted matching of G.

A matching is a subset of edges in which no node occurs more than once.
The cardinality of a matching is the number of matched edges.
The weight of a matching is the sum of the weights of its edges.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	maxcardinality (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If maxcardinality is True, compute the maximum-cardinality matching
with maximum weight among all maximum-cardinality matchings.

	Returns

	mate – The matching is returned as a dictionary, mate, such that
mate[v] == w if node v is matched to node w. Unmatched nodes do not
occur as a key in mate.

	Return type

	dictionary

Notes

If G has edges with ‘weight’ attribute the edge data are used as
weight values else the weights are assumed to be 1.

This function takes time O(number_of_nodes ** 3).

If all edge weights are integers, the algorithm uses only integer
computations. If floating point weights are used, the algorithm
could return a slightly suboptimal matching due to numeric
precision errors.

This method is based on the “blossom” method for finding augmenting
paths and the “primal-dual” method for finding a matching of maximum
weight, both methods invented by Jack Edmonds 1.

Bipartite graphs can also be matched using the functions present in
networkx.algorithms.bipartite.matching.

References

	1

	“Efficient Algorithms for Finding Maximum Matching in Graphs”,
Zvi Galil, ACM Computing Surveys, 1986.

NetworkX

Minors

Provides functions for computing minors of a graph.

	contracted_edge(G, edge[, self_loops])

	Returns the graph that results from contracting the specified edge.

	contracted_nodes(G, u, v[, self_loops])

	Returns the graph that results from contracting u and v.

	identified_nodes(G, u, v[, self_loops])

	Returns the graph that results from contracting u and v.

	quotient_graph(G, node_relation[, …])

	Returns the quotient graph of G under the specified equivalence relation on nodes.

NetworkX

contracted_edge

	
contracted_edge(G, edge, self_loops=True)

	Returns the graph that results from contracting the specified edge.

Edge contraction identifies the two endpoints of the edge as a single node
incident to any edge that was incident to the original two nodes. A graph
that results from edge contraction is called a minor of the original
graph.

	Parameters

	
	G (NetworkX graph) – The graph whose edge will be contracted.

	edge (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Must be a pair of nodes in G.

	self_loops (Boolean) – If this is True, any edges (including edge) joining the
endpoints of edge in G become self-loops on the new node in the
returned graph.

	Returns

	A new graph object of the same type as G (leaving G unmodified)
with endpoints of edge identified in a single node. The right node
of edge will be merged into the left one, so only the left one will
appear in the returned graph.

	Return type

	Networkx graph

	Raises

	ValueError – If edge is not an edge in G.

Examples

Attempting to contract two nonadjacent nodes yields an error:

>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> nx.contracted_edge(G, (1, 3))
Traceback (most recent call last):
 ...
ValueError: Edge (1, 3) does not exist in graph G; cannot contract it

Contracting two adjacent nodes in the cycle graph on n nodes yields the
cycle graph on n - 1 nodes:

>>> import networkx as nx
>>> C5 = nx.cycle_graph(5)
>>> C4 = nx.cycle_graph(4)
>>> M = nx.contracted_edge(C5, (0, 1), self_loops=False)
>>> nx.is_isomorphic(M, C4)
True

See also

contracted_nodes(), quotient_graph()

NetworkX

contracted_nodes

	
contracted_nodes(G, u, v, self_loops=True)

	Returns the graph that results from contracting u and v.

Node contraction identifies the two nodes as a single node incident to any
edge that was incident to the original two nodes.

	Parameters

	
	G (NetworkX graph) – The graph whose nodes will be contracted.

	v (u,) – Must be nodes in G.

	self_loops (Boolean) – If this is True, any edges joining u and v in G become
self-loops on the new node in the returned graph.

	Returns

	A new graph object of the same type as G (leaving G unmodified)
with u and v identified in a single node. The right node v
will be merged into the node u, so only u will appear in the
returned graph.

	Return type

	Networkx graph

Examples

Contracting two nonadjacent nodes of the cycle graph on four nodes \(C_4\)
yields the path graph (ignoring parallel edges):

>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True

See also

contracted_edge(), quotient_graph()

Notes

This function is also available as identified_nodes.

NetworkX

identified_nodes

	
identified_nodes(G, u, v, self_loops=True)

	Returns the graph that results from contracting u and v.

Node contraction identifies the two nodes as a single node incident to any
edge that was incident to the original two nodes.

	Parameters

	
	G (NetworkX graph) – The graph whose nodes will be contracted.

	v (u,) – Must be nodes in G.

	self_loops (Boolean) – If this is True, any edges joining u and v in G become
self-loops on the new node in the returned graph.

	Returns

	A new graph object of the same type as G (leaving G unmodified)
with u and v identified in a single node. The right node v
will be merged into the node u, so only u will appear in the
returned graph.

	Return type

	Networkx graph

Examples

Contracting two nonadjacent nodes of the cycle graph on four nodes \(C_4\)
yields the path graph (ignoring parallel edges):

>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True

See also

contracted_edge(), quotient_graph()

Notes

This function is also available as identified_nodes.

NetworkX

quotient_graph

	
quotient_graph(G, node_relation, edge_relation=None, create_using=None)

	Returns the quotient graph of G under the specified equivalence
relation on nodes.

	Parameters

	
	G (NetworkX graph) – The graph for which to return the quotient graph with the specified node
relation.

	node_relation (Boolean function with two arguments) – This function must represent an equivalence relation on the nodes of
G. It must take two arguments u and v and return True
exactly when u and v are in the same equivalence class. The
equivalence classes form the nodes in the returned graph.

	edge_relation (Boolean function with two arguments) – This function must represent an edge relation on the blocks of G
in the partition induced by node_relation. It must take two
arguments, B and C, each one a set of nodes, and return True
exactly when there should be an edge joining block B to block C in
the returned graph.

If edge_relation is not specified, it is assumed to be the following
relation. Block B is related to block C if and only if some node in
B is adjacent to some node in C, according to the edge set of G.

	create_using (NetworkX graph) – If specified, this must be an instance of a NetworkX graph class. The
nodes and edges of the quotient graph will be added to this graph and
returned. If not specified, the returned graph will have the same type
as the input graph.

	Returns

	The quotient graph of G under the equivalence relation specified by
node_relation.

	Return type

	NetworkX graph

Examples

The quotient graph of the complete bipartite graph under the “same
neighbors” equivalence relation is \(K_2\). Under this relation, two nodes
are equivalent if they are not adjacent but have the same neighbor set:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> same_neighbors = lambda u, v: (u not in G[v] and v not in G[u]
... and G[u] == G[v])
>>> Q = nx.quotient_graph(G, same_neighbors)
>>> K2 = nx.complete_graph(2)
>>> nx.is_isomorphic(Q, K2)
True

The quotient graph of a directed graph under the “same strongly connected
component” equivalence relation is the condensation of the graph (see
condensation()). This example comes from the Wikipedia article
`Strongly connected component`_:

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> edges = ['ab', 'be', 'bf', 'bc', 'cg', 'cd', 'dc', 'dh', 'ea',
... 'ef', 'fg', 'gf', 'hd', 'hf']
>>> G.add_edges_from(tuple(x) for x in edges)
>>> components = list(nx.strongly_connected_components(G))
>>> sorted(sorted(component) for component in components)
[['a', 'b', 'e'], ['c', 'd', 'h'], ['f', 'g']]
>>>
>>> C = nx.condensation(G, components)
>>> component_of = C.graph['mapping']
>>> same_component = lambda u, v: component_of[u] == component_of[v]
>>> Q = nx.quotient_graph(G, same_component)
>>> nx.is_isomorphic(C, Q)
True

Node identification can be represented as the quotient of a graph under the
equivalence relation that places the two nodes in one block and each other
node in its own singleton block:

>>> import networkx as nx
>>> K24 = nx.complete_bipartite_graph(2, 4)
>>> K34 = nx.complete_bipartite_graph(3, 4)
>>> C = nx.contracted_nodes(K34, 1, 2)
>>> nodes = {1, 2}
>>> is_contracted = lambda u, v: u in nodes and v in nodes
>>> Q = nx.quotient_graph(K34, is_contracted)
>>> nx.is_isomorphic(Q, C)
True
>>> nx.is_isomorphic(Q, K24)
True

NetworkX

Maximal independent set

Algorithm to find a maximal (not maximum) independent set.

	maximal_independent_set(G[, nodes])

	Return a random maximal independent set guaranteed to contain a given set of nodes.

NetworkX

maximal_independent_set

	
maximal_independent_set(G, nodes=None)

	Return a random maximal independent set guaranteed to contain
a given set of nodes.

An independent set is a set of nodes such that the subgraph
of G induced by these nodes contains no edges. A maximal
independent set is an independent set such that it is not possible
to add a new node and still get an independent set.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or iterable) – Nodes that must be part of the independent set. This set of nodes
must be independent.

	Returns

	indep_nodes – List of nodes that are part of a maximal independent set.

	Return type

	list

	Raises

	NetworkXUnfeasible – If the nodes in the provided list are not part of the graph or
do not form an independent set, an exception is raised.

Examples

>>> G = nx.path_graph(5)
>>> nx.maximal_independent_set(G)
[4, 0, 2]
>>> nx.maximal_independent_set(G, [1])
[1, 3]

Notes

This algorithm does not solve the maximum independent set problem.

NetworkX

Minimum Spanning Tree

Computes minimum spanning tree of a weighted graph.

	minimum_spanning_tree(G[, weight])

	Return a minimum spanning tree or forest of an undirected weighted graph.

	minimum_spanning_edges(G[, weight, data])

	Generate edges in a minimum spanning forest of an undirected weighted graph.

NetworkX

minimum_spanning_tree

	
minimum_spanning_tree(G, weight='weight')

	Return a minimum spanning tree or forest of an undirected
weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with
the minimum sum of edge weights.

If the graph is not connected a spanning forest is constructed. A
spanning forest is a union of the spanning trees for each
connected component of the graph.

	Parameters

	
	G (NetworkX Graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edge data key to use for weight (default ‘weight’).

	Returns

	G – A minimum spanning tree or forest.

	Return type

	NetworkX Graph

Examples

>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> T=nx.minimum_spanning_tree(G)
>>> print(sorted(T.edges(data=True)))
[(0, 1, {}), (1, 2, {}), (2, 3, {})]

Notes

Uses Kruskal’s algorithm.

If the graph edges do not have a weight attribute a default weight of 1
will be used.

NetworkX

minimum_spanning_edges

	
minimum_spanning_edges(G, weight='weight', data=True)

	Generate edges in a minimum spanning forest of an undirected
weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree)
with the minimum sum of edge weights. A spanning forest is a
union of the spanning trees for each connected component of the graph.

	Parameters

	
	G (NetworkX Graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edge data key to use for weight (default ‘weight’).

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True yield the edge data along with the edge.

	Returns

	edges – A generator that produces edges in the minimum spanning tree.
The edges are three-tuples (u,v,w) where w is the weight.

	Return type

	iterator

Examples

>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> mst=nx.minimum_spanning_edges(G,data=False) # a generator of MST edges
>>> edgelist=list(mst) # make a list of the edges
>>> print(sorted(edgelist))
[(0, 1), (1, 2), (2, 3)]

Notes

Uses Kruskal’s algorithm.

If the graph edges do not have a weight attribute a default weight of 1
will be used.

Modified code from David Eppstein, April 2006
http://www.ics.uci.edu/~eppstein/PADS/

NetworkX

Operators

Unary operations on graphs

	complement(G[, name])

	Return the graph complement of G.

	reverse(G[, copy])

	Return the reverse directed graph of G.

Operations on graphs including union, intersection, difference.

	compose(G, H[, name])

	Return a new graph of G composed with H.

	union(G, H[, rename, name])

	Return the union of graphs G and H.

	disjoint_union(G, H)

	Return the disjoint union of graphs G and H.

	intersection(G, H)

	Return a new graph that contains only the edges that exist in both G and H.

	difference(G, H)

	Return a new graph that contains the edges that exist in G but not in H.

	symmetric_difference(G, H)

	Return new graph with edges that exist in either G or H but not both.

Operations on many graphs.

	compose_all(graphs[, name])

	Return the composition of all graphs.

	union_all(graphs[, rename, name])

	Return the union of all graphs.

	disjoint_union_all(graphs)

	Return the disjoint union of all graphs.

	intersection_all(graphs)

	Return a new graph that contains only the edges that exist in all graphs.

Graph products.

	cartesian_product(G, H)

	Return the Cartesian product of G and H.

	lexicographic_product(G, H)

	Return the lexicographic product of G and H.

	strong_product(G, H)

	Return the strong product of G and H.

	tensor_product(G, H)

	Return the tensor product of G and H.

	power(G, k)

	Returns the specified power of a graph.

NetworkX

complement

	
complement(G, name=None)

	Return the graph complement of G.

	Parameters

	
	G (graph) – A NetworkX graph

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify name for new graph

	Returns

	GC

	Return type

	A new graph.

Notes

Note that complement() does not create self-loops and also
does not produce parallel edges for MultiGraphs.

Graph, node, and edge data are not propagated to the new graph.

NetworkX

reverse

	
reverse(G, copy=True)

	Return the reverse directed graph of G.

	Parameters

	
	G (directed graph) – A NetworkX directed graph

	copy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, then a new graph is returned. If False, then the graph is
reversed in place.

	Returns

	H – The reversed G.

	Return type

	directed graph

NetworkX

compose

	
compose(G, H, name=None)

	Return a new graph of G composed with H.

Composition is the simple union of the node sets and edge sets.
The node sets of G and H do not need to be disjoint.

	Parameters

	
	G,H (graph) – A NetworkX graph

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify name for new graph

	Returns

	C

	Return type

	A new graph with the same type as G

Notes

It is recommended that G and H be either both directed or both undirected.
Attributes from H take precedent over attributes from G.

NetworkX

union

	
union(G, H, rename=(None, None), name=None)

	Return the union of graphs G and H.

Graphs G and H must be disjoint, otherwise an exception is raised.

	Parameters

	
	G,H (graph) – A NetworkX graph

	create_using (NetworkX graph) – Use specified graph for result. Otherwise

	rename (bool [https://docs.python.org/2/library/functions.html#bool] , default=(None [https://docs.python.org/2/library/constants.html#None], None [https://docs.python.org/2/library/constants.html#None])) – Node names of G and H can be changed by specifying the tuple
rename=(‘G-‘,’H-‘) (for example). Node “u” in G is then renamed
“G-u” and “v” in H is renamed “H-v”.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify the name for the union graph

	Returns

	U

	Return type

	A union graph with the same type as G.

Notes

To force a disjoint union with node relabeling, use
disjoint_union(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated from G and H
to the union graph. If a graph attribute is present in both
G and H the value from H is used.

See also

disjoint_union()

NetworkX

disjoint_union

	
disjoint_union(G, H)

	Return the disjoint union of graphs G and H.

This algorithm forces distinct integer node labels.

	Parameters

	G,H (graph) – A NetworkX graph

	Returns

	U

	Return type

	A union graph with the same type as G.

Notes

A new graph is created, of the same class as G. It is recommended
that G and H be either both directed or both undirected.

The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are
relabeled len(G) to len(G)+len(H)-1.

Graph, edge, and node attributes are propagated from G and H
to the union graph. If a graph attribute is present in both
G and H the value from H is used.

NetworkX

intersection

	
intersection(G, H)

	Return a new graph that contains only the edges that exist in
both G and H.

The node sets of H and G must be the same.

	Parameters

	G,H (graph) – A NetworkX graph. G and H must have the same node sets.

	Returns

	GH

	Return type

	A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new
graph. If you want a new graph of the intersection of G and H
with the attributes (including edge data) from G use remove_nodes_from()
as follows

>>> G=nx.path_graph(3)
>>> H=nx.path_graph(5)
>>> R=G.copy()
>>> R.remove_nodes_from(n for n in G if n not in H)

NetworkX

difference

	
difference(G, H)

	Return a new graph that contains the edges that exist in G but not in H.

The node sets of H and G must be the same.

	Parameters

	G,H (graph) – A NetworkX graph. G and H must have the same node sets.

	Returns

	D

	Return type

	A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new
graph. If you want a new graph of the difference of G and H with
with the attributes (including edge data) from G use remove_nodes_from()
as follows:

>>> G = nx.path_graph(3)
>>> H = nx.path_graph(5)
>>> R = G.copy()
>>> R.remove_nodes_from(n for n in G if n in H)

NetworkX

symmetric_difference

	
symmetric_difference(G, H)

	Return new graph with edges that exist in either G or H but not both.

The node sets of H and G must be the same.

	Parameters

	G,H (graph) – A NetworkX graph. G and H must have the same node sets.

	Returns

	D

	Return type

	A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new
graph.

NetworkX

compose_all

	
compose_all(graphs, name=None)

	Return the composition of all graphs.

Composition is the simple union of the node sets and edge sets.
The node sets of the supplied graphs need not be disjoint.

	Parameters

	
	graphs (list) – List of NetworkX graphs

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify name for new graph

	Returns

	C

	Return type

	A graph with the same type as the first graph in list

Notes

It is recommended that the supplied graphs be either all directed or all
undirected.

Graph, edge, and node attributes are propagated to the union graph.
If a graph attribute is present in multiple graphs, then the value
from the last graph in the list with that attribute is used.

NetworkX

union_all

	
union_all(graphs, rename=(None,), name=None)

	Return the union of all graphs.

The graphs must be disjoint, otherwise an exception is raised.

	Parameters

	
	graphs (list of graphs) – List of NetworkX graphs

	rename (bool [https://docs.python.org/2/library/functions.html#bool] , default=(None [https://docs.python.org/2/library/constants.html#None], None [https://docs.python.org/2/library/constants.html#None])) – Node names of G and H can be changed by specifying the tuple
rename=(‘G-‘,’H-‘) (for example). Node “u” in G is then renamed
“G-u” and “v” in H is renamed “H-v”.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify the name for the union graph@not_implemnted_for(‘direct

	Returns

	U

	Return type

	a graph with the same type as the first graph in list

Notes

To force a disjoint union with node relabeling, use
disjoint_union_all(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated to the union graph.
If a graph attribute is present in multiple graphs, then the value
from the last graph in the list with that attribute is used.

See also

union(), disjoint_union_all()

NetworkX

disjoint_union_all

	
disjoint_union_all(graphs)

	Return the disjoint union of all graphs.

This operation forces distinct integer node labels starting with 0
for the first graph in the list and numbering consecutively.

	Parameters

	graphs (list) – List of NetworkX graphs

	Returns

	U

	Return type

	A graph with the same type as the first graph in list

Notes

It is recommended that the graphs be either all directed or all undirected.

Graph, edge, and node attributes are propagated to the union graph.
If a graph attribute is present in multiple graphs, then the value
from the last graph in the list with that attribute is used.

NetworkX

intersection_all

	
intersection_all(graphs)

	Return a new graph that contains only the edges that exist in
all graphs.

All supplied graphs must have the same node set.

	Parameters

	graphs_list (list) – List of NetworkX graphs

	Returns

	R

	Return type

	A new graph with the same type as the first graph in list

Notes

Attributes from the graph, nodes, and edges are not copied to the new
graph.

NetworkX

cartesian_product

	
cartesian_product(G, H)

	Return the Cartesian product of G and H.

The Cartesian product P of the graphs G and H has a node set that
is the Cartesian product of the node sets, \(V(P)=V(G) imes V(H)\).
P has an edge ((u,v),(x,y)) if and only if either u is equal to x and
v & y are adjacent in H or if v is equal to y and u & x are adjacent in G.

	Parameters

	H (G,) – Networkx graphs.

	Returns

	P – The Cartesian product of G and H. P will be a multi-graph if either G
or H is a multi-graph. Will be a directed if G and H are directed,
and undirected if G and H are undirected.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes.
Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.cartesian_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the
new product graph

NetworkX

lexicographic_product

	
lexicographic_product(G, H)

	Return the lexicographic product of G and H.

The lexicographical product P of the graphs G and H has a node set that
is the Cartesian product of the node sets, $V(P)=V(G) imes V(H)$.
P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G
or u==v and (x,y) is an edge in H.

	Parameters

	H (G,) – Networkx graphs.

	Returns

	P – The Cartesian product of G and H. P will be a multi-graph if either G
or H is a multi-graph. Will be a directed if G and H are directed,
and undirected if G and H are undirected.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes.
Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.lexicographic_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the
new product graph

NetworkX

strong_product

	
strong_product(G, H)

	Return the strong product of G and H.

The strong product P of the graphs G and H has a node set that
is the Cartesian product of the node sets, $V(P)=V(G) imes V(H)$.
P has an edge ((u,v),(x,y)) if and only if
u==v and (x,y) is an edge in H, or
x==y and (u,v) is an edge in G, or
(u,v) is an edge in G and (x,y) is an edge in H.

	Parameters

	H (G,) – Networkx graphs.

	Returns

	P – The Cartesian product of G and H. P will be a multi-graph if either G
or H is a multi-graph. Will be a directed if G and H are directed,
and undirected if G and H are undirected.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes.
Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.strong_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the
new product graph

NetworkX

tensor_product

	
tensor_product(G, H)

	Return the tensor product of G and H.

The tensor product P of the graphs G and H has a node set that
is the Cartesian product of the node sets, \(V(P)=V(G) \times V(H)\).
P has an edge ((u,v),(x,y)) if and only if (u,x) is an edge in G
and (v,y) is an edge in H.

Tensor product is sometimes also referred to as the categorical product,
direct product, cardinal product or conjunction.

	Parameters

	H (G,) – Networkx graphs.

	Returns

	P – The tensor product of G and H. P will be a multi-graph if either G
or H is a multi-graph, will be a directed if G and H are directed,
and undirected if G and H are undirected.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes.
Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.tensor_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the
new product graph

NetworkX

power

	
power(G, k)

	Returns the specified power of a graph.

The \(k\)-th power of a simple graph \(G = (V, E)\) is the graph
\(G^k\) whose vertex set is \(V\), two distinct vertices \(u,v\) are
adjacent in \(G^k\) if and only if the shortest path
distance between \(u\) and \(v\) in \(G\) is at most \(k\).

	Parameters

	
	G (graph) – A NetworkX simple graph object.

	k (positive integer) – The power to which to raise the graph \(G\).

	Returns

	\(G\) to the \(k\)-th power.

	Return type

	NetworkX simple graph

	Raises

	
	ValueError – If the exponent \(k\) is not positive.

	NetworkXError – If G is not a simple graph.

Examples

>>> G = nx.path_graph(4)
>>> nx.power(G,2).edges()
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)]
>>> nx.power(G,3).edges()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

A complete graph of order n is returned if k is greater than equal to n/2
for a cycle graph of even order n, and if k is greater than equal to
(n-1)/2 for a cycle graph of odd order.

>>> G = nx.cycle_graph(5)
>>> nx.power(G,2).edges() == nx.complete_graph(5).edges()
True
>>> G = nx.cycle_graph(8)
>>> nx.power(G,4).edges() == nx.complete_graph(8).edges()
True

References

	1

	
	
	Bondy, U. S. R. Murty, Graph Theory. Springer, 2008.

Notes

Exercise 3.1.6 of Graph Theory by J. A. Bondy and U. S. R. Murty 1.

NetworkX

Rich Club

	rich_club_coefficient(G[, normalized, Q])

	Return the rich-club coefficient of the graph G.

NetworkX

rich_club_coefficient

	
rich_club_coefficient(G, normalized=True, Q=100)

	Return the rich-club coefficient of the graph G.

The rich-club coefficient is the ratio, for every degree k, of the
number of actual to the number of potential edges for nodes
with degree greater than k:

\[\phi(k) = \frac{2 Ek}{Nk(Nk-1)}\]

where Nk is the number of nodes with degree larger than k, and Ek
be the number of edges among those nodes.

	Parameters

	
	G (NetworkX graph) –

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – Normalize using randomized network (see 1)

	Q (float [https://docs.python.org/2/library/functions.html#float] (optional, default=100)) – If normalized=True build a random network by performing
Q*M double-edge swaps, where M is the number of edges in G,
to use as a null-model for normalization.

	Returns

	rc – A dictionary, keyed by degree, with rich club coefficient values.

	Return type

	dictionary

Examples

>>> G = nx.Graph([(0,1),(0,2),(1,2),(1,3),(1,4),(4,5)])
>>> rc = nx.rich_club_coefficient(G,normalized=False)
>>> rc[0]
0.4

Notes

The rich club definition and algorithm are found in 1. This
algorithm ignores any edge weights and is not defined for directed
graphs or graphs with parallel edges or self loops.

Estimates for appropriate values of Q are found in 2.

References

	1(1,2)

	Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano,
“The rich-club phenomenon across complex network hierarchies”,
Applied Physics Letters Vol 91 Issue 8, August 2007.
http://arxiv.org/abs/physics/0701290

	2

	R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon,
“Uniform generation of random graphs with arbitrary degree
sequences”, 2006. http://arxiv.org/abs/cond-mat/0312028

NetworkX

Shortest Paths

Compute the shortest paths and path lengths between nodes in the graph.

These algorithms work with undirected and directed graphs.

	shortest_path(G[, source, target, weight])

	Compute shortest paths in the graph.

	all_shortest_paths(G, source, target[, weight])

	Compute all shortest paths in the graph.

	shortest_path_length(G[, source, target, weight])

	Compute shortest path lengths in the graph.

	average_shortest_path_length(G[, weight])

	Return the average shortest path length.

	has_path(G, source, target)

	Return True if G has a path from source to target, False otherwise.

Advanced Interface

Shortest path algorithms for unweighted graphs.

	single_source_shortest_path(G, source[, cutoff])

	Compute shortest path between source and all other nodes reachable from source.

	single_source_shortest_path_length(G, source)

	Compute the shortest path lengths from source to all reachable nodes.

	all_pairs_shortest_path(G[, cutoff])

	Compute shortest paths between all nodes.

	all_pairs_shortest_path_length(G[, cutoff])

	Computes the shortest path lengths between all nodes in G.

	predecessor(G, source[, target, cutoff, …])

	Returns dictionary of predecessors for the path from source to all nodes in G.

Shortest path algorithms for weighed graphs.

	dijkstra_path(G, source, target[, weight])

	Returns the shortest path from source to target in a weighted graph G.

	dijkstra_path_length(G, source, target[, weight])

	Returns the shortest path length from source to target in a weighted graph.

	single_source_dijkstra_path(G, source[, …])

	Compute shortest path between source and all other reachable nodes for a weighted graph.

	single_source_dijkstra_path_length(G, source)

	Compute the shortest path length between source and all other reachable nodes for a weighted graph.

	all_pairs_dijkstra_path(G[, cutoff, weight])

	Compute shortest paths between all nodes in a weighted graph.

	all_pairs_dijkstra_path_length(G[, cutoff, …])

	Compute shortest path lengths between all nodes in a weighted graph.

	single_source_dijkstra(G, source[, target, …])

	Compute shortest paths and lengths in a weighted graph G.

	bidirectional_dijkstra(G, source, target[, …])

	Dijkstra’s algorithm for shortest paths using bidirectional search.

	dijkstra_predecessor_and_distance(G, source)

	Compute shortest path length and predecessors on shortest paths in weighted graphs.

	bellman_ford(G, source[, weight])

	Compute shortest path lengths and predecessors on shortest paths in weighted graphs.

	negative_edge_cycle(G[, weight])

	Return True if there exists a negative edge cycle anywhere in G.

	johnson(G[, weight])

	Compute shortest paths between all nodes in a weighted graph using Johnson’s algorithm.

Dense Graphs

Floyd-Warshall algorithm for shortest paths.

	floyd_warshall(G[, weight])

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	floyd_warshall_predecessor_and_distance(G[, …])

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	floyd_warshall_numpy(G[, nodelist, weight])

	Find all-pairs shortest path lengths using Floyd’s algorithm.

A* Algorithm

Shortest paths and path lengths using A* (“A star”) algorithm.

	astar_path(G, source, target[, heuristic, …])

	Return a list of nodes in a shortest path between source and target using the A* (“A-star”) algorithm.

	astar_path_length(G, source, target[, …])

	Return the length of the shortest path between source and target using the A* (“A-star”) algorithm.

NetworkX

shortest_path

	
shortest_path(G, source=None, target=None, weight=None)

	Compute shortest paths in the graph.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Starting node for path.
If not specified, compute shortest paths using all nodes as source nodes.

	target (node, optional) – Ending node for path.
If not specified, compute shortest paths using all nodes as target nodes.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.

	Returns

	path – All returned paths include both the source and target in the path.

If the source and target are both specified, return a single list
of nodes in a shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by
targets with a list of nodes in a shortest path from the source
to one of the targets.

If only the target is specified, return a dictionary keyed by
sources with a list of nodes in a shortest path from one of the
sources to the target.

If neither the source nor target are specified return a dictionary
of dictionaries with path[source][target]=[list of nodes in path].

	Return type

	list or dictionary

Examples

>>> G=nx.path_graph(5)
>>> print(nx.shortest_path(G,source=0,target=4))
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,source=0) # target not specified
>>> p[4]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,target=4) # source not specified
>>> p[0]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G) # source,target not specified
>>> p[0][4]
[0, 1, 2, 3, 4]

Notes

There may be more than one shortest path between a source and target.
This returns only one of them.

See also

all_pairs_shortest_path(), all_pairs_dijkstra_path(), single_source_shortest_path(), single_source_dijkstra_path()

NetworkX

all_shortest_paths

	
all_shortest_paths(G, source, target, weight=None)

	Compute all shortest paths in the graph.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path.

	target (node) – Ending node for path.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.

	Returns

	paths – A generator of all paths between source and target.

	Return type

	generator of lists

Examples

>>> G=nx.Graph()
>>> G.add_path([0,1,2])
>>> G.add_path([0,10,2])
>>> print([p for p in nx.all_shortest_paths(G,source=0,target=2)])
[[0, 1, 2], [0, 10, 2]]

Notes

There may be many shortest paths between the source and target.

See also

shortest_path(), single_source_shortest_path(), all_pairs_shortest_path()

NetworkX

shortest_path_length

	
shortest_path_length(G, source=None, target=None, weight=None)

	Compute shortest path lengths in the graph.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Starting node for path.
If not specified, compute shortest path lengths using all nodes as
source nodes.

	target (node, optional) – Ending node for path.
If not specified, compute shortest path lengths using all nodes as
target nodes.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.

	Returns

	length – If the source and target are both specified, return the length of
the shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by
targets whose values are the lengths of the shortest path from the
source to one of the targets.

If only the target is specified, return a dictionary keyed by
sources whose values are the lengths of the shortest path from one
of the sources to the target.

If neither the source nor target are specified return a dictionary
of dictionaries with path[source][target]=L, where L is the length
of the shortest path from source to target.

	Return type

	int [https://docs.python.org/2/library/functions.html#int] or dictionary

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.shortest_path_length(G,source=0,target=4))
4
>>> p=nx.shortest_path_length(G,source=0) # target not specified
>>> p[4]
4
>>> p=nx.shortest_path_length(G,target=4) # source not specified
>>> p[0]
4
>>> p=nx.shortest_path_length(G) # source,target not specified
>>> p[0][4]
4

Notes

The length of the path is always 1 less than the number of nodes involved
in the path since the length measures the number of edges followed.

For digraphs this returns the shortest directed path length. To find path
lengths in the reverse direction use G.reverse(copy=False) first to flip
the edge orientation.

See also

all_pairs_shortest_path_length(), all_pairs_dijkstra_path_length(), single_source_shortest_path_length(), single_source_dijkstra_path_length()

NetworkX

average_shortest_path_length

	
average_shortest_path_length(G, weight=None)

	Return the average shortest path length.

The average shortest path length is

\[a =\sum_{s,t \in V} \frac{d(s, t)}{n(n-1)}\]

where \(V\) is the set of nodes in \(G\),
\(d(s, t)\) is the shortest path from \(s\) to \(t\),
and \(n\) is the number of nodes in \(G\).

	Parameters

	
	G (NetworkX graph) –

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.

	Raises

	NetworkXError: – if the graph is not connected.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.average_shortest_path_length(G))
2.0

For disconnected graphs you can compute the average shortest path
length for each component:
>>> G=nx.Graph([(1,2),(3,4)])
>>> for g in nx.connected_component_subgraphs(G):
… print(nx.average_shortest_path_length(g))
1.0
1.0

NetworkX

has_path

	
has_path(G, source, target)

	Return True if G has a path from source to target, False otherwise.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

NetworkX

single_source_shortest_path

	
single_source_shortest_path(G, source, cutoff=None)

	Compute shortest path between source
and all other nodes reachable from source.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	cutoff (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	lengths – Dictionary, keyed by target, of shortest paths.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.single_source_shortest_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]

Notes

The shortest path is not necessarily unique. So there can be multiple
paths between the source and each target node, all of which have the
same ‘shortest’ length. For each target node, this function returns
only one of those paths.

See also

shortest_path()

NetworkX

single_source_shortest_path_length

	
single_source_shortest_path_length(G, source, cutoff=None)

	Compute the shortest path lengths from source to all reachable nodes.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	cutoff (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	lengths – Dictionary of shortest path lengths keyed by target.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.single_source_shortest_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

See also

shortest_path_length()

NetworkX

all_pairs_shortest_path

	
all_pairs_shortest_path(G, cutoff=None)

	Compute shortest paths between all nodes.

	Parameters

	
	G (NetworkX graph) –

	cutoff (integer, optional) – Depth at which to stop the search. Only paths of length at most
cutoff are returned.

	Returns

	lengths – Dictionary, keyed by source and target, of shortest paths.

	Return type

	dictionary

Examples

>>> G = nx.path_graph(5)
>>> path = nx.all_pairs_shortest_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]

See also

floyd_warshall()

NetworkX

all_pairs_shortest_path_length

	
all_pairs_shortest_path_length(G, cutoff=None)

	Computes the shortest path lengths between all nodes in G.

	Parameters

	
	G (NetworkX graph) –

	cutoff (integer, optional) – Depth at which to stop the search. Only paths of length at most
cutoff are returned.

	Returns

	lengths – Dictionary of shortest path lengths keyed by source and target.

	Return type

	dictionary

Notes

The dictionary returned only has keys for reachable node pairs.

Examples

>>> G = nx.path_graph(5)
>>> length = nx.all_pairs_shortest_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

NetworkX

predecessor

	
predecessor(G, source, target=None, cutoff=None, return_seen=None)

	Returns dictionary of predecessors for the path from source to all nodes in G.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	target (node label, optional) – Ending node for path. If provided only predecessors between
source and target are returned

	cutoff (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	pred – Dictionary, keyed by node, of predecessors in the shortest path.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(4)
>>> print(G.nodes())
[0, 1, 2, 3]
>>> nx.predecessor(G,0)
{0: [], 1: [0], 2: [1], 3: [2]}

NetworkX

dijkstra_path

	
dijkstra_path(G, source, target, weight='weight')

	Returns the shortest path from source to target in a weighted graph G.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node

	target (node) – Ending node

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	path – List of nodes in a shortest path.

	Return type

	list

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path(G,0,4))
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

bidirectional_dijkstra()

NetworkX

dijkstra_path_length

	
dijkstra_path_length(G, source, target, weight='weight')

	Returns the shortest path length from source to target
in a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – starting node for path

	target (node label) – ending node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	length – Shortest path length.

	Return type

	number

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path_length(G,0,4))
4

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

bidirectional_dijkstra()

NetworkX

single_source_dijkstra_path

	
single_source_dijkstra_path(G, source, cutoff=None, weight='weight')

	Compute shortest path between source and all other reachable
nodes for a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	paths – Dictionary of shortest path lengths keyed by target.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

single_source_dijkstra()

NetworkX

single_source_dijkstra_path_length

	
single_source_dijkstra_path_length(G, source, cutoff=None, weight='weight')

	Compute the shortest path length between source and all other
reachable nodes for a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight.

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	length – Dictionary of shortest lengths keyed by target.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.single_source_dijkstra_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

single_source_dijkstra()

NetworkX

all_pairs_dijkstra_path

	
all_pairs_dijkstra_path(G, cutoff=None, weight='weight')

	Compute shortest paths between all nodes in a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	distance – Dictionary, keyed by source and target, of shortest paths.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.all_pairs_dijkstra_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

floyd_warshall()

NetworkX

all_pairs_dijkstra_path_length

	
all_pairs_dijkstra_path_length(G, cutoff=None, weight='weight')

	Compute shortest path lengths between all nodes in a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	distance – Dictionary, keyed by source and target, of shortest path lengths.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_dijkstra_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

The dictionary returned only has keys for reachable node pairs.

NetworkX

single_source_dijkstra

	
single_source_dijkstra(G, source, target=None, cutoff=None, weight='weight')

	Compute shortest paths and lengths in a weighted graph G.

Uses Dijkstra’s algorithm for shortest paths.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	target (node label, optional) – Ending node for path

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	distance,path – Returns a tuple of two dictionaries keyed by node.
The first dictionary stores distance from the source.
The second stores the path from the source to that node.

	Return type

	dictionaries

Examples

>>> G=nx.path_graph(5)
>>> length,path=nx.single_source_dijkstra(G,0)
>>> print(length[4])
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>> path[4]
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

Based on the Python cookbook recipe (119466) at
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

This algorithm is not guaranteed to work if edge weights
are negative or are floating point numbers
(overflows and roundoff errors can cause problems).

See also

single_source_dijkstra_path(), single_source_dijkstra_path_length()

NetworkX

bidirectional_dijkstra

	
bidirectional_dijkstra(G, source, target, weight='weight')

	Dijkstra’s algorithm for shortest paths using bidirectional search.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node.

	target (node) – Ending node.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	
	length (number) – Shortest path length.

	Returns a tuple of two dictionaries keyed by node.

	The first dictionary stores distance from the source.

	The second stores the path from the source to that node.

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> length,path=nx.bidirectional_dijkstra(G,0,4)
>>> print(length)
4
>>> print(path)
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

In practice bidirectional Dijkstra is much more than twice as fast as
ordinary Dijkstra.

Ordinary Dijkstra expands nodes in a sphere-like manner from the
source. The radius of this sphere will eventually be the length
of the shortest path. Bidirectional Dijkstra will expand nodes
from both the source and the target, making two spheres of half
this radius. Volume of the first sphere is pi*r*r while the
others are 2*pi*r/2*r/2, making up half the volume.

This algorithm is not guaranteed to work if edge weights
are negative or are floating point numbers
(overflows and roundoff errors can cause problems).

See also

shortest_path(), shortest_path_length()

NetworkX

dijkstra_predecessor_and_distance

	
dijkstra_predecessor_and_distance(G, source, cutoff=None, weight='weight')

	Compute shortest path length and predecessors on shortest paths
in weighted graphs.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	pred,distance – Returns two dictionaries representing a list of predecessors
of a node and the distance to each node.

	Return type

	dictionaries

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

The list of predecessors contains more than one element only when
there are more than one shortest paths to the key node.

NetworkX

bellman_ford

	
bellman_ford(G, source, weight='weight')

	Compute shortest path lengths and predecessors on shortest paths
in weighted graphs.

The algorithm has a running time of O(mn) where n is the number of
nodes and m is the number of edges. It is slower than Dijkstra but
can handle negative edge weights.

	Parameters

	
	G (NetworkX graph) – The algorithm works for all types of graphs, including directed
graphs and multigraphs.

	source (node label) – Starting node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	pred, dist – Returns two dictionaries keyed by node to predecessor in the
path and to the distance from the source respectively.

	Return type

	dictionaries

	Raises

	NetworkXUnbounded – If the (di)graph contains a negative cost (di)cycle, the
algorithm raises an exception to indicate the presence of the
negative cost (di)cycle. Note: any negative weight edge in an
undirected graph is a negative cost cycle.

Examples

>>> import networkx as nx
>>> G = nx.path_graph(5, create_using = nx.DiGraph())
>>> pred, dist = nx.bellman_ford(G, 0)
>>> sorted(pred.items())
[(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]
>>> sorted(dist.items())
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

>>> from nose.tools import assert_raises
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> G[1][2]['weight'] = -7
>>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0)

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

The dictionaries returned only have keys for nodes reachable from
the source.

In the case where the (di)graph is not connected, if a component
not containing the source contains a negative cost (di)cycle, it
will not be detected.

NetworkX

negative_edge_cycle

	
negative_edge_cycle(G, weight='weight')

	Return True if there exists a negative edge cycle anywhere in G.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	negative_cycle – True if a negative edge cycle exists, otherwise False.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> import networkx as nx
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> print(nx.negative_edge_cycle(G))
False
>>> G[1][2]['weight'] = -7
>>> print(nx.negative_edge_cycle(G))
True

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

This algorithm uses bellman_ford() but finds negative cycles
on any component by first adding a new node connected to
every node, and starting bellman_ford on that node. It then
removes that extra node.

NetworkX

johnson

	
johnson(G, weight='weight')

	Compute shortest paths between all nodes in a weighted graph using
Johnson’s algorithm.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight.

	Returns

	distance – Dictionary, keyed by source and target, of shortest paths.

	Return type

	dictionary

	Raises

	NetworkXError – If given graph is not weighted.

Examples

>>> import networkx as nx
>>> graph = nx.DiGraph()
>>> graph.add_weighted_edges_from([('0', '3', 3), ('0', '1', -5),
... ('0', '2', 2), ('1', '2', 4), ('2', '3', 1)])
>>> paths = nx.johnson(graph, weight='weight')
>>> paths['0']['2']
['0', '1', '2']

Notes

Johnson’s algorithm is suitable even for graphs with negative weights. It
works by using the Bellman–Ford algorithm to compute a transformation of
the input graph that removes all negative weights, allowing Dijkstra’s
algorithm to be used on the transformed graph.

It may be faster than Floyd - Warshall algorithm in sparse graphs.
Algorithm complexity: O(V^2 * logV + V * E)

See also

floyd_warshall_predecessor_and_distance(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length(), all_pairs_dijkstra_path(), bellman_ford()

NetworkX

floyd_warshall

	
floyd_warshall(G, weight='weight')

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – Edge data key corresponding to the edge weight.

	Returns

	distance – A dictionary, keyed by source and target, of shortest paths distances
between nodes.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Notes

Floyd’s algorithm is appropriate for finding shortest paths
in dense graphs or graphs with negative weights when Dijkstra’s algorithm
fails. This algorithm can still fail if there are negative cycles.
It has running time O(n^3) with running space of O(n^2).

See also

floyd_warshall_predecessor_and_distance(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length()

NetworkX

floyd_warshall_predecessor_and_distance

	
floyd_warshall_predecessor_and_distance(G, weight='weight')

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – Edge data key corresponding to the edge weight.

	Returns

	predecessor,distance – Dictionaries, keyed by source and target, of predecessors and distances
in the shortest path.

	Return type

	dictionaries

Notes

Floyd’s algorithm is appropriate for finding shortest paths
in dense graphs or graphs with negative weights when Dijkstra’s algorithm
fails. This algorithm can still fail if there are negative cycles.
It has running time O(n^3) with running space of O(n^2).

See also

floyd_warshall(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length()

NetworkX

floyd_warshall_numpy

	
floyd_warshall_numpy(G, nodelist=None, weight='weight')

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	Parameters

	
	G (NetworkX graph) –

	nodelist (list, optional) – The rows and columns are ordered by the nodes in nodelist.
If nodelist is None then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – Edge data key corresponding to the edge weight.

	Returns

	distance – A matrix of shortest path distances between nodes.
If there is no path between to nodes the corresponding matrix entry
will be Inf.

	Return type

	NumPy matrix

Notes

Floyd’s algorithm is appropriate for finding shortest paths in
dense graphs or graphs with negative weights when Dijkstra’s
algorithm fails. This algorithm can still fail if there are
negative cycles. It has running time O(n^3) with running space of O(n^2).

NetworkX

astar_path

	
astar_path(G, source, target, heuristic=None, weight='weight')

	Return a list of nodes in a shortest path between source and target
using the A* (“A-star”) algorithm.

There may be more than one shortest path. This returns only one.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

	heuristic (function) – A function to evaluate the estimate of the distance
from the a node to the target. The function takes
two nodes arguments and must return a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight.

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.astar_path(G,0,4))
[0, 1, 2, 3, 4]
>>> G=nx.grid_graph(dim=[3,3]) # nodes are two-tuples (x,y)
>>> def dist(a, b):
... (x1, y1) = a
... (x2, y2) = b
... return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
>>> print(nx.astar_path(G,(0,0),(2,2),dist))
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)]

See also

shortest_path(), dijkstra_path()

NetworkX

astar_path_length

	
astar_path_length(G, source, target, heuristic=None, weight='weight')

	Return the length of the shortest path between source and target using
the A* (“A-star”) algorithm.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

	heuristic (function) – A function to evaluate the estimate of the distance
from the a node to the target. The function takes
two nodes arguments and must return a number.

	Raises

	NetworkXNoPath – If no path exists between source and target.

See also

astar_path()

NetworkX

Simple Paths

	all_simple_paths(G, source, target[, cutoff])

	Generate all simple paths in the graph G from source to target.

	shortest_simple_paths(G, source, target[, …])

	Generate all simple paths in the graph G from source to target, starting from shortest ones.

NetworkX

all_simple_paths

	
all_simple_paths(G, source, target, cutoff=None)

	Generate all simple paths in the graph G from source to target.

A simple path is a path with no repeated nodes.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

	cutoff (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	path_generator – A generator that produces lists of simple paths. If there are no paths
between the source and target within the given cutoff the generator
produces no output.

	Return type

	generator

Examples

>>> G = nx.complete_graph(4)
>>> for path in nx.all_simple_paths(G, source=0, target=3):
... print(path)
...
[0, 1, 2, 3]
[0, 1, 3]
[0, 2, 1, 3]
[0, 2, 3]
[0, 3]
>>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
>>> print(list(paths))
[[0, 1, 3], [0, 2, 3], [0, 3]]

Notes

This algorithm uses a modified depth-first search to generate the
paths 1. A single path can be found in \(O(V+E)\) time but the
number of simple paths in a graph can be very large, e.g. \(O(n!)\) in
the complete graph of order n.

References

	1

	R. Sedgewick, “Algorithms in C, Part 5: Graph Algorithms”,
Addison Wesley Professional, 3rd ed., 2001.

See also

all_shortest_paths(), shortest_path()

NetworkX

shortest_simple_paths

	
shortest_simple_paths(G, source, target, weight=None)

	
	Generate all simple paths in the graph G from source to target,

	starting from shortest ones.

A simple path is a path with no repeated nodes.

If a weighted shortest path search is to be used, no negative weights
are allawed.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the edge attribute to be used as a weight. If None all
edges are considered to have unit weight. Default value None.

	Returns

	path_generator – A generator that produces lists of simple paths, in order from
shortest to longest.

	Return type

	generator

	Raises

	
	NetworkXNoPath – If no path exists between source and target.

	NetworkXError – If source or target nodes are not in the input graph.

	NetworkXNotImplemented – If the input graph is a Multi[Di]Graph.

Examples

>>> G = nx.cycle_graph(7)
>>> paths = list(nx.shortest_simple_paths(G, 0, 3))
>>> print(paths)
[[0, 1, 2, 3], [0, 6, 5, 4, 3]]

You can use this function to efficiently compute the k shortest/best
paths between two nodes.

>>> from itertools import islice
>>> def k_shortest_paths(G, source, target, k, weight=None):
... return list(islice(nx.shortest_simple_paths(G, source, target, weight=weight), k))
>>> for path in k_shortest_paths(G, 0, 3, 2):
... print(path)
[0, 1, 2, 3]
[0, 6, 5, 4, 3]

Notes

This procedure is based on algorithm by Jin Y. Yen 1. Finding
the first K paths requires O(KN^3) operations.

See also

all_shortest_paths(), shortest_path(), all_simple_paths()

References

	1

	Jin Y. Yen, “Finding the K Shortest Loopless Paths in a
Network”, Management Science, Vol. 17, No. 11, Theory Series
(Jul., 1971), pp. 712-716.

NetworkX

Swap

Swap edges in a graph.

	double_edge_swap(G[, nswap, max_tries])

	Swap two edges in the graph while keeping the node degrees fixed.

	connected_double_edge_swap(G[, nswap, …])

	Attempts the specified number of double-edge swaps in the graph G.

NetworkX

double_edge_swap

	
double_edge_swap(G, nswap=1, max_tries=100)

	Swap two edges in the graph while keeping the node degrees fixed.

A double-edge swap removes two randomly chosen edges u-v and x-y
and creates the new edges u-x and v-y:

u--v u v
 becomes | |
x--y x y

If either the edge u-x or v-y already exist no swap is performed
and another attempt is made to find a suitable edge pair.

	Parameters

	
	G (graph) – An undirected graph

	nswap (integer (optional, default=1)) – Number of double-edge swaps to perform

	max_tries (integer (optional)) – Maximum number of attempts to swap edges

	Returns

	G – The graph after double edge swaps.

	Return type

	graph

Notes

Does not enforce any connectivity constraints.

The graph G is modified in place.

NetworkX

connected_double_edge_swap

	
connected_double_edge_swap(G, nswap=1, _window_threshold=3)

	Attempts the specified number of double-edge swaps in the graph G.

A double-edge swap removes two randomly chosen edges (u, v) and (x,
y) and creates the new edges (u, x) and (v, y):

u--v u v
 becomes | |
x--y x y

If either (u, x) or (v, y) already exist, then no swap is performed
so the actual number of swapped edges is always at most nswap.

	Parameters

	
	G (graph) – An undirected graph

	nswap (integer (optional, default=1)) – Number of double-edge swaps to perform

	_window_threshold (integer) – The window size below which connectedness of the graph will be checked
after each swap.

The “window” in this function is a dynamically updated integer that
represents the number of swap attempts to make before checking if the
graph remains connected. It is an optimization used to decrease the
running time of the algorithm in exchange for increased complexity of
implementation.

If the window size is below this threshold, then the algorithm checks
after each swap if the graph remains connected by checking if there is a
path joining the two nodes whose edge was just removed. If the window
size is above this threshold, then the algorithm performs do all the
swaps in the window and only then check if the graph is still connected.

	Returns

	The number of successful swaps

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	Raises

	NetworkXError – If the input graph is not connected, or if the graph has fewer than four
nodes.

Notes

The initial graph G must be connected, and the resulting graph is
connected. The graph G is modified in place.

References

	1

	C. Gkantsidis and M. Mihail and E. Zegura,
The Markov chain simulation method for generating connected
power law random graphs, 2003.
http://citeseer.ist.psu.edu/gkantsidis03markov.html

NetworkX

Traversal

Depth First Search

Depth-first search

Basic algorithms for depth-first searching the nodes of a graph.

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

	dfs_edges(G[, source])

	Produce edges in a depth-first-search (DFS).

	dfs_tree(G, source)

	Return oriented tree constructed from a depth-first-search from source.

	dfs_predecessors(G[, source])

	Return dictionary of predecessors in depth-first-search from source.

	dfs_successors(G[, source])

	Return dictionary of successors in depth-first-search from source.

	dfs_preorder_nodes(G[, source])

	Produce nodes in a depth-first-search pre-ordering starting from source.

	dfs_postorder_nodes(G[, source])

	Produce nodes in a depth-first-search post-ordering starting from source.

	dfs_labeled_edges(G[, source])

	Produce edges in a depth-first-search (DFS) labeled by type.

Breadth First Search

Breadth-first search

Basic algorithms for breadth-first searching the nodes of a graph.

	bfs_edges(G, source[, reverse])

	Produce edges in a breadth-first-search starting at source.

	bfs_tree(G, source[, reverse])

	Return an oriented tree constructed from of a breadth-first-search starting at source.

	bfs_predecessors(G, source)

	Return dictionary of predecessors in breadth-first-search from source.

	bfs_successors(G, source)

	Return dictionary of successors in breadth-first-search from source.

Depth First Search on Edges

Depth First Search on Edges

Algorithms for a depth-first traversal of edges in a graph.

	edge_dfs(G[, source, orientation])

	A directed, depth-first traversal of edges in G, beginning at source.

NetworkX

dfs_edges

	
dfs_edges(G, source=None)

	Produce edges in a depth-first-search (DFS).

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	edges – A generator of edges in the depth-first-search.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_tree

	
dfs_tree(G, source)

	Return oriented tree constructed from a depth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search.

	Returns

	T – An oriented tree

	Return type

	NetworkX DiGraph

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> T = nx.dfs_tree(G,0)
>>> print(T.edges())
[(0, 1), (1, 2)]

NetworkX

dfs_predecessors

	
dfs_predecessors(G, source=None)

	Return dictionary of predecessors in depth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	pred – A dictionary with nodes as keys and predecessor nodes as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_predecessors(G,0))
{1: 0, 2: 1}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_successors

	
dfs_successors(G, source=None)

	Return dictionary of successors in depth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	succ – A dictionary with nodes as keys and list of successor nodes as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_successors(G,0))
{0: [1], 1: [2]}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_preorder_nodes

	
dfs_preorder_nodes(G, source=None)

	Produce nodes in a depth-first-search pre-ordering starting
from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	nodes – A generator of nodes in a depth-first-search pre-ordering.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_preorder_nodes(G,0)))
[0, 1, 2]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_postorder_nodes

	
dfs_postorder_nodes(G, source=None)

	Produce nodes in a depth-first-search post-ordering starting
from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	nodes – A generator of nodes in a depth-first-search post-ordering.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_postorder_nodes(G,0)))
[2, 1, 0]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_labeled_edges

	
dfs_labeled_edges(G, source=None)

	Produce edges in a depth-first-search (DFS) labeled by type.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	edges – A generator of edges in the depth-first-search labeled with ‘forward’,
‘nontree’, and ‘reverse’.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> edges = (list(nx.dfs_labeled_edges(G,0)))

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

bfs_edges

	
bfs_edges(G, source, reverse=False)

	Produce edges in a breadth-first-search starting at source.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Specify starting node for breadth-first search and return edges in
the component reachable from source.

	reverse (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True traverse a directed graph in the reverse direction

	Returns

	edges – A generator of edges in the breadth-first-search.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.

NetworkX

bfs_tree

	
bfs_tree(G, source, reverse=False)

	Return an oriented tree constructed from of a breadth-first-search
starting at source.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Specify starting node for breadth-first search and return edges in
the component reachable from source.

	reverse (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True traverse a directed graph in the reverse direction

	Returns

	T – An oriented tree

	Return type

	NetworkX DiGraph

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.

NetworkX

bfs_predecessors

	
bfs_predecessors(G, source)

	Return dictionary of predecessors in breadth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Specify starting node for breadth-first search and return edges in
the component reachable from source.

	Returns

	pred – A dictionary with nodes as keys and predecessor nodes as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_predecessors(G,0))
{1: 0, 2: 1}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.

NetworkX

bfs_successors

	
bfs_successors(G, source)

	Return dictionary of successors in breadth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Specify starting node for breadth-first search and return edges in
the component reachable from source.

	Returns

	succ – A dictionary with nodes as keys and list of succssors nodes as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_successors(G,0))
{0: [1], 1: [2]}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.

NetworkX

edge_dfs

	
edge_dfs(G, source=None, orientation='original')

	A directed, depth-first traversal of edges in G, beginning at source.

	Parameters

	
	G (graph) – A directed/undirected graph/multigraph.

	source (node, list of nodes) – The node from which the traversal begins. If None, then a source
is chosen arbitrarily and repeatedly until all edges from each node in
the graph are searched.

	orientation ('original' | 'reverse' | 'ignore') – For directed graphs and directed multigraphs, edge traversals need not
respect the original orientation of the edges. When set to ‘reverse’,
then every edge will be traversed in the reverse direction. When set to
‘ignore’, then each directed edge is treated as a single undirected
edge that can be traversed in either direction. For undirected graphs
and undirected multigraphs, this parameter is meaningless and is not
consulted by the algorithm.

	Yields

	edge (directed edge) – A directed edge indicating the path taken by the depth-first traversal.
For graphs, edge is of the form (u, v) where u and v
are the tail and head of the edge as determined by the traversal. For
multigraphs, edge is of the form (u, v, key), where \(key\) is
the key of the edge. When the graph is directed, then u and v
are always in the order of the actual directed edge. If orientation is
‘reverse’ or ‘ignore’, then edge takes the form
(u, v, key, direction) where direction is a string, ‘forward’ or
‘reverse’, that indicates if the edge was traversed in the forward
(tail to head) or reverse (head to tail) direction, respectively.

Examples

>>> import networkx as nx
>>> nodes = [0, 1, 2, 3]
>>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]

>>> list(nx.edge_dfs(nx.Graph(edges), nodes))
[(0, 1), (1, 2), (1, 3)]

>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes))
[(0, 1), (1, 0), (2, 1), (3, 1)]

>>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)]

>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)]

>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')]

>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 0, 'forward'), (1, 0, 0, 'forward'), (1, 0, 1, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 0, 'reverse')]

Notes

The goal of this function is to visit edges. It differs from the more
familiar depth-first traversal of nodes, as provided by
networkx.algorithms.traversal.depth_first_search.dfs_edges(), in
that it does not stop once every node has been visited. In a directed graph
with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited
if not for the functionality provided by this function.

See also

dfs_edges()

NetworkX

Tree

Recognition

Recognition Tests

A forest is an acyclic, undirected graph, and a tree is a connected forest.
Depending on the subfield, there are various conventions for generalizing these
definitions to directed graphs.

In one convention, directed variants of forest and tree are defined in an
identical manner, except that the direction of the edges is ignored. In effect,
each directed edge is treated as a single undirected edge. Then, additional
restrictions are imposed to define branchings and arborescences.

In another convention, directed variants of forest and tree correspond to
the previous convention’s branchings and arborescences, respectively. Then two
new terms, polyforest and polytree, are defined to correspond to the other
convention’s forest and tree.

Summarizing:

+-----------------------------+
| Convention A | Convention B |
+=============================+
forest	polyforest
tree	polytree
branching	forest
arborescence	tree
+-----------------------------+

Each convention has its reasons. The first convention emphasizes definitional
similarity in that directed forests and trees are only concerned with
acyclicity and do not have an in-degree constraint, just as their undirected
counterparts do not. The second convention emphasizes functional similarity
in the sense that the directed analog of a spanning tree is a spanning
arborescence. That is, take any spanning tree and choose one node as the root.
Then every edge is assigned a direction such there is a directed path from the
root to every other node. The result is a spanning arborescence.

NetworkX follows convention “A”. Explicitly, these are:

	undirected forest

	An undirected graph with no undirected cycles.

	undirected tree

	A connected, undirected forest.

	directed forest

	A directed graph with no undirected cycles. Equivalently, the underlying
graph structure (which ignores edge orientations) is an undirected forest.
In convention B, this is known as a polyforest.

	directed tree

	A weakly connected, directed forest. Equivalently, the underlying graph
structure (which ignores edge orientations) is an undirected tree. In
convention B, this is known as a polytree.

	branching

	A directed forest with each node having, at most, one parent. So the maximum
in-degree is equal to 1. In convention B, this is known as a forest.

	arborescence

	A directed tree with each node having, at most, one parent. So the maximum
in-degree is equal to 1. In convention B, this is known as a tree.

For trees and arborescences, the adjective “spanning” may be added to designate
that the graph, when considered as a forest/branching, consists of a single
tree/arborescence that includes all nodes in the graph. It is true, by
definition, that every tree/arborescence is spanning with respect to the nodes
that define the tree/arborescence and so, it might seem redundant to introduce
the notion of “spanning”. However, the nodes may represent a subset of
nodes from a larger graph, and it is in this context that the term “spanning”
becomes a useful notion.

	is_tree(G)

	Returns True if G is a tree.

	is_forest(G)

	Returns True if G is a forest.

	is_arborescence(G)

	Returns True if G is an arborescence.

	is_branching(G)

	Returns True if G is a branching.

Branchings and Spanning Arborescences

Algorithms for finding optimum branchings and spanning arborescences.

This implementation is based on:

J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967),
233–240. URL: http://archive.org/details/jresv71Bn4p233

	branching_weight(G[, attr, default])

	Returns the total weight of a branching.

	greedy_branching(G[, attr, default, kind])

	Returns a branching obtained through a greedy algorithm.

	maximum_branching(G[, attr, default])

	Returns a maximum branching from G.

	minimum_branching(G[, attr, default])

	Returns a minimum branching from G.

	maximum_spanning_arborescence(G[, attr, default])

	Returns a maximum spanning arborescence from G.

	minimum_spanning_arborescence(G[, attr, default])

	Returns a minimum spanning arborescence from G.

	Edmonds(G[, seed])

	Edmonds algorithm for finding optimal branchings and spanning arborescences.

NetworkX

is_tree

	
is_tree(G)

	Returns True if G is a tree.

A tree is a connected graph with no undirected cycles.

For directed graphs, G is a tree if the underlying graph is a tree. The
underlying graph is obtained by treating each directed edge as a single
undirected edge in a multigraph.

	Parameters

	G (graph) – The graph to test.

	Returns

	b – A boolean that is True if G is a tree.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

In another convention, a directed tree is known as a polytree and then
tree corresponds to an arborescence.

See also

is_arborescence()

NetworkX

is_forest

	
is_forest(G)

	Returns True if G is a forest.

A forest is a graph with no undirected cycles.

For directed graphs, G is a forest if the underlying graph is a forest.
The underlying graph is obtained by treating each directed edge as a single
undirected edge in a multigraph.

	Parameters

	G (graph) – The graph to test.

	Returns

	b – A boolean that is True if G is a forest.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

In another convention, a directed forest is known as a polyforest and
then forest corresponds to a branching.

See also

is_branching()

NetworkX

is_arborescence

	
is_arborescence(G)

	Returns True if G is an arborescence.

An arborescence is a directed tree with maximum in-degree equal to 1.

	Parameters

	G (graph) – The graph to test.

	Returns

	b – A boolean that is True if G is an arborescence.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

In another convention, an arborescence is known as a tree.

See also

is_tree()

NetworkX

is_branching

	
is_branching(G)

	Returns True if G is a branching.

A branching is a directed forest with maximum in-degree equal to 1.

	Parameters

	G (directed graph) – The directed graph to test.

	Returns

	b – A boolean that is True if G is a branching.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

In another convention, a branching is also known as a forest.

See also

is_forest()

NetworkX

branching_weight

	
branching_weight(G, attr='weight', default=1)

	Returns the total weight of a branching.

NetworkX

greedy_branching

	
greedy_branching(G, attr='weight', default=1, kind='max')

	Returns a branching obtained through a greedy algorithm.

This algorithm is wrong, and cannot give a proper optimal branching.
However, we include it for pedagogical reasons, as it can be helpful to
see what its outputs are.

The output is a branching, and possibly, a spanning arborescence. However,
it is not guaranteed to be optimal in either case.

	Parameters

	
	G (DiGraph) – The directed graph to scan.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The attribute to use as weights. If None, then each edge will be
treated equally with a weight of 1.

	default (float [https://docs.python.org/2/library/functions.html#float]) – When \(attr\) is not None, then if an edge does not have that attribute,
\(default\) specifies what value it should take.

	kind (str [https://docs.python.org/2/library/functions.html#str]) – The type of optimum to search for: ‘min’ or ‘max’ greedy branching.

	Returns

	B – The greedily obtained branching.

	Return type

	directed graph

NetworkX

maximum_branching

	
maximum_branching(G, attr='weight', default=1)

	Returns a maximum branching from G.

	Parameters

	
	G ((multi)digraph-like) – The graph to be searched.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The edge attribute used to in determining optimality.

	default (float [https://docs.python.org/2/library/functions.html#float]) – The value of the edge attribute used if an edge does not have
the attribute \(attr\).

	Returns

	B – A maximum branching.

	Return type

	(multi)digraph-like

NetworkX

minimum_branching

	
minimum_branching(G, attr='weight', default=1)

	Returns a minimum branching from G.

	Parameters

	
	G ((multi)digraph-like) – The graph to be searched.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The edge attribute used to in determining optimality.

	default (float [https://docs.python.org/2/library/functions.html#float]) – The value of the edge attribute used if an edge does not have
the attribute \(attr\).

	Returns

	B – A minimum branching.

	Return type

	(multi)digraph-like

NetworkX

maximum_spanning_arborescence

	
maximum_spanning_arborescence(G, attr='weight', default=1)

	Returns a maximum spanning arborescence from G.

	Parameters

	
	G ((multi)digraph-like) – The graph to be searched.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The edge attribute used to in determining optimality.

	default (float [https://docs.python.org/2/library/functions.html#float]) – The value of the edge attribute used if an edge does not have
the attribute \(attr\).

	Returns

	B – A maximum spanning arborescence.

	Return type

	(multi)digraph-like

	Raises

	NetworkXException – If the graph does not contain a maximum spanning arborescence.

NetworkX

minimum_spanning_arborescence

	
minimum_spanning_arborescence(G, attr='weight', default=1)

	Returns a minimum spanning arborescence from G.

	Parameters

	
	G ((multi)digraph-like) – The graph to be searched.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The edge attribute used to in determining optimality.

	default (float [https://docs.python.org/2/library/functions.html#float]) – The value of the edge attribute used if an edge does not have
the attribute \(attr\).

	Returns

	B – A minimum spanning arborescence.

	Return type

	(multi)digraph-like

	Raises

	NetworkXException – If the graph does not contain a minimum spanning arborescence.

NetworkX

Edmonds

	
class Edmonds(G, seed=None)

	Edmonds algorithm for finding optimal branchings and spanning arborescences.

	
__init__(G, seed=None)

	

Methods

	__init__(G[, seed])

	

	find_optimum([attr, default, kind, style])

	Returns a branching from G.

NetworkX

Triads

Functions for analyzing triads of a graph.

	triadic_census(G)

	Determines the triadic census of a directed graph.

NetworkX

triadic_census

	
triadic_census(G)

	Determines the triadic census of a directed graph.

The triadic census is a count of how many of the 16 possible types of
triads are present in a directed graph.

	Parameters

	G (digraph) – A NetworkX DiGraph

	Returns

	census – Dictionary with triad names as keys and number of occurrences as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Notes

This algorithm has complexity \(O(m)\) where \(m\) is the number of edges in
the graph.

References

	1

	Vladimir Batagelj and Andrej Mrvar, A subquadratic triad census
algorithm for large sparse networks with small maximum degree,
University of Ljubljana,
http://vlado.fmf.uni-lj.si/pub/networks/doc/triads/triads.pdf

NetworkX

Vitality

Vitality measures.

	closeness_vitality(G[, weight])

	Compute closeness vitality for nodes.

NetworkX

closeness_vitality

	
closeness_vitality(G, weight=None)

	Compute closeness vitality for nodes.

Closeness vitality of a node is the change in the sum of distances
between all node pairs when excluding that node.

	Parameters

	
	G (graph) –

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string] (optional)) – The name of the edge attribute used as weight. If None the edge
weights are ignored.

	Returns

	nodes – Dictionary with nodes as keys and closeness vitality as the value.

	Return type

	dictionary

Examples

>>> G=nx.cycle_graph(3)
>>> nx.closeness_vitality(G)
{0: 4.0, 1: 4.0, 2: 4.0}

See also

closeness_centrality()

References

	1

	Ulrik Brandes, Sec. 3.6.2 in
Network Analysis: Methodological Foundations, Springer, 2005.
http://books.google.com/books?id=TTNhSm7HYrIC

NetworkX

Functions

Functional interface to graph methods and assorted utilities.

Graph

	degree(G[, nbunch, weight])

	Return degree of single node or of nbunch of nodes.

	degree_histogram(G)

	Return a list of the frequency of each degree value.

	density(G)

	Return the density of a graph.

	info(G[, n])

	Print short summary of information for the graph G or the node n.

	create_empty_copy(G[, with_nodes])

	Return a copy of the graph G with all of the edges removed.

	is_directed(G)

	Return True if graph is directed.

Nodes

	nodes(G)

	Return a copy of the graph nodes in a list.

	number_of_nodes(G)

	Return the number of nodes in the graph.

	nodes_iter(G)

	Return an iterator over the graph nodes.

	all_neighbors(graph, node)

	Returns all of the neighbors of a node in the graph.

	non_neighbors(graph, node)

	Returns the non-neighbors of the node in the graph.

	common_neighbors(G, u, v)

	Return the common neighbors of two nodes in a graph.

Edges

	edges(G[, nbunch])

	Return list of edges incident to nodes in nbunch.

	number_of_edges(G)

	Return the number of edges in the graph.

	edges_iter(G[, nbunch])

	Return iterator over edges incident to nodes in nbunch.

	non_edges(graph)

	Returns the non-existent edges in the graph.

Attributes

	set_node_attributes(G, name, values)

	Set node attributes from dictionary of nodes and values

	get_node_attributes(G, name)

	Get node attributes from graph

	set_edge_attributes(G, name, values)

	Set edge attributes from dictionary of edge tuples and values.

	get_edge_attributes(G, name)

	Get edge attributes from graph

Freezing graph structure

	freeze(G)

	Modify graph to prevent further change by adding or removing nodes or edges.

	is_frozen(G)

	Return True if graph is frozen.

NetworkX

degree

	
degree(G, nbunch=None, weight=None)

	Return degree of single node or of nbunch of nodes.
If nbunch is ommitted, then return degrees of all nodes.

NetworkX

degree_histogram

	
degree_histogram(G)

	Return a list of the frequency of each degree value.

	Parameters

	G (Networkx graph) – A graph

	Returns

	hist – A list of frequencies of degrees.
The degree values are the index in the list.

	Return type

	list

Notes

Note: the bins are width one, hence len(list) can be large
(Order(number_of_edges))

NetworkX

density

	
density(G)

	Return the density of a graph.

The density for undirected graphs is

\[d = \frac{2m}{n(n-1)},\]

and for directed graphs is

\[d = \frac{m}{n(n-1)},\]

where \(n\) is the number of nodes and \(m\) is the number of edges in \(G\).

Notes

The density is 0 for a graph without edges and 1 for a complete graph.
The density of multigraphs can be higher than 1.

Self loops are counted in the total number of edges so graphs with self
loops can have density higher than 1.

NetworkX

info

	
info(G, n=None)

	Print short summary of information for the graph G or the node n.

	Parameters

	
	G (Networkx graph) – A graph

	n (node (any hashable)) – A node in the graph G

NetworkX

create_empty_copy

	
create_empty_copy(G, with_nodes=True)

	Return a copy of the graph G with all of the edges removed.

	Parameters

	
	G (graph) – A NetworkX graph

	with_nodes (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Include nodes.

Notes

Graph, node, and edge data is not propagated to the new graph.

NetworkX

is_directed

	
is_directed(G)

	Return True if graph is directed.

NetworkX

nodes

	
nodes(G)

	Return a copy of the graph nodes in a list.

NetworkX

number_of_nodes

	
number_of_nodes(G)

	Return the number of nodes in the graph.

NetworkX

nodes_iter

	
nodes_iter(G)

	Return an iterator over the graph nodes.

NetworkX

all_neighbors

	
all_neighbors(graph, node)

	Returns all of the neighbors of a node in the graph.

If the graph is directed returns predecessors as well as successors.

	Parameters

	
	graph (NetworkX graph) – Graph to find neighbors.

	node (node) – The node whose neighbors will be returned.

	Returns

	neighbors – Iterator of neighbors

	Return type

	iterator

NetworkX

non_neighbors

	
non_neighbors(graph, node)

	Returns the non-neighbors of the node in the graph.

	Parameters

	
	graph (NetworkX graph) – Graph to find neighbors.

	node (node) – The node whose neighbors will be returned.

	Returns

	non_neighbors – Iterator of nodes in the graph that are not neighbors of the node.

	Return type

	iterator

NetworkX

common_neighbors

	
common_neighbors(G, u, v)

	Return the common neighbors of two nodes in a graph.

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	v (u,) – Nodes in the graph.

	Returns

	cnbors – Iterator of common neighbors of u and v in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If u or v is not a node in the graph.

Examples

>>> G = nx.complete_graph(5)
>>> sorted(nx.common_neighbors(G, 0, 1))
[2, 3, 4]

NetworkX

edges

	
edges(G, nbunch=None)

	Return list of edges incident to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out_edges

NetworkX

number_of_edges

	
number_of_edges(G)

	Return the number of edges in the graph.

NetworkX

edges_iter

	
edges_iter(G, nbunch=None)

	Return iterator over edges incident to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out_edges

NetworkX

non_edges

	
non_edges(graph)

	Returns the non-existent edges in the graph.

	Parameters

	graph (NetworkX graph.) – Graph to find non-existent edges.

	Returns

	non_edges – Iterator of edges that are not in the graph.

	Return type

	iterator

NetworkX

set_node_attributes

	
set_node_attributes(G, name, values)

	Set node attributes from dictionary of nodes and values

	Parameters

	
	G (NetworkX Graph) –

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Attribute name

	values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dictionary of attribute values keyed by node. If \(values\) is not a
dictionary, then it is treated as a single attribute value that is then
applied to every node in \(G\).

Examples

>>> G = nx.path_graph(3)
>>> bb = nx.betweenness_centrality(G)
>>> nx.set_node_attributes(G, 'betweenness', bb)
>>> G.node[1]['betweenness']
1.0

NetworkX

get_node_attributes

	
get_node_attributes(G, name)

	Get node attributes from graph

	Parameters

	
	G (NetworkX Graph) –

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Attribute name

	Returns

	

	Return type

	Dictionary of attributes keyed by node.

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([1,2,3],color='red')
>>> color=nx.get_node_attributes(G,'color')
>>> color[1]
'red'

NetworkX

set_edge_attributes

	
set_edge_attributes(G, name, values)

	Set edge attributes from dictionary of edge tuples and values.

	Parameters

	
	G (NetworkX Graph) –

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Attribute name

	values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dictionary of attribute values keyed by edge (tuple). For multigraphs,
the keys tuples must be of the form (u, v, key). For non-multigraphs,
the keys must be tuples of the form (u, v). If \(values\) is not a
dictionary, then it is treated as a single attribute value that is then
applied to every edge in \(G\).

Examples

>>> G = nx.path_graph(3)
>>> bb = nx.edge_betweenness_centrality(G, normalized=False)
>>> nx.set_edge_attributes(G, 'betweenness', bb)
>>> G[1][2]['betweenness']
2.0

NetworkX

get_edge_attributes

	
get_edge_attributes(G, name)

	Get edge attributes from graph

	Parameters

	
	G (NetworkX Graph) –

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Attribute name

	Returns

	
	Dictionary of attributes keyed by edge. For (di)graphs, the keys are

	2-tuples of the form ((u,v). For multi(di)graphs, the keys are 3-tuples of)

	the form ((u, v, key).)

Examples

>>> G=nx.Graph()
>>> G.add_path([1,2,3],color='red')
>>> color=nx.get_edge_attributes(G,'color')
>>> color[(1,2)]
'red'

NetworkX

freeze

	
freeze(G)

	Modify graph to prevent further change by adding or removing
nodes or edges.

Node and edge data can still be modified.

	Parameters

	G (graph) – A NetworkX graph

Examples

>>> G=nx.Graph()
>>> G.add_path([0,1,2,3])
>>> G=nx.freeze(G)
>>> try:
... G.add_edge(4,5)
... except nx.NetworkXError as e:
... print(str(e))
Frozen graph can't be modified

Notes

To “unfreeze” a graph you must make a copy by creating a new graph object:

>>> graph = nx.path_graph(4)
>>> frozen_graph = nx.freeze(graph)
>>> unfrozen_graph = nx.Graph(frozen_graph)
>>> nx.is_frozen(unfrozen_graph)
False

See also

is_frozen()

NetworkX

is_frozen

	
is_frozen(G)

	Return True if graph is frozen.

	Parameters

	G (graph) – A NetworkX graph

See also

freeze()

NetworkX

Graph generators

Atlas

Generators for the small graph atlas.

See
“An Atlas of Graphs” by Ronald C. Read and Robin J. Wilson,
Oxford University Press, 1998.

Because of its size, this module is not imported by default.

	graph_atlas_g()

	Return the list [G0,G1,…,G1252] of graphs as named in the Graph Atlas.

Classic

Generators for some classic graphs.

The typical graph generator is called as follows:

>>> G=nx.complete_graph(100)

returning the complete graph on n nodes labeled 0,..,99
as a simple graph. Except for empty_graph, all the generators
in this module return a Graph class (i.e. a simple, undirected graph).

	balanced_tree(r, h[, create_using])

	Return the perfectly balanced r-tree of height h.

	barbell_graph(m1, m2[, create_using])

	Return the Barbell Graph: two complete graphs connected by a path.

	complete_graph(n[, create_using])

	Return the complete graph K_n with n nodes.

	complete_multipartite_graph(*block_sizes)

	Returns the complete multipartite graph with the specified block sizes.

	circular_ladder_graph(n[, create_using])

	Return the circular ladder graph CL_n of length n.

	cycle_graph(n[, create_using])

	Return the cycle graph C_n over n nodes.

	dorogovtsev_goltsev_mendes_graph(n[, …])

	Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

	empty_graph([n, create_using])

	Return the empty graph with n nodes and zero edges.

	grid_2d_graph(m, n[, periodic, create_using])

	Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors.

	grid_graph(dim[, periodic])

	Return the n-dimensional grid graph.

	hypercube_graph(n)

	Return the n-dimensional hypercube.

	ladder_graph(n[, create_using])

	Return the Ladder graph of length n.

	lollipop_graph(m, n[, create_using])

	Return the Lollipop Graph; \(K_m\) connected to \(P_n\).

	null_graph([create_using])

	Return the Null graph with no nodes or edges.

	path_graph(n[, create_using])

	Return the Path graph P_n of n nodes linearly connected by n-1 edges.

	star_graph(n[, create_using])

	Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.

	trivial_graph([create_using])

	Return the Trivial graph with one node (with integer label 0) and no edges.

	wheel_graph(n[, create_using])

	Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.

Expanders

Provides explicit constructions of expander graphs.

	margulis_gabber_galil_graph(n[, create_using])

	Return the Margulis-Gabber-Galil undirected MultiGraph on \(n^2\) nodes.

	chordal_cycle_graph(p[, create_using])

	Return the chordal cycle graph on \(p\) nodes.

Small

Various small and named graphs, together with some compact generators.

	make_small_graph(graph_description[, …])

	Return the small graph described by graph_description.

	LCF_graph(n, shift_list, repeats[, create_using])

	Return the cubic graph specified in LCF notation.

	bull_graph([create_using])

	Return the Bull graph.

	chvatal_graph([create_using])

	Return the Chvátal graph.

	cubical_graph([create_using])

	Return the 3-regular Platonic Cubical graph.

	desargues_graph([create_using])

	Return the Desargues graph.

	diamond_graph([create_using])

	Return the Diamond graph.

	dodecahedral_graph([create_using])

	Return the Platonic Dodecahedral graph.

	frucht_graph([create_using])

	Return the Frucht Graph.

	heawood_graph([create_using])

	Return the Heawood graph, a (3,6) cage.

	house_graph([create_using])

	Return the House graph (square with triangle on top).

	house_x_graph([create_using])

	Return the House graph with a cross inside the house square.

	icosahedral_graph([create_using])

	Return the Platonic Icosahedral graph.

	krackhardt_kite_graph([create_using])

	Return the Krackhardt Kite Social Network.

	moebius_kantor_graph([create_using])

	Return the Moebius-Kantor graph.

	octahedral_graph([create_using])

	Return the Platonic Octahedral graph.

	pappus_graph()

	Return the Pappus graph.

	petersen_graph([create_using])

	Return the Petersen graph.

	sedgewick_maze_graph([create_using])

	Return a small maze with a cycle.

	tetrahedral_graph([create_using])

	Return the 3-regular Platonic Tetrahedral graph.

	truncated_cube_graph([create_using])

	Return the skeleton of the truncated cube.

	truncated_tetrahedron_graph([create_using])

	Return the skeleton of the truncated Platonic tetrahedron.

	tutte_graph([create_using])

	Return the Tutte graph.

Random Graphs

Generators for random graphs.

	fast_gnp_random_graph(n, p[, seed, directed])

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

	gnp_random_graph(n, p[, seed, directed])

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

	dense_gnm_random_graph(n, m[, seed])

	Returns a \(G_{n,m}\) random graph.

	gnm_random_graph(n, m[, seed, directed])

	Returns a \(G_{n,m}\) random graph.

	erdos_renyi_graph(n, p[, seed, directed])

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

	binomial_graph(n, p[, seed, directed])

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

	newman_watts_strogatz_graph(n, k, p[, seed])

	Return a Newman–Watts–Strogatz small-world graph.

	watts_strogatz_graph(n, k, p[, seed])

	Return a Watts–Strogatz small-world graph.

	connected_watts_strogatz_graph(n, k, p[, …])

	Returns a connected Watts–Strogatz small-world graph.

	random_regular_graph(d, n[, seed])

	Returns a random d-regular graph on n nodes.

	barabasi_albert_graph(n, m[, seed])

	Returns a random graph according to the Barabási–Albert preferential attachment model.

	powerlaw_cluster_graph(n, m, p[, seed])

	Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering.

	duplication_divergence_graph(n, p[, seed])

	Returns an undirected graph using the duplication-divergence model.

	random_lobster(n, p1, p2[, seed])

	Returns a random lobster graph.

	random_shell_graph(constructor[, seed])

	Returns a random shell graph for the constructor given.

	random_powerlaw_tree(n[, gamma, seed, tries])

	Returns a tree with a power law degree distribution.

	random_powerlaw_tree_sequence(n[, gamma, …])

	Returns a degree sequence for a tree with a power law distribution.

Degree Sequence

Generate graphs with a given degree sequence or expected degree sequence.

	configuration_model(deg_sequence[, …])

	Return a random graph with the given degree sequence.

	directed_configuration_model(…[, …])

	Return a directed_random graph with the given degree sequences.

	expected_degree_graph(w[, seed, selfloops])

	Return a random graph with given expected degrees.

	havel_hakimi_graph(deg_sequence[, create_using])

	Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm.

	directed_havel_hakimi_graph(in_deg_sequence, …)

	Return a directed graph with the given degree sequences.

	degree_sequence_tree(deg_sequence[, …])

	Make a tree for the given degree sequence.

	random_degree_sequence_graph(sequence[, …])

	Return a simple random graph with the given degree sequence.

Random Clustered

Generate graphs with given degree and triangle sequence.

	random_clustered_graph(joint_degree_sequence)

	Generate a random graph with the given joint independent edge degree and triangle degree sequence.

Directed

Generators for some directed graphs, including growing network (GN) graphs and
scale-free graphs.

	gn_graph(n[, kernel, create_using, seed])

	Return the growing network (GN) digraph with n nodes.

	gnr_graph(n, p[, create_using, seed])

	Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p.

	gnc_graph(n[, create_using, seed])

	Return the growing network with copying (GNC) digraph with n nodes.

	scale_free_graph(n[, alpha, beta, gamma, …])

	Returns a scale-free directed graph.

Geometric

Generators for geometric graphs.

	random_geometric_graph(n, radius[, dim, pos])

	Returns a random geometric graph in the unit cube.

	geographical_threshold_graph(n, theta[, …])

	Returns a geographical threshold graph.

	waxman_graph(n[, alpha, beta, L, domain])

	Return a Waxman random graph.

	navigable_small_world_graph(n[, p, q, r, …])

	Return a navigable small-world graph.

Line Graph

Functions for generating line graphs.

	line_graph(G[, create_using])

	Returns the line graph of the graph or digraph G.

Ego Graph

Ego graph.

	ego_graph(G, n[, radius, center, …])

	Returns induced subgraph of neighbors centered at node n within a given radius.

Stochastic

Functions for generating stochastic graphs from a given weighted directed
graph.

	stochastic_graph(G[, copy, weight])

	Returns a right-stochastic representation of the directed graph G.

Intersection

Generators for random intersection graphs.

	uniform_random_intersection_graph(n, m, p[, …])

	Return a uniform random intersection graph.

	k_random_intersection_graph(n, m, k)

	Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k).

	general_random_intersection_graph(n, m, p)

	Return a random intersection graph with independent probabilities for connections between node and attribute sets.

Social Networks

Famous social networks.

	karate_club_graph()

	Return Zachary’s Karate Club graph.

	davis_southern_women_graph()

	Return Davis Southern women social network.

	florentine_families_graph()

	Return Florentine families graph.

Community

Generators for classes of graphs used in studying social networks.

	caveman_graph(l, k)

	Returns a caveman graph of l cliques of size k.

	connected_caveman_graph(l, k)

	Returns a connected caveman graph of l cliques of size k.

	relaxed_caveman_graph(l, k, p[, seed])

	Return a relaxed caveman graph.

	random_partition_graph(sizes, p_in, p_out[, …])

	Return the random partition graph with a partition of sizes.

	planted_partition_graph(l, k, p_in, p_out[, …])

	Return the planted l-partition graph.

	gaussian_random_partition_graph(n, s, v, …)

	Generate a Gaussian random partition graph.

Non Isomorphic Trees

Implementation of the Wright, Richmond, Odlyzko and McKay (WROM)
algorithm for the enumeration of all non-isomorphic free trees of a
given order. Rooted trees are represented by level sequences, i.e.,
lists in which the i-th element specifies the distance of vertex i to
the root.

	nonisomorphic_trees(order[, create])

	Returns a list of nonisomporphic trees

	number_of_nonisomorphic_trees(order)

	Returns the number of nonisomorphic trees

NetworkX

graph_atlas_g

	
graph_atlas_g()

	Return the list [G0,G1,…,G1252] of graphs as named in the Graph Atlas.
G0,G1,…,G1252 are all graphs with up to 7 nodes.

	The graphs are listed:

	
	in increasing order of number of nodes;

	for a fixed number of nodes,
in increasing order of the number of edges;

	for fixed numbers of nodes and edges,
in increasing order of the degree sequence,
for example 111223 < 112222;

	for fixed degree sequence, in increasing number of automorphisms.

Note that indexing is set up so that for
GAG=graph_atlas_g(), then
G123=GAG[123] and G[0]=empty_graph(0)

NetworkX

balanced_tree

	
balanced_tree(r, h, create_using=None)

	Return the perfectly balanced r-tree of height h.

	Parameters

	
	r (int [https://docs.python.org/2/library/functions.html#int]) – Branching factor of the tree

	h (int [https://docs.python.org/2/library/functions.html#int]) – Height of the tree

	create_using (NetworkX graph type, optional) – Use specified type to construct graph (default = networkx.Graph)

	Returns

	G – A tree with n nodes

	Return type

	networkx Graph

Notes

This is the rooted tree where all leaves are at distance h from
the root. The root has degree r and all other internal nodes have
degree r+1.

Node labels are the integers 0 (the root) up to number_of_nodes - 1.

Also refered to as a complete r-ary tree.

NetworkX

barbell_graph

	
barbell_graph(m1, m2, create_using=None)

	Return the Barbell Graph: two complete graphs connected by a path.

For m1 > 1 and m2 >= 0.

Two identical complete graphs K_{m1} form the left and right bells,
and are connected by a path P_{m2}.

	The 2*m1+m2 nodes are numbered

	0,…,m1-1 for the left barbell,
m1,…,m1+m2-1 for the path,
and m1+m2,…,2*m1+m2-1 for the right barbell.

The 3 subgraphs are joined via the edges (m1-1,m1) and (m1+m2-1,m1+m2).
If m2=0, this is merely two complete graphs joined together.

This graph is an extremal example in David Aldous
and Jim Fill’s etext on Random Walks on Graphs.

NetworkX

complete_graph

	
complete_graph(n, create_using=None)

	Return the complete graph K_n with n nodes.

Node labels are the integers 0 to n-1.

NetworkX

complete_multipartite_graph

	
complete_multipartite_graph(*block_sizes)

	Returns the complete multipartite graph with the specified block sizes.

	Parameters

	block_sizes (tuple of integers) – The number of vertices in each block of the multipartite graph. The
length of this tuple is the number of blocks.

	Returns

	G – Returns the complete multipartite graph with the specified block sizes.

For each node, the node attribute 'block' is an integer indicating
which block contains the node.

	Return type

	NetworkX Graph

Examples

Creating a complete tripartite graph, with blocks of one, two, and three
vertices, respectively.

>>> import networkx as nx
>>> G = nx.complete_multipartite_graph(1, 2, 3)
>>> [G.node[u]['block'] for u in G]
[0, 1, 1, 2, 2, 2]
>>> G.edges(0)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> G.edges(2)
[(2, 0), (2, 3), (2, 4), (2, 5)]
>>> G.edges(4)
[(4, 0), (4, 1), (4, 2)]

Notes

This function generalizes several other graph generator functions.

	If no block sizes are given, this returns the null graph.

	If a single block size n is given, this returns the empty graph on
n nodes.

	If two block sizes m and n are given, this returns the complete
bipartite graph on m + n nodes.

	If block sizes 1 and n are given, this returns the star graph on
n + 1 nodes.

See also

complete_bipartite_graph()

NetworkX

circular_ladder_graph

	
circular_ladder_graph(n, create_using=None)

	Return the circular ladder graph CL_n of length n.

CL_n consists of two concentric n-cycles in which
each of the n pairs of concentric nodes are joined by an edge.

Node labels are the integers 0 to n-1

NetworkX

cycle_graph

	
cycle_graph(n, create_using=None)

	Return the cycle graph C_n over n nodes.

C_n is the n-path with two end-nodes connected.

Node labels are the integers 0 to n-1
If create_using is a DiGraph, the direction is in increasing order.

NetworkX

dorogovtsev_goltsev_mendes_graph

	
dorogovtsev_goltsev_mendes_graph(n, create_using=None)

	Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

n is the generation.
See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.

NetworkX

empty_graph

	
empty_graph(n=0, create_using=None)

	Return the empty graph with n nodes and zero edges.

Node labels are the integers 0 to n-1

For example:
>>> G=nx.empty_graph(10)
>>> G.number_of_nodes()
10
>>> G.number_of_edges()
0

The variable create_using should point to a “graph”-like object that
will be cleaned (nodes and edges will be removed) and refitted as
an empty “graph” with n nodes with integer labels. This capability
is useful for specifying the class-nature of the resulting empty
“graph” (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).

The variable create_using has two main uses:
Firstly, the variable create_using can be used to create an
empty digraph, network,etc. For example,

>>> n=10
>>> G=nx.empty_graph(n,create_using=nx.DiGraph())

will create an empty digraph on n nodes.

Secondly, one can pass an existing graph (digraph, pseudograph,
etc.) via create_using. For example, if G is an existing graph
(resp. digraph, pseudograph, etc.), then empty_graph(n,create_using=G)
will empty G (i.e. delete all nodes and edges using G.clear() in
base) and then add n nodes and zero edges, and return the modified
graph (resp. digraph, pseudograph, etc.).

See also create_empty_copy(G).

NetworkX

grid_2d_graph

	
grid_2d_graph(m, n, periodic=False, create_using=None)

	Return the 2d grid graph of mxn nodes,
each connected to its nearest neighbors.
Optional argument periodic=True will connect
boundary nodes via periodic boundary conditions.

NetworkX

grid_graph

	
grid_graph(dim, periodic=False)

	Return the n-dimensional grid graph.

The dimension is the length of the list ‘dim’ and the
size in each dimension is the value of the list element.

E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

NetworkX

hypercube_graph

	
hypercube_graph(n)

	Return the n-dimensional hypercube.

Node labels are the integers 0 to 2**n - 1.

NetworkX

ladder_graph

	
ladder_graph(n, create_using=None)

	Return the Ladder graph of length n.

This is two rows of n nodes, with
each pair connected by a single edge.

Node labels are the integers 0 to 2*n - 1.

NetworkX

lollipop_graph

	
lollipop_graph(m, n, create_using=None)

	Return the Lollipop Graph; \(K_m\) connected to \(P_n\).

This is the Barbell Graph without the right barbell.

For m>1 and n>=0, the complete graph K_m is connected to the
path P_n. The resulting m+n nodes are labelled 0,…,m-1 for the
complete graph and m,…,m+n-1 for the path. The 2 subgraphs
are joined via the edge (m-1,m). If n=0, this is merely a complete
graph.

Node labels are the integers 0 to number_of_nodes - 1.

(This graph is an extremal example in David Aldous and Jim
Fill’s etext on Random Walks on Graphs.)

NetworkX

null_graph

	
null_graph(create_using=None)

	Return the Null graph with no nodes or edges.

See empty_graph for the use of create_using.

NetworkX

path_graph

	
path_graph(n, create_using=None)

	Return the Path graph P_n of n nodes linearly connected by n-1 edges.

Node labels are the integers 0 to n - 1.
If create_using is a DiGraph then the edges are directed in
increasing order.

NetworkX

star_graph

	
star_graph(n, create_using=None)

	Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.

Node labels are the integers 0 to n.

NetworkX

trivial_graph

	
trivial_graph(create_using=None)

	Return the Trivial graph with one node (with integer label 0) and no edges.

NetworkX

wheel_graph

	
wheel_graph(n, create_using=None)

	Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.

Node labels are the integers 0 to n - 1.

NetworkX

margulis_gabber_galil_graph

	
margulis_gabber_galil_graph(n, create_using=None)

	Return the Margulis-Gabber-Galil undirected MultiGraph on \(n^2\) nodes.

The undirected MultiGraph is regular with degree \(8\). Nodes are integer
pairs. The second-largest eigenvalue of the adjacency matrix of the graph
is at most \(5 \sqrt{2}\), regardless of \(n\).

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Determines the number of nodes in the graph: \(n^2\).

	create_using (graph-like) – A graph-like object that receives the constructed edges. If None,
then a MultiGraph instance is used.

	Returns

	G – The constructed undirected multigraph.

	Return type

	graph

	Raises

	NetworkXError – If the graph is directed or not a multigraph.

NetworkX

chordal_cycle_graph

	
chordal_cycle_graph(p, create_using=None)

	Return the chordal cycle graph on \(p\) nodes.

The returned graph is a cycle graph on \(p\) nodes with chords joining each
vertex \(x\) to its inverse modulo \(p\). This graph is a (mildly explicit)
3-regular expander 1.

p must be a prime number.

	Parameters

	
	p (a prime number) – The number of vertices in the graph. This also indicates where the
chordal edges in the cycle will be created.

	create_using (graph-like) – A graph-like object that receives the constructed edges. If None,
then a MultiGraph instance is used.

	Returns

	G – The constructed undirected multigraph.

	Return type

	graph

	Raises

	NetworkXError – If the graph provided in create_using is directed or not a
multigraph.

References

	1

	Theorem 4.4.2 in A. Lubotzky. “Discrete groups, expanding graphs and
invariant measures”, volume 125 of Progress in Mathematics.
Birkhäuser Verlag, Basel, 1994.

NetworkX

make_small_graph

	
make_small_graph(graph_description, create_using=None)

	Return the small graph described by graph_description.

graph_description is a list of the form [ltype,name,n,xlist]

Here ltype is one of “adjacencylist” or “edgelist”,
name is the name of the graph and n the number of nodes.
This constructs a graph of n nodes with integer labels 0,..,n-1.

If ltype=”adjacencylist” then xlist is an adjacency list
with exactly n entries, in with the j’th entry (which can be empty)
specifies the nodes connected to vertex j.
e.g. the “square” graph C_4 can be obtained by

>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]])

or, since we do not need to add edges twice,

>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]])

If ltype=”edgelist” then xlist is an edge list
written as [[v1,w2],[v2,w2],…,[vk,wk]],
where vj and wj integers in the range 1,..,n
e.g. the “square” graph C_4 can be obtained by

>>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2],[3,4],[2,3],[4,1]]])

Use the create_using argument to choose the graph class/type.

NetworkX

LCF_graph

	
LCF_graph(n, shift_list, repeats, create_using=None)

	Return the cubic graph specified in LCF notation.

LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed
notation used in the generation of various cubic Hamiltonian
graphs of high symmetry. See, for example, dodecahedral_graph,
desargues_graph, heawood_graph and pappus_graph below.

	n (number of nodes)

	The starting graph is the n-cycle with nodes 0,…,n-1.
(The null graph is returned if n < 0.)

shift_list = [s1,s2,..,sk], a list of integer shifts mod n,

	repeats

	integer specifying the number of times that shifts in shift_list
are successively applied to each v_current in the n-cycle
to generate an edge between v_current and v_current+shift mod n.

For v1 cycling through the n-cycle a total of k*repeats
with shift cycling through shiftlist repeats times connect
v1 with v1+shift mod n

The utility graph K_{3,3}

>>> G=nx.LCF_graph(6,[3,-3],3)

The Heawood graph

>>> G=nx.LCF_graph(14,[5,-5],7)

See http://mathworld.wolfram.com/LCFNotation.html for a description
and references.

NetworkX

bull_graph

	
bull_graph(create_using=None)

	Return the Bull graph.

NetworkX

chvatal_graph

	
chvatal_graph(create_using=None)

	Return the Chvátal graph.

NetworkX

cubical_graph

	
cubical_graph(create_using=None)

	Return the 3-regular Platonic Cubical graph.

NetworkX

desargues_graph

	
desargues_graph(create_using=None)

	Return the Desargues graph.

NetworkX

diamond_graph

	
diamond_graph(create_using=None)

	Return the Diamond graph.

NetworkX

dodecahedral_graph

	
dodecahedral_graph(create_using=None)

	Return the Platonic Dodecahedral graph.

NetworkX

frucht_graph

	
frucht_graph(create_using=None)

	Return the Frucht Graph.

The Frucht Graph is the smallest cubical graph whose
automorphism group consists only of the identity element.

NetworkX

heawood_graph

	
heawood_graph(create_using=None)

	Return the Heawood graph, a (3,6) cage.

NetworkX

house_graph

	
house_graph(create_using=None)

	Return the House graph (square with triangle on top).

NetworkX

house_x_graph

	
house_x_graph(create_using=None)

	Return the House graph with a cross inside the house square.

NetworkX

icosahedral_graph

	
icosahedral_graph(create_using=None)

	Return the Platonic Icosahedral graph.

NetworkX

krackhardt_kite_graph

	
krackhardt_kite_graph(create_using=None)

	Return the Krackhardt Kite Social Network.

A 10 actor social network introduced by David Krackhardt
to illustrate: degree, betweenness, centrality, closeness, etc.
The traditional labeling is:
Andre=1, Beverley=2, Carol=3, Diane=4,
Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.

NetworkX

moebius_kantor_graph

	
moebius_kantor_graph(create_using=None)

	Return the Moebius-Kantor graph.

NetworkX

octahedral_graph

	
octahedral_graph(create_using=None)

	Return the Platonic Octahedral graph.

NetworkX

pappus_graph

	
pappus_graph()

	Return the Pappus graph.

NetworkX

petersen_graph

	
petersen_graph(create_using=None)

	Return the Petersen graph.

NetworkX

sedgewick_maze_graph

	
sedgewick_maze_graph(create_using=None)

	Return a small maze with a cycle.

This is the maze used in Sedgewick,3rd Edition, Part 5, Graph
Algorithms, Chapter 18, e.g. Figure 18.2 and following.
Nodes are numbered 0,..,7

NetworkX

tetrahedral_graph

	
tetrahedral_graph(create_using=None)

	Return the 3-regular Platonic Tetrahedral graph.

NetworkX

truncated_cube_graph

	
truncated_cube_graph(create_using=None)

	Return the skeleton of the truncated cube.

NetworkX

truncated_tetrahedron_graph

	
truncated_tetrahedron_graph(create_using=None)

	Return the skeleton of the truncated Platonic tetrahedron.

NetworkX

tutte_graph

	
tutte_graph(create_using=None)

	Return the Tutte graph.

NetworkX

fast_gnp_random_graph

	
fast_gnp_random_graph(n, p, seed=None, directed=False)

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or
a binomial graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, this function returns a directed graph.

Notes

The \(G_{n,p}\) graph algorithm chooses each of the \([n (n - 1)] / 2\)
(undirected) or \(n (n - 1)\) (directed) possible edges with probability \(p\).

This algorithm runs in \(O(n + m)\) time, where \(m\) is the expected number of
edges, which equals \(p n (n - 1) / 2\). This should be faster than
gnp_random_graph() when \(p\) is small and the expected number of edges
is small (that is, the graph is sparse).

See also

gnp_random_graph()

References

	1

	Vladimir Batagelj and Ulrik Brandes,
“Efficient generation of large random networks”,
Phys. Rev. E, 71, 036113, 2005.

NetworkX

gnp_random_graph

	
gnp_random_graph(n, p, seed=None, directed=False)

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or
a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability
p.

The functions binomial_graph() and erdos_renyi_graph() are
aliases of this function.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, this function returns a directed graph.

See also

fast_gnp_random_graph()

Notes

This algorithm runs in \(O(n^2)\) time. For sparse graphs (that is, for
small values of \(p\)), fast_gnp_random_graph() is a faster algorithm.

References

	1

	
	Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).

	2

	
	
	Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

NetworkX

dense_gnm_random_graph

	
dense_gnm_random_graph(n, m, seed=None)

	Returns a \(G_{n,m}\) random graph.

In the \(G_{n,m}\) model, a graph is chosen uniformly at random from the set
of all graphs with \(n\) nodes and \(m\) edges.

This algorithm should be faster than gnm_random_graph() for dense
graphs.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of edges.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

See also

gnm_random_graph()

Notes

Algorithm by Keith M. Briggs Mar 31, 2006.
Inspired by Knuth’s Algorithm S (Selection sampling technique),
in section 3.4.2 of 1.

References

	1

	Donald E. Knuth, The Art of Computer Programming,
Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.

NetworkX

gnm_random_graph

	
gnm_random_graph(n, m, seed=None, directed=False)

	Returns a \(G_{n,m}\) random graph.

In the \(G_{n,m}\) model, a graph is chosen uniformly at random from the set
of all graphs with \(n\) nodes and \(m\) edges.

This algorithm should be faster than dense_gnm_random_graph() for
sparse graphs.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of edges.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True return a directed graph

See also

dense_gnm_random_graph()

NetworkX

erdos_renyi_graph

	
erdos_renyi_graph(n, p, seed=None, directed=False)

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or
a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability
p.

The functions binomial_graph() and erdos_renyi_graph() are
aliases of this function.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, this function returns a directed graph.

See also

fast_gnp_random_graph()

Notes

This algorithm runs in \(O(n^2)\) time. For sparse graphs (that is, for
small values of \(p\)), fast_gnp_random_graph() is a faster algorithm.

References

	1

	
	Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).

	2

	
	
	Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

NetworkX

binomial_graph

	
binomial_graph(n, p, seed=None, directed=False)

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or
a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability
p.

The functions binomial_graph() and erdos_renyi_graph() are
aliases of this function.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, this function returns a directed graph.

See also

fast_gnp_random_graph()

Notes

This algorithm runs in \(O(n^2)\) time. For sparse graphs (that is, for
small values of \(p\)), fast_gnp_random_graph() is a faster algorithm.

References

	1

	
	Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).

	2

	
	
	Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

NetworkX

newman_watts_strogatz_graph

	
newman_watts_strogatz_graph(n, k, p, seed=None)

	Return a Newman–Watts–Strogatz small-world graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	k (int [https://docs.python.org/2/library/functions.html#int]) – Each node is joined with its k nearest neighbors in a ring
topology.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The probability of adding a new edge for each edge.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – The seed for the random number generator (the default is None).

Notes

First create a ring over n nodes. Then each node in the ring is
connected with its k nearest neighbors (or k - 1 neighbors if k
is odd). Then shortcuts are created by adding new edges as follows: for
each edge (u, v) in the underlying “n-ring with k nearest
neighbors” with probability p add a new edge (u, w) with
randomly-chosen existing node w. In contrast with
watts_strogatz_graph(), no edges are removed.

See also

watts_strogatz_graph()

References

	1

	M. E. J. Newman and D. J. Watts,
Renormalization group analysis of the small-world network model,
Physics Letters A, 263, 341, 1999.
http://dx.doi.org/10.1016/S0375-9601(99)00757-4

NetworkX

watts_strogatz_graph

	
watts_strogatz_graph(n, k, p, seed=None)

	Return a Watts–Strogatz small-world graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes

	k (int [https://docs.python.org/2/library/functions.html#int]) – Each node is joined with its k nearest neighbors in a ring
topology.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The probability of rewiring each edge

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None)

See also

newman_watts_strogatz_graph(), connected_watts_strogatz_graph()

Notes

First create a ring over n nodes. Then each node in the ring is joined
to its k nearest neighbors (or k - 1 neighbors if k is odd).
Then shortcuts are created by replacing some edges as follows: for each
edge (u, v) in the underlying “n-ring with k nearest neighbors”
with probability p replace it with a new edge (u, w) with uniformly
random choice of existing node w.

In contrast with newman_watts_strogatz_graph(), the random rewiring
does not increase the number of edges. The rewired graph is not guaranteed
to be connected as in connected_watts_strogatz_graph().

References

	1

	Duncan J. Watts and Steven H. Strogatz,
Collective dynamics of small-world networks,
Nature, 393, pp. 440–442, 1998.

NetworkX

connected_watts_strogatz_graph

	
connected_watts_strogatz_graph(n, k, p, tries=100, seed=None)

	Returns a connected Watts–Strogatz small-world graph.

Attempts to generate a connected graph by repeated generation of
Watts–Strogatz small-world graphs. An exception is raised if the maximum
number of tries is exceeded.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes

	k (int [https://docs.python.org/2/library/functions.html#int]) – Each node is joined with its k nearest neighbors in a ring
topology.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The probability of rewiring each edge

	tries (int [https://docs.python.org/2/library/functions.html#int]) – Number of attempts to generate a connected graph.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – The seed for random number generator.

See also

newman_watts_strogatz_graph(), watts_strogatz_graph()

NetworkX

random_regular_graph

	
random_regular_graph(d, n, seed=None)

	Returns a random d-regular graph on n nodes.

The resulting graph has no self-loops or parallel edges.

	Parameters

	
	d (int [https://docs.python.org/2/library/functions.html#int]) – The degree of each node.

	n (integer) – The number of nodes. The value of n * d must be even.

	seed (hashable object) – The seed for random number generator.

Notes

The nodes are numbered from 0 to n - 1.

Kim and Vu’s paper 2 shows that this algorithm samples in an
asymptotically uniform way from the space of random graphs when
\(d = O(n^{1 / 3 - \epsilon})\).

	Raises

	NetworkXError – If n * d is odd or d is greater than or equal to n.

References

	1

	A. Steger and N. Wormald,
Generating random regular graphs quickly,
Probability and Computing 8 (1999), 377-396, 1999.
http://citeseer.ist.psu.edu/steger99generating.html

	2

	Jeong Han Kim and Van H. Vu,
Generating random regular graphs,
Proceedings of the thirty-fifth ACM symposium on Theory of computing,
San Diego, CA, USA, pp 213–222, 2003.
http://portal.acm.org/citation.cfm?id=780542.780576

NetworkX

barabasi_albert_graph

	
barabasi_albert_graph(n, m, seed=None)

	Returns a random graph according to the Barabási–Albert preferential
attachment model.

A graph of n nodes is grown by attaching new nodes each with m
edges that are preferentially attached to existing nodes with high degree.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes

	m (int [https://docs.python.org/2/library/functions.html#int]) – Number of edges to attach from a new node to existing nodes

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	Returns

	G

	Return type

	Graph

	Raises

	NetworkXError – If m does not satisfy 1 <= m < n.

References

	1

	A. L. Barabási and R. Albert “Emergence of scaling in
random networks”, Science 286, pp 509-512, 1999.

NetworkX

powerlaw_cluster_graph

	
powerlaw_cluster_graph(n, m, p, seed=None)

	Holme and Kim algorithm for growing graphs with powerlaw
degree distribution and approximate average clustering.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – the number of nodes

	m (int [https://docs.python.org/2/library/functions.html#int]) – the number of random edges to add for each new node

	p (float [https://docs.python.org/2/library/functions.html#float],) – Probability of adding a triangle after adding a random edge

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

Notes

The average clustering has a hard time getting above a certain
cutoff that depends on m. This cutoff is often quite low. The
transitivity (fraction of triangles to possible triangles) seems to
decrease with network size.

It is essentially the Barabási–Albert (BA) growth model with an
extra step that each random edge is followed by a chance of
making an edge to one of its neighbors too (and thus a triangle).

This algorithm improves on BA in the sense that it enables a
higher average clustering to be attained if desired.

It seems possible to have a disconnected graph with this algorithm
since the initial m nodes may not be all linked to a new node
on the first iteration like the BA model.

	Raises

	NetworkXError – If m does not satisfy 1 <= m <= n or p does not
satisfy 0 <= p <= 1.

References

	1

	P. Holme and B. J. Kim,
“Growing scale-free networks with tunable clustering”,
Phys. Rev. E, 65, 026107, 2002.

NetworkX

duplication_divergence_graph

	
duplication_divergence_graph(n, p, seed=None)

	Returns an undirected graph using the duplication-divergence model.

A graph of n nodes is created by duplicating the initial nodes
and retaining edges incident to the original nodes with a retention
probability p.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The desired number of nodes in the graph.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The probability for retaining the edge of the replicated node.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – A seed for the random number generator of random (default=None).

	Returns

	G

	Return type

	Graph

	Raises

	NetworkXError – If \(p\) is not a valid probability.
If \(n\) is less than 2.

References

	1

	I. Ispolatov, P. L. Krapivsky, A. Yuryev,
“Duplication-divergence model of protein interaction network”,
Phys. Rev. E, 71, 061911, 2005.

NetworkX

random_lobster

	
random_lobster(n, p1, p2, seed=None)

	Returns a random lobster graph.

A lobster is a tree that reduces to a caterpillar when pruning all
leaf nodes. A caterpillar is a tree that reduces to a path graph
when pruning all leaf nodes; setting p2 to zero produces a caterillar.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The expected number of nodes in the backbone

	p1 (float [https://docs.python.org/2/library/functions.html#float]) – Probability of adding an edge to the backbone

	p2 (float [https://docs.python.org/2/library/functions.html#float]) – Probability of adding an edge one level beyond backbone

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

NetworkX

random_shell_graph

	
random_shell_graph(constructor, seed=None)

	Returns a random shell graph for the constructor given.

	Parameters

	
	constructor (list of three-tuples) – Represents the parameters for a shell, starting at the center
shell. Each element of the list must be of the form (n, m,
d), where n is the number of nodes in the shell, m is
the number of edges in the shell, and d is the ratio of
inter-shell (next) edges to intra-shell edges. If d is zero,
there will be no intra-shell edges, and if d is one there
will be all possible intra-shell edges.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

Examples

>>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
>>> G = nx.random_shell_graph(constructor)

NetworkX

random_powerlaw_tree

	
random_powerlaw_tree(n, gamma=3, seed=None, tries=100)

	Returns a tree with a power law degree distribution.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	gamma (float [https://docs.python.org/2/library/functions.html#float]) – Exponent of the power law.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	tries (int [https://docs.python.org/2/library/functions.html#int]) – Number of attempts to adjust the sequence to make it a tree.

	Raises

	NetworkXError – If no valid sequence is found within the maximum number of
attempts.

Notes

A trial power law degree sequence is chosen and then elements are
swapped with new elements from a powerlaw distribution until the
sequence makes a tree (by checking, for example, that the number of
edges is one smaller than the number of nodes).

NetworkX

random_powerlaw_tree_sequence

	
random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100)

	Returns a degree sequence for a tree with a power law distribution.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int],) – The number of nodes.

	gamma (float [https://docs.python.org/2/library/functions.html#float]) – Exponent of the power law.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	tries (int [https://docs.python.org/2/library/functions.html#int]) – Number of attempts to adjust the sequence to make it a tree.

	Raises

	NetworkXError – If no valid sequence is found within the maximum number of
attempts.

Notes

A trial power law degree sequence is chosen and then elements are
swapped with new elements from a power law distribution until
the sequence makes a tree (by checking, for example, that the number of
edges is one smaller than the number of nodes).

NetworkX

configuration_model

	
configuration_model(deg_sequence, create_using=None, seed=None)

	Return a random graph with the given degree sequence.

The configuration model generates a random pseudograph (graph with
parallel edges and self loops) by randomly assigning edges to
match the given degree sequence.

	Parameters

	
	deg_sequence (list of integers) – Each list entry corresponds to the degree of a node.

	create_using (graph, optional (default MultiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – Seed for random number generator.

	Returns

	G – A graph with the specified degree sequence.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence.

	Return type

	MultiGraph

	Raises

	NetworkXError – If the degree sequence does not have an even sum.

See also

is_valid_degree_sequence()

Notes

As described by Newman 1.

A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the degree
sequence does not have an even sum.

This configuration model construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn’t have the exact degree sequence specified.

The density of self-loops and parallel edges tends to decrease
as the number of nodes increases. However, typically the number
of self-loops will approach a Poisson distribution with a nonzero
mean, and similarly for the number of parallel edges. Consider a
node with k stubs. The probability of being joined to another stub of
the same node is basically (k-1)/N where k is the degree and N is
the number of nodes. So the probability of a self-loop scales like c/N
for some constant c. As N grows, this means we expect c self-loops.
Similarly for parallel edges.

References

	1

	M.E.J. Newman, “The structure and function of complex networks”,
SIAM REVIEW 45-2, pp 167-256, 2003.

Examples

>>> from networkx.utils import powerlaw_sequence
>>> z=nx.utils.create_degree_sequence(100,powerlaw_sequence)
>>> G=nx.configuration_model(z)

To remove parallel edges:

>>> G=nx.Graph(G)

To remove self loops:

>>> G.remove_edges_from(G.selfloop_edges())

NetworkX

directed_configuration_model

	
directed_configuration_model(in_degree_sequence, out_degree_sequence, create_using=None, seed=None)

	Return a directed_random graph with the given degree sequences.

The configuration model generates a random directed pseudograph
(graph with parallel edges and self loops) by randomly assigning
edges to match the given degree sequences.

	Parameters

	
	in_degree_sequence (list of integers) – Each list entry corresponds to the in-degree of a node.

	out_degree_sequence (list of integers) – Each list entry corresponds to the out-degree of a node.

	create_using (graph, optional (default MultiDiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – Seed for random number generator.

	Returns

	G – A graph with the specified degree sequences.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence.

	Return type

	MultiDiGraph

	Raises

	NetworkXError – If the degree sequences do not have the same sum.

See also

configuration_model()

Notes

Algorithm as described by Newman 1.

A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the degree
sequences does not have the same sum.

This configuration model construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn’t have the exact degree sequence specified. This
“finite-size effect” decreases as the size of the graph increases.

References

	1

	Newman, M. E. J. and Strogatz, S. H. and Watts, D. J.
Random graphs with arbitrary degree distributions and their applications
Phys. Rev. E, 64, 026118 (2001)

Examples

>>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph
>>> din=list(D.in_degree().values())
>>> dout=list(D.out_degree().values())
>>> din.append(1)
>>> dout[0]=2
>>> D=nx.directed_configuration_model(din,dout)

To remove parallel edges:

>>> D=nx.DiGraph(D)

To remove self loops:

>>> D.remove_edges_from(D.selfloop_edges())

NetworkX

expected_degree_graph

	
expected_degree_graph(w, seed=None, selfloops=True)

	Return a random graph with given expected degrees.

Given a sequence of expected degrees \(W=(w_0,w_1,\ldots,w_{n-1}\))
of length \(n\) this algorithm assigns an edge between node \(u\) and
node \(v\) with probability

\[p_{uv} = \frac{w_u w_v}{\sum_k w_k} .\]

	Parameters

	
	w (list) – The list of expected degrees.

	selfloops (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Set to False to remove the possibility of self-loop edges.

	seed (hashable object, optional) – The seed for the random number generator.

	Returns

	

	Return type

	Graph

Examples

>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)

Notes

The nodes have integer labels corresponding to index of expected degrees
input sequence.

The complexity of this algorithm is \(\mathcal{O}(n+m)\) where \(n\) is the
number of nodes and \(m\) is the expected number of edges.

The model in 1 includes the possibility of self-loop edges.
Set selfloops=False to produce a graph without self loops.

For finite graphs this model doesn’t produce exactly the given
expected degree sequence. Instead the expected degrees are as
follows.

For the case without self loops (selfloops=False),

\[E[deg(u)] = \sum_{v \ne u} p_{uv}
 = w_u \left(1 - \frac{w_u}{\sum_k w_k} \right) .\]

NetworkX uses the standard convention that a self-loop edge counts 2
in the degree of a node, so with self loops (selfloops=True),

\[E[deg(u)] = \sum_{v \ne u} p_{uv} + 2 p_{uu}
 = w_u \left(1 + \frac{w_u}{\sum_k w_k} \right) .\]

References

	1

	Fan Chung and L. Lu, Connected components in random graphs with
given expected degree sequences, Ann. Combinatorics, 6,
pp. 125-145, 2002.

	2

	Joel Miller and Aric Hagberg,
Efficient generation of networks with given expected degrees,
in Algorithms and Models for the Web-Graph (WAW 2011),
Alan Frieze, Paul Horn, and Paweł Prałat (Eds), LNCS 6732,
pp. 115-126, 2011.

NetworkX

havel_hakimi_graph

	
havel_hakimi_graph(deg_sequence, create_using=None)

	Return a simple graph with given degree sequence constructed
using the Havel-Hakimi algorithm.

	Parameters

	
	deg_sequence (list of integers) – Each integer corresponds to the degree of a node (need not be sorted).

	create_using (graph, optional (default Graph)) – Return graph of this type. The instance will be cleared.
Directed graphs are not allowed.

	Raises

	NetworkXException – For a non-graphical degree sequence (i.e. one
not realizable by some simple graph).

Notes

The Havel-Hakimi algorithm constructs a simple graph by
successively connecting the node of highest degree to other nodes
of highest degree, resorting remaining nodes by degree, and
repeating the process. The resulting graph has a high
degree-associativity. Nodes are labeled 1,.., len(deg_sequence),
corresponding to their position in deg_sequence.

The basic algorithm is from Hakimi 1 and was generalized by
Kleitman and Wang 2.

References

	1

	Hakimi S., On Realizability of a Set of Integers as
Degrees of the Vertices of a Linear Graph. I,
Journal of SIAM, 10(3), pp. 496-506 (1962)

	2

	Kleitman D.J. and Wang D.L.
Algorithms for Constructing Graphs and Digraphs with Given Valences
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)

NetworkX

directed_havel_hakimi_graph

	
directed_havel_hakimi_graph(in_deg_sequence, out_deg_sequence, create_using=None)

	Return a directed graph with the given degree sequences.

	Parameters

	
	in_deg_sequence (list of integers) – Each list entry corresponds to the in-degree of a node.

	out_deg_sequence (list of integers) – Each list entry corresponds to the out-degree of a node.

	create_using (graph, optional (default DiGraph)) – Return graph of this type. The instance will be cleared.

	Returns

	G – A graph with the specified degree sequences.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence

	Return type

	DiGraph

	Raises

	NetworkXError – If the degree sequences are not digraphical.

See also

configuration_model()

Notes

Algorithm as described by Kleitman and Wang 1.

References

	1

	D.J. Kleitman and D.L. Wang
Algorithms for Constructing Graphs and Digraphs with Given Valences
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)

NetworkX

degree_sequence_tree

	
degree_sequence_tree(deg_sequence, create_using=None)

	Make a tree for the given degree sequence.

A tree has #nodes-#edges=1 so
the degree sequence must have
len(deg_sequence)-sum(deg_sequence)/2=1

NetworkX

random_degree_sequence_graph

	
random_degree_sequence_graph(sequence, seed=None, tries=10)

	Return a simple random graph with the given degree sequence.

If the maximum degree \(d_m\) in the sequence is \(O(m^{1/4})\) then the
algorithm produces almost uniform random graphs in \(O(m d_m)\) time
where \(m\) is the number of edges.

	Parameters

	
	sequence (list of integers) – Sequence of degrees

	seed (hashable object, optional) – Seed for random number generator

	tries (int [https://docs.python.org/2/library/functions.html#int], optional) – Maximum number of tries to create a graph

	Returns

	G – A graph with the specified degree sequence.
Nodes are labeled starting at 0 with an index
corresponding to the position in the sequence.

	Return type

	Graph

	Raises

	
	NetworkXUnfeasible – If the degree sequence is not graphical.

	NetworkXError – If a graph is not produced in specified number of tries

See also

is_valid_degree_sequence(), configuration_model()

Notes

The generator algorithm 1 is not guaranteed to produce a graph.

References

	1

	Moshen Bayati, Jeong Han Kim, and Amin Saberi,
A sequential algorithm for generating random graphs.
Algorithmica, Volume 58, Number 4, 860-910,
DOI: 10.1007/s00453-009-9340-1

Examples

>>> sequence = [1, 2, 2, 3]
>>> G = nx.random_degree_sequence_graph(sequence)
>>> sorted(G.degree().values())
[1, 2, 2, 3]

NetworkX

random_clustered_graph

	
random_clustered_graph(joint_degree_sequence, create_using=None, seed=None)

	Generate a random graph with the given joint independent edge degree and
triangle degree sequence.

This uses a configuration model-like approach to generate a random graph
(with parallel edges and self-loops) by randomly assigning edges to match
the given joint degree sequence.

The joint degree sequence is a list of pairs of integers of the form
\([(d_{1,i}, d_{1,t}), \dotsc, (d_{n,i}, d_{n,t})]\). According to this list,
vertex \(u\) is a member of \(d_{u,t}\) triangles and has \(d_{u, i}\) other
edges. The number \(d_{u,t}\) is the triangle degree of \(u\) and the number
\(d_{u,i}\) is the independent edge degree.

	Parameters

	
	joint_degree_sequence (list of integer pairs) – Each list entry corresponds to the independent edge degree and
triangle degree of a node.

	create_using (graph, optional (default MultiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – The seed for the random number generator.

	Returns

	G – A graph with the specified degree sequence. Nodes are labeled
starting at 0 with an index corresponding to the position in
deg_sequence.

	Return type

	MultiGraph

	Raises

	NetworkXError – If the independent edge degree sequence sum is not even
or the triangle degree sequence sum is not divisible by 3.

Notes

As described by Miller 1 (see also Newman 2 for an equivalent
description).

A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the
independent degree sequence does not have an even sum or the
triangle degree sequence sum is not divisible by 3.

This configuration model-like construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn’t have the exact degree sequence specified. This
“finite-size effect” decreases as the size of the graph increases.

References

	1

	Joel C. Miller. “Percolation and epidemics in random clustered
networks”. In: Physical review. E, Statistical, nonlinear, and soft
matter physics 80 (2 Part 1 August 2009).

	2

	M. E. J. Newman. “Random Graphs with Clustering”.
In: Physical Review Letters 103 (5 July 2009)

Examples

>>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
>>> G = nx.random_clustered_graph(deg)

To remove parallel edges:

>>> G = nx.Graph(G)

To remove self loops:

>>> G.remove_edges_from(G.selfloop_edges())

NetworkX

gn_graph

	
gn_graph(n, kernel=None, create_using=None, seed=None)

	Return the growing network (GN) digraph with n nodes.

The GN graph is built by adding nodes one at a time with a link to one
previously added node. The target node for the link is chosen with
probability based on degree. The default attachment kernel is a linear
function of the degree of a node.

The graph is always a (directed) tree.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes for the generated graph.

	kernel (function) – The attachment kernel.

	create_using (graph, optional (default DiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – The seed for the random number generator.

Examples

To create the undirected GN graph, use the to_directed()
method:

>>> D = nx.gn_graph(10) # the GN graph
>>> G = D.to_undirected() # the undirected version

To specify an attachment kernel, use the kernel keyword argument:

>>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5) # A_k = k^1.5

References

	1

	P. L. Krapivsky and S. Redner,
Organization of Growing Random Networks,
Phys. Rev. E, 63, 066123, 2001.

NetworkX

gnr_graph

	
gnr_graph(n, p, create_using=None, seed=None)

	Return the growing network with redirection (GNR) digraph with n
nodes and redirection probability p.

The GNR graph is built by adding nodes one at a time with a link to one
previously added node. The previous target node is chosen uniformly at
random. With probabiliy p the link is instead “redirected” to the
successor node of the target.

The graph is always a (directed) tree.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes for the generated graph.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The redirection probability.

	create_using (graph, optional (default DiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – The seed for the random number generator.

Examples

To create the undirected GNR graph, use the to_directed()
method:

>>> D = nx.gnr_graph(10, 0.5) # the GNR graph
>>> G = D.to_undirected() # the undirected version

References

	1

	P. L. Krapivsky and S. Redner,
Organization of Growing Random Networks,
Phys. Rev. E, 63, 066123, 2001.

NetworkX

gnc_graph

	
gnc_graph(n, create_using=None, seed=None)

	Return the growing network with copying (GNC) digraph with n nodes.

The GNC graph is built by adding nodes one at a time with a link to one
previously added node (chosen uniformly at random) and to all of that
node’s successors.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes for the generated graph.

	create_using (graph, optional (default DiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – The seed for the random number generator.

References

	1

	P. L. Krapivsky and S. Redner,
Network Growth by Copying,
Phys. Rev. E, 71, 036118, 2005k.},

NetworkX

scale_free_graph

	
scale_free_graph(n, alpha=0.41, beta=0.54, gamma=0.05, delta_in=0.2, delta_out=0, create_using=None, seed=None)

	Returns a scale-free directed graph.

	Parameters

	
	n (integer) – Number of nodes in graph

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Probability for adding a new node connected to an existing node
chosen randomly according to the in-degree distribution.

	beta (float [https://docs.python.org/2/library/functions.html#float]) – Probability for adding an edge between two existing nodes.
One existing node is chosen randomly according the in-degree
distribution and the other chosen randomly according to the out-degree
distribution.

	gamma (float [https://docs.python.org/2/library/functions.html#float]) – Probability for adding a new node conecgted to an existing node
chosen randomly according to the out-degree distribution.

	delta_in (float [https://docs.python.org/2/library/functions.html#float]) – Bias for choosing ndoes from in-degree distribution.

	delta_out (float [https://docs.python.org/2/library/functions.html#float]) – Bias for choosing ndoes from out-degree distribution.

	create_using (graph, optional (default MultiDiGraph)) – Use this graph instance to start the process (default=3-cycle).

	seed (integer, optional) – Seed for random number generator

Examples

Create a scale-free graph on one hundred nodes:

>>> G = nx.scale_free_graph(100)

Notes

The sum of alpha, beta, and gamma must be 1.

References

	1

	B. Bollobás, C. Borgs, J. Chayes, and O. Riordan,
Directed scale-free graphs,
Proceedings of the fourteenth annual ACM-SIAM Symposium on
Discrete Algorithms, 132–139, 2003.

NetworkX

random_geometric_graph

	
random_geometric_graph(n, radius, dim=2, pos=None)

	Returns a random geometric graph in the unit cube.

The random geometric graph model places n nodes uniformly at random in
the unit cube. Two nodes are joined by an edge if the Euclidean distance
between the nodes is at most radius.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes

	radius (float [https://docs.python.org/2/library/functions.html#float]) – Distance threshold value

	dim (int [https://docs.python.org/2/library/functions.html#int], optional) – Dimension of graph

	pos (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – A dictionary keyed by node with node positions as values.

	Returns

	

	Return type

	Graph

Examples

Create a random geometric graph on twenty nodes where nodes are joined by
an edge if their distance is at most 0.1:

>>> G = nx.random_geometric_graph(20, 0.1)

Notes

This algorithm currently only supports Euclidean distance.

This uses an \(O(n^2)\) algorithm to build the graph. A faster algorithm
is possible using k-d trees.

The pos keyword argument can be used to specify node positions so you
can create an arbitrary distribution and domain for positions.

For example, to use a 2D Gaussian distribution of node positions with mean
(0, 0) and standard deviation 2:

>>> import random
>>> n = 20
>>> p = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> G = nx.random_geometric_graph(n, 0.2, pos=p)

References

	1

	Penrose, Mathew, Random Geometric Graphs,
Oxford Studies in Probability, 5, 2003.

NetworkX

geographical_threshold_graph

	
geographical_threshold_graph(n, theta, alpha=2, dim=2, pos=None, weight=None)

	Returns a geographical threshold graph.

The geographical threshold graph model places n nodes uniformly at
random in a rectangular domain. Each node \(u\) is assigned a weight \(w_u\).
Two nodes \(u\) and \(v\) are joined by an edge if

\[w_u + w_v \ge \theta r^{\alpha}\]

where \(r\) is the Euclidean distance between \(u\) and \(v\), and \(\theta\),
\(\alpha\) are parameters.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes

	theta (float [https://docs.python.org/2/library/functions.html#float]) – Threshold value

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional) – Exponent of distance function

	dim (int [https://docs.python.org/2/library/functions.html#int], optional) – Dimension of graph

	pos (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Node positions as a dictionary of tuples keyed by node.

	weight (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Node weights as a dictionary of numbers keyed by node.

	Returns

	

	Return type

	Graph

Examples

>>> G = nx.geographical_threshold_graph(20, 50)

Notes

If weights are not specified they are assigned to nodes by drawing randomly
from the exponential distribution with rate parameter \(\lambda=1\). To
specify weights from a different distribution, use the weight keyword
argument:

>>> import random
>>> n = 20
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.geographical_threshold_graph(20, 50, weight=w)

If node positions are not specified they are randomly assigned from the
uniform distribution.

References

	1

	Masuda, N., Miwa, H., Konno, N.:
Geographical threshold graphs with small-world and scale-free
properties.
Physical Review E 71, 036108 (2005)

	2

	Milan Bradonjić, Aric Hagberg and Allon G. Percus,
Giant component and connectivity in geographical threshold graphs,
in Algorithms and Models for the Web-Graph (WAW 2007),
Antony Bonato and Fan Chung (Eds), pp. 209–216, 2007

NetworkX

waxman_graph

	
waxman_graph(n, alpha=0.4, beta=0.1, L=None, domain=(0, 0, 1, 1))

	Return a Waxman random graph.

The Waxman random graph model places n nodes uniformly at random in a
rectangular domain. Each pair of nodes at Euclidean distance \(d\) is joined
by an edge with probability

\[p = \alpha \exp(-d / \beta L).\]

This function implements both Waxman models, using the L keyword
argument.

	Waxman-1: if L is not specified, it is set to be the maximum distance
between any pair of nodes.

	Waxman-2: if L is specified, the distance between a pair of nodes is
chosen uniformly at random from the interval \([0, L]\).

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Model parameter

	beta (float [https://docs.python.org/2/library/functions.html#float]) – Model parameter

	L (float [https://docs.python.org/2/library/functions.html#float], optional) – Maximum distance between nodes. If not specified, the actual distance
is calculated.

	domain (four-tuple of numbers, optional) – Domain size, given as a tuple of the form \((x_min, y_min, x_max,
y_max)\).

	Returns

	G

	Return type

	Graph

References

	1

	B. M. Waxman, Routing of multipoint connections.
IEEE J. Select. Areas Commun. 6(9),(1988) 1617-1622.

NetworkX

navigable_small_world_graph

	
navigable_small_world_graph(n, p=1, q=1, r=2, dim=2, seed=None)

	Return a navigable small-world graph.

A navigable small-world graph is a directed grid with additional long-range
connections that are chosen randomly.

[…] we begin with a set of nodes […] that are identified with the set
of lattice points in an \(n imes n\) square, \(\{(i, j): i \in \{1, 2,
\ldots, n\}, j \in \{1, 2, \ldots, n\}\}\), and we define the lattice
distance between two nodes \((i, j)\) and \((k, l)\) to be the number of
“lattice steps” separating them: \(d((i, j), (k, l)) = |k - i| + |l - j|\).
For a universal constant \(p \geq 1\), the node \(u\) has a directed edge to
every other node within lattice distance \(p\) — these are its local
contacts. For universal constants \(q \ge 0\) and \(r \ge 0\) we also
construct directed edges from \(u\) to \(q\) other nodes (the long-range
contacts) using independent random trials; the \(i`th directed edge from
`u\) has endpoint \(v\) with probability proportional to \([d(u,v)]^{-r}\).

—1

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (int [https://docs.python.org/2/library/functions.html#int]) – The diameter of short range connections. Each node is joined with every
other node within this lattice distance.

	q (int [https://docs.python.org/2/library/functions.html#int]) – The number of long-range connections for each node.

	r (float [https://docs.python.org/2/library/functions.html#float]) – Exponent for decaying probability of connections. The probability of
connecting to a node at lattice distance \(d\) is \(1/d^r\).

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of grid

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

References

	1

	J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.

NetworkX

line_graph

	
line_graph(G, create_using=None)

	Returns the line graph of the graph or digraph G.

The line graph of a graph G has a node for each edge in G and an
edge joining those nodes if the two edges in G share a common node. For
directed graphs, nodes are adjacent exactly when the edges they represent
form a directed path of length two.

The nodes of the line graph are 2-tuples of nodes in the original graph (or
3-tuples for multigraphs, with the key of the edge as the third element).

For information about self-loops and more discussion, see the Notes
section below.

	Parameters

	G (graph) – A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph.

	Returns

	L – The line graph of G.

	Return type

	graph

Examples

>>> import networkx as nx
>>> G = nx.star_graph(3)
>>> L = nx.line_graph(G)
>>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3
[[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]]

Notes

Graph, node, and edge data are not propagated to the new graph. For
undirected graphs, the nodes in G must be sortable, otherwise the
constructed line graph may not be correct.

Self-loops in undirected graphs

For an undirected graph \(G\) without multiple edges, each edge can be
written as a set \(\{u, v\}\). Its line graph \(L\) has the edges of \(G\) as
its nodes. If \(x\) and \(y\) are two nodes in \(L\), then \(\{x, y\}\) is an edge
in \(L\) if and only if the intersection of \(x\) and \(y\) is nonempty. Thus,
the set of all edges is determined by the set of all pairwise intersections
of edges in \(G\).

Trivially, every edge in G would have a nonzero intersection with itself,
and so every node in \(L\) should have a self-loop. This is not so
interesting, and the original context of line graphs was with simple
graphs, which had no self-loops or multiple edges. The line graph was also
meant to be a simple graph and thus, self-loops in \(L\) are not part of the
standard definition of a line graph. In a pairwise intersection matrix,
this is analogous to excluding the diagonal entries from the line graph
definition.

Self-loops and multiple edges in \(G\) add nodes to \(L\) in a natural way, and
do not require any fundamental changes to the definition. It might be
argued that the self-loops we excluded before should now be included.
However, the self-loops are still “trivial” in some sense and thus, are
usually excluded.

Self-loops in directed graphs

For a directed graph \(G\) without multiple edges, each edge can be written
as a tuple \((u, v)\). Its line graph \(L\) has the edges of \(G\) as its
nodes. If \(x\) and \(y\) are two nodes in \(L\), then \((x, y)\) is an edge in \(L\)
if and only if the tail of \(x\) matches the head of \(y\), for example, if \(x
= (a, b)\) and \(y = (b, c)\) for some vertices \(a\), \(b\), and \(c\) in \(G\).

Due to the directed nature of the edges, it is no longer the case that
every edge in \(G\) should have a self-loop in \(L\). Now, the only time
self-loops arise is if a node in \(G\) itself has a self-loop. So such
self-loops are no longer “trivial” but instead, represent essential
features of the topology of \(G\). For this reason, the historical
development of line digraphs is such that self-loops are included. When the
graph \(G\) has multiple edges, once again only superficial changes are
required to the definition.

References

	Harary, Frank, and Norman, Robert Z., “Some properties of line digraphs”,
Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161–168.

	Hemminger, R. L.; Beineke, L. W. (1978), “Line graphs and line digraphs”,
in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory,
Academic Press Inc., pp. 271–305.

NetworkX

ego_graph

	
ego_graph(G, n, radius=1, center=True, undirected=False, distance=None)

	Returns induced subgraph of neighbors centered at node n within
a given radius.

	Parameters

	
	G (graph) – A NetworkX Graph or DiGraph

	n (node) – A single node

	radius (number, optional) – Include all neighbors of distance<=radius from n.

	center (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If False, do not include center node in graph

	undirected (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True use both in- and out-neighbors of directed graphs.

	distance (key, optional) – Use specified edge data key as distance. For example, setting
distance=’weight’ will use the edge weight to measure the
distance from the node n.

Notes

For directed graphs D this produces the “out” neighborhood
or successors. If you want the neighborhood of predecessors
first reverse the graph with D.reverse(). If you want both
directions use the keyword argument undirected=True.

Node, edge, and graph attributes are copied to the returned subgraph.

NetworkX

stochastic_graph

	
stochastic_graph(G, copy=True, weight='weight')

	Returns a right-stochastic representation of the directed graph G.

A right-stochastic graph is a weighted digraph in which for each node, the
sum of the weights of all the out-edges of that node is 1. If the graph is
already weighted (for example, via a 'weight' edge attribute), the
reweighting takes that into account.

	Parameters

	
	G (directed graph) – A DiGraph or MultiDiGraph.

	copy (boolean, optional) – If this is True, then this function returns a new instance of
networkx.Digraph. Otherwise, the original graph is modified
in-place (and also returned, for convenience).

	weight (edge attribute key (optional, default='weight')) – Edge attribute key used for reading the existing weight and setting the
new weight. If no attribute with this key is found for an edge, then the
edge weight is assumed to be 1. If an edge has a weight, it must be a
a positive number.

NetworkX

uniform_random_intersection_graph

	
uniform_random_intersection_graph(n, m, p, seed=None)

	Return a uniform random intersection graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set (nodes)

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set (attributes)

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability of connecting nodes between bipartite sets

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

See also

gnp_random_graph()

References

	1

	K.B. Singer-Cohen, Random Intersection Graphs, 1995,
PhD thesis, Johns Hopkins University

	2

	Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B.,
Random intersection graphs when m = !(n):
An equivalence theorem relating the evolution of the g(n, m, p)
and g(n, p) models. Random Struct. Algorithms 16, 2 (2000), 156–176.

NetworkX

k_random_intersection_graph

	
k_random_intersection_graph(n, m, k)

	Return a intersection graph with randomly chosen attribute sets for
each node that are of equal size (k).

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set (nodes)

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set (attributes)

	k (float [https://docs.python.org/2/library/functions.html#float]) – Size of attribute set to assign to each node.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

See also

gnp_random_graph(), uniform_random_intersection_graph()

References

	1

	Godehardt, E., and Jaworski, J.
Two models of random intersection graphs and their applications.
Electronic Notes in Discrete Mathematics 10 (2001), 129–132.

NetworkX

general_random_intersection_graph

	
general_random_intersection_graph(n, m, p)

	Return a random intersection graph with independent probabilities
for connections between node and attribute sets.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set (nodes)

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set (attributes)

	p (list of floats of length m) – Probabilities for connecting nodes to each attribute

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

See also

gnp_random_graph(), uniform_random_intersection_graph()

References

	1

	Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G.
The existence and efficient construction of large independent sets
in general random intersection graphs. In ICALP (2004), J. D´ıaz,
J. Karhum¨aki, A. Lepist¨o, and D. Sannella, Eds., vol. 3142
of Lecture Notes in Computer Science, Springer, pp. 1029–1040.

NetworkX

karate_club_graph

	
karate_club_graph()

	Return Zachary’s Karate Club graph.

Each node in the returned graph has a node attribute 'club' that
indicates the name of the club to which the member represented by that node
belongs, either 'Mr. Hi' or 'Officer'.

Examples

To get the name of the club to which a node belongs:

>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> G.node[5]['club']
'Mr. Hi'
>>> G.node[9]['club']
'Officer'

References

	1

	Zachary, Wayne W.
“An Information Flow Model for Conflict and Fission in Small Groups.”
Journal of Anthropological Research, 33, 452–473, (1977).

	2

	Data file from:
http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm

NetworkX

davis_southern_women_graph

	
davis_southern_women_graph()

	Return Davis Southern women social network.

This is a bipartite graph.

References

	1

	A. Davis, Gardner, B. B., Gardner, M. R., 1941. Deep South.
University of Chicago Press, Chicago, IL.

NetworkX

florentine_families_graph

	
florentine_families_graph()

	Return Florentine families graph.

References

	1

	Ronald L. Breiger and Philippa E. Pattison
Cumulated social roles: The duality of persons and their algebras,1
Social Networks, Volume 8, Issue 3, September 1986, Pages 215-256

NetworkX

caveman_graph

	
caveman_graph(l, k)

	Returns a caveman graph of l cliques of size k.

	Parameters

	
	l (int [https://docs.python.org/2/library/functions.html#int]) – Number of cliques

	k (int [https://docs.python.org/2/library/functions.html#int]) – Size of cliques

	Returns

	G – caveman graph

	Return type

	NetworkX Graph

Notes

This returns an undirected graph, it can be converted to a directed
graph using nx.to_directed(), or a multigraph using
nx.MultiGraph(nx.caveman_graph(l, k)). Only the undirected version is
described in 1 and it is unclear which of the directed
generalizations is most useful.

Examples

>>> G = nx.caveman_graph(3, 3)

See also

connected_caveman_graph()

References

	1

	Watts, D. J. ‘Networks, Dynamics, and the Small-World Phenomenon.’
Amer. J. Soc. 105, 493-527, 1999.

NetworkX

connected_caveman_graph

	
connected_caveman_graph(l, k)

	Returns a connected caveman graph of l cliques of size k.

The connected caveman graph is formed by creating n cliques of size
k, then a single edge in each clique is rewired to a node in an
adjacent clique.

	Parameters

	
	l (int [https://docs.python.org/2/library/functions.html#int]) – number of cliques

	k (int [https://docs.python.org/2/library/functions.html#int]) – size of cliques

	Returns

	G – connected caveman graph

	Return type

	NetworkX Graph

Notes

This returns an undirected graph, it can be converted to a directed
graph using nx.to_directed(), or a multigraph using
nx.MultiGraph(nx.caveman_graph(l, k)). Only the undirected version is
described in 1 and it is unclear which of the directed
generalizations is most useful.

Examples

>>> G = nx.connected_caveman_graph(3, 3)

References

	1

	Watts, D. J. ‘Networks, Dynamics, and the Small-World Phenomenon.’
Amer. J. Soc. 105, 493-527, 1999.

NetworkX

relaxed_caveman_graph

	
relaxed_caveman_graph(l, k, p, seed=None)

	Return a relaxed caveman graph.

A relaxed caveman graph starts with l cliques of size k. Edges are
then randomly rewired with probability p to link different cliques.

	Parameters

	
	l (int [https://docs.python.org/2/library/functions.html#int]) – Number of groups

	k (int [https://docs.python.org/2/library/functions.html#int]) – Size of cliques

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probabilty of rewiring each edge.

	seed (int [https://docs.python.org/2/library/functions.html#int],optional) – Seed for random number generator(default=None)

	Returns

	G – Relaxed Caveman Graph

	Return type

	NetworkX Graph

	Raises

	NetworkXError: – If p is not in [0,1]

Examples

>>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42)

References

	1

	Santo Fortunato, Community Detection in Graphs,
Physics Reports Volume 486, Issues 3-5, February 2010, Pages 75-174.
http://arxiv.org/abs/0906.0612

NetworkX

random_partition_graph

	
random_partition_graph(sizes, p_in, p_out, seed=None, directed=False)

	Return the random partition graph with a partition of sizes.

A partition graph is a graph of communities with sizes defined by
s in sizes. Nodes in the same group are connected with probability
p_in and nodes of different groups are connected with probability
p_out.

	Parameters

	
	sizes (list of ints) – Sizes of groups

	p_in (float [https://docs.python.org/2/library/functions.html#float]) – probability of edges with in groups

	p_out (float [https://docs.python.org/2/library/functions.html#float]) – probability of edges between groups

	directed (boolean optional, default=False) – Whether to create a directed graph

	seed (int optional, default None) – A seed for the random number generator

	Returns

	G – random partition graph of size sum(gs)

	Return type

	NetworkX Graph or DiGraph

	Raises

	NetworkXError – If p_in or p_out is not in [0,1]

Examples

>>> G = nx.random_partition_graph([10,10,10],.25,.01)
>>> len(G)
30
>>> partition = G.graph['partition']
>>> len(partition)
3

Notes

This is a generalization of the planted-l-partition described in
1. It allows for the creation of groups of any size.

The partition is store as a graph attribute ‘partition’.

References

	1

	Santo Fortunato ‘Community Detection in Graphs’ Physical Reports
Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612
http://arxiv.org/abs/0906.0612

NetworkX

planted_partition_graph

	
planted_partition_graph(l, k, p_in, p_out, seed=None, directed=False)

	Return the planted l-partition graph.

This model partitions a graph with n=l*k vertices in
l groups with k vertices each. Vertices of the same
group are linked with a probability p_in, and vertices
of different groups are linked with probability p_out.

	Parameters

	
	l (int [https://docs.python.org/2/library/functions.html#int]) – Number of groups

	k (int [https://docs.python.org/2/library/functions.html#int]) – Number of vertices in each group

	p_in (float [https://docs.python.org/2/library/functions.html#float]) – probability of connecting vertices within a group

	p_out (float [https://docs.python.org/2/library/functions.html#float]) – probability of connected vertices between groups

	seed (int [https://docs.python.org/2/library/functions.html#int],optional) – Seed for random number generator(default=None)

	directed (bool [https://docs.python.org/2/library/functions.html#bool],optional (default=False)) – If True return a directed graph

	Returns

	G – planted l-partition graph

	Return type

	NetworkX Graph or DiGraph

	Raises

	NetworkXError: – If p_in,p_out are not in [0,1] or

Examples

>>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1,seed=42)

See also

random_partition_model()

References

	1

	A. Condon, R.M. Karp, Algorithms for graph partitioning
on the planted partition model,
Random Struct. Algor. 18 (2001) 116-140.

	2

	Santo Fortunato ‘Community Detection in Graphs’ Physical Reports
Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612

NetworkX

gaussian_random_partition_graph

	
gaussian_random_partition_graph(n, s, v, p_in, p_out, directed=False, seed=None)

	Generate a Gaussian random partition graph.

A Gaussian random partition graph is created by creating k partitions
each with a size drawn from a normal distribution with mean s and variance
s/v. Nodes are connected within clusters with probability p_in and
between clusters with probability p_out[1]

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes in the graph

	s (float [https://docs.python.org/2/library/functions.html#float]) – Mean cluster size

	v (float [https://docs.python.org/2/library/functions.html#float]) – Shape parameter. The variance of cluster size distribution is s/v.

	p_in (float [https://docs.python.org/2/library/functions.html#float]) – Probabilty of intra cluster connection.

	p_out (float [https://docs.python.org/2/library/functions.html#float]) – Probability of inter cluster connection.

	directed (boolean, optional default=False) – Whether to create a directed graph or not

	seed (int [https://docs.python.org/2/library/functions.html#int]) – Seed value for random number generator

	Returns

	G – gaussian random partition graph

	Return type

	NetworkX Graph or DiGraph

	Raises

	NetworkXError – If s is > n
If p_in or p_out is not in [0,1]

Notes

Note the number of partitions is dependent on s,v and n, and that the
last partition may be considerably smaller, as it is sized to simply
fill out the nodes [1]

See also

random_partition_graph()

Examples

>>> G = nx.gaussian_random_partition_graph(100,10,10,.25,.1)
>>> len(G)
100

References

	1

	Ulrik Brandes, Marco Gaertler, Dorothea Wagner,
Experiments on Graph Clustering Algorithms,
In the proceedings of the 11th Europ. Symp. Algorithms, 2003.

NetworkX

nonisomorphic_trees

	
nonisomorphic_trees(order, create='graph')

	Returns a list of nonisomporphic trees

	Parameters

	
	order (int [https://docs.python.org/2/library/functions.html#int]) – order of the desired tree(s)

	create (graph or matrix (default="Graph)) – If graph is selected a list of trees will be returned,
if matrix is selected a list of adjancency matrix will
be returned

	Returns

	
	G (List of NetworkX Graphs)

	M (List of Adjacency matrices)

References

NetworkX

number_of_nonisomorphic_trees

	
number_of_nonisomorphic_trees(order)

	Returns the number of nonisomorphic trees

	Parameters

	order (int [https://docs.python.org/2/library/functions.html#int]) – order of the desired tree(s)

	Returns

	length

	Return type

	Number of nonisomorphic graphs for the given order

References

NetworkX

Linear algebra

Graph Matrix

Adjacency matrix and incidence matrix of graphs.

	adjacency_matrix(G[, nodelist, weight])

	Return adjacency matrix of G.

	incidence_matrix(G[, nodelist, edgelist, …])

	Return incidence matrix of G.

Laplacian Matrix

Laplacian matrix of graphs.

	laplacian_matrix(G[, nodelist, weight])

	Return the Laplacian matrix of G.

	normalized_laplacian_matrix(G[, nodelist, …])

	Return the normalized Laplacian matrix of G.

	directed_laplacian_matrix(G[, nodelist, …])

	Return the directed Laplacian matrix of G.

Spectrum

Eigenvalue spectrum of graphs.

	laplacian_spectrum(G[, weight])

	Return eigenvalues of the Laplacian of G

	adjacency_spectrum(G[, weight])

	Return eigenvalues of the adjacency matrix of G.

Algebraic Connectivity

Algebraic connectivity and Fiedler vectors of undirected graphs.

	algebraic_connectivity(G[, weight, …])

	Return the algebraic connectivity of an undirected graph.

	fiedler_vector(G[, weight, normalized, tol, …])

	Return the Fiedler vector of a connected undirected graph.

	spectral_ordering(G[, weight, normalized, …])

	Compute the spectral_ordering of a graph.

Attribute Matrices

Functions for constructing matrix-like objects from graph attributes.

	attr_matrix(G[, edge_attr, node_attr, …])

	Returns a NumPy matrix using attributes from G.

	attr_sparse_matrix(G[, edge_attr, …])

	Returns a SciPy sparse matrix using attributes from G.

NetworkX

adjacency_matrix

	
adjacency_matrix(G, nodelist=None, weight='weight')

	Return adjacency matrix of G.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to provide each value in the matrix.
If None, then each edge has weight 1.

	Returns

	A – Adjacency matrix representation of G.

	Return type

	SciPy sparse matrix

Notes

For directed graphs, entry i,j corresponds to an edge from i to j.

If you want a pure Python adjacency matrix representation try
networkx.convert.to_dict_of_dicts which will return a
dictionary-of-dictionaries format that can be addressed as a
sparse matrix.

For MultiGraph/MultiDiGraph with parallel edges the weights are summed.
See to_numpy_matrix for other options.

The convention used for self-loop edges in graphs is to assign the
diagonal matrix entry value to the edge weight attribute
(or the number 1 if the edge has no weight attribute). If the
alternate convention of doubling the edge weight is desired the
resulting Scipy sparse matrix can be modified as follows:

>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.adjacency_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]

See also

to_numpy_matrix(), to_scipy_sparse_matrix(), to_dict_of_dicts()

NetworkX

incidence_matrix

	
incidence_matrix(G, nodelist=None, edgelist=None, oriented=False, weight=None)

	Return incidence matrix of G.

The incidence matrix assigns each row to a node and each column to an edge.
For a standard incidence matrix a 1 appears wherever a row’s node is
incident on the column’s edge. For an oriented incidence matrix each
edge is assigned an orientation (arbitrarily for undirected and aligning to
direction for directed). A -1 appears for the tail of an edge and 1
for the head of the edge. The elements are zero otherwise.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list, optional (default= all nodes in G)) – The rows are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	edgelist (list, optional (default= all edges in G)) – The columns are ordered according to the edges in edgelist.
If edgelist is None, then the ordering is produced by G.edges().

	oriented (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, matrix elements are +1 or -1 for the head or tail node
respectively of each edge. If False, +1 occurs at both nodes.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge data key used to provide each value in the matrix.
If None, then each edge has weight 1. Edge weights, if used,
should be positive so that the orientation can provide the sign.

	Returns

	A – The incidence matrix of G.

	Return type

	SciPy sparse matrix

Notes

For MultiGraph/MultiDiGraph, the edges in edgelist should be
(u,v,key) 3-tuples.

“Networks are the best discrete model for so many problems in
applied mathematics” 1.

References

	1

	Gil Strang, Network applications: A = incidence matrix,
http://academicearth.org/lectures/network-applications-incidence-matrix

NetworkX

laplacian_matrix

	
laplacian_matrix(G, nodelist=None, weight='weight')

	Return the Laplacian matrix of G.

The graph Laplacian is the matrix L = D - A, where
A is the adjacency matrix and D is the diagonal matrix of node degrees.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	Returns

	L – The Laplacian matrix of G.

	Return type

	SciPy sparse matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.

See also

to_numpy_matrix(), normalized_laplacian_matrix()

NetworkX

normalized_laplacian_matrix

	
normalized_laplacian_matrix(G, nodelist=None, weight='weight')

	Return the normalized Laplacian matrix of G.

The normalized graph Laplacian is the matrix

\[N = D^{-1/2} L D^{-1/2}\]

where \(L\) is the graph Laplacian and \(D\) is the diagonal matrix of
node degrees.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	Returns

	N – The normalized Laplacian matrix of G.

	Return type

	NumPy matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.
See to_numpy_matrix for other options.

If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is
the adjacency matrix 2.

See also

laplacian_matrix()

References

	1

	Fan Chung-Graham, Spectral Graph Theory,
CBMS Regional Conference Series in Mathematics, Number 92, 1997.

	2

	Steve Butler, Interlacing For Weighted Graphs Using The Normalized
Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
March 2007.

NetworkX

directed_laplacian_matrix

	
directed_laplacian_matrix(G, nodelist=None, weight='weight', walk_type=None, alpha=0.95)

	Return the directed Laplacian matrix of G.

The graph directed Laplacian is the matrix

\[L = I - (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2}) / 2\]

where \(I\) is the identity matrix, \(P\) is the transition matrix of the
graph, and \(\Phi\) a matrix with the Perron vector of \(P\) in the diagonal and
zeros elsewhere.

Depending on the value of walk_type, \(P\) can be the transition matrix
induced by a random walk, a lazy random walk, or a random walk with
teleportation (PageRank).

	Parameters

	
	G (DiGraph) – A NetworkX graph

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	walk_type (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – If None, \(P\) is selected depending on the properties of the
graph. Otherwise is one of ‘random’, ‘lazy’, or ‘pagerank’

	alpha (real) – (1 - alpha) is the teleportation probability used with pagerank

	Returns

	L – Normalized Laplacian of G.

	Return type

	NumPy array

	Raises

	
	NetworkXError – If NumPy cannot be imported

	NetworkXNotImplemnted – If G is not a DiGraph

Notes

Only implemented for DiGraphs

See also

laplacian_matrix()

References

	1

	Fan Chung (2005).
Laplacians and the Cheeger inequality for directed graphs.
Annals of Combinatorics, 9(1), 2005

NetworkX

laplacian_spectrum

	
laplacian_spectrum(G, weight='weight')

	Return eigenvalues of the Laplacian of G

	Parameters

	
	G (graph) – A NetworkX graph

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	Returns

	evals – Eigenvalues

	Return type

	NumPy array

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.
See to_numpy_matrix for other options.

See also

laplacian_matrix()

NetworkX

adjacency_spectrum

	
adjacency_spectrum(G, weight='weight')

	Return eigenvalues of the adjacency matrix of G.

	Parameters

	
	G (graph) – A NetworkX graph

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	Returns

	evals – Eigenvalues

	Return type

	NumPy array

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.
See to_numpy_matrix for other options.

See also

adjacency_matrix()

NetworkX

algebraic_connectivity

	
algebraic_connectivity(G, weight='weight', normalized=False, tol=1e-08, method='tracemin')

	Return the algebraic connectivity of an undirected graph.

The algebraic connectivity of a connected undirected graph is the second
smallest eigenvalue of its Laplacian matrix.

	Parameters

	
	G (NetworkX graph) – An undirected graph.

	weight (object [https://docs.python.org/2/library/functions.html#object], optional) – The data key used to determine the weight of each edge. If None, then
each edge has unit weight. Default value: None.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether the normalized Laplacian matrix is used. Default value: False.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Tolerance of relative residual in eigenvalue computation. Default
value: 1e-8.

	method (string [https://docs.python.org/2/library/string.html#module-string], optional) – Method of eigenvalue computation. It should be one of ‘tracemin’
(TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG).
Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following
values allow specifying the solver to be used.

	Value

	Solver

	’tracemin_pcg’

	Preconditioned conjugate gradient method

	’tracemin_chol’

	Cholesky factorization

	’tracemin_lu’

	LU factorization

	Returns

	algebraic_connectivity – Algebraic connectivity.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	Raises

	
	NetworkXNotImplemented – If G is directed.

	NetworkXError – If G has less than two nodes.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s,
weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the
scikits.sparse package must be installed.

See also

laplacian_matrix()

NetworkX

fiedler_vector

	
fiedler_vector(G, weight='weight', normalized=False, tol=1e-08, method='tracemin')

	Return the Fiedler vector of a connected undirected graph.

The Fiedler vector of a connected undirected graph is the eigenvector
corresponding to the second smallest eigenvalue of the Laplacian matrix of
of the graph.

	Parameters

	
	G (NetworkX graph) – An undirected graph.

	weight (object [https://docs.python.org/2/library/functions.html#object], optional) – The data key used to determine the weight of each edge. If None, then
each edge has unit weight. Default value: None.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether the normalized Laplacian matrix is used. Default value: False.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Tolerance of relative residual in eigenvalue computation. Default
value: 1e-8.

	method (string [https://docs.python.org/2/library/string.html#module-string], optional) – Method of eigenvalue computation. It should be one of ‘tracemin’
(TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG).
Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following
values allow specifying the solver to be used.

	Value

	Solver

	’tracemin_pcg’

	Preconditioned conjugate gradient method

	’tracemin_chol’

	Cholesky factorization

	’tracemin_lu’

	LU factorization

	Returns

	fiedler_vector – Fiedler vector.

	Return type

	NumPy array of floats.

	Raises

	
	NetworkXNotImplemented – If G is directed.

	NetworkXError – If G has less than two nodes or is not connected.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s,
weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the
scikits.sparse package must be installed.

See also

laplacian_matrix()

NetworkX

spectral_ordering

	
spectral_ordering(G, weight='weight', normalized=False, tol=1e-08, method='tracemin')

	Compute the spectral_ordering of a graph.

The spectral ordering of a graph is an ordering of its nodes where nodes
in the same weakly connected components appear contiguous and ordered by
their corresponding elements in the Fiedler vector of the component.

	Parameters

	
	G (NetworkX graph) – A graph.

	weight (object [https://docs.python.org/2/library/functions.html#object], optional) – The data key used to determine the weight of each edge. If None, then
each edge has unit weight. Default value: None.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether the normalized Laplacian matrix is used. Default value: False.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Tolerance of relative residual in eigenvalue computation. Default
value: 1e-8.

	method (string [https://docs.python.org/2/library/string.html#module-string], optional) – Method of eigenvalue computation. It should be one of ‘tracemin’
(TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG).
Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following
values allow specifying the solver to be used.

	Value

	Solver

	’tracemin_pcg’

	Preconditioned conjugate gradient method

	’tracemin_chol’

	Cholesky factorization

	’tracemin_lu’

	LU factorization

	Returns

	spectral_ordering – Spectral ordering of nodes.

	Return type

	NumPy array of floats.

	Raises

	NetworkXError – If G is empty.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s,
weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the
scikits.sparse package must be installed.

See also

laplacian_matrix()

NetworkX

attr_matrix

	
attr_matrix(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None, order=None)

	Returns a NumPy matrix using attributes from G.

If only \(G\) is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute \(node_attr\). Then
the elements of A represent the rows and columns of the constructed matrix.
Now, iterate through every edge e=(u,v) in \(G\) and consider the value
of the edge attribute \(edge_attr\). If ua and va are the values of the
node attribute \(node_attr\) for u and v, respectively, then the value of
the edge attribute is added to the matrix element at (ua, va).

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	edge_attr (str [https://docs.python.org/2/library/functions.html#str], optional) – Each element of the matrix represents a running total of the
specified edge attribute for edges whose node attributes correspond
to the rows/cols of the matirx. The attribute must be present for
all edges in the graph. If no attribute is specified, then we
just count the number of edges whose node attributes correspond
to the matrix element.

	node_attr (str [https://docs.python.org/2/library/functions.html#str], optional) – Each row and column in the matrix represents a particular value
of the node attribute. The attribute must be present for all nodes
in the graph. Note, the values of this attribute should be reliably
hashable. So, float values are not recommended. If no attribute is
specified, then the rows and columns will be the nodes of the graph.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True, then each row is normalized by the summation of its values.

	rc_order (list, optional) – A list of the node attribute values. This list specifies the ordering
of rows and columns of the array. If no ordering is provided, then
the ordering will be random (and also, a return value).

	Other Parameters

	
	dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array. Keep in mind certain
dtypes can yield unexpected results if the array is to be normalized.
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
default is used.

	order ({‘C’, ‘F’}, optional) – Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. This parameter is passed to
numpy.zeros(). If unspecified, the NumPy default is used.

	Returns

	
	M (NumPy matrix) – The attribute matrix.

	ordering (list) – If \(rc_order\) was specified, then only the matrix is returned.
However, if \(rc_order\) was None, then the ordering used to construct
the matrix is returned as well.

Examples

Construct an adjacency matrix:

>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
>>> nx.attr_matrix(G, rc_order=[0,1,2])
matrix([[0., 1., 1.],
 [1., 0., 1.],
 [1., 1., 0.]])

Alternatively, we can obtain the matrix describing edge thickness.

>>> nx.attr_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
matrix([[0., 1., 2.],
 [1., 0., 3.],
 [2., 3., 0.]])

We can also color the nodes and ask for the probability distribution over
all edges (u,v) describing:

Pr(v has color Y | u has color X)

>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> nx.attr_matrix(G, node_attr='color', normalized=True, rc_order=rc)
matrix([[0.33333333, 0.66666667],
 [1. , 0.]])

For example, the above tells us that for all edges (u,v):

Pr(v is red | u is red) = 1/3
Pr(v is blue | u is red) = 2/3

Pr(v is red | u is blue) = 1
Pr(v is blue | u is blue) = 0

Finally, we can obtain the total weights listed by the node colors.

>>> nx.attr_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
matrix([[3., 2.],
 [2., 0.]])

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1)
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
(blue, red) is 2 # same as (red, blue) since graph is undirected
(blue, blue) is 0 # there are no edges with blue endpoints

NetworkX

attr_sparse_matrix

	
attr_sparse_matrix(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None)

	Returns a SciPy sparse matrix using attributes from G.

If only \(G\) is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute \(node_attr\). Then
the elements of A represent the rows and columns of the constructed matrix.
Now, iterate through every edge e=(u,v) in \(G\) and consider the value
of the edge attribute \(edge_attr\). If ua and va are the values of the
node attribute \(node_attr\) for u and v, respectively, then the value of
the edge attribute is added to the matrix element at (ua, va).

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	edge_attr (str [https://docs.python.org/2/library/functions.html#str], optional) – Each element of the matrix represents a running total of the
specified edge attribute for edges whose node attributes correspond
to the rows/cols of the matirx. The attribute must be present for
all edges in the graph. If no attribute is specified, then we
just count the number of edges whose node attributes correspond
to the matrix element.

	node_attr (str [https://docs.python.org/2/library/functions.html#str], optional) – Each row and column in the matrix represents a particular value
of the node attribute. The attribute must be present for all nodes
in the graph. Note, the values of this attribute should be reliably
hashable. So, float values are not recommended. If no attribute is
specified, then the rows and columns will be the nodes of the graph.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True, then each row is normalized by the summation of its values.

	rc_order (list, optional) – A list of the node attribute values. This list specifies the ordering
of rows and columns of the array. If no ordering is provided, then
the ordering will be random (and also, a return value).

	Other Parameters

	dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array. Keep in mind certain
dtypes can yield unexpected results if the array is to be normalized.
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
default is used.

	Returns

	
	M (SciPy sparse matrix) – The attribute matrix.

	ordering (list) – If \(rc_order\) was specified, then only the matrix is returned.
However, if \(rc_order\) was None, then the ordering used to construct
the matrix is returned as well.

Examples

Construct an adjacency matrix:

>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
>>> M = nx.attr_sparse_matrix(G, rc_order=[0,1,2])
>>> M.todense()
matrix([[0., 1., 1.],
 [1., 0., 1.],
 [1., 1., 0.]])

Alternatively, we can obtain the matrix describing edge thickness.

>>> M = nx.attr_sparse_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
>>> M.todense()
matrix([[0., 1., 2.],
 [1., 0., 3.],
 [2., 3., 0.]])

We can also color the nodes and ask for the probability distribution over
all edges (u,v) describing:

Pr(v has color Y | u has color X)

>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> M = nx.attr_sparse_matrix(G, node_attr='color', normalized=True, rc_order=rc)
>>> M.todense()
matrix([[0.33333333, 0.66666667],
 [1. , 0.]])

For example, the above tells us that for all edges (u,v):

Pr(v is red | u is red) = 1/3
Pr(v is blue | u is red) = 2/3

Pr(v is red | u is blue) = 1
Pr(v is blue | u is blue) = 0

Finally, we can obtain the total weights listed by the node colors.

>>> M = nx.attr_sparse_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
>>> M.todense()
matrix([[3., 2.],
 [2., 0.]])

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1)
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
(blue, red) is 2 # same as (red, blue) since graph is undirected
(blue, blue) is 0 # there are no edges with blue endpoints

NetworkX

Converting to and from other data formats

To NetworkX Graph

Functions to convert NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph is through the
graph constuctor. The constructor calls the to_networkx_graph() function
which attempts to guess the input type and convert it automatically.

Examples

Create a graph with a single edge from a dictionary of dictionaries

>>> d={0: {1: 1}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)

See also

nx_agraph, nx_pydot

	to_networkx_graph(data[, create_using, …])

	Make a NetworkX graph from a known data structure.

Dictionaries

	to_dict_of_dicts(G[, nodelist, edge_data])

	Return adjacency representation of graph as a dictionary of dictionaries.

	from_dict_of_dicts(d[, create_using, …])

	Return a graph from a dictionary of dictionaries.

Lists

	to_dict_of_lists(G[, nodelist])

	Return adjacency representation of graph as a dictionary of lists.

	from_dict_of_lists(d[, create_using])

	Return a graph from a dictionary of lists.

	to_edgelist(G[, nodelist])

	Return a list of edges in the graph.

	from_edgelist(edgelist[, create_using])

	Return a graph from a list of edges.

Numpy

Functions to convert NetworkX graphs to and from numpy/scipy matrices.

The preferred way of converting data to a NetworkX graph is through the
graph constuctor. The constructor calls the to_networkx_graph() function
which attempts to guess the input type and convert it automatically.

Examples

Create a 10 node random graph from a numpy matrix

>>> import numpy
>>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))
>>> D = nx.DiGraph(a)

or equivalently

>>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph())

See also

nx_agraph, nx_pydot

	to_numpy_matrix(G[, nodelist, dtype, order, …])

	Return the graph adjacency matrix as a NumPy matrix.

	to_numpy_recarray(G[, nodelist, dtype, order])

	Return the graph adjacency matrix as a NumPy recarray.

	from_numpy_matrix(A[, parallel_edges, …])

	Return a graph from numpy matrix.

Scipy

	to_scipy_sparse_matrix(G[, nodelist, dtype, …])

	Return the graph adjacency matrix as a SciPy sparse matrix.

	from_scipy_sparse_matrix(A[, …])

	Creates a new graph from an adjacency matrix given as a SciPy sparse matrix.

Pandas

	to_pandas_dataframe(G[, nodelist, …])

	Return the graph adjacency matrix as a Pandas DataFrame.

	from_pandas_dataframe(df, source, target[, …])

	Return a graph from Pandas DataFrame.

NetworkX

to_networkx_graph

	
to_networkx_graph(data, create_using=None, multigraph_input=False)

	Make a NetworkX graph from a known data structure.

The preferred way to call this is automatically
from the class constructor

>>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)

instead of the equivalent

>>> G=nx.from_dict_of_dicts(d)

	Parameters

	
	data (a object to be converted) –
	Current known types are:

	any NetworkX graph
dict-of-dicts
dist-of-lists
list of edges
numpy matrix
numpy ndarray
scipy sparse matrix
pygraphviz agraph

	create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

	multigraph_input (bool [https://docs.python.org/2/library/functions.html#bool] (default False)) – If True and data is a dict_of_dicts,
try to create a multigraph assuming dict_of_dict_of_lists.
If data and create_using are both multigraphs then create
a multigraph from a multigraph.

NetworkX

to_dict_of_dicts

	
to_dict_of_dicts(G, nodelist=None, edge_data=None)

	Return adjacency representation of graph as a dictionary of dictionaries.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list) – Use only nodes specified in nodelist

	edge_data (list, optional) – If provided, the value of the dictionary will be
set to edge_data for all edges. This is useful to make
an adjacency matrix type representation with 1 as the edge data.
If edgedata is None, the edgedata in G is used to fill the values.
If G is a multigraph, the edgedata is a dict for each pair (u,v).

NetworkX

from_dict_of_dicts

	
from_dict_of_dicts(d, create_using=None, multigraph_input=False)

	Return a graph from a dictionary of dictionaries.

	Parameters

	
	d (dictionary of dictionaries) – A dictionary of dictionaries adjacency representation.

	create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

	multigraph_input (bool [https://docs.python.org/2/library/functions.html#bool] (default False)) – When True, the values of the inner dict are assumed
to be containers of edge data for multiple edges.
Otherwise this routine assumes the edge data are singletons.

Examples

>>> dod= {0: {1:{'weight':1}}} # single edge (0,1)
>>> G=nx.from_dict_of_dicts(dod)

or
>>> G=nx.Graph(dod) # use Graph constructor

NetworkX

to_dict_of_lists

	
to_dict_of_lists(G, nodelist=None)

	Return adjacency representation of graph as a dictionary of lists.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list) – Use only nodes specified in nodelist

Notes

Completely ignores edge data for MultiGraph and MultiDiGraph.

NetworkX

from_dict_of_lists

	
from_dict_of_lists(d, create_using=None)

	Return a graph from a dictionary of lists.

	Parameters

	
	d (dictionary of lists) – A dictionary of lists adjacency representation.

	create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

Examples

>>> dol= {0:[1]} # single edge (0,1)
>>> G=nx.from_dict_of_lists(dol)

or
>>> G=nx.Graph(dol) # use Graph constructor

NetworkX

to_edgelist

	
to_edgelist(G, nodelist=None)

	Return a list of edges in the graph.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list) – Use only nodes specified in nodelist

NetworkX

from_edgelist

	
from_edgelist(edgelist, create_using=None)

	Return a graph from a list of edges.

	Parameters

	
	edgelist (list or iterator) – Edge tuples

	create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

Examples

>>> edgelist= [(0,1)] # single edge (0,1)
>>> G=nx.from_edgelist(edgelist)

or
>>> G=nx.Graph(edgelist) # use Graph constructor

NetworkX

to_numpy_matrix

	
to_numpy_matrix(G, nodelist=None, dtype=None, order=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0)

	Return the graph adjacency matrix as a NumPy matrix.

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	dtype (NumPy data type, optional) – A valid single NumPy data type used to initialize the array.
This must be a simple type such as int or numpy.float64 and
not a compound data type (see to_numpy_recarray)
If None, then the NumPy default is used.

	order ({'C', 'F'}, optional) – Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. If None, then the NumPy default
is used.

	multigraph_weight ({sum, min [https://docs.python.org/2/library/functions.html#min], max}, optional) – An operator that determines how weights in multigraphs are handled.
The default is to sum the weights of the multiple edges.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default = 'weight')) – The edge attribute that holds the numerical value used for
the edge weight. If an edge does not have that attribute, then the
value 1 is used instead.

	nonedge (float [https://docs.python.org/2/library/functions.html#float] (default = 0.0)) – The matrix values corresponding to nonedges are typically set to zero.
However, this could be undesirable if there are matrix values
corresponding to actual edges that also have the value zero. If so,
one might prefer nonedges to have some other value, such as nan.

	Returns

	M – Graph adjacency matrix

	Return type

	NumPy matrix

See also

to_numpy_recarray(), from_numpy_matrix()

Notes

The matrix entries are assigned to the weight edge attribute. When
an edge does not have a weight attribute, the value of the entry is set to
the number 1. For multiple (parallel) edges, the values of the entries
are determined by the multigraph_weight parameter. The default is to
sum the weight attributes for each of the parallel edges.

When nodelist does not contain every node in G, the matrix is built
from the subgraph of G that is induced by the nodes in nodelist.

The convention used for self-loop edges in graphs is to assign the
diagonal matrix entry value to the weight attribute of the edge
(or the number 1 if the edge has no weight attribute). If the
alternate convention of doubling the edge weight is desired the
resulting Numpy matrix can be modified as follows:

>>> import numpy as np
>>> G = nx.Graph([(1, 1)])
>>> A = nx.to_numpy_matrix(G)
>>> A
matrix([[1.]])
>>> A.A[np.diag_indices_from(A)] *= 2
>>> A
matrix([[2.]])

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_numpy_matrix(G, nodelist=[0,1,2])
matrix([[0., 2., 0.],
 [1., 0., 0.],
 [0., 0., 4.]])

NetworkX

to_numpy_recarray

	
to_numpy_recarray(G, nodelist=None, dtype=[('weight', <type 'float'>)], order=None)

	Return the graph adjacency matrix as a NumPy recarray.

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in \(nodelist\).
If \(nodelist\) is None, then the ordering is produced by G.nodes().

	dtype (NumPy data-type, optional) – A valid NumPy named dtype used to initialize the NumPy recarray.
The data type names are assumed to be keys in the graph edge attribute
dictionary.

	order ({'C', 'F'}, optional) – Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. If None, then the NumPy default
is used.

	Returns

	M – The graph with specified edge data as a Numpy recarray

	Return type

	NumPy recarray

Notes

When \(nodelist\) does not contain every node in \(G\), the matrix is built
from the subgraph of \(G\) that is induced by the nodes in \(nodelist\).

Examples

>>> G = nx.Graph()
>>> G.add_edge(1,2,weight=7.0,cost=5)
>>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
>>> print(A.weight)
[[0. 7.]
 [7. 0.]]
>>> print(A.cost)
[[0 5]
 [5 0]]

NetworkX

from_numpy_matrix

	
from_numpy_matrix(A, parallel_edges=False, create_using=None)

	Return a graph from numpy matrix.

The numpy matrix is interpreted as an adjacency matrix for the graph.

	Parameters

	
	A (numpy matrix) – An adjacency matrix representation of a graph

	parallel_edges (Boolean) – If this is True, create_using is a multigraph, and A is an
integer matrix, then entry (i, j) in the matrix is interpreted as the
number of parallel edges joining vertices i and j in the graph. If it
is False, then the entries in the adjacency matrix are interpreted as
the weight of a single edge joining the vertices.

	create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

Notes

If create_using is an instance of networkx.MultiGraph or
networkx.MultiDiGraph, parallel_edges is True, and the
entries of A are of type int, then this function returns a multigraph
(of the same type as create_using) with parallel edges.

If create_using is an undirected multigraph, then only the edges
indicated by the upper triangle of the matrix \(A\) will be added to the
graph.

If the numpy matrix has a single data type for each matrix entry it
will be converted to an appropriate Python data type.

If the numpy matrix has a user-specified compound data type the names
of the data fields will be used as attribute keys in the resulting
NetworkX graph.

See also

to_numpy_matrix(), to_numpy_recarray()

Examples

Simple integer weights on edges:

>>> import numpy
>>> A=numpy.matrix([[1, 1], [2, 1]])
>>> G=nx.from_numpy_matrix(A)

If create_using is a multigraph and the matrix has only integer entries,
the entries will be interpreted as weighted edges joining the vertices
(without creating parallel edges):

>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}

If create_using is a multigraph and the matrix has only integer entries
but parallel_edges is True, then the entries will be interpreted as
the number of parallel edges joining those two vertices:

>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> temp = nx.MultiGraph()
>>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp)
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}

User defined compound data type on edges:

>>> import numpy
>>> dt = [('weight', float), ('cost', int)]
>>> A = numpy.matrix([[(1.0, 2)]], dtype = dt)
>>> G = nx.from_numpy_matrix(A)
>>> G.edges()
[(0, 0)]
>>> G[0][0]['cost']
2
>>> G[0][0]['weight']
1.0

NetworkX

to_scipy_sparse_matrix

	
to_scipy_sparse_matrix(G, nodelist=None, dtype=None, weight='weight', format='csr')

	Return the graph adjacency matrix as a SciPy sparse matrix.

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in \(nodelist\).
If \(nodelist\) is None, then the ordering is produced by G.nodes().

	dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array. If None, then the
NumPy default is used.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default='weight')) – The edge attribute that holds the numerical value used for
the edge weight. If None then all edge weights are 1.

	format (str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}) – The type of the matrix to be returned (default ‘csr’). For
some algorithms different implementations of sparse matrices
can perform better. See 1 for details.

	Returns

	M – Graph adjacency matrix.

	Return type

	SciPy sparse matrix

Notes

The matrix entries are populated using the edge attribute held in
parameter weight. When an edge does not have that attribute, the
value of the entry is 1.

For multiple edges the matrix values are the sums of the edge weights.

When \(nodelist\) does not contain every node in \(G\), the matrix is built
from the subgraph of \(G\) that is induced by the nodes in \(nodelist\).

Uses coo_matrix format. To convert to other formats specify the
format= keyword.

The convention used for self-loop edges in graphs is to assign the
diagonal matrix entry value to the weight attribute of the edge
(or the number 1 if the edge has no weight attribute). If the
alternate convention of doubling the edge weight is desired the
resulting Scipy sparse matrix can be modified as follows:

>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.to_scipy_sparse_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2])
>>> print(S.todense())
[[0 2 0]
 [1 0 0]
 [0 0 4]]

References

	1

	Scipy Dev. References, “Sparse Matrices”,
http://docs.scipy.org/doc/scipy/reference/sparse.html

NetworkX

from_scipy_sparse_matrix

	
from_scipy_sparse_matrix(A, parallel_edges=False, create_using=None, edge_attribute='weight')

	Creates a new graph from an adjacency matrix given as a SciPy sparse
matrix.

	Parameters

	
	A (scipy sparse matrix) – An adjacency matrix representation of a graph

	parallel_edges (Boolean) – If this is True, \(create_using\) is a multigraph, and \(A\) is an
integer matrix, then entry (i, j) in the matrix is interpreted as the
number of parallel edges joining vertices i and j in the graph. If it
is False, then the entries in the adjacency matrix are interpreted as
the weight of a single edge joining the vertices.

	create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

	edge_attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Name of edge attribute to store matrix numeric value. The data will
have the same type as the matrix entry (int, float, (real,imag)).

Notes

If \(create_using\) is an instance of networkx.MultiGraph or
networkx.MultiDiGraph, \(parallel_edges\) is True, and the
entries of \(A\) are of type int, then this function returns a multigraph
(of the same type as \(create_using\)) with parallel edges. In this case,
\(edge_attribute\) will be ignored.

If \(create_using\) is an undirected multigraph, then only the edges
indicated by the upper triangle of the matrix \(A\) will be added to the
graph.

Examples

>>> import scipy.sparse
>>> A = scipy.sparse.eye(2,2,1)
>>> G = nx.from_scipy_sparse_matrix(A)

If \(create_using\) is a multigraph and the matrix has only integer entries,
the entries will be interpreted as weighted edges joining the vertices
(without creating parallel edges):

>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}

If \(create_using\) is a multigraph and the matrix has only integer entries
but \(parallel_edges\) is True, then the entries will be interpreted as
the number of parallel edges joining those two vertices:

>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
... create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}

NetworkX

to_pandas_dataframe

	
to_pandas_dataframe(G, nodelist=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0)

	Return the graph adjacency matrix as a Pandas DataFrame.

	Parameters

	
	G (graph) – The NetworkX graph used to construct the Pandas DataFrame.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in \(nodelist\).
If \(nodelist\) is None, then the ordering is produced by G.nodes().

	multigraph_weight ({sum, min [https://docs.python.org/2/library/functions.html#min], max}, optional) – An operator that determines how weights in multigraphs are handled.
The default is to sum the weights of the multiple edges.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional) – The edge attribute that holds the numerical value used for
the edge weight. If an edge does not have that attribute, then the
value 1 is used instead.

	nonedge (float [https://docs.python.org/2/library/functions.html#float], optional) – The matrix values corresponding to nonedges are typically set to zero.
However, this could be undesirable if there are matrix values
corresponding to actual edges that also have the value zero. If so,
one might prefer nonedges to have some other value, such as nan.

	Returns

	df – Graph adjacency matrix

	Return type

	Pandas DataFrame

Notes

The DataFrame entries are assigned to the weight edge attribute. When
an edge does not have a weight attribute, the value of the entry is set to
the number 1. For multiple (parallel) edges, the values of the entries
are determined by the ‘multigraph_weight’ parameter. The default is to
sum the weight attributes for each of the parallel edges.

When \(nodelist\) does not contain every node in \(G\), the matrix is built
from the subgraph of \(G\) that is induced by the nodes in \(nodelist\).

The convention used for self-loop edges in graphs is to assign the
diagonal matrix entry value to the weight attribute of the edge
(or the number 1 if the edge has no weight attribute). If the
alternate convention of doubling the edge weight is desired the
resulting Pandas DataFrame can be modified as follows:

>>> import pandas as pd
>>> import numpy as np
>>> G = nx.Graph([(1,1)])
>>> df = nx.to_pandas_dataframe(G)
>>> df
 1
1 1
>>> df.values[np.diag_indices_from(df)] *= 2
>>> df
 1
1 2

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_pandas_dataframe(G, nodelist=[0,1,2])
 0 1 2
0 0 2 0
1 1 0 0
2 0 0 4

NetworkX

from_pandas_dataframe

	
from_pandas_dataframe(df, source, target, edge_attr=None, create_using=None)

	Return a graph from Pandas DataFrame.

The Pandas DataFrame should contain at least two columns of node names and
zero or more columns of node attributes. Each row will be processed as one
edge instance.

Note: This function iterates over DataFrame.values, which is not
guaranteed to retain the data type across columns in the row. This is only
a problem if your row is entirely numeric and a mix of ints and floats. In
that case, all values will be returned as floats. See the
DataFrame.iterrows documentation for an example.

	Parameters

	
	df (Pandas DataFrame) – An edge list representation of a graph

	source (str [https://docs.python.org/2/library/functions.html#str] or int [https://docs.python.org/2/library/functions.html#int]) – A valid column name (string or iteger) for the source nodes (for the
directed case).

	target (str [https://docs.python.org/2/library/functions.html#str] or int [https://docs.python.org/2/library/functions.html#int]) – A valid column name (string or iteger) for the target nodes (for the
directed case).

	edge_attr (str [https://docs.python.org/2/library/functions.html#str] or int [https://docs.python.org/2/library/functions.html#int], iterable, True [https://docs.python.org/2/library/constants.html#True]) – A valid column name (str or integer) or list of column names that will
be used to retrieve items from the row and add them to the graph as edge
attributes. If \(True\), all of the remaining columns will be added.

	create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

See also

to_pandas_dataframe()

Examples

Simple integer weights on edges:

>>> import pandas as pd
>>> import numpy as np
>>> r = np.random.RandomState(seed=5)
>>> ints = r.random_integers(1, 10, size=(3,2))
>>> a = ['A', 'B', 'C']
>>> b = ['D', 'A', 'E']
>>> df = pd.DataFrame(ints, columns=['weight', 'cost'])
>>> df[0] = a
>>> df['b'] = b
>>> df
 weight cost 0 b
0 4 7 A D
1 7 1 B A
2 10 9 C E
>>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost'])
>>> G['E']['C']['weight']
10
>>> G['E']['C']['cost']
9

NetworkX

Relabeling nodes

Relabeling

	convert_node_labels_to_integers(G[, …])

	Return a copy of the graph G with the nodes relabeled using consecutive integers.

	relabel_nodes(G, mapping[, copy])

	Relabel the nodes of the graph G.

NetworkX

convert_node_labels_to_integers

	
convert_node_labels_to_integers(G, first_label=0, ordering='default', label_attribute=None)

	Return a copy of the graph G with the nodes relabeled using
consecutive integers.

	Parameters

	
	G (graph) – A NetworkX graph

	first_label (int [https://docs.python.org/2/library/functions.html#int], optional (default=0)) – An integer specifying the starting offset in numbering nodes.
The new integer labels are numbered first_label, …, n-1+first_label.

	ordering (string [https://docs.python.org/2/library/string.html#module-string]) – “default” : inherit node ordering from G.nodes()
“sorted” : inherit node ordering from sorted(G.nodes())
“increasing degree” : nodes are sorted by increasing degree
“decreasing degree” : nodes are sorted by decreasing degree

	label_attribute (string [https://docs.python.org/2/library/string.html#module-string], optional (default=None)) – Name of node attribute to store old label. If None no attribute
is created.

Notes

Node and edge attribute data are copied to the new (relabeled) graph.

See also

relabel_nodes()

NetworkX

relabel_nodes

	
relabel_nodes(G, mapping, copy=True)

	Relabel the nodes of the graph G.

	Parameters

	
	G (graph) – A NetworkX graph

	mapping (dictionary) – A dictionary with the old labels as keys and new labels as values.
A partial mapping is allowed.

	copy (bool [https://docs.python.org/2/library/functions.html#bool] (optional, default=True)) – If True return a copy, or if False relabel the nodes in place.

Examples

>>> G=nx.path_graph(3) # nodes 0-1-2
>>> mapping={0:'a',1:'b',2:'c'}
>>> H=nx.relabel_nodes(G,mapping)
>>> print(sorted(H.nodes()))
['a', 'b', 'c']

>>> G=nx.path_graph(26) # nodes 0..25
>>> mapping=dict(zip(G.nodes(),"abcdefghijklmnopqrstuvwxyz"))
>>> H=nx.relabel_nodes(G,mapping) # nodes a..z
>>> mapping=dict(zip(G.nodes(),range(1,27)))
>>> G1=nx.relabel_nodes(G,mapping) # nodes 1..26

Partial in-place mapping:

>>> G=nx.path_graph(3) # nodes 0-1-2
>>> mapping={0:'a',1:'b'} # 0->'a' and 1->'b'
>>> G=nx.relabel_nodes(G,mapping, copy=False)

print(G.nodes())
[2, ‘b’, ‘a’]

Mapping as function:

>>> G=nx.path_graph(3)
>>> def mapping(x):
... return x**2
>>> H=nx.relabel_nodes(G,mapping)
>>> print(H.nodes())
[0, 1, 4]

Notes

Only the nodes specified in the mapping will be relabeled.

The keyword setting copy=False modifies the graph in place.
This is not always possible if the mapping is circular.
In that case use copy=True.

See also

convert_node_labels_to_integers()

NetworkX

Reading and writing graphs

	Adjacency List
	Adjacency List

	read_adjlist

	write_adjlist

	parse_adjlist

	generate_adjlist

	Multiline Adjacency List
	Multi-line Adjacency List

	read_multiline_adjlist

	write_multiline_adjlist

	parse_multiline_adjlist

	generate_multiline_adjlist

	Edge List
	Edge Lists

	read_edgelist

	write_edgelist

	read_weighted_edgelist

	write_weighted_edgelist

	generate_edgelist

	parse_edgelist

	GEXF
	GEXF

	read_gexf

	write_gexf

	relabel_gexf_graph

	GML
	Format

	read_gml

	write_gml

	parse_gml

	generate_gml

	literal_destringizer

	literal_stringizer

	Pickle
	Pickled Graphs

	read_gpickle

	write_gpickle

	GraphML
	GraphML

	read_graphml

	write_graphml

	JSON
	JSON data

	node_link_data

	node_link_graph

	adjacency_data

	adjacency_graph

	tree_data

	tree_graph

	LEDA
	Format

	read_leda

	parse_leda

	YAML
	YAML

	read_yaml

	write_yaml

	SparseGraph6
	Graph6

	Sparse6

	Pajek
	Pajek

	read_pajek

	write_pajek

	parse_pajek

	GIS Shapefile
	Shapefile

	read_shp

	write_shp

NetworkX

Adjacency List

Adjacency List

Read and write NetworkX graphs as adjacency lists.

Adjacency list format is useful for graphs without data associated
with nodes or edges and for nodes that can be meaningfully represented
as strings.

Format

The adjacency list format consists of lines with node labels. The
first label in a line is the source node. Further labels in the line
are considered target nodes and are added to the graph along with an edge
between the source node and target node.

The graph with edges a-b, a-c, d-e can be represented as the following
adjacency list (anything following the # in a line is a comment):

a b c # source target target
d e

	read_adjlist(path[, comments, delimiter, …])

	Read graph in adjacency list format from path.

	write_adjlist(G, path[, comments, …])

	Write graph G in single-line adjacency-list format to path.

	parse_adjlist(lines[, comments, delimiter, …])

	Parse lines of a graph adjacency list representation.

	generate_adjlist(G[, delimiter])

	Generate a single line of the graph G in adjacency list format.

NetworkX

read_adjlist

	
read_adjlist(path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8')

	Read graph in adjacency list format from path.

	Parameters

	
	path (string [https://docs.python.org/2/library/string.html#module-string] or file [https://docs.python.org/2/library/functions.html#file]) – Filename or file handle to read.
Filenames ending in .gz or .bz2 will be uncompressed.

	create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels. The default is whitespace.

	create_using – Use given NetworkX graph for holding nodes or edges.

	Returns

	G – The graph corresponding to the lines in adjacency list format.

	Return type

	NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G, "test.adjlist")
>>> G=nx.read_adjlist("test.adjlist")

The path can be a filehandle or a string with the name of the file. If a
filehandle is provided, it has to be opened in ‘rb’ mode.

>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_adjlist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_adjlist("test.adjlist.gz")

The optional nodetype is a function to convert node strings to nodetype.

For example

>>> G=nx.read_adjlist("test.adjlist", nodetype=int)

will attempt to convert all nodes to integer type.

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

The optional create_using parameter is a NetworkX graph container.
The default is Graph(), an undirected graph. To read the data as
a directed graph use

>>> G=nx.read_adjlist("test.adjlist", create_using=nx.DiGraph())

Notes

This format does not store graph or node data.

See also

write_adjlist()

NetworkX

write_adjlist

	
write_adjlist(G, path, comments='#', delimiter=' ', encoding='utf-8')

	Write graph G in single-line adjacency-list format to path.

	Parameters

	
	G (NetworkX graph) –

	path (string [https://docs.python.org/2/library/string.html#module-string] or file [https://docs.python.org/2/library/functions.html#file]) – Filename or file handle for data output.
Filenames ending in .gz or .bz2 will be compressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Text encoding.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G,"test.adjlist")

The path can be a filehandle or a string with the name of the file. If a
filehandle is provided, it has to be opened in ‘wb’ mode.

>>> fh=open("test.adjlist",'wb')
>>> nx.write_adjlist(G, fh)

Notes

This format does not store graph, node, or edge data.

See also

read_adjlist(), generate_adjlist()

NetworkX

parse_adjlist

	
parse_adjlist(lines, comments='#', delimiter=None, create_using=None, nodetype=None)

	Parse lines of a graph adjacency list representation.

	Parameters

	
	lines (list or iterator of strings) – Input data in adjlist format

	create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels. The default is whitespace.

	create_using – Use given NetworkX graph for holding nodes or edges.

	Returns

	G – The graph corresponding to the lines in adjacency list format.

	Return type

	NetworkX graph

Examples

>>> lines = ['1 2 5',
... '2 3 4',
... '3 5',
... '4',
... '5']
>>> G = nx.parse_adjlist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4, 5]
>>> G.edges()
[(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)]

See also

read_adjlist()

NetworkX

generate_adjlist

	
generate_adjlist(G, delimiter=' ')

	Generate a single line of the graph G in adjacency list format.

	Parameters

	
	G (NetworkX graph) –

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	Returns

	lines – Lines of data in adjlist format.

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_adjlist(G):
... print(line)
0 1 2 3
1 2 3
2 3
3 4
4 5
5 6
6

See also

write_adjlist(), read_adjlist()

NetworkX

Multiline Adjacency List

Multi-line Adjacency List

Read and write NetworkX graphs as multi-line adjacency lists.

The multi-line adjacency list format is useful for graphs with
nodes that can be meaningfully represented as strings. With this format
simple edge data can be stored but node or graph data is not.

Format

The first label in a line is the source node label followed by the node degree
d. The next d lines are target node labels and optional edge data.
That pattern repeats for all nodes in the graph.

The graph with edges a-b, a-c, d-e can be represented as the following
adjacency list (anything following the # in a line is a comment):

example.multiline-adjlist
a 2
b
c
d 1
e

	read_multiline_adjlist(path[, comments, …])

	Read graph in multi-line adjacency list format from path.

	write_multiline_adjlist(G, path[, …])

	Write the graph G in multiline adjacency list format to path

	parse_multiline_adjlist(lines[, comments, …])

	Parse lines of a multiline adjacency list representation of a graph.

	generate_multiline_adjlist(G[, delimiter])

	Generate a single line of the graph G in multiline adjacency list format.

NetworkX

read_multiline_adjlist

	
read_multiline_adjlist(path, comments='#', delimiter=None, create_using=None, nodetype=None, edgetype=None, encoding='utf-8')

	Read graph in multi-line adjacency list format from path.

	Parameters

	
	path (string [https://docs.python.org/2/library/string.html#module-string] or file [https://docs.python.org/2/library/functions.html#file]) – Filename or file handle to read.
Filenames ending in .gz or .bz2 will be uncompressed.

	create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	edgetype (Python type, optional) – Convert edge data to this type.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels. The default is whitespace.

	create_using – Use given NetworkX graph for holding nodes or edges.

	Returns

	G

	Return type

	NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")
>>> G=nx.read_multiline_adjlist("test.adjlist")

The path can be a file or a string with the name of the file. If a
file s provided, it has to be opened in ‘rb’ mode.

>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_multiline_adjlist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_multiline_adjlist("test.adjlist.gz")

The optional nodetype is a function to convert node strings to nodetype.

For example

>>> G=nx.read_multiline_adjlist("test.adjlist", nodetype=int)

will attempt to convert all nodes to integer type.

The optional edgetype is a function to convert edge data strings to
edgetype.

>>> G=nx.read_multiline_adjlist("test.adjlist")

The optional create_using parameter is a NetworkX graph container.
The default is Graph(), an undirected graph. To read the data as
a directed graph use

>>> G=nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph())

Notes

This format does not store graph, node, or edge data.

See also

write_multiline_adjlist()

NetworkX

write_multiline_adjlist

	
write_multiline_adjlist(G, path, delimiter=' ', comments='#', encoding='utf-8')

	Write the graph G in multiline adjacency list format to path

	Parameters

	
	G (NetworkX graph) –

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Text encoding.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")

The path can be a file handle or a string with the name of the file. If a
file handle is provided, it has to be opened in ‘wb’ mode.

>>> fh=open("test.adjlist",'wb')
>>> nx.write_multiline_adjlist(G,fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")

See also

read_multiline_adjlist()

NetworkX

parse_multiline_adjlist

	
parse_multiline_adjlist(lines, comments='#', delimiter=None, create_using=None, nodetype=None, edgetype=None)

	Parse lines of a multiline adjacency list representation of a graph.

	Parameters

	
	lines (list or iterator of strings) – Input data in multiline adjlist format

	create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels. The default is whitespace.

	create_using – Use given NetworkX graph for holding nodes or edges.

	Returns

	G – The graph corresponding to the lines in multiline adjacency list format.

	Return type

	NetworkX graph

Examples

>>> lines = ['1 2',
... "2 {'weight':3, 'name': 'Frodo'}",
... "3 {}",
... "2 1",
... "5 {'weight':6, 'name': 'Saruman'}"]
>>> G = nx.parse_multiline_adjlist(iter(lines), nodetype = int)
>>> G.nodes()
[1, 2, 3, 5]

NetworkX

generate_multiline_adjlist

	
generate_multiline_adjlist(G, delimiter=' ')

	Generate a single line of the graph G in multiline adjacency list format.

	Parameters

	
	G (NetworkX graph) –

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	Returns

	lines – Lines of data in multiline adjlist format.

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_multiline_adjlist(G):
... print(line)
0 3
1 {}
2 {}
3 {}
1 2
2 {}
3 {}
2 1
3 {}
3 1
4 {}
4 1
5 {}
5 1
6 {}
6 0

See also

write_multiline_adjlist(), read_multiline_adjlist()

NetworkX

Edge List

Edge Lists

Read and write NetworkX graphs as edge lists.

The multi-line adjacency list format is useful for graphs with nodes
that can be meaningfully represented as strings. With the edgelist
format simple edge data can be stored but node or graph data is not.
There is no way of representing isolated nodes unless the node has a
self-loop edge.

Format

You can read or write three formats of edge lists with these functions.

Node pairs with no data:

1 2

Python dictionary as data:

1 2 {'weight':7, 'color':'green'}

Arbitrary data:

1 2 7 green

	read_edgelist(path[, comments, delimiter, …])

	Read a graph from a list of edges.

	write_edgelist(G, path[, comments, …])

	Write graph as a list of edges.

	read_weighted_edgelist(path[, comments, …])

	Read a graph as list of edges with numeric weights.

	write_weighted_edgelist(G, path[, comments, …])

	Write graph G as a list of edges with numeric weights.

	generate_edgelist(G[, delimiter, data])

	Generate a single line of the graph G in edge list format.

	parse_edgelist(lines[, comments, delimiter, …])

	Parse lines of an edge list representation of a graph.

NetworkX

read_edgelist

	
read_edgelist(path, comments='#', delimiter=None, create_using=None, nodetype=None, data=True, edgetype=None, encoding='utf-8')

	Read a graph from a list of edges.

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to read. If a file is provided, it must be
opened in ‘rb’ mode.
Filenames ending in .gz or .bz2 will be uncompressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – The character used to indicate the start of a comment.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – The string used to separate values. The default is whitespace.

	create_using (Graph container, optional,) – Use specified container to build graph. The default is networkx.Graph,
an undirected graph.

	nodetype (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str], Python type, optional) – Convert node data from strings to specified type

	data (bool [https://docs.python.org/2/library/functions.html#bool] or list of (label,type [https://docs.python.org/2/library/functions.html#type]) tuples) – Tuples specifying dictionary key names and types for edge data

	edgetype (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str], Python type, optional OBSOLETE) – Convert edge data from strings to specified type and use as ‘weight’

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when reading file.

	Returns

	G – A networkx Graph or other type specified with create_using

	Return type

	graph

Examples

>>> nx.write_edgelist(nx.path_graph(4), "test.edgelist")
>>> G=nx.read_edgelist("test.edgelist")

>>> fh=open("test.edgelist", 'rb')
>>> G=nx.read_edgelist(fh)
>>> fh.close()

>>> G=nx.read_edgelist("test.edgelist", nodetype=int)
>>> G=nx.read_edgelist("test.edgelist",create_using=nx.DiGraph())

Edgelist with data in a list:

>>> textline = '1 2 3'
>>> fh = open('test.edgelist','w')
>>> d = fh.write(textline)
>>> fh.close()
>>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(('weight',float),))
>>> G.nodes()
[1, 2]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0})]

See parse_edgelist() for more examples of formatting.

See also

parse_edgelist()

Notes

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

NetworkX

write_edgelist

	
write_edgelist(G, path, comments='#', delimiter=' ', data=True, encoding='utf-8')

	Write graph as a list of edges.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write. If a file is provided, it must be
opened in ‘wb’ mode. Filenames ending in .gz or .bz2 will be compressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – The character used to indicate the start of a comment

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – The string used to separate values. The default is whitespace.

	data (bool [https://docs.python.org/2/library/functions.html#bool] or list, optional) – If False write no edge data.
If True write a string representation of the edge data dictionary..
If a list (or other iterable) is provided, write the keys specified
in the list.

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_edgelist(G, "test.edgelist")
>>> G=nx.path_graph(4)
>>> fh=open("test.edgelist",'wb')
>>> nx.write_edgelist(G, fh)
>>> nx.write_edgelist(G, "test.edgelist.gz")
>>> nx.write_edgelist(G, "test.edgelist.gz", data=False)

>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7,color='red')
>>> nx.write_edgelist(G,'test.edgelist',data=False)
>>> nx.write_edgelist(G,'test.edgelist',data=['color'])
>>> nx.write_edgelist(G,'test.edgelist',data=['color','weight'])

See also

write_edgelist(), write_weighted_edgelist()

NetworkX

read_weighted_edgelist

	
read_weighted_edgelist(path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8')

	Read a graph as list of edges with numeric weights.

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to read. If a file is provided, it must be
opened in ‘rb’ mode.
Filenames ending in .gz or .bz2 will be uncompressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – The character used to indicate the start of a comment.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – The string used to separate values. The default is whitespace.

	create_using (Graph container, optional,) – Use specified container to build graph. The default is networkx.Graph,
an undirected graph.

	nodetype (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str], Python type, optional) – Convert node data from strings to specified type

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when reading file.

	Returns

	G – A networkx Graph or other type specified with create_using

	Return type

	graph

Notes

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

Example edgelist file format.

With numeric edge data:

read with
>>> G=nx.read_weighted_edgelist(fh)
source target data
a b 1
a c 3.14159
d e 42

NetworkX

write_weighted_edgelist

	
write_weighted_edgelist(G, path, comments='#', delimiter=' ', encoding='utf-8')

	Write graph G as a list of edges with numeric weights.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write. If a file is provided, it must be
opened in ‘wb’ mode.
Filenames ending in .gz or .bz2 will be compressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – The character used to indicate the start of a comment

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – The string used to separate values. The default is whitespace.

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7)
>>> nx.write_weighted_edgelist(G, 'test.weighted.edgelist')

See also

read_edgelist(), write_edgelist(), write_weighted_edgelist()

NetworkX

generate_edgelist

	
generate_edgelist(G, delimiter=' ', data=True)

	Generate a single line of the graph G in edge list format.

	Parameters

	
	G (NetworkX graph) –

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	data (bool [https://docs.python.org/2/library/functions.html#bool] or list of keys) – If False generate no edge data. If True use a dictionary
representation of edge data. If a list of keys use a list of data
values corresponding to the keys.

	Returns

	lines – Lines of data in adjlist format.

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> G[1][2]['weight'] = 3
>>> G[3][4]['capacity'] = 12
>>> for line in nx.generate_edgelist(G, data=False):
... print(line)
0 1
0 2
0 3
1 2
1 3
2 3
3 4
4 5
5 6

>>> for line in nx.generate_edgelist(G):
... print(line)
0 1 {}
0 2 {}
0 3 {}
1 2 {'weight': 3}
1 3 {}
2 3 {}
3 4 {'capacity': 12}
4 5 {}
5 6 {}

>>> for line in nx.generate_edgelist(G,data=['weight']):
... print(line)
0 1
0 2
0 3
1 2 3
1 3
2 3
3 4
4 5
5 6

See also

write_adjlist(), read_adjlist()

NetworkX

parse_edgelist

	
parse_edgelist(lines, comments='#', delimiter=None, create_using=None, nodetype=None, data=True)

	Parse lines of an edge list representation of a graph.

	Parameters

	
	lines (list or iterator of strings) – Input data in edgelist format

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	create_using (NetworkX graph container, optional) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	data (bool [https://docs.python.org/2/library/functions.html#bool] or list of (label,type [https://docs.python.org/2/library/functions.html#type]) tuples) – If False generate no edge data or if True use a dictionary
representation of edge data or a list tuples specifying dictionary
key names and types for edge data.

	Returns

	G – The graph corresponding to lines

	Return type

	NetworkX Graph

Examples

Edgelist with no data:

>>> lines = ["1 2",
... "2 3",
... "3 4"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges()
[(1, 2), (2, 3), (3, 4)]

Edgelist with data in Python dictionary representation:

>>> lines = ["1 2 {'weight':3}",
... "2 3 {'weight':27}",
... "3 4 {'weight':3.0}"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]

Edgelist with data in a list:

>>> lines = ["1 2 3",
... "2 3 27",
... "3 4 3.0"]
>>> G = nx.parse_edgelist(lines, nodetype = int, data=(('weight',float),))
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]

See also

read_weighted_edgelist()

NetworkX

GEXF

GEXF

Read and write graphs in GEXF format.

GEXF (Graph Exchange XML Format) is a language for describing complex
network structures, their associated data and dynamics.

This implementation does not support mixed graphs (directed and
undirected edges together).

Format

GEXF is an XML format. See http://gexf.net/format/schema.html for the
specification and http://gexf.net/format/basic.html for examples.

	read_gexf(path[, node_type, relabel, version])

	Read graph in GEXF format from path.

	write_gexf(G, path[, encoding, prettyprint, …])

	Write G in GEXF format to path.

	relabel_gexf_graph(G)

	Relabel graph using “label” node keyword for node label.

NetworkX

read_gexf

	
read_gexf(path, node_type=None, relabel=False, version='1.1draft')

	Read graph in GEXF format from path.

“GEXF (Graph Exchange XML Format) is a language for describing
complex networks structures, their associated data and dynamics” 1.

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or file name to write.
File names ending in .gz or .bz2 will be compressed.

	node_type (Python type (default: None)) – Convert node ids to this type if not None.

	relabel (bool [https://docs.python.org/2/library/functions.html#bool] (default: False)) – If True relabel the nodes to use the GEXF node “label” attribute
instead of the node “id” attribute as the NetworkX node label.

	Returns

	graph – If no parallel edges are found a Graph or DiGraph is returned.
Otherwise a MultiGraph or MultiDiGraph is returned.

	Return type

	NetworkX graph

Notes

This implementation does not support mixed graphs (directed and undirected
edges together).

References

	1

	GEXF graph format, http://gexf.net/format/

NetworkX

write_gexf

	
write_gexf(G, path, encoding='utf-8', prettyprint=True, version='1.1draft')

	Write G in GEXF format to path.

“GEXF (Graph Exchange XML Format) is a language for describing
complex networks structures, their associated data and dynamics” 1.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or file name to write.
File names ending in .gz or .bz2 will be compressed.

	encoding (string [https://docs.python.org/2/library/string.html#module-string] (optional)) – Encoding for text data.

	prettyprint (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – If True use line breaks and indenting in output XML.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_gexf(G, "test.gexf")

Notes

This implementation does not support mixed graphs (directed and undirected
edges together).

The node id attribute is set to be the string of the node label.
If you want to specify an id use set it as node data, e.g.
node[‘a’][‘id’]=1 to set the id of node ‘a’ to 1.

References

	1

	GEXF graph format, http://gexf.net/format/

NetworkX

relabel_gexf_graph

	
relabel_gexf_graph(G)

	Relabel graph using “label” node keyword for node label.

	Parameters

	G (graph) – A NetworkX graph read from GEXF data

	Returns

	H – A NetworkX graph with relabed nodes

	Return type

	graph

Notes

This function relabels the nodes in a NetworkX graph with the
“label” attribute. It also handles relabeling the specific GEXF
node attributes “parents”, and “pid”.

NetworkX

GML

Read graphs in GML format.

“GML, the G>raph Modelling Language, is our proposal for a portable
file format for graphs. GML’s key features are portability, simple
syntax, extensibility and flexibility. A GML file consists of a
hierarchical key-value lists. Graphs can be annotated with arbitrary
data structures. The idea for a common file format was born at the
GD‘95; this proposal is the outcome of many discussions. GML is the
standard file format in the Graphlet graph editor system. It has been
overtaken and adapted by several other systems for drawing graphs.”

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

Format

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
for format specification.

Example graphs in GML format:
http://www-personal.umich.edu/~mejn/netdata/

	read_gml(path[, label, destringizer])

	Read graph in GML format from path.

	write_gml(G, path[, stringizer])

	Write a graph G in GML format to the file or file handle path.

	parse_gml(lines[, label, destringizer])

	Parse GML graph from a string or iterable.

	generate_gml(G[, stringizer])

	Generate a single entry of the graph G in GML format.

	literal_destringizer(rep)

	Convert a Python literal to the value it represents.

	literal_stringizer(value)

	Convert a value to a Python literal in GML representation.

NetworkX

read_gml

	
read_gml(path, label='label', destringizer=None)

	Read graph in GML format from path.

	Parameters

	
	path (filename or filehandle) – The filename or filehandle to read from.

	label (string [https://docs.python.org/2/library/string.html#module-string], optional) – If not None, the parsed nodes will be renamed according to node
attributes indicated by label. Default value: 'label'.

	destringizer (callable [https://docs.python.org/2/library/functions.html#callable], optional) – A destringizer that recovers values stored as strings in GML. If it
cannot convert a string to a value, a ValueError is raised. Default
value : None.

	Returns

	G – The parsed graph.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If the input cannot be parsed.

See also

write_gml(), parse_gml()

Notes

The GML specification says that files should be ASCII encoded, with any
extended ASCII characters (iso8859-1) appearing as HTML character entities.

References

GML specification:
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gml(G, 'test.gml')
>>> H = nx.read_gml('test.gml')

NetworkX

write_gml

	
write_gml(G, path, stringizer=None)

	Write a graph G in GML format to the file or file handle path.

	Parameters

	
	G (NetworkX graph) – The graph to be converted to GML.

	path (filename or filehandle) – The filename or filehandle to write. Files whose names end with .gz or
.bz2 will be compressed.

	stringizer (callable [https://docs.python.org/2/library/functions.html#callable], optional) – A stringizer which converts non-int/non-float/non-dict values into
strings. If it cannot convert a value into a string, it should raise a
ValueError to indicate that. Default value: None.

	Raises

	NetworkXError – If stringizer cannot convert a value into a string, or the value to
convert is not a string while stringizer is None.

See also

read_gml(), generate_gml()

Notes

Graph attributes named 'directed', 'multigraph', 'node' or
'edge',node attributes named 'id' or 'label', edge attributes
named 'source' or 'target' (or 'key' if G is a multigraph)
are ignored because these attribute names are used to encode the graph
structure.

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gml(G, "test.gml")

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_gml(G, "test.gml.gz")

NetworkX

parse_gml

	
parse_gml(lines, label='label', destringizer=None)

	Parse GML graph from a string or iterable.

	Parameters

	
	lines (string [https://docs.python.org/2/library/string.html#module-string] or iterable of strings) – Data in GML format.

	label (string [https://docs.python.org/2/library/string.html#module-string], optional) – If not None, the parsed nodes will be renamed according to node
attributes indicated by label. Default value: 'label'.

	destringizer (callable [https://docs.python.org/2/library/functions.html#callable], optional) – A destringizer that recovers values stored as strings in GML. If it
cannot convert a string to a value, a ValueError is raised. Default
value : None.

	Returns

	G – The parsed graph.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If the input cannot be parsed.

See also

write_gml(), read_gml()

Notes

This stores nested GML attributes as dictionaries in the
NetworkX graph, node, and edge attribute structures.

References

GML specification:
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

NetworkX

generate_gml

	
generate_gml(G, stringizer=None)

	Generate a single entry of the graph G in GML format.

	Parameters

	
	G (NetworkX graph) – The graph to be converted to GML.

	stringizer (callable [https://docs.python.org/2/library/functions.html#callable], optional) – A stringizer which converts non-int/float/dict values into strings. If
it cannot convert a value into a string, it should raise a
ValueError raised to indicate that. Default value: None.

	Returns

	lines – Lines of GML data. Newlines are not appended.

	Return type

	generator of strings

	Raises

	NetworkXError – If stringizer cannot convert a value into a string, or the value to
convert is not a string while stringizer is None.

Notes

Graph attributes named 'directed', 'multigraph', 'node' or
'edge',node attributes named 'id' or 'label', edge attributes
named 'source' or 'target' (or 'key' if G is a multigraph)
are ignored because these attribute names are used to encode the graph
structure.

NetworkX

literal_destringizer

	
literal_destringizer(rep)

	Convert a Python literal to the value it represents.

	Parameters

	rep (string [https://docs.python.org/2/library/string.html#module-string]) – A Python literal.

	Returns

	value – The value of the Python literal.

	Return type

	object [https://docs.python.org/2/library/functions.html#object]

	Raises

	ValueError – If rep is not a Python literal.

NetworkX

literal_stringizer

	
literal_stringizer(value)

	Convert a value to a Python literal in GML representation.

	Parameters

	value (object [https://docs.python.org/2/library/functions.html#object]) – The value to be converted to GML representation.

	Returns

	rep – A double-quoted Python literal representing value. Unprintable
characters are replaced by XML character references.

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

	Raises

	ValueError – If value cannot be converted to GML.

Notes

literal_stringizer is largely the same as repr in terms of
functionality but attempts prefix unicode and bytes literals with
u and b to provide better interoperability of data generated by
Python 2 and Python 3.

The original value can be recovered using the
networkx.readwrite.gml.literal_destringizer function.

NetworkX

Pickle

Pickled Graphs

Read and write NetworkX graphs as Python pickles.

“The pickle module implements a fundamental, but powerful algorithm
for serializing and de-serializing a Python object
structure. “Pickling” is the process whereby a Python object hierarchy
is converted into a byte stream, and “unpickling” is the inverse
operation, whereby a byte stream is converted back into an object
hierarchy.”

Note that NetworkX graphs can contain any hashable Python object as
node (not just integers and strings). For arbitrary data types it may
be difficult to represent the data as text. In that case using Python
pickles to store the graph data can be used.

Format

See http://docs.python.org/library/pickle.html

	read_gpickle(path)

	Read graph object in Python pickle format.

	write_gpickle(G, path[, protocol])

	Write graph in Python pickle format.

NetworkX

read_gpickle

	
read_gpickle(path)

	Read graph object in Python pickle format.

Pickles are a serialized byte stream of a Python object 1.
This format will preserve Python objects used as nodes or edges.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be uncompressed.

	Returns

	G – A NetworkX graph

	Return type

	graph

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")
>>> G = nx.read_gpickle("test.gpickle")

References

	1

	http://docs.python.org/library/pickle.html

NetworkX

write_gpickle

	
write_gpickle(G, path, protocol=2)

	Write graph in Python pickle format.

Pickles are a serialized byte stream of a Python object 1.
This format will preserve Python objects used as nodes or edges.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

	protocol (integer) – Pickling protocol to use. Default value: pickle.HIGHEST_PROTOCOL.

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")

References

	1

	http://docs.python.org/library/pickle.html

NetworkX

GraphML

GraphML

Read and write graphs in GraphML format.

This implementation does not support mixed graphs (directed and unidirected
edges together), hyperedges, nested graphs, or ports.

“GraphML is a comprehensive and easy-to-use file format for graphs. It
consists of a language core to describe the structural properties of a
graph and a flexible extension mechanism to add application-specific
data. Its main features include support of

	directed, undirected, and mixed graphs,

	hypergraphs,

	hierarchical graphs,

	graphical representations,

	references to external data,

	application-specific attribute data, and

	light-weight parsers.

Unlike many other file formats for graphs, GraphML does not use a
custom syntax. Instead, it is based on XML and hence ideally suited as
a common denominator for all kinds of services generating, archiving,
or processing graphs.”

http://graphml.graphdrawing.org/

Format

GraphML is an XML format. See
http://graphml.graphdrawing.org/specification.html for the specification and
http://graphml.graphdrawing.org/primer/graphml-primer.html
for examples.

	read_graphml(path[, node_type])

	Read graph in GraphML format from path.

	write_graphml(G, path[, encoding, prettyprint])

	Write G in GraphML XML format to path

NetworkX

read_graphml

	
read_graphml(path, node_type=<type 'str'>)

	Read graph in GraphML format from path.

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

	node_type (Python type (default: str)) – Convert node ids to this type

	Returns

	graph – If no parallel edges are found a Graph or DiGraph is returned.
Otherwise a MultiGraph or MultiDiGraph is returned.

	Return type

	NetworkX graph

Notes

This implementation does not support mixed graphs (directed and unidirected
edges together), hypergraphs, nested graphs, or ports.

For multigraphs the GraphML edge “id” will be used as the edge
key. If not specified then they “key” attribute will be used. If
there is no “key” attribute a default NetworkX multigraph edge key
will be provided.

Files with the yEd “yfiles” extension will can be read but the graphics
information is discarded.

yEd compressed files (“file.graphmlz” extension) can be read by renaming
the file to “file.graphml.gz”.

NetworkX

write_graphml

	
write_graphml(G, path, encoding='utf-8', prettyprint=True)

	Write G in GraphML XML format to path

	Parameters

	
	G (graph) – A networkx graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

	encoding (string [https://docs.python.org/2/library/string.html#module-string] (optional)) – Encoding for text data.

	prettyprint (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – If True use line breaks and indenting in output XML.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_graphml(G, "test.graphml")

Notes

This implementation does not support mixed graphs (directed and unidirected
edges together) hyperedges, nested graphs, or ports.

NetworkX

JSON

JSON data

Generate and parse JSON serializable data for NetworkX graphs.

These formats are suitable for use with the d3.js examples http://d3js.org/

The three formats that you can generate with NetworkX are:

	node-link like in the d3.js example http://bl.ocks.org/mbostock/4062045

	tree like in the d3.js example http://bl.ocks.org/mbostock/4063550

	adjacency like in the d3.js example http://bost.ocks.org/mike/miserables/

	node_link_data(G[, attrs])

	Return data in node-link format that is suitable for JSON serialization and use in Javascript documents.

	node_link_graph(data[, directed, …])

	Return graph from node-link data format.

	adjacency_data(G[, attrs])

	Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents.

	adjacency_graph(data[, directed, …])

	Return graph from adjacency data format.

	tree_data(G, root[, attrs])

	Return data in tree format that is suitable for JSON serialization and use in Javascript documents.

	tree_graph(data[, attrs])

	Return graph from tree data format.

NetworkX

node_link_data

	
node_link_data(G, attrs={'source': 'source', 'target': 'target', 'key': 'key', 'id': 'id'})

	Return data in node-link format that is suitable for JSON serialization
and use in Javascript documents.

	Parameters

	
	G (NetworkX graph) –

	attrs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary that contains four keys ‘id’, ‘source’, ‘target’ and
‘key’. The corresponding values provide the attribute names for storing
NetworkX-internal graph data. The values should be unique. Default
value:
dict(id='id', source='source', target='target', key='key').

If some user-defined graph data use these attribute names as data keys,
they may be silently dropped.

	Returns

	data – A dictionary with node-link formatted data.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises

	NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Graph, node, and link attributes are stored in this format. Note that
attribute keys will be converted to strings in order to comply with
JSON.

The default value of attrs will be changed in a future release of NetworkX.

See also

node_link_graph(), adjacency_data(), tree_data()

NetworkX

node_link_graph

	
node_link_graph(data, directed=False, multigraph=True, attrs={'source': 'source', 'target': 'target', 'key': 'key', 'id': 'id'})

	Return graph from node-link data format.

	Parameters

	
	data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – node-link formatted graph data

	directed (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, and direction not specified in data, return a directed graph.

	multigraph (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, and multigraph not specified in data, return a multigraph.

	attrs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary that contains four keys ‘id’, ‘source’, ‘target’ and
‘key’. The corresponding values provide the attribute names for storing
NetworkX-internal graph data. Default value:
dict(id='id', source='source', target='target', key='key').

	Returns

	G – A NetworkX graph object

	Return type

	NetworkX graph

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)
>>> H = json_graph.node_link_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also

node_link_data(), adjacency_data(), tree_data()

NetworkX

adjacency_data

	
adjacency_data(G, attrs={'id': 'id', 'key': 'key'})

	Return data in adjacency format that is suitable for JSON serialization
and use in Javascript documents.

	Parameters

	
	G (NetworkX graph) –

	attrs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary that contains two keys ‘id’ and ‘key’. The corresponding
values provide the attribute names for storing NetworkX-internal graph
data. The values should be unique. Default value:
dict(id='id', key='key').

If some user-defined graph data use these attribute names as data keys,
they may be silently dropped.

	Returns

	data – A dictionary with adjacency formatted data.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises

	NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Graph, node, and link attributes will be written when using this format
but attribute keys must be strings if you want to serialize the resulting
data with JSON.

The default value of attrs will be changed in a future release of NetworkX.

See also

adjacency_graph(), node_link_data(), tree_data()

NetworkX

adjacency_graph

	
adjacency_graph(data, directed=False, multigraph=True, attrs={'id': 'id', 'key': 'key'})

	Return graph from adjacency data format.

	Parameters

	data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Adjacency list formatted graph data

	Returns

	
	G (NetworkX graph) – A NetworkX graph object

	directed (bool) – If True, and direction not specified in data, return a directed graph.

	multigraph (bool) – If True, and multigraph not specified in data, return a multigraph.

	attrs (dict) – A dictionary that contains two keys ‘id’ and ‘key’. The corresponding
values provide the attribute names for storing NetworkX-internal graph
data. The values should be unique. Default value:
dict(id='id', key='key').

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)
>>> H = json_graph.adjacency_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also

adjacency_graph(), node_link_data(), tree_data()

NetworkX

tree_data

	
tree_data(G, root, attrs={'children': 'children', 'id': 'id'})

	Return data in tree format that is suitable for JSON serialization
and use in Javascript documents.

	Parameters

	
	G (NetworkX graph) – G must be an oriented tree

	root (node) – The root of the tree

	attrs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary that contains two keys ‘id’ and ‘children’. The
corresponding values provide the attribute names for storing
NetworkX-internal graph data. The values should be unique. Default
value: dict(id='id', children='children').

If some user-defined graph data use these attribute names as data keys,
they may be silently dropped.

	Returns

	data – A dictionary with node-link formatted data.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises

	NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Node attributes are stored in this format but keys
for attributes must be strings if you want to serialize with JSON.

Graph and edge attributes are not stored.

The default value of attrs will be changed in a future release of NetworkX.

See also

tree_graph(), node_link_data(), node_link_data()

NetworkX

tree_graph

	
tree_graph(data, attrs={'children': 'children', 'id': 'id'})

	Return graph from tree data format.

	Parameters

	data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Tree formatted graph data

	Returns

	
	G (NetworkX DiGraph)

	attrs (dict) – A dictionary that contains two keys ‘id’ and ‘children’. The
corresponding values provide the attribute names for storing
NetworkX-internal graph data. The values should be unique. Default
value: dict(id='id', children='children').

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)
>>> H = json_graph.tree_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also

tree_graph(), node_link_data(), adjacency_data()

NetworkX

LEDA

Read graphs in LEDA format.

LEDA is a C++ class library for efficient data types and algorithms.

Format

See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

	read_leda(path[, encoding])

	Read graph in LEDA format from path.

	parse_leda(lines)

	Read graph in LEDA format from string or iterable.

NetworkX

read_leda

	
read_leda(path, encoding='UTF-8')

	Read graph in LEDA format from path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to read. Filenames ending in .gz or .bz2 will be
uncompressed.

	Returns

	G

	Return type

	NetworkX graph

Examples

G=nx.read_leda(‘file.leda’)

References

	1

	http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

NetworkX

parse_leda

	
parse_leda(lines)

	Read graph in LEDA format from string or iterable.

	Parameters

	lines (string [https://docs.python.org/2/library/string.html#module-string] or iterable) – Data in LEDA format.

	Returns

	G

	Return type

	NetworkX graph

Examples

G=nx.parse_leda(string)

References

	1

	http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

NetworkX

YAML

YAML

Read and write NetworkX graphs in YAML format.

“YAML is a data serialization format designed for human readability
and interaction with scripting languages.”
See http://www.yaml.org for documentation.

Format

http://pyyaml.org/wiki/PyYAML

	read_yaml(path)

	Read graph in YAML format from path.

	write_yaml(G, path[, encoding])

	Write graph G in YAML format to path.

NetworkX

read_yaml

	
read_yaml(path)

	Read graph in YAML format from path.

YAML is a data serialization format designed for human readability
and interaction with scripting languages 1.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to read. Filenames ending in .gz or .bz2
will be uncompressed.

	Returns

	G

	Return type

	NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')
>>> G=nx.read_yaml('test.yaml')

References

	1

	http://www.yaml.org

NetworkX

write_yaml

	
write_yaml(G, path, encoding='UTF-8', **kwds)

	Write graph G in YAML format to path.

YAML is a data serialization format designed for human readability
and interaction with scripting languages 1.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')

References

	1

	http://www.yaml.org

NetworkX

SparseGraph6

Graph6

Graph6

Read and write graphs in graph6 format.

Format

“graph6 and sparse6 are formats for storing undirected graphs in a
compact manner, using only printable ASCII characters. Files in these
formats have text type and contain one line per graph.”

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

	parse_graph6(string)

	Read a simple undirected graph in graph6 format from string.

	read_graph6(path)

	Read simple undirected graphs in graph6 format from path.

	generate_graph6(G[, nodes, header])

	Generate graph6 format string from a simple undirected graph.

	write_graph6(G, path[, nodes, header])

	Write a simple undirected graph to path in graph6 format.

Sparse6

Sparse6

Read and write graphs in sparse6 format.

Format

“graph6 and sparse6 are formats for storing undirected graphs in a
compact manner, using only printable ASCII characters. Files in these
formats have text type and contain one line per graph.”

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

	parse_sparse6(string)

	Read an undirected graph in sparse6 format from string.

	read_sparse6(path)

	Read an undirected graph in sparse6 format from path.

	generate_sparse6(G[, nodes, header])

	Generate sparse6 format string from an undirected graph.

	write_sparse6(G, path[, nodes, header])

	Write graph G to given path in sparse6 format.

NetworkX

parse_graph6

	
parse_graph6(string)

	Read a simple undirected graph in graph6 format from string.

	Parameters

	string (string [https://docs.python.org/2/library/string.html#module-string]) – Data in graph6 format

	Returns

	G

	Return type

	Graph

	Raises

	NetworkXError – If the string is unable to be parsed in graph6 format

Examples

>>> G = nx.parse_graph6('A_')
>>> sorted(G.edges())
[(0, 1)]

See also

generate_graph6(), read_graph6(), write_graph6()

References

Graph6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

read_graph6

	
read_graph6(path)

	Read simple undirected graphs in graph6 format from path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.

	Returns

	G – If the file contains multiple lines then a list of graphs is returned

	Return type

	Graph or list of Graphs

	Raises

	NetworkXError – If the string is unable to be parsed in graph6 format

Examples

>>> nx.write_graph6(nx.Graph([(0,1)]), 'test.g6')
>>> G = nx.read_graph6('test.g6')
>>> sorted(G.edges())
[(0, 1)]

See also

generate_graph6(), parse_graph6(), write_graph6()

References

Graph6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

generate_graph6

	
generate_graph6(G, nodes=None, header=True)

	Generate graph6 format string from a simple undirected graph.

	Parameters

	
	G (Graph (undirected)) –

	nodes (list or iterable) – Nodes are labeled 0…n-1 in the order provided. If None the ordering
given by G.nodes() is used.

	header (bool [https://docs.python.org/2/library/functions.html#bool]) – If True add ‘>>graph6<<’ string to head of data

	Returns

	s – String in graph6 format

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

	Raises

	NetworkXError – If the graph is directed or has parallel edges

Examples

>>> G = nx.Graph([(0, 1)])
>>> nx.generate_graph6(G)
'>>graph6<<A_'

See also

read_graph6(), parse_graph6(), write_graph6()

Notes

The format does not support edge or node labels, parallel edges or
self loops. If self loops are present they are silently ignored.

References

Graph6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

write_graph6

	
write_graph6(G, path, nodes=None, header=True)

	Write a simple undirected graph to path in graph6 format.

	Parameters

	
	G (Graph (undirected)) –

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.

	nodes (list or iterable) – Nodes are labeled 0…n-1 in the order provided. If None the ordering
given by G.nodes() is used.

	header (bool [https://docs.python.org/2/library/functions.html#bool]) – If True add ‘>>graph6<<’ string to head of data

	Raises

	NetworkXError – If the graph is directed or has parallel edges

Examples

>>> G = nx.Graph([(0, 1)])
>>> nx.write_graph6(G, 'test.g6')

See also

generate_graph6(), parse_graph6(), read_graph6()

Notes

The format does not support edge or node labels, parallel edges or
self loops. If self loops are present they are silently ignored.

References

Graph6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

parse_sparse6

	
parse_sparse6(string)

	Read an undirected graph in sparse6 format from string.

	Parameters

	string (string [https://docs.python.org/2/library/string.html#module-string]) – Data in sparse6 format

	Returns

	G

	Return type

	Graph

	Raises

	NetworkXError – If the string is unable to be parsed in sparse6 format

Examples

>>> G = nx.parse_sparse6(':A_')
>>> sorted(G.edges())
[(0, 1), (0, 1), (0, 1)]

See also

generate_sparse6(), read_sparse6(), write_sparse6()

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt

NetworkX

read_sparse6

	
read_sparse6(path)

	Read an undirected graph in sparse6 format from path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.

	Returns

	G – If the file contains multple lines then a list of graphs is returned

	Return type

	Graph/Multigraph or list of Graphs/MultiGraphs

	Raises

	NetworkXError – If the string is unable to be parsed in sparse6 format

Examples

>>> nx.write_sparse6(nx.Graph([(0,1),(0,1),(0,1)]), 'test.s6')
>>> G = nx.read_sparse6('test.s6')
>>> sorted(G.edges())
[(0, 1)]

See also

generate_sparse6(), read_sparse6(), parse_sparse6()

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt

NetworkX

generate_sparse6

	
generate_sparse6(G, nodes=None, header=True)

	Generate sparse6 format string from an undirected graph.

	Parameters

	
	G (Graph (undirected)) –

	nodes (list or iterable) – Nodes are labeled 0…n-1 in the order provided. If None the ordering
given by G.nodes() is used.

	header (bool [https://docs.python.org/2/library/functions.html#bool]) – If True add ‘>>sparse6<<’ string to head of data

	Returns

	s – String in sparse6 format

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

	Raises

	NetworkXError – If the graph is directed

Examples

>>> G = nx.MultiGraph([(0, 1), (0, 1), (0, 1)])
>>> nx.generate_sparse6(G)
'>>sparse6<<:A_'

See also

read_sparse6(), parse_sparse6(), write_sparse6()

Notes

The format does not support edge or node labels.

References

Sparse6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

write_sparse6

	
write_sparse6(G, path, nodes=None, header=True)

	Write graph G to given path in sparse6 format.
:param G:
:type G: Graph (undirected)
:param path: File or filename to write
:type path: file or string
:param nodes: Nodes are labeled 0…n-1 in the order provided. If None the ordering

given by G.nodes() is used.

	Parameters

	header (bool [https://docs.python.org/2/library/functions.html#bool]) – If True add ‘>>sparse6<<’ string to head of data

	Raises

	NetworkXError – If the graph is directed

Examples

>>> G = nx.Graph([(0, 1), (0, 1), (0, 1)])
>>> nx.write_sparse6(G, 'test.s6')

See also

read_sparse6(), parse_sparse6(), generate_sparse6()

Notes

The format does not support edge or node labels.

References

Sparse6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

Pajek

Pajek

Read graphs in Pajek format.

This implementation handles directed and undirected graphs including
those with self loops and parallel edges.

Format

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
for format information.

	read_pajek(path[, encoding])

	Read graph in Pajek format from path.

	write_pajek(G, path[, encoding])

	Write graph in Pajek format to path.

	parse_pajek(lines)

	Parse Pajek format graph from string or iterable.

NetworkX

read_pajek

	
read_pajek(path, encoding='UTF-8')

	Read graph in Pajek format from path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be uncompressed.

	Returns

	G

	Return type

	NetworkX MultiGraph or MultiDiGraph.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
>>> G=nx.read_pajek("test.net")

To create a Graph instead of a MultiGraph use

>>> G1=nx.Graph(G)

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
for format information.

NetworkX

write_pajek

	
write_pajek(G, path, encoding='UTF-8')

	Write graph in Pajek format to path.

	Parameters

	
	G (graph) – A Networkx graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
for format information.

NetworkX

parse_pajek

	
parse_pajek(lines)

	Parse Pajek format graph from string or iterable.

	Parameters

	lines (string [https://docs.python.org/2/library/string.html#module-string] or iterable) – Data in Pajek format.

	Returns

	G

	Return type

	NetworkX graph

See also

read_pajek()

NetworkX

GIS Shapefile

Shapefile

Generates a networkx.DiGraph from point and line shapefiles.

“The Esri Shapefile or simply a shapefile is a popular geospatial vector
data format for geographic information systems software. It is developed
and regulated by Esri as a (mostly) open specification for data
interoperability among Esri and other software products.”
See http://en.wikipedia.org/wiki/Shapefile for additional information.

	read_shp(path[, simplify])

	Generates a networkx.DiGraph from shapefiles.

	write_shp(G, outdir)

	Writes a networkx.DiGraph to two shapefiles, edges and nodes.

NetworkX

read_shp

	
read_shp(path, simplify=True)

	Generates a networkx.DiGraph from shapefiles. Point geometries are
translated into nodes, lines into edges. Coordinate tuples are used as
keys. Attributes are preserved, line geometries are simplified into start
and end coordinates. Accepts a single shapefile or directory of many
shapefiles.

“The Esri Shapefile or simply a shapefile is a popular geospatial vector
data format for geographic information systems software 1.”

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File, directory, or filename to read.

	simplify (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, simplify line geometries to start and end coordinates.
If False, and line feature geometry has multiple segments, the
non-geometric attributes for that feature will be repeated for each
edge comprising that feature.

	Returns

	G

	Return type

	NetworkX graph

Examples

>>> G=nx.read_shp('test.shp')

References

	1

	http://en.wikipedia.org/wiki/Shapefile

NetworkX

write_shp

	
write_shp(G, outdir)

	Writes a networkx.DiGraph to two shapefiles, edges and nodes.
Nodes and edges are expected to have a Well Known Binary (Wkb) or
Well Known Text (Wkt) key in order to generate geometries. Also
acceptable are nodes with a numeric tuple key (x,y).

“The Esri Shapefile or simply a shapefile is a popular geospatial vector
data format for geographic information systems software 1.”

	Parameters

	outdir (directory path) – Output directory for the two shapefiles.

	Returns

	

	Return type

	None [https://docs.python.org/2/library/constants.html#None]

Examples

nx.write_shp(digraph, ‘/shapefiles’) # doctest +SKIP

References

	1

	http://en.wikipedia.org/wiki/Shapefile

NetworkX

Drawing

NetworkX provides basic functionality for visualizing graphs, but its main goal
is to enable graph analysis rather than perform graph visualization. In the
future, graph visualization functionality may be removed from NetworkX or only
available as an add-on package.

Proper graph visualization is hard, and we highly recommend that people
visualize their graphs with tools dedicated to that task. Notable examples of
dedicated and fully-featured graph visualization tools are
Cytoscape [http://www.cytoscape.org/],
Gephi [http://gephi.github.io/],
Graphviz [http://www.graphviz.org/] and, for
LaTeX [http://www.latex-project.org/] typesetting,
PGF/TikZ [http://sourceforge.net/projects/pgf/].
To use these and other such tools, you should export your NetworkX graph into
a format that can be read by those tools. For example, Cytoscape can read the
GraphML format, and so, \(networkx.write_graphml(G)\) might be an appropriate
choice.

Matplotlib

Matplotlib

Draw networks with matplotlib.

See also

	matplotlib

	http://matplotlib.org/

	pygraphviz

	http://pygraphviz.github.io/

	draw(G[, pos, ax, hold])

	Draw the graph G with Matplotlib.

	draw_networkx(G[, pos, arrows, with_labels])

	Draw the graph G using Matplotlib.

	draw_networkx_nodes(G, pos[, nodelist, …])

	Draw the nodes of the graph G.

	draw_networkx_edges(G, pos[, edgelist, …])

	Draw the edges of the graph G.

	draw_networkx_labels(G, pos[, labels, …])

	Draw node labels on the graph G.

	draw_networkx_edge_labels(G, pos[, …])

	Draw edge labels.

	draw_circular(G, **kwargs)

	Draw the graph G with a circular layout.

	draw_random(G, **kwargs)

	Draw the graph G with a random layout.

	draw_spectral(G, **kwargs)

	Draw the graph G with a spectral layout.

	draw_spring(G, **kwargs)

	Draw the graph G with a spring layout.

	draw_shell(G, **kwargs)

	Draw networkx graph with shell layout.

	draw_graphviz(G[, prog])

	Draw networkx graph with graphviz layout.

Graphviz AGraph (dot)

Graphviz AGraph

Interface to pygraphviz AGraph class.

Examples

>>> G = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(G)
>>> H = nx.nx_agraph.from_agraph(A)

See also

	Pygraphviz

	http://pygraphviz.github.io/

	from_agraph(A[, create_using])

	Return a NetworkX Graph or DiGraph from a PyGraphviz graph.

	to_agraph(N)

	Return a pygraphviz graph from a NetworkX graph N.

	write_dot(G, path)

	Write NetworkX graph G to Graphviz dot format on path.

	read_dot(path)

	Return a NetworkX graph from a dot file on path.

	graphviz_layout(G[, prog, root, args])

	Create node positions for G using Graphviz.

	pygraphviz_layout(G[, prog, root, args])

	Create node positions for G using Graphviz.

Graphviz with pydot

Pydot

Import and export NetworkX graphs in Graphviz dot format using pydotplus.

Either this module or nx_agraph can be used to interface with graphviz.

See also

	PyDotPlus

	https://github.com/carlos-jenkins/pydotplus

	Graphviz

	http://www.research.att.com/sw/tools/graphviz/

DOT

	from_pydot(P)

	Return a NetworkX graph from a Pydot graph.

	to_pydot(N[, strict])

	Return a pydot graph from a NetworkX graph N.

	write_dot(G, path)

	Write NetworkX graph G to Graphviz dot format on path.

	read_dot(path)

	Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.

	graphviz_layout(G[, prog, root])

	Create node positions using Pydot and Graphviz.

	pydot_layout(G[, prog, root])

	Create node positions using Pydot and Graphviz.

Graph Layout

Layout

Node positioning algorithms for graph drawing.

The default scales and centering for these layouts are
typically squares with side [0, 1] or [0, scale].
The two circular layout routines (circular_layout and
shell_layout) have size [-1, 1] or [-scale, scale].

	circular_layout(G[, dim, scale, center])

	Position nodes on a circle.

	fruchterman_reingold_layout(G[, dim, k, …])

	Position nodes using Fruchterman-Reingold force-directed algorithm.

	random_layout(G[, dim, scale, center])

	Position nodes uniformly at random.

	shell_layout(G[, nlist, dim, scale, center])

	Position nodes in concentric circles.

	spring_layout(G[, dim, k, pos, fixed, …])

	Position nodes using Fruchterman-Reingold force-directed algorithm.

	spectral_layout(G[, dim, weight, scale, center])

	Position nodes using the eigenvectors of the graph Laplacian.

NetworkX

draw

	
draw(G, pos=None, ax=None, hold=None, **kwds)

	Draw the graph G with Matplotlib.

Draw the graph as a simple representation with no node
labels or edge labels and using the full Matplotlib figure area
and no axis labels by default. See draw_networkx() for more
full-featured drawing that allows title, axis labels etc.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary, optional) – A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See networkx.layout for functions that compute node positions.

	ax (Matplotlib Axes object, optional) – Draw the graph in specified Matplotlib axes.

	hold (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Set the Matplotlib hold state. If True subsequent draw
commands will be added to the current axes.

	kwds (optional keywords) – See networkx.draw_networkx() for a description of optional keywords.

Examples

>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout

See also

draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels()

Notes

This function has the same name as pylab.draw and pyplot.draw
so beware when using

>>> from networkx import *

since you might overwrite the pylab.draw function.

With pyplot use

>>> import matplotlib.pyplot as plt
>>> import networkx as nx
>>> G=nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

NetworkX

draw_networkx

	
draw_networkx(G, pos=None, arrows=True, with_labels=True, **kwds)

	Draw the graph G using Matplotlib.

Draw the graph with Matplotlib with options for node positions,
labeling, titles, and many other drawing features.
See draw() for simple drawing without labels or axes.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary, optional) – A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See networkx.layout for functions that compute node positions.

	arrows (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – For directed graphs, if True draw arrowheads.

	with_labels (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – Set to True to draw labels on the nodes.

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	nodelist (list, optional (default G.nodes())) – Draw only specified nodes

	edgelist (list, optional (default=G.edges())) – Draw only specified edges

	node_size (scalar or array [https://docs.python.org/2/library/array.html#module-array], optional (default=300)) – Size of nodes. If an array is specified it must be the
same length as nodelist.

	node_color (color string, or array of floats, (default='r')) – Node color. Can be a single color format string,
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.

	node_shape (string [https://docs.python.org/2/library/string.html#module-string], optional (default='o')) – The shape of the node. Specification is as matplotlib.scatter
marker, one of ‘so^>v<dph8’.

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional (default=1.0)) – The node and edge transparency

	cmap (Matplotlib colormap, optional (default=None)) – Colormap for mapping intensities of nodes

	vmin,vmax (float [https://docs.python.org/2/library/functions.html#float], optional (default=None)) – Minimum and maximum for node colormap scaling

	linewidths ([None | scalar | sequence]) – Line width of symbol border (default =1.0)

	width (float [https://docs.python.org/2/library/functions.html#float], optional (default=1.0)) – Line width of edges

	edge_color (color string, or array of floats (default='r')) – Edge color. Can be a single color format string,
or a sequence of colors with the same length as edgelist.
If numeric values are specified they will be mapped to
colors using the edge_cmap and edge_vmin,edge_vmax parameters.

	edge_cmap (Matplotlib colormap, optional (default=None)) – Colormap for mapping intensities of edges

	edge_vmin,edge_vmax (floats, optional (default=None)) – Minimum and maximum for edge colormap scaling

	style (string [https://docs.python.org/2/library/string.html#module-string], optional (default='solid')) – Edge line style (solid|dashed|dotted,dashdot)

	labels (dictionary, optional (default=None)) – Node labels in a dictionary keyed by node of text labels

	font_size (int [https://docs.python.org/2/library/functions.html#int], optional (default=12)) – Font size for text labels

	font_color (string [https://docs.python.org/2/library/string.html#module-string], optional (default='k' black)) – Font color string

	font_weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='normal')) – Font weight

	font_family (string [https://docs.python.org/2/library/string.html#module-string], optional (default='sans-serif')) – Font family

	label (string [https://docs.python.org/2/library/string.html#module-string], optional) – Label for graph legend

Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn
at the head end. Arrows can be turned off with keyword arrows=False.
Yes, it is ugly but drawing proper arrows with Matplotlib this
way is tricky.

Examples

>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout

>>> import matplotlib.pyplot as plt
>>> limits=plt.axis('off') # turn of axis

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels()

NetworkX

draw_networkx_nodes

	
draw_networkx_nodes(G, pos, nodelist=None, node_size=300, node_color='r', node_shape='o', alpha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, label=None, **kwds)

	Draw the nodes of the graph G.

This draws only the nodes of the graph G.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary) – A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	nodelist (list, optional) – Draw only specified nodes (default G.nodes())

	node_size (scalar or array [https://docs.python.org/2/library/array.html#module-array]) – Size of nodes (default=300). If an array is specified it must be the
same length as nodelist.

	node_color (color string, or array of floats) – Node color. Can be a single color format string (default=’r’),
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.

	node_shape (string [https://docs.python.org/2/library/string.html#module-string]) – The shape of the node. Specification is as matplotlib.scatter
marker, one of ‘so^>v<dph8’ (default=’o’).

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The node transparency (default=1.0)

	cmap (Matplotlib colormap) – Colormap for mapping intensities of nodes (default=None)

	vmin,vmax (floats) – Minimum and maximum for node colormap scaling (default=None)

	linewidths ([None | scalar | sequence]) – Line width of symbol border (default =1.0)

	label ([None| string]) – Label for legend

	Returns

	\(PathCollection\) of the nodes.

	Return type

	matplotlib.collections.PathCollection

Examples

>>> G=nx.dodecahedral_graph()
>>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels()

NetworkX

draw_networkx_edges

	
draw_networkx_edges(G, pos, edgelist=None, width=1.0, edge_color='k', style='solid', alpha=1.0, edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True, label=None, **kwds)

	Draw the edges of the graph G.

This draws only the edges of the graph G.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary) – A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.

	edgelist (collection of edge tuples) – Draw only specified edges(default=G.edges())

	width (float [https://docs.python.org/2/library/functions.html#float], or array of floats) – Line width of edges (default=1.0)

	edge_color (color string, or array of floats) – Edge color. Can be a single color format string (default=’r’),
or a sequence of colors with the same length as edgelist.
If numeric values are specified they will be mapped to
colors using the edge_cmap and edge_vmin,edge_vmax parameters.

	style (string [https://docs.python.org/2/library/string.html#module-string]) – Edge line style (default=’solid’) (solid|dashed|dotted,dashdot)

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The edge transparency (default=1.0)

	cmap (edge) – Colormap for mapping intensities of edges (default=None)

	edge_vmin,edge_vmax (floats) – Minimum and maximum for edge colormap scaling (default=None)

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	arrows (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – For directed graphs, if True draw arrowheads.

	label ([None| string]) – Label for legend

	Returns

	\(LineCollection\) of the edges

	Return type

	matplotlib.collection.LineCollection

Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn
at the head end. Arrows can be turned off with keyword arrows=False.
Yes, it is ugly but drawing proper arrows with Matplotlib this
way is tricky.

Examples

>>> G=nx.dodecahedral_graph()
>>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_labels(), draw_networkx_edge_labels()

NetworkX

draw_networkx_labels

	
draw_networkx_labels(G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, **kwds)

	Draw node labels on the graph G.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary) – A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.

	labels (dictionary, optional (default=None)) – Node labels in a dictionary keyed by node of text labels

	font_size (int [https://docs.python.org/2/library/functions.html#int]) – Font size for text labels (default=12)

	font_color (string [https://docs.python.org/2/library/string.html#module-string]) – Font color string (default=’k’ black)

	font_family (string [https://docs.python.org/2/library/string.html#module-string]) – Font family (default=’sans-serif’)

	font_weight (string [https://docs.python.org/2/library/string.html#module-string]) – Font weight (default=’normal’)

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The text transparency (default=1.0)

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	Returns

	\(dict\) of labels keyed on the nodes

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.dodecahedral_graph()
>>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_edge_labels()

NetworkX

draw_networkx_edge_labels

	
draw_networkx_edge_labels(G, pos, edge_labels=None, label_pos=0.5, font_size=10, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, rotate=True, **kwds)

	Draw edge labels.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary) – A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The text transparency (default=1.0)

	edge_labels (dictionary) – Edge labels in a dictionary keyed by edge two-tuple of text
labels (default=None). Only labels for the keys in the dictionary
are drawn.

	label_pos (float [https://docs.python.org/2/library/functions.html#float]) – Position of edge label along edge (0=head, 0.5=center, 1=tail)

	font_size (int [https://docs.python.org/2/library/functions.html#int]) – Font size for text labels (default=12)

	font_color (string [https://docs.python.org/2/library/string.html#module-string]) – Font color string (default=’k’ black)

	font_weight (string [https://docs.python.org/2/library/string.html#module-string]) – Font weight (default=’normal’)

	font_family (string [https://docs.python.org/2/library/string.html#module-string]) – Font family (default=’sans-serif’)

	bbox (Matplotlib bbox) – Specify text box shape and colors.

	clip_on (bool [https://docs.python.org/2/library/functions.html#bool]) – Turn on clipping at axis boundaries (default=True)

	Returns

	\(dict\) of labels keyed on the edges

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.dodecahedral_graph()
>>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels()

NetworkX

draw_circular

	
draw_circular(G, **kwargs)

	Draw the graph G with a circular layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_random

	
draw_random(G, **kwargs)

	Draw the graph G with a random layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_spectral

	
draw_spectral(G, **kwargs)

	Draw the graph G with a spectral layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_spring

	
draw_spring(G, **kwargs)

	Draw the graph G with a spring layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_shell

	
draw_shell(G, **kwargs)

	Draw networkx graph with shell layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_graphviz

	
draw_graphviz(G, prog='neato', **kwargs)

	Draw networkx graph with graphviz layout.

	Parameters

	
	G (graph) – A networkx graph

	prog (string [https://docs.python.org/2/library/string.html#module-string], optional) – Name of Graphviz layout program

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords.

NetworkX

from_agraph

	
from_agraph(A, create_using=None)

	Return a NetworkX Graph or DiGraph from a PyGraphviz graph.

	Parameters

	
	A (PyGraphviz AGraph) – A graph created with PyGraphviz

	create_using (NetworkX graph class instance) – The output is created using the given graph class instance

Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(K5)
>>> G = nx.nx_agraph.from_agraph(A)
>>> G = nx.nx_agraph.from_agraph(A)

Notes

The Graph G will have a dictionary G.graph_attr containing
the default graphviz attributes for graphs, nodes and edges.

Default node attributes will be in the dictionary G.node_attr
which is keyed by node.

Edge attributes will be returned as edge data in G. With
edge_attr=False the edge data will be the Graphviz edge weight
attribute or the value 1 if no edge weight attribute is found.

NetworkX

to_agraph

	
to_agraph(N)

	Return a pygraphviz graph from a NetworkX graph N.

	Parameters

	N (NetworkX graph) – A graph created with NetworkX

Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(K5)

Notes

If N has an dict N.graph_attr an attempt will be made first
to copy properties attached to the graph (see from_agraph)
and then updated with the calling arguments if any.

NetworkX

write_dot

	
write_dot(G, path)

	Write NetworkX graph G to Graphviz dot format on path.

	Parameters

	
	G (graph) – A networkx graph

	path (filename) – Filename or file handle to write

NetworkX

read_dot

	
read_dot(path)

	Return a NetworkX graph from a dot file on path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File name or file handle to read.

NetworkX

graphviz_layout

	
graphviz_layout(G, prog='neato', root=None, args='')

	Create node positions for G using Graphviz.

	Parameters

	
	G (NetworkX graph) – A graph created with NetworkX

	prog (string [https://docs.python.org/2/library/string.html#module-string]) – Name of Graphviz layout program

	root (string [https://docs.python.org/2/library/string.html#module-string], optional) – Root node for twopi layout

	args (string [https://docs.python.org/2/library/string.html#module-string], optional) – Extra arguments to Graphviz layout program

	Returns (dictionary) – Dictionary of x,y, positions keyed by node.

Examples

>>> G = nx.petersen_graph()
>>> pos = nx.nx_agraph.graphviz_layout(G)
>>> pos = nx.nx_agraph.graphviz_layout(G, prog='dot')

Notes

This is a wrapper for pygraphviz_layout.

NetworkX

pygraphviz_layout

	
pygraphviz_layout(G, prog='neato', root=None, args='')

	Create node positions for G using Graphviz.

	Parameters

	
	G (NetworkX graph) – A graph created with NetworkX

	prog (string [https://docs.python.org/2/library/string.html#module-string]) – Name of Graphviz layout program

	root (string [https://docs.python.org/2/library/string.html#module-string], optional) – Root node for twopi layout

	args (string [https://docs.python.org/2/library/string.html#module-string], optional) – Extra arguments to Graphviz layout program

	Returns (dictionary) – Dictionary of x,y, positions keyed by node.

Examples

>>> G = nx.petersen_graph()
>>> pos = nx.nx_agraph.graphviz_layout(G)
>>> pos = nx.nx_agraph.graphviz_layout(G, prog='dot')

NetworkX

from_pydot

	
from_pydot(P)

	Return a NetworkX graph from a Pydot graph.

	Parameters

	P (Pydot graph) – A graph created with Pydot

	Returns

	G – A MultiGraph or MultiDiGraph.

	Return type

	NetworkX multigraph

Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_pydot.to_pydot(K5)
>>> G = nx.nx_pydot.from_pydot(A) # return MultiGraph

make a Graph instead of MultiGraph
>>> G = nx.Graph(nx.nx_pydot.from_pydot(A))

NetworkX

to_pydot

	
to_pydot(N, strict=True)

	Return a pydot graph from a NetworkX graph N.

	Parameters

	N (NetworkX graph) – A graph created with NetworkX

Examples

>>> K5 = nx.complete_graph(5)
>>> P = nx.nx_pydot.to_pydot(K5)

Notes

NetworkX

write_dot

	
write_dot(G, path)

	Write NetworkX graph G to Graphviz dot format on path.

Path can be a string or a file handle.

NetworkX

read_dot

	
read_dot(path)

	Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.

	Parameters

	path (filename or file handle) –

	Returns

	G – A MultiGraph or MultiDiGraph.

	Return type

	NetworkX multigraph

Notes

Use G = nx.Graph(read_dot(path)) to return a Graph instead of a MultiGraph.

NetworkX

graphviz_layout

	
graphviz_layout(G, prog='neato', root=None, **kwds)

	Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.

Examples

>>> G = nx.complete_graph(4)
>>> pos = nx.nx_pydot.graphviz_layout(G)
>>> pos = nx.nx_pydot.graphviz_layout(G, prog='dot')

Notes

This is a wrapper for pydot_layout.

NetworkX

pydot_layout

	
pydot_layout(G, prog='neato', root=None, **kwds)

	Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.

Examples

>>> G = nx.complete_graph(4)
>>> pos = nx.nx_pydot.pydot_layout(G)
>>> pos = nx.nx_pydot.pydot_layout(G, prog='dot')

NetworkX

circular_layout

	
circular_layout(G, dim=2, scale=1.0, center=None)

	Position nodes on a circle.

	Parameters

	
	G (NetworkX graph or list of nodes) –

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout, currently only dim=2 is supported

	scale (float [https://docs.python.org/2/library/functions.html#float] (default 1)) – Scale factor for positions, i.e. radius of circle.

	center (array-like (default origin)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.circular_layout(G)

Notes

This algorithm currently only works in two dimensions and does not
try to minimize edge crossings.

NetworkX

fruchterman_reingold_layout

	
fruchterman_reingold_layout(G, dim=2, k=None, pos=None, fixed=None, iterations=50, weight='weight', scale=1.0, center=None)

	Position nodes using Fruchterman-Reingold force-directed algorithm.

	Parameters

	
	G (NetworkX graph) –

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout

	k (float [https://docs.python.org/2/library/functions.html#float] (default=None)) – Optimal distance between nodes. If None the distance is set to
1/sqrt(n) where n is the number of nodes. Increase this value
to move nodes farther apart.

	pos (dict [https://docs.python.org/2/library/stdtypes.html#dict] or None optional (default=None)) – Initial positions for nodes as a dictionary with node as keys
and values as a list or tuple. If None, then use random initial
positions.

	fixed (list or None optional (default=None)) – Nodes to keep fixed at initial position.
If any nodes are fixed, the scale and center features are not used.

	iterations (int optional (default=50)) – Number of iterations of spring-force relaxation

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default='weight')) – The edge attribute that holds the numerical value used for
the effective spring constant. If None, edge weights are 1.

	scale (float [https://docs.python.org/2/library/functions.html#float] (default=1.0)) – Scale factor for positions. The nodes are positioned
in a box of size \(scale\) in each dim centered at \(center\).

	center (array-like (default scale/2 in each dim)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout(G)

this function has two names:
spring_layout and fruchterman_reingold_layout
>>> pos=nx.fruchterman_reingold_layout(G)

NetworkX

random_layout

	
random_layout(G, dim=2, scale=1.0, center=None)

	Position nodes uniformly at random.

For every node, a position is generated by choosing each of dim
coordinates uniformly at random on the default interval [0.0, 1.0),
or on an interval of length \(scale\) centered at \(center\).

NumPy (http://scipy.org) is required for this function.

	Parameters

	
	G (NetworkX graph or list of nodes) – A position will be assigned to every node in G.

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout.

	scale (float [https://docs.python.org/2/library/functions.html#float] (default 1)) – Scale factor for positions

	center (array-like (default scale*0.5 in each dim)) – Coordinate around which to center the layout.

	Returns

	pos – A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> pos = nx.random_layout(G)

NetworkX

shell_layout

	
shell_layout(G, nlist=None, dim=2, scale=1.0, center=None)

	Position nodes in concentric circles.

	Parameters

	
	G (NetworkX graph or list of nodes) –

	nlist (list of lists) – List of node lists for each shell.

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout, currently only dim=2 is supported

	scale (float [https://docs.python.org/2/library/functions.html#float] (default 1)) – Scale factor for positions, i.e.radius of largest shell

	center (array-like (default origin)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.path_graph(4)
>>> shells = [[0], [1,2,3]]
>>> pos = nx.shell_layout(G, shells)

Notes

This algorithm currently only works in two dimensions and does not
try to minimize edge crossings.

NetworkX

spring_layout

	
spring_layout(G, dim=2, k=None, pos=None, fixed=None, iterations=50, weight='weight', scale=1.0, center=None)

	Position nodes using Fruchterman-Reingold force-directed algorithm.

	Parameters

	
	G (NetworkX graph) –

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout

	k (float [https://docs.python.org/2/library/functions.html#float] (default=None)) – Optimal distance between nodes. If None the distance is set to
1/sqrt(n) where n is the number of nodes. Increase this value
to move nodes farther apart.

	pos (dict [https://docs.python.org/2/library/stdtypes.html#dict] or None optional (default=None)) – Initial positions for nodes as a dictionary with node as keys
and values as a list or tuple. If None, then use random initial
positions.

	fixed (list or None optional (default=None)) – Nodes to keep fixed at initial position.
If any nodes are fixed, the scale and center features are not used.

	iterations (int optional (default=50)) – Number of iterations of spring-force relaxation

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default='weight')) – The edge attribute that holds the numerical value used for
the effective spring constant. If None, edge weights are 1.

	scale (float [https://docs.python.org/2/library/functions.html#float] (default=1.0)) – Scale factor for positions. The nodes are positioned
in a box of size \(scale\) in each dim centered at \(center\).

	center (array-like (default scale/2 in each dim)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout(G)

this function has two names:
spring_layout and fruchterman_reingold_layout
>>> pos=nx.fruchterman_reingold_layout(G)

NetworkX

spectral_layout

	
spectral_layout(G, dim=2, weight='weight', scale=1.0, center=None)

	Position nodes using the eigenvectors of the graph Laplacian.

	Parameters

	
	G (NetworkX graph or list of nodes) –

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default='weight')) – The edge attribute that holds the numerical value used for
the edge weight. If None, then all edge weights are 1.

	scale (float optional (default 1)) – Scale factor for positions, i.e. nodes placed in a box with
side [0, scale] or centered on \(center\) if provided.

	center (array-like (default scale/2 in each dim)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spectral_layout(G)

Notes

Directed graphs will be considered as undirected graphs when
positioning the nodes.

For larger graphs (>500 nodes) this will use the SciPy sparse
eigenvalue solver (ARPACK).

NetworkX

Exceptions

Exceptions

Base exceptions and errors for NetworkX.

	
class NetworkXException

	Base class for exceptions in NetworkX.

	
class NetworkXError

	Exception for a serious error in NetworkX

	
class NetworkXPointlessConcept

	Harary, F. and Read, R. “Is the Null Graph a Pointless Concept?”
In Graphs and Combinatorics Conference, George Washington University.
New York: Springer-Verlag, 1973.

	
class NetworkXAlgorithmError

	Exception for unexpected termination of algorithms.

	
class NetworkXUnfeasible

	Exception raised by algorithms trying to solve a problem
instance that has no feasible solution.

	
class NetworkXNoPath

	Exception for algorithms that should return a path when running
on graphs where such a path does not exist.

	
class NetworkXUnbounded

	Exception raised by algorithms trying to solve a maximization
or a minimization problem instance that is unbounded.

NetworkX

Utilities

Helper Functions

Miscellaneous Helpers for NetworkX.

These are not imported into the base networkx namespace but
can be accessed, for example, as

>>> import networkx
>>> networkx.utils.is_string_like('spam')
True

	is_string_like(obj)

	Check if obj is string.

	flatten(obj[, result])

	Return flattened version of (possibly nested) iterable object.

	iterable(obj)

	Return True if obj is iterable with a well-defined len().

	is_list_of_ints(intlist)

	Return True if list is a list of ints.

	make_str(x)

	Return the string representation of t.

	generate_unique_node()

	Generate a unique node label.

	default_opener(filename)

	Opens \(filename\) using system’s default program.

Data Structures and Algorithms

Union-find data structure.

	UnionFind.union(*objects)

	Find the sets containing the objects and merge them all.

Random Sequence Generators

Utilities for generating random numbers, random sequences, and
random selections.

	create_degree_sequence(n[, sfunction, max_tries])

	

	pareto_sequence(n[, exponent])

	Return sample sequence of length n from a Pareto distribution.

	powerlaw_sequence(n[, exponent])

	Return sample sequence of length n from a power law distribution.

	uniform_sequence(n)

	Return sample sequence of length n from a uniform distribution.

	cumulative_distribution(distribution)

	Return normalized cumulative distribution from discrete distribution.

	discrete_sequence(n[, distribution, …])

	Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution.

	zipf_sequence(n[, alpha, xmin])

	Return a sample sequence of length n from a Zipf distribution with exponent parameter alpha and minimum value xmin.

	zipf_rv(alpha[, xmin, seed])

	Return a random value chosen from the Zipf distribution.

	random_weighted_sample(mapping, k)

	Return k items without replacement from a weighted sample.

	weighted_choice(mapping)

	Return a single element from a weighted sample.

Decorators

	open_file(path_arg[, mode])

	Decorator to ensure clean opening and closing of files.

Cuthill-Mckee Ordering

Cuthill-McKee ordering of graph nodes to produce sparse matrices

	cuthill_mckee_ordering(G[, heuristic])

	Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

	reverse_cuthill_mckee_ordering(G[, heuristic])

	Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

Context Managers

	reversed(*args, **kwds)

	A context manager for temporarily reversing a directed graph in place.

NetworkX

is_string_like

	
is_string_like(obj)

	Check if obj is string.

NetworkX

flatten

	
flatten(obj, result=None)

	Return flattened version of (possibly nested) iterable object.

NetworkX

iterable

	
iterable(obj)

	Return True if obj is iterable with a well-defined len().

NetworkX

is_list_of_ints

	
is_list_of_ints(intlist)

	Return True if list is a list of ints.

NetworkX

make_str

	
make_str(x)

	Return the string representation of t.

NetworkX

generate_unique_node

	
generate_unique_node()

	Generate a unique node label.

NetworkX

default_opener

	
default_opener(filename)

	Opens \(filename\) using system’s default program.

	Parameters

	filename (str [https://docs.python.org/2/library/functions.html#str]) – The path of the file to be opened.

NetworkX

union

	
UnionFind.union(*objects)

	Find the sets containing the objects and merge them all.

NetworkX

create_degree_sequence

	
create_degree_sequence(n, sfunction=None, max_tries=50, **kwds)

	

NetworkX

pareto_sequence

	
pareto_sequence(n, exponent=1.0)

	Return sample sequence of length n from a Pareto distribution.

NetworkX

powerlaw_sequence

	
powerlaw_sequence(n, exponent=2.0)

	Return sample sequence of length n from a power law distribution.

NetworkX

uniform_sequence

	
uniform_sequence(n)

	Return sample sequence of length n from a uniform distribution.

NetworkX

cumulative_distribution

	
cumulative_distribution(distribution)

	Return normalized cumulative distribution from discrete distribution.

NetworkX

discrete_sequence

	
discrete_sequence(n, distribution=None, cdistribution=None)

	Return sample sequence of length n from a given discrete distribution
or discrete cumulative distribution.

One of the following must be specified.

distribution = histogram of values, will be normalized

cdistribution = normalized discrete cumulative distribution

NetworkX

zipf_sequence

	
zipf_sequence(n, alpha=2.0, xmin=1)

	Return a sample sequence of length n from a Zipf distribution with
exponent parameter alpha and minimum value xmin.

See also

zipf_rv()

NetworkX

zipf_rv

	
zipf_rv(alpha, xmin=1, seed=None)

	Return a random value chosen from the Zipf distribution.

The return value is an integer drawn from the probability distribution
::math:

p(x)=\frac{x^{-\alpha}}{\zeta(\alpha,x_{min})},

where \(\zeta(\alpha,x_{min})\) is the Hurwitz zeta function.

	Parameters

	
	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Exponent value of the distribution

	xmin (int [https://docs.python.org/2/library/functions.html#int]) – Minimum value

	seed (int [https://docs.python.org/2/library/functions.html#int]) – Seed value for random number generator

	Returns

	x – Random value from Zipf distribution

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	Raises

	ValueError: – If xmin < 1 or
If alpha <= 1

Notes

The rejection algorithm generates random values for a the power-law
distribution in uniformly bounded expected time dependent on
parameters. See [1] for details on its operation.

Examples

>>> nx.zipf_rv(alpha=2, xmin=3, seed=42)

References

	..[1] Luc Devroye, Non-Uniform Random Variate Generation,

	Springer-Verlag, New York, 1986.

NetworkX

random_weighted_sample

	
random_weighted_sample(mapping, k)

	Return k items without replacement from a weighted sample.

The input is a dictionary of items with weights as values.

NetworkX

weighted_choice

	
weighted_choice(mapping)

	Return a single element from a weighted sample.

The input is a dictionary of items with weights as values.

NetworkX

open_file

	
open_file(path_arg, mode='r')

	Decorator to ensure clean opening and closing of files.

	Parameters

	
	path_arg (int [https://docs.python.org/2/library/functions.html#int]) – Location of the path argument in args. Even if the argument is a
named positional argument (with a default value), you must specify its
index as a positional argument.

	mode (str [https://docs.python.org/2/library/functions.html#str]) – String for opening mode.

	Returns

	_open_file – Function which cleanly executes the io.

	Return type

	function

Examples

Decorate functions like this:

@open_file(0,'r')
def read_function(pathname):
 pass

@open_file(1,'w')
def write_function(G,pathname):
 pass

@open_file(1,'w')
def write_function(G, pathname='graph.dot')
 pass

@open_file('path', 'w+')
def another_function(arg, **kwargs):
 path = kwargs['path']
 pass

NetworkX

cuthill_mckee_ordering

	
cuthill_mckee_ordering(G, heuristic=None)

	Generate an ordering (permutation) of the graph nodes to make
a sparse matrix.

Uses the Cuthill-McKee heuristic (based on breadth-first search) 1.

	Parameters

	
	G (graph) – A NetworkX graph

	heuristic (function, optional) – Function to choose starting node for RCM algorithm. If None
a node from a psuedo-peripheral pair is used. A user-defined function
can be supplied that takes a graph object and returns a single node.

	Returns

	nodes – Generator of nodes in Cuthill-McKee ordering.

	Return type

	generator

Examples

>>> from networkx.utils import cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)

Smallest degree node as heuristic function:

>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))

See also

reverse_cuthill_mckee_ordering()

Notes

The optimal solution the the bandwidth reduction is NP-complete 2.

References

	1

	E. Cuthill and J. McKee.
Reducing the bandwidth of sparse symmetric matrices,
In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969.
http://doi.acm.org/10.1145/800195.805928

	2

	Steven S. Skiena. 1997. The Algorithm Design Manual.
Springer-Verlag New York, Inc., New York, NY, USA.

NetworkX

reverse_cuthill_mckee_ordering

	
reverse_cuthill_mckee_ordering(G, heuristic=None)

	Generate an ordering (permutation) of the graph nodes to make
a sparse matrix.

Uses the reverse Cuthill-McKee heuristic (based on breadth-first search)
1.

	Parameters

	
	G (graph) – A NetworkX graph

	heuristic (function, optional) – Function to choose starting node for RCM algorithm. If None
a node from a psuedo-peripheral pair is used. A user-defined function
can be supplied that takes a graph object and returns a single node.

	Returns

	nodes – Generator of nodes in reverse Cuthill-McKee ordering.

	Return type

	generator

Examples

>>> from networkx.utils import reverse_cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(reverse_cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)

Smallest degree node as heuristic function:

>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))

See also

cuthill_mckee_ordering()

Notes

The optimal solution the the bandwidth reduction is NP-complete 2.

References

	1

	E. Cuthill and J. McKee.
Reducing the bandwidth of sparse symmetric matrices,
In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969.
http://doi.acm.org/10.1145/800195.805928

	2

	Steven S. Skiena. 1997. The Algorithm Design Manual.
Springer-Verlag New York, Inc., New York, NY, USA.

NetworkX

reversed

	
reversed(*args, **kwds)

	A context manager for temporarily reversing a directed graph in place.

This is a no-op for undirected graphs.

	Parameters

	G (graph) – A NetworkX graph.

NetworkX

License

NetworkX is distributed with the BSD license.

Copyright (C) 2004-2016, NetworkX Developers
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

 * Neither the name of the NetworkX Developers nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetworkX

Citing

To cite NetworkX please use the following publication:

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart,
“Exploring network structure, dynamics, and function using NetworkX” [http://conference.scipy.org/proceedings/SciPy2008/paper_2/],
in
Proceedings of the 7th Python in Science Conference (SciPy2008) [http://conference.scipy.org/proceedings/SciPy2008/index.html], Gäel
Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA
USA), pp. 11–15, Aug 2008

PDF [http://math.lanl.gov/~hagberg/Papers/hagberg-2008-exploring.pdf]
BibTeX [http://math.lanl.gov/~hagberg/Publications/hagberg-2008-exploring.shtml]

NetworkX

Credits

NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart,
and has been developed with the help of many others. Thanks to everyone who has
improved NetworkX by contributing code, bug reports (and fixes), documentation,
and input on design, features, and the future of NetworkX.

Contributions

This section aims to provide a list of people and projects that have
contributed to networkx. It is intended to be an inclusive list, and
anyone who has contributed and wishes to make that contribution known is
welcome to add an entry into this file. Generally, no name should be added to
this list without the approval of the person associated with that name.

Creating a comprehensive list of contributors can be difficult, and the list
within this file is almost certainly incomplete. Contributors include
testers, bug reporters, contributors who wish to remain anonymous, funding
sources, academic advisors, end users, and even build/integration systems (such
as TravisCI [https://travis-ci.org], coveralls [https://coveralls.io],
and readthedocs [https://readthedocs.org]).

Do you want to make your contribution known? If you have commit access, edit
this file and add your name. If you do not have commit access, feel free to
open an issue [https://github.com/networkx/networkx/issues/new], submit a
pull request [https://github.com/networkx/networkx/compare/], or get in
contact with one of the official team
members [https://github.com/networkx?tab=members].

A supplementary (but still incomplete) list of contributors is given by the
list of names that have commits in networkx’s
git [http://git-scm.com] repository. This can be obtained via:

git log --raw | grep "^Author: " | sort | uniq

A historical, partial listing of contributors and their contributions to some
of the earlier versions of NetworkX can be found
here [https://github.com/networkx/networkx/blob/886e790437bcf30e9f58368829d483efef7a2acc/doc/source/reference/credits_old.rst].

Original Authors

Aric Hagberg

Dan Schult

Pieter Swart

Contributors

Optionally, add your desired name and include a few relevant links. The order
is partially historical, and now, mostly arbitrary.

	Aric Hagberg, GitHub: hagberg [https://github.com/hagberg]

	Dan Schult, GitHub: dschult [https://github.com/dschult]

	Pieter Swart

	Katy Bold

	Hernan Rozenfeld

	Brendt Wohlberg

	Jim Bagrow

	Holly Johnsen

	Arnar Flatberg

	Chris Myers

	Joel Miller

	Keith Briggs

	Ignacio Rozada

	Phillipp Pagel

	Sverre Sundsdal

	Ross M. Richardson

	Eben Kenah

	Sasha Gutfriend

	Udi Weinsberg

	Matteo Dell’Amico

	Andrew Conway

	Raf Guns

	Salim Fadhley

	Matteo Dell’Amico

	Fabrice Desclaux

	Arpad Horvath

	Minh Van Nguyen

	Willem Ligtenberg

	Loïc Séguin-C.

	Paul McGuire

	Jesus Cerquides

	Ben Edwards

	Jon Olav Vik

	Hugh Brown

	Ben Reilly

	Leo Lopes

	Jordi Torrents, GitHub: jtorrents [https://github.com/jtorrents]

	Dheeraj M R

	Franck Kalala

	Simon Knight

	Conrad Lee

	Sérgio Nery Simões

	Robert King

	Nick Mancuso

	Brian Cloteaux

	Alejandro Weinstein

	Dustin Smith

	Mathieu Larose

	Vincent Gauthier

	Sérgio Nery Simões

	chebee7i, GitHub: chebee7i [https://github.com/chebee7i]

	Jeffrey Finkelstein

	Jean-Gabriel Young, Github: jg-you [https://github.com/jgyou]

	Andrey Paramonov, http://aparamon.msk.ru

	Mridul Seth, GitHub: MridulS [https://github.com/MridulS]

	Thodoris Sotiropoulos, GitHub: theosotr [https://github.com/theosotr]

	Konstantinos Karakatsanis, GitHub: k-karakatsanis [https://github.com/k-karakatsanis]

	Ryan Nelson, GitHub: rnelsonchem [https://github.com/rnelsonchem]

Support

networkx and those who have contributed to networkx have received
support throughout the years from a variety of sources. We list them below.
If you have provided support to networkx and a support acknowledgment does
not appear below, please help us remedy the situation, and similarly, please
let us know if you’d like something modified or corrected.

Research Groups

networkx acknowledges support from the following:

	Center for Nonlinear Studies [http://cnls.lanl.gov], Los Alamos National
Laboratory, PI: Aric Hagberg

	Open Source Programs Office [https://developers.google.com/open-source/],
Google

	Complexity Sciences Center [http://csc.ucdavis.edu/], Department of
Physics, University of California-Davis, PI: James P. Crutchfield

	Center for Complexity and Collective Computation [http://c4.discovery.wisc.edu],
Wisconsin Institute for Discovery, University of Wisconsin-Madison,
PIs: Jessica C. Flack and David C. Krakauer

Funding

networkx acknowledges support from the following:

	Google Summer of Code via Python Software Foundation

	U.S. Army Research Office grant W911NF-12-1-0288

	DARPA Physical Intelligence Subcontract No. 9060-000709

	NSF Grant No. PHY-0748828

	John Templeton Foundation through a grant to the Santa Fe Institute to
study complexity

	U.S. Army Research Laboratory and the U.S. Army Research Office under
contract number W911NF-13-1-0340

NetworkX

Glossary

	dictionary

	A Python dictionary maps keys to values. Also known as “hashes”,
or “associative arrays”.
See http://docs.python.org/tutorial/datastructures.html#dictionaries

	ebunch

	An iteratable container of edge tuples like a list, iterator,
or file.

	edge

	Edges are either two-tuples of nodes (u,v) or three tuples
of nodes with an edge attribute dictionary (u,v,dict).

	edge attribute

	Edges can have arbitrary Python objects assigned as attributes
by using keyword/value pairs when adding an edge
assigning to the G.edge[u][v] attribute dictionary for the
specified edge u-v.

	hashable

	An object is hashable if it has a hash value which never changes
during its lifetime (it needs a __hash__() method), and can be
compared to other objects (it needs an __eq__() or __cmp__()
method). Hashable objects which compare equal must have the same
hash value.

Hashability makes an object usable as a dictionary key and a set
member, because these data structures use the hash value internally.

All of Python’s immutable built-in objects are hashable, while no
mutable containers (such as lists or dictionaries) are. Objects
which are instances of user-defined classes are hashable by
default; they all compare unequal, and their hash value is their
id().

Definition from http://docs.python.org/glossary.html

	nbunch

	An nbunch is any iterable container of nodes that is not itself
a node in the graph. It can be an iterable or an iterator,
e.g. a list, set, graph, file, etc..

	node

	A node can be any hashable Python object except None.

	node attribute

	Nodes can have arbitrary Python objects assigned as attributes
by using keyword/value pairs when adding a node or
assigning to the G.node[n] attribute dictionary for the
specified node n.

NetworkX

Reference

	Release

	1.11

	Date

	Jul 05, 2017

	Overview
	Who uses NetworkX?

	Goals

	The Python programming language

	Free software

	History

	Introduction
	NetworkX Basics

	Nodes and Edges

	Graph types
	Which graph class should I use?

	Basic graph types

	Algorithms
	Approximation

	Assortativity

	Bipartite

	Blockmodeling

	Boundary

	Centrality

	Chordal

	Clique

	Clustering

	Coloring

	Communities

	Components

	Connectivity

	Cores

	Cycles

	Directed Acyclic Graphs

	Distance Measures

	Distance-Regular Graphs

	Dominance

	Dominating Sets

	Eulerian

	Flows

	Graphical degree sequence

	Hierarchy

	Hybrid

	Isolates

	Isomorphism

	Link Analysis

	Link Prediction

	Matching

	Minors

	Maximal independent set

	Minimum Spanning Tree

	Operators

	Rich Club

	Shortest Paths

	Simple Paths

	Swap

	Traversal

	Tree

	Triads

	Vitality

	Functions
	Graph

	Nodes

	Edges

	Attributes

	Freezing graph structure

	Graph generators
	Atlas

	Classic

	Expanders

	Small

	Random Graphs

	Degree Sequence

	Random Clustered

	Directed

	Geometric

	Line Graph

	Ego Graph

	Stochastic

	Intersection

	Social Networks

	Community

	Non Isomorphic Trees

	Linear algebra
	Graph Matrix

	Laplacian Matrix

	Spectrum

	Algebraic Connectivity

	Attribute Matrices

	Converting to and from other data formats
	To NetworkX Graph

	Dictionaries

	Lists

	Numpy

	Scipy

	Pandas

	Reading and writing graphs
	Adjacency List

	Multiline Adjacency List

	Edge List

	GEXF

	GML

	Pickle

	GraphML

	JSON

	LEDA

	YAML

	SparseGraph6

	Pajek

	GIS Shapefile

	Drawing
	Matplotlib

	Graphviz AGraph (dot)

	Graphviz with pydot

	Graph Layout

	Exceptions
	Exceptions

	Utilities
	Helper Functions

	Data Structures and Algorithms

	Random Sequence Generators

	Decorators

	Cuthill-Mckee Ordering

	Context Managers

	License

	Citing

	Credits
	Contributions

	Support

	Glossary

NetworkX

Overview

NetworkX is a Python language software package for the creation,
manipulation, and study of the structure, dynamics, and function of complex networks.

With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of random and classic networks, analyze network structure, build network models, design new network algorithms, draw networks, and much more.

Who uses NetworkX?

The potential audience for NetworkX includes mathematicians,
physicists, biologists, computer scientists, and social scientists. Good
reviews of the state-of-the-art in the science of
complex networks are presented in Albert and Barabási [BA02], Newman
[Newman03], and Dorogovtsev and Mendes [DM03]. See also the classic
texts [Bollobas01], [Diestel97] and [West01] for graph theoretic
results and terminology. For basic graph algorithms, we recommend the
texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the
survey of Brandes and Erlebach [BE05].

Goals

NetworkX is intended to provide

	tools for the study of the structure and
dynamics of social, biological, and infrastructure networks,

	a standard programming interface and graph implementation that is suitable
for many applications,

	a rapid development environment for collaborative, multidisciplinary
projects,

	an interface to existing numerical algorithms and code written in C,
C++, and FORTRAN,

	the ability to painlessly slurp in large nonstandard data sets.

The Python programming language

Python is a powerful programming language that allows simple and flexible representations of networks, and clear and concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition
Python is also an excellent “glue” language for putting together pieces of software from other languages which allows reuse of legacy code and engineering of high-performance algorithms [Langtangen04].

Equally important, Python is free, well-supported, and a joy to use.

In order to make the most out of NetworkX you will want to know how to write basic programs in Python.
Among the many guides to Python, we recommend the documentation at
http://www.python.org and the text by Alex Martelli [Martelli03].

Free software

NetworkX is free software; you can redistribute it and/or
modify it under the terms of the BSD License.
We welcome contributions from the community. Information on
NetworkX development is found at the NetworkX Developer Zone at Github
https://github.com/networkx/networkx

History

NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and Pieter Swart in 2002 and 2003.
The first public release was in April 2005.

Many people have contributed to the success of NetworkX. Some of the contributors are listed in the credits.

What Next

	A Brief Tour

	Installing

	Reference

	Examples

NetworkX

Introduction

NetworkX provides data structures for graphs (or networks)
along with graph algorithms, generators, and drawing tools.

The structure of NetworkX can be seen by the organization of its source code.
The package provides classes for graph objects, generators to create standard
graphs, IO routines for reading in existing datasets, algorithms to analyse
the resulting networks and some basic drawing tools.

Most of the NetworkX API is provided by functions which take a graph object
as an argument. Methods of the graph object are limited to basic manipulation
and reporting. This provides modularity of code and documentation.
It also makes it easier for newcomers to learn about the package in stages.
The source code for each module is meant to be easy to read and reading
this Python code is actually a good way to learn more about network algorithms,
but we have put a lot of effort into making the documentation sufficient and friendly.
If you have suggestions or questions please contact us by joining the
NetworkX Google group [http://groups.google.com/group/networkx-discuss].

Classes are named using CamelCase (capital letters at the start of each word).
functions, methods and variable names are lower_case_underscore (lowercase with
an underscore representing a space between words).

NetworkX Basics

After starting Python, import the networkx module with (the recommended way)

>>> import networkx as nx

To save repetition, in the documentation we assume that
NetworkX has been imported this way.

If importing networkx fails, it means that Python cannot find the installed
module. Check your installation and your PYTHONPATH.

The following basic graph types are provided as Python classes:

	Graph

	This class implements an undirected graph. It ignores
multiple edges between two nodes. It does allow self-loop
edges between a node and itself.

	DiGraph

	Directed graphs, that is, graphs with directed edges.
Operations common to directed graphs,
(a subclass of Graph).

	MultiGraph

	A flexible graph class that allows multiple undirected edges between
pairs of nodes. The additional flexibility leads to some degradation
in performance, though usually not significant.

	MultiDiGraph

	A directed version of a MultiGraph.

Empty graph-like objects are created with

>>> G=nx.Graph()
>>> G=nx.DiGraph()
>>> G=nx.MultiGraph()
>>> G=nx.MultiDiGraph()

All graph classes allow any hashable object as a node. Hashable
objects include strings, tuples, integers, and more.
Arbitrary edge attributes such as weights and labels
can be associated with an edge.

The graph internal data structures are based on an
adjacency list representation and implemented using
Python dictionary datastructures.
The graph adjaceny structure is
implemented as a Python dictionary of
dictionaries; the outer dictionary is keyed by nodes to values that are
themselves dictionaries keyed by neighboring node to the
edge attributes associated with that edge. This “dict-of-dicts” structure
allows fast addition, deletion, and lookup of nodes and neighbors in
large graphs. The underlying datastructure is accessed directly
by methods (the programming interface “API”) in the class definitions.
All functions, on the other hand, manipulate graph-like objects
solely via those API methods and not by acting directly on the datastructure.
This design allows for possible replacement of the ‘dicts-of-dicts’-based
datastructure with an alternative datastructure that implements the
same methods.

Graphs

The first choice to be made when using NetworkX is what type of graph
object to use. A graph (network) is a collection of nodes together
with a collection of edges that are pairs of nodes. Attributes are
often associated with nodes and/or edges. NetworkX graph objects come in
different flavors depending on two main properties of the network:

	Directed: Are the edges directed? Does the order of the edge
pairs (u,v) matter? A directed graph is specified by the “Di”
prefix in the class name, e.g. DiGraph(). We make this distinction
because many classical graph properties are defined differently for
directed graphs.

	Multi-edges: Are multiple edges allowed between each pair of nodes?
As you might imagine, multiple edges requires a different data
structure, though tricky users could design edge data objects to
support this functionality. We provide a standard data structure
and interface for this type of graph using the prefix “Multi”,
e.g. MultiGraph().

The basic graph classes are named:
Graph,
DiGraph,
MultiGraph, and
MultiDiGraph

Nodes and Edges

The next choice you have to make when specifying a graph is what kinds
of nodes and edges to use.

If the topology of the network is all you
care about then using integers or strings as the nodes makes sense and
you need not worry about edge data. If you have a data structure
already in place to describe nodes you can simply use that structure
as your nodes provided it is hashable. If it is not hashable you can
use a unique identifier to represent the node and assign the data
as a node attribute.

Edges often have data associated with them. Arbitrary data
can associated with edges as an edge attribute.
If the data is numeric and the intent is to represent
a weighted graph then use the ‘weight’ keyword for the attribute.
Some of the graph algorithms, such as
Dijkstra’s shortest path algorithm, use this attribute
name to get the weight for each edge.

Other attributes can be assigned to an edge by using keyword/value
pairs when adding edges. You can use any keyword except ‘weight’
to name your attribute and can then easily query the edge
data by that attribute keyword.

Once you’ve decided how to encode the nodes and edges, and whether you have
an undirected/directed graph with or without multiedges you are ready to build
your network.

Graph Creation

NetworkX graph objects can be created in one of three ways:

	Graph generators – standard algorithms to create network topologies.

	Importing data from pre-existing (usually file) sources.

	Adding edges and nodes explicitly.

Explicit addition and removal of nodes/edges is the easiest to describe.
Each graph object supplies methods to manipulate the graph. For example,

>>> import networkx as nx
>>> G=nx.Graph()
>>> G.add_edge(1,2) # default edge data=1
>>> G.add_edge(2,3,weight=0.9) # specify edge data

Edge attributes can be anything:

>>> import math
>>> G.add_edge('y','x',function=math.cos)
>>> G.add_node(math.cos) # any hashable can be a node

You can add many edges at one time:

>>> elist=[('a','b',5.0),('b','c',3.0),('a','c',1.0),('c','d',7.3)]
>>> G.add_weighted_edges_from(elist)

See the Tutorial for more examples.

Some basic graph operations such as union and intersection
are described in the Operators module documentation.

Graph generators such as binomial_graph and powerlaw_graph are provided in the
Graph generators subpackage.

For importing network data from formats such as GML, GraphML, edge list text files
see the Reading and writing graphs subpackage.

Graph Reporting

Class methods are used for the basic reporting functions neighbors, edges and degree.
Reporting of lists is often needed only to iterate through that list so we supply
iterator versions of many property reporting methods. For example edges() and
nodes() have corresponding methods edges_iter() and nodes_iter().
Using these methods when you can will save memory and often time as well.

The basic graph relationship of an edge can be obtained in two basic ways.
One can look for neighbors of a node or one can look for edges incident to
a node. We jokingly refer to people who focus on nodes/neighbors as node-centric
and people who focus on edges as edge-centric. The designers of NetworkX
tend to be node-centric and view edges as a relationship between nodes.
You can see this by our avoidance of notation like G[u,v] in favor of G[u][v].
Most data structures for sparse graphs are essentially adjacency lists and so
fit this perspective. In the end, of course, it doesn’t really matter which way
you examine the graph. G.edges() removes duplicate representations of each edge
while G.neighbors(n) or G[n] is slightly faster but doesn’t remove duplicates.

Any properties that are more complicated than edges, neighbors and degree are
provided by functions. For example nx.triangles(G,n) gives the number of triangles
which include node n as a vertex. These functions are grouped in the code and
documentation under the term algorithms.

Algorithms

A number of graph algorithms are provided with NetworkX.
These include shortest path, and breadth first search
(see traversal),
clustering and isomorphism algorithms and others. There are
many that we have not developed yet too. If you implement a
graph algorithm that might be useful for others please let
us know through the
NetworkX Google group [http://groups.google.com/group/networkx-discuss]
or the Github Developer Zone [https://github.com/networkx/networkx].

As an example here is code to use Dijkstra’s algorithm to
find the shortest weighted path:

>>> G=nx.Graph()
>>> e=[('a','b',0.3),('b','c',0.9),('a','c',0.5),('c','d',1.2)]
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,'a','d'))
['a', 'c', 'd']

Drawing

While NetworkX is not designed as a network layout tool, we provide
a simple interface to drawing packages and some simple layout algorithms.
We interface to the excellent Graphviz layout tools like dot and neato
with the (suggested) pygraphviz package or the pydot interface.
Drawing can be done using external programs or the Matplotlib Python
package. Interactive GUI interfaces are possible though not provided.
The drawing tools are provided in the module drawing.

The basic drawing functions essentially place the nodes on a scatterplot
using the positions in a dictionary or computed with a layout function. The
edges are then lines between those dots.

>>> G=nx.cubical_graph()
>>> nx.draw(G) # default spring_layout
>>> nx.draw(G,pos=nx.spectral_layout(G), nodecolor='r',edge_color='b')

See the
examples
for more ideas.

Data Structure

NetworkX uses a “dictionary of dictionaries of dictionaries” as the
basic network data structure. This allows fast lookup with reasonable
storage for large sparse networks. The keys are nodes so G[u] returns
an adjacency dictionary keyed by neighbor to the edge attribute
dictionary.
The expression G[u][v] returns the edge attribute dictionary itself. A
dictionary of lists would have also been possible, but not allowed
fast edge detection nor convenient storage of edge data.

Advantages of dict-of-dicts-of-dicts data structure:

	Find edges and remove edges with two dictionary look-ups.

	Prefer to “lists” because of fast lookup with sparse storage.

	Prefer to “sets” since data can be attached to edge.

	G[u][v] returns the edge attribute dictionary.

	n in G tests if node n is in graph G.

	for n in G: iterates through the graph.

	for nbr in G[n]: iterates through neighbors.

As an example, here is a representation of an undirected graph with the
edges (‘A’,’B’), (‘B’,’C’)

>>> G=nx.Graph()
>>> G.add_edge('A','B')
>>> G.add_edge('B','C')
>>> print(G.adj)
{'A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}, 'C': {}}}

The data structure gets morphed slightly for each base graph class.
For DiGraph two dict-of-dicts-of-dicts structures are provided, one
for successors and one for predecessors.
For MultiGraph/MultiDiGraph we use a dict-of-dicts-of-dicts-of-dicts 1
where the third dictionary is keyed by an edge key identifier to the fourth
dictionary which contains the edge attributes for that edge between
the two nodes.

Graphs use a dictionary of attributes for each edge.
We use a dict-of-dicts-of-dicts data structure with the inner
dictionary storing “name-value” relationships for that edge.

>>> G=nx.Graph()
>>> G.add_edge(1,2,color='red',weight=0.84,size=300)
>>> print(G[1][2]['size'])
300

Footnotes

	1

	“It’s dictionaries all the way down.”

NetworkX

Graph types

NetworkX provides data structures and methods for storing graphs.

All NetworkX graph classes allow (hashable) Python objects as nodes.
and any Python object can be assigned as an edge attribute.

The choice of graph class depends on the structure of the
graph you want to represent.

Which graph class should I use?

	Graph Type

	NetworkX Class

	Undirected Simple

	Graph

	Directed Simple

	DiGraph

	With Self-loops

	Graph, DiGraph

	With Parallel edges

	MultiGraph, MultiDiGraph

Basic graph types

	Graph – Undirected graphs with self loops
	Overview

	Methods
	Adding and removing nodes and edges

	Iterating over nodes and edges

	Information about graph structure

	Making copies and subgraphs

	DiGraph - Directed graphs with self loops
	Overview

	Methods
	Adding and removing nodes and edges

	Iterating over nodes and edges

	Information about graph structure

	Making copies and subgraphs

	MultiGraph - Undirected graphs with self loops and parallel edges
	Overview

	Methods
	Adding and removing nodes and edges

	Iterating over nodes and edges

	Information about graph structure

	Making copies and subgraphs

	MultiDiGraph - Directed graphs with self loops and parallel edges
	Overview

	Methods
	Adding and Removing Nodes and Edges

	Iterating over nodes and edges

	Information about graph structure

	Making copies and subgraphs

NetworkX

Graph – Undirected graphs with self loops

Overview

	
Graph(data=None, **attr)

	Base class for undirected graphs.

A Graph stores nodes and edges with optional data, or attributes.

Graphs hold undirected edges. Self loops are allowed but multiple
(parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes.

Edges are represented as links between nodes with optional
key/value attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

DiGraph(), MultiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and
no edges.

>>> G = nx.Graph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes
are added automatically. There are no errors when adding
nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5

The fastest way to traverse all edges of a graph is via
adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 1, 4)
(2, 3, 8)
(3, 2, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods.
Iterator versions of many reporting methods exist for efficiency.
Methods exist for reporting nodes(), edges(), neighbors() and degree()
as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The Graph class uses a dict-of-dict-of-dict data structure.
The outer dict (node_dict) holds adjacency lists keyed by node.
The next dict (adjlist) represents the adjacency list and holds
edge data keyed by neighbor. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced by a user defined
dict-like object. In general, the dict-like features should be
maintained but extra features can be added. To replace one of the
dicts create a new graph class by changing the class(!) variable
holding the factory for that dict-like structure. The variable names
are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

	node_dict_factoryfunction, (default: dict)

	Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node.
It should require no arguments and return a dict-like object.

	adjlist_dict_factoryfunction, (default: dict)

	Factory function to be used to create the adjacency list
dict which holds edge data keyed by neighbor.
It should require no arguments and return a dict-like object

	edge_attr_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge attribute
dict which holds attrbute values keyed by attribute name.
It should require no arguments and return a dict-like object.

Examples

Create a graph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
... node_dict_factory=OrderedDict
>>> G=OrderedNodeGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 2), (1, 1)]

Create a graph object that tracks the order nodes are added
and for each node track the order that neighbors are added.

>>> class OrderedGraph(nx.Graph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 2), (2, 1), (1, 1)]

Create a low memory graph class that effectively disallows edge
attributes by using a single attribute dict for all edges.
This reduces the memory used, but you lose edge attributes.

>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2,1)
>>> G.edges(data= True)
[(1, 2, {'weight': 1})]
>>> G.add_edge(2,2)
>>> G[2][1] is G[2][2]
True

Methods

Adding and removing nodes and edges

	Graph.__init__([data])

	Initialize a graph with edges, name, graph attributes.

	Graph.add_node(n[, attr_dict])

	Add a single node n and update node attributes.

	Graph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Graph.remove_node(n)

	Remove node n.

	Graph.remove_nodes_from(nodes)

	Remove multiple nodes.

	Graph.add_edge(u, v[, attr_dict])

	Add an edge between u and v.

	Graph.add_edges_from(ebunch[, attr_dict])

	Add all the edges in ebunch.

	Graph.add_weighted_edges_from(ebunch[, weight])

	Add all the edges in ebunch as weighted edges with specified weights.

	Graph.remove_edge(u, v)

	Remove the edge between u and v.

	Graph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Graph.add_star(nodes, **attr)

	Add a star.

	Graph.add_path(nodes, **attr)

	Add a path.

	Graph.add_cycle(nodes, **attr)

	Add a cycle.

	Graph.clear()

	Remove all nodes and edges from the graph.

Iterating over nodes and edges

	Graph.nodes([data])

	Return a list of the nodes in the graph.

	Graph.nodes_iter([data])

	Return an iterator over the nodes.

	Graph.__iter__()

	Iterate over the nodes.

	Graph.edges([nbunch, data, default])

	Return a list of edges.

	Graph.edges_iter([nbunch, data, default])

	Return an iterator over the edges.

	Graph.get_edge_data(u, v[, default])

	Return the attribute dictionary associated with edge (u,v).

	Graph.neighbors(n)

	Return a list of the nodes connected to the node n.

	Graph.neighbors_iter(n)

	Return an iterator over all neighbors of node n.

	Graph.__getitem__(n)

	Return a dict of neighbors of node n.

	Graph.adjacency_list()

	Return an adjacency list representation of the graph.

	Graph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

	Graph.nbunch_iter([nbunch])

	Return an iterator of nodes contained in nbunch that are also in the graph.

Information about graph structure

	Graph.has_node(n)

	Return True if the graph contains the node n.

	Graph.__contains__(n)

	Return True if n is a node, False otherwise.

	Graph.has_edge(u, v)

	Return True if the edge (u,v) is in the graph.

	Graph.order()

	Return the number of nodes in the graph.

	Graph.number_of_nodes()

	Return the number of nodes in the graph.

	Graph.__len__()

	Return the number of nodes.

	Graph.degree([nbunch, weight])

	Return the degree of a node or nodes.

	Graph.degree_iter([nbunch, weight])

	Return an iterator for (node, degree).

	Graph.size([weight])

	Return the number of edges.

	Graph.number_of_edges([u, v])

	Return the number of edges between two nodes.

	Graph.nodes_with_selfloops()

	Return a list of nodes with self loops.

	Graph.selfloop_edges([data, default])

	Return a list of selfloop edges.

	Graph.number_of_selfloops()

	Return the number of selfloop edges.

Making copies and subgraphs

	Graph.copy()

	Return a copy of the graph.

	Graph.to_undirected()

	Return an undirected copy of the graph.

	Graph.to_directed()

	Return a directed representation of the graph.

	Graph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

NetworkX

__init__

	
Graph.__init__(data=None, **attr)

	Initialize a graph with edges, name, graph attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	name (string [https://docs.python.org/2/library/string.html#module-string], optional (default='')) – An optional name for the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

NetworkX

add_node

	
Graph.add_node(n, attr_dict=None, **attr)

	Add a single node n and update node attributes.

	Parameters

	
	n (node) – A node can be any hashable Python object except None.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will
update existing data associated with the node.

	attr (keyword arguments, optional) – Set or change attributes using key=value.

See also

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.

On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn’t change on mutables.

NetworkX

add_nodes_from

	
Graph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

	attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See also

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific
nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

NetworkX

remove_node

	
Graph.remove_node(n)

	Remove node n.

Removes the node n and all adjacent edges.
Attempting to remove a non-existent node will raise an exception.

	Parameters

	n (node) – A node in the graph

	Raises

	NetworkXError – If n is not in the graph.

See also

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

NetworkX

remove_nodes_from

	
Graph.remove_nodes_from(nodes)

	Remove multiple nodes.

	Parameters

	nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.

See also

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

NetworkX

add_edge

	
Graph.add_edge(u, v, attr_dict=None, **attr)

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by providing
a dictionary with key/value pairs. See examples below.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edges_from()

	add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as
the edge weight a numerical value assigned to a keyword
which by default is ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

NetworkX

add_edges_from

	
Graph.add_edges_from(ebunch, attr_dict=None, **attr)

	Add all the edges in ebunch.

	Parameters

	
	ebunch (container of edges) – Each edge given in the container will be added to the
graph. The edges must be given as as 2-tuples (u,v) or
3-tuples (u,v,d) where d is a dictionary containing edge
data.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with each edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edge()

	add a single edge

	add_weighted_edges_from()

	convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence
over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

NetworkX

add_weighted_edges_from

	
Graph.add_weighted_edges_from(ebunch, weight='weight', **attr)

	Add all the edges in ebunch as weighted edges with specified
weights.

	Parameters

	
	ebunch (container of edges) – Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u,v,w)
where w is a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – The attribute name for the edge weights to be added.

	attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also

	add_edge()

	add a single edge

	add_edges_from()

	add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

NetworkX

remove_edge

	
Graph.remove_edge(u, v)

	Remove the edge between u and v.

	Parameters

	v (u,) – Remove the edge between nodes u and v.

	Raises

	NetworkXError – If there is not an edge between u and v.

See also

	remove_edges_from()

	remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple

NetworkX

remove_edges_from

	
Graph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Parameters

	ebunch (list or container of edge tuples) – Each edge given in the list or container will be removed
from the graph. The edges can be:

	2-tuples (u,v) edge between u and v.

	3-tuples (u,v,k) where k is ignored.

See also

	remove_edge()

	remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

NetworkX

add_star

	
Graph.add_star(nodes, **attr)

	Add a star.

The first node in nodes is the middle of the star. It is connected
to all other nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in star.

See also

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

NetworkX

add_path

	
Graph.add_path(nodes, **attr)

	Add a path.

	Parameters

	
	nodes (iterable container) – A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.

See also

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

NetworkX

add_cycle

	
Graph.add_cycle(nodes, **attr)

	Add a cycle.

	Parameters

	
	nodes (iterable container) – A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.

See also

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

NetworkX

clear

	
Graph.clear()

	Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX

nodes

	
Graph.nodes(data=False)

	Return a list of the nodes in the graph.

	Parameters

	data (boolean, optional (default=False)) – If False return a list of nodes. If True return a
two-tuple of node and node data dictionary

	Returns

	nlist – A list of nodes. If data=True a list of two-tuples containing
(node, node data dictionary).

	Return type

	list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

NetworkX

nodes_iter

	
Graph.nodes_iter(data=False)

	Return an iterator over the nodes.

	Parameters

	data (boolean, optional (default=False)) – If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary

	Returns

	niter – An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)

	Return type

	iterator

Notes

If the node data is not required it is simpler and equivalent
to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

NetworkX

__iter__

	
Graph.__iter__()

	Iterate over the nodes. Use the expression ‘for n in G’.

	Returns

	niter – An iterator over all nodes in the graph.

	Return type

	iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

NetworkX

edges

	
Graph.edges(nbunch=None, data=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

edges_iter

	
Graph.edges_iter(nbunch=None, data=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

get_edge_data

	
Graph.get_edge_data(u, v, default=None)

	Return the attribute dictionary associated with edge (u,v).

	Parameters

	
	v (u,) –

	default (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

	Returns

	edge_dict – The edge attribute dictionary.

	Return type

	dictionary

Notes

It is faster to use G[u][v].

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{}

Warning: Assigning G[u][v] corrupts the graph data structure.
But it is safe to assign attributes to that dictionary,

>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

NetworkX

neighbors

	
Graph.neighbors(n)

	Return a list of the nodes connected to the node n.

	Parameters

	n (node) – A node in the graph

	Returns

	nlist – A list of nodes that are adjacent to n.

	Return type

	list

	Raises

	NetworkXError – If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the
adjacency dictionary as G[n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]

NetworkX

neighbors_iter

	
Graph.neighbors_iter(n)

	Return an iterator over all neighbors of node n.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]

Notes

It is faster to use the idiom “in G[0]”, e.g.

>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]

NetworkX

__getitem__

	
Graph.__getitem__(n)

	Return a dict of neighbors of node n. Use the expression ‘G[n]’.

	Parameters

	n (node) – A node in the graph.

	Returns

	adj_dict – The adjacency dictionary for nodes connected to n.

	Return type

	dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary
is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure.
Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

NetworkX

adjacency_list

	
Graph.adjacency_list()

	Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes().
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_list – The adjacency structure of the graph as a list of lists.

	Return type

	lists of lists

See also

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

NetworkX

adjacency_iter

	
Graph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge.
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_iter – An iterator of (node, adjacency dictionary) for all nodes in
the graph.

	Return type

	iterator

See also

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

NetworkX

nbunch_iter

	
Graph.nbunch_iter(nbunch=None)

	Return an iterator of nodes contained in nbunch that are
also in the graph.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

NetworkX

has_node

	
Graph.has_node(n)

	Return True if the graph contains the node n.

	Parameters

	n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

NetworkX

__contains__

	
Graph.__contains__(n)

	Return True if n is a node, False otherwise. Use the expression
‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

NetworkX

has_edge

	
Graph.has_edge(u, v)

	Return True if the edge (u,v) is in the graph.

	Parameters

	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	Returns

	edge_ind – True if edge is in the graph, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

NetworkX

order

	
Graph.order()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_nodes(), __len__()

NetworkX

number_of_nodes

	
Graph.number_of_nodes()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

NetworkX

__len__

	
Graph.__len__()

	Return the number of nodes. Use the expression ‘len(G)’.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

NetworkX

degree

	
Graph.degree(nbunch=None, weight=None)

	Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

NetworkX

degree_iter

	
Graph.degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, degree).

	Return type

	an iterator

See also

degree()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

NetworkX

size

	
Graph.size(weight=None)

	Return the number of edges.

	Parameters

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.

	Returns

	nedges – The number of edges or sum of edge weights in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

NetworkX

number_of_edges

	
Graph.number_of_edges(u=None, v=None)

	Return the number of edges between two nodes.

	Parameters

	v (u,) – If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.

	Returns

	nedges – The number of edges in the graph. If nodes u and v are specified
return the number of edges between those nodes.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

NetworkX

nodes_with_selfloops

	
Graph.nodes_with_selfloops()

	Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent
to that node.

	Returns

	nodelist – A list of nodes with self loops.

	Return type

	list

See also

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

NetworkX

selfloop_edges

	
Graph.selfloop_edges(data=False, default=None)

	Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

	Parameters

	
	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False)
or three-tuples (u,v,datadict) (data=True)
or three-tuples (u,v,datavalue) (data=’attrname’)

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edgelist – A list of all selfloop edges.

	Return type

	list of edge tuples

See also

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]

NetworkX

number_of_selfloops

	
Graph.number_of_selfloops()

	Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

	Returns

	nloops – The number of selfloops.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

NetworkX

copy

	
Graph.copy()

	Return a copy of the graph.

	Returns

	G – A copy of the graph.

	Return type

	Graph

See also

	to_directed()

	return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the
node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

NetworkX

to_undirected

	
Graph.to_undirected()

	Return an undirected copy of the graph.

	Returns

	G – A deepcopy of the graph.

	Return type

	Graph/MultiGraph

See also

copy(), add_edge(), add_edges_from()

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]

NetworkX

to_directed

	
Graph.to_directed()

	Return a directed representation of the graph.

	Returns

	G – A directed graph with the same name, same nodes, and with
each edge (u,v,data) replaced by two directed edges
(u,v,data) and (v,u,data).

	Return type

	DiGraph

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed Graph to use dict-like objects in the
data structure, those changes do not transfer to the DiGraph
created by this method.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

NetworkX

subgraph

	
Graph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch
and the edges between those nodes.

	Parameters

	nbunch (list, iterable) – A container of nodes which will be iterated through once.

	Returns

	G – A subgraph of the graph with the same edge attributes.

	Return type

	Graph

Notes

The graph, edge or node attributes just point to the original graph.
So changes to the node or edge structure will not be reflected in
the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use:
nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using:
G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

NetworkX

DiGraph - Directed graphs with self loops

Overview

	
DiGraph(data=None, **attr)

	Base class for directed graphs.

A DiGraph stores nodes and edges with optional data, or attributes.

DiGraphs hold directed edges. Self loops are allowed but multiple
(parallel) edges are not.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes.

Edges are represented as links between nodes with optional
key/value attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

Graph(), MultiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and
no edges.

>>> G = nx.DiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes
are added automatically. There are no errors when adding
nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.DiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5

The fastest way to traverse all edges of a graph is via
adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods.
Iterator versions of many reporting methods exist for efficiency.
Methods exist for reporting nodes(), edges(), neighbors() and degree()
as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The Graph class uses a dict-of-dict-of-dict data structure.
The outer dict (node_dict) holds adjacency lists keyed by node.
The next dict (adjlist) represents the adjacency list and holds
edge data keyed by neighbor. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these three dicts can be replaced by a user defined
dict-like object. In general, the dict-like features should be
maintained but extra features can be added. To replace one of the
dicts create a new graph class by changing the class(!) variable
holding the factory for that dict-like structure. The variable names
are node_dict_factory, adjlist_dict_factory and edge_attr_dict_factory.

	node_dict_factoryfunction, optional (default: dict)

	Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node.
It should require no arguments and return a dict-like object.

	adjlist_dict_factoryfunction, optional (default: dict)

	Factory function to be used to create the adjacency list
dict which holds edge data keyed by neighbor.
It should require no arguments and return a dict-like object

	edge_attr_dict_factoryfunction, optional (default: dict)

	Factory function to be used to create the edge attribute
dict which holds attrbute values keyed by attribute name.
It should require no arguments and return a dict-like object.

Examples

Create a graph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedNodeGraph(nx.Graph):
... node_dict_factory=OrderedDict
>>> G=OrderedNodeGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 2), (1, 1)]

Create a graph object that tracks the order nodes are added
and for each node track the order that neighbors are added.

>>> class OrderedGraph(nx.Graph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (1,1)))
>>> G.edges()
[(2, 2), (2, 1), (1, 1)]

Create a low memory graph class that effectively disallows edge
attributes by using a single attribute dict for all edges.
This reduces the memory used, but you lose edge attributes.

>>> class ThinGraph(nx.Graph):
... all_edge_dict = {'weight': 1}
... def single_edge_dict(self):
... return self.all_edge_dict
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2,1)
>>> G.edges(data= True)
[(1, 2, {'weight': 1})]
>>> G.add_edge(2,2)
>>> G[2][1] is G[2][2]
True

Methods

Adding and removing nodes and edges

	DiGraph.__init__([data])

	Initialize a graph with edges, name, graph attributes.

	DiGraph.add_node(n[, attr_dict])

	Add a single node n and update node attributes.

	DiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	DiGraph.remove_node(n)

	Remove node n.

	DiGraph.remove_nodes_from(nbunch)

	Remove multiple nodes.

	DiGraph.add_edge(u, v[, attr_dict])

	Add an edge between u and v.

	DiGraph.add_edges_from(ebunch[, attr_dict])

	Add all the edges in ebunch.

	DiGraph.add_weighted_edges_from(ebunch[, weight])

	Add all the edges in ebunch as weighted edges with specified weights.

	DiGraph.remove_edge(u, v)

	Remove the edge between u and v.

	DiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	DiGraph.add_star(nodes, **attr)

	Add a star.

	DiGraph.add_path(nodes, **attr)

	Add a path.

	DiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	DiGraph.clear()

	Remove all nodes and edges from the graph.

Iterating over nodes and edges

	DiGraph.nodes([data])

	Return a list of the nodes in the graph.

	DiGraph.nodes_iter([data])

	Return an iterator over the nodes.

	DiGraph.__iter__()

	Iterate over the nodes.

	DiGraph.edges([nbunch, data, default])

	Return a list of edges.

	DiGraph.edges_iter([nbunch, data, default])

	Return an iterator over the edges.

	DiGraph.out_edges([nbunch, data, default])

	Return a list of edges.

	DiGraph.out_edges_iter([nbunch, data, default])

	Return an iterator over the edges.

	DiGraph.in_edges([nbunch, data])

	Return a list of the incoming edges.

	DiGraph.in_edges_iter([nbunch, data])

	Return an iterator over the incoming edges.

	DiGraph.get_edge_data(u, v[, default])

	Return the attribute dictionary associated with edge (u,v).

	DiGraph.neighbors(n)

	Return a list of successor nodes of n.

	DiGraph.neighbors_iter(n)

	Return an iterator over successor nodes of n.

	DiGraph.__getitem__(n)

	Return a dict of neighbors of node n.

	DiGraph.successors(n)

	Return a list of successor nodes of n.

	DiGraph.successors_iter(n)

	Return an iterator over successor nodes of n.

	DiGraph.predecessors(n)

	Return a list of predecessor nodes of n.

	DiGraph.predecessors_iter(n)

	Return an iterator over predecessor nodes of n.

	DiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

	DiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

	DiGraph.nbunch_iter([nbunch])

	Return an iterator of nodes contained in nbunch that are also in the graph.

Information about graph structure

	DiGraph.has_node(n)

	Return True if the graph contains the node n.

	DiGraph.__contains__(n)

	Return True if n is a node, False otherwise.

	DiGraph.has_edge(u, v)

	Return True if the edge (u,v) is in the graph.

	DiGraph.order()

	Return the number of nodes in the graph.

	DiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	DiGraph.__len__()

	Return the number of nodes.

	DiGraph.degree([nbunch, weight])

	Return the degree of a node or nodes.

	DiGraph.degree_iter([nbunch, weight])

	Return an iterator for (node, degree).

	DiGraph.in_degree([nbunch, weight])

	Return the in-degree of a node or nodes.

	DiGraph.in_degree_iter([nbunch, weight])

	Return an iterator for (node, in-degree).

	DiGraph.out_degree([nbunch, weight])

	Return the out-degree of a node or nodes.

	DiGraph.out_degree_iter([nbunch, weight])

	Return an iterator for (node, out-degree).

	DiGraph.size([weight])

	Return the number of edges.

	DiGraph.number_of_edges([u, v])

	Return the number of edges between two nodes.

	DiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

	DiGraph.selfloop_edges([data, default])

	Return a list of selfloop edges.

	DiGraph.number_of_selfloops()

	Return the number of selfloop edges.

Making copies and subgraphs

	DiGraph.copy()

	Return a copy of the graph.

	DiGraph.to_undirected([reciprocal])

	Return an undirected representation of the digraph.

	DiGraph.to_directed()

	Return a directed copy of the graph.

	DiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

	DiGraph.reverse([copy])

	Return the reverse of the graph.

NetworkX

__init__

	
DiGraph.__init__(data=None, **attr)

	Initialize a graph with edges, name, graph attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	name (string [https://docs.python.org/2/library/string.html#module-string], optional (default='')) – An optional name for the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

convert()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3),(3,4)] # list of edges
>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}

NetworkX

add_node

	
DiGraph.add_node(n, attr_dict=None, **attr)

	Add a single node n and update node attributes.

	Parameters

	
	n (node) – A node can be any hashable Python object except None.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will
update existing data associated with the node.

	attr (keyword arguments, optional) – Set or change attributes using key=value.

See also

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.

On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn’t change on mutables.

NetworkX

add_nodes_from

	
DiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

	attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See also

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific
nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

NetworkX

remove_node

	
DiGraph.remove_node(n)

	Remove node n.

Removes the node n and all adjacent edges.
Attempting to remove a non-existent node will raise an exception.

	Parameters

	n (node) – A node in the graph

	Raises

	NetworkXError – If n is not in the graph.

See also

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

NetworkX

remove_nodes_from

	
DiGraph.remove_nodes_from(nbunch)

	Remove multiple nodes.

	Parameters

	nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.

See also

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

NetworkX

add_edge

	
DiGraph.add_edge(u, v, attr_dict=None, **attr)

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by providing
a dictionary with key/value pairs. See examples below.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edges_from()

	add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Many NetworkX algorithms designed for weighted graphs use as
the edge weight a numerical value assigned to a keyword
which by default is ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

NetworkX

add_edges_from

	
DiGraph.add_edges_from(ebunch, attr_dict=None, **attr)

	Add all the edges in ebunch.

	Parameters

	
	ebunch (container of edges) – Each edge given in the container will be added to the
graph. The edges must be given as as 2-tuples (u,v) or
3-tuples (u,v,d) where d is a dictionary containing edge
data.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with each edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edge()

	add a single edge

	add_weighted_edges_from()

	convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence
over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

NetworkX

add_weighted_edges_from

	
DiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

	Add all the edges in ebunch as weighted edges with specified
weights.

	Parameters

	
	ebunch (container of edges) – Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u,v,w)
where w is a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – The attribute name for the edge weights to be added.

	attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also

	add_edge()

	add a single edge

	add_edges_from()

	add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

NetworkX

remove_edge

	
DiGraph.remove_edge(u, v)

	Remove the edge between u and v.

	Parameters

	v (u,) – Remove the edge between nodes u and v.

	Raises

	NetworkXError – If there is not an edge between u and v.

See also

	remove_edges_from()

	remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple

NetworkX

remove_edges_from

	
DiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Parameters

	ebunch (list or container of edge tuples) – Each edge given in the list or container will be removed
from the graph. The edges can be:

	2-tuples (u,v) edge between u and v.

	3-tuples (u,v,k) where k is ignored.

See also

	remove_edge()

	remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

NetworkX

add_star

	
DiGraph.add_star(nodes, **attr)

	Add a star.

The first node in nodes is the middle of the star. It is connected
to all other nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in star.

See also

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

NetworkX

add_path

	
DiGraph.add_path(nodes, **attr)

	Add a path.

	Parameters

	
	nodes (iterable container) – A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.

See also

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

NetworkX

add_cycle

	
DiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	Parameters

	
	nodes (iterable container) – A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.

See also

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

NetworkX

clear

	
DiGraph.clear()

	Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX

nodes

	
DiGraph.nodes(data=False)

	Return a list of the nodes in the graph.

	Parameters

	data (boolean, optional (default=False)) – If False return a list of nodes. If True return a
two-tuple of node and node data dictionary

	Returns

	nlist – A list of nodes. If data=True a list of two-tuples containing
(node, node data dictionary).

	Return type

	list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

NetworkX

nodes_iter

	
DiGraph.nodes_iter(data=False)

	Return an iterator over the nodes.

	Parameters

	data (boolean, optional (default=False)) – If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary

	Returns

	niter – An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)

	Return type

	iterator

Notes

If the node data is not required it is simpler and equivalent
to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

NetworkX

__iter__

	
DiGraph.__iter__()

	Iterate over the nodes. Use the expression ‘for n in G’.

	Returns

	niter – An iterator over all nodes in the graph.

	Return type

	iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

NetworkX

edges

	
DiGraph.edges(nbunch=None, data=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

edges_iter

	
DiGraph.edges_iter(nbunch=None, data=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

out_edges

	
DiGraph.out_edges(nbunch=None, data=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

out_edges_iter

	
DiGraph.out_edges_iter(nbunch=None, data=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data
in the order (node, neighbor, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v) or (u,v,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

in_edges

	
DiGraph.in_edges(nbunch=None, data=False)

	Return a list of the incoming edges.

See also

	edges()

	return a list of edges

NetworkX

in_edges_iter

	
DiGraph.in_edges_iter(nbunch=None, data=False)

	Return an iterator over the incoming edges.

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge attribute dict in 3-tuple (u,v,data).

	Returns

	in_edge_iter – An iterator of (u,v) or (u,v,d) tuples of incoming edges.

	Return type

	iterator

See also

	edges_iter()

	return an iterator of edges

NetworkX

get_edge_data

	
DiGraph.get_edge_data(u, v, default=None)

	Return the attribute dictionary associated with edge (u,v).

	Parameters

	
	v (u,) –

	default (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

	Returns

	edge_dict – The edge attribute dictionary.

	Return type

	dictionary

Notes

It is faster to use G[u][v].

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{}

Warning: Assigning G[u][v] corrupts the graph data structure.
But it is safe to assign attributes to that dictionary,

>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

NetworkX

neighbors

	
DiGraph.neighbors(n)

	Return a list of successor nodes of n.

neighbors() and successors() are the same function.

NetworkX

neighbors_iter

	
DiGraph.neighbors_iter(n)

	Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

NetworkX

__getitem__

	
DiGraph.__getitem__(n)

	Return a dict of neighbors of node n. Use the expression ‘G[n]’.

	Parameters

	n (node) – A node in the graph.

	Returns

	adj_dict – The adjacency dictionary for nodes connected to n.

	Return type

	dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary
is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure.
Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

NetworkX

successors

	
DiGraph.successors(n)

	Return a list of successor nodes of n.

neighbors() and successors() are the same function.

NetworkX

successors_iter

	
DiGraph.successors_iter(n)

	Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

NetworkX

predecessors

	
DiGraph.predecessors(n)

	Return a list of predecessor nodes of n.

NetworkX

predecessors_iter

	
DiGraph.predecessors_iter(n)

	Return an iterator over predecessor nodes of n.

NetworkX

adjacency_list

	
DiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes().
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_list – The adjacency structure of the graph as a list of lists.

	Return type

	lists of lists

See also

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

NetworkX

adjacency_iter

	
DiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge.
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_iter – An iterator of (node, adjacency dictionary) for all nodes in
the graph.

	Return type

	iterator

See also

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

NetworkX

nbunch_iter

	
DiGraph.nbunch_iter(nbunch=None)

	Return an iterator of nodes contained in nbunch that are
also in the graph.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

NetworkX

has_node

	
DiGraph.has_node(n)

	Return True if the graph contains the node n.

	Parameters

	n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

NetworkX

__contains__

	
DiGraph.__contains__(n)

	Return True if n is a node, False otherwise. Use the expression
‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

NetworkX

has_edge

	
DiGraph.has_edge(u, v)

	Return True if the edge (u,v) is in the graph.

	Parameters

	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	Returns

	edge_ind – True if edge is in the graph, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

NetworkX

order

	
DiGraph.order()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_nodes(), __len__()

NetworkX

number_of_nodes

	
DiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

NetworkX

__len__

	
DiGraph.__len__()

	Return the number of nodes. Use the expression ‘len(G)’.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

NetworkX

degree

	
DiGraph.degree(nbunch=None, weight=None)

	Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

NetworkX

degree_iter

	
DiGraph.degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), in_degree_iter(), out_degree_iter()

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

NetworkX

in_degree

	
DiGraph.in_degree(nbunch=None, weight=None)

	Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and in-degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

See also

degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]

NetworkX

in_degree_iter

	
DiGraph.in_degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, in-degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), out_degree_iter()

Examples

>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0)) # node 0 with degree 0
[(0, 0)]
>>> list(G.in_degree_iter([0,1]))
[(0, 0), (1, 1)]

NetworkX

out_degree

	
DiGraph.out_degree(nbunch=None, weight=None)

	Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and out-degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]

NetworkX

out_degree_iter

	
DiGraph.out_degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, out-degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]

NetworkX

size

	
DiGraph.size(weight=None)

	Return the number of edges.

	Parameters

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.

	Returns

	nedges – The number of edges or sum of edge weights in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

NetworkX

number_of_edges

	
DiGraph.number_of_edges(u=None, v=None)

	Return the number of edges between two nodes.

	Parameters

	v (u,) – If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.

	Returns

	nedges – The number of edges in the graph. If nodes u and v are specified
return the number of edges between those nodes.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

NetworkX

nodes_with_selfloops

	
DiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent
to that node.

	Returns

	nodelist – A list of nodes with self loops.

	Return type

	list

See also

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

NetworkX

selfloop_edges

	
DiGraph.selfloop_edges(data=False, default=None)

	Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

	Parameters

	
	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False)
or three-tuples (u,v,datadict) (data=True)
or three-tuples (u,v,datavalue) (data=’attrname’)

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edgelist – A list of all selfloop edges.

	Return type

	list of edge tuples

See also

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]

NetworkX

number_of_selfloops

	
DiGraph.number_of_selfloops()

	Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

	Returns

	nloops – The number of selfloops.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

NetworkX

copy

	
DiGraph.copy()

	Return a copy of the graph.

	Returns

	G – A copy of the graph.

	Return type

	Graph

See also

	to_directed()

	return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the
node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

NetworkX

to_undirected

	
DiGraph.to_undirected(reciprocal=False)

	Return an undirected representation of the digraph.

	Parameters

	reciprocal (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – If True only keep edges that appear in both directions
in the original digraph.

	Returns

	G – An undirected graph with the same name and nodes and
with edge (u,v,data) if either (u,v,data) or (v,u,data)
is in the digraph. If both edges exist in digraph and
their edge data is different, only one edge is created
with an arbitrary choice of which edge data to use.
You must check and correct for this manually if desired.

	Return type

	Graph

Notes

If edges in both directions (u,v) and (v,u) exist in the
graph, attributes for the new undirected edge will be a combination of
the attributes of the directed edges. The edge data is updated
in the (arbitrary) order that the edges are encountered. For
more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed DiGraph to use dict-like objects
in the data structure, those changes do not transfer to the Graph
created by this method.

NetworkX

to_directed

	
DiGraph.to_directed()

	Return a directed copy of the graph.

	Returns

	G – A deepcopy of the graph.

	Return type

	DiGraph

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

NetworkX

subgraph

	
DiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch
and the edges between those nodes.

	Parameters

	nbunch (list, iterable) – A container of nodes which will be iterated through once.

	Returns

	G – A subgraph of the graph with the same edge attributes.

	Return type

	Graph

Notes

The graph, edge or node attributes just point to the original graph.
So changes to the node or edge structure will not be reflected in
the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use:
nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using:
G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

NetworkX

reverse

	
DiGraph.reverse(copy=True)

	Return the reverse of the graph.

The reverse is a graph with the same nodes and edges
but with the directions of the edges reversed.

	Parameters

	copy (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges.
If False, reverse the reverse graph is created using
the original graph (this changes the original graph).

NetworkX

MultiGraph - Undirected graphs with self loops and parallel edges

Overview

	
MultiGraph(data=None, **attr)

	An undirected graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge
can hold optional data or attributes.

A MultiGraph holds undirected edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes.

Edges are represented as links between nodes with optional
key/value attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

Graph(), DiGraph(), MultiDiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and
no edges.

>>> G = nx.MultiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes
are added automatically. If an edge already exists, an additional
edge is created and stored using a key to identify the edge.
By default the key is the lowest unused integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.MultiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
... # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via
adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,keydict in nbrsdict.items():
... for key,eattr in keydict.items():
... if 'weight' in eattr:
... (n,nbr,key,eattr['weight'])
(1, 2, 0, 4)
(2, 1, 0, 4)
(2, 3, 0, 8)
(3, 2, 0, 8)
>>> G.edges(data='weight', keys=True)
[(1, 2, 0, 4), (1, 2, 1, None), (2, 3, 0, 8), (3, 4, 0, None), (4, 5, 0, None)]

Reporting:

Simple graph information is obtained using methods.
Iterator versions of many reporting methods exist for efficiency.
Methods exist for reporting nodes(), edges(), neighbors() and degree()
as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiGraph class uses a dict-of-dict-of-dict-of-dict data structure.
The outer dict (node_dict) holds adjacency lists keyed by node.
The next dict (adjlist) represents the adjacency list and holds
edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr
dict keyed by edge key. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict
structure can be replaced by a user defined dict-like object.
In general, the dict-like features should be maintained but
extra features can be added. To replace one of the dicts create
a new graph class by changing the class(!) variable holding the
factory for that dict-like structure. The variable names
are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory
and edge_attr_dict_factory.

	node_dict_factoryfunction, (default: dict)

	Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node.
It should require no arguments and return a dict-like object.

	adjlist_dict_factoryfunction, (default: dict)

	Factory function to be used to create the adjacency list
dict which holds multiedge key dicts keyed by neighbor.
It should require no arguments and return a dict-like object.

	edge_key_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge key dict
which holds edge data keyed by edge key.
It should require no arguments and return a dict-like object.

	edge_attr_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge attribute
dict which holds attrbute values keyed by attribute name.
It should require no arguments and return a dict-like object.

Examples

Create a multigraph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiGraph):
... node_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]

Create a multgraph object that tracks the order nodes are added
and for each node track the order that neighbors are added and for
each neighbor tracks the order that multiedges are added.

>>> class OrderedGraph(nx.MultiGraph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
... edge_key_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)))
>>> G.edges(keys=True)
[(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]

Methods

Adding and removing nodes and edges

	MultiGraph.__init__([data])

	

	MultiGraph.add_node(n[, attr_dict])

	Add a single node n and update node attributes.

	MultiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	MultiGraph.remove_node(n)

	Remove node n.

	MultiGraph.remove_nodes_from(nodes)

	Remove multiple nodes.

	MultiGraph.add_edge(u, v[, key, attr_dict])

	Add an edge between u and v.

	MultiGraph.add_edges_from(ebunch[, attr_dict])

	Add all the edges in ebunch.

	MultiGraph.add_weighted_edges_from(ebunch[, …])

	Add all the edges in ebunch as weighted edges with specified weights.

	MultiGraph.remove_edge(u, v[, key])

	Remove an edge between u and v.

	MultiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	MultiGraph.add_star(nodes, **attr)

	Add a star.

	MultiGraph.add_path(nodes, **attr)

	Add a path.

	MultiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	MultiGraph.clear()

	Remove all nodes and edges from the graph.

Iterating over nodes and edges

	MultiGraph.nodes([data])

	Return a list of the nodes in the graph.

	MultiGraph.nodes_iter([data])

	Return an iterator over the nodes.

	MultiGraph.__iter__()

	Iterate over the nodes.

	MultiGraph.edges([nbunch, data, keys, default])

	Return a list of edges.

	MultiGraph.edges_iter([nbunch, data, keys, …])

	Return an iterator over the edges.

	MultiGraph.get_edge_data(u, v[, key, default])

	Return the attribute dictionary associated with edge (u,v).

	MultiGraph.neighbors(n)

	Return a list of the nodes connected to the node n.

	MultiGraph.neighbors_iter(n)

	Return an iterator over all neighbors of node n.

	MultiGraph.__getitem__(n)

	Return a dict of neighbors of node n.

	MultiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

	MultiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

	MultiGraph.nbunch_iter([nbunch])

	Return an iterator of nodes contained in nbunch that are also in the graph.

Information about graph structure

	MultiGraph.has_node(n)

	Return True if the graph contains the node n.

	MultiGraph.__contains__(n)

	Return True if n is a node, False otherwise.

	MultiGraph.has_edge(u, v[, key])

	Return True if the graph has an edge between nodes u and v.

	MultiGraph.order()

	Return the number of nodes in the graph.

	MultiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	MultiGraph.__len__()

	Return the number of nodes.

	MultiGraph.degree([nbunch, weight])

	Return the degree of a node or nodes.

	MultiGraph.degree_iter([nbunch, weight])

	Return an iterator for (node, degree).

	MultiGraph.size([weight])

	Return the number of edges.

	MultiGraph.number_of_edges([u, v])

	Return the number of edges between two nodes.

	MultiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

	MultiGraph.selfloop_edges([data, keys, default])

	Return a list of selfloop edges.

	MultiGraph.number_of_selfloops()

	Return the number of selfloop edges.

Making copies and subgraphs

	MultiGraph.copy()

	Return a copy of the graph.

	MultiGraph.to_undirected()

	Return an undirected copy of the graph.

	MultiGraph.to_directed()

	Return a directed representation of the graph.

	MultiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

NetworkX

__init__

	
MultiGraph.__init__(data=None, **attr)

	

NetworkX

add_node

	
MultiGraph.add_node(n, attr_dict=None, **attr)

	Add a single node n and update node attributes.

	Parameters

	
	n (node) – A node can be any hashable Python object except None.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will
update existing data associated with the node.

	attr (keyword arguments, optional) – Set or change attributes using key=value.

See also

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.

On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn’t change on mutables.

NetworkX

add_nodes_from

	
MultiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

	attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See also

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific
nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

NetworkX

remove_node

	
MultiGraph.remove_node(n)

	Remove node n.

Removes the node n and all adjacent edges.
Attempting to remove a non-existent node will raise an exception.

	Parameters

	n (node) – A node in the graph

	Raises

	NetworkXError – If n is not in the graph.

See also

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

NetworkX

remove_nodes_from

	
MultiGraph.remove_nodes_from(nodes)

	Remove multiple nodes.

	Parameters

	nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.

See also

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

NetworkX

add_edge

	
MultiGraph.add_edge(u, v, key=None, attr_dict=None, **attr)

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by providing
a dictionary with key/value pairs. See examples below.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	key (hashable identifier, optional (default=lowest unused integer)) – Used to distinguish multiedges between a pair of nodes.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edges_from()

	add a collection of edges

Notes

To replace/update edge data, use the optional key argument
to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use
multigraphs directly because it is not clear how to handle
multiedge weights. Convert to Graph using edge attribute
‘weight’ to enable weighted graph algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

NetworkX

add_edges_from

	
MultiGraph.add_edges_from(ebunch, attr_dict=None, **attr)

	Add all the edges in ebunch.

	Parameters

	
	ebunch (container of edges) – Each edge given in the container will be added to the
graph. The edges can be:

	2-tuples (u,v) or

	3-tuples (u,v,d) for an edge attribute dict d, or

	4-tuples (u,v,k,d) for an edge identified by key k

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with each edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edge()

	add a single edge

	add_weighted_edges_from()

	convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence
over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

NetworkX

add_weighted_edges_from

	
MultiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

	Add all the edges in ebunch as weighted edges with specified
weights.

	Parameters

	
	ebunch (container of edges) – Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u,v,w)
where w is a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – The attribute name for the edge weights to be added.

	attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also

	add_edge()

	add a single edge

	add_edges_from()

	add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

NetworkX

remove_edge

	
MultiGraph.remove_edge(u, v, key=None)

	Remove an edge between u and v.

	Parameters

	
	v (u,) – Remove an edge between nodes u and v.

	key (hashable identifier, optional (default=None)) – Used to distinguish multiple edges between a pair of nodes.
If None remove a single (abritrary) edge between u and v.

	Raises

	NetworkXError – If there is not an edge between u and v, or
if there is no edge with the specified key.

See also

	remove_edges_from()

	remove a collection of edges

Examples

>>> G = nx.MultiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiGraph() # or MultiDiGraph, etc
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge

For edges with keys

>>> G = nx.MultiGraph() # or MultiDiGraph, etc
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')

NetworkX

remove_edges_from

	
MultiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Parameters

	ebunch (list or container of edge tuples) – Each edge given in the list or container will be removed
from the graph. The edges can be:

	2-tuples (u,v) All edges between u and v are removed.

	3-tuples (u,v,key) The edge identified by key is removed.

	4-tuples (u,v,key,data) where data is ignored.

See also

	remove_edge()

	remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]

NetworkX

add_star

	
MultiGraph.add_star(nodes, **attr)

	Add a star.

The first node in nodes is the middle of the star. It is connected
to all other nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in star.

See also

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

NetworkX

add_path

	
MultiGraph.add_path(nodes, **attr)

	Add a path.

	Parameters

	
	nodes (iterable container) – A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.

See also

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

NetworkX

add_cycle

	
MultiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	Parameters

	
	nodes (iterable container) – A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.

See also

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

NetworkX

clear

	
MultiGraph.clear()

	Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX

nodes

	
MultiGraph.nodes(data=False)

	Return a list of the nodes in the graph.

	Parameters

	data (boolean, optional (default=False)) – If False return a list of nodes. If True return a
two-tuple of node and node data dictionary

	Returns

	nlist – A list of nodes. If data=True a list of two-tuples containing
(node, node data dictionary).

	Return type

	list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

NetworkX

nodes_iter

	
MultiGraph.nodes_iter(data=False)

	Return an iterator over the nodes.

	Parameters

	data (boolean, optional (default=False)) – If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary

	Returns

	niter – An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)

	Return type

	iterator

Notes

If the node data is not required it is simpler and equivalent
to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

NetworkX

__iter__

	
MultiGraph.__iter__()

	Iterate over the nodes. Use the expression ‘for n in G’.

	Returns

	niter – An iterator over all nodes in the graph.

	Return type

	iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

NetworkX

edges

	
MultiGraph.edges(nbunch=None, data=False, keys=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True,keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

edges_iter

	
MultiGraph.edges_iter(nbunch=None, data=False, keys=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

get_edge_data

	
MultiGraph.get_edge_data(u, v, key=None, default=None)

	Return the attribute dictionary associated with edge (u,v).

	Parameters

	
	v (u,) –

	default (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

	key (hashable identifier, optional (default=None)) – Return data only for the edge with specified key.

	Returns

	edge_dict – The edge attribute dictionary.

	Return type

	dictionary

Notes

It is faster to use G[u][v][key].

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure.
But it is safe to assign attributes to that dictionary,

>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

NetworkX

neighbors

	
MultiGraph.neighbors(n)

	Return a list of the nodes connected to the node n.

	Parameters

	n (node) – A node in the graph

	Returns

	nlist – A list of nodes that are adjacent to n.

	Return type

	list

	Raises

	NetworkXError – If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the
adjacency dictionary as G[n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=7)
>>> G['a']
{'b': {'weight': 7}}

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors(0)
[1]

NetworkX

neighbors_iter

	
MultiGraph.neighbors_iter(n)

	Return an iterator over all neighbors of node n.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]

Notes

It is faster to use the idiom “in G[0]”, e.g.

>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]

NetworkX

__getitem__

	
MultiGraph.__getitem__(n)

	Return a dict of neighbors of node n. Use the expression ‘G[n]’.

	Parameters

	n (node) – A node in the graph.

	Returns

	adj_dict – The adjacency dictionary for nodes connected to n.

	Return type

	dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary
is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure.
Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

NetworkX

adjacency_list

	
MultiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes().
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_list – The adjacency structure of the graph as a list of lists.

	Return type

	lists of lists

See also

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

NetworkX

adjacency_iter

	
MultiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge.
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_iter – An iterator of (node, adjacency dictionary) for all nodes in
the graph.

	Return type

	iterator

See also

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

NetworkX

nbunch_iter

	
MultiGraph.nbunch_iter(nbunch=None)

	Return an iterator of nodes contained in nbunch that are
also in the graph.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

NetworkX

has_node

	
MultiGraph.has_node(n)

	Return True if the graph contains the node n.

	Parameters

	n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

NetworkX

__contains__

	
MultiGraph.__contains__(n)

	Return True if n is a node, False otherwise. Use the expression
‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

NetworkX

has_edge

	
MultiGraph.has_edge(u, v, key=None)

	Return True if the graph has an edge between nodes u and v.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.

	key (hashable identifier, optional (default=None)) – If specified return True only if the edge with
key is found.

	Returns

	edge_ind – True if edge is in the graph, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

Can be called either using two nodes u,v, an edge tuple (u,v),
or an edge tuple (u,v,key).

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True

The following syntax are equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

NetworkX

order

	
MultiGraph.order()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_nodes(), __len__()

NetworkX

number_of_nodes

	
MultiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

NetworkX

__len__

	
MultiGraph.__len__()

	Return the number of nodes. Use the expression ‘len(G)’.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

NetworkX

degree

	
MultiGraph.degree(nbunch=None, weight=None)

	Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

NetworkX

degree_iter

	
MultiGraph.degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, degree).

	Return type

	an iterator

See also

degree()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

NetworkX

size

	
MultiGraph.size(weight=None)

	Return the number of edges.

	Parameters

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.

	Returns

	nedges – The number of edges or sum of edge weights in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

NetworkX

number_of_edges

	
MultiGraph.number_of_edges(u=None, v=None)

	Return the number of edges between two nodes.

	Parameters

	v (u,) – If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.

	Returns

	nedges – The number of edges in the graph. If nodes u and v are specified
return the number of edges between those nodes.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

NetworkX

nodes_with_selfloops

	
MultiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent
to that node.

	Returns

	nodelist – A list of nodes with self loops.

	Return type

	list

See also

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

NetworkX

selfloop_edges

	
MultiGraph.selfloop_edges(data=False, keys=False, default=None)

	Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

	Parameters

	
	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False)
or three-tuples (u,v,datadict) (data=True)
or three-tuples (u,v,datavalue) (data=’attrname’)

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	edgelist – A list of all selfloop edges.

	Return type

	list of edge tuples

See also

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]

NetworkX

number_of_selfloops

	
MultiGraph.number_of_selfloops()

	Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

	Returns

	nloops – The number of selfloops.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

NetworkX

copy

	
MultiGraph.copy()

	Return a copy of the graph.

	Returns

	G – A copy of the graph.

	Return type

	Graph

See also

	to_directed()

	return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the
node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

NetworkX

to_undirected

	
MultiGraph.to_undirected()

	Return an undirected copy of the graph.

	Returns

	G – A deepcopy of the graph.

	Return type

	Graph/MultiGraph

See also

copy(), add_edge(), add_edges_from()

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]

NetworkX

to_directed

	
MultiGraph.to_directed()

	Return a directed representation of the graph.

	Returns

	G – A directed graph with the same name, same nodes, and with
each edge (u,v,data) replaced by two directed edges
(u,v,data) and (v,u,data).

	Return type

	MultiDiGraph

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects
in the data structure, those changes do not transfer to the MultiDiGraph
created by this method.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

NetworkX

subgraph

	
MultiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch
and the edges between those nodes.

	Parameters

	nbunch (list, iterable) – A container of nodes which will be iterated through once.

	Returns

	G – A subgraph of the graph with the same edge attributes.

	Return type

	Graph

Notes

The graph, edge or node attributes just point to the original graph.
So changes to the node or edge structure will not be reflected in
the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use:
nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using:
G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

NetworkX

MultiDiGraph - Directed graphs with self loops and parallel edges

Overview

	
MultiDiGraph(data=None, **attr)

	A directed graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge
can hold optional data or attributes.

A MultiDiGraph holds directed edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes.

Edges are represented as links between nodes with optional
key/value attributes.

	Parameters

	
	data (input graph) – Data to initialize graph. If data=None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix
or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to graph as key=value pairs.

See also

Graph(), DiGraph(), MultiGraph()

Examples

Create an empty graph structure (a “null graph”) with no nodes and
no edges.

>>> G = nx.MultiDiGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.

>>> G.add_node(H)

Edges:

G can also be grown by adding edges.

Add one edge,

>>> G.add_edge(1, 2)

a list of edges,

>>> G.add_edges_from([(1,2),(1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes
are added automatically. If an edge already exists, an additional
edge is created and stored using a key to identify the edge.
By default the key is the lowest unused integer.

>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.

>>> G = nx.MultiDiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
... # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue'}}}

The fastest way to traverse all edges of a graph is via
adjacency_iter(), but the edges() method is often more convenient.

>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,keydict in nbrsdict.items():
... for key,eattr in keydict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> G.edges(data='weight')
[(1, 2, 4), (1, 2, None), (2, 3, 8), (3, 4, None), (4, 5, None)]

Reporting:

Simple graph information is obtained using methods.
Iterator versions of many reporting methods exist for efficiency.
Methods exist for reporting nodes(), edges(), neighbors() and degree()
as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Subclasses (Advanced):

The MultiDiGraph class uses a dict-of-dict-of-dict-of-dict structure.
The outer dict (node_dict) holds adjacency lists keyed by node.
The next dict (adjlist) represents the adjacency list and holds
edge_key dicts keyed by neighbor. The edge_key dict holds each edge_attr
dict keyed by edge key. The inner dict (edge_attr) represents
the edge data and holds edge attribute values keyed by attribute names.

Each of these four dicts in the dict-of-dict-of-dict-of-dict
structure can be replaced by a user defined dict-like object.
In general, the dict-like features should be maintained but
extra features can be added. To replace one of the dicts create
a new graph class by changing the class(!) variable holding the
factory for that dict-like structure. The variable names
are node_dict_factory, adjlist_dict_factory, edge_key_dict_factory
and edge_attr_dict_factory.

	node_dict_factoryfunction, (default: dict)

	Factory function to be used to create the outer-most dict
in the data structure that holds adjacency lists keyed by node.
It should require no arguments and return a dict-like object.

	adjlist_dict_factoryfunction, (default: dict)

	Factory function to be used to create the adjacency list
dict which holds multiedge key dicts keyed by neighbor.
It should require no arguments and return a dict-like object.

	edge_key_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge key dict
which holds edge data keyed by edge key.
It should require no arguments and return a dict-like object.

	edge_attr_dict_factoryfunction, (default: dict)

	Factory function to be used to create the edge attribute
dict which holds attrbute values keyed by attribute name.
It should require no arguments and return a dict-like object.

Examples

Create a multigraph object that tracks the order nodes are added.

>>> from collections import OrderedDict
>>> class OrderedGraph(nx.MultiDiGraph):
... node_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1), (2,1), (1,1)))
>>> G.edges()
[(2, 1), (2, 1), (2, 2), (1, 1)]

Create a multdigraph object that tracks the order nodes are added
and for each node track the order that neighbors are added and for
each neighbor tracks the order that multiedges are added.

>>> class OrderedGraph(nx.MultiDiGraph):
... node_dict_factory = OrderedDict
... adjlist_dict_factory = OrderedDict
... edge_key_dict_factory = OrderedDict
>>> G = OrderedGraph()
>>> G.add_nodes_from((2,1))
>>> G.nodes()
[2, 1]
>>> G.add_edges_from(((2,2), (2,1,2,{'weight':0.1}), (2,1,1,{'weight':0.2}), (1,1)))
>>> G.edges(keys=True)
[(2, 2, 0), (2, 1, 2), (2, 1, 1), (1, 1, 0)]

Methods

Adding and Removing Nodes and Edges

	MultiDiGraph.__init__([data])

	

	MultiDiGraph.add_node(n[, attr_dict])

	Add a single node n and update node attributes.

	MultiDiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	MultiDiGraph.remove_node(n)

	Remove node n.

	MultiDiGraph.remove_nodes_from(nbunch)

	Remove multiple nodes.

	MultiDiGraph.add_edge(u, v[, key, attr_dict])

	Add an edge between u and v.

	MultiDiGraph.add_edges_from(ebunch[, attr_dict])

	Add all the edges in ebunch.

	MultiDiGraph.add_weighted_edges_from(ebunch)

	Add all the edges in ebunch as weighted edges with specified weights.

	MultiDiGraph.remove_edge(u, v[, key])

	Remove an edge between u and v.

	MultiDiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	MultiDiGraph.add_star(nodes, **attr)

	Add a star.

	MultiDiGraph.add_path(nodes, **attr)

	Add a path.

	MultiDiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	MultiDiGraph.clear()

	Remove all nodes and edges from the graph.

Iterating over nodes and edges

	MultiDiGraph.nodes([data])

	Return a list of the nodes in the graph.

	MultiDiGraph.nodes_iter([data])

	Return an iterator over the nodes.

	MultiDiGraph.__iter__()

	Iterate over the nodes.

	MultiDiGraph.edges([nbunch, data, keys, default])

	Return a list of edges.

	MultiDiGraph.edges_iter([nbunch, data, …])

	Return an iterator over the edges.

	MultiDiGraph.out_edges([nbunch, keys, data])

	Return a list of the outgoing edges.

	MultiDiGraph.out_edges_iter([nbunch, data, …])

	Return an iterator over the edges.

	MultiDiGraph.in_edges([nbunch, keys, data])

	Return a list of the incoming edges.

	MultiDiGraph.in_edges_iter([nbunch, data, keys])

	Return an iterator over the incoming edges.

	MultiDiGraph.get_edge_data(u, v[, key, default])

	Return the attribute dictionary associated with edge (u,v).

	MultiDiGraph.neighbors(n)

	Return a list of successor nodes of n.

	MultiDiGraph.neighbors_iter(n)

	Return an iterator over successor nodes of n.

	MultiDiGraph.__getitem__(n)

	Return a dict of neighbors of node n.

	MultiDiGraph.successors(n)

	Return a list of successor nodes of n.

	MultiDiGraph.successors_iter(n)

	Return an iterator over successor nodes of n.

	MultiDiGraph.predecessors(n)

	Return a list of predecessor nodes of n.

	MultiDiGraph.predecessors_iter(n)

	Return an iterator over predecessor nodes of n.

	MultiDiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

	MultiDiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

	MultiDiGraph.nbunch_iter([nbunch])

	Return an iterator of nodes contained in nbunch that are also in the graph.

Information about graph structure

	MultiDiGraph.has_node(n)

	Return True if the graph contains the node n.

	MultiDiGraph.__contains__(n)

	Return True if n is a node, False otherwise.

	MultiDiGraph.has_edge(u, v[, key])

	Return True if the graph has an edge between nodes u and v.

	MultiDiGraph.order()

	Return the number of nodes in the graph.

	MultiDiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	MultiDiGraph.__len__()

	Return the number of nodes.

	MultiDiGraph.degree([nbunch, weight])

	Return the degree of a node or nodes.

	MultiDiGraph.degree_iter([nbunch, weight])

	Return an iterator for (node, degree).

	MultiDiGraph.in_degree([nbunch, weight])

	Return the in-degree of a node or nodes.

	MultiDiGraph.in_degree_iter([nbunch, weight])

	Return an iterator for (node, in-degree).

	MultiDiGraph.out_degree([nbunch, weight])

	Return the out-degree of a node or nodes.

	MultiDiGraph.out_degree_iter([nbunch, weight])

	Return an iterator for (node, out-degree).

	MultiDiGraph.size([weight])

	Return the number of edges.

	MultiDiGraph.number_of_edges([u, v])

	Return the number of edges between two nodes.

	MultiDiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

	MultiDiGraph.selfloop_edges([data, keys, …])

	Return a list of selfloop edges.

	MultiDiGraph.number_of_selfloops()

	Return the number of selfloop edges.

Making copies and subgraphs

	MultiDiGraph.copy()

	Return a copy of the graph.

	MultiDiGraph.to_undirected([reciprocal])

	Return an undirected representation of the digraph.

	MultiDiGraph.to_directed()

	Return a directed copy of the graph.

	MultiDiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

	MultiDiGraph.reverse([copy])

	Return the reverse of the graph.

NetworkX

__init__

	
MultiDiGraph.__init__(data=None, **attr)

	

NetworkX

add_node

	
MultiDiGraph.add_node(n, attr_dict=None, **attr)

	Add a single node n and update node attributes.

	Parameters

	
	n (node) – A node can be any hashable Python object except None.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of node attributes. Key/value pairs will
update existing data associated with the node.

	attr (keyword arguments, optional) – Set or change attributes using key=value.

See also

add_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3

Use keywords set/change node attributes:

>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))

Notes

A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.

On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn’t change on mutables.

NetworkX

add_nodes_from

	
MultiDiGraph.add_nodes_from(nodes, **attr)

	Add multiple nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

	attr (keyword arguments, optional (default= no attributes)) – Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See also

add_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific
nodes.

>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11

NetworkX

remove_node

	
MultiDiGraph.remove_node(n)

	Remove node n.

Removes the node n and all adjacent edges.
Attempting to remove a non-existent node will raise an exception.

	Parameters

	n (node) – A node in the graph

	Raises

	NetworkXError – If n is not in the graph.

See also

remove_nodes_from()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.edges()
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> G.edges()
[]

NetworkX

remove_nodes_from

	
MultiDiGraph.remove_nodes_from(nbunch)

	Remove multiple nodes.

	Parameters

	nodes (iterable container) – A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.

See also

remove_node()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

NetworkX

add_edge

	
MultiDiGraph.add_edge(u, v, key=None, attr_dict=None, **attr)

	Add an edge between u and v.

The nodes u and v will be automatically added if they are
not already in the graph.

Edge attributes can be specified with keywords or by providing
a dictionary with key/value pairs. See examples below.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.

	key (hashable identifier, optional (default=lowest unused integer)) – Used to distinguish multiedges between a pair of nodes.

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with the edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edges_from()

	add a collection of edges

Notes

To replace/update edge data, use the optional key argument
to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use
multigraphs directly because it is not clear how to handle
multiedge weights. Convert to Graph using edge attribute
‘weight’ to enable weighted graph algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.MultiDiGraph()
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)

NetworkX

add_edges_from

	
MultiDiGraph.add_edges_from(ebunch, attr_dict=None, **attr)

	Add all the edges in ebunch.

	Parameters

	
	ebunch (container of edges) – Each edge given in the container will be added to the
graph. The edges can be:

	2-tuples (u,v) or

	3-tuples (u,v,d) for an edge attribute dict d, or

	4-tuples (u,v,k,d) for an edge identified by key k

	attr_dict (dictionary, optional (default= no attributes)) – Dictionary of edge attributes. Key/value pairs will
update existing data associated with each edge.

	attr (keyword arguments, optional) – Edge data (or labels or objects) can be assigned using
keyword arguments.

See also

	add_edge()

	add a single edge

	add_weighted_edges_from()

	convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.

Edge attributes specified in edges take precedence
over attributes specified generally.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2),(2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')

NetworkX

add_weighted_edges_from

	
MultiDiGraph.add_weighted_edges_from(ebunch, weight='weight', **attr)

	Add all the edges in ebunch as weighted edges with specified
weights.

	Parameters

	
	ebunch (container of edges) – Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u,v,w)
where w is a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – The attribute name for the edge weights to be added.

	attr (keyword arguments, optional (default= no attributes)) – Edge attributes to add/update for all edges.

See also

	add_edge()

	add a single edge

	add_edges_from()

	add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])

NetworkX

remove_edge

	
MultiDiGraph.remove_edge(u, v, key=None)

	Remove an edge between u and v.

	Parameters

	
	v (u,) – Remove an edge between nodes u and v.

	key (hashable identifier, optional (default=None)) – Used to distinguish multiple edges between a pair of nodes.
If None remove a single (abritrary) edge between u and v.

	Raises

	NetworkXError – If there is not an edge between u and v, or
if there is no edge with the specified key.

See also

	remove_edges_from()

	remove a collection of edges

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge(0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple

For multiple edges

>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge

For edges with keys

>>> G = nx.MultiDiGraph()
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key='second')
>>> G.remove_edge(1,2,key='second')

NetworkX

remove_edges_from

	
MultiDiGraph.remove_edges_from(ebunch)

	Remove all edges specified in ebunch.

	Parameters

	ebunch (list or container of edge tuples) – Each edge given in the list or container will be removed
from the graph. The edges can be:

	2-tuples (u,v) All edges between u and v are removed.

	3-tuples (u,v,key) The edge identified by key is removed.

	4-tuples (u,v,key,data) where data is ignored.

See also

	remove_edge()

	remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2),(2,3)]
>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1,2),(1,2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]

NetworkX

add_star

	
MultiDiGraph.add_star(nodes, **attr)

	Add a star.

The first node in nodes is the middle of the star. It is connected
to all other nodes.

	Parameters

	
	nodes (iterable container) – A container of nodes.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in star.

See also

add_path(), add_cycle()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

NetworkX

add_path

	
MultiDiGraph.add_path(nodes, **attr)

	Add a path.

	Parameters

	
	nodes (iterable container) – A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in path.

See also

add_star(), add_cycle()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

NetworkX

add_cycle

	
MultiDiGraph.add_cycle(nodes, **attr)

	Add a cycle.

	Parameters

	
	nodes (iterable container) – A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.

	attr (keyword arguments, optional (default= no attributes)) – Attributes to add to every edge in cycle.

See also

add_path(), add_star()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

NetworkX

clear

	
MultiDiGraph.clear()

	Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX

nodes

	
MultiDiGraph.nodes(data=False)

	Return a list of the nodes in the graph.

	Parameters

	data (boolean, optional (default=False)) – If False return a list of nodes. If True return a
two-tuple of node and node data dictionary

	Returns

	nlist – A list of nodes. If data=True a list of two-tuples containing
(node, node data dictionary).

	Return type

	list

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node(1, time='5pm')
>>> G.nodes(data=True)
[(0, {}), (1, {'time': '5pm'}), (2, {})]

NetworkX

nodes_iter

	
MultiDiGraph.nodes_iter(data=False)

	Return an iterator over the nodes.

	Parameters

	data (boolean, optional (default=False)) – If False the iterator returns nodes. If True
return a two-tuple of node and node data dictionary

	Returns

	niter – An iterator over nodes. If data=True the iterator gives
two-tuples containing (node, node data, dictionary)

	Return type

	iterator

Notes

If the node data is not required it is simpler and equivalent
to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]

NetworkX

__iter__

	
MultiDiGraph.__iter__()

	Iterate over the nodes. Use the expression ‘for n in G’.

	Returns

	niter – An iterator over all nodes in the graph.

	Return type

	iterator

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

NetworkX

edges

	
MultiDiGraph.edges(nbunch=None, data=False, keys=False, default=None)

	Return a list of edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

	Returns

	edge_list – Edges that are adjacent to any node in nbunch, or a list
of all edges if nbunch is not specified.

	Return type

	list of edge tuples

See also

	edges_iter()

	return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True,keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]

NetworkX

edges_iter

	
MultiDiGraph.edges_iter(nbunch=None, data=False, keys=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

out_edges

	
MultiDiGraph.out_edges(nbunch=None, keys=False, data=False)

	Return a list of the outgoing edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge attribute dict with each edge.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	out_edges – An listr of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	list

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs edges() is the same as out_edges().

See also

	in_edges()

	return a list of incoming edges

NetworkX

out_edges_iter

	
MultiDiGraph.out_edges_iter(nbunch=None, data=False, keys=False, default=None)

	Return an iterator over the edges.

Edges are returned as tuples with optional data and keys
in the order (node, neighbor, key, data).

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (string [https://docs.python.org/2/library/string.html#module-string] or bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – The edge attribute returned in 3-tuple (u,v,ddict[data]).
If True, return edge attribute dict in 3-tuple (u,v,ddict).
If False, return 2-tuple (u,v).

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	Returns

	edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	iterator

See also

	edges()

	return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2])
>>> G.add_edge(2,3,weight=5)
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})]
>>> list(G.edges_iter(data='weight', default=1))
[(0, 1, 1), (1, 2, 1), (2, 3, 5)]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {'weight': 5})]
>>> list(G.edges(data='weight',default=1,keys=True))
[(0, 1, 0, 1), (1, 2, 0, 1), (2, 3, 0, 5)]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]

NetworkX

in_edges

	
MultiDiGraph.in_edges(nbunch=None, keys=False, data=False)

	Return a list of the incoming edges.

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge attribute dict with each edge.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	in_edges – A list of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	list

See also

	out_edges()

	return a list of outgoing edges

NetworkX

in_edges_iter

	
MultiDiGraph.in_edges_iter(nbunch=None, data=False, keys=False)

	Return an iterator over the incoming edges.

	Parameters

	
	nbunch (iterable container, optional (default= all nodes)) – A container of nodes. The container will be iterated
through once.

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge attribute dict with each edge.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	in_edge_iter – An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

	Return type

	iterator

See also

	edges_iter()

	return an iterator of edges

NetworkX

get_edge_data

	
MultiDiGraph.get_edge_data(u, v, key=None, default=None)

	Return the attribute dictionary associated with edge (u,v).

	Parameters

	
	v (u,) –

	default (any Python object (default=None)) – Value to return if the edge (u,v) is not found.

	key (hashable identifier, optional (default=None)) – Return data only for the edge with specified key.

	Returns

	edge_dict – The edge attribute dictionary.

	Return type

	dictionary

Notes

It is faster to use G[u][v][key].

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key='a',weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure.
But it is safe to assign attributes to that dictionary,

>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data('a','b',default=0) # edge not in graph, return 0
0

NetworkX

neighbors

	
MultiDiGraph.neighbors(n)

	Return a list of successor nodes of n.

neighbors() and successors() are the same function.

NetworkX

neighbors_iter

	
MultiDiGraph.neighbors_iter(n)

	Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

NetworkX

__getitem__

	
MultiDiGraph.__getitem__(n)

	Return a dict of neighbors of node n. Use the expression ‘G[n]’.

	Parameters

	n (node) – A node in the graph.

	Returns

	adj_dict – The adjacency dictionary for nodes connected to n.

	Return type

	dictionary

Notes

G[n] is similar to G.neighbors(n) but the internal data dictionary
is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure.
Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}

NetworkX

successors

	
MultiDiGraph.successors(n)

	Return a list of successor nodes of n.

neighbors() and successors() are the same function.

NetworkX

successors_iter

	
MultiDiGraph.successors_iter(n)

	Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

NetworkX

predecessors

	
MultiDiGraph.predecessors(n)

	Return a list of predecessor nodes of n.

NetworkX

predecessors_iter

	
MultiDiGraph.predecessors_iter(n)

	Return an iterator over predecessor nodes of n.

NetworkX

adjacency_list

	
MultiDiGraph.adjacency_list()

	Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes().
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_list – The adjacency structure of the graph as a list of lists.

	Return type

	lists of lists

See also

adjacency_iter()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]

NetworkX

adjacency_iter

	
MultiDiGraph.adjacency_iter()

	Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge.
For directed graphs, only outgoing adjacencies are included.

	Returns

	adj_iter – An iterator of (node, adjacency dictionary) for all nodes in
the graph.

	Return type

	iterator

See also

adjacency_list()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

NetworkX

nbunch_iter

	
MultiDiGraph.nbunch_iter(nbunch=None)

	Return an iterator of nodes contained in nbunch that are
also in the graph.

The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.

	Parameters

	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	Returns

	niter – An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If nbunch is not a node or or sequence of nodes.
If a node in nbunch is not hashable.

See also

Graph.__iter__()

Notes

When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use
“if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a NetworkXError is raised. Also, if any object in
nbunch is not hashable, a NetworkXError is raised.

NetworkX

has_node

	
MultiDiGraph.has_node(n)

	Return True if the graph contains the node n.

	Parameters

	n (node) –

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node(0)
True

It is more readable and simpler to use

>>> 0 in G
True

NetworkX

__contains__

	
MultiDiGraph.__contains__(n)

	Return True if n is a node, False otherwise. Use the expression
‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True

NetworkX

has_edge

	
MultiDiGraph.has_edge(u, v, key=None)

	Return True if the graph has an edge between nodes u and v.

	Parameters

	
	v (u,) – Nodes can be, for example, strings or numbers.

	key (hashable identifier, optional (default=None)) – If specified return True only if the edge with
key is found.

	Returns

	edge_ind – True if edge is in the graph, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

Can be called either using two nodes u,v, an edge tuple (u,v),
or an edge tuple (u,v,key).

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key='a')
>>> G.has_edge(0,1,key='a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True

The following syntax are equivalent:

>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

NetworkX

order

	
MultiDiGraph.order()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_nodes(), __len__()

NetworkX

number_of_nodes

	
MultiDiGraph.number_of_nodes()

	Return the number of nodes in the graph.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

order(), __len__()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

NetworkX

__len__

	
MultiDiGraph.__len__()

	Return the number of nodes. Use the expression ‘len(G)’.

	Returns

	nnodes – The number of nodes in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4

NetworkX

degree

	
MultiDiGraph.degree(nbunch=None, weight=None)

	Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]

NetworkX

degree_iter

	
MultiDiGraph.degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights.

	Returns

	nd_iter – The iterator returns two-tuples of (node, degree).

	Return type

	an iterator

See also

degree()

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.degree_iter([0,1]))
[(0, 1), (1, 2)]

NetworkX

in_degree

	
MultiDiGraph.in_degree(nbunch=None, weight=None)

	Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and in-degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

See also

degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]

NetworkX

in_degree_iter

	
MultiDiGraph.in_degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd_iter – The iterator returns two-tuples of (node, in-degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), out_degree_iter()

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.in_degree_iter(0)) # node 0 with degree 0
[(0, 0)]
>>> list(G.in_degree_iter([0,1]))
[(0, 0), (1, 1)]

NetworkX

out_degree

	
MultiDiGraph.out_degree(nbunch=None, weight=None)

	Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	nd – A dictionary with nodes as keys and out-degree as values or
a number if a single node is specified.

	Return type

	dictionary, or number

Examples

>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]

NetworkX

out_degree_iter

	
MultiDiGraph.out_degree_iter(nbunch=None, weight=None)

	Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.

	Parameters

	
	nbunch (iterable container, optional (default=all nodes)) – A container of nodes. The container will be iterated
through once.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights.

	Returns

	nd_iter – The iterator returns two-tuples of (node, out-degree).

	Return type

	an iterator

See also

degree(), in_degree(), out_degree(), in_degree_iter()

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> list(G.out_degree_iter(0)) # node 0 with degree 1
[(0, 1)]
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]

NetworkX

size

	
MultiDiGraph.size(weight=None)

	Return the number of edges.

	Parameters

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.

	Returns

	nedges – The number of edges or sum of edge weights in the graph.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

number_of_edges()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge('a','b',weight=2)
>>> G.add_edge('b','c',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0

NetworkX

number_of_edges

	
MultiDiGraph.number_of_edges(u=None, v=None)

	Return the number of edges between two nodes.

	Parameters

	v (u,) – If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.

	Returns

	nedges – The number of edges in the graph. If nodes u and v are specified
return the number of edges between those nodes.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

size()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1

NetworkX

nodes_with_selfloops

	
MultiDiGraph.nodes_with_selfloops()

	Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent
to that node.

	Returns

	nodelist – A list of nodes with self loops.

	Return type

	list

See also

selfloop_edges(), number_of_selfloops()

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.nodes_with_selfloops()
[1]

NetworkX

selfloop_edges

	
MultiDiGraph.selfloop_edges(data=False, keys=False, default=None)

	Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

	Parameters

	
	data (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – Return selfloop edges as two tuples (u,v) (data=False)
or three-tuples (u,v,datadict) (data=True)
or three-tuples (u,v,datavalue) (data=’attrname’)

	default (value, optional (default=None)) – Value used for edges that dont have the requested attribute.
Only relevant if data is not True or False.

	keys (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, return edge keys with each edge.

	Returns

	edgelist – A list of all selfloop edges.

	Return type

	list of edge tuples

See also

nodes_with_selfloops(), number_of_selfloops()

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
>>> G.selfloop_edges(keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
[(1, 1, 0, {})]

NetworkX

number_of_selfloops

	
MultiDiGraph.number_of_selfloops()

	Return the number of selfloop edges.

A selfloop edge has the same node at both ends.

	Returns

	nloops – The number of selfloops.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

nodes_with_selfloops(), selfloop_edges()

Examples

>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge(1,2)
>>> G.number_of_selfloops()
1

NetworkX

copy

	
MultiDiGraph.copy()

	Return a copy of the graph.

	Returns

	G – A copy of the graph.

	Return type

	Graph

See also

	to_directed()

	return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the
node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()

NetworkX

to_undirected

	
MultiDiGraph.to_undirected(reciprocal=False)

	Return an undirected representation of the digraph.

	Parameters

	reciprocal (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – If True only keep edges that appear in both directions
in the original digraph.

	Returns

	G – An undirected graph with the same name and nodes and
with edge (u,v,data) if either (u,v,data) or (v,u,data)
is in the digraph. If both edges exist in digraph and
their edge data is different, only one edge is created
with an arbitrary choice of which edge data to use.
You must check and correct for this manually if desired.

	Return type

	MultiGraph

Notes

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Warning: If you have subclassed MultiGraph to use dict-like objects
in the data structure, those changes do not transfer to the MultiDiGraph
created by this method.

NetworkX

to_directed

	
MultiDiGraph.to_directed()

	Return a directed copy of the graph.

	Returns

	G – A deepcopy of the graph.

	Return type

	MultiDiGraph

Notes

If edges in both directions (u,v) and (v,u) exist in the
graph, attributes for the new undirected edge will be a combination of
the attributes of the directed edges. The edge data is updated
in the (arbitrary) order that the edges are encountered. For
more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.

This is in contrast to the similar G=DiGraph(D) which returns a
shallow copy of the data.

See the Python copy module for more information on shallow
and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]

NetworkX

subgraph

	
MultiDiGraph.subgraph(nbunch)

	Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch
and the edges between those nodes.

	Parameters

	nbunch (list, iterable) – A container of nodes which will be iterated through once.

	Returns

	G – A subgraph of the graph with the same edge attributes.

	Return type

	Graph

Notes

The graph, edge or node attributes just point to the original graph.
So changes to the node or edge structure will not be reflected in
the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use:
nx.Graph(G.subgraph(nbunch))

If edge attributes are containers, a deep copy can be obtained using:
G.subgraph(nbunch).copy()

For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]

NetworkX

reverse

	
MultiDiGraph.reverse(copy=True)

	Return the reverse of the graph.

The reverse is a graph with the same nodes and edges
but with the directions of the edges reversed.

	Parameters

	copy (bool optional (default=True)) – If True, return a new DiGraph holding the reversed edges.
If False, reverse the reverse graph is created using
the original graph (this changes the original graph).

NetworkX

Algorithms

	Approximation
	Connectivity

	K-components

	Clique

	Clustering

	Dominating Set

	Independent Set

	Matching

	Ramsey

	Vertex Cover

	Assortativity
	Assortativity

	Average neighbor degree

	Average degree connectivity

	Mixing

	Bipartite
	Basic functions

	Matching

	Matrix

	Projections

	Spectral

	Clustering

	Redundancy

	Centrality

	Generators

	Blockmodeling
	blockmodel

	Boundary
	edge_boundary

	node_boundary

	Centrality
	Degree

	Closeness

	Betweenness

	Current Flow Closeness

	Current-Flow Betweenness

	Eigenvector

	Communicability

	Load

	Dispersion

	Chordal
	is_chordal

	chordal_graph_cliques

	chordal_graph_treewidth

	find_induced_nodes

	Clique
	Cliques

	enumerate_all_cliques

	find_cliques

	make_max_clique_graph

	make_clique_bipartite

	graph_clique_number

	graph_number_of_cliques

	node_clique_number

	number_of_cliques

	cliques_containing_node

	Clustering
	triangles

	transitivity

	clustering

	average_clustering

	square_clustering

	Coloring
	greedy_color

	Communities
	K-Clique

	Components
	Connectivity

	Strong connectivity

	Weak connectivity

	Attracting components

	Biconnected components

	Semiconnectedness

	Connectivity
	K-node-components

	K-node-cutsets

	Flow-based Connectivity

	Flow-based Minimum Cuts

	Stoer-Wagner minimum cut

	Utils for flow-based connectivity

	Cores
	core_number

	k_core

	k_shell

	k_crust

	k_corona

	Cycles
	Cycle finding algorithms

	cycle_basis

	simple_cycles

	find_cycle

	Directed Acyclic Graphs
	ancestors

	descendants

	topological_sort

	topological_sort_recursive

	is_directed_acyclic_graph

	is_aperiodic

	transitive_closure

	antichains

	dag_longest_path

	dag_longest_path_length

	Distance Measures
	center

	diameter

	eccentricity

	periphery

	radius

	Distance-Regular Graphs
	Distance-regular graphs

	is_distance_regular

	intersection_array

	global_parameters

	Dominance
	immediate_dominators

	dominance_frontiers

	Dominating Sets
	dominating_set

	is_dominating_set

	Eulerian
	is_eulerian

	eulerian_circuit

	Flows
	Maximum Flow

	Edmonds-Karp

	Shortest Augmenting Path

	Preflow-Push

	Utils

	Network Simplex

	Capacity Scaling Minimum Cost Flow

	Graphical degree sequence
	is_graphical

	is_digraphical

	is_multigraphical

	is_pseudographical

	is_valid_degree_sequence_havel_hakimi

	is_valid_degree_sequence_erdos_gallai

	Hierarchy
	flow_hierarchy

	Hybrid
	kl_connected_subgraph

	is_kl_connected

	Isolates
	is_isolate

	isolates

	Isomorphism
	is_isomorphic

	could_be_isomorphic

	fast_could_be_isomorphic

	faster_could_be_isomorphic

	Advanced Interface to VF2 Algorithm

	Link Analysis
	PageRank

	Hits

	Link Prediction
	resource_allocation_index

	jaccard_coefficient

	adamic_adar_index

	preferential_attachment

	cn_soundarajan_hopcroft

	ra_index_soundarajan_hopcroft

	within_inter_cluster

	Matching
	Matching

	maximal_matching

	max_weight_matching

	Minors
	contracted_edge

	contracted_nodes

	identified_nodes

	quotient_graph

	Maximal independent set
	maximal_independent_set

	Minimum Spanning Tree
	minimum_spanning_tree

	minimum_spanning_edges

	Operators
	complement

	reverse

	compose

	union

	disjoint_union

	intersection

	difference

	symmetric_difference

	compose_all

	union_all

	disjoint_union_all

	intersection_all

	cartesian_product

	lexicographic_product

	strong_product

	tensor_product

	power

	Rich Club
	rich_club_coefficient

	Shortest Paths
	shortest_path

	all_shortest_paths

	shortest_path_length

	average_shortest_path_length

	has_path

	Advanced Interface

	Dense Graphs

	A* Algorithm

	Simple Paths
	all_simple_paths

	shortest_simple_paths

	Swap
	double_edge_swap

	connected_double_edge_swap

	Traversal
	Depth First Search

	Breadth First Search

	Depth First Search on Edges

	Tree
	Recognition

	Branchings and Spanning Arborescences

	Triads
	triadic_census

	Vitality
	closeness_vitality

NetworkX

Approximation

Connectivity

Fast approximation for node connectivity

	all_pairs_node_connectivity(G[, nbunch, cutoff])

	Compute node connectivity between all pairs of nodes.

	local_node_connectivity(G, source, target[, …])

	Compute node connectivity between source and target.

	node_connectivity(G[, s, t])

	Returns an approximation for node connectivity for a graph or digraph G.

K-components

Fast approximation for k-component structure

	k_components(G[, min_density])

	Returns the approximate k-component structure of a graph G.

Clique

Cliques.

	max_clique(G)

	Find the Maximum Clique

	clique_removal(G)

	Repeatedly remove cliques from the graph.

Clustering

	average_clustering(G[, trials])

	Estimates the average clustering coefficient of G.

Dominating Set

Functions for finding node and edge dominating sets.

A `dominating set`_[1] for an undirected graph *G with vertex set V
and edge set E is a subset D of V such that every vertex not in
D is adjacent to at least one member of D. An `edge dominating
set`_[2] is a subset *F of E such that every edge not in F is
incident to an endpoint of at least one edge in F.

	1

	dominating set: https://en.wikipedia.org/wiki/Dominating_set

	2

	edge dominating set: https://en.wikipedia.org/wiki/Edge_dominating_set

	min_weighted_dominating_set(G[, weight])

	Returns a dominating set that approximates the minimum weight node dominating set.

	min_edge_dominating_set(G)

	Return minimum cardinality edge dominating set.

Independent Set

Independent Set

Independent set or stable set is a set of vertices in a graph, no two of
which are adjacent. That is, it is a set I of vertices such that for every
two vertices in I, there is no edge connecting the two. Equivalently, each
edge in the graph has at most one endpoint in I. The size of an independent
set is the number of vertices it contains.

A maximum independent set is a largest independent set for a given graph G
and its size is denoted α(G). The problem of finding such a set is called
the maximum independent set problem and is an NP-hard optimization problem.
As such, it is unlikely that there exists an efficient algorithm for finding
a maximum independent set of a graph.

http://en.wikipedia.org/wiki/Independent_set_(graph_theory)

Independent set algorithm is based on the following paper:

\(O(|V|/(log|V|)^2)\) apx of maximum clique/independent set.

Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.
doi:10.1007/BF01994876

	maximum_independent_set(G)

	Return an approximate maximum independent set.

Matching

Graph Matching

Given a graph G = (V,E), a matching M in G is a set of pairwise non-adjacent
edges; that is, no two edges share a common vertex.

http://en.wikipedia.org/wiki/Matching_(graph_theory)

	min_maximal_matching(G)

	Returns the minimum maximal matching of G.

Ramsey

Ramsey numbers.

	ramsey_R2(G)

	Approximately computes the Ramsey number \(R(2;s,t)\) for graph.

Vertex Cover

Vertex Cover

Given an undirected graph \(G = (V, E)\) and a function w assigning nonnegative
weights to its vertices, find a minimum weight subset of V such that each edge
in E is incident to at least one vertex in the subset.

http://en.wikipedia.org/wiki/Vertex_cover

	min_weighted_vertex_cover(G[, weight])

	2-OPT Local Ratio for Minimum Weighted Vertex Cover

NetworkX

all_pairs_node_connectivity

	
all_pairs_node_connectivity(G, nbunch=None, cutoff=None)

	Compute node connectivity between all pairs of nodes.

Pairwise or local node connectivity between two distinct and nonadjacent
nodes is the minimum number of nodes that must be removed (minimum
separating cutset) to disconnect them. By Menger’s theorem, this is equal
to the number of node independent paths (paths that share no nodes other
than source and target). Which is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower
bound on the actual number of node independent paths between two nodes 1.
It works for both directed and undirected graphs.

	Parameters

	
	G (NetworkX graph) –

	nbunch (container) – Container of nodes. If provided node connectivity will be computed
only over pairs of nodes in nbunch.

	cutoff (integer) – Maximum node connectivity to consider. If None, the minimum degree
of source or target is used as a cutoff in each pair of nodes.
Default value None.

	Returns

	K – Dictionary, keyed by source and target, of pairwise node connectivity

	Return type

	dictionary

See also

local_node_connectivity(), all_pairs_node_connectivity()

References

	1

	White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX

local_node_connectivity

	
local_node_connectivity(G, source, target, cutoff=None)

	Compute node connectivity between source and target.

Pairwise or local node connectivity between two distinct and nonadjacent
nodes is the minimum number of nodes that must be removed (minimum
separating cutset) to disconnect them. By Menger’s theorem, this is equal
to the number of node independent paths (paths that share no nodes other
than source and target). Which is what we compute in this function.

This algorithm is a fast approximation that gives an strict lower
bound on the actual number of node independent paths between two nodes 1.
It works for both directed and undirected graphs.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for node connectivity

	target (node) – Ending node for node connectivity

	cutoff (integer) – Maximum node connectivity to consider. If None, the minimum degree
of source or target is used as a cutoff. Default value None.

	Returns

	k – pairwise node connectivity

	Return type

	integer

Examples

>>> # Platonic icosahedral graph has node connectivity 5
>>> # for each non adjacent node pair
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.local_node_connectivity(G, 0, 6)
5

Notes

This algorithm 1 finds node independents paths between two nodes by
computing their shortest path using BFS, marking the nodes of the path
found as ‘used’ and then searching other shortest paths excluding the
nodes marked as used until no more paths exist. It is not exact because
a shortest path could use nodes that, if the path were longer, may belong
to two different node independent paths. Thus it only guarantees an
strict lower bound on node connectivity.

Note that the authors propose a further refinement, losing accuracy and
gaining speed, which is not implemented yet.

See also

all_pairs_node_connectivity(), node_connectivity()

References

	1(1,2)

	White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX

node_connectivity

	
node_connectivity(G, s=None, t=None)

	Returns an approximation for node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that
must be removed to disconnect G or render it trivial. By Menger’s theorem,
this is equal to the number of node independent paths (paths that
share no nodes other than source and target).

If source and target nodes are provided, this function returns the
local node connectivity: the minimum number of nodes that must be
removed to break all paths from source to target in G.

This algorithm is based on a fast approximation that gives an strict lower
bound on the actual number of node independent paths between two nodes 1.
It works for both directed and undirected graphs.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	Returns

	K – Node connectivity of G, or local node connectivity if source
and target are provided.

	Return type

	integer

Examples

>>> # Platonic icosahedral graph is 5-node-connected
>>> from networkx.algorithms import approximation as approx
>>> G = nx.icosahedral_graph()
>>> approx.node_connectivity(G)
5

Notes

This algorithm 1 finds node independents paths between two nodes by
computing their shortest path using BFS, marking the nodes of the path
found as ‘used’ and then searching other shortest paths excluding the
nodes marked as used until no more paths exist. It is not exact because
a shortest path could use nodes that, if the path were longer, may belong
to two different node independent paths. Thus it only guarantees an
strict lower bound on node connectivity.

See also

all_pairs_node_connectivity(), local_node_connectivity()

References

	1(1,2)

	White, Douglas R., and Mark Newman. 2001 A Fast Algorithm for
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

NetworkX

k_components

	
k_components(G, min_density=0.95)

	Returns the approximate k-component structure of a graph G.

A \(k\)-component is a maximal subgraph of a graph G that has, at least,
node connectivity \(k\): we need to remove at least \(k\) nodes to break it
into more components. \(k\)-components have an inherent hierarchical
structure because they are nested in terms of connectivity: a connected
graph can contain several 2-components, each of which can contain
one or more 3-components, and so forth.

This implementation is based on the fast heuristics to approximate
the \(k\)-component sturcture of a graph 1. Which, in turn, it is based on
a fast approximation algorithm for finding good lower bounds of the number
of node independent paths between two nodes 2.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	min_density (Float) – Density relaxation treshold. Default value 0.95

	Returns

	k_components – Dictionary with connectivity level \(k\) as key and a list of
sets of nodes that form a k-component of level \(k\) as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> from networkx.algorithms import approximation as apxa
>>> G = nx.petersen_graph()
>>> k_components = apxa.k_components(G)

Notes

The logic of the approximation algorithm for computing the \(k\)-component
structure 1 is based on repeatedly applying simple and fast algorithms
for \(k\)-cores and biconnected components in order to narrow down the
number of pairs of nodes over which we have to compute White and Newman’s
approximation algorithm for finding node independent paths 2. More
formally, this algorithm is based on Whitney’s theorem, which states
an inclusion relation among node connectivity, edge connectivity, and
minimum degree for any graph G. This theorem implies that every
\(k\)-component is nested inside a \(k\)-edge-component, which in turn,
is contained in a \(k\)-core. Thus, this algorithm computes node independent
paths among pairs of nodes in each biconnected part of each \(k\)-core,
and repeats this procedure for each \(k\) from 3 to the maximal core number
of a node in the input graph.

Because, in practice, many nodes of the core of level \(k\) inside a
bicomponent actually are part of a component of level k, the auxiliary
graph needed for the algorithm is likely to be very dense. Thus, we use
a complement graph data structure (see \(AntiGraph\)) to save memory.
AntiGraph only stores information of the edges that are not present
in the actual auxiliary graph. When applying algorithms to this
complement graph data structure, it behaves as if it were the dense
version.

See also

k_components()

References

	1(1,2)

	Torrents, J. and F. Ferraro (2015) Structural Cohesion:
Visualization and Heuristics for Fast Computation.
http://arxiv.org/pdf/1503.04476v1

	2(1,2)

	White, Douglas R., and Mark Newman (2001) A Fast Algorithm for
Node-Independent Paths. Santa Fe Institute Working Paper #01-07-035
http://eclectic.ss.uci.edu/~drwhite/working.pdf

	3

	Moody, J. and D. White (2003). Social cohesion and embeddedness:
A hierarchical conception of social groups.
American Sociological Review 68(1), 103–28.
http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf

NetworkX

max_clique

	
max_clique(G)

	Find the Maximum Clique

Finds the \(O(|V|/(log|V|)^2)\) apx of maximum clique/independent set
in the worst case.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	clique – The apx-maximum clique of the graph

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

A clique in an undirected graph G = (V, E) is a subset of the vertex set
\(C \subseteq V\), such that for every two vertices in C, there exists an edge
connecting the two. This is equivalent to saying that the subgraph
induced by C is complete (in some cases, the term clique may also refer
to the subgraph).

A maximum clique is a clique of the largest possible size in a given graph.
The clique number \(\omega(G)\) of a graph G is the number of
vertices in a maximum clique in G. The intersection number of
G is the smallest number of cliques that together cover all edges of G.

http://en.wikipedia.org/wiki/Maximum_clique

References

	1

	Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.
doi:10.1007/BF01994876

NetworkX

clique_removal

	
clique_removal(G)

	Repeatedly remove cliques from the graph.

Results in a \(O(|V|/(\log |V|)^2)\) approximation of maximum clique
& independent set. Returns the largest independent set found, along
with found maximal cliques.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	max_ind_cliques – Maximal independent set and list of maximal cliques (sets) in the graph.

	Return type

	(set [https://docs.python.org/2/library/stdtypes.html#set], list) tuple [https://docs.python.org/2/library/functions.html#tuple]

References

	1

	Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.

NetworkX

average_clustering

	
average_clustering(G, trials=1000)

	Estimates the average clustering coefficient of G.

The local clustering of each node in \(G\) is the fraction of triangles
that actually exist over all possible triangles in its neighborhood.
The average clustering coefficient of a graph \(G\) is the mean of
local clusterings.

This function finds an approximate average clustering coefficient
for G by repeating \(n\) times (defined in \(trials\)) the following
experiment: choose a node at random, choose two of its neighbors
at random, and check if they are connected. The approximate
coefficient is the fraction of triangles found over the number
of trials 1.

	Parameters

	
	G (NetworkX graph) –

	trials (integer) – Number of trials to perform (default 1000).

	Returns

	c – Approximated average clustering coefficient.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

References

	1

	Schank, Thomas, and Dorothea Wagner. Approximating clustering
coefficient and transitivity. Universität Karlsruhe, Fakultät für
Informatik, 2004.
http://www.emis.ams.org/journals/JGAA/accepted/2005/SchankWagner2005.9.2.pdf

NetworkX

min_weighted_dominating_set

	
min_weighted_dominating_set(G, weight=None)

	Returns a dominating set that approximates the minimum weight node
dominating set.

	Parameters

	
	G (NetworkX graph) – Undirected graph.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – The node attribute storing the weight of an edge. If provided,
the node attribute with this key must be a number for each
node. If not provided, each node is assumed to have weight one.

	Returns

	min_weight_dominating_set – A set of nodes, the sum of whose weights is no more than \((\log
w(V)) w(V^*)\), where \(w(V)\) denotes the sum of the weights of
each node in the graph and \(w(V^*)\) denotes the sum of the
weights of each node in the minimum weight dominating set.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

This algorithm computes an approximate minimum weighted dominating
set for the graph G. The returned solution has weight \((\log
w(V)) w(V^*)\), where \(w(V)\) denotes the sum of the weights of each
node in the graph and \(w(V^*)\) denotes the sum of the weights of
each node in the minimum weight dominating set for the graph.

This implementation of the algorithm runs in \(O(m)\) time, where \(m\)
is the number of edges in the graph.

References

	1

	Vazirani, Vijay V.
Approximation Algorithms.
Springer Science & Business Media, 2001.

NetworkX

min_edge_dominating_set

	
min_edge_dominating_set(G)

	Return minimum cardinality edge dominating set.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	min_edge_dominating_set – Returns a set of dominating edges whose size is no more than 2 * OPT.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

The algorithm computes an approximate solution to the edge dominating set
problem. The result is no more than 2 * OPT in terms of size of the set.
Runtime of the algorithm is \(O(|E|)\).

NetworkX

maximum_independent_set

	
maximum_independent_set(G)

	Return an approximate maximum independent set.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	iset – The apx-maximum independent set

	Return type

	Set

Notes

Finds the \(O(|V|/(log|V|)^2)\) apx of independent set in the worst case.

References

	1

	Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.

NetworkX

min_maximal_matching

	
min_maximal_matching(G)

	Returns the minimum maximal matching of G. That is, out of all maximal
matchings of the graph G, the smallest is returned.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	min_maximal_matching – Returns a set of edges such that no two edges share a common endpoint
and every edge not in the set shares some common endpoint in the set.
Cardinality will be 2*OPT in the worst case.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

The algorithm computes an approximate solution fo the minimum maximal
cardinality matching problem. The solution is no more than 2 * OPT in size.
Runtime is \(O(|E|)\).

References

	1

	Vazirani, Vijay Approximation Algorithms (2001)

NetworkX

ramsey_R2

	
ramsey_R2(G)

	Approximately computes the Ramsey number \(R(2;s,t)\) for graph.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	max_pair – Maximum clique, Maximum independent set.

	Return type

	(set [https://docs.python.org/2/library/stdtypes.html#set], set [https://docs.python.org/2/library/stdtypes.html#set]) tuple [https://docs.python.org/2/library/functions.html#tuple]

NetworkX

min_weighted_vertex_cover

	
min_weighted_vertex_cover(G, weight=None)

	2-OPT Local Ratio for Minimum Weighted Vertex Cover

Find an approximate minimum weighted vertex cover of a graph.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1. If a string, use this
edge attribute as the edge weight. Any edge attribute not present
defaults to 1.

	Returns

	min_weighted_cover – Returns a set of vertices whose weight sum is no more than 2 * OPT.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

Local-Ratio algorithm for computing an approximate vertex cover.
Algorithm greedily reduces the costs over edges and iteratively
builds a cover. Worst-case runtime is \(O(|E|)\).

References

	1

	Bar-Yehuda, R., & Even, S. (1985). A local-ratio theorem for
approximating the weighted vertex cover problem.
Annals of Discrete Mathematics, 25, 27–46
http://www.cs.technion.ac.il/~reuven/PDF/vc_lr.pdf

NetworkX

Assortativity

Assortativity

	degree_assortativity_coefficient(G[, x, y, …])

	Compute degree assortativity of graph.

	attribute_assortativity_coefficient(G, attribute)

	Compute assortativity for node attributes.

	numeric_assortativity_coefficient(G, attribute)

	Compute assortativity for numerical node attributes.

	degree_pearson_correlation_coefficient(G[, …])

	Compute degree assortativity of graph.

Average neighbor degree

	average_neighbor_degree(G[, source, target, …])

	Returns the average degree of the neighborhood of each node.

Average degree connectivity

	average_degree_connectivity(G[, source, …])

	Compute the average degree connectivity of graph.

	k_nearest_neighbors(G[, source, target, …])

	Compute the average degree connectivity of graph.

Mixing

	attribute_mixing_matrix(G, attribute[, …])

	Return mixing matrix for attribute.

	degree_mixing_matrix(G[, x, y, weight, …])

	Return mixing matrix for attribute.

	degree_mixing_dict(G[, x, y, weight, nodes, …])

	Return dictionary representation of mixing matrix for degree.

	attribute_mixing_dict(G, attribute[, nodes, …])

	Return dictionary representation of mixing matrix for attribute.

NetworkX

degree_assortativity_coefficient

	
degree_assortativity_coefficient(G, x='out', y='in', weight=None, nodes=None)

	Compute degree assortativity of graph.

Assortativity measures the similarity of connections
in the graph with respect to the node degree.

	Parameters

	
	G (NetworkX graph) –

	x (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for source node (directed graphs only).

	y (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for target node (directed graphs only).

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	nodes (list or iterable (optional)) – Compute degree assortativity only for nodes in container.
The default is all nodes.

	Returns

	r – Assortativity of graph by degree.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.path_graph(4)
>>> r=nx.degree_assortativity_coefficient(G)
>>> print("%3.1f"%r)
-0.5

See also

attribute_assortativity_coefficient(), numeric_assortativity_coefficient(), neighbor_connectivity(), degree_mixing_dict(), degree_mixing_matrix()

Notes

This computes Eq. (21) in Ref. 1 , where e is the joint
probability distribution (mixing matrix) of the degrees. If G is
directed than the matrix e is the joint probability of the
user-specified degree type for the source and target.

References

	1

	M. E. J. Newman, Mixing patterns in networks,
Physical Review E, 67 026126, 2003

	2

	Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M.
Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).

NetworkX

attribute_assortativity_coefficient

	
attribute_assortativity_coefficient(G, attribute, nodes=None)

	Compute assortativity for node attributes.

Assortativity measures the similarity of connections
in the graph with respect to the given attribute.

	Parameters

	
	G (NetworkX graph) –

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Node attribute key

	nodes (list or iterable (optional)) – Compute attribute assortativity for nodes in container.
The default is all nodes.

	Returns

	r – Assortativity of graph for given attribute

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.attribute_assortativity_coefficient(G,'color'))
1.0

Notes

This computes Eq. (2) in Ref. 1 , trace(M)-sum(M))/(1-sum(M),
where M is the joint probability distribution (mixing matrix)
of the specified attribute.

References

	1

	M. E. J. Newman, Mixing patterns in networks,
Physical Review E, 67 026126, 2003

NetworkX

numeric_assortativity_coefficient

	
numeric_assortativity_coefficient(G, attribute, nodes=None)

	Compute assortativity for numerical node attributes.

Assortativity measures the similarity of connections
in the graph with respect to the given numeric attribute.

	Parameters

	
	G (NetworkX graph) –

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Node attribute key

	nodes (list or iterable (optional)) – Compute numeric assortativity only for attributes of nodes in
container. The default is all nodes.

	Returns

	r – Assortativity of graph for given attribute

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],size=2)
>>> G.add_nodes_from([2,3],size=3)
>>> G.add_edges_from([(0,1),(2,3)])
>>> print(nx.numeric_assortativity_coefficient(G,'size'))
1.0

Notes

This computes Eq. (21) in Ref. 1 , for the mixing matrix of
of the specified attribute.

References

	1

	M. E. J. Newman, Mixing patterns in networks
Physical Review E, 67 026126, 2003

NetworkX

degree_pearson_correlation_coefficient

	
degree_pearson_correlation_coefficient(G, x='out', y='in', weight=None, nodes=None)

	Compute degree assortativity of graph.

Assortativity measures the similarity of connections
in the graph with respect to the node degree.

This is the same as degree_assortativity_coefficient but uses the
potentially faster scipy.stats.pearsonr function.

	Parameters

	
	G (NetworkX graph) –

	x (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for source node (directed graphs only).

	y (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for target node (directed graphs only).

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	nodes (list or iterable (optional)) – Compute pearson correlation of degrees only for specified nodes.
The default is all nodes.

	Returns

	r – Assortativity of graph by degree.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.path_graph(4)
>>> r=nx.degree_pearson_correlation_coefficient(G)
>>> print("%3.1f"%r)
-0.5

Notes

This calls scipy.stats.pearsonr.

References

	1

	M. E. J. Newman, Mixing patterns in networks
Physical Review E, 67 026126, 2003

	2

	Foster, J.G., Foster, D.V., Grassberger, P. & Paczuski, M.
Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).

NetworkX

average_neighbor_degree

	
average_neighbor_degree(G, source='out', target='out', nodes=None, weight=None)

	Returns the average degree of the neighborhood of each node.

The average degree of a node \(i\) is

\[k_{nn,i} = \frac{1}{|N(i)|} \sum_{j \in N(i)} k_j\]

where \(N(i)\) are the neighbors of node \(i\) and \(k_j\) is
the degree of node \(j\) which belongs to \(N(i)\). For weighted
graphs, an analogous measure can be defined 1,

\[k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j\]

where \(s_i\) is the weighted degree of node \(i\), \(w_{ij}\)
is the weight of the edge that links \(i\) and \(j\) and
\(N(i)\) are the neighbors of node \(i\).

	Parameters

	
	G (NetworkX graph) –

	source (string [https://docs.python.org/2/library/string.html#module-string] ("in"|"out")) – Directed graphs only.
Use “in”- or “out”-degree for source node.

	target (string [https://docs.python.org/2/library/string.html#module-string] ("in"|"out")) – Directed graphs only.
Use “in”- or “out”-degree for target node.

	nodes (list or iterable, optional) – Compute neighbor degree for specified nodes. The default is
all nodes in the graph.

	weightstring or None, optional (default=None)

	The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	Returns

	d – A dictionary keyed by node with average neighbors degree value.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> G.edge[0][1]['weight'] = 5
>>> G.edge[2][3]['weight'] = 3

>>> nx.average_neighbor_degree(G)
{0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}
>>> nx.average_neighbor_degree(G, weight='weight')
{0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0}

>>> G=nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> nx.average_neighbor_degree(G, source='in', target='in')
{0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0}

>>> nx.average_neighbor_degree(G, source='out', target='out')
{0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}

Notes

For directed graphs you can also specify in-degree or out-degree
by passing keyword arguments.

See also

average_degree_connectivity()

References

	1

	A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks”.
PNAS 101 (11): 3747–3752 (2004).

NetworkX

average_degree_connectivity

	
average_degree_connectivity(G, source='in+out', target='in+out', nodes=None, weight=None)

	Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of
nodes with degree k. For weighted graphs, an analogous measure can
be computed using the weighted average neighbors degree defined in
1, for a node \(i\), as

\[k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j\]

where \(s_i\) is the weighted degree of node \(i\),
\(w_{ij}\) is the weight of the edge that links \(i\) and \(j\),
and \(N(i)\) are the neighbors of node \(i\).

	Parameters

	
	G (NetworkX graph) –

	source ("in"|"out"|"in+out" (default:"in+out")) – Directed graphs only. Use “in”- or “out”-degree for source node.

	target ("in"|"out"|"in+out" (default:"in+out") – Directed graphs only. Use “in”- or “out”-degree for target node.

	nodes (list or iterable (optional)) – Compute neighbor connectivity for these nodes. The default is all
nodes.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	Returns

	d – A dictionary keyed by degree k with the value of average connectivity.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}

See also

neighbors_average_degree()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also
available as k_nearest_neighbors.

References

	1

	A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks”.
PNAS 101 (11): 3747–3752 (2004).

NetworkX

k_nearest_neighbors

	
k_nearest_neighbors(G, source='in+out', target='in+out', nodes=None, weight=None)

	Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of
nodes with degree k. For weighted graphs, an analogous measure can
be computed using the weighted average neighbors degree defined in
1, for a node \(i\), as

\[k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j\]

where \(s_i\) is the weighted degree of node \(i\),
\(w_{ij}\) is the weight of the edge that links \(i\) and \(j\),
and \(N(i)\) are the neighbors of node \(i\).

	Parameters

	
	G (NetworkX graph) –

	source ("in"|"out"|"in+out" (default:"in+out")) – Directed graphs only. Use “in”- or “out”-degree for source node.

	target ("in"|"out"|"in+out" (default:"in+out") – Directed graphs only. Use “in”- or “out”-degree for target node.

	nodes (list or iterable (optional)) – Compute neighbor connectivity for these nodes. The default is all
nodes.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	Returns

	d – A dictionary keyed by degree k with the value of average connectivity.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}

See also

neighbors_average_degree()

Notes

This algorithm is sometimes called “k nearest neighbors” and is also
available as k_nearest_neighbors.

References

	1

	A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani,
“The architecture of complex weighted networks”.
PNAS 101 (11): 3747–3752 (2004).

NetworkX

attribute_mixing_matrix

	
attribute_mixing_matrix(G, attribute, nodes=None, mapping=None, normalized=True)

	Return mixing matrix for attribute.

	Parameters

	
	G (graph) – NetworkX graph object.

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Node attribute key.

	nodes (list or iterable (optional)) – Use only nodes in container to build the matrix. The default is
all nodes.

	mapping (dictionary, optional) – Mapping from node attribute to integer index in matrix.
If not specified, an arbitrary ordering will be used.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – Return counts if False or probabilities if True.

	Returns

	m – Counts or joint probability of occurrence of attribute pairs.

	Return type

	numpy array

NetworkX

degree_mixing_matrix

	
degree_mixing_matrix(G, x='out', y='in', weight=None, nodes=None, normalized=True)

	Return mixing matrix for attribute.

	Parameters

	
	G (graph) – NetworkX graph object.

	x (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for source node (directed graphs only).

	y (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for target node (directed graphs only).

	nodes (list or iterable (optional)) – Build the matrix using only nodes in container.
The default is all nodes.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – Return counts if False or probabilities if True.

	Returns

	m – Counts, or joint probability, of occurrence of node degree.

	Return type

	numpy array

NetworkX

degree_mixing_dict

	
degree_mixing_dict(G, x='out', y='in', weight=None, nodes=None, normalized=False)

	Return dictionary representation of mixing matrix for degree.

	Parameters

	
	G (graph) – NetworkX graph object.

	x (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for source node (directed graphs only).

	y (string [https://docs.python.org/2/library/string.html#module-string] ('in','out')) – The degree type for target node (directed graphs only).

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – Return counts if False or probabilities if True.

	Returns

	d – Counts or joint probability of occurrence of degree pairs.

	Return type

	dictionary

NetworkX

attribute_mixing_dict

	
attribute_mixing_dict(G, attribute, nodes=None, normalized=False)

	Return dictionary representation of mixing matrix for attribute.

	Parameters

	
	G (graph) – NetworkX graph object.

	attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Node attribute key.

	nodes (list or iterable (optional)) – Unse nodes in container to build the dict. The default is all nodes.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – Return counts if False or probabilities if True.

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edge(1,3)
>>> d=nx.attribute_mixing_dict(G,'color')
>>> print(d['red']['blue'])
1
>>> print(d['blue']['red']) # d symmetric for undirected graphs
1

	Returns

	d – Counts or joint probability of occurrence of attribute pairs.

	Return type

	dictionary

NetworkX

Bipartite

This module provides functions and operations for bipartite
graphs. Bipartite graphs \(B = (U, V, E)\) have two node sets \(U,V\) and edges in
\(E\) that only connect nodes from opposite sets. It is common in the literature
to use an spatial analogy referring to the two node sets as top and bottom nodes.

The bipartite algorithms are not imported into the networkx namespace
at the top level so the easiest way to use them is with:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite

NetworkX does not have a custom bipartite graph class but the Graph()
or DiGraph() classes can be used to represent bipartite graphs. However,
you have to keep track of which set each node belongs to, and make
sure that there is no edge between nodes of the same set. The convention used
in NetworkX is to use a node attribute named “bipartite” with values 0 or 1 to
identify the sets each node belongs to.

For example:

>>> B = nx.Graph()
>>> B.add_nodes_from([1,2,3,4], bipartite=0) # Add the node attribute "bipartite"
>>> B.add_nodes_from(['a','b','c'], bipartite=1)
>>> B.add_edges_from([(1,'a'), (1,'b'), (2,'b'), (2,'c'), (3,'c'), (4,'a')])

Many algorithms of the bipartite module of NetworkX require, as an argument, a
container with all the nodes that belong to one set, in addition to the bipartite
graph \(B\). If \(B\) is connected, you can find the node sets using a two-coloring
algorithm:

>>> nx.is_connected(B)
True
>>> bottom_nodes, top_nodes = bipartite.sets(B)

list(top_nodes)
[1, 2, 3, 4]
list(bottom_nodes)
[‘a’, ‘c’, ‘b’]

However, if the input graph is not connected, there are more than one possible
colorations. Thus, the following result is correct:

>>> B.remove_edge(2,'c')
>>> nx.is_connected(B)
False
>>> bottom_nodes, top_nodes = bipartite.sets(B)

list(top_nodes)
[1, 2, 4, ‘c’]
list(bottom_nodes)
[‘a’, 3, ‘b’]

Using the “bipartite” node attribute, you can easily get the two node sets:

>>> top_nodes = set(n for n,d in B.nodes(data=True) if d['bipartite']==0)
>>> bottom_nodes = set(B) - top_nodes

list(top_nodes)
[1, 2, 3, 4]
list(bottom_nodes)
[‘a’, ‘c’, ‘b’]

So you can easily use the bipartite algorithms that require, as an argument, a
container with all nodes that belong to one node set:

>>> print(round(bipartite.density(B, bottom_nodes),2))
0.42
>>> G = bipartite.projected_graph(B, top_nodes)
>>> G.edges()
[(1, 2), (1, 4)]

All bipartite graph generators in NetworkX build bipartite graphs with the
“bipartite” node attribute. Thus, you can use the same approach:

>>> RB = bipartite.random_graph(5, 7, 0.2)
>>> RB_top = set(n for n,d in RB.nodes(data=True) if d['bipartite']==0)
>>> RB_bottom = set(RB) - RB_top
>>> list(RB_top)
[0, 1, 2, 3, 4]
>>> list(RB_bottom)
[5, 6, 7, 8, 9, 10, 11]

For other bipartite graph generators see the bipartite section of
Graph generators.

Basic functions

Bipartite Graph Algorithms

	is_bipartite(G)

	Returns True if graph G is bipartite, False if not.

	is_bipartite_node_set(G, nodes)

	Returns True if nodes and G/nodes are a bipartition of G.

	sets(G)

	Returns bipartite node sets of graph G.

	color(G)

	Returns a two-coloring of the graph.

	density(B, nodes)

	Return density of bipartite graph B.

	degrees(B, nodes[, weight])

	Return the degrees of the two node sets in the bipartite graph B.

Matching

Provides functions for computing a maximum cardinality matching in a
bipartite graph.

If you don’t care about the particular implementation of the maximum matching
algorithm, simply use the maximum_matching(). If you do care, you can
import one of the named maximum matching algorithms directly.

For example, to find a maximum matching in the complete bipartite graph with
two vertices on the left and three vertices on the right:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> left, right = nx.bipartite.sets(G)
>>> list(left)
[0, 1]
>>> list(right)
[2, 3, 4]
>>> nx.bipartite.maximum_matching(G)
{0: 2, 1: 3, 2: 0, 3: 1}

The dictionary returned by maximum_matching() includes a mapping for
vertices in both the left and right vertex sets.

	eppstein_matching(G)

	Returns the maximum cardinality matching of the bipartite graph \(G\).

	hopcroft_karp_matching(G)

	Returns the maximum cardinality matching of the bipartite graph \(G\).

	to_vertex_cover(G, matching)

	Returns the minimum vertex cover corresponding to the given maximum matching of the bipartite graph \(G\).

Matrix

Biadjacency matrices

	biadjacency_matrix(G, row_order[, …])

	Return the biadjacency matrix of the bipartite graph G.

	from_biadjacency_matrix(A[, create_using, …])

	Creates a new bipartite graph from a biadjacency matrix given as a SciPy sparse matrix.

Projections

One-mode (unipartite) projections of bipartite graphs.

	projected_graph(B, nodes[, multigraph])

	Returns the projection of B onto one of its node sets.

	weighted_projected_graph(B, nodes[, ratio])

	Returns a weighted projection of B onto one of its node sets.

	collaboration_weighted_projected_graph(B, nodes)

	Newman’s weighted projection of B onto one of its node sets.

	overlap_weighted_projected_graph(B, nodes[, …])

	Overlap weighted projection of B onto one of its node sets.

	generic_weighted_projected_graph(B, nodes[, …])

	Weighted projection of B with a user-specified weight function.

Spectral

Spectral bipartivity measure.

	spectral_bipartivity(G[, nodes, weight])

	Returns the spectral bipartivity.

Clustering

	clustering(G[, nodes, mode])

	Compute a bipartite clustering coefficient for nodes.

	average_clustering(G[, nodes, mode])

	Compute the average bipartite clustering coefficient.

	latapy_clustering(G[, nodes, mode])

	Compute a bipartite clustering coefficient for nodes.

	robins_alexander_clustering(G)

	Compute the bipartite clustering of G.

Redundancy

Node redundancy for bipartite graphs.

	node_redundancy(G[, nodes])

	Computes the node redundancy coefficients for the nodes in the bipartite graph G.

Centrality

	closeness_centrality(G, nodes[, normalized])

	Compute the closeness centrality for nodes in a bipartite network.

	degree_centrality(G, nodes)

	Compute the degree centrality for nodes in a bipartite network.

	betweenness_centrality(G, nodes)

	Compute betweenness centrality for nodes in a bipartite network.

Generators

Generators and functions for bipartite graphs.

	complete_bipartite_graph(n1, n2[, create_using])

	Return the complete bipartite graph \(K_{n_1,n_2}\).

	configuration_model(aseq, bseq[, …])

	Return a random bipartite graph from two given degree sequences.

	havel_hakimi_graph(aseq, bseq[, create_using])

	Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

	reverse_havel_hakimi_graph(aseq, bseq[, …])

	Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.

	alternating_havel_hakimi_graph(aseq, bseq[, …])

	Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.

	preferential_attachment_graph(aseq, p[, …])

	Create a bipartite graph with a preferential attachment model from a given single degree sequence.

	random_graph(n, m, p[, seed, directed])

	Return a bipartite random graph.

	gnmk_random_graph(n, m, k[, seed, directed])

	Return a random bipartite graph G_{n,m,k}.

NetworkX

is_bipartite

	
is_bipartite(G)

	Returns True if graph G is bipartite, False if not.

	Parameters

	G (NetworkX graph) –

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> print(bipartite.is_bipartite(G))
True

See also

color(), is_bipartite_node_set()

NetworkX

is_bipartite_node_set

	
is_bipartite_node_set(G, nodes)

	Returns True if nodes and G/nodes are a bipartition of G.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or container) – Check if nodes are a one of a bipartite set.

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X = set([1,3])
>>> bipartite.is_bipartite_node_set(G,X)
True

Notes

For connected graphs the bipartite sets are unique. This function handles
disconnected graphs.

NetworkX

sets

	
sets(G)

	Returns bipartite node sets of graph G.

Raises an exception if the graph is not bipartite.

	Parameters

	G (NetworkX graph) –

	Returns

	(X,Y) – One set of nodes for each part of the bipartite graph.

	Return type

	two-tuple of sets

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]

See also

color()

NetworkX

color

	
color(G)

	Returns a two-coloring of the graph.

Raises an exception if the graph is not bipartite.

	Parameters

	G (NetworkX graph) –

	Returns

	color – A dictionary keyed by node with a 1 or 0 as data for each node color.

	Return type

	dictionary

	Raises

	NetworkXError if the graph is not two-colorable.

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> c = bipartite.color(G)
>>> print(c)
{0: 1, 1: 0, 2: 1, 3: 0}

You can use this to set a node attribute indicating the biparite set:

>>> nx.set_node_attributes(G, 'bipartite', c)
>>> print(G.node[0]['bipartite'])
1
>>> print(G.node[1]['bipartite'])
0

NetworkX

density

	
density(B, nodes)

	Return density of bipartite graph B.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or container) – Nodes in one set of the bipartite graph.

	Returns

	d – The bipartite density

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
1.0
>>> Y=set([3,4])
>>> bipartite.density(G,Y)
1.0

See also

color()

NetworkX

degrees

	
degrees(B, nodes, weight=None)

	Return the degrees of the two node sets in the bipartite graph B.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or container) – Nodes in one set of the bipartite graph.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.

	Returns

	(degX,degY) – The degrees of the two bipartite sets as dictionaries keyed by node.

	Return type

	tuple of dictionaries

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> Y=set([3,4])
>>> degX,degY=bipartite.degrees(G,Y)
>>> degX
{0: 2, 1: 2, 2: 2}

See also

color(), density()

NetworkX

eppstein_matching

	
eppstein_matching(G)

	Returns the maximum cardinality matching of the bipartite graph \(G\).

	Parameters

	G (NetworkX graph) – Undirected bipartite graph

	Returns

	matches – The matching is returned as a dictionary, \(matches\), such that
matches[v] == w if node v is matched to node w. Unmatched
nodes do not occur as a key in mate.

	Return type

	dictionary

Notes

This function is implemented with David Eppstein’s version of the algorithm
Hopcroft–Karp algorithm (see hopcroft_karp_matching()), which
originally appeared in the Python Algorithms and Data Structures library
(PADS) [http://www.ics.uci.edu/~eppstein/PADS/ABOUT-PADS.txt].

See also

hopcroft_karp_matching()

NetworkX

hopcroft_karp_matching

	
hopcroft_karp_matching(G)

	Returns the maximum cardinality matching of the bipartite graph \(G\).

	Parameters

	G (NetworkX graph) – Undirected bipartite graph

	Returns

	matches – The matching is returned as a dictionary, \(matches\), such that
matches[v] == w if node v is matched to node w. Unmatched
nodes do not occur as a key in mate.

	Return type

	dictionary

Notes

This function is implemented with the Hopcroft–Karp matching algorithm [https://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm] for
bipartite graphs.

See also

eppstein_matching()

References

	1

	John E. Hopcroft and Richard M. Karp. “An n^{5 / 2} Algorithm for
Maximum Matchings in Bipartite Graphs” In: SIAM Journal of Computing
2.4 (1973), pp. 225–231. <https://dx.doi.org/10.1137/0202019>.

NetworkX

to_vertex_cover

	
to_vertex_cover(G, matching)

	Returns the minimum vertex cover corresponding to the given maximum
matching of the bipartite graph \(G\).

	Parameters

	
	G (NetworkX graph) – Undirected bipartite graph

	matching (dictionary) – A dictionary whose keys are vertices in \(G\) and whose values are the
distinct neighbors comprising the maximum matching for \(G\), as returned
by, for example, maximum_matching(). The dictionary must
represent the maximum matching.

	Returns

	vertex_cover – The minimum vertex cover in \(G\).

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

This function is implemented using the procedure guaranteed by Konig’s
theorem [http://en.wikipedia.org/wiki/K%C3%B6nig%27s_theorem_%28graph_theory%29],
which proves an equivalence between a maximum matching and a minimum vertex
cover in bipartite graphs.

Since a minimum vertex cover is the complement of a maximum independent set
for any graph, one can compute the maximum independent set of a bipartite
graph this way:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> matching = nx.bipartite.maximum_matching(G)
>>> vertex_cover = nx.bipartite.to_vertex_cover(G, matching)
>>> independent_set = set(G) - vertex_cover
>>> print(list(independent_set))
[2, 3, 4]

NetworkX

biadjacency_matrix

	
biadjacency_matrix(G, row_order, column_order=None, dtype=None, weight='weight', format='csr')

	Return the biadjacency matrix of the bipartite graph G.

Let \(G = (U, V, E)\) be a bipartite graph with node sets
\(U = u_{1},...,u_{r}\) and \(V = v_{1},...,v_{s}\). The biadjacency
matrix 1 is the \(r\) x \(s\) matrix \(B\) in which \(b_{i,j} = 1\)
if, and only if, \((u_i, v_j) \in E\). If the parameter \(weight\) is
not \(None\) and matches the name of an edge attribute, its value is
used instead of 1.

	Parameters

	
	G (graph) – A NetworkX graph

	row_order (list of nodes) – The rows of the matrix are ordered according to the list of nodes.

	column_order (list, optional) – The columns of the matrix are ordered according to the list of nodes.
If column_order is None, then the ordering of columns is arbitrary.

	dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array. If None, then the
NumPy default is used.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to provide each value in the matrix.
If None, then each edge has weight 1.

	format (str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}) – The type of the matrix to be returned (default ‘csr’). For
some algorithms different implementations of sparse matrices
can perform better. See 2 for details.

	Returns

	M – Biadjacency matrix representation of the bipartite graph G.

	Return type

	SciPy sparse matrix

Notes

No attempt is made to check that the input graph is bipartite.

For directed bipartite graphs only successors are considered as neighbors.
To obtain an adjacency matrix with ones (or weight values) for both
predecessors and successors you have to generate two biadjacency matrices
where the rows of one of them are the columns of the other, and then add
one to the transpose of the other.

See also

adjacency_matrix(), from_biadjacency_matrix()

References

	1

	http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph

	2

	Scipy Dev. References, “Sparse Matrices”,
http://docs.scipy.org/doc/scipy/reference/sparse.html

NetworkX

from_biadjacency_matrix

	
from_biadjacency_matrix(A, create_using=None, edge_attribute='weight')

	Creates a new bipartite graph from a biadjacency matrix given as a
SciPy sparse matrix.

	Parameters

	
	A (scipy sparse matrix) – A biadjacency matrix representation of a graph

	create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

	edge_attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Name of edge attribute to store matrix numeric value. The data will
have the same type as the matrix entry (int, float, (real,imag)).

Notes

The nodes are labeled with the attribute \(bipartite\) set to an integer
0 or 1 representing membership in part 0 or part 1 of the bipartite graph.

If \(create_using\) is an instance of networkx.MultiGraph or
networkx.MultiDiGraph and the entries of \(A\) are of type int,
then this function returns a multigraph (of the same type as
\(create_using\)) with parallel edges. In this case, \(edge_attribute\) will be
ignored.

See also

biadjacency_matrix(), from_numpy_matrix()

References

[1] http://en.wikipedia.org/wiki/Adjacency_matrix#Adjacency_matrix_of_a_bipartite_graph

NetworkX

projected_graph

	
projected_graph(B, nodes, multigraph=False)

	Returns the projection of B onto one of its node sets.

Returns the graph G that is the projection of the bipartite graph B
onto the specified nodes. They retain their attributes and are connected
in G if they have a common neighbor in B.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	multigraph (bool [https://docs.python.org/2/library/functions.html#bool] (default=False)) – If True return a multigraph where the multiple edges represent multiple
shared neighbors. They edge key in the multigraph is assigned to the
label of the neighbor.

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph or multigraph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges())
[(1, 3)]

If nodes \(a\), and \(b\) are connected through both nodes 1 and 2 then
building a multigraph results in two edges in the projection onto
[\(a\),`b`]:

>>> B = nx.Graph()
>>> B.add_edges_from([('a', 1), ('b', 1), ('a', 2), ('b', 2)])
>>> G = bipartite.projected_graph(B, ['a', 'b'], multigraph=True)
>>> print([sorted((u,v)) for u,v in G.edges()])
[['a', 'b'], ['a', 'b']]

Notes

No attempt is made to verify that the input graph B is bipartite.
Returns a simple graph that is the projection of the bipartite graph B
onto the set of nodes given in list nodes. If multigraph=True then
a multigraph is returned with an edge for every shared neighbor.

Directed graphs are allowed as input. The output will also then
be a directed graph with edges if there is a directed path between
the nodes.

The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), generic_weighted_projected_graph()

NetworkX

weighted_projected_graph

	
weighted_projected_graph(B, nodes, ratio=False)

	Returns a weighted projection of B onto one of its node sets.

The weighted projected graph is the projection of the bipartite
network B onto the specified nodes with weights representing the
number of shared neighbors or the ratio between actual shared
neighbors and possible shared neighbors if ratio=True 1. The
nodes retain their attributes and are connected in the resulting graph
if they have an edge to a common node in the original graph.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	ratio (Bool (default=False)) – If True, edge weight is the ratio between actual shared neighbors
and possible shared neighbors. If False, edges weight is the number
of shared neighbors.

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.weighted_projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges(data=True))
[(1, 3, {'weight': 1})]
>>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True)
>>> print(G.edges(data=True))
[(1, 3, {'weight': 0.5})]

Notes

No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), generic_weighted_projected_graph(), projected_graph()

References

	1

	Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation
Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.

NetworkX

collaboration_weighted_projected_graph

	
collaboration_weighted_projected_graph(B, nodes)

	Newman’s weighted projection of B onto one of its node sets.

The collaboration weighted projection is the projection of the
bipartite network B onto the specified nodes with weights assigned
using Newman’s collaboration model 1:

\[w_{v,u} = \sum_k \frac{\delta_{v}^{w} \delta_{w}^{k}}{k_w - 1}\]

where \(v\) and \(u\) are nodes from the same bipartite node set,
and \(w\) is a node of the opposite node set.
The value \(k_w\) is the degree of node \(w\) in the bipartite
network and \(\delta_{v}^{w}\) is 1 if node \(v\) is
linked to node \(w\) in the original bipartite graph or 0 otherwise.

The nodes retain their attributes and are connected in the resulting
graph if have an edge to a common node in the original bipartite
graph.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> B.add_edge(1,5)
>>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5])
>>> print(G.nodes())
[0, 2, 4, 5]
>>> for edge in G.edges(data=True): print(edge)
...
(0, 2, {'weight': 0.5})
(0, 5, {'weight': 0.5})
(2, 4, {'weight': 1.0})
(2, 5, {'weight': 0.5})

Notes

No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), overlap_weighted_projected_graph(), generic_weighted_projected_graph(), projected_graph()

References

	1

	Scientific collaboration networks: II.
Shortest paths, weighted networks, and centrality,
M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).

NetworkX

overlap_weighted_projected_graph

	
overlap_weighted_projected_graph(B, nodes, jaccard=True)

	Overlap weighted projection of B onto one of its node sets.

The overlap weighted projection is the projection of the bipartite
network B onto the specified nodes with weights representing
the Jaccard index between the neighborhoods of the two nodes in the
original bipartite network 1:

\[w_{v,u} = \frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}\]

or if the parameter ‘jaccard’ is False, the fraction of common
neighbors by minimum of both nodes degree in the original
bipartite graph 1:

\[w_{v,u} = \frac{|N(u) \cap N(v)|}{min(|N(u)|,|N(v)|)}\]

The nodes retain their attributes and are connected in the resulting
graph if have an edge to a common node in the original bipartite graph.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	jaccard (Bool (default=True)) –

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4])
>>> print(G.nodes())
[0, 2, 4]
>>> print(G.edges(data=True))
[(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})]
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False)
>>> print(G.edges(data=True))
[(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})]

Notes

No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), generic_weighted_projected_graph(), projected_graph()

References

	1(1,2)

	Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation
Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.

NetworkX

generic_weighted_projected_graph

	
generic_weighted_projected_graph(B, nodes, weight_function=None)

	Weighted projection of B with a user-specified weight function.

The bipartite network B is projected on to the specified nodes
with weights computed by a user-specified function. This function
must accept as a parameter the neighborhood sets of two nodes and
return an integer or a float.

The nodes retain their attributes and are connected in the resulting graph
if they have an edge to a common node in the original graph.

	Parameters

	
	B (NetworkX graph) – The input graph should be bipartite.

	nodes (list or iterable) – Nodes to project onto (the “bottom” nodes).

	weight_function (function) – This function must accept as parameters the same input graph
that this function, and two nodes; and return an integer or a float.
The default function computes the number of shared neighbors.

	Returns

	Graph – A graph that is the projection onto the given nodes.

	Return type

	NetworkX graph

Examples

>>> from networkx.algorithms import bipartite
>>> # Define some custom weight functions
>>> def jaccard(G, u, v):
... unbrs = set(G[u])
... vnbrs = set(G[v])
... return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs)
...
>>> def my_weight(G, u, v, weight='weight'):
... w = 0
... for nbr in set(G[u]) & set(G[v]):
... w += G.edge[u][nbr].get(weight, 1) + G.edge[v][nbr].get(weight, 1)
... return w
...
>>> # A complete bipartite graph with 4 nodes and 4 edges
>>> B = nx.complete_bipartite_graph(2,2)
>>> # Add some arbitrary weight to the edges
>>> for i,(u,v) in enumerate(B.edges()):
... B.edge[u][v]['weight'] = i + 1
...
>>> for edge in B.edges(data=True):
... print(edge)
...
(0, 2, {'weight': 1})
(0, 3, {'weight': 2})
(1, 2, {'weight': 3})
(1, 3, {'weight': 4})
>>> # Without specifying a function, the weight is equal to # shared partners
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1])
>>> print(G.edges(data=True))
[(0, 1, {'weight': 2})]
>>> # To specify a custom weight function use the weight_function parameter
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=jaccard)
>>> print(G.edges(data=True))
[(0, 1, {'weight': 1.0})]
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=my_weight)
>>> print(G.edges(data=True))
[(0, 1, {'weight': 10})]

Notes

No attempt is made to verify that the input graph B is bipartite.
The graph and node properties are (shallow) copied to the projected graph.

See also

is_bipartite(), is_bipartite_node_set(), sets(), weighted_projected_graph(), collaboration_weighted_projected_graph(), overlap_weighted_projected_graph(), projected_graph()

NetworkX

spectral_bipartivity

	
spectral_bipartivity(G, nodes=None, weight='weight')

	Returns the spectral bipartivity.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or container optional(default is all nodes)) – Nodes to return value of spectral bipartivity contribution.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default = 'weight')) – Edge data key to use for edge weights. If None, weights set to 1.

	Returns

	sb – A single number if the keyword nodes is not specified, or
a dictionary keyed by node with the spectral bipartivity contribution
of that node as the value.

	Return type

	float [https://docs.python.org/2/library/functions.html#float] or dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> bipartite.spectral_bipartivity(G)
1.0

Notes

This implementation uses Numpy (dense) matrices which are not efficient
for storing large sparse graphs.

See also

color()

References

	1

	E. Estrada and J. A. Rodríguez-Velázquez, “Spectral measures of
bipartivity in complex networks”, PhysRev E 72, 046105 (2005)

NetworkX

clustering

	
clustering(G, nodes=None, mode='dot')

	Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density
of connections defined as 1:

\[c_u = \frac{\sum_{v \in N(N(v))} c_{uv} }{|N(N(u))|}\]

where \(N(N(u))\) are the second order neighbors of \(u\) in \(G\) excluding \(u\),
and \(c_{uv}\) is the pairwise clustering coefficient between nodes
\(u\) and \(v\).

The mode selects the function for \(c_{uv}\) which can be:

\(dot\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{|N(u) \cup N(v)|}\]

\(min\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{min(|N(u)|,|N(v)|)}\]

\(max\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{max(|N(u)|,|N(v)|)}\]

	Parameters

	
	G (graph) – A bipartite graph

	nodes (list or iterable (optional)) – Compute bipartite clustering for these nodes. The default
is all nodes in G.

	mode (string [https://docs.python.org/2/library/string.html#module-string]) – The pariwise bipartite clustering method to be used in the computation.
It must be “dot”, “max”, or “min”.

	Returns

	clustering – A dictionary keyed by node with the clustering coefficient value.

	Return type

	dictionary

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G,mode='min')
>>> c[0]
1.0

See also

robins_alexander_clustering(), square_clustering(), average_clustering()

References

	1

	Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31–48.

NetworkX

average_clustering

	
average_clustering(G, nodes=None, mode='dot')

	Compute the average bipartite clustering coefficient.

A clustering coefficient for the whole graph is the average,

\[C = \frac{1}{n}\sum_{v \in G} c_v,\]

where \(n\) is the number of nodes in \(G\).

Similar measures for the two bipartite sets can be defined 1

\[C_X = \frac{1}{|X|}\sum_{v \in X} c_v,\]

where \(X\) is a bipartite set of \(G\).

	Parameters

	
	G (graph) – a bipartite graph

	nodes (list or iterable, optional) – A container of nodes to use in computing the average.
The nodes should be either the entire graph (the default) or one of the
bipartite sets.

	mode (string [https://docs.python.org/2/library/string.html#module-string]) – The pariwise bipartite clustering method.
It must be “dot”, “max”, or “min”

	Returns

	clustering – The average bipartite clustering for the given set of nodes or the
entire graph if no nodes are specified.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> from networkx.algorithms import bipartite
>>> G=nx.star_graph(3) # star graphs are bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X,Y=bipartite.sets(G)
>>> bipartite.average_clustering(G,X)
0.0
>>> bipartite.average_clustering(G,Y)
1.0

See also

clustering()

Notes

The container of nodes passed to this function must contain all of the nodes
in one of the bipartite sets (“top” or “bottom”) in order to compute
the correct average bipartite clustering coefficients.

References

	1

	Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31–48.

NetworkX

latapy_clustering

	
latapy_clustering(G, nodes=None, mode='dot')

	Compute a bipartite clustering coefficient for nodes.

The bipartie clustering coefficient is a measure of local density
of connections defined as 1:

\[c_u = \frac{\sum_{v \in N(N(v))} c_{uv} }{|N(N(u))|}\]

where \(N(N(u))\) are the second order neighbors of \(u\) in \(G\) excluding \(u\),
and \(c_{uv}\) is the pairwise clustering coefficient between nodes
\(u\) and \(v\).

The mode selects the function for \(c_{uv}\) which can be:

\(dot\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{|N(u) \cup N(v)|}\]

\(min\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{min(|N(u)|,|N(v)|)}\]

\(max\):

\[c_{uv}=\frac{|N(u)\cap N(v)|}{max(|N(u)|,|N(v)|)}\]

	Parameters

	
	G (graph) – A bipartite graph

	nodes (list or iterable (optional)) – Compute bipartite clustering for these nodes. The default
is all nodes in G.

	mode (string [https://docs.python.org/2/library/string.html#module-string]) – The pariwise bipartite clustering method to be used in the computation.
It must be “dot”, “max”, or “min”.

	Returns

	clustering – A dictionary keyed by node with the clustering coefficient value.

	Return type

	dictionary

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) # path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G,mode='min')
>>> c[0]
1.0

See also

robins_alexander_clustering(), square_clustering(), average_clustering()

References

	1

	Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31–48.

NetworkX

robins_alexander_clustering

	
robins_alexander_clustering(G)

	Compute the bipartite clustering of G.

Robins and Alexander 1 defined bipartite clustering coefficient as
four times the number of four cycles \(C_4\) divided by the number of
three paths \(L_3\) in a bipartite graph:

\[CC_4 = \frac{4 * C_4}{L_3}\]

	Parameters

	G (graph) – a bipartite graph

	Returns

	clustering – The Robins and Alexander bipartite clustering for the input graph.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.davis_southern_women_graph()
>>> print(round(bipartite.robins_alexander_clustering(G), 3))
0.468

See also

latapy_clustering(), square_clustering()

References

	1

	Robins, G. and M. Alexander (2004). Small worlds among interlocking
directors: Network structure and distance in bipartite graphs.
Computational & Mathematical Organization Theory 10(1), 69–94.

NetworkX

node_redundancy

	
node_redundancy(G, nodes=None)

	Computes the node redundancy coefficients for the nodes in the bipartite
graph G.

The redundancy coefficient of a node \(v\) is the fraction of pairs of
neighbors of \(v\) that are both linked to other nodes. In a one-mode
projection these nodes would be linked together even if \(v\) were
not there.

More formally, for any vertex \(v\), the redundancy coefficient of `v` is
defined by

\[rc(v) = \frac{|\{\{u, w\} \subseteq N(v),
\: \exists v' \neq v,\: (v',u) \in E\:
\mathrm{and}\: (v',w) \in E\}|}{ \frac{|N(v)|(|N(v)|-1)}{2}},\]

where \(N(v)\) is the set of neighbors of \(v\) in G.

	Parameters

	
	G (graph) – A bipartite graph

	nodes (list or iterable (optional)) – Compute redundancy for these nodes. The default is all nodes in G.

	Returns

	redundancy – A dictionary keyed by node with the node redundancy value.

	Return type

	dictionary

Examples

Compute the redundancy coefficient of each node in a graph:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> rc[0]
1.0

Compute the average redundancy for the graph:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> sum(rc.values()) / len(G)
1.0

Compute the average redundancy for a set of nodes:

>>> import networkx as nx
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> nodes = [0, 2]
>>> sum(rc[n] for n in nodes) / len(nodes)
1.0

	Raises

	NetworkXError – If any of the nodes in the graph (or in nodes, if specified) has
(out-)degree less than two (which would result in division by zero,
according to the definition of the redundancy coefficient).

References

	1

	Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008).
Basic notions for the analysis of large two-mode networks.
Social Networks 30(1), 31–48.

NetworkX

closeness_centrality

	
closeness_centrality(G, nodes, normalized=True)

	Compute the closeness centrality for nodes in a bipartite network.

The closeness of a node is the distance to all other nodes in the
graph or in the case that the graph is not connected to all other nodes
in the connected component containing that node.

	Parameters

	
	G (graph) – A bipartite network

	nodes (list or container) – Container with all nodes in one bipartite node set.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True (default) normalize by connected component size.

	Returns

	closeness – Dictionary keyed by node with bipartite closeness centrality
as the value.

	Return type

	dictionary

See also

betweenness_centrality(), degree_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must conatin all nodes in one bipartite node set,
but the dictionary returned contains all nodes from both node sets.

Closeness centrality is normalized by the minimum distance possible.
In the bipartite case the minimum distance for a node in one bipartite
node set is 1 from all nodes in the other node set and 2 from all
other nodes in its own set 1. Thus the closeness centrality
for node \(v\) in the two bipartite sets \(U\) with
\(n\) nodes and \(V\) with \(m\) nodes is

\[\begin{align}\begin{aligned}c_{v} = \frac{m + 2(n - 1)}{d}, \mbox{for} v \in U,\\c_{v} = \frac{n + 2(m - 1)}{d}, \mbox{for} v \in V,\end{aligned}\end{align} \]

where \(d\) is the sum of the distances from \(v\) to all
other nodes.

Higher values of closeness indicate higher centrality.

As in the unipartite case, setting normalized=True causes the
values to normalized further to n-1 / size(G)-1 where n is the
number of nodes in the connected part of graph containing the
node. If the graph is not completely connected, this algorithm
computes the closeness centrality for each connected part
separately.

References

	1

	Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation
Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.
http://www.steveborgatti.com/papers/bhaffiliations.pdf

NetworkX

degree_centrality

	
degree_centrality(G, nodes)

	Compute the degree centrality for nodes in a bipartite network.

The degree centrality for a node \(v\) is the fraction of nodes
connected to it.

	Parameters

	
	G (graph) – A bipartite network

	nodes (list or container) – Container with all nodes in one bipartite node set.

	Returns

	centrality – Dictionary keyed by node with bipartite degree centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), closeness_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must conatin all nodes in one bipartite node set,
but the dictionary returned contains all nodes from both bipartite node
sets.

For unipartite networks, the degree centrality values are
normalized by dividing by the maximum possible degree (which is
\(n-1\) where \(n\) is the number of nodes in G).

In the bipartite case, the maximum possible degree of a node in a
bipartite node set is the number of nodes in the opposite node set
1. The degree centrality for a node \(v\) in the bipartite
sets \(U\) with \(n\) nodes and \(V\) with \(m\) nodes is

\[\begin{align}\begin{aligned}d_{v} = \frac{deg(v)}{m}, \mbox{for} v \in U ,\\d_{v} = \frac{deg(v)}{n}, \mbox{for} v \in V ,\end{aligned}\end{align} \]

where \(deg(v)\) is the degree of node \(v\).

References

	1

	Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation
Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.
http://www.steveborgatti.com/papers/bhaffiliations.pdf

NetworkX

betweenness_centrality

	
betweenness_centrality(G, nodes)

	Compute betweenness centrality for nodes in a bipartite network.

Betweenness centrality of a node \(v\) is the sum of the
fraction of all-pairs shortest paths that pass through \(v\).

Values of betweenness are normalized by the maximum possible
value which for bipartite graphs is limited by the relative size
of the two node sets 1.

Let \(n\) be the number of nodes in the node set \(U\) and
\(m\) be the number of nodes in the node set \(V\), then
nodes in \(U\) are normalized by dividing by

\[\frac{1}{2} [m^2 (s + 1)^2 + m (s + 1)(2t - s - 1) - t (2s - t + 3)] ,\]

where

\[s = (n - 1) \div m , t = (n - 1) \mod m ,\]

and nodes in \(V\) are normalized by dividing by

\[\frac{1}{2} [n^2 (p + 1)^2 + n (p + 1)(2r - p - 1) - r (2p - r + 3)] ,\]

where,

\[p = (m - 1) \div n , r = (m - 1) \mod n .\]

	Parameters

	
	G (graph) – A bipartite graph

	nodes (list or container) – Container with all nodes in one bipartite node set.

	Returns

	betweenness – Dictionary keyed by node with bipartite betweenness centrality
as the value.

	Return type

	dictionary

See also

degree_centrality(), closeness_centrality(), sets(), is_bipartite()

Notes

The nodes input parameter must contain all nodes in one bipartite node set,
but the dictionary returned contains all nodes from both node sets.

References

	1

	Borgatti, S.P. and Halgin, D. In press. “Analyzing Affiliation
Networks”. In Carrington, P. and Scott, J. (eds) The Sage Handbook
of Social Network Analysis. Sage Publications.
http://www.steveborgatti.com/papers/bhaffiliations.pdf

NetworkX

complete_bipartite_graph

	
complete_bipartite_graph(n1, n2, create_using=None)

	Return the complete bipartite graph \(K_{n_1,n_2}\).

Composed of two partitions with \(n_1\) nodes in the first
and \(n_2\) nodes in the second. Each node in the first is
connected to each node in the second.

	Parameters

	
	n1 (integer) – Number of nodes for node set A.

	n2 (integer) – Number of nodes for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

Notes

Node labels are the integers 0 to \(n_1 + n_2 - 1\).

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

NetworkX

configuration_model

	
configuration_model(aseq, bseq, create_using=None, seed=None)

	Return a random bipartite graph from two given degree sequences.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	bseq (list) – Degree sequence for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

	seed (integer, optional) – Seed for random number generator.

	from the set A are connected to nodes in the set B by (Nodes) –

	randomly from the possible free stubs, one in A and (choosing) –

	in B. (one) –

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
If no graph type is specified use MultiGraph with parallel edges.
If you want a graph with no parallel edges use create_using=Graph()
but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

NetworkX

havel_hakimi_graph

	
havel_hakimi_graph(aseq, bseq, create_using=None)

	Return a bipartite graph from two given degree sequences using a
Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by
connecting the highest degree nodes in set A to the highest degree
nodes in set B until all stubs are connected.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	bseq (list) – Degree sequence for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
If no graph type is specified use MultiGraph with parallel edges.
If you want a graph with no parallel edges use create_using=Graph()
but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

NetworkX

reverse_havel_hakimi_graph

	
reverse_havel_hakimi_graph(aseq, bseq, create_using=None)

	Return a bipartite graph from two given degree sequences using a
Havel-Hakimi style construction.

Nodes from set A are connected to nodes in the set B by connecting
the highest degree nodes in set A to the lowest degree nodes in
set B until all stubs are connected.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	bseq (list) – Degree sequence for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
If no graph type is specified use MultiGraph with parallel edges.
If you want a graph with no parallel edges use create_using=Graph()
but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

NetworkX

alternating_havel_hakimi_graph

	
alternating_havel_hakimi_graph(aseq, bseq, create_using=None)

	Return a bipartite graph from two given degree sequences using
an alternating Havel-Hakimi style construction.

Nodes from the set A are connected to nodes in the set B by
connecting the highest degree nodes in set A to alternatively the
highest and the lowest degree nodes in set B until all stubs are
connected.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	bseq (list) – Degree sequence for node set B.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

The sum of the two sequences must be equal: sum(aseq)=sum(bseq)
If no graph type is specified use MultiGraph with parallel edges.
If you want a graph with no parallel edges use create_using=Graph()
but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

NetworkX

preferential_attachment_graph

	
preferential_attachment_graph(aseq, p, create_using=None, seed=None)

	Create a bipartite graph with a preferential attachment model from
a given single degree sequence.

	Parameters

	
	aseq (list) – Degree sequence for node set A.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability that a new bottom node is added.

	create_using (NetworkX graph instance, optional) – Return graph of this type.

	seed (integer, optional) – Seed for random number generator.

References

	1

	Jean-Loup Guillaume and Matthieu Latapy,
Bipartite structure of all complex networks,
Inf. Process. Lett. 90, 2004, pg. 215-221
http://dx.doi.org/10.1016/j.ipl.2004.03.007

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

NetworkX

random_graph

	
random_graph(n, m, p, seed=None, directed=False)

	Return a bipartite random graph.

This is a bipartite version of the binomial (Erdős-Rényi) graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set.

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True return a directed graph

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

The bipartite random graph algorithm chooses each of the n*m (undirected)
or 2*nm (directed) possible edges with probability p.

This algorithm is O(n+m) where m is the expected number of edges.

The nodes are assigned the attribute ‘bipartite’ with the value 0 or 1
to indicate which bipartite set the node belongs to.

See also

gnp_random_graph(), configuration_model()

References

	1

	Vladimir Batagelj and Ulrik Brandes,
“Efficient generation of large random networks”,
Phys. Rev. E, 71, 036113, 2005.

NetworkX

gnmk_random_graph

	
gnmk_random_graph(n, m, k, seed=None, directed=False)

	Return a random bipartite graph G_{n,m,k}.

Produces a bipartite graph chosen randomly out of the set of all graphs
with n top nodes, m bottom nodes, and k edges.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set.

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set.

	k (int [https://docs.python.org/2/library/functions.html#int]) – The number of edges

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True return a directed graph

Examples

from networkx.algorithms import bipartite
G = bipartite.gnmk_random_graph(10,20,50)

See also

gnm_random_graph()

Notes

This function is not imported in the main namespace.
To use it you have to explicitly import the bipartite package.

If k > m * n then a complete bipartite graph is returned.

This graph is a bipartite version of the \(G_{nm}\) random graph model.

NetworkX

Blockmodeling

Functions for creating network blockmodels from node partitions.

Created by Drew Conway <drew.conway@nyu.edu>
Copyright (c) 2010. All rights reserved.

	blockmodel(G, partitions[, multigraph])

	Returns a reduced graph constructed using the generalized block modeling technique.

NetworkX

blockmodel

	
blockmodel(G, partitions, multigraph=False)

	Returns a reduced graph constructed using the generalized block modeling
technique.

The blockmodel technique collapses nodes into blocks based on a
given partitioning of the node set. Each partition of nodes
(block) is represented as a single node in the reduced graph.

Edges between nodes in the block graph are added according to the
edges in the original graph. If the parameter multigraph is False
(the default) a single edge is added with a weight equal to the
sum of the edge weights between nodes in the original graph
The default is a weight of 1 if weights are not specified. If the
parameter multigraph is True then multiple edges are added each
with the edge data from the original graph.

	Parameters

	
	G (graph) – A networkx Graph or DiGraph

	partitions (list of lists, or list of sets) – The partition of the nodes. Must be non-overlapping.

	multigraph (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True return a MultiGraph with the edge data of the original
graph applied to each corresponding edge in the new graph.
If False return a Graph with the sum of the edge weights, or a
count of the edges if the original graph is unweighted.

	Returns

	blockmodel

	Return type

	a Networkx graph object

Examples

>>> G=nx.path_graph(6)
>>> partition=[[0,1],[2,3],[4,5]]
>>> M=nx.blockmodel(G,partition)

References

	1

	Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj
“Generalized Blockmodeling”,Cambridge University Press, 2004.

NetworkX

Boundary

Routines to find the boundary of a set of nodes.

Edge boundaries are edges that have only one end
in the set of nodes.

Node boundaries are nodes outside the set of nodes
that have an edge to a node in the set.

	edge_boundary(G, nbunch1[, nbunch2])

	Return the edge boundary.

	node_boundary(G, nbunch1[, nbunch2])

	Return the node boundary.

NetworkX

edge_boundary

	
edge_boundary(G, nbunch1, nbunch2=None)

	Return the edge boundary.

Edge boundaries are edges that have only one end
in the given set of nodes.

	Parameters

	
	G (graph) – A networkx graph

	nbunch1 (list, container) – Interior node set

	nbunch2 (list, container) – Exterior node set. If None then it is set to all of the
nodes in G not in nbunch1.

	Returns

	elist – List of edges

	Return type

	list

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint,
but in the interest of speed and generality, that is
not required here.

NetworkX

node_boundary

	
node_boundary(G, nbunch1, nbunch2=None)

	Return the node boundary.

The node boundary is all nodes in the edge boundary of a given
set of nodes that are in the set.

	Parameters

	
	G (graph) – A networkx graph

	nbunch1 (list, container) – Interior node set

	nbunch2 (list, container) – Exterior node set. If None then it is set to all of the
nodes in G not in nbunch1.

	Returns

	nlist – List of nodes.

	Return type

	list

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.

nbunch1 and nbunch2 are usually meant to be disjoint,
but in the interest of speed and generality, that is
not required here.

NetworkX

Centrality

Degree

	degree_centrality(G)

	Compute the degree centrality for nodes.

	in_degree_centrality(G)

	Compute the in-degree centrality for nodes.

	out_degree_centrality(G)

	Compute the out-degree centrality for nodes.

Closeness

	closeness_centrality(G[, u, distance, …])

	Compute closeness centrality for nodes.

Betweenness

	betweenness_centrality(G[, k, normalized, …])

	Compute the shortest-path betweenness centrality for nodes.

	edge_betweenness_centrality(G[, k, …])

	Compute betweenness centrality for edges.

Current Flow Closeness

	current_flow_closeness_centrality(G[, …])

	Compute current-flow closeness centrality for nodes.

Current-Flow Betweenness

	current_flow_betweenness_centrality(G[, …])

	Compute current-flow betweenness centrality for nodes.

	edge_current_flow_betweenness_centrality(G)

	Compute current-flow betweenness centrality for edges.

	approximate_current_flow_betweenness_centrality(G)

	Compute the approximate current-flow betweenness centrality for nodes.

Eigenvector

	eigenvector_centrality(G[, max_iter, tol, …])

	Compute the eigenvector centrality for the graph G.

	eigenvector_centrality_numpy(G[, weight])

	Compute the eigenvector centrality for the graph G.

	katz_centrality(G[, alpha, beta, max_iter, …])

	Compute the Katz centrality for the nodes of the graph G.

	katz_centrality_numpy(G[, alpha, beta, …])

	Compute the Katz centrality for the graph G.

Communicability

	communicability(G)

	Return communicability between all pairs of nodes in G.

	communicability_exp(G)

	Return communicability between all pairs of nodes in G.

	communicability_centrality(G)

	Return communicability centrality for each node in G.

	communicability_centrality_exp(G)

	Return the communicability centrality for each node of G

	communicability_betweenness_centrality(G[, …])

	Return communicability betweenness for all pairs of nodes in G.

	estrada_index(G)

	Return the Estrada index of a the graph G.

Load

	load_centrality(G[, v, cutoff, normalized, …])

	Compute load centrality for nodes.

	edge_load(G[, nodes, cutoff])

	Compute edge load.

Dispersion

	dispersion(G[, u, v, normalized, alpha, b, c])

	Calculate dispersion between \(u\) and \(v\) in \(G\).

NetworkX

degree_centrality

	
degree_centrality(G)

	Compute the degree centrality for nodes.

The degree centrality for a node v is the fraction of nodes it
is connected to.

	Parameters

	G (graph) – A networkx graph

	Returns

	nodes – Dictionary of nodes with degree centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), load_centrality(), eigenvector_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum
possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might
be higher than n-1 and values of degree centrality greater than 1
are possible.

NetworkX

in_degree_centrality

	
in_degree_centrality(G)

	Compute the in-degree centrality for nodes.

The in-degree centrality for a node v is the fraction of nodes its
incoming edges are connected to.

	Parameters

	G (graph) – A NetworkX graph

	Returns

	nodes – Dictionary of nodes with in-degree centrality as values.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is undirected.

See also

degree_centrality(), out_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum
possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might
be higher than n-1 and values of degree centrality greater than 1
are possible.

NetworkX

out_degree_centrality

	
out_degree_centrality(G)

	Compute the out-degree centrality for nodes.

The out-degree centrality for a node v is the fraction of nodes its
outgoing edges are connected to.

	Parameters

	G (graph) – A NetworkX graph

	Returns

	nodes – Dictionary of nodes with out-degree centrality as values.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is undirected.

See also

degree_centrality(), in_degree_centrality()

Notes

The degree centrality values are normalized by dividing by the maximum
possible degree in a simple graph n-1 where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might
be higher than n-1 and values of degree centrality greater than 1
are possible.

NetworkX

closeness_centrality

	
closeness_centrality(G, u=None, distance=None, normalized=True)

	Compute closeness centrality for nodes.

Closeness centrality 1 of a node \(u\) is the reciprocal of the
sum of the shortest path distances from \(u\) to all \(n-1\) other nodes.
Since the sum of distances depends on the number of nodes in the
graph, closeness is normalized by the sum of minimum possible
distances \(n-1\).

\[C(u) = \frac{n - 1}{\sum_{v=1}^{n-1} d(v, u)},\]

where \(d(v, u)\) is the shortest-path distance between \(v\) and \(u\),
and \(n\) is the number of nodes in the graph.

Notice that higher values of closeness indicate higher centrality.

	Parameters

	
	G (graph) – A NetworkX graph

	u (node, optional) – Return only the value for node u

	distance (edge attribute key, optional (default=None)) – Use the specified edge attribute as the edge distance in shortest
path calculations

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True (default) normalize by the number of nodes in the connected
part of the graph.

	Returns

	nodes – Dictionary of nodes with closeness centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), load_centrality(), eigenvector_centrality(), degree_centrality()

Notes

The closeness centrality is normalized to \((n-1)/(|G|-1)\) where
\(n\) is the number of nodes in the connected part of graph
containing the node. If the graph is not completely connected,
this algorithm computes the closeness centrality for each
connected part separately.

If the ‘distance’ keyword is set to an edge attribute key then the
shortest-path length will be computed using Dijkstra’s algorithm with
that edge attribute as the edge weight.

References

	1

	Linton C. Freeman: Centrality in networks: I.
Conceptual clarification. Social Networks 1:215-239, 1979.
http://leonidzhukov.ru/hse/2013/socialnetworks/papers/freeman79-centrality.pdf

NetworkX

betweenness_centrality

	
betweenness_centrality(G, k=None, normalized=True, weight=None, endpoints=False, seed=None)

	Compute the shortest-path betweenness centrality for nodes.

Betweenness centrality of a node \(v\) is the sum of the
fraction of all-pairs shortest paths that pass through \(v\)

\[c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)}\]

where \(V\) is the set of nodes, \(\sigma(s, t)\) is the number of
shortest \((s, t)\)-paths, and \(\sigma(s, t|v)\) is the number of those
paths passing through some node \(v\) other than \(s, t\).
If \(s = t\), \(\sigma(s, t) = 1\), and if \(v \in {s, t}\),
\(\sigma(s, t|v) = 0\) 2.

	Parameters

	
	G (graph) – A NetworkX graph

	k (int [https://docs.python.org/2/library/functions.html#int], optional (default=None)) – If k is not None use k node samples to estimate betweenness.
The value of k <= n where n is the number of nodes in the graph.
Higher values give better approximation.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True the betweenness values are normalized by \(2/((n-1)(n-2))\)
for graphs, and \(1/((n-1)(n-2))\) for directed graphs where \(n\)
is the number of nodes in G.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	endpoints (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True include the endpoints in the shortest path counts.

	Returns

	nodes – Dictionary of nodes with betweenness centrality as the value.

	Return type

	dictionary

See also

edge_betweenness_centrality(), load_centrality()

Notes

The algorithm is from Ulrik Brandes 1.
See 4 for the original first published version and 2 for details on
algorithms for variations and related metrics.

For approximate betweenness calculations set k=#samples to use
k nodes (“pivots”) to estimate the betweenness values. For an estimate
of the number of pivots needed see 3.

For weighted graphs the edge weights must be greater than zero.
Zero edge weights can produce an infinite number of equal length
paths between pairs of nodes.

References

	1

	Ulrik Brandes:
A Faster Algorithm for Betweenness Centrality.
Journal of Mathematical Sociology 25(2):163-177, 2001.
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

	2(1,2)

	Ulrik Brandes:
On Variants of Shortest-Path Betweenness
Centrality and their Generic Computation.
Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

	3

	Ulrik Brandes and Christian Pich:
Centrality Estimation in Large Networks.
International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007.
http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf

	4

	Linton C. Freeman:
A set of measures of centrality based on betweenness.
Sociometry 40: 35–41, 1977
http://moreno.ss.uci.edu/23.pdf

NetworkX

edge_betweenness_centrality

	
edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None)

	Compute betweenness centrality for edges.

Betweenness centrality of an edge \(e\) is the sum of the
fraction of all-pairs shortest paths that pass through \(e\)

\[c_B(e) =\sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)}\]

where \(V\) is the set of nodes,`sigma(s, t)` is the number of
shortest \((s, t)\)-paths, and \(\sigma(s, t|e)\) is the number of
those paths passing through edge \(e\) 2.

	Parameters

	
	G (graph) – A NetworkX graph

	k (int [https://docs.python.org/2/library/functions.html#int], optional (default=None)) – If k is not None use k node samples to estimate betweenness.
The value of k <= n where n is the number of nodes in the graph.
Higher values give better approximation.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True the betweenness values are normalized by \(2/(n(n-1))\)
for graphs, and \(1/(n(n-1))\) for directed graphs where \(n\)
is the number of nodes in G.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	Returns

	edges – Dictionary of edges with betweenness centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), edge_load()

Notes

The algorithm is from Ulrik Brandes 1.

For weighted graphs the edge weights must be greater than zero.
Zero edge weights can produce an infinite number of equal length
paths between pairs of nodes.

References

	1

	A Faster Algorithm for Betweenness Centrality. Ulrik Brandes,
Journal of Mathematical Sociology 25(2):163-177, 2001.
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

	2

	Ulrik Brandes: On Variants of Shortest-Path Betweenness
Centrality and their Generic Computation.
Social Networks 30(2):136-145, 2008.
http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf

NetworkX

current_flow_closeness_centrality

	
current_flow_closeness_centrality(G, weight='weight', dtype=<type 'float'>, solver='lu')

	Compute current-flow closeness centrality for nodes.

Current-flow closeness centrality is variant of closeness
centrality based on effective resistance between nodes in
a network. This metric is also known as information centrality.

	Parameters

	
	G (graph) – A NetworkX graph

	dtype (data type (float [https://docs.python.org/2/library/functions.html#float])) – Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

	solver (string [https://docs.python.org/2/library/string.html#module-string] (default='lu')) – Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and
“cg” (uses least memory).

	Returns

	nodes – Dictionary of nodes with current flow closeness centrality as the value.

	Return type

	dictionary

See also

closeness_centrality()

Notes

The algorithm is from Brandes 1.

See also 2 for the original definition of information centrality.

References

	1

	Ulrik Brandes and Daniel Fleischer,
Centrality Measures Based on Current Flow.
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

	2

	Karen Stephenson and Marvin Zelen:
Rethinking centrality: Methods and examples.
Social Networks 11(1):1-37, 1989.
http://dx.doi.org/10.1016/0378-8733(89)90016-6

NetworkX

current_flow_betweenness_centrality

	
current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full')

	Compute current-flow betweenness centrality for nodes.

Current-flow betweenness centrality uses an electrical current
model for information spreading in contrast to betweenness
centrality which uses shortest paths.

Current-flow betweenness centrality is also known as
random-walk betweenness centrality 2.

	Parameters

	
	G (graph) – A NetworkX graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

	dtype (data type (float [https://docs.python.org/2/library/functions.html#float])) – Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

	solver (string [https://docs.python.org/2/library/string.html#module-string] (default='lu')) – Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and
“cg” (uses least memory).

	Returns

	nodes – Dictionary of nodes with betweenness centrality as the value.

	Return type

	dictionary

See also

approximate_current_flow_betweenness_centrality(), betweenness_centrality(), edge_betweenness_centrality(), edge_current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in \(O(I(n-1)+mn \log n)\)
time 1, where \(I(n-1)\) is the time needed to compute the
inverse Laplacian. For a full matrix this is \(O(n^3)\) but using
sparse methods you can achieve \(O(nm{\sqrt k})\) where \(k\) is the
Laplacian matrix condition number.

The space required is \(O(nw)\) where \(w\) is the width of the sparse
Laplacian matrix. Worse case is \(w=n\) for \(O(n^2)\).

If the edges have a ‘weight’ attribute they will be used as
weights in this algorithm. Unspecified weights are set to 1.

References

	1

	Centrality Measures Based on Current Flow.
Ulrik Brandes and Daniel Fleischer,
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

	2

	A measure of betweenness centrality based on random walks,
M. E. J. Newman, Social Networks 27, 39-54 (2005).

NetworkX

edge_current_flow_betweenness_centrality

	
edge_current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full')

	Compute current-flow betweenness centrality for edges.

Current-flow betweenness centrality uses an electrical current
model for information spreading in contrast to betweenness
centrality which uses shortest paths.

Current-flow betweenness centrality is also known as
random-walk betweenness centrality 2.

	Parameters

	
	G (graph) – A NetworkX graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

	dtype (data type (float [https://docs.python.org/2/library/functions.html#float])) – Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

	solver (string [https://docs.python.org/2/library/string.html#module-string] (default='lu')) – Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and
“cg” (uses least memory).

	Returns

	nodes – Dictionary of edge tuples with betweenness centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality(), edge_betweenness_centrality(), current_flow_betweenness_centrality()

Notes

Current-flow betweenness can be computed in \(O(I(n-1)+mn \log n)\)
time 1, where \(I(n-1)\) is the time needed to compute the
inverse Laplacian. For a full matrix this is \(O(n^3)\) but using
sparse methods you can achieve \(O(nm{\sqrt k})\) where \(k\) is the
Laplacian matrix condition number.

The space required is \(O(nw) where `w\) is the width of the sparse
Laplacian matrix. Worse case is \(w=n\) for \(O(n^2)\).

If the edges have a ‘weight’ attribute they will be used as
weights in this algorithm. Unspecified weights are set to 1.

References

	1

	Centrality Measures Based on Current Flow.
Ulrik Brandes and Daniel Fleischer,
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

	2

	A measure of betweenness centrality based on random walks,
M. E. J. Newman, Social Networks 27, 39-54 (2005).

NetworkX

approximate_current_flow_betweenness_centrality

	
approximate_current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full', epsilon=0.5, kmax=10000)

	Compute the approximate current-flow betweenness centrality for nodes.

Approximates the current-flow betweenness centrality within absolute
error of epsilon with high probability 1.

	Parameters

	
	G (graph) – A NetworkX graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

	dtype (data type (float [https://docs.python.org/2/library/functions.html#float])) – Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

	solver (string [https://docs.python.org/2/library/string.html#module-string] (default='lu')) – Type of linear solver to use for computing the flow matrix.
Options are “full” (uses most memory), “lu” (recommended), and
“cg” (uses least memory).

	epsilon (float [https://docs.python.org/2/library/functions.html#float]) – Absolute error tolerance.

	kmax (int [https://docs.python.org/2/library/functions.html#int]) – Maximum number of sample node pairs to use for approximation.

	Returns

	nodes – Dictionary of nodes with betweenness centrality as the value.

	Return type

	dictionary

See also

current_flow_betweenness_centrality()

Notes

The running time is \(O((1/\epsilon^2)m{\sqrt k} \log n)\)
and the space required is \(O(m)\) for n nodes and m edges.

If the edges have a ‘weight’ attribute they will be used as
weights in this algorithm. Unspecified weights are set to 1.

References

	1

	Ulrik Brandes and Daniel Fleischer:
Centrality Measures Based on Current Flow.
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

NetworkX

eigenvector_centrality

	
eigenvector_centrality(G, max_iter=100, tol=1e-06, nstart=None, weight='weight')

	Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the
centrality of its neighbors. The eigenvector centrality for node \(i\) is

\[\mathbf{Ax} = \lambda \mathbf{x}\]

where \(A\) is the adjacency matrix of the graph G with eigenvalue \(\lambda\).
By virtue of the Perron–Frobenius theorem, there is a unique and positive
solution if \(\lambda\) is the largest eigenvalue associated with the
eigenvector of the adjacency matrix \(A\) (2).

	Parameters

	
	G (graph) – A networkx graph

	max_iter (integer, optional) – Maximum number of iterations in power method.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method iteration.

	nstart (dictionary, optional) – Starting value of eigenvector iteration for each node.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	Returns

	nodes – Dictionary of nodes with eigenvector centrality as the value.

	Return type

	dictionary

Examples

>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']

See also

eigenvector_centrality_numpy(), pagerank(), hits()

Notes

The measure was introduced by 1.

The eigenvector calculation is done by the power iteration method and has
no guarantee of convergence. The iteration will stop after max_iter
iterations or an error tolerance of number_of_nodes(G)*tol has been
reached.

For directed graphs this is “left” eigenvector centrality which corresponds
to the in-edges in the graph. For out-edges eigenvector centrality
first reverse the graph with G.reverse().

References

	1

	Phillip Bonacich:
Power and Centrality: A Family of Measures.
American Journal of Sociology 92(5):1170–1182, 1986
http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

	2

	Mark E. J. Newman:
Networks: An Introduction.
Oxford University Press, USA, 2010, pp. 169.

NetworkX

eigenvector_centrality_numpy

	
eigenvector_centrality_numpy(G, weight='weight')

	Compute the eigenvector centrality for the graph G.

Eigenvector centrality computes the centrality for a node based on the
centrality of its neighbors. The eigenvector centrality for node \(i\) is

\[\mathbf{Ax} = \lambda \mathbf{x}\]

where \(A\) is the adjacency matrix of the graph G with eigenvalue \(\lambda\).
By virtue of the Perron–Frobenius theorem, there is a unique and positive
solution if \(\lambda\) is the largest eigenvalue associated with the
eigenvector of the adjacency matrix \(A\) (2).

	Parameters

	
	G (graph) – A networkx graph

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – The name of the edge attribute used as weight.
If None, all edge weights are considered equal.

	Returns

	nodes – Dictionary of nodes with eigenvector centrality as the value.

	Return type

	dictionary

Examples

>>> G = nx.path_graph(4)
>>> centrality = nx.eigenvector_centrality_numpy(G)
>>> print(['%s %0.2f'%(node,centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']

See also

eigenvector_centrality(), pagerank(), hits()

Notes

The measure was introduced by 1.

This algorithm uses the SciPy sparse eigenvalue solver (ARPACK) to
find the largest eigenvalue/eigenvector pair.

For directed graphs this is “left” eigenvector centrality which corresponds
to the in-edges in the graph. For out-edges eigenvector centrality
first reverse the graph with G.reverse().

References

	1

	Phillip Bonacich:
Power and Centrality: A Family of Measures.
American Journal of Sociology 92(5):1170–1182, 1986
http://www.leonidzhukov.net/hse/2014/socialnetworks/papers/Bonacich-Centrality.pdf

	2

	Mark E. J. Newman:
Networks: An Introduction.
Oxford University Press, USA, 2010, pp. 169.

NetworkX

katz_centrality

	
katz_centrality(G, alpha=0.1, beta=1.0, max_iter=1000, tol=1e-06, nstart=None, normalized=True, weight='weight')

	Compute the Katz centrality for the nodes of the graph G.

Katz centrality computes the centrality for a node based on the centrality
of its neighbors. It is a generalization of the eigenvector centrality. The
Katz centrality for node \(i\) is

\[x_i = \alpha \sum_{j} A_{ij} x_j + \beta,\]

where \(A\) is the adjacency matrix of the graph G with eigenvalues \(\lambda\).

The parameter \(\beta\) controls the initial centrality and

\[\alpha < \frac{1}{\lambda_{max}}.\]

Katz centrality computes the relative influence of a node within a
network by measuring the number of the immediate neighbors (first
degree nodes) and also all other nodes in the network that connect
to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the
parameter \(\beta\). Connections made with distant neighbors
are, however, penalized by an attenuation factor \(\alpha\) which
should be strictly less than the inverse largest eigenvalue of the
adjacency matrix in order for the Katz centrality to be computed
correctly. More information is provided in 1 .

	Parameters

	
	G (graph) – A NetworkX graph

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Attenuation factor

	beta (scalar or dictionary, optional (default=1.0)) – Weight attributed to the immediate neighborhood. If not a scalar, the
dictionary must have an value for every node.

	max_iter (integer, optional (default=1000)) – Maximum number of iterations in power method.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional (default=1.0e-6)) – Error tolerance used to check convergence in power method iteration.

	nstart (dictionary, optional) – Starting value of Katz iteration for each node.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – If True normalize the resulting values.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	Returns

	nodes – Dictionary of nodes with Katz centrality as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the parameter \(beta\) is not a scalar but lacks a value for at least
one node

Examples

>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality(G,1/phi-0.01)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37

See also

katz_centrality_numpy(), eigenvector_centrality(), eigenvector_centrality_numpy(), pagerank(), hits()

Notes

Katz centrality was introduced by 2.

This algorithm it uses the power method to find the eigenvector
corresponding to the largest eigenvalue of the adjacency matrix of G.
The constant alpha should be strictly less than the inverse of largest
eigenvalue of the adjacency matrix for the algorithm to converge.
The iteration will stop after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.

When \(\alpha = 1/\lambda_{max}\) and \(\beta=0\), Katz centrality is the same
as eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds
to the in-edges in the graph. For out-edges Katz centrality
first reverse the graph with G.reverse().

References

	1

	Mark E. J. Newman:
Networks: An Introduction.
Oxford University Press, USA, 2010, p. 720.

	2

	Leo Katz:
A New Status Index Derived from Sociometric Index.
Psychometrika 18(1):39–43, 1953
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

NetworkX

katz_centrality_numpy

	
katz_centrality_numpy(G, alpha=0.1, beta=1.0, normalized=True, weight='weight')

	Compute the Katz centrality for the graph G.

Katz centrality computes the centrality for a node based on the centrality
of its neighbors. It is a generalization of the eigenvector centrality. The
Katz centrality for node \(i\) is

\[x_i = \alpha \sum_{j} A_{ij} x_j + \beta,\]

where \(A\) is the adjacency matrix of the graph G with eigenvalues \(\lambda\).

The parameter \(\beta\) controls the initial centrality and

\[\alpha < \frac{1}{\lambda_{max}}.\]

Katz centrality computes the relative influence of a node within a
network by measuring the number of the immediate neighbors (first
degree nodes) and also all other nodes in the network that connect
to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the
parameter \(\beta\). Connections made with distant neighbors
are, however, penalized by an attenuation factor \(\alpha\) which
should be strictly less than the inverse largest eigenvalue of the
adjacency matrix in order for the Katz centrality to be computed
correctly. More information is provided in 1 .

	Parameters

	
	G (graph) – A NetworkX graph

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Attenuation factor

	beta (scalar or dictionary, optional (default=1.0)) – Weight attributed to the immediate neighborhood. If not a scalar the
dictionary must have an value for every node.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool]) – If True normalize the resulting values.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, all edge weights are considered equal.
Otherwise holds the name of the edge attribute used as weight.

	Returns

	nodes – Dictionary of nodes with Katz centrality as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the parameter \(beta\) is not a scalar but lacks a value for at least
one node

Examples

>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality_numpy(G,1/phi)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
1 0.60
2 0.60
3 0.37

See also

katz_centrality(), eigenvector_centrality_numpy(), eigenvector_centrality(), pagerank(), hits()

Notes

Katz centrality was introduced by 2.

This algorithm uses a direct linear solver to solve the above equation.
The constant alpha should be strictly less than the inverse of largest
eigenvalue of the adjacency matrix for there to be a solution. When
\(\alpha = 1/\lambda_{max}\) and \(\beta=0\), Katz centrality is the same as
eigenvector centrality.

For directed graphs this finds “left” eigenvectors which corresponds
to the in-edges in the graph. For out-edges Katz centrality
first reverse the graph with G.reverse().

References

	1

	Mark E. J. Newman:
Networks: An Introduction.
Oxford University Press, USA, 2010, p. 720.

	2

	Leo Katz:
A New Status Index Derived from Sociometric Index.
Psychometrika 18(1):39–43, 1953
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

NetworkX

communicability

	
communicability(G)

	Return communicability between all pairs of nodes in G.

The communicability between pairs of nodes in G is the sum of
closed walks of different lengths starting at node u and ending at node v.

	Parameters

	G (graph) –

	Returns

	comm – Dictionary of dictionaries keyed by nodes with communicability
as the value.

	Return type

	dictionary of dictionaries

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability_centrality_exp()

	Communicability centrality for each node of G using matrix exponential.

	communicability_centrality()

	Communicability centrality for each node in G using spectral decomposition.

	communicability()

	Communicability between pairs of nodes in G.

Notes

This algorithm uses a spectral decomposition of the adjacency matrix.
Let G=(V,E) be a simple undirected graph. Using the connection between
the powers of the adjacency matrix and the number of walks in the graph,
the communicability between nodes \(u\) and \(v\) based on the graph spectrum
is 1

\[C(u,v)=\sum_{j=1}^{n}\phi_{j}(u)\phi_{j}(v)e^{\lambda_{j}},\]

where \(\phi_{j}(u)\) is the \(u\rm{th}\) element of the \(j\rm{th}\) orthonormal
eigenvector of the adjacency matrix associated with the eigenvalue
\(\lambda_{j}\).

References

	1

	Ernesto Estrada, Naomichi Hatano,
“Communicability in complex networks”,
Phys. Rev. E 77, 036111 (2008).
http://arxiv.org/abs/0707.0756

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability(G)

NetworkX

communicability_exp

	
communicability_exp(G)

	Return communicability between all pairs of nodes in G.

Communicability between pair of node (u,v) of node in G is the sum of
closed walks of different lengths starting at node u and ending at node v.

	Parameters

	G (graph) –

	Returns

	comm – Dictionary of dictionaries keyed by nodes with communicability
as the value.

	Return type

	dictionary of dictionaries

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability_centrality_exp()

	Communicability centrality for each node of G using matrix exponential.

	communicability_centrality()

	Communicability centrality for each node in G using spectral decomposition.

	communicability_exp()

	Communicability between all pairs of nodes in G using spectral decomposition.

Notes

This algorithm uses matrix exponentiation of the adjacency matrix.

Let G=(V,E) be a simple undirected graph. Using the connection between
the powers of the adjacency matrix and the number of walks in the graph,
the communicability between nodes u and v is 1,

\[C(u,v) = (e^A)_{uv},\]

where \(A\) is the adjacency matrix of G.

References

	1

	Ernesto Estrada, Naomichi Hatano,
“Communicability in complex networks”,
Phys. Rev. E 77, 036111 (2008).
http://arxiv.org/abs/0707.0756

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability_exp(G)

NetworkX

communicability_centrality

	
communicability_centrality(G)

	Return communicability centrality for each node in G.

Communicability centrality, also called subgraph centrality, of a node \(n\)
is the sum of closed walks of all lengths starting and ending at node \(n\).

	Parameters

	G (graph) –

	Returns

	nodes – Dictionary of nodes with communicability centrality as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability()

	Communicability between all pairs of nodes in G.

	communicability_centrality()

	Communicability centrality for each node of G.

Notes

This version of the algorithm computes eigenvalues and eigenvectors
of the adjacency matrix.

Communicability centrality of a node \(u\) in G can be found using
a spectral decomposition of the adjacency matrix 1 2,

\[SC(u)=\sum_{j=1}^{N}(v_{j}^{u})^2 e^{\lambda_{j}},\]

where \(v_j\) is an eigenvector of the adjacency matrix \(A\) of G
corresponding corresponding to the eigenvalue \(\lambda_j\).

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality(G)

References

	1

	Ernesto Estrada, Juan A. Rodriguez-Velazquez,
“Subgraph centrality in complex networks”,
Physical Review E 71, 056103 (2005).
http://arxiv.org/abs/cond-mat/0504730

	2

	Ernesto Estrada, Naomichi Hatano,
“Communicability in complex networks”,
Phys. Rev. E 77, 036111 (2008).
http://arxiv.org/abs/0707.0756

NetworkX

communicability_centrality_exp

	
communicability_centrality_exp(G)

	Return the communicability centrality for each node of G

Communicability centrality, also called subgraph centrality, of a node \(n\)
is the sum of closed walks of all lengths starting and ending at node \(n\).

	Parameters

	G (graph) –

	Returns

	nodes – Dictionary of nodes with communicability centrality as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability()

	Communicability between all pairs of nodes in G.

	communicability_centrality()

	Communicability centrality for each node of G.

Notes

This version of the algorithm exponentiates the adjacency matrix.
The communicability centrality of a node \(u\) in G can be found using
the matrix exponential of the adjacency matrix of G 1 2,

\[SC(u)=(e^A)_{uu} .\]

References

	1

	Ernesto Estrada, Juan A. Rodriguez-Velazquez,
“Subgraph centrality in complex networks”,
Physical Review E 71, 056103 (2005).
http://arxiv.org/abs/cond-mat/0504730

	2

	Ernesto Estrada, Naomichi Hatano,
“Communicability in complex networks”,
Phys. Rev. E 77, 036111 (2008).
http://arxiv.org/abs/0707.0756

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality_exp(G)

NetworkX

communicability_betweenness_centrality

	
communicability_betweenness_centrality(G, normalized=True)

	Return communicability betweenness for all pairs of nodes in G.

Communicability betweenness measure makes use of the number of walks
connecting every pair of nodes as the basis of a betweenness centrality
measure.

	Parameters

	G (graph) –

	Returns

	nodes – Dictionary of nodes with communicability betweenness as the value.

	Return type

	dictionary

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

	communicability()

	Communicability between all pairs of nodes in G.

	communicability_centrality()

	Communicability centrality for each node of G using matrix exponential.

	communicability_centrality_exp()

	Communicability centrality for each node in G using spectral decomposition.

Notes

Let \(G=(V,E)\) be a simple undirected graph with \(n\) nodes and \(m\) edges,
and \(A\) denote the adjacency matrix of \(G\).

Let \(G(r)=(V,E(r))\) be the graph resulting from
removing all edges connected to node \(r\) but not the node itself.

The adjacency matrix for \(G(r)\) is \(A+E(r)\), where \(E(r)\) has nonzeros
only in row and column \(r\).

The communicability betweenness of a node \(r\) is 1

\[\omega_{r} = \frac{1}{C}\sum_{p}\sum_{q}\frac{G_{prq}}{G_{pq}},
p\neq q, q\neq r,\]

where
\(G_{prq}=(e^{A}_{pq} - (e^{A+E(r)})_{pq}\) is the number of walks
involving node r,
\(G_{pq}=(e^{A})_{pq}\) is the number of closed walks starting
at node \(p\) and ending at node \(q\),
and \(C=(n-1)^{2}-(n-1)\) is a normalization factor equal to the
number of terms in the sum.

The resulting \(\omega_{r}\) takes values between zero and one.
The lower bound cannot be attained for a connected
graph, and the upper bound is attained in the star graph.

References

	1

	Ernesto Estrada, Desmond J. Higham, Naomichi Hatano,
“Communicability Betweenness in Complex Networks”
Physica A 388 (2009) 764-774.
http://arxiv.org/abs/0905.4102

Examples

>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> cbc = nx.communicability_betweenness_centrality(G)

NetworkX

estrada_index

	
estrada_index(G)

	Return the Estrada index of a the graph G.

	Parameters

	G (graph) –

	Returns

	estrada index

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	Raises

	NetworkXError – If the graph is not undirected and simple.

See also

estrada_index_exp()

Notes

Let \(G=(V,E)\) be a simple undirected graph with \(n\) nodes and let
\(\lambda_{1}\leq\lambda_{2}\leq\cdots\lambda_{n}\)
be a non-increasing ordering of the eigenvalues of its adjacency
matrix \(A\). The Estrada index is

\[EE(G)=\sum_{j=1}^n e^{\lambda _j}.\]

References

	1

	E. Estrada, Characterization of 3D molecular structure,
Chem. Phys. Lett. 319, 713 (2000).

Examples

>>> G=nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> ei=nx.estrada_index(G)

NetworkX

load_centrality

	
load_centrality(G, v=None, cutoff=None, normalized=True, weight=None)

	Compute load centrality for nodes.

The load centrality of a node is the fraction of all shortest
paths that pass through that node.

	Parameters

	
	G (graph) – A networkx graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True the betweenness values are normalized by b=b/(n-1)(n-2) where
n is the number of nodes in G.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional) – If None, edge weights are ignored.
Otherwise holds the name of the edge attribute used as weight.

	cutoff (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If specified, only consider paths of length <= cutoff.

	Returns

	nodes – Dictionary of nodes with centrality as the value.

	Return type

	dictionary

See also

betweenness_centrality()

Notes

Load centrality is slightly different than betweenness. It was originally
introduced by 2. For this load algorithm see 1.

References

	1

	Mark E. J. Newman:
Scientific collaboration networks. II.
Shortest paths, weighted networks, and centrality.
Physical Review E 64, 016132, 2001.
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.016132

	2

	Kwang-Il Goh, Byungnam Kahng and Doochul Kim
Universal behavior of Load Distribution in Scale-Free Networks.
Physical Review Letters 87(27):1–4, 2001.
http://phya.snu.ac.kr/~dkim/PRL87278701.pdf

NetworkX

edge_load

	
edge_load(G, nodes=None, cutoff=False)

	Compute edge load.

WARNING:

This module is for demonstration and testing purposes.

NetworkX

dispersion

	
dispersion(G, u=None, v=None, normalized=True, alpha=1.0, b=0.0, c=0.0)

	Calculate dispersion between \(u\) and \(v\) in \(G\).

A link between two actors (\(u\) and \(v\)) has a high dispersion when their
mutual ties (\(s\) and \(t\)) are not well connected with each other.

	Parameters

	
	G (graph) – A NetworkX graph.

	u (node, optional) – The source for the dispersion score (e.g. ego node of the network).

	v (node, optional) – The target of the dispersion score if specified.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool]) – If True (default) normalize by the embededness of the nodes (u and v).

	Returns

	nodes – If u (v) is specified, returns a dictionary of nodes with dispersion
score for all “target” (“source”) nodes. If neither u nor v is
specified, returns a dictionary of dictionaries for all nodes ‘u’ in the
graph with a dispersion score for each node ‘v’.

	Return type

	dictionary

Notes

This implementation follows Lars Backstrom and Jon Kleinberg 1. Typical
usage would be to run dispersion on the ego network \(G_u\) if \(u\) were
specified. Running dispersion() with neither \(u\) nor \(v\) specified
can take some time to complete.

References

	1

	Romantic Partnerships and the Dispersion of Social Ties:
A Network Analysis of Relationship Status on Facebook.
Lars Backstrom, Jon Kleinberg.
http://arxiv.org/pdf/1310.6753v1.pdf

NetworkX

Chordal

Algorithms for chordal graphs.

A graph is chordal if every cycle of length at least 4 has a chord
(an edge joining two nodes not adjacent in the cycle).
http://en.wikipedia.org/wiki/Chordal_graph

	is_chordal(G)

	Checks whether G is a chordal graph.

	chordal_graph_cliques(G)

	Returns the set of maximal cliques of a chordal graph.

	chordal_graph_treewidth(G)

	Returns the treewidth of the chordal graph G.

	find_induced_nodes(G, s, t[, treewidth_bound])

	Returns the set of induced nodes in the path from s to t.

NetworkX

is_chordal

	
is_chordal(G)

	Checks whether G is a chordal graph.

A graph is chordal if every cycle of length at least 4 has a chord
(an edge joining two nodes not adjacent in the cycle).

	Parameters

	G (graph) – A NetworkX graph.

	Returns

	chordal – True if G is a chordal graph and False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises

	NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.

Examples

>>> import networkx as nx
>>> e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]
>>> G=nx.Graph(e)
>>> nx.is_chordal(G)
True

Notes

The routine tries to go through every node following maximum cardinality
search. It returns False when it finds that the separator for any node
is not a clique. Based on the algorithms in 1.

References

	1

	R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms
to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984),
pp. 566–579.

NetworkX

chordal_graph_cliques

	
chordal_graph_cliques(G)

	Returns the set of maximal cliques of a chordal graph.

The algorithm breaks the graph in connected components and performs a
maximum cardinality search in each component to get the cliques.

	Parameters

	G (graph) – A NetworkX graph

	Returns

	cliques

	Return type

	A set containing the maximal cliques in G.

	Raises

	NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If the
input graph is found to be non-chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx
>>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> setlist = nx.chordal_graph_cliques(G)

NetworkX

chordal_graph_treewidth

	
chordal_graph_treewidth(G)

	Returns the treewidth of the chordal graph G.

	Parameters

	G (graph) – A NetworkX graph

	Returns

	treewidth – The size of the largest clique in the graph minus one.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	Raises

	NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If
the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx
>>> e = [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node(9)
>>> nx.chordal_graph_treewidth(G)
3

References

	1

	http://en.wikipedia.org/wiki/Tree_decomposition#Treewidth

NetworkX

find_induced_nodes

	
find_induced_nodes(G, s, t, treewidth_bound=9223372036854775807)

	Returns the set of induced nodes in the path from s to t.

	Parameters

	
	G (graph) – A chordal NetworkX graph

	s (node) – Source node to look for induced nodes

	t (node) – Destination node to look for induced nodes

	treewith_bound (float [https://docs.python.org/2/library/functions.html#float]) – Maximum treewidth acceptable for the graph H. The search
for induced nodes will end as soon as the treewidth_bound is exceeded.

	Returns

	I – The set of induced nodes in the path from s to t in G

	Return type

	Set of nodes

	Raises

	NetworkXError – The algorithm does not support DiGraph, MultiGraph and MultiDiGraph.
If the input graph is an instance of one of these classes, a
NetworkXError is raised.
The algorithm can only be applied to chordal graphs. If
the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

>>> import networkx as nx
>>> G=nx.Graph()
>>> G = nx.generators.classic.path_graph(10)
>>> I = nx.find_induced_nodes(G,1,9,2)
>>> list(I)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

Notes

G must be a chordal graph and (s,t) an edge that is not in G.

If a treewidth_bound is provided, the search for induced nodes will end
as soon as the treewidth_bound is exceeded.

The algorithm is inspired by Algorithm 4 in 1.
A formal definition of induced node can also be found on that reference.

References

	1

	Learning Bounded Treewidth Bayesian Networks.
Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699–2731, 2008.
http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf

NetworkX

Clique

Cliques

Find and manipulate cliques of graphs.

Note that finding the largest clique of a graph has been
shown to be an NP-complete problem; the algorithms here
could take a long time to run.

http://en.wikipedia.org/wiki/Clique_problem

	enumerate_all_cliques(G)

	Returns all cliques in an undirected graph.

	find_cliques(G)

	Search for all maximal cliques in a graph.

	make_max_clique_graph(G[, create_using, name])

	Create the maximal clique graph of a graph.

	make_clique_bipartite(G[, fpos, …])

	Create a bipartite clique graph from a graph G.

	graph_clique_number(G[, cliques])

	Return the clique number (size of the largest clique) for G.

	graph_number_of_cliques(G[, cliques])

	Returns the number of maximal cliques in G.

	node_clique_number(G[, nodes, cliques])

	Returns the size of the largest maximal clique containing each given node.

	number_of_cliques(G[, nodes, cliques])

	Returns the number of maximal cliques for each node.

	cliques_containing_node(G[, nodes, cliques])

	Returns a list of cliques containing the given node.

NetworkX

enumerate_all_cliques

	
enumerate_all_cliques(G)

	Returns all cliques in an undirected graph.

This method returns cliques of size (cardinality)
k = 1, 2, 3, …, maxDegree - 1.

Where maxDegree is the maximal degree of any node in the graph.

	Parameters

	G (undirected graph) –

	Returns

	generator of lists

	Return type

	generator of list for each clique.

Notes

To obtain a list of all cliques, use
list(enumerate_all_cliques(G)).

Based on the algorithm published by Zhang et al. (2005) 1
and adapted to output all cliques discovered.

This algorithm is not applicable on directed graphs.

This algorithm ignores self-loops and parallel edges as
clique is not conventionally defined with such edges.

There are often many cliques in graphs.
This algorithm however, hopefully, does not run out of memory
since it only keeps candidate sublists in memory and
continuously removes exhausted sublists.

References

	1

	Yun Zhang, Abu-Khzam, F.N., Baldwin, N.E., Chesler, E.J.,
Langston, M.A., Samatova, N.F.,
Genome-Scale Computational Approaches to Memory-Intensive
Applications in Systems Biology.
Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005
Conference, pp. 12, 12-18 Nov. 2005.
doi: 10.1109/SC.2005.29.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1559964&isnumber=33129

NetworkX

find_cliques

	
find_cliques(G)

	Search for all maximal cliques in a graph.

Maximal cliques are the largest complete subgraph containing
a given node. The largest maximal clique is sometimes called
the maximum clique.

	Returns

	generator of lists

	Return type

	genetor of member list for each maximal clique

See also

find_cliques_recursive(), A()

Notes

To obtain a list of cliques, use list(find_cliques(G)).

Based on the algorithm published by Bron & Kerbosch (1973) 1
as adapted by Tomita, Tanaka and Takahashi (2006) 2
and discussed in Cazals and Karande (2008) 3.
The method essentially unrolls the recursion used in
the references to avoid issues of recursion stack depth.

This algorithm is not suitable for directed graphs.

This algorithm ignores self-loops and parallel edges as
clique is not conventionally defined with such edges.

There are often many cliques in graphs. This algorithm can
run out of memory for large graphs.

References

	1

	Bron, C. and Kerbosch, J. 1973.
Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16, 9 (Sep. 1973), 575-577.
http://portal.acm.org/citation.cfm?doid=362342.362367

	2

	Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi,
The worst-case time complexity for generating all maximal
cliques and computational experiments,
Theoretical Computer Science, Volume 363, Issue 1,
Computing and Combinatorics,
10th Annual International Conference on
Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28-42
http://dx.doi.org/10.1016/j.tcs.2006.06.015

	3

	F. Cazals, C. Karande,
A note on the problem of reporting maximal cliques,
Theoretical Computer Science,
Volume 407, Issues 1-3, 6 November 2008, Pages 564-568,
http://dx.doi.org/10.1016/j.tcs.2008.05.010

NetworkX

make_max_clique_graph

	
make_max_clique_graph(G, create_using=None, name=None)

	Create the maximal clique graph of a graph.

Finds the maximal cliques and treats these as nodes.
The nodes are connected if they have common members in
the original graph. Theory has done a lot with clique
graphs, but I haven’t seen much on maximal clique graphs.

Notes

This should be the same as make_clique_bipartite followed
by project_up, but it saves all the intermediate steps.

NetworkX

make_clique_bipartite

	
make_clique_bipartite(G, fpos=None, create_using=None, name=None)

	Create a bipartite clique graph from a graph G.

Nodes of G are retained as the “bottom nodes” of B and
cliques of G become “top nodes” of B.
Edges are present if a bottom node belongs to the clique
represented by the top node.

Returns a Graph with additional attribute dict B.node_type
which is keyed by nodes to “Bottom” or “Top” appropriately.

if fpos is not None, a second additional attribute dict B.pos
is created to hold the position tuple of each node for viewing
the bipartite graph.

NetworkX

graph_clique_number

	
graph_clique_number(G, cliques=None)

	Return the clique number (size of the largest clique) for G.

An optional list of cliques can be input if already computed.

NetworkX

graph_number_of_cliques

	
graph_number_of_cliques(G, cliques=None)

	Returns the number of maximal cliques in G.

An optional list of cliques can be input if already computed.

NetworkX

node_clique_number

	
node_clique_number(G, nodes=None, cliques=None)

	Returns the size of the largest maximal clique containing
each given node.

Returns a single or list depending on input nodes.
Optional list of cliques can be input if already computed.

NetworkX

number_of_cliques

	
number_of_cliques(G, nodes=None, cliques=None)

	Returns the number of maximal cliques for each node.

Returns a single or list depending on input nodes.
Optional list of cliques can be input if already computed.

NetworkX

cliques_containing_node

	
cliques_containing_node(G, nodes=None, cliques=None)

	Returns a list of cliques containing the given node.

Returns a single list or list of lists depending on input nodes.
Optional list of cliques can be input if already computed.

NetworkX

Clustering

Algorithms to characterize the number of triangles in a graph.

	triangles(G[, nodes])

	Compute the number of triangles.

	transitivity(G)

	Compute graph transitivity, the fraction of all possible triangles present in G.

	clustering(G[, nodes, weight])

	Compute the clustering coefficient for nodes.

	average_clustering(G[, nodes, weight, …])

	Compute the average clustering coefficient for the graph G.

	square_clustering(G[, nodes])

	Compute the squares clustering coefficient for nodes.

NetworkX

triangles

	
triangles(G, nodes=None)

	Compute the number of triangles.

Finds the number of triangles that include a node as one vertex.

	Parameters

	
	G (graph) – A networkx graph

	nodes (container of nodes, optional (default= all nodes in G)) – Compute triangles for nodes in this container.

	Returns

	out – Number of triangles keyed by node label.

	Return type

	dictionary

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.triangles(G,0))
6
>>> print(nx.triangles(G))
{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
>>> print(list(nx.triangles(G,(0,1)).values()))
[6, 6]

Notes

When computing triangles for the entire graph each triangle is counted
three times, once at each node. Self loops are ignored.

NetworkX

transitivity

	
transitivity(G)

	Compute graph transitivity, the fraction of all possible triangles
present in G.

Possible triangles are identified by the number of “triads”
(two edges with a shared vertex).

The transitivity is

\[T = 3\frac{\#triangles}{\#triads}.\]

	Parameters

	G (graph) –

	Returns

	out – Transitivity

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G = nx.complete_graph(5)
>>> print(nx.transitivity(G))
1.0

NetworkX

clustering

	
clustering(G, nodes=None, weight=None)

	Compute the clustering coefficient for nodes.

For unweighted graphs, the clustering of a node \(u\)
is the fraction of possible triangles through that node that exist,

\[c_u = \frac{2 T(u)}{deg(u)(deg(u)-1)},\]

where \(T(u)\) is the number of triangles through node \(u\) and
\(deg(u)\) is the degree of \(u\).

For weighted graphs, the clustering is defined
as the geometric average of the subgraph edge weights 1,

\[c_u = \frac{1}{deg(u)(deg(u)-1))}
 \sum_{uv} (\hat{w}_{uv} \hat{w}_{uw} \hat{w}_{vw})^{1/3}.\]

The edge weights \(\hat{w}_{uv}\) are normalized by the maximum weight in the
network \(\hat{w}_{uv} = w_{uv}/\max(w)\).

The value of \(c_u\) is assigned to 0 if \(deg(u) < 2\).

	Parameters

	
	G (graph) –

	nodes (container of nodes, optional (default=all nodes in G)) – Compute clustering for nodes in this container.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	Returns

	out – Clustering coefficient at specified nodes

	Return type

	float [https://docs.python.org/2/library/functions.html#float], or dictionary

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.clustering(G,0))
1.0
>>> print(nx.clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

Notes

Self loops are ignored.

References

	1

	Generalizations of the clustering coefficient to weighted
complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
http://jponnela.com/web_documents/a9.pdf

NetworkX

average_clustering

	
average_clustering(G, nodes=None, weight=None, count_zeros=True)

	Compute the average clustering coefficient for the graph G.

The clustering coefficient for the graph is the average,

\[C = \frac{1}{n}\sum_{v \in G} c_v,\]

where \(n\) is the number of nodes in \(G\).

	Parameters

	
	G (graph) –

	nodes (container of nodes, optional (default=all nodes in G)) – Compute average clustering for nodes in this container.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.

	count_zeros (bool [https://docs.python.org/2/library/functions.html#bool]) – If False include only the nodes with nonzero clustering in the average.

	Returns

	avg – Average clustering

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.average_clustering(G))
1.0

Notes

This is a space saving routine; it might be faster
to use the clustering function to get a list and then take the average.

Self loops are ignored.

References

	1

	Generalizations of the clustering coefficient to weighted
complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela,
K. Kaski, and J. Kertész, Physical Review E, 75 027105 (2007).
http://jponnela.com/web_documents/a9.pdf

	2

	Marcus Kaiser, Mean clustering coefficients: the role of isolated
nodes and leafs on clustering measures for small-world networks.
http://arxiv.org/abs/0802.2512

NetworkX

square_clustering

	
square_clustering(G, nodes=None)

	Compute the squares clustering coefficient for nodes.

For each node return the fraction of possible squares that exist at
the node 1

\[C_4(v) = \frac{ \sum_{u=1}^{k_v}
\sum_{w=u+1}^{k_v} q_v(u,w) }{ \sum_{u=1}^{k_v}
\sum_{w=u+1}^{k_v} [a_v(u,w) + q_v(u,w)]},\]

where \(q_v(u,w)\) are the number of common neighbors of \(u\) and \(w\)
other than \(v\) (ie squares), and
\(a_v(u,w) = (k_u - (1+q_v(u,w)+\theta_{uv}))(k_w - (1+q_v(u,w)+\theta_{uw}))\),
where \(\theta_{uw} = 1\) if \(u\) and \(w\) are connected and 0 otherwise.

	Parameters

	
	G (graph) –

	nodes (container of nodes, optional (default=all nodes in G)) – Compute clustering for nodes in this container.

	Returns

	c4 – A dictionary keyed by node with the square clustering coefficient value.

	Return type

	dictionary

Examples

>>> G=nx.complete_graph(5)
>>> print(nx.square_clustering(G,0))
1.0
>>> print(nx.square_clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

Notes

While \(C_3(v)\) (triangle clustering) gives the probability that
two neighbors of node v are connected with each other, \(C_4(v)\) is
the probability that two neighbors of node v share a common
neighbor different from v. This algorithm can be applied to both
bipartite and unipartite networks.

References

	1

	Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005
Cycles and clustering in bipartite networks.
Physical Review E (72) 056127.

NetworkX

Coloring

	greedy_color(G[, strategy, interchange])

	Color a graph using various strategies of greedy graph coloring.

NetworkX

greedy_color

	
greedy_color(G, strategy=<function strategy_largest_first>, interchange=False)

	Color a graph using various strategies of greedy graph coloring.
The strategies are described in 1.

Attempts to color a graph using as few colors as possible, where no
neighbours of a node can have same color as the node itself.

	Parameters

	
	G (NetworkX graph) –

	strategy (function(G, colors)) – A function that provides the coloring strategy, by returning nodes
in the ordering they should be colored. G is the graph, and colors
is a dict of the currently assigned colors, keyed by nodes.

You can pass your own ordering function, or use one of the built in:

	strategy_largest_first

	strategy_random_sequential

	strategy_smallest_last

	strategy_independent_set

	strategy_connected_sequential_bfs

	strategy_connected_sequential_dfs

	strategy_connected_sequential
(alias of strategy_connected_sequential_bfs)

	strategy_saturation_largest_first (also known as DSATUR)

	interchange (bool [https://docs.python.org/2/library/functions.html#bool]) – Will use the color interchange algorithm described by 2 if set
to true.

Note that saturation largest first and independent set do not
work with interchange. Furthermore, if you use interchange with
your own strategy function, you cannot rely on the values in the
colors argument.

	Returns

	
	A dictionary with keys representing nodes and values representing

	corresponding coloring.

Examples

>>> G = nx.cycle_graph(4)
>>> d = nx.coloring.greedy_color(G, strategy=nx.coloring.strategy_largest_first)
>>> d in [{0: 0, 1: 1, 2: 0, 3: 1}, {0: 1, 1: 0, 2: 1, 3: 0}]
True

References

	1

	Adrian Kosowski, and Krzysztof Manuszewski,
Classical Coloring of Graphs, Graph Colorings, 2-19, 2004.
ISBN 0-8218-3458-4.

	2

	Maciej M. Syslo, Marsingh Deo, Janusz S. Kowalik,
Discrete Optimization Algorithms with Pascal Programs, 415-424, 1983.
ISBN 0-486-45353-7.

NetworkX

Communities

K-Clique

	k_clique_communities(G, k[, cliques])

	Find k-clique communities in graph using the percolation method.

NetworkX

k_clique_communities

	
k_clique_communities(G, k, cliques=None)

	Find k-clique communities in graph using the percolation method.

A k-clique community is the union of all cliques of size k that
can be reached through adjacent (sharing k-1 nodes) k-cliques.

	Parameters

	
	G (NetworkX graph) –

	k (int [https://docs.python.org/2/library/functions.html#int]) – Size of smallest clique

	cliques (list or generator) – Precomputed cliques (use networkx.find_cliques(G))

	Returns

	

	Return type

	Yields sets of nodes, one for each k-clique community.

Examples

>>> G = nx.complete_graph(5)
>>> K5 = nx.convert_node_labels_to_integers(G,first_label=2)
>>> G.add_edges_from(K5.edges())
>>> c = list(nx.k_clique_communities(G, 4))
>>> list(c[0])
[0, 1, 2, 3, 4, 5, 6]
>>> list(nx.k_clique_communities(G, 6))
[]

References

	1

	Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek,
Uncovering the overlapping community structure of complex networks
in nature and society Nature 435, 814-818, 2005,
doi:10.1038/nature03607

NetworkX

Components

Connectivity

Connected components.

	is_connected(G)

	Return True if the graph is connected, false otherwise.

	number_connected_components(G)

	Return the number of connected components.

	connected_components(G)

	Generate connected components.

	connected_component_subgraphs(G[, copy])

	Generate connected components as subgraphs.

	node_connected_component(G, n)

	Return the nodes in the component of graph containing node n.

Strong connectivity

Strongly connected components.

	is_strongly_connected(G)

	Test directed graph for strong connectivity.

	number_strongly_connected_components(G)

	Return number of strongly connected components in graph.

	strongly_connected_components(G)

	Generate nodes in strongly connected components of graph.

	strongly_connected_component_subgraphs(G[, copy])

	Generate strongly connected components as subgraphs.

	strongly_connected_components_recursive(G)

	Generate nodes in strongly connected components of graph.

	kosaraju_strongly_connected_components(G[, …])

	Generate nodes in strongly connected components of graph.

	condensation(G[, scc])

	Returns the condensation of G.

Weak connectivity

Weakly connected components.

	is_weakly_connected(G)

	Test directed graph for weak connectivity.

	number_weakly_connected_components(G)

	Return the number of weakly connected components in G.

	weakly_connected_components(G)

	Generate weakly connected components of G.

	weakly_connected_component_subgraphs(G[, copy])

	Generate weakly connected components as subgraphs.

Attracting components

Attracting components.

	is_attracting_component(G)

	Returns True if \(G\) consists of a single attracting component.

	number_attracting_components(G)

	Returns the number of attracting components in \(G\).

	attracting_components(G)

	Generates a list of attracting components in \(G\).

	attracting_component_subgraphs(G[, copy])

	Generates a list of attracting component subgraphs from \(G\).

Biconnected components

Biconnected components and articulation points.

	is_biconnected(G)

	Return True if the graph is biconnected, False otherwise.

	biconnected_components(G)

	Return a generator of sets of nodes, one set for each biconnected

	biconnected_component_edges(G)

	Return a generator of lists of edges, one list for each biconnected component of the input graph.

	biconnected_component_subgraphs(G[, copy])

	Return a generator of graphs, one graph for each biconnected component of the input graph.

	articulation_points(G)

	Return a generator of articulation points, or cut vertices, of a graph.

Semiconnectedness

Semiconnectedness.

	is_semiconnected(G)

	Return True if the graph is semiconnected, False otherwise.

NetworkX

is_connected

	
is_connected(G)

	Return True if the graph is connected, false otherwise.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	connected – True if the graph is connected, false otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> G = nx.path_graph(4)
>>> print(nx.is_connected(G))
True

See also

connected_components()

Notes

For undirected graphs only.

NetworkX

number_connected_components

	
number_connected_components(G)

	Return the number of connected components.

	Parameters

	G (NetworkX graph) – An undirected graph.

	Returns

	n – Number of connected components

	Return type

	integer

See also

connected_components()

Notes

For undirected graphs only.

NetworkX

connected_components

	
connected_components(G)

	Generate connected components.

	Parameters

	G (NetworkX graph) – An undirected graph

	Returns

	comp – A generator of sets of nodes, one for each component of G.

	Return type

	generator of sets

Examples

Generate a sorted list of connected components, largest first.

>>> G = nx.path_graph(4)
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
[4, 3]

If you only want the largest connected component, it’s more
efficient to use max instead of sort.

>>> largest_cc = max(nx.connected_components(G), key=len)

See also

strongly_connected_components()

Notes

For undirected graphs only.

NetworkX

connected_component_subgraphs

	
connected_component_subgraphs(G, copy=True)

	Generate connected components as subgraphs.

	Parameters

	
	G (NetworkX graph) – An undirected graph.

	copy (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – If True make a copy of the graph attributes

	Returns

	comp – A generator of graphs, one for each connected component of G.

	Return type

	generator

Examples

>>> G = nx.path_graph(4)
>>> G.add_edge(5,6)
>>> graphs = list(nx.connected_component_subgraphs(G))

If you only want the largest connected component, it’s more
efficient to use max than sort.

>>> Gc = max(nx.connected_component_subgraphs(G), key=len)

See also

connected_components()

Notes

For undirected graphs only.
Graph, node, and edge attributes are copied to the subgraphs by default.

NetworkX

node_connected_component

	
node_connected_component(G, n)

	Return the nodes in the component of graph containing node n.

	Parameters

	
	G (NetworkX Graph) – An undirected graph.

	n (node label) – A node in G

	Returns

	comp – A set of nodes in the component of G containing node n.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

See also

connected_components()

Notes

For undirected graphs only.

NetworkX

is_strongly_connected

	
is_strongly_connected(G)

	Test directed graph for strong connectivity.

	Parameters

	G (NetworkX Graph) – A directed graph.

	Returns

	connected – True if the graph is strongly connected, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

See also

strongly_connected_components()

Notes

For directed graphs only.

NetworkX

number_strongly_connected_components

	
number_strongly_connected_components(G)

	Return number of strongly connected components in graph.

	Parameters

	G (NetworkX graph) – A directed graph.

	Returns

	n – Number of strongly connected components

	Return type

	integer

See also

connected_components()

Notes

For directed graphs only.

NetworkX

strongly_connected_components

	
strongly_connected_components(G)

	Generate nodes in strongly connected components of graph.

	Parameters

	G (NetworkX Graph) – An directed graph.

	Returns

	comp – A generator of sets of nodes, one for each strongly connected
component of G.

	Return type

	generator of sets

	Raises

	NetworkXNotImplemented: – If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.strongly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> largest = max(nx.strongly_connected_components(G), key=len)

See also

connected_components(), weakly_connected_components()

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications.
Nonrecursive version of algorithm.

References

	1

	Depth-first search and linear graph algorithms, R. Tarjan
SIAM Journal of Computing 1(2):146-160, (1972).

	2

	On finding the strongly connected components in a directed graph.
E. Nuutila and E. Soisalon-Soinen
Information Processing Letters 49(1): 9-14, (1994)..

NetworkX

strongly_connected_component_subgraphs

	
strongly_connected_component_subgraphs(G, copy=True)

	Generate strongly connected components as subgraphs.

	Parameters

	
	G (NetworkX Graph) – A directed graph.

	copy (boolean, optional) – if copy is True, Graph, node, and edge attributes are copied to
the subgraphs.

	Returns

	comp – A generator of graphs, one for each strongly connected component of G.

	Return type

	generator of graphs

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(Gc) for Gc in sorted(nx.strongly_connected_component_subgraphs(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> Gc = max(nx.strongly_connected_component_subgraphs(G), key=len)

See also

connected_component_subgraphs(), weakly_connected_component_subgraphs()

NetworkX

strongly_connected_components_recursive

	
strongly_connected_components_recursive(G)

	Generate nodes in strongly connected components of graph.

Recursive version of algorithm.

	Parameters

	G (NetworkX Graph) – An directed graph.

	Returns

	comp – A generator of sets of nodes, one for each strongly connected
component of G.

	Return type

	generator of sets

	Raises

	NetworkXNotImplemented: – If G is undirected

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.strongly_connected_components_recursive(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> largest = max(nx.strongly_connected_components_recursive(G), key=len)

See also

connected_components()

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications.

References

	1

	Depth-first search and linear graph algorithms, R. Tarjan
SIAM Journal of Computing 1(2):146-160, (1972).

	2

	On finding the strongly connected components in a directed graph.
E. Nuutila and E. Soisalon-Soinen
Information Processing Letters 49(1): 9-14, (1994)..

NetworkX

kosaraju_strongly_connected_components

	
kosaraju_strongly_connected_components(G, source=None)

	Generate nodes in strongly connected components of graph.

	Parameters

	G (NetworkX Graph) – An directed graph.

	Returns

	comp – A genrator of sets of nodes, one for each strongly connected
component of G.

	Return type

	generator of sets

	Raises

	NetworkXNotImplemented: – If G is undirected.

Examples

Generate a sorted list of strongly connected components, largest first.

>>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
>>> G.add_cycle([10, 11, 12])
>>> [len(c) for c in sorted(nx.kosaraju_strongly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len)

See also

connected_components(), weakly_connected_components()

Notes

Uses Kosaraju’s algorithm.

NetworkX

condensation

	
condensation(G, scc=None)

	Returns the condensation of G.

The condensation of G is the graph with each of the strongly connected
components contracted into a single node.

	Parameters

	
	G (NetworkX DiGraph) – A directed graph.

	scc (list or generator (optional, default=None)) – Strongly connected components. If provided, the elements in
\(scc\) must partition the nodes in \(G\). If not provided, it will be
calculated as scc=nx.strongly_connected_components(G).

	Returns

	C – The condensation graph C of G. The node labels are integers
corresponding to the index of the component in the list of
strongly connected components of G. C has a graph attribute named
‘mapping’ with a dictionary mapping the original nodes to the
nodes in C to which they belong. Each node in C also has a node
attribute ‘members’ with the set of original nodes in G that
form the SCC that the node in C represents.

	Return type

	NetworkX DiGraph

	Raises

	NetworkXNotImplemented: – If G is not directed

Notes

After contracting all strongly connected components to a single node,
the resulting graph is a directed acyclic graph.

NetworkX

is_weakly_connected

	
is_weakly_connected(G)

	Test directed graph for weak connectivity.

A directed graph is weakly connected if, and only if, the graph
is connected when the direction of the edge between nodes is ignored.

	Parameters

	G (NetworkX Graph) – A directed graph.

	Returns

	connected – True if the graph is weakly connected, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

See also

is_strongly_connected(), is_semiconnected(), is_connected()

Notes

For directed graphs only.

NetworkX

number_weakly_connected_components

	
number_weakly_connected_components(G)

	Return the number of weakly connected components in G.

	Parameters

	G (NetworkX graph) – A directed graph.

	Returns

	n – Number of weakly connected components

	Return type

	integer

See also

connected_components()

Notes

For directed graphs only.

NetworkX

weakly_connected_components

	
weakly_connected_components(G)

	Generate weakly connected components of G.

	Parameters

	G (NetworkX graph) – A directed graph

	Returns

	comp – A generator of sets of nodes, one for each weakly connected
component of G.

	Return type

	generator of sets

Examples

Generate a sorted list of weakly connected components, largest first.

>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.weakly_connected_components(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> largest_cc = max(nx.weakly_connected_components(G), key=len)

See also

strongly_connected_components()

Notes

For directed graphs only.

NetworkX

weakly_connected_component_subgraphs

	
weakly_connected_component_subgraphs(G, copy=True)

	Generate weakly connected components as subgraphs.

	Parameters

	
	G (NetworkX graph) – A directed graph.

	copy (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – If True make a copy of the graph attributes

	Returns

	comp – A generator of graphs, one for each weakly connected component of G.

	Return type

	generator

Examples

Generate a sorted list of weakly connected components, largest first.

>>> G = nx.path_graph(4, create_using=nx.DiGraph())
>>> G.add_path([10, 11, 12])
>>> [len(c) for c in sorted(nx.weakly_connected_component_subgraphs(G),
... key=len, reverse=True)]
[4, 3]

If you only want the largest component, it’s more efficient to
use max instead of sort.

>>> Gc = max(nx.weakly_connected_component_subgraphs(G), key=len)

See also

strongly_connected_components(), connected_components()

Notes

For directed graphs only.
Graph, node, and edge attributes are copied to the subgraphs by default.

NetworkX

is_attracting_component

	
is_attracting_component(G)

	Returns True if \(G\) consists of a single attracting component.

	Parameters

	G (DiGraph, MultiDiGraph) – The graph to be analyzed.

	Returns

	attracting – True if \(G\) has a single attracting component. Otherwise, False.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

See also

attracting_components(), number_attracting_components(), attracting_component_subgraphs()

NetworkX

number_attracting_components

	
number_attracting_components(G)

	Returns the number of attracting components in \(G\).

	Parameters

	G (DiGraph, MultiDiGraph) – The graph to be analyzed.

	Returns

	n – The number of attracting components in G.

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

See also

attracting_components(), is_attracting_component(), attracting_component_subgraphs()

NetworkX

attracting_components

	
attracting_components(G)

	Generates a list of attracting components in \(G\).

An attracting component in a directed graph \(G\) is a strongly connected
component with the property that a random walker on the graph will never
leave the component, once it enters the component.

The nodes in attracting components can also be thought of as recurrent
nodes. If a random walker enters the attractor containing the node, then
the node will be visited infinitely often.

	Parameters

	G (DiGraph, MultiDiGraph) – The graph to be analyzed.

	Returns

	attractors – A generator of sets of nodes, one for each attracting component of G.

	Return type

	generator of sets

See also

number_attracting_components(), is_attracting_component(), attracting_component_subgraphs()

NetworkX

attracting_component_subgraphs

	
attracting_component_subgraphs(G, copy=True)

	Generates a list of attracting component subgraphs from \(G\).

	Parameters

	G (DiGraph, MultiDiGraph) – The graph to be analyzed.

	Returns

	
	subgraphs (list) – A list of node-induced subgraphs of the attracting components of \(G\).

	copy (bool) – If copy is True, graph, node, and edge attributes are copied to the
subgraphs.

See also

attracting_components(), number_attracting_components(), is_attracting_component()

NetworkX

is_biconnected

	
is_biconnected(G)

	Return True if the graph is biconnected, False otherwise.

A graph is biconnected if, and only if, it cannot be disconnected by
removing only one node (and all edges incident on that node). If
removing a node increases the number of disconnected components
in the graph, that node is called an articulation point, or cut
vertex. A biconnected graph has no articulation points.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	biconnected – True if the graph is biconnected, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.path_graph(4)
>>> print(nx.is_biconnected(G))
False
>>> G.add_edge(0, 3)
>>> print(nx.is_biconnected(G))
True

See also

biconnected_components(), articulation_points(), biconnected_component_edges(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

biconnected_components

	
biconnected_components(G)

	Return a generator of sets of nodes, one set for each biconnected
component of the graph

Biconnected components are maximal subgraphs such that the removal of a
node (and all edges incident on that node) will not disconnect the
subgraph. Note that nodes may be part of more than one biconnected
component. Those nodes are articulation points, or cut vertices. The
removal of articulation points will increase the number of connected
components of the graph.

Notice that by convention a dyad is considered a biconnected component.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	nodes – Generator of sets of nodes, one set for each biconnected component.

	Return type

	generator

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_components(G))
>>> len(bicomponents)
1

You can generate a sorted list of biconnected components, largest
first, using sort.

>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
[5, 2]

If you only want the largest connected component, it’s more
efficient to use max instead of sort.

>>> Gc = max(nx.biconnected_components(G), key=len)

See also

is_biconnected(), articulation_points(), biconnected_component_edges(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

biconnected_component_edges

	
biconnected_component_edges(G)

	Return a generator of lists of edges, one list for each biconnected
component of the input graph.

Biconnected components are maximal subgraphs such that the removal of a
node (and all edges incident on that node) will not disconnect the
subgraph. Note that nodes may be part of more than one biconnected
component. Those nodes are articulation points, or cut vertices. However,
each edge belongs to one, and only one, biconnected component.

Notice that by convention a dyad is considered a biconnected component.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	edges – Generator of lists of edges, one list for each bicomponent.

	Return type

	generator of lists

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
5
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents_edges = list(nx.biconnected_component_edges(G))
>>> len(bicomponents_edges)
1

See also

is_biconnected(), biconnected_components(), articulation_points(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

biconnected_component_subgraphs

	
biconnected_component_subgraphs(G, copy=True)

	Return a generator of graphs, one graph for each biconnected component
of the input graph.

Biconnected components are maximal subgraphs such that the removal of a
node (and all edges incident on that node) will not disconnect the
subgraph. Note that nodes may be part of more than one biconnected
component. Those nodes are articulation points, or cut vertices. The
removal of articulation points will increase the number of connected
components of the graph.

Notice that by convention a dyad is considered a biconnected component.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	graphs – Generator of graphs, one graph for each biconnected component.

	Return type

	generator

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.lollipop_graph(5, 1)
>>> print(nx.is_biconnected(G))
False
>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
>>> len(bicomponents)
2
>>> G.add_edge(0, 5)
>>> print(nx.is_biconnected(G))
True
>>> bicomponents = list(nx.biconnected_component_subgraphs(G))
>>> len(bicomponents)
1

You can generate a sorted list of biconnected components, largest
first, using sort.

>>> G.remove_edge(0, 5)
>>> [len(c) for c in sorted(nx.biconnected_component_subgraphs(G),
... key=len, reverse=True)]
[5, 2]

If you only want the largest connected component, it’s more
efficient to use max instead of sort.

>>> Gc = max(nx.biconnected_component_subgraphs(G), key=len)

See also

is_biconnected(), articulation_points(), biconnected_component_edges(), biconnected_components()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

Graph, node, and edge attributes are copied to the subgraphs.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

articulation_points

	
articulation_points(G)

	Return a generator of articulation points, or cut vertices, of a graph.

An articulation point or cut vertex is any node whose removal (along with
all its incident edges) increases the number of connected components of
a graph. An undirected connected graph without articulation points is
biconnected. Articulation points belong to more than one biconnected
component of a graph.

Notice that by convention a dyad is considered a biconnected component.

	Parameters

	G (NetworkX Graph) – An undirected graph.

	Returns

	articulation points – generator of nodes

	Return type

	generator

	Raises

	NetworkXNotImplemented : – If the input graph is not undirected.

Examples

>>> G = nx.barbell_graph(4, 2)
>>> print(nx.is_biconnected(G))
False
>>> len(list(nx.articulation_points(G)))
4
>>> G.add_edge(2, 8)
>>> print(nx.is_biconnected(G))
True
>>> len(list(nx.articulation_points(G)))
0

See also

is_biconnected(), biconnected_components(), biconnected_component_edges(), biconnected_component_subgraphs()

Notes

The algorithm to find articulation points and biconnected
components is implemented using a non-recursive depth-first-search
(DFS) that keeps track of the highest level that back edges reach
in the DFS tree. A node \(n\) is an articulation point if, and only
if, there exists a subtree rooted at \(n\) such that there is no
back edge from any successor of \(n\) that links to a predecessor of
\(n\) in the DFS tree. By keeping track of all the edges traversed
by the DFS we can obtain the biconnected components because all
edges of a bicomponent will be traversed consecutively between
articulation points.

References

	1

	Hopcroft, J.; Tarjan, R. (1973).
“Efficient algorithms for graph manipulation”.
Communications of the ACM 16: 372–378. doi:10.1145/362248.362272

NetworkX

is_semiconnected

	
is_semiconnected(G)

	Return True if the graph is semiconnected, False otherwise.

A graph is semiconnected if, and only if, for any pair of nodes, either one
is reachable from the other, or they are mutually reachable.

	Parameters

	G (NetworkX graph) – A directed graph.

	Returns

	semiconnected – True if the graph is semiconnected, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

	Raises

	
	NetworkXNotImplemented : – If the input graph is not directed.

	NetworkXPointlessConcept : – If the graph is empty.

Examples

>>> G=nx.path_graph(4,create_using=nx.DiGraph())
>>> print(nx.is_semiconnected(G))
True
>>> G=nx.DiGraph([(1, 2), (3, 2)])
>>> print(nx.is_semiconnected(G))
False

See also

is_strongly_connected(), is_weakly_connected()

NetworkX

Connectivity

Connectivity and cut algorithms

K-node-components

Moody and White algorithm for k-components

	k_components(G[, flow_func])

	Returns the k-component structure of a graph G.

K-node-cutsets

Kanevsky all minimum node k cutsets algorithm.

	all_node_cuts(G[, k, flow_func])

	Returns all minimum k cutsets of an undirected graph G.

Flow-based Connectivity

Flow based connectivity algorithms

	average_node_connectivity(G[, flow_func])

	Returns the average connectivity of a graph G.

	all_pairs_node_connectivity(G[, nbunch, …])

	Compute node connectivity between all pairs of nodes of G.

	edge_connectivity(G[, s, t, flow_func])

	Returns the edge connectivity of the graph or digraph G.

	local_edge_connectivity(G, u, v[, …])

	Returns local edge connectivity for nodes s and t in G.

	local_node_connectivity(G, s, t[, …])

	Computes local node connectivity for nodes s and t.

	node_connectivity(G[, s, t, flow_func])

	Returns node connectivity for a graph or digraph G.

Flow-based Minimum Cuts

Flow based cut algorithms

	minimum_edge_cut(G[, s, t, flow_func])

	Returns a set of edges of minimum cardinality that disconnects G.

	minimum_node_cut(G[, s, t, flow_func])

	Returns a set of nodes of minimum cardinality that disconnects G.

	minimum_st_edge_cut(G, s, t[, flow_func, …])

	Returns the edges of the cut-set of a minimum (s, t)-cut.

	minimum_st_node_cut(G, s, t[, flow_func, …])

	Returns a set of nodes of minimum cardinality that disconnect source from target in G.

Stoer-Wagner minimum cut

Stoer-Wagner minimum cut algorithm.

	stoer_wagner(G[, weight, heap])

	Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

Utils for flow-based connectivity

Utilities for connectivity package

	build_auxiliary_edge_connectivity(G)

	Auxiliary digraph for computing flow based edge connectivity

	build_auxiliary_node_connectivity(G)

	Creates a directed graph D from an undirected graph G to compute flow based node connectivity.

NetworkX

k_components

	
k_components(G, flow_func=None)

	Returns the k-component structure of a graph G.

A \(k\)-component is a maximal subgraph of a graph G that has, at least,
node connectivity \(k\): we need to remove at least \(k\) nodes to break it
into more components. \(k\)-components have an inherent hierarchical
structure because they are nested in terms of connectivity: a connected
graph can contain several 2-components, each of which can contain
one or more 3-components, and so forth.

	Parameters

	
	G (NetworkX graph) –

	flow_func (function) – Function to perform the underlying flow computations. Default value
edmonds_karp(). This function performs better in sparse graphs with
right tailed degree distributions. shortest_augmenting_path() will
perform better in denser graphs.

	Returns

	k_components – Dictionary with all connectivity levels \(k\) in the input Graph as keys
and a list of sets of nodes that form a k-component of level \(k\) as
values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises

	NetworkXNotImplemented: – If the input graph is directed.

Examples

>>> # Petersen graph has 10 nodes and it is triconnected, thus all
>>> # nodes are in a single component on all three connectivity levels
>>> G = nx.petersen_graph()
>>> k_components = nx.k_components(G)

Notes

Moody and White 1 (appendix A) provide an algorithm for identifying
k-components in a graph, which is based on Kanevsky’s algorithm 2
for finding all minimum-size node cut-sets of a graph (implemented in
all_node_cuts() function):

	Compute node connectivity, k, of the input graph G.

	Identify all k-cutsets at the current level of connectivity using
Kanevsky’s algorithm.

	Generate new graph components based on the removal of
these cutsets. Nodes in a cutset belong to both sides
of the induced cut.

	If the graph is neither complete nor trivial, return to 1;
else end.

This implementation also uses some heuristics (see 3 for details)
to speed up the computation.

See also

node_connectivity(), all_node_cuts()

References

	1

	Moody, J. and D. White (2003). Social cohesion and embeddedness:
A hierarchical conception of social groups.
American Sociological Review 68(1), 103–28.
http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf

	2

	Kanevsky, A. (1993). Finding all minimum-size separating vertex
sets in a graph. Networks 23(6), 533–541.
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract

	3

	Torrents, J. and F. Ferraro (2015). Structural Cohesion:
Visualization and Heuristics for Fast Computation.
http://arxiv.org/pdf/1503.04476v1

NetworkX

all_node_cuts

	
all_node_cuts(G, k=None, flow_func=None)

	Returns all minimum k cutsets of an undirected graph G.

This implementation is based on Kanevsky’s algorithm 1 for finding all
minimum-size node cut-sets of an undirected graph G; ie the set (or sets)
of nodes of cardinality equal to the node connectivity of G. Thus if
removed, would break G into two or more connected components.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	k (Integer) – Node connectivity of the input graph. If k is None, then it is
computed. Default value: None.

	flow_func (function) – Function to perform the underlying flow computations. Default value
edmonds_karp. This function performs better in sparse graphs with
right tailed degree distributions. shortest_augmenting_path will
perform better in denser graphs.

	Returns

	cuts – Each node cutset has cardinality equal to the node connectivity of
the input graph.

	Return type

	a generator of node cutsets

Examples

>>> # A two-dimensional grid graph has 4 cutsets of cardinality 2
>>> G = nx.grid_2d_graph(5, 5)
>>> cutsets = list(nx.all_node_cuts(G))
>>> len(cutsets)
4
>>> all(2 == len(cutset) for cutset in cutsets)
True
>>> nx.node_connectivity(G)
2

Notes

This implementation is based on the sequential algorithm for finding all
minimum-size separating vertex sets in a graph 1. The main idea is to
compute minimum cuts using local maximum flow computations among a set
of nodes of highest degree and all other non-adjacent nodes in the Graph.
Once we find a minimum cut, we add an edge between the high degree
node and the target node of the local maximum flow computation to make
sure that we will not find that minimum cut again.

See also

node_connectivity(), edmonds_karp(), shortest_augmenting_path()

References

	1(1,2)

	Kanevsky, A. (1993). Finding all minimum-size separating vertex
sets in a graph. Networks 23(6), 533–541.
http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract

NetworkX

average_node_connectivity

	
average_node_connectivity(G, flow_func=None)

	Returns the average connectivity of a graph G.

The average connectivity \(\bar{\kappa}\) of a graph G is the average
of local node connectivity over all pairs of nodes of G 1 .

\[\bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}}\]

	Parameters

	
	G (NetworkX graph) – Undirected graph

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See local_node_connectivity()
for details. The choice of the default function may change from
version to version and should not be relied on. Default value: None.

	Returns

	K – Average node connectivity

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

See also

local_node_connectivity(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Beineke, L., O. Oellermann, and R. Pippert (2002). The average
connectivity of a graph. Discrete mathematics 252(1-3), 31-45.
http://www.sciencedirect.com/science/article/pii/S0012365X01001807

NetworkX

all_pairs_node_connectivity

	
all_pairs_node_connectivity(G, nbunch=None, flow_func=None)

	Compute node connectivity between all pairs of nodes of G.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	nbunch (container) – Container of nodes. If provided node connectivity will be computed
only over pairs of nodes in nbunch.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	all_pairs – A dictionary with node connectivity between all pairs of nodes
in G, or in nbunch if provided.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

See also

local_node_connectivity(), edge_connectivity(), local_edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

NetworkX

edge_connectivity

	
edge_connectivity(G, s=None, t=None, flow_func=None)

	Returns the edge connectivity of the graph or digraph G.

The edge connectivity is equal to the minimum number of edges that
must be removed to disconnect G or render it trivial. If source
and target nodes are provided, this function returns the local edge
connectivity: the minimum number of edges that must be removed to
break all paths from source to target in G.

	Parameters

	
	G (NetworkX graph) – Undirected or directed graph

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	K – Edge connectivity for G, or local edge connectivity if source
and target were provided

	Return type

	integer

Examples

>>> # Platonic icosahedral graph is 5-edge-connected
>>> G = nx.icosahedral_graph()
>>> nx.edge_connectivity(G)
5

You can use alternative flow algorithms for the underlying
maximum flow computation. In dense networks the algorithm
shortest_augmenting_path() will usually perform better
than the default edmonds_karp(), which is faster for
sparse networks with highly skewed degree distributions.
Alternative flow functions have to be explicitly imported
from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path)
5

If you specify a pair of nodes (source and target) as parameters,
this function returns the value of local edge connectivity.

>>> nx.edge_connectivity(G, 3, 7)
5

If you need to perform several local computations among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
local_edge_connectivity() for details.

Notes

This is a flow based implementation of global edge connectivity.
For undirected graphs the algorithm works by finding a ‘small’
dominating set of nodes of G (see algorithm 7 in 1) and
computing local maximum flow (see local_edge_connectivity())
between an arbitrary node in the dominating set and the rest of
nodes in it. This is an implementation of algorithm 6 in 1 .
For directed graphs, the algorithm does n calls to the maximum
flow function. This is an implementation of algorithm 8 in 1 .

See also

local_edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1(1,2,3)

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

local_edge_connectivity

	
local_edge_connectivity(G, u, v, flow_func=None, auxiliary=None, residual=None, cutoff=None)

	Returns local edge connectivity for nodes s and t in G.

Local edge connectivity for two nodes s and t is the minimum number
of edges that must be removed to disconnect them.

This is a flow based implementation of edge connectivity. We compute the
maximum flow on an auxiliary digraph build from the original
network (see below for details). This is equal to the local edge
connectivity because the value of a maximum s-t-flow is equal to the
capacity of a minimum s-t-cut (Ford and Fulkerson theorem) 1 .

	Parameters

	
	G (NetworkX graph) – Undirected or directed graph

	s (node) – Source node

	t (node) – Target node

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	auxiliary (NetworkX DiGraph) – Auxiliary digraph for computing flow based edge connectivity. If
provided it will be reused instead of recreated. Default value: None.

	residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.

	cutoff (integer, float [https://docs.python.org/2/library/functions.html#float]) – If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This is only for the
algorithms that support the cutoff parameter: edmonds_karp()
and shortest_augmenting_path(). Other algorithms will ignore
this parameter. Default value: None.

	Returns

	K – local edge connectivity for nodes s and t.

	Return type

	integer

Examples

This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:

>>> from networkx.algorithms.connectivity import local_edge_connectivity

We use in this example the platonic icosahedral graph, which has edge
connectivity 5.

>>> G = nx.icosahedral_graph()
>>> local_edge_connectivity(G, 0, 6)
5

If you need to compute local connectivity on several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for edge connectivity, and the residual
network for the underlying maximum flow computation.

Example of how to compute local edge connectivity among
all pairs of nodes of the platonic icosahedral graph reusing
the data structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

You can also use alternative flow algorithms for computing edge
connectivity. For instance, in dense networks the algorithm
shortest_augmenting_path() will usually perform better than
the default edmonds_karp() which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5

Notes

This is a flow based implementation of edge connectivity. We compute the
maximum flow using, by default, the edmonds_karp() algorithm on an
auxiliary digraph build from the original input graph:

If the input graph is undirected, we replace each edge (\(u\),`v`) with
two reciprocal arcs (\(u\), \(v\)) and (\(v\), \(u\)) and then we set the attribute
‘capacity’ for each arc to 1. If the input graph is directed we simply
add the ‘capacity’ attribute. This is an implementation of algorithm 1
in 1.

The maximum flow in the auxiliary network is equal to the local edge
connectivity because the value of a maximum s-t-flow is equal to the
capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

See also

edge_connectivity(), local_node_connectivity(), node_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1(1,2)

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

local_node_connectivity

	
local_node_connectivity(G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None)

	Computes local node connectivity for nodes s and t.

Local node connectivity for two non adjacent nodes s and t is the
minimum number of nodes that must be removed (along with their incident
edges) to disconnect them.

This is a flow based implementation of node connectivity. We compute the
maximum flow on an auxiliary digraph build from the original input
graph (see below for details).

	Parameters

	
	G (NetworkX graph) – Undirected graph

	s (node) – Source node

	t (node) – Target node

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice
of the default function may change from version to version and
should not be relied on. Default value: None.

	auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node connectivity. It has
to have a graph attribute called mapping with a dictionary mapping
node names in G and in the auxiliary digraph. If provided
it will be reused instead of recreated. Default value: None.

	residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.

	cutoff (integer, float [https://docs.python.org/2/library/functions.html#float]) – If specified, the maximum flow algorithm will terminate when the
flow value reaches or exceeds the cutoff. This is only for the
algorithms that support the cutoff parameter: edmonds_karp()
and shortest_augmenting_path(). Other algorithms will ignore
this parameter. Default value: None.

	Returns

	K – local node connectivity for nodes s and t

	Return type

	integer

Examples

This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:

>>> from networkx.algorithms.connectivity import local_node_connectivity

We use in this example the platonic icosahedral graph, which has node
connectivity 5.

>>> G = nx.icosahedral_graph()
>>> local_node_connectivity(G, 0, 6)
5

If you need to compute local connectivity on several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for node connectivity, and the residual
network for the underlying maximum flow computation.

Example of how to compute local node connectivity among
all pairs of nodes of the platonic icosahedral graph reusing
the data structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_node_connectivity)
...
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
... result[u][v] = k
...
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

You can also use alternative flow algorithms for computing node
connectivity. For instance, in dense networks the algorithm
shortest_augmenting_path() will usually perform better than
the default edmonds_karp() which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
5

Notes

This is a flow based implementation of node connectivity. We compute the
maximum flow using, by default, the edmonds_karp() algorithm (see:
maximum_flow()) on an auxiliary digraph build from the original
input graph:

For an undirected graph G having \(n\) nodes and \(m\) edges we derive a
directed graph H with \(2n\) nodes and \(2m+n\) arcs by replacing each
original node \(v\) with two nodes \(v_A\), \(v_B\) linked by an (internal)
arc in H. Then for each edge (\(u\), \(v\)) in G we add two arcs
(\(u_B\), \(v_A\)) and (\(v_B\), \(u_A\)) in H. Finally we set the attribute
capacity = 1 for each arc in H 1 .

For a directed graph G having \(n\) nodes and \(m\) arcs we derive a
directed graph H with \(2n\) nodes and \(m+n\) arcs by replacing each
original node \(v\) with two nodes \(v_A\), \(v_B\) linked by an (internal)
arc (\(v_A\), \(v_B\)) in H. Then for each arc (\(u\), \(v\)) in G we add one arc
(\(u_B\), \(v_A\)) in H. Finally we set the attribute capacity = 1 for
each arc in H.

This is equal to the local node connectivity because the value of
a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.

See also

local_edge_connectivity(), node_connectivity(), minimum_node_cut(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
Erlebach, ‘Network Analysis: Methodological Foundations’, Lecture
Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf

NetworkX

node_connectivity

	
node_connectivity(G, s=None, t=None, flow_func=None)

	Returns node connectivity for a graph or digraph G.

Node connectivity is equal to the minimum number of nodes that
must be removed to disconnect G or render it trivial. If source
and target nodes are provided, this function returns the local node
connectivity: the minimum number of nodes that must be removed to break
all paths from source to target in G.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	K – Node connectivity of G, or local node connectivity if source
and target are provided.

	Return type

	integer

Examples

>>> # Platonic icosahedral graph is 5-node-connected
>>> G = nx.icosahedral_graph()
>>> nx.node_connectivity(G)
5

You can use alternative flow algorithms for the underlying maximum
flow computation. In dense networks the algorithm
shortest_augmenting_path() will usually perform better
than the default edmonds_karp(), which is faster for
sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> nx.node_connectivity(G, flow_func=shortest_augmenting_path)
5

If you specify a pair of nodes (source and target) as parameters,
this function returns the value of local node connectivity.

>>> nx.node_connectivity(G, 3, 7)
5

If you need to perform several local computations among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
local_node_connectivity() for details.

Notes

This is a flow based implementation of node connectivity. The
algorithm works by solving \(O((n-\delta-1+\delta(\delta-1)/2))\)
maximum flow problems on an auxiliary digraph. Where \(\delta\)
is the minimum degree of G. For details about the auxiliary
digraph and the computation of local node connectivity see
local_node_connectivity(). This implementation is based
on algorithm 11 in 1.

See also

local_node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

minimum_edge_cut

	
minimum_edge_cut(G, s=None, t=None, flow_func=None)

	Returns a set of edges of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the
set of edges of minimum cardinality that, if removed, would break
all paths among source and target in G. If not, it returns a set of
edges of minimum cardinality that disconnects G.

	Parameters

	
	G (NetworkX graph) –

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	cutset – Set of edges that, if removed, would disconnect G. If source
and target nodes are provided, the set contians the edges that
if removed, would destroy all paths between source and target.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Examples

>>> # Platonic icosahedral graph has edge connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_edge_cut(G))
5

You can use alternative flow algorithms for the underlying
maximum flow computation. In dense networks the algorithm
shortest_augmenting_path() will usually perform better
than the default edmonds_karp(), which is faster for
sparse networks with highly skewed degree distributions.
Alternative flow functions have to be explicitly imported
from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path))
5

If you specify a pair of nodes (source and target) as parameters,
this function returns the value of local edge connectivity.

>>> nx.edge_connectivity(G, 3, 7)
5

If you need to perform several local computations among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
local_edge_connectivity() for details.

Notes

This is a flow based implementation of minimum edge cut. For
undirected graphs the algorithm works by finding a ‘small’ dominating
set of nodes of G (see algorithm 7 in 1) and computing the maximum
flow between an arbitrary node in the dominating set and the rest of
nodes in it. This is an implementation of algorithm 6 in 1. For
directed graphs, the algorithm does n calls to the max flow function.
It is an implementation of algorithm 8 in 1.

See also

minimum_st_edge_cut(), minimum_node_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1(1,2,3)

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

minimum_node_cut

	
minimum_node_cut(G, s=None, t=None, flow_func=None)

	Returns a set of nodes of minimum cardinality that disconnects G.

If source and target nodes are provided, this function returns the
set of nodes of minimum cardinality that, if removed, would destroy
all paths among source and target in G. If not, it returns a set
of nodes of minimum cardinality that disconnects G.

	Parameters

	
	G (NetworkX graph) –

	s (node) – Source node. Optional. Default value: None.

	t (node) – Target node. Optional. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The
choice of the default function may change from version
to version and should not be relied on. Default value: None.

	Returns

	cutset – Set of nodes that, if removed, would disconnect G. If source
and target nodes are provided, the set contians the nodes that
if removed, would destroy all paths between source and target.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Examples

>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> node_cut = nx.minimum_node_cut(G)
>>> len(node_cut)
5

You can use alternative flow algorithms for the underlying maximum
flow computation. In dense networks the algorithm
shortest_augmenting_path() will usually perform better
than the default edmonds_karp(), which is faster for
sparse networks with highly skewed degree distributions. Alternative
flow functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path)
True

If you specify a pair of nodes (source and target) as parameters,
this function returns a local st node cut.

>>> len(nx.minimum_node_cut(G, 3, 7))
5

If you need to perform several local st cuts among different
pairs of nodes on the same graph, it is recommended that you reuse
the data structures used in the maximum flow computations. See
minimum_st_node_cut() for details.

Notes

This is a flow based implementation of minimum node cut. The algorithm
is based in solving a number of maximum flow computations to determine
the capacity of the minimum cut on an auxiliary directed network that
corresponds to the minimum node cut of G. It handles both directed
and undirected graphs. This implementation is based on algorithm 11
in 1.

See also

minimum_st_node_cut(), minimum_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

minimum_st_edge_cut

	
minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None)

	Returns the edges of the cut-set of a minimum (s, t)-cut.

This function returns the set of edges of minimum cardinality that,
if removed, would destroy all paths among source and target in G.
Edge weights are not considered

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node connectivity. It has
to have a graph attribute called mapping with a dictionary mapping
node names in G and in the auxiliary digraph. If provided
it will be reused instead of recreated. Default value: None.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See node_connectivity() for
details. The choice of the default function may change from version
to version and should not be relied on. Default value: None.

	residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.

	Returns

	cutset – Set of edges that, if removed from the graph, will disconnect it.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

See also

minimum_cut(), minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Examples

This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:

>>> from networkx.algorithms.connectivity import minimum_st_edge_cut

We use in this example the platonic icosahedral graph, which has edge
connectivity 5.

>>> G = nx.icosahedral_graph()
>>> len(minimum_st_edge_cut(G, 0, 6))
5

If you need to compute local edge cuts on several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for edge connectivity, and the residual
network for the underlying maximum flow computation.

Example of how to compute local edge cuts among all pairs of
nodes of the platonic icosahedral graph reusing the data
structures.

>>> import itertools
>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_edge_connectivity)
>>> H = build_auxiliary_edge_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> result = dict.fromkeys(G, dict())
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> for u, v in itertools.combinations(G, 2):
... k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R))
... result[u][v] = k
>>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
True

You can also use alternative flow algorithms for computing edge
cuts. For instance, in dense networks the algorithm
shortest_augmenting_path() will usually perform better than
the default edmonds_karp() which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5

NetworkX

minimum_st_node_cut

	
minimum_st_node_cut(G, s, t, flow_func=None, auxiliary=None, residual=None)

	Returns a set of nodes of minimum cardinality that disconnect source
from target in G.

This function returns the set of nodes of minimum cardinality that,
if removed, would destroy all paths among source and target in G.

	Parameters

	
	G (NetworkX graph) –

	s (node) – Source node.

	t (node) – Target node.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes.
The function has to accept at least three parameters: a Digraph,
a source node, and a target node. And return a residual network
that follows NetworkX conventions (see maximum_flow() for
details). If flow_func is None, the default maximum flow function
(edmonds_karp()) is used. See below for details. The choice
of the default function may change from version to version and
should not be relied on. Default value: None.

	auxiliary (NetworkX DiGraph) – Auxiliary digraph to compute flow based node connectivity. It has
to have a graph attribute called mapping with a dictionary mapping
node names in G and in the auxiliary digraph. If provided
it will be reused instead of recreated. Default value: None.

	residual (NetworkX DiGraph) – Residual network to compute maximum flow. If provided it will be
reused instead of recreated. Default value: None.

	Returns

	cutset – Set of nodes that, if removed, would destroy all paths between
source and target in G.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Examples

This function is not imported in the base NetworkX namespace, so you
have to explicitly import it from the connectivity package:

>>> from networkx.algorithms.connectivity import minimum_st_node_cut

We use in this example the platonic icosahedral graph, which has node
connectivity 5.

>>> G = nx.icosahedral_graph()
>>> len(minimum_st_node_cut(G, 0, 6))
5

If you need to compute local st cuts between several pairs of
nodes in the same graph, it is recommended that you reuse the
data structures that NetworkX uses in the computation: the
auxiliary digraph for node connectivity and node cuts, and the
residual network for the underlying maximum flow computation.

Example of how to compute local st node cuts reusing the data
structures:

>>> # You also have to explicitly import the function for
>>> # building the auxiliary digraph from the connectivity package
>>> from networkx.algorithms.connectivity import (
... build_auxiliary_node_connectivity)
>>> H = build_auxiliary_node_connectivity(G)
>>> # And the function for building the residual network from the
>>> # flow package
>>> from networkx.algorithms.flow import build_residual_network
>>> # Note that the auxiliary digraph has an edge attribute named capacity
>>> R = build_residual_network(H, 'capacity')
>>> # Reuse the auxiliary digraph and the residual network by passing them
>>> # as parameters
>>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R))
5

You can also use alternative flow algorithms for computing minimum st
node cuts. For instance, in dense networks the algorithm
shortest_augmenting_path() will usually perform better than
the default edmonds_karp() which is faster for sparse
networks with highly skewed degree distributions. Alternative flow
functions have to be explicitly imported from the flow package.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path))
5

Notes

This is a flow based implementation of minimum node cut. The algorithm
is based in solving a number of maximum flow computations to determine
the capacity of the minimum cut on an auxiliary directed network that
corresponds to the minimum node cut of G. It handles both directed
and undirected graphs. This implementation is based on algorithm 11
in 1.

See also

minimum_node_cut(), minimum_edge_cut(), stoer_wagner(), node_connectivity(), edge_connectivity(), maximum_flow(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

References

	1

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

stoer_wagner

	
stoer_wagner(G, weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>)

	Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.

Determine the minimum edge cut of a connected graph using the
Stoer-Wagner algorithm. In weighted cases, all weights must be
nonnegative.

The running time of the algorithm depends on the type of heaps used:

	Type of heap

	Running time

	Binary heap

	\(O(n (m + n) \log n)\)

	Fibonacci heap

	\(O(nm + n^2 \log n)\)

	Pairing heap

	\(O(2^{2 \sqrt{\log \log n}} nm + n^2 \log n)\)

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute named by the
weight parameter below. If this attribute is not present, the edge is
considered to have unit weight.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the weight attribute of the edges. If the attribute is not
present, unit weight is assumed. Default value: ‘weight’.

	heap (class) – Type of heap to be used in the algorithm. It should be a subclass of
MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is
recommeded over PairingHeap for Python implementations without
optimized attribute accesses (e.g., CPython) despite a slower
asymptotic running time. For Python implementations with optimized
attribute accesses (e.g., PyPy), PairingHeap provides better
performance. Default value: BinaryHeap.

	Returns

	
	cut_value (integer or float) – The sum of weights of edges in a minimum cut.

	partition (pair of node lists) – A partitioning of the nodes that defines a minimum cut.

	Raises

	
	NetworkXNotImplemented – If the graph is directed or a multigraph.

	NetworkXError – If the graph has less than two nodes, is not connected or has a
negative-weighted edge.

Examples

>>> G = nx.Graph()
>>> G.add_edge('x','a', weight=3)
>>> G.add_edge('x','b', weight=1)
>>> G.add_edge('a','c', weight=3)
>>> G.add_edge('b','c', weight=5)
>>> G.add_edge('b','d', weight=4)
>>> G.add_edge('d','e', weight=2)
>>> G.add_edge('c','y', weight=2)
>>> G.add_edge('e','y', weight=3)
>>> cut_value, partition = nx.stoer_wagner(G)
>>> cut_value
4

NetworkX

build_auxiliary_edge_connectivity

	
build_auxiliary_edge_connectivity(G)

	Auxiliary digraph for computing flow based edge connectivity

If the input graph is undirected, we replace each edge (\(u\),`v`) with
two reciprocal arcs (\(u\), \(v\)) and (\(v\), \(u\)) and then we set the attribute
‘capacity’ for each arc to 1. If the input graph is directed we simply
add the ‘capacity’ attribute. Part of algorithm 1 in 1 .

References

	1

	Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a
chapter, look for the reference of the book).
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

build_auxiliary_node_connectivity

	
build_auxiliary_node_connectivity(G)

	Creates a directed graph D from an undirected graph G to compute flow
based node connectivity.

For an undirected graph G having \(n\) nodes and \(m\) edges we derive a
directed graph D with \(2n\) nodes and \(2m+n\) arcs by replacing each
original node \(v\) with two nodes \(vA\), \(vB\) linked by an (internal)
arc in D. Then for each edge (\(u\), \(v\)) in G we add two arcs (\(uB\), \(vA\))
and (\(vB\), \(uA\)) in D. Finally we set the attribute capacity = 1 for each
arc in D 1.

For a directed graph having \(n\) nodes and \(m\) arcs we derive a
directed graph D with \(2n\) nodes and \(m+n\) arcs by replacing each
original node \(v\) with two nodes \(vA\), \(vB\) linked by an (internal)
arc (\(vA\), \(vB\)) in D. Then for each arc (\(u\), \(v\)) in G we add one
arc (\(uB\), \(vA\)) in D. Finally we set the attribute capacity = 1 for
each arc in D.

A dictionary with a mapping between nodes in the original graph and the
auxiliary digraph is stored as a graph attribute: H.graph[‘mapping’].

References

	1

	Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
Erlebach, ‘Network Analysis: Methodological Foundations’, Lecture
Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf

NetworkX

Cores

Find the k-cores of a graph.

The k-core is found by recursively pruning nodes with degrees less than k.

See the following reference for details:

An O(m) Algorithm for Cores Decomposition of Networks
Vladimir Batagelj and Matjaz Zaversnik, 2003.
http://arxiv.org/abs/cs.DS/0310049

	core_number(G)

	Return the core number for each vertex.

	k_core(G[, k, core_number])

	Return the k-core of G.

	k_shell(G[, k, core_number])

	Return the k-shell of G.

	k_crust(G[, k, core_number])

	Return the k-crust of G.

	k_corona(G, k[, core_number])

	Return the k-corona of G.

NetworkX

core_number

	
core_number(G)

	Return the core number for each vertex.

A k-core is a maximal subgraph that contains nodes of degree k or more.

The core number of a node is the largest value k of a k-core containing
that node.

	Parameters

	G (NetworkX graph) – A graph or directed graph

	Returns

	core_number – A dictionary keyed by node to the core number.

	Return type

	dictionary

	Raises

	NetworkXError – The k-core is not defined for graphs with self loops or parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

References

	1

	An O(m) Algorithm for Cores Decomposition of Networks
Vladimir Batagelj and Matjaz Zaversnik, 2003.
http://arxiv.org/abs/cs.DS/0310049

NetworkX

k_core

	
k_core(G, k=None, core_number=None)

	Return the k-core of G.

A k-core is a maximal subgraph that contains nodes of degree k or more.

	Parameters

	
	G (NetworkX graph) – A graph or directed graph

	k (int [https://docs.python.org/2/library/functions.html#int], optional) – The order of the core. If not specified return the main core.

	core_number (dictionary, optional) – Precomputed core numbers for the graph G.

	Returns

	G – The k-core subgraph

	Return type

	NetworkX graph

	Raises

	NetworkXError – The k-core is not defined for graphs with self loops or parallel edges.

Notes

The main core is the core with the largest degree.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also

core_number()

References

	1

	An O(m) Algorithm for Cores Decomposition of Networks
Vladimir Batagelj and Matjaz Zaversnik, 2003.
http://arxiv.org/abs/cs.DS/0310049

NetworkX

k_shell

	
k_shell(G, k=None, core_number=None)

	Return the k-shell of G.

The k-shell is the subgraph of nodes in the k-core but not in the (k+1)-core.

	Parameters

	
	G (NetworkX graph) – A graph or directed graph.

	k (int [https://docs.python.org/2/library/functions.html#int], optional) – The order of the shell. If not specified return the main shell.

	core_number (dictionary, optional) – Precomputed core numbers for the graph G.

	Returns

	G – The k-shell subgraph

	Return type

	NetworkX graph

	Raises

	NetworkXError – The k-shell is not defined for graphs with self loops or parallel edges.

Notes

This is similar to k_corona but in that case only neighbors in the
k-core are considered.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also

core_number(), k_corona()

References

	1

	A model of Internet topology using k-shell decomposition
Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt,
and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
http://www.pnas.org/content/104/27/11150.full

NetworkX

k_crust

	
k_crust(G, k=None, core_number=None)

	Return the k-crust of G.

The k-crust is the graph G with the k-core removed.

	Parameters

	
	G (NetworkX graph) – A graph or directed graph.

	k (int [https://docs.python.org/2/library/functions.html#int], optional) – The order of the shell. If not specified return the main crust.

	core_number (dictionary, optional) – Precomputed core numbers for the graph G.

	Returns

	G – The k-crust subgraph

	Return type

	NetworkX graph

	Raises

	NetworkXError – The k-crust is not defined for graphs with self loops or parallel edges.

Notes

This definition of k-crust is different than the definition in 1.
The k-crust in 1 is equivalent to the k+1 crust of this algorithm.

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also

core_number()

References

	1(1,2)

	A model of Internet topology using k-shell decomposition
Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt,
and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
http://www.pnas.org/content/104/27/11150.full

NetworkX

k_corona

	
k_corona(G, k, core_number=None)

	Return the k-corona of G.

The k-corona is the subgraph of nodes in the k-core which have
exactly k neighbours in the k-core.

	Parameters

	
	G (NetworkX graph) – A graph or directed graph

	k (int [https://docs.python.org/2/library/functions.html#int]) – The order of the corona.

	core_number (dictionary, optional) – Precomputed core numbers for the graph G.

	Returns

	G – The k-corona subgraph

	Return type

	NetworkX graph

	Raises

	NetworkXError – The k-cornoa is not defined for graphs with self loops or
parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.

For directed graphs the node degree is defined to be the
in-degree + out-degree.

Graph, node, and edge attributes are copied to the subgraph.

See also

core_number()

References

	1

	k -core (bootstrap) percolation on complex networks:
Critical phenomena and nonlocal effects,
A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes,
Phys. Rev. E 73, 056101 (2006)
http://link.aps.org/doi/10.1103/PhysRevE.73.056101

NetworkX

Cycles

Cycle finding algorithms

	cycle_basis(G[, root])

	Returns a list of cycles which form a basis for cycles of G.

	simple_cycles(G)

	Find simple cycles (elementary circuits) of a directed graph.

	find_cycle(G[, source, orientation])

	Returns the edges of a cycle found via a directed, depth-first traversal.

NetworkX

cycle_basis

	
cycle_basis(G, root=None)

	Returns a list of cycles which form a basis for cycles of G.

A basis for cycles of a network is a minimal collection of
cycles such that any cycle in the network can be written
as a sum of cycles in the basis. Here summation of cycles
is defined as “exclusive or” of the edges. Cycle bases are
useful, e.g. when deriving equations for electric circuits
using Kirchhoff’s Laws.

	Parameters

	
	G (NetworkX Graph) –

	root (node, optional) – Specify starting node for basis.

	Returns

	
	A list of cycle lists. Each cycle list is a list of nodes

	which forms a cycle (loop) in G.

Examples

>>> G=nx.Graph()
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([0,3,4,5])
>>> print(nx.cycle_basis(G,0))
[[3, 4, 5, 0], [1, 2, 3, 0]]

Notes

This is adapted from algorithm CACM 491 1.

References

	1

	Paton, K. An algorithm for finding a fundamental set of
cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.

See also

simple_cycles()

NetworkX

simple_cycles

	
simple_cycles(G)

	Find simple cycles (elementary circuits) of a directed graph.

An simple cycle, or elementary circuit, is a closed path where no
node appears twice, except that the first and last node are the same.
Two elementary circuits are distinct if they are not cyclic permutations
of each other.

This is a nonrecursive, iterator/generator version of Johnson’s
algorithm 1. There may be better algorithms for some cases 2 3.

	Parameters

	G (NetworkX DiGraph) – A directed graph

	Returns

	cycle_generator – A generator that produces elementary cycles of the graph. Each cycle is
a list of nodes with the first and last nodes being the same.

	Return type

	generator

Examples

>>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)])
>>> len(list(nx.simple_cycles(G)))
5

To filter the cycles so that they don’t include certain nodes or edges,
copy your graph and eliminate those nodes or edges before calling

>>> copyG = G.copy()
>>> copyG.remove_nodes_from([1])
>>> copyG.remove_edges_from([(0, 1)])
>>> len(list(nx.simple_cycles(copyG)))
3

Notes

The implementation follows pp. 79-80 in 1.

The time complexity is \(O((n+e)(c+1))\) for \(n\) nodes, \(e\) edges and \(c\)
elementary circuits.

References

	1(1,2)

	Finding all the elementary circuits of a directed graph.
D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975.
http://dx.doi.org/10.1137/0204007

	2

	Enumerating the cycles of a digraph: a new preprocessing strategy.
G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982.

	3

	A search strategy for the elementary cycles of a directed graph.
J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS,
v. 16, no. 2, 192-204, 1976.

See also

cycle_basis()

NetworkX

find_cycle

	
find_cycle(G, source=None, orientation='original')

	Returns the edges of a cycle found via a directed, depth-first traversal.

	Parameters

	
	G (graph) – A directed/undirected graph/multigraph.

	source (node, list of nodes) – The node from which the traversal begins. If None, then a source
is chosen arbitrarily and repeatedly until all edges from each node in
the graph are searched.

	orientation ('original' | 'reverse' | 'ignore') – For directed graphs and directed multigraphs, edge traversals need not
respect the original orientation of the edges. When set to ‘reverse’,
then every edge will be traversed in the reverse direction. When set to
‘ignore’, then each directed edge is treated as a single undirected
edge that can be traversed in either direction. For undirected graphs
and undirected multigraphs, this parameter is meaningless and is not
consulted by the algorithm.

	Returns

	edges – A list of directed edges indicating the path taken for the loop. If
no cycle is found, then edges will be an empty list. For graphs, an
edge is of the form (u, v) where u and v are the tail and head
of the edge as determined by the traversal. For multigraphs, an edge is
of the form (u, v, key), where key is the key of the edge. When the
graph is directed, then u and v are always in the order of the
actual directed edge. If orientation is ‘ignore’, then an edge takes
the form (u, v, key, direction) where direction indicates if the edge
was followed in the forward (tail to head) or reverse (head to tail)
direction. When the direction is forward, the value of direction
is ‘forward’. When the direction is reverse, the value of direction
is ‘reverse’.

	Return type

	directed edges

Examples

In this example, we construct a DAG and find, in the first call, that there
are no directed cycles, and so an exception is raised. In the second call,
we ignore edge orientations and find that there is an undirected cycle.
Note that the second call finds a directed cycle while effectively
traversing an undirected graph, and so, we found an “undirected cycle”.
This means that this DAG structure does not form a directed tree (which
is also known as a polytree).

>>> import networkx as nx
>>> G = nx.DiGraph([(0,1), (0,2), (1,2)])
>>> try:
... find_cycle(G, orientation='original')
... except:
... pass
...
>>> list(find_cycle(G, orientation='ignore'))
[(0, 1, 'forward'), (1, 2, 'forward'), (0, 2, 'reverse')]

NetworkX

Directed Acyclic Graphs

	ancestors(G, source)

	Return all nodes having a path to \(source\) in G.

	descendants(G, source)

	Return all nodes reachable from \(source\) in G.

	topological_sort(G[, nbunch, reverse])

	Return a list of nodes in topological sort order.

	topological_sort_recursive(G[, nbunch, reverse])

	Return a list of nodes in topological sort order.

	is_directed_acyclic_graph(G)

	Return True if the graph G is a directed acyclic graph (DAG) or False if not.

	is_aperiodic(G)

	Return True if G is aperiodic.

	transitive_closure(G)

	Returns transitive closure of a directed graph

	antichains(G)

	Generates antichains from a DAG.

	dag_longest_path(G)

	Returns the longest path in a DAG

	dag_longest_path_length(G)

	Returns the longest path length in a DAG

NetworkX

ancestors

	
ancestors(G, source)

	Return all nodes having a path to \(source\) in G.

	Parameters

	
	G (NetworkX DiGraph) –

	source (node in G) –

	Returns

	ancestors – The ancestors of source in G

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]()

NetworkX

descendants

	
descendants(G, source)

	Return all nodes reachable from \(source\) in G.

	Parameters

	
	G (NetworkX DiGraph) –

	source (node in G) –

	Returns

	des – The descendants of source in G

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]()

NetworkX

topological_sort

	
topological_sort(G, nbunch=None, reverse=False)

	Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes
such that an edge from u to v implies that u appears before v in the
topological sort order.

	Parameters

	
	G (NetworkX digraph) – A directed graph

	nbunch (container of nodes (optional)) – Explore graph in specified order given in nbunch

	reverse (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Return postorder instead of preorder if True.
Reverse mode is a bit more efficient.

	Raises

	
	NetworkXError – Topological sort is defined for directed graphs only. If the
graph G is undirected, a NetworkXError is raised.

	NetworkXUnfeasible – If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised.

Notes

This algorithm is based on a description and proof in
The Algorithm Design Manual 1 .

See also

is_directed_acyclic_graph()

References

	1

	Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998).
http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/

NetworkX

topological_sort_recursive

	
topological_sort_recursive(G, nbunch=None, reverse=False)

	Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such
that an edge from u to v implies that u appears before v in the
topological sort order.

	Parameters

	
	G (NetworkX digraph) –

	nbunch (container of nodes (optional)) – Explore graph in specified order given in nbunch

	reverse (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Return postorder instead of preorder if True.
Reverse mode is a bit more efficient.

	Raises

	
	NetworkXError – Topological sort is defined for directed graphs only. If the
graph G is undirected, a NetworkXError is raised.

	NetworkXUnfeasible – If G is not a directed acyclic graph (DAG) no topological sort
exists and a NetworkXUnfeasible exception is raised.

Notes

This is a recursive version of topological sort.

See also

topological_sort(), is_directed_acyclic_graph()

NetworkX

is_directed_acyclic_graph

	
is_directed_acyclic_graph(G)

	Return True if the graph G is a directed acyclic graph (DAG) or
False if not.

	Parameters

	G (NetworkX graph) – A graph

	Returns

	is_dag – True if G is a DAG, false otherwise

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

NetworkX

is_aperiodic

	
is_aperiodic(G)

	Return True if G is aperiodic.

A directed graph is aperiodic if there is no integer k > 1 that
divides the length of every cycle in the graph.

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	aperiodic – True if the graph is aperiodic False otherwise

	Return type

	boolean

	Raises

	NetworkXError – If G is not directed

Notes

This uses the method outlined in 1, which runs in O(m) time
given m edges in G. Note that a graph is not aperiodic if it is
acyclic as every integer trivial divides length 0 cycles.

References

	1

	Jarvis, J. P.; Shier, D. R. (1996),
Graph-theoretic analysis of finite Markov chains,
in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling:
A Multidisciplinary Approach, CRC Press.

NetworkX

transitive_closure

	
transitive_closure(G)

	Returns transitive closure of a directed graph

The transitive closure of G = (V,E) is a graph G+ = (V,E+) such that
for all v,w in V there is an edge (v,w) in E+ if and only if there
is a non-null path from v to w in G.

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	TC – Graph

	Return type

	NetworkX DiGraph

	Raises

	NetworkXNotImplemented – If G is not directed

References

	1

	http://www.ics.uci.edu/~eppstein/PADS/PartialOrder.py

NetworkX

antichains

	
antichains(G)

	Generates antichains from a DAG.

An antichain is a subset of a partially ordered set such that any
two elements in the subset are incomparable.

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	antichain

	Return type

	generator object

	Raises

	
	NetworkXNotImplemented – If G is not directed

	NetworkXUnfeasible – If G contains a cycle

Notes

This function was originally developed by Peter Jipsen and Franco Saliola
for the SAGE project. It’s included in NetworkX with permission from the
authors. Original SAGE code at:

https://sage.informatik.uni-goettingen.de/src/combinat/posets/hasse_diagram.py

References

	1

	Free Lattices, by R. Freese, J. Jezek and J. B. Nation,
AMS, Vol 42, 1995, p. 226.

NetworkX

dag_longest_path

	
dag_longest_path(G)

	Returns the longest path in a DAG

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	path – Longest path

	Return type

	list

	Raises

	NetworkXNotImplemented – If G is not directed

See also

dag_longest_path_length()

NetworkX

dag_longest_path_length

	
dag_longest_path_length(G)

	Returns the longest path length in a DAG

	Parameters

	G (NetworkX DiGraph) – Graph

	Returns

	path_length – Longest path length

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	Raises

	NetworkXNotImplemented – If G is not directed

See also

dag_longest_path()

NetworkX

Distance Measures

Graph diameter, radius, eccentricity and other properties.

	center(G[, e])

	Return the center of the graph G.

	diameter(G[, e])

	Return the diameter of the graph G.

	eccentricity(G[, v, sp])

	Return the eccentricity of nodes in G.

	periphery(G[, e])

	Return the periphery of the graph G.

	radius(G[, e])

	Return the radius of the graph G.

NetworkX

center

	
center(G, e=None)

	Return the center of the graph G.

The center is the set of nodes with eccentricity equal to radius.

	Parameters

	
	G (NetworkX graph) – A graph

	e (eccentricity dictionary, optional) – A precomputed dictionary of eccentricities.

	Returns

	c – List of nodes in center

	Return type

	list

NetworkX

diameter

	
diameter(G, e=None)

	Return the diameter of the graph G.

The diameter is the maximum eccentricity.

	Parameters

	
	G (NetworkX graph) – A graph

	e (eccentricity dictionary, optional) – A precomputed dictionary of eccentricities.

	Returns

	d – Diameter of graph

	Return type

	integer

See also

eccentricity()

NetworkX

eccentricity

	
eccentricity(G, v=None, sp=None)

	Return the eccentricity of nodes in G.

The eccentricity of a node v is the maximum distance from v to
all other nodes in G.

	Parameters

	
	G (NetworkX graph) – A graph

	v (node, optional) – Return value of specified node

	sp (dict of dicts, optional) – All pairs shortest path lengths as a dictionary of dictionaries

	Returns

	ecc – A dictionary of eccentricity values keyed by node.

	Return type

	dictionary

NetworkX

periphery

	
periphery(G, e=None)

	Return the periphery of the graph G.

The periphery is the set of nodes with eccentricity equal to the diameter.

	Parameters

	
	G (NetworkX graph) – A graph

	e (eccentricity dictionary, optional) – A precomputed dictionary of eccentricities.

	Returns

	p – List of nodes in periphery

	Return type

	list

NetworkX

radius

	
radius(G, e=None)

	Return the radius of the graph G.

The radius is the minimum eccentricity.

	Parameters

	
	G (NetworkX graph) – A graph

	e (eccentricity dictionary, optional) – A precomputed dictionary of eccentricities.

	Returns

	r – Radius of graph

	Return type

	integer

NetworkX

Distance-Regular Graphs

Distance-regular graphs

	is_distance_regular(G)

	Returns True if the graph is distance regular, False otherwise.

	intersection_array(G)

	Returns the intersection array of a distance-regular graph.

	global_parameters(b, c)

	Return global parameters for a given intersection array.

NetworkX

is_distance_regular

	
is_distance_regular(G)

	Returns True if the graph is distance regular, False otherwise.

A connected graph G is distance-regular if for any nodes x,y
and any integers i,j=0,1,…,d (where d is the graph
diameter), the number of vertices at distance i from x and
distance j from y depends only on i,j and the graph distance
between x and y, independently of the choice of x and y.

	Parameters

	G (Networkx graph (undirected)) –

	Returns

	True if the graph is Distance Regular, False otherwise

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> G=nx.hypercube_graph(6)
>>> nx.is_distance_regular(G)
True

See also

intersection_array(), global_parameters()

Notes

For undirected and simple graphs only

References

	1

	Brouwer, A. E.; Cohen, A. M.; and Neumaier, A.
Distance-Regular Graphs. New York: Springer-Verlag, 1989.

	2

	Weisstein, Eric W. “Distance-Regular Graph.”
http://mathworld.wolfram.com/Distance-RegularGraph.html

NetworkX

intersection_array

	
intersection_array(G)

	Returns the intersection array of a distance-regular graph.

Given a distance-regular graph G with integers b_i, c_i,i = 0,….,d
such that for any 2 vertices x,y in G at a distance i=d(x,y), there
are exactly c_i neighbors of y at a distance of i-1 from x and b_i
neighbors of y at a distance of i+1 from x.

A distance regular graph’sintersection array is given by,
[b_0,b_1,…..b_{d-1};c_1,c_2,…..c_d]

	Parameters

	G (Networkx graph (undirected)) –

	Returns

	b,c

	Return type

	tuple of lists

Examples

>>> G=nx.icosahedral_graph()
>>> nx.intersection_array(G)
([5, 2, 1], [1, 2, 5])

References

	1

	Weisstein, Eric W. “Intersection Array.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/IntersectionArray.html

See also

global_parameters()

NetworkX

global_parameters

	
global_parameters(b, c)

	Return global parameters for a given intersection array.

Given a distance-regular graph G with integers b_i, c_i,i = 0,….,d
such that for any 2 vertices x,y in G at a distance i=d(x,y), there
are exactly c_i neighbors of y at a distance of i-1 from x and b_i
neighbors of y at a distance of i+1 from x.

Thus, a distance regular graph has the global parameters,
[[c_0,a_0,b_0],[c_1,a_1,b_1],……,[c_d,a_d,b_d]] for the
intersection array [b_0,b_1,…..b_{d-1};c_1,c_2,…..c_d]
where a_i+b_i+c_i=k , k= degree of every vertex.

	Parameters

	b,c (tuple of lists) –

	Returns

	p

	Return type

	list of three-tuples

Examples

>>> G=nx.dodecahedral_graph()
>>> b,c=nx.intersection_array(G)
>>> list(nx.global_parameters(b,c))
[(0, 0, 3), (1, 0, 2), (1, 1, 1), (1, 1, 1), (2, 0, 1), (3, 0, 0)]

References

	1

	Weisstein, Eric W. “Global Parameters.”
From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GlobalParameters.html

See also

intersection_array()

NetworkX

Dominance

Dominance algorithms.

	immediate_dominators(G, start)

	Returns the immediate dominators of all nodes of a directed graph.

	dominance_frontiers(G, start)

	Returns the dominance frontiers of all nodes of a directed graph.

NetworkX

immediate_dominators

	
immediate_dominators(G, start)

	Returns the immediate dominators of all nodes of a directed graph.

	Parameters

	
	G (a DiGraph or MultiDiGraph) – The graph where dominance is to be computed.

	start (node) – The start node of dominance computation.

	Returns

	idom – A dict containing the immediate dominators of each node reachable from
start.

	Return type

	dict keyed by nodes

	Raises

	
	NetworkXNotImplemented – If G is undirected.

	NetworkXError – If start is not in G.

Notes

Except for start, the immediate dominators are the parents of their
corresponding nodes in the dominator tree.

Examples

>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted(nx.immediate_dominators(G, 1).items())
[(1, 1), (2, 1), (3, 1), (4, 3), (5, 1)]

References

	1

	K. D. Cooper, T. J. Harvey, and K. Kennedy.
A simple, fast dominance algorithm.
Software Practice & Experience, 4:110, 2001.

NetworkX

dominance_frontiers

	
dominance_frontiers(G, start)

	Returns the dominance frontiers of all nodes of a directed graph.

	Parameters

	
	G (a DiGraph or MultiDiGraph) – The graph where dominance is to be computed.

	start (node) – The start node of dominance computation.

	Returns

	df – A dict containing the dominance frontiers of each node reachable from
start as lists.

	Return type

	dict keyed by nodes

	Raises

	
	NetworkXNotImplemented – If G is undirected.

	NetworkXError – If start is not in G.

Examples

>>> G = nx.DiGraph([(1, 2), (1, 3), (2, 5), (3, 4), (4, 5)])
>>> sorted((u, sorted(df)) for u, df in nx.dominance_frontiers(G, 1).items())
[(1, []), (2, [5]), (3, [5]), (4, [5]), (5, [])]

References

	1

	K. D. Cooper, T. J. Harvey, and K. Kennedy.
A simple, fast dominance algorithm.
Software Practice & Experience, 4:110, 2001.

NetworkX

Dominating Sets

	dominating_set(G[, start_with])

	Finds a dominating set for the graph G.

	is_dominating_set(G, nbunch)

	Checks if nodes in nbunch are a dominating set for G.

NetworkX

dominating_set

	
dominating_set(G, start_with=None)

	Finds a dominating set for the graph G.

A dominating set for a graph \(G = (V, E)\) is a node subset \(D\) of \(V\)
such that every node not in \(D\) is adjacent to at least one member
of \(D\) 1.

	Parameters

	
	G (NetworkX graph) –

	start_with (Node (default=None)) – Node to use as a starting point for the algorithm.

	Returns

	D – A dominating set for G.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

This function is an implementation of algorithm 7 in 2 which
finds some dominating set, not necessarily the smallest one.

See also

is_dominating_set()

References

	1

	http://en.wikipedia.org/wiki/Dominating_set

	2

	Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf

NetworkX

is_dominating_set

	
is_dominating_set(G, nbunch)

	Checks if nodes in nbunch are a dominating set for G.

A dominating set for a graph \(G = (V, E)\) is a node subset \(D\) of \(V\)
such that every node not in \(D\) is adjacent to at least one member
of \(D\) 1.

	Parameters

	
	G (NetworkX graph) –

	nbunch (Node container) –

See also

dominating_set()

References

	1

	http://en.wikipedia.org/wiki/Dominating_set

NetworkX

Eulerian

Eulerian circuits and graphs.

	is_eulerian(G)

	Return True if G is an Eulerian graph, False otherwise.

	eulerian_circuit(G[, source])

	Return the edges of an Eulerian circuit in G.

NetworkX

is_eulerian

	
is_eulerian(G)

	Return True if G is an Eulerian graph, False otherwise.

An Eulerian graph is a graph with an Eulerian circuit.

	Parameters

	G (graph) – A NetworkX Graph

Examples

>>> nx.is_eulerian(nx.DiGraph({0:[3], 1:[2], 2:[3], 3:[0, 1]}))
True
>>> nx.is_eulerian(nx.complete_graph(5))
True
>>> nx.is_eulerian(nx.petersen_graph())
False

Notes

This implementation requires the graph to be connected
(or strongly connected for directed graphs).

NetworkX

eulerian_circuit

	
eulerian_circuit(G, source=None)

	Return the edges of an Eulerian circuit in G.

An Eulerian circuit is a path that crosses every edge in G exactly once
and finishes at the starting node.

	Parameters

	
	G (NetworkX Graph or DiGraph) – A directed or undirected graph

	source (node, optional) – Starting node for circuit.

	Returns

	edges – A generator that produces edges in the Eulerian circuit.

	Return type

	generator

	Raises

	NetworkXError – If the graph is not Eulerian.

See also

is_eulerian()

Notes

Linear time algorithm, adapted from 1.
General information about Euler tours 2.

References

	1

	J. Edmonds, E. L. Johnson.
Matching, Euler tours and the Chinese postman.
Mathematical programming, Volume 5, Issue 1 (1973), 111-114.

	2

	http://en.wikipedia.org/wiki/Eulerian_path

Examples

>>> G=nx.complete_graph(3)
>>> list(nx.eulerian_circuit(G))
[(0, 2), (2, 1), (1, 0)]
>>> list(nx.eulerian_circuit(G,source=1))
[(1, 2), (2, 0), (0, 1)]
>>> [u for u,v in nx.eulerian_circuit(G)] # nodes in circuit
[0, 2, 1]

NetworkX

Flows

Maximum Flow

	maximum_flow(G, s, t[, capacity, flow_func])

	Find a maximum single-commodity flow.

	maximum_flow_value(G, s, t[, capacity, …])

	Find the value of maximum single-commodity flow.

	minimum_cut(G, s, t[, capacity, flow_func])

	Compute the value and the node partition of a minimum (s, t)-cut.

	minimum_cut_value(G, s, t[, capacity, flow_func])

	Compute the value of a minimum (s, t)-cut.

Edmonds-Karp

	edmonds_karp(G, s, t[, capacity, residual, …])

	Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

Shortest Augmenting Path

	shortest_augmenting_path(G, s, t[, …])

	Find a maximum single-commodity flow using the shortest augmenting path algorithm.

Preflow-Push

	preflow_push(G, s, t[, capacity, residual, …])

	Find a maximum single-commodity flow using the highest-label preflow-push algorithm.

Utils

	build_residual_network(G, capacity)

	Build a residual network and initialize a zero flow.

Network Simplex

	network_simplex(G[, demand, capacity, weight])

	Find a minimum cost flow satisfying all demands in digraph G.

	min_cost_flow_cost(G[, demand, capacity, weight])

	Find the cost of a minimum cost flow satisfying all demands in digraph G.

	min_cost_flow(G[, demand, capacity, weight])

	Return a minimum cost flow satisfying all demands in digraph G.

	cost_of_flow(G, flowDict[, weight])

	Compute the cost of the flow given by flowDict on graph G.

	max_flow_min_cost(G, s, t[, capacity, weight])

	Return a maximum (s, t)-flow of minimum cost.

Capacity Scaling Minimum Cost Flow

	capacity_scaling(G[, demand, capacity, …])

	Find a minimum cost flow satisfying all demands in digraph G.

NetworkX

maximum_flow

	
maximum_flow(G, s, t, capacity='capacity', flow_func=None, **kwargs)

	Find a maximum single-commodity flow.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three
parameters: a Graph or Digraph, a source node, and a target node.
And return a residual network that follows NetworkX conventions
(see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for
alternative algorithms. The choice of the default function may change
from version to version and should not be relied on. Default value:
None.

	kwargs (Any other keyword parameter is passed to the function that) – computes the maximum flow.

	Returns

	
	flow_value (integer, float) – Value of the maximum flow, i.e., net outflow from the source.

	flow_dict (dict) – A dictionary containing the value of the flow that went through
each edge.

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow_value(), minimum_cut(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual
network that follows NetworkX conventions:

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When
True, it can optionally terminate the algorithm as soon as the maximum flow
value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)

maximum_flow returns both the value of the maximum flow and a
dictionary with all flows.

>>> flow_value, flow_dict = nx.maximum_flow(G, 'x', 'y')
>>> flow_value
3.0
>>> print(flow_dict['x']['b'])
1.0

You can also use alternative algorithms for computing the
maximum flow by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow(G, 'x', 'y',
... flow_func=shortest_augmenting_path)[0]
True

NetworkX

maximum_flow_value

	
maximum_flow_value(G, s, t, capacity='capacity', flow_func=None, **kwargs)

	Find the value of maximum single-commodity flow.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three
parameters: a Graph or Digraph, a source node, and a target node.
And return a residual network that follows NetworkX conventions
(see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for
alternative algorithms. The choice of the default function may change
from version to version and should not be relied on. Default value:
None.

	kwargs (Any other keyword parameter is passed to the function that) – computes the maximum flow.

	Returns

	flow_value – Value of the maximum flow, i.e., net outflow from the source.

	Return type

	integer, float [https://docs.python.org/2/library/functions.html#float]

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow(), minimum_cut(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual
network that follows NetworkX conventions:

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When
True, it can optionally terminate the algorithm as soon as the maximum flow
value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)

maximum_flow_value computes only the value of the
maximum flow:

>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0

You can also use alternative algorithms for computing the
maximum flow by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> flow_value == nx.maximum_flow_value(G, 'x', 'y',
... flow_func=shortest_augmenting_path)
True

NetworkX

minimum_cut

	
minimum_cut(G, s, t, capacity='capacity', flow_func=None, **kwargs)

	Compute the value and the node partition of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum
capacity cut is equal to the flow value of a maximum flow.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three
parameters: a Graph or Digraph, a source node, and a target node.
And return a residual network that follows NetworkX conventions
(see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for
alternative algorithms. The choice of the default function may change
from version to version and should not be relied on. Default value:
None.

	kwargs (Any other keyword parameter is passed to the function that) – computes the maximum flow.

	Returns

	
	cut_value (integer, float) – Value of the minimum cut.

	partition (pair of node sets) – A partitioning of the nodes that defines a minimum cut.

	Raises

	NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have
infinite capacity and the function raises a NetworkXError.

See also

maximum_flow(), maximum_flow_value(), minimum_cut_value(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual
network that follows NetworkX conventions:

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When
True, it can optionally terminate the algorithm as soon as the maximum flow
value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)

minimum_cut computes both the value of the
minimum cut and the node partition:

>>> cut_value, partition = nx.minimum_cut(G, 'x', 'y')
>>> reachable, non_reachable = partition

‘partition’ here is a tuple with the two sets of nodes that define
the minimum cut. You can compute the cut set of edges that induce
the minimum cut as follows:

>>> cutset = set()
>>> for u, nbrs in ((n, G[n]) for n in reachable):
... cutset.update((u, v) for v in nbrs if v in non_reachable)
>>> print(sorted(cutset))
[('c', 'y'), ('x', 'b')]
>>> cut_value == sum(G.edge[u][v]['capacity'] for (u, v) in cutset)
True

You can also use alternative algorithms for computing the
minimum cut by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut(G, 'x', 'y',
... flow_func=shortest_augmenting_path)[0]
True

NetworkX

minimum_cut_value

	
minimum_cut_value(G, s, t, capacity='capacity', flow_func=None, **kwargs)

	Compute the value of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum
capacity cut is equal to the flow value of a maximum flow.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	flow_func (function) – A function for computing the maximum flow among a pair of nodes
in a capacitated graph. The function has to accept at least three
parameters: a Graph or Digraph, a source node, and a target node.
And return a residual network that follows NetworkX conventions
(see Notes). If flow_func is None, the default maximum
flow function (preflow_push()) is used. See below for
alternative algorithms. The choice of the default function may change
from version to version and should not be relied on. Default value:
None.

	kwargs (Any other keyword parameter is passed to the function that) – computes the maximum flow.

	Returns

	cut_value – Value of the minimum cut.

	Return type

	integer, float [https://docs.python.org/2/library/functions.html#float]

	Raises

	NetworkXUnbounded – If the graph has a path of infinite capacity, all cuts have
infinite capacity and the function raises a NetworkXError.

See also

maximum_flow(), maximum_flow_value(), minimum_cut(), edmonds_karp(), preflow_push(), shortest_augmenting_path()

Notes

The function used in the flow_func paramter has to return a residual
network that follows NetworkX conventions:

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Specific algorithms may store extra data in R.

The function should supports an optional boolean parameter value_only. When
True, it can optionally terminate the algorithm as soon as the maximum flow
value and the minimum cut can be determined.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)

minimum_cut_value computes only the value of the
minimum cut:

>>> cut_value = nx.minimum_cut_value(G, 'x', 'y')
>>> cut_value
3.0

You can also use alternative algorithms for computing the
minimum cut by using the flow_func parameter.

>>> from networkx.algorithms.flow import shortest_augmenting_path
>>> cut_value == nx.minimum_cut_value(G, 'x', 'y',
... flow_func=shortest_augmenting_path)
True

NetworkX

edmonds_karp

	
edmonds_karp(G, s, t, capacity='capacity', residual=None, value_only=False, cutoff=None)

	Find a maximum single-commodity flow using the Edmonds-Karp algorithm.

This function returns the residual network resulting after computing
the maximum flow. See below for details about the conventions
NetworkX uses for defining residual networks.

This algorithm has a running time of \(O(n m^2)\) for \(n\) nodes and \(m\)
edges.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	residual (NetworkX graph) – Residual network on which the algorithm is to be executed. If None, a
new residual network is created. Default value: None.

	value_only (bool [https://docs.python.org/2/library/functions.html#bool]) – If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.

	cutoff (integer, float [https://docs.python.org/2/library/functions.html#float]) – If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately
determine a minimum cut. Default value: None.

	Returns

	R – Residual network after computing the maximum flow.

	Return type

	NetworkX DiGraph

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow(), minimum_cut(), preflow_push(), shortest_augmenting_path()

Notes

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. If cutoff is not
specified, reachability to t using only edges (u, v) such
that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import edmonds_karp

The functions that implement flow algorithms and output a residual
network, such as this one, are not imported to the base NetworkX
namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = edmonds_karp(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
>>> flow_value == R.graph['flow_value']
True

NetworkX

shortest_augmenting_path

	
shortest_augmenting_path(G, s, t, capacity='capacity', residual=None, value_only=False, two_phase=False, cutoff=None)

	Find a maximum single-commodity flow using the shortest augmenting path
algorithm.

This function returns the residual network resulting after computing
the maximum flow. See below for details about the conventions
NetworkX uses for defining residual networks.

This algorithm has a running time of \(O(n^2 m)\) for \(n\) nodes and \(m\)
edges.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	residual (NetworkX graph) – Residual network on which the algorithm is to be executed. If None, a
new residual network is created. Default value: None.

	value_only (bool [https://docs.python.org/2/library/functions.html#bool]) – If True compute only the value of the maximum flow. This parameter
will be ignored by this algorithm because it is not applicable.

	two_phase (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, a two-phase variant is used. The two-phase variant improves
the running time on unit-capacity networks from \(O(nm)\) to
\(O(\min(n^{2/3}, m^{1/2}) m)\). Default value: False.

	cutoff (integer, float [https://docs.python.org/2/library/functions.html#float]) – If specified, the algorithm will terminate when the flow value reaches
or exceeds the cutoff. In this case, it may be unable to immediately
determine a minimum cut. Default value: None.

	Returns

	R – Residual network after computing the maximum flow.

	Return type

	NetworkX DiGraph

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow(), minimum_cut(), edmonds_karp(), preflow_push()

Notes

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. If cutoff is not
specified, reachability to t using only edges (u, v) such
that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import shortest_augmenting_path

The functions that implement flow algorithms and output a residual
network, such as this one, are not imported to the base NetworkX
namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = shortest_augmenting_path(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value
3.0
>>> flow_value == R.graph['flow_value']
True

NetworkX

preflow_push

	
preflow_push(G, s, t, capacity='capacity', residual=None, global_relabel_freq=1, value_only=False)

	Find a maximum single-commodity flow using the highest-label
preflow-push algorithm.

This function returns the residual network resulting after computing
the maximum flow. See below for details about the conventions
NetworkX uses for defining residual networks.

This algorithm has a running time of \(O(n^2 \sqrt{m})\) for \(n\) nodes and
\(m\) edges.

	Parameters

	
	G (NetworkX graph) – Edges of the graph are expected to have an attribute called
‘capacity’. If this attribute is not present, the edge is
considered to have infinite capacity.

	s (node) – Source node for the flow.

	t (node) – Sink node for the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	residual (NetworkX graph) – Residual network on which the algorithm is to be executed. If None, a
new residual network is created. Default value: None.

	global_relabel_freq (integer, float [https://docs.python.org/2/library/functions.html#float]) – Relative frequency of applying the global relabeling heuristic to speed
up the algorithm. If it is None, the heuristic is disabled. Default
value: 1.

	value_only (bool [https://docs.python.org/2/library/functions.html#bool]) – If False, compute a maximum flow; otherwise, compute a maximum preflow
which is enough for computing the maximum flow value. Default value:
False.

	Returns

	R – Residual network after computing the maximum flow.

	Return type

	NetworkX DiGraph

	Raises

	
	NetworkXError – The algorithm does not support MultiGraph and MultiDiGraph. If
the input graph is an instance of one of these two classes, a
NetworkXError is raised.

	NetworkXUnbounded – If the graph has a path of infinite capacity, the value of a
feasible flow on the graph is unbounded above and the function
raises a NetworkXUnbounded.

See also

maximum_flow(), minimum_cut(), edmonds_karp(), shortest_augmenting_path()

Notes

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G. For each node u in R,
R.node[u]['excess'] represents the difference between flow into
u and flow out of u.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. Reachability to t using
only edges (u, v) such that
R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

Examples

>>> import networkx as nx
>>> from networkx.algorithms.flow import preflow_push

The functions that implement flow algorithms and output a residual
network, such as this one, are not imported to the base NetworkX
namespace, so you have to explicitly import them from the flow package.

>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> R = preflow_push(G, 'x', 'y')
>>> flow_value = nx.maximum_flow_value(G, 'x', 'y')
>>> flow_value == R.graph['flow_value']
True
>>> # preflow_push also stores the maximum flow value
>>> # in the excess attribute of the sink node t
>>> flow_value == R.node['y']['excess']
True
>>> # For some problems, you might only want to compute a
>>> # maximum preflow.
>>> R = preflow_push(G, 'x', 'y', value_only=True)
>>> flow_value == R.graph['flow_value']
True
>>> flow_value == R.node['y']['excess']
True

NetworkX

build_residual_network

	
build_residual_network(G, capacity)

	Build a residual network and initialize a zero flow.

The residual network R from an input graph G has the
same nodes as G. R is a DiGraph that contains a pair
of edges (u, v) and (v, u) iff (u, v) is not a
self-loop, and at least one of (u, v) and (v, u) exists
in G.

For each edge (u, v) in R, R[u][v]['capacity']
is equal to the capacity of (u, v) in G if it exists
in G or zero otherwise. If the capacity is infinite,
R[u][v]['capacity'] will have a high arbitrary finite value
that does not affect the solution of the problem. This value is stored in
R.graph['inf']. For each edge (u, v) in R,
R[u][v]['flow'] represents the flow function of (u, v) and
satisfies R[u][v]['flow'] == -R[v][u]['flow'].

The flow value, defined as the total flow into t, the sink, is
stored in R.graph['flow_value']. If cutoff is not
specified, reachability to t using only edges (u, v) such
that R[u][v]['flow'] < R[u][v]['capacity'] induces a minimum
s-t cut.

NetworkX

network_simplex

	
network_simplex(G, demand='demand', capacity='capacity', weight='weight')

	Find a minimum cost flow satisfying all demands in digraph G.

This is a primal network simplex algorithm that uses the leaving
arc rule to prevent cycling.

G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	demand (string [https://docs.python.org/2/library/string.html#module-string]) – Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: ‘demand’.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	Returns

	
	flowCost (integer, float) – Cost of a minimum cost flow satisfying all demands.

	flowDict (dictionary) – Dictionary of dictionaries keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed,
not connected or is a multigraph.

	NetworkXUnfeasible – This exception is raised in the following situations:

	The sum of the demands is not zero. Then, there is no
flow satisfying all demands.

	There is no flow satisfying all demand.

	NetworkXUnbounded – This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.

Notes

This algorithm is not guaranteed to work if edge weights
are floating point numbers (overflows and roundoff errors can
cause problems).

See also

cost_of_flow(), max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand=-5)
>>> G.add_node('d', demand=5)
>>> G.add_edge('a', 'b', weight=3, capacity=4)
>>> G.add_edge('a', 'c', weight=6, capacity=10)
>>> G.add_edge('b', 'd', weight=1, capacity=9)
>>> G.add_edge('c', 'd', weight=2, capacity=5)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}

The mincost flow algorithm can also be used to solve shortest path
problems. To find the shortest path between two nodes u and v,
give all edges an infinite capacity, give node u a demand of -1 and
node v a demand a 1. Then run the network simplex. The value of a
min cost flow will be the distance between u and v and edges
carrying positive flow will indicate the path.

>>> G=nx.DiGraph()
>>> G.add_weighted_edges_from([('s', 'u' ,10), ('s' ,'x' ,5),
... ('u', 'v' ,1), ('u' ,'x' ,2),
... ('v', 'y' ,1), ('x' ,'u' ,3),
... ('x', 'v' ,5), ('x' ,'y' ,2),
... ('y', 's' ,7), ('y' ,'v' ,6)])
>>> G.add_node('s', demand = -1)
>>> G.add_node('v', demand = 1)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost == nx.shortest_path_length(G, 's', 'v', weight='weight')
True
>>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0])
[('s', 'x'), ('u', 'v'), ('x', 'u')]
>>> nx.shortest_path(G, 's', 'v', weight = 'weight')
['s', 'x', 'u', 'v']

It is possible to change the name of the attributes used for the
algorithm.

>>> G = nx.DiGraph()
>>> G.add_node('p', spam=-4)
>>> G.add_node('q', spam=2)
>>> G.add_node('a', spam=-2)
>>> G.add_node('d', spam=-1)
>>> G.add_node('t', spam=2)
>>> G.add_node('w', spam=3)
>>> G.add_edge('p', 'q', cost=7, vacancies=5)
>>> G.add_edge('p', 'a', cost=1, vacancies=4)
>>> G.add_edge('q', 'd', cost=2, vacancies=3)
>>> G.add_edge('t', 'q', cost=1, vacancies=2)
>>> G.add_edge('a', 't', cost=2, vacancies=4)
>>> G.add_edge('d', 'w', cost=3, vacancies=4)
>>> G.add_edge('t', 'w', cost=4, vacancies=1)
>>> flowCost, flowDict = nx.network_simplex(G, demand='spam',
... capacity='vacancies',
... weight='cost')
>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}

References

	1

	Z. Kiraly, P. Kovacs.
Efficient implementation of minimum-cost flow algorithms.
Acta Universitatis Sapientiae, Informatica 4(1):67–118. 2012.

	2

	R. Barr, F. Glover, D. Klingman.
Enhancement of spanning tree labeling procedures for network
optimization.
INFOR 17(1):16–34. 1979.

NetworkX

min_cost_flow_cost

	
min_cost_flow_cost(G, demand='demand', capacity='capacity', weight='weight')

	Find the cost of a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	demand (string [https://docs.python.org/2/library/string.html#module-string]) – Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: ‘demand’.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	Returns

	flowCost – Cost of a minimum cost flow satisfying all demands.

	Return type

	integer, float [https://docs.python.org/2/library/functions.html#float]

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed or
not connected.

	NetworkXUnfeasible – This exception is raised in the following situations:

	The sum of the demands is not zero. Then, there is no
flow satisfying all demands.

	There is no flow satisfying all demand.

	NetworkXUnbounded – This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.

See also

cost_of_flow(), max_flow_min_cost(), min_cost_flow(), network_simplex()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost = nx.min_cost_flow_cost(G)
>>> flowCost
24

NetworkX

min_cost_flow

	
min_cost_flow(G, demand='demand', capacity='capacity', weight='weight')

	Return a minimum cost flow satisfying all demands in digraph G.

G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	demand (string [https://docs.python.org/2/library/string.html#module-string]) – Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: ‘demand’.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	Returns

	flowDict – Dictionary of dictionaries keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).

	Return type

	dictionary

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed or
not connected.

	NetworkXUnfeasible – This exception is raised in the following situations:

	The sum of the demands is not zero. Then, there is no
flow satisfying all demands.

	There is no flow satisfying all demand.

	NetworkXUnbounded – This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.

See also

cost_of_flow(), max_flow_min_cost(), min_cost_flow_cost(), network_simplex()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowDict = nx.min_cost_flow(G)

NetworkX

cost_of_flow

	
cost_of_flow(G, flowDict, weight='weight')

	Compute the cost of the flow given by flowDict on graph G.

Note that this function does not check for the validity of the
flow flowDict. This function will fail if the graph G and the
flow don’t have the same edge set.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	flowDict (dictionary) – Dictionary of dictionaries keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).

	Returns

	cost – The total cost of the flow. This is given by the sum over all
edges of the product of the edge’s flow and the edge’s weight.

	Return type

	Integer, float [https://docs.python.org/2/library/functions.html#float]

See also

max_flow_min_cost(), min_cost_flow(), min_cost_flow_cost(), network_simplex()

NetworkX

max_flow_min_cost

	
max_flow_min_cost(G, s, t, capacity='capacity', weight='weight')

	Return a maximum (s, t)-flow of minimum cost.

G is a digraph with edge costs and capacities. There is a source
node s and a sink node t. This function finds a maximum flow from
s to t whose total cost is minimized.

	Parameters

	
	G (NetworkX graph) – DiGraph on which a minimum cost flow satisfying all demands is
to be found.

	s (node label) – Source of the flow.

	t (node label) – Destination of the flow.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	Returns

	flowDict – Dictionary of dictionaries keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).

	Return type

	dictionary

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed or
not connected.

	NetworkXUnbounded – This exception is raised if there is an infinite capacity path
from s to t in G. In this case there is no maximum flow. This
exception is also raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
is unbounded below.

See also

cost_of_flow(), min_cost_flow(), min_cost_flow_cost(), network_simplex()

Examples

>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2, {'capacity': 12, 'weight': 4}),
... (1, 3, {'capacity': 20, 'weight': 6}),
... (2, 3, {'capacity': 6, 'weight': -3}),
... (2, 6, {'capacity': 14, 'weight': 1}),
... (3, 4, {'weight': 9}),
... (3, 5, {'capacity': 10, 'weight': 5}),
... (4, 2, {'capacity': 19, 'weight': 13}),
... (4, 5, {'capacity': 4, 'weight': 0}),
... (5, 7, {'capacity': 28, 'weight': 2}),
... (6, 5, {'capacity': 11, 'weight': 1}),
... (6, 7, {'weight': 8}),
... (7, 4, {'capacity': 6, 'weight': 6})])
>>> mincostFlow = nx.max_flow_min_cost(G, 1, 7)
>>> mincost = nx.cost_of_flow(G, mincostFlow)
>>> mincost
373
>>> from networkx.algorithms.flow import maximum_flow
>>> maxFlow = maximum_flow(G, 1, 7)[1]
>>> nx.cost_of_flow(G, maxFlow) >= mincost
True
>>> mincostFlowValue = (sum((mincostFlow[u][7] for u in G.predecessors(7)))
... - sum((mincostFlow[7][v] for v in G.successors(7))))
>>> mincostFlowValue == nx.maximum_flow_value(G, 1, 7)
True

NetworkX

capacity_scaling

	
capacity_scaling(G, demand='demand', capacity='capacity', weight='weight', heap=<class 'networkx.utils.heaps.BinaryHeap'>)

	Find a minimum cost flow satisfying all demands in digraph G.

This is a capacity scaling successive shortest augmenting path algorithm.

G is a digraph with edge costs and capacities and in which nodes
have demand, i.e., they want to send or receive some amount of
flow. A negative demand means that the node wants to send flow, a
positive demand means that the node want to receive flow. A flow on
the digraph G satisfies all demand if the net flow into each node
is equal to the demand of that node.

	Parameters

	
	G (NetworkX graph) – DiGraph or MultiDiGraph on which a minimum cost flow satisfying all
demands is to be found.

	demand (string [https://docs.python.org/2/library/string.html#module-string]) – Nodes of the graph G are expected to have an attribute demand
that indicates how much flow a node wants to send (negative
demand) or receive (positive demand). Note that the sum of the
demands should be 0 otherwise the problem in not feasible. If
this attribute is not present, a node is considered to have 0
demand. Default value: ‘demand’.

	capacity (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: ‘capacity’.

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edges of the graph G are expected to have an attribute weight
that indicates the cost incurred by sending one unit of flow on
that edge. If not present, the weight is considered to be 0.
Default value: ‘weight’.

	heap (class) – Type of heap to be used in the algorithm. It should be a subclass of
MinHeap or implement a compatible interface.

If a stock heap implementation is to be used, BinaryHeap is
recommeded over PairingHeap for Python implementations without
optimized attribute accesses (e.g., CPython) despite a slower
asymptotic running time. For Python implementations with optimized
attribute accesses (e.g., PyPy), PairingHeap provides better
performance. Default value: BinaryHeap.

	Returns

	
	flowCost (integer) – Cost of a minimum cost flow satisfying all demands.

	flowDict (dictionary) – If G is a DiGraph, a dict-of-dicts keyed by nodes such that
flowDict[u][v] is the flow edge (u, v).
If G is a MultiDiGraph, a dict-of-dictsof-dicts keyed by nodes
so that flowDict[u][v][key] is the flow edge (u, v, key).

	Raises

	
	NetworkXError – This exception is raised if the input graph is not directed,
not connected.

	NetworkXUnfeasible – This exception is raised in the following situations:

	The sum of the demands is not zero. Then, there is no
flow satisfying all demands.

	There is no flow satisfying all demand.

	NetworkXUnbounded – This exception is raised if the digraph G has a cycle of
negative cost and infinite capacity. Then, the cost of a flow
satisfying all demands is unbounded below.

Notes

This algorithm does not work if edge weights are floating-point numbers.

See also

network_simplex()

Examples

A simple example of a min cost flow problem.

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost, flowDict = nx.capacity_scaling(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}

It is possible to change the name of the attributes used for the
algorithm.

>>> G = nx.DiGraph()
>>> G.add_node('p', spam = -4)
>>> G.add_node('q', spam = 2)
>>> G.add_node('a', spam = -2)
>>> G.add_node('d', spam = -1)
>>> G.add_node('t', spam = 2)
>>> G.add_node('w', spam = 3)
>>> G.add_edge('p', 'q', cost = 7, vacancies = 5)
>>> G.add_edge('p', 'a', cost = 1, vacancies = 4)
>>> G.add_edge('q', 'd', cost = 2, vacancies = 3)
>>> G.add_edge('t', 'q', cost = 1, vacancies = 2)
>>> G.add_edge('a', 't', cost = 2, vacancies = 4)
>>> G.add_edge('d', 'w', cost = 3, vacancies = 4)
>>> G.add_edge('t', 'w', cost = 4, vacancies = 1)
>>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam',
... capacity = 'vacancies',
... weight = 'cost')
>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}

NetworkX

Graphical degree sequence

Test sequences for graphiness.

	is_graphical(sequence[, method])

	Returns True if sequence is a valid degree sequence.

	is_digraphical(in_sequence, out_sequence)

	Returns True if some directed graph can realize the in- and out-degree sequences.

	is_multigraphical(sequence)

	Returns True if some multigraph can realize the sequence.

	is_pseudographical(sequence)

	Returns True if some pseudograph can realize the sequence.

	is_valid_degree_sequence_havel_hakimi(…)

	Returns True if deg_sequence can be realized by a simple graph.

	is_valid_degree_sequence_erdos_gallai(…)

	Returns True if deg_sequence can be realized by a simple graph.

NetworkX

is_graphical

	
is_graphical(sequence, method='eg')

	Returns True if sequence is a valid degree sequence.

A degree sequence is valid if some graph can realize it.

	Parameters

	sequence (list or iterable container) – A sequence of integer node degrees

	method“eg” | “hh”

	The method used to validate the degree sequence.
“eg” corresponds to the Erdős-Gallai algorithm, and
“hh” to the Havel-Hakimi algorithm.

	Returns

	valid – True if the sequence is a valid degree sequence and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> G = nx.path_graph(4)
>>> sequence = G.degree().values()
>>> nx.is_valid_degree_sequence(sequence)
True

References

	Erdős-Gallai

	[EG1960], [choudum1986]

	Havel-Hakimi

	[havel1955], [hakimi1962], [CL1996]

NetworkX

is_digraphical

	
is_digraphical(in_sequence, out_sequence)

	Returns True if some directed graph can realize the in- and out-degree
sequences.

	Parameters

	
	in_sequence (list or iterable container) – A sequence of integer node in-degrees

	out_sequence (list or iterable container) – A sequence of integer node out-degrees

	Returns

	valid – True if in and out-sequences are digraphic False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

This algorithm is from Kleitman and Wang 1.
The worst case runtime is O(s * log n) where s and n are the sum and length
of the sequences respectively.

References

	1

	D.J. Kleitman and D.L. Wang
Algorithms for Constructing Graphs and Digraphs with Given Valences
and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973)

NetworkX

is_multigraphical

	
is_multigraphical(sequence)

	Returns True if some multigraph can realize the sequence.

	Parameters

	deg_sequence (list) – A list of integers

	Returns

	valid – True if deg_sequence is a multigraphic degree sequence and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

The worst-case run time is O(n) where n is the length of the sequence.

References

	1

	S. L. Hakimi. “On the realizability of a set of integers as
degrees of the vertices of a linear graph”, J. SIAM, 10, pp. 496-506
(1962).

NetworkX

is_pseudographical

	
is_pseudographical(sequence)

	Returns True if some pseudograph can realize the sequence.

Every nonnegative integer sequence with an even sum is pseudographical
(see 1).

	Parameters

	sequence (list or iterable container) – A sequence of integer node degrees

	Returns

	valid – True if the sequence is a pseudographic degree sequence and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

The worst-case run time is O(n) where n is the length of the sequence.

References

	1

	F. Boesch and F. Harary. “Line removal algorithms for graphs
and their degree lists”, IEEE Trans. Circuits and Systems, CAS-23(12),
pp. 778-782 (1976).

NetworkX

is_valid_degree_sequence_havel_hakimi

	
is_valid_degree_sequence_havel_hakimi(deg_sequence)

	Returns True if deg_sequence can be realized by a simple graph.

The validation proceeds using the Havel-Hakimi theorem.
Worst-case run time is: O(s) where s is the sum of the sequence.

	Parameters

	deg_sequence (list) – A list of integers where each element specifies the degree of a node
in a graph.

	Returns

	valid – True if deg_sequence is graphical and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

The ZZ condition says that for the sequence d if

\[|d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)}\]

then d is graphical. This was shown in Theorem 6 in 1.

References

	1

	I.E. Zverovich and V.E. Zverovich. “Contributions to the theory
of graphic sequences”, Discrete Mathematics, 105, pp. 292-303 (1992).

[havel1955], [hakimi1962], [CL1996]

NetworkX

is_valid_degree_sequence_erdos_gallai

	
is_valid_degree_sequence_erdos_gallai(deg_sequence)

	Returns True if deg_sequence can be realized by a simple graph.

The validation is done using the Erdős-Gallai theorem [EG1960].

	Parameters

	deg_sequence (list) – A list of integers

	Returns

	valid – True if deg_sequence is graphical and False if not.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

This implementation uses an equivalent form of the Erdős-Gallai criterion.
Worst-case run time is: O(n) where n is the length of the sequence.

Specifically, a sequence d is graphical if and only if the
sum of the sequence is even and for all strong indices k in the sequence,

\[\sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k)
 = k(n-1) - (k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j)\]

A strong index k is any index where \(d_k \geq k\) and the value \(n_j\) is the
number of occurrences of j in d. The maximal strong index is called the
Durfee index.

This particular rearrangement comes from the proof of Theorem 3 in 2.

The ZZ condition says that for the sequence d if

\[|d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)}\]

then d is graphical. This was shown in Theorem 6 in 2.

References

	1

	A. Tripathi and S. Vijay. “A note on a theorem of Erdős & Gallai”,
Discrete Mathematics, 265, pp. 417-420 (2003).

	2(1,2)

	I.E. Zverovich and V.E. Zverovich. “Contributions to the theory
of graphic sequences”, Discrete Mathematics, 105, pp. 292-303 (1992).

[EG1960], [choudum1986]

NetworkX

Hierarchy

Flow Hierarchy.

	flow_hierarchy(G[, weight])

	Returns the flow hierarchy of a directed network.

NetworkX

flow_hierarchy

	
flow_hierarchy(G, weight=None)

	Returns the flow hierarchy of a directed network.

Flow hierarchy is defined as the fraction of edges not participating
in cycles in a directed graph 1.

	Parameters

	
	G (DiGraph or MultiDiGraph) – A directed graph

	weight (key,optional (default=None)) – Attribute to use for node weights. If None the weight defaults to 1.

	Returns

	h – Flow heirarchy value

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

Notes

The algorithm described in 1 computes the flow hierarchy through
exponentiation of the adjacency matrix. This function implements an
alternative approach that finds strongly connected components.
An edge is in a cycle if and only if it is in a strongly connected
component, which can be found in \(O(m)\) time using Tarjan’s algorithm.

References

	1(1,2)

	Luo, J.; Magee, C.L. (2011),
Detecting evolving patterns of self-organizing networks by flow
hierarchy measurement, Complexity, Volume 16 Issue 6 53-61.
DOI: 10.1002/cplx.20368
http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf

NetworkX

Hybrid

Provides functions for finding and testing for locally \((k, l)\)-connected
graphs.

	kl_connected_subgraph(G, k, l[, low_memory, …])

	Returns the maximum locally \((k, l)\)-connected subgraph of G.

	is_kl_connected(G, k, l[, low_memory])

	Returns True if and only if G is locally \((k, l)\)-connected.

NetworkX

kl_connected_subgraph

	
kl_connected_subgraph(G, k, l, low_memory=False, same_as_graph=False)

	Returns the maximum locally \((k, l)\)-connected subgraph of G.

A graph is locally \((k, l)\)-connected if for each edge \((u, v)\) in the
graph there are at least \(l\) edge-disjoint paths of length at most \(k\)
joining \(u\) to \(v\).

	Parameters

	
	G (NetworkX graph) – The graph in which to find a maximum locally \((k, l)\)-connected
subgraph.

	k (integer) – The maximum length of paths to consider. A higher number means a looser
connectivity requirement.

	l (integer) – The number of edge-disjoint paths. A higher number means a stricter
connectivity requirement.

	low_memory (bool [https://docs.python.org/2/library/functions.html#bool]) – If this is True, this function uses an algorithm that uses slightly
more time but less memory.

	same_as_graph (bool [https://docs.python.org/2/library/functions.html#bool]) – If this is True then return a tuple of the form (H, is_same),
where H is the maximum locally \((k, l)\)-connected subgraph and
is_same is a Boolean representing whether G is locally \((k,
l)\)-connected (and hence, whether H is simply a copy of the input
graph G).

	Returns

	If same_as_graph is True, then this function returns a
two-tuple as described above. Otherwise, it returns only the maximum
locally \((k, l)\)-connected subgraph.

	Return type

	NetworkX graph or two-tuple

See also

is_kl_connected()

References

NetworkX

is_kl_connected

	
is_kl_connected(G, k, l, low_memory=False)

	Returns True if and only if G is locally \((k, l)\)-connected.

A graph is locally \((k, l)\)-connected if for each edge \((u, v)\) in the
graph there are at least \(l\) edge-disjoint paths of length at most \(k\)
joining \(u\) to \(v\).

	Parameters

	
	G (NetworkX graph) – The graph to test for local \((k, l)\)-connectedness.

	k (integer) – The maximum length of paths to consider. A higher number means a looser
connectivity requirement.

	l (integer) – The number of edge-disjoint paths. A higher number means a stricter
connectivity requirement.

	low_memory (bool [https://docs.python.org/2/library/functions.html#bool]) – If this is True, this function uses an algorithm that uses slightly
more time but less memory.

	Returns

	Whether the graph is locally \((k, l)\)-connected subgraph.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

See also

kl_connected_subgraph()

References

NetworkX

Isolates

Functions for identifying isolate (degree zero) nodes.

	is_isolate(G, n)

	Determine of node n is an isolate (degree zero).

	isolates(G)

	Return list of isolates in the graph.

NetworkX

is_isolate

	
is_isolate(G, n)

	Determine of node n is an isolate (degree zero).

	Parameters

	
	G (graph) – A networkx graph

	n (node) – A node in G

	Returns

	isolate – True if n has no neighbors, False otherwise.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> G=nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.is_isolate(G,2)
False
>>> nx.is_isolate(G,3)
True

NetworkX

isolates

	
isolates(G)

	Return list of isolates in the graph.

Isolates are nodes with no neighbors (degree zero).

	Parameters

	G (graph) – A networkx graph

	Returns

	isolates – List of isolate nodes.

	Return type

	list

Examples

>>> G = nx.Graph()
>>> G.add_edge(1,2)
>>> G.add_node(3)
>>> nx.isolates(G)
[3]

To remove all isolates in the graph use
>>> G.remove_nodes_from(nx.isolates(G))
>>> G.nodes()
[1, 2]

For digraphs isolates have zero in-degree and zero out_degre
>>> G = nx.DiGraph([(0,1),(1,2)])
>>> G.add_node(3)
>>> nx.isolates(G)
[3]

NetworkX

Isomorphism

	is_isomorphic(G1, G2[, node_match, edge_match])

	Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

	could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

	fast_could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

	faster_could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

Advanced Interface to VF2 Algorithm

	VF2 Algorithm
	VF2 Algorithm

	Graph Matcher

	DiGraph Matcher

	Match helpers

NetworkX

is_isomorphic

	
is_isomorphic(G1, G2, node_match=None, edge_match=None)

	Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

	Parameters

	
	G2 (G1,) – The two graphs G1 and G2 must be the same type.

	node_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True if node n1 in G1 and n2 in G2 should
be considered equal during the isomorphism test.
If node_match is not specified then node attributes are not considered.

The function will be called like

node_match(G1.node[n1], G2.node[n2]).

That is, the function will receive the node attribute dictionaries
for n1 and n2 as inputs.

	edge_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True if the edge attribute dictionary
for the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should
be considered equal during the isomorphism test. If edge_match is
not specified then edge attributes are not considered.

The function will be called like

edge_match(G1[u1][v1], G2[u2][v2]).

That is, the function will receive the edge attribute dictionaries
of the edges under consideration.

Notes

Uses the vf2 algorithm 1.

Examples

>>> import networkx.algorithms.isomorphism as iso

For digraphs G1 and G2, using ‘weight’ edge attribute (default: 1)

>>> G1 = nx.DiGraph()
>>> G2 = nx.DiGraph()
>>> G1.add_path([1,2,3,4],weight=1)
>>> G2.add_path([10,20,30,40],weight=2)
>>> em = iso.numerical_edge_match('weight', 1)
>>> nx.is_isomorphic(G1, G2) # no weights considered
True
>>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights
False

For multidigraphs G1 and G2, using ‘fill’ node attribute (default: ‘’)

>>> G1 = nx.MultiDiGraph()
>>> G2 = nx.MultiDiGraph()
>>> G1.add_nodes_from([1,2,3],fill='red')
>>> G2.add_nodes_from([10,20,30,40],fill='red')
>>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5)
>>> G2.add_path([10,20,30,40],weight=3)
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, node_match=nm)
True

For multidigraphs G1 and G2, using ‘weight’ edge attribute (default: 7)

>>> G1.add_edge(1,2, weight=7)
>>> G2.add_edge(10,20)
>>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6)
>>> nx.is_isomorphic(G1, G2, edge_match=em)
True

For multigraphs G1 and G2, using ‘weight’ and ‘linewidth’ edge attributes
with default values 7 and 2.5. Also using ‘fill’ node attribute with
default value ‘red’.

>>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5])
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm)
True

See also

numerical_node_match(), numerical_edge_match(), numerical_multiedge_match(), categorical_node_match(), categorical_edge_match(), categorical_multiedge_match()

References

	1

	L. P. Cordella, P. Foggia, C. Sansone, M. Vento,
“An Improved Algorithm for Matching Large Graphs”,
3rd IAPR-TC15 Workshop on Graph-based Representations in
Pattern Recognition, Cuen, pp. 149-159, 2001.
http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf

NetworkX

could_be_isomorphic

	
could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.
True does NOT guarantee isomorphism.

	Parameters

	G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree, triangle, and number of cliques sequences.

NetworkX

fast_could_be_isomorphic

	
fast_could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

	Parameters

	G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree and triangle sequences.

NetworkX

faster_could_be_isomorphic

	
faster_could_be_isomorphic(G1, G2)

	Returns False if graphs are definitely not isomorphic.

True does NOT guarantee isomorphism.

	Parameters

	G2 (G1,) – The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree sequences.

NetworkX

VF2 Algorithm

VF2 Algorithm

An implementation of VF2 algorithm for graph ismorphism testing.

The simplest interface to use this module is to call networkx.is_isomorphic().

Introduction

The GraphMatcher and DiGraphMatcher are responsible for matching
graphs or directed graphs in a predetermined manner. This
usually means a check for an isomorphism, though other checks
are also possible. For example, a subgraph of one graph
can be checked for isomorphism to a second graph.

Matching is done via syntactic feasibility. It is also possible
to check for semantic feasibility. Feasibility, then, is defined
as the logical AND of the two functions.

To include a semantic check, the (Di)GraphMatcher class should be
subclassed, and the semantic_feasibility() function should be
redefined. By default, the semantic feasibility function always
returns True. The effect of this is that semantics are not
considered in the matching of G1 and G2.

Examples

Suppose G1 and G2 are isomorphic graphs. Verification is as follows:

>>> from networkx.algorithms import isomorphism
>>> G1 = nx.path_graph(4)
>>> G2 = nx.path_graph(4)
>>> GM = isomorphism.GraphMatcher(G1,G2)
>>> GM.is_isomorphic()
True

GM.mapping stores the isomorphism mapping from G1 to G2.

>>> GM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}

Suppose G1 and G2 are isomorphic directed graphs
graphs. Verification is as follows:

>>> G1 = nx.path_graph(4, create_using=nx.DiGraph())
>>> G2 = nx.path_graph(4, create_using=nx.DiGraph())
>>> DiGM = isomorphism.DiGraphMatcher(G1,G2)
>>> DiGM.is_isomorphic()
True

DiGM.mapping stores the isomorphism mapping from G1 to G2.

>>> DiGM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}

Subgraph Isomorphism

Graph theory literature can be ambiguious about the meaning of the
above statement, and we seek to clarify it now.

In the VF2 literature, a mapping M is said to be a graph-subgraph
isomorphism iff M is an isomorphism between G2 and a subgraph of G1.
Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say
that a subgraph of G1 is isomorphic to G2.

Other literature uses the phrase ‘subgraph isomorphic’ as in ‘G1 does
not have a subgraph isomorphic to G2’. Another use is as an in adverb
for isomorphic. Thus, to say that G1 and G2 are subgraph isomorphic
is to say that a subgraph of G1 is isomorphic to G2.

Finally, the term ‘subgraph’ can have multiple meanings. In this
context, ‘subgraph’ always means a ‘node-induced subgraph’. Edge-induced
subgraph isomorphisms are not directly supported, but one should be
able to perform the check by making use of nx.line_graph(). For
subgraphs which are not induced, the term ‘monomorphism’ is preferred
over ‘isomorphism’. Currently, it is not possible to check for
monomorphisms.

Let G=(N,E) be a graph with a set of nodes N and set of edges E.

	If G’=(N’,E’) is a subgraph, then:

	N’ is a subset of N
E’ is a subset of E

	If G’=(N’,E’) is a node-induced subgraph, then:

	N’ is a subset of N
E’ is the subset of edges in E relating nodes in N’

	If G’=(N’,E’) is an edge-induced subgrpah, then:

	N’ is the subset of nodes in N related by edges in E’
E’ is a subset of E

References

	[1] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento,

	“A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs”,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 10, pp. 1367-1372, Oct., 2004.
http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf

	[2] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “An Improved

	Algorithm for Matching Large Graphs”, 3rd IAPR-TC15 Workshop
on Graph-based Representations in Pattern Recognition, Cuen,
pp. 149-159, 2001.
http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf

See also

syntactic_feasibliity, semantic_feasibility

Notes

Modified to handle undirected graphs.
Modified to handle multiple edges.

In general, this problem is NP-Complete.

Graph Matcher

	GraphMatcher.__init__(G1, G2[, node_match, …])

	Initialize graph matcher.

	GraphMatcher.initialize()

	Reinitializes the state of the algorithm.

	GraphMatcher.is_isomorphic()

	Returns True if G1 and G2 are isomorphic graphs.

	GraphMatcher.subgraph_is_isomorphic()

	Returns True if a subgraph of G1 is isomorphic to G2.

	GraphMatcher.isomorphisms_iter()

	Generator over isomorphisms between G1 and G2.

	GraphMatcher.subgraph_isomorphisms_iter()

	Generator over isomorphisms between a subgraph of G1 and G2.

	GraphMatcher.candidate_pairs_iter()

	Iterator over candidate pairs of nodes in G1 and G2.

	GraphMatcher.match()

	Extends the isomorphism mapping.

	GraphMatcher.semantic_feasibility(G1_node, …)

	Returns True if mapping G1_node to G2_node is semantically feasible.

	GraphMatcher.syntactic_feasibility(G1_node, …)

	Returns True if adding (G1_node, G2_node) is syntactically feasible.

DiGraph Matcher

	DiGraphMatcher.__init__(G1, G2[, …])

	Initialize graph matcher.

	DiGraphMatcher.initialize()

	Reinitializes the state of the algorithm.

	DiGraphMatcher.is_isomorphic()

	Returns True if G1 and G2 are isomorphic graphs.

	DiGraphMatcher.subgraph_is_isomorphic()

	Returns True if a subgraph of G1 is isomorphic to G2.

	DiGraphMatcher.isomorphisms_iter()

	Generator over isomorphisms between G1 and G2.

	DiGraphMatcher.subgraph_isomorphisms_iter()

	Generator over isomorphisms between a subgraph of G1 and G2.

	DiGraphMatcher.candidate_pairs_iter()

	Iterator over candidate pairs of nodes in G1 and G2.

	DiGraphMatcher.match()

	Extends the isomorphism mapping.

	DiGraphMatcher.semantic_feasibility(G1_node, …)

	Returns True if mapping G1_node to G2_node is semantically feasible.

	DiGraphMatcher.syntactic_feasibility(…)

	Returns True if adding (G1_node, G2_node) is syntactically feasible.

Match helpers

	categorical_node_match(attr, default)

	Returns a comparison function for a categorical node attribute.

	categorical_edge_match(attr, default)

	Returns a comparison function for a categorical edge attribute.

	categorical_multiedge_match(attr, default)

	Returns a comparison function for a categorical edge attribute.

	numerical_node_match(attr, default[, rtol, atol])

	Returns a comparison function for a numerical node attribute.

	numerical_edge_match(attr, default[, rtol, atol])

	Returns a comparison function for a numerical edge attribute.

	numerical_multiedge_match(attr, default[, …])

	Returns a comparison function for a numerical edge attribute.

	generic_node_match(attr, default, op)

	Returns a comparison function for a generic attribute.

	generic_edge_match(attr, default, op)

	Returns a comparison function for a generic attribute.

	generic_multiedge_match(attr, default, op)

	Returns a comparison function for a generic attribute.

NetworkX

__init__

	
GraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)

	Initialize graph matcher.

	Parameters

	
	G2 (G1,) – The graphs to be tested.

	node_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True iff node n1 in G1 and n2 in G2
should be considered equal during the isomorphism test. The
function will be called like:

node_match(G1.node[n1], G2.node[n2])

That is, the function will receive the node attribute dictionaries
of the nodes under consideration. If None, then no attributes are
considered when testing for an isomorphism.

	edge_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True iff the edge attribute dictionary for
the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be
considered equal during the isomorphism test. The function will be
called like:

edge_match(G1[u1][v1], G2[u2][v2])

That is, the function will receive the edge attribute dictionaries
of the edges under consideration. If None, then no attributes are
considered when testing for an isomorphism.

NetworkX

initialize

	
GraphMatcher.initialize()

	Reinitializes the state of the algorithm.

This method should be redefined if using something other than GMState.
If only subclassing GraphMatcher, a redefinition is not necessary.

NetworkX

is_isomorphic

	
GraphMatcher.is_isomorphic()

	Returns True if G1 and G2 are isomorphic graphs.

NetworkX

subgraph_is_isomorphic

	
GraphMatcher.subgraph_is_isomorphic()

	Returns True if a subgraph of G1 is isomorphic to G2.

NetworkX

isomorphisms_iter

	
GraphMatcher.isomorphisms_iter()

	Generator over isomorphisms between G1 and G2.

NetworkX

subgraph_isomorphisms_iter

	
GraphMatcher.subgraph_isomorphisms_iter()

	Generator over isomorphisms between a subgraph of G1 and G2.

NetworkX

candidate_pairs_iter

	
GraphMatcher.candidate_pairs_iter()

	Iterator over candidate pairs of nodes in G1 and G2.

NetworkX

match

	
GraphMatcher.match()

	Extends the isomorphism mapping.

This function is called recursively to determine if a complete
isomorphism can be found between G1 and G2. It cleans up the class
variables after each recursive call. If an isomorphism is found,
we yield the mapping.

NetworkX

semantic_feasibility

	
GraphMatcher.semantic_feasibility(G1_node, G2_node)

	Returns True if mapping G1_node to G2_node is semantically feasible.

NetworkX

syntactic_feasibility

	
GraphMatcher.syntactic_feasibility(G1_node, G2_node)

	Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair
to the current partial isomorphism mapping is allowable. The addition
is allowable if the inclusion of the candidate pair does not make it
impossible for an isomorphism to be found.

NetworkX

__init__

	
DiGraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)

	Initialize graph matcher.

	Parameters

	
	G2 (G1,) – The graphs to be tested.

	node_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True iff node n1 in G1 and n2 in G2
should be considered equal during the isomorphism test. The
function will be called like:

node_match(G1.node[n1], G2.node[n2])

That is, the function will receive the node attribute dictionaries
of the nodes under consideration. If None, then no attributes are
considered when testing for an isomorphism.

	edge_match (callable [https://docs.python.org/2/library/functions.html#callable]) – A function that returns True iff the edge attribute dictionary for
the pair of nodes (u1, v1) in G1 and (u2, v2) in G2 should be
considered equal during the isomorphism test. The function will be
called like:

edge_match(G1[u1][v1], G2[u2][v2])

That is, the function will receive the edge attribute dictionaries
of the edges under consideration. If None, then no attributes are
considered when testing for an isomorphism.

NetworkX

initialize

	
DiGraphMatcher.initialize()

	Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState.
If only subclassing GraphMatcher, a redefinition is not necessary.

NetworkX

is_isomorphic

	
DiGraphMatcher.is_isomorphic()

	Returns True if G1 and G2 are isomorphic graphs.

NetworkX

subgraph_is_isomorphic

	
DiGraphMatcher.subgraph_is_isomorphic()

	Returns True if a subgraph of G1 is isomorphic to G2.

NetworkX

isomorphisms_iter

	
DiGraphMatcher.isomorphisms_iter()

	Generator over isomorphisms between G1 and G2.

NetworkX

subgraph_isomorphisms_iter

	
DiGraphMatcher.subgraph_isomorphisms_iter()

	Generator over isomorphisms between a subgraph of G1 and G2.

NetworkX

candidate_pairs_iter

	
DiGraphMatcher.candidate_pairs_iter()

	Iterator over candidate pairs of nodes in G1 and G2.

NetworkX

match

	
DiGraphMatcher.match()

	Extends the isomorphism mapping.

This function is called recursively to determine if a complete
isomorphism can be found between G1 and G2. It cleans up the class
variables after each recursive call. If an isomorphism is found,
we yield the mapping.

NetworkX

semantic_feasibility

	
DiGraphMatcher.semantic_feasibility(G1_node, G2_node)

	Returns True if mapping G1_node to G2_node is semantically feasible.

NetworkX

syntactic_feasibility

	
DiGraphMatcher.syntactic_feasibility(G1_node, G2_node)

	Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair
to the current partial isomorphism mapping is allowable. The addition
is allowable if the inclusion of the candidate pair does not make it
impossible for an isomorphism to be found.

NetworkX

categorical_node_match

	
categorical_node_match(attr, default)

	Returns a comparison function for a categorical node attribute.

The value(s) of the attr(s) must be hashable and comparable via the ==
operator since they are placed into a set([]) object. If the sets from
G1 and G2 are the same, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The categorical node attribute to compare, or a list of categorical
node attributes to compare.

	default (value | list) – The default value for the categorical node attribute, or a list of
default values for the categorical node attributes.

	Returns

	match – The customized, categorical \(node_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_node_match('size', 1)
>>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2])

NetworkX

categorical_edge_match

	
categorical_edge_match(attr, default)

	Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the ==
operator since they are placed into a set([]) object. If the sets from
G1 and G2 are the same, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The categorical edge attribute to compare, or a list of categorical
edge attributes to compare.

	default (value | list) – The default value for the categorical edge attribute, or a list of
default values for the categorical edge attributes.

	Returns

	match – The customized, categorical \(edge_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_edge_match('size', 1)
>>> nm = iso.categorical_edge_match(['color', 'size'], ['red', 2])

NetworkX

categorical_multiedge_match

	
categorical_multiedge_match(attr, default)

	Returns a comparison function for a categorical edge attribute.

The value(s) of the attr(s) must be hashable and comparable via the ==
operator since they are placed into a set([]) object. If the sets from
G1 and G2 are the same, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The categorical edge attribute to compare, or a list of categorical
edge attributes to compare.

	default (value | list) – The default value for the categorical edge attribute, or a list of
default values for the categorical edge attributes.

	Returns

	match – The customized, categorical \(edge_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_multiedge_match('size', 1)
>>> nm = iso.categorical_multiedge_match(['color', 'size'], ['red', 2])

NetworkX

numerical_node_match

	
numerical_node_match(attr, default, rtol=1e-05, atol=1e-08)

	Returns a comparison function for a numerical node attribute.

The value(s) of the attr(s) must be numerical and sortable. If the
sorted list of values from G1 and G2 are the same within some
tolerance, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The numerical node attribute to compare, or a list of numerical
node attributes to compare.

	default (value | list) – The default value for the numerical node attribute, or a list of
default values for the numerical node attributes.

	rtol (float [https://docs.python.org/2/library/functions.html#float]) – The relative error tolerance.

	atol (float [https://docs.python.org/2/library/functions.html#float]) – The absolute error tolerance.

	Returns

	match – The customized, numerical \(node_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_node_match('weight', 1.0)
>>> nm = iso.numerical_node_match(['weight', 'linewidth'], [.25, .5])

NetworkX

numerical_edge_match

	
numerical_edge_match(attr, default, rtol=1e-05, atol=1e-08)

	Returns a comparison function for a numerical edge attribute.

The value(s) of the attr(s) must be numerical and sortable. If the
sorted list of values from G1 and G2 are the same within some
tolerance, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The numerical edge attribute to compare, or a list of numerical
edge attributes to compare.

	default (value | list) – The default value for the numerical edge attribute, or a list of
default values for the numerical edge attributes.

	rtol (float [https://docs.python.org/2/library/functions.html#float]) – The relative error tolerance.

	atol (float [https://docs.python.org/2/library/functions.html#float]) – The absolute error tolerance.

	Returns

	match – The customized, numerical \(edge_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_edge_match('weight', 1.0)
>>> nm = iso.numerical_edge_match(['weight', 'linewidth'], [.25, .5])

NetworkX

numerical_multiedge_match

	
numerical_multiedge_match(attr, default, rtol=1e-05, atol=1e-08)

	Returns a comparison function for a numerical edge attribute.

The value(s) of the attr(s) must be numerical and sortable. If the
sorted list of values from G1 and G2 are the same within some
tolerance, then the constructed function returns True.

	Parameters

	
	attr (string | list) – The numerical edge attribute to compare, or a list of numerical
edge attributes to compare.

	default (value | list) – The default value for the numerical edge attribute, or a list of
default values for the numerical edge attributes.

	rtol (float [https://docs.python.org/2/library/functions.html#float]) – The relative error tolerance.

	atol (float [https://docs.python.org/2/library/functions.html#float]) – The absolute error tolerance.

	Returns

	match – The customized, numerical \(edge_match\) function.

	Return type

	function

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_multiedge_match('weight', 1.0)
>>> nm = iso.numerical_multiedge_match(['weight', 'linewidth'], [.25, .5])

NetworkX

generic_node_match

	
generic_node_match(attr, default, op)

	Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified
operators. If all the attributes are equal, then the constructed
function returns True.

	Parameters

	
	attr (string | list) – The node attribute to compare, or a list of node attributes
to compare.

	default (value | list) – The default value for the node attribute, or a list of
default values for the node attributes.

	op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

	Returns

	match – The customized, generic \(node_match\) function.

	Return type

	function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq])

NetworkX

generic_edge_match

	
generic_edge_match(attr, default, op)

	Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified
operators. If all the attributes are equal, then the constructed
function returns True.

	Parameters

	
	attr (string | list) – The edge attribute to compare, or a list of edge attributes
to compare.

	default (value | list) – The default value for the edge attribute, or a list of
default values for the edge attributes.

	op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

	Returns

	match – The customized, generic \(edge_match\) function.

	Return type

	function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_edge_match
>>> nm = generic_edge_match('weight', 1.0, close)
>>> nm = generic_edge_match('color', 'red', eq)
>>> nm = generic_edge_match(['weight', 'color'], [1.0, 'red'], [close, eq])

NetworkX

generic_multiedge_match

	
generic_multiedge_match(attr, default, op)

	Returns a comparison function for a generic attribute.

The value(s) of the attr(s) are compared using the specified
operators. If all the attributes are equal, then the constructed
function returns True. Potentially, the constructed edge_match
function can be slow since it must verify that no isomorphism
exists between the multiedges before it returns False.

	Parameters

	
	attr (string | list) – The edge attribute to compare, or a list of node attributes
to compare.

	default (value | list) – The default value for the edge attribute, or a list of
default values for the dgeattributes.

	op (callable | list) – The operator to use when comparing attribute values, or a list
of operators to use when comparing values for each attribute.

	Returns

	match – The customized, generic \(edge_match\) function.

	Return type

	function

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'],
... [1.0, 'red'],
... [close, eq])
...

NetworkX

Link Analysis

PageRank

PageRank analysis of graph structure.

	pagerank(G[, alpha, personalization, …])

	Return the PageRank of the nodes in the graph.

	pagerank_numpy(G[, alpha, personalization, …])

	Return the PageRank of the nodes in the graph.

	pagerank_scipy(G[, alpha, personalization, …])

	Return the PageRank of the nodes in the graph.

	google_matrix(G[, alpha, personalization, …])

	Return the Google matrix of the graph.

Hits

Hubs and authorities analysis of graph structure.

	hits(G[, max_iter, tol, nstart, normalized])

	Return HITS hubs and authorities values for nodes.

	hits_numpy(G[, normalized])

	Return HITS hubs and authorities values for nodes.

	hits_scipy(G[, max_iter, tol, normalized])

	Return HITS hubs and authorities values for nodes.

	hub_matrix(G[, nodelist])

	Return the HITS hub matrix.

	authority_matrix(G[, nodelist])

	Return the HITS authority matrix.

NetworkX

pagerank

	
pagerank(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, nstart=None, weight='weight', dangling=None)

	Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.

	Parameters

	
	G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional) – Damping parameter for PageRank, default=0.85.

	personalization (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The “personalization vector” consisting of a dictionary with a
key for every graph node and nonzero personalization value for each node.
By default, a uniform distribution is used.

	max_iter (integer, optional) – Maximum number of iterations in power method eigenvalue solver.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method solver.

	nstart (dictionary, optional) – Starting value of PageRank iteration for each node.

	weight (key, optional) – Edge data key to use as weight. If None weights are set to 1.

	dangling (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified). This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.

	Returns

	pagerank – Dictionary of nodes with PageRank as value

	Return type

	dictionary

Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank(G, alpha=0.9)

Notes

The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.

The PageRank algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs by converting each edge in the
directed graph to two edges.

See also

pagerank_numpy(), pagerank_scipy(), google_matrix()

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf

NetworkX

pagerank_numpy

	
pagerank_numpy(G, alpha=0.85, personalization=None, weight='weight', dangling=None)

	Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.

	Parameters

	
	G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional) – Damping parameter for PageRank, default=0.85.

	personalization (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The “personalization vector” consisting of a dictionary with a
key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.

	weight (key, optional) – Edge data key to use as weight. If None weights are set to 1.

	dangling (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.

	Returns

	pagerank – Dictionary of nodes with PageRank as value.

	Return type

	dictionary

Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_numpy(G, alpha=0.9)

Notes

The eigenvector calculation uses NumPy’s interface to the LAPACK
eigenvalue solvers. This will be the fastest and most accurate
for small graphs.

This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.

See also

pagerank(), pagerank_scipy(), google_matrix()

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf

NetworkX

pagerank_scipy

	
pagerank_scipy(G, alpha=0.85, personalization=None, max_iter=100, tol=1e-06, weight='weight', dangling=None)

	Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on
the structure of the incoming links. It was originally designed as
an algorithm to rank web pages.

	Parameters

	
	G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional) – Damping parameter for PageRank, default=0.85.

	personalization (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The “personalization vector” consisting of a dictionary with a
key for every graph node and nonzero personalization value for each
node. By default, a uniform distribution is used.

	max_iter (integer, optional) – Maximum number of iterations in power method eigenvalue solver.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method solver.

	weight (key, optional) – Edge data key to use as weight. If None weights are set to 1.

	dangling (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes under google_matrix). It may be common to have the
dangling dict to be the same as the personalization dict.

	Returns

	pagerank – Dictionary of nodes with PageRank as value

	Return type

	dictionary

Examples

>>> G = nx.DiGraph(nx.path_graph(4))
>>> pr = nx.pagerank_scipy(G, alpha=0.9)

Notes

The eigenvector calculation uses power iteration with a SciPy
sparse matrix representation.

This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.

See also

pagerank(), pagerank_numpy(), google_matrix()

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry,
The PageRank citation ranking: Bringing order to the Web. 1999
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf

NetworkX

google_matrix

	
google_matrix(G, alpha=0.85, personalization=None, nodelist=None, weight='weight', dangling=None)

	Return the Google matrix of the graph.

	Parameters

	
	G (graph) – A NetworkX graph. Undirected graphs will be converted to a directed
graph with two directed edges for each undirected edge.

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The damping factor.

	personalization (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The “personalization vector” consisting of a dictionary with a
key for every graph node and nonzero personalization value for each node.
By default, a uniform distribution is used.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (key, optional) – Edge data key to use as weight. If None weights are set to 1.

	dangling (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – The outedges to be assigned to any “dangling” nodes, i.e., nodes without
any outedges. The dict key is the node the outedge points to and the dict
value is the weight of that outedge. By default, dangling nodes are given
outedges according to the personalization vector (uniform if not
specified) This must be selected to result in an irreducible transition
matrix (see notes below). It may be common to have the dangling dict to
be the same as the personalization dict.

	Returns

	A – Google matrix of the graph

	Return type

	NumPy matrix

Notes

The matrix returned represents the transition matrix that describes the
Markov chain used in PageRank. For PageRank to converge to a unique
solution (i.e., a unique stationary distribution in a Markov chain), the
transition matrix must be irreducible. In other words, it must be that
there exists a path between every pair of nodes in the graph, or else there
is the potential of “rank sinks.”

This implementation works with Multi(Di)Graphs. For multigraphs the
weight between two nodes is set to be the sum of all edge weights
between those nodes.

See also

pagerank(), pagerank_numpy(), pagerank_scipy()

NetworkX

hits

	
hits(G, max_iter=100, tol=1e-08, nstart=None, normalized=True)

	Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node.
Authorities estimates the node value based on the incoming links.
Hubs estimates the node value based on outgoing links.

	Parameters

	
	G (graph) – A NetworkX graph

	max_iter (interger, optional) – Maximum number of iterations in power method.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method iteration.

	nstart (dictionary, optional) – Starting value of each node for power method iteration.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Normalize results by the sum of all of the values.

	Returns

	(hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

	Return type

	two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs.

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Jon Kleinberg,
Authoritative sources in a hyperlinked environment
Journal of the ACM 46 (5): 604-32, 1999.
doi:10.1145/324133.324140.
http://www.cs.cornell.edu/home/kleinber/auth.pdf.

NetworkX

hits_numpy

	
hits_numpy(G, normalized=True)

	Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node.
Authorities estimates the node value based on the incoming links.
Hubs estimates the node value based on outgoing links.

	Parameters

	
	G (graph) – A NetworkX graph

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Normalize results by the sum of all of the values.

	Returns

	(hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

	Return type

	two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

The eigenvector calculation uses NumPy’s interface to LAPACK.

The HITS algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs.

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Jon Kleinberg,
Authoritative sources in a hyperlinked environment
Journal of the ACM 46 (5): 604-32, 1999.
doi:10.1145/324133.324140.
http://www.cs.cornell.edu/home/kleinber/auth.pdf.

NetworkX

hits_scipy

	
hits_scipy(G, max_iter=100, tol=1e-06, normalized=True)

	Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node.
Authorities estimates the node value based on the incoming links.
Hubs estimates the node value based on outgoing links.

	Parameters

	
	G (graph) – A NetworkX graph

	max_iter (interger, optional) – Maximum number of iterations in power method.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Error tolerance used to check convergence in power method iteration.

	nstart (dictionary, optional) – Starting value of each node for power method iteration.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Normalize results by the sum of all of the values.

	Returns

	(hubs,authorities) – Two dictionaries keyed by node containing the hub and authority
values.

	Return type

	two-tuple of dictionaries

Examples

>>> G=nx.path_graph(4)
>>> h,a=nx.hits(G)

Notes

This implementation uses SciPy sparse matrices.

The eigenvector calculation is done by the power iteration method
and has no guarantee of convergence. The iteration will stop
after max_iter iterations or an error tolerance of
number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this
algorithm does not check if the input graph is directed and will
execute on undirected graphs.

References

	1

	A. Langville and C. Meyer,
“A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

	2

	Jon Kleinberg,
Authoritative sources in a hyperlinked environment
Journal of the ACM 46 (5): 604-632, 1999.
doi:10.1145/324133.324140.
http://www.cs.cornell.edu/home/kleinber/auth.pdf.

NetworkX

hub_matrix

	
hub_matrix(G, nodelist=None)

	Return the HITS hub matrix.

NetworkX

authority_matrix

	
authority_matrix(G, nodelist=None)

	Return the HITS authority matrix.

NetworkX

Link Prediction

Link prediction algorithms.

	resource_allocation_index(G[, ebunch])

	Compute the resource allocation index of all node pairs in ebunch.

	jaccard_coefficient(G[, ebunch])

	Compute the Jaccard coefficient of all node pairs in ebunch.

	adamic_adar_index(G[, ebunch])

	Compute the Adamic-Adar index of all node pairs in ebunch.

	preferential_attachment(G[, ebunch])

	Compute the preferential attachment score of all node pairs in ebunch.

	cn_soundarajan_hopcroft(G[, ebunch, community])

	Count the number of common neighbors of all node pairs in ebunch using community information.

	ra_index_soundarajan_hopcroft(G[, ebunch, …])

	Compute the resource allocation index of all node pairs in ebunch using community information.

	within_inter_cluster(G[, ebunch, delta, …])

	Compute the ratio of within- and inter-cluster common neighbors of all node pairs in ebunch.

NetworkX

resource_allocation_index

	
resource_allocation_index(G, ebunch=None)

	Compute the resource allocation index of all node pairs in ebunch.

Resource allocation index of \(u\) and \(v\) is defined as

\[\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{|\Gamma(w)|}\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – Resource allocation index will be computed for each pair of
nodes given in the iterable. The pairs must be given as
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
is None then all non-existent edges in the graph will be used.
Default value: None.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their resource allocation index.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.resource_allocation_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.75000000'
'(2, 3) -> 0.75000000'

References

	1

	T. Zhou, L. Lu, Y.-C. Zhang.
Predicting missing links via local information.
Eur. Phys. J. B 71 (2009) 623.
http://arxiv.org/pdf/0901.0553.pdf

NetworkX

jaccard_coefficient

	
jaccard_coefficient(G, ebunch=None)

	Compute the Jaccard coefficient of all node pairs in ebunch.

Jaccard coefficient of nodes \(u\) and \(v\) is defined as

\[\frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – Jaccard coefficient will be computed for each pair of nodes
given in the iterable. The pairs must be given as 2-tuples
(u, v) where u and v are nodes in the graph. If ebunch is None
then all non-existent edges in the graph will be used.
Default value: None.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their Jaccard coefficient.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.jaccard_coefficient(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 0.60000000'
'(2, 3) -> 0.60000000'

References

	1

	D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf

NetworkX

adamic_adar_index

	
adamic_adar_index(G, ebunch=None)

	Compute the Adamic-Adar index of all node pairs in ebunch.

Adamic-Adar index of \(u\) and \(v\) is defined as

\[\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(w)|}\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

	Parameters

	
	G (graph) – NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – Adamic-Adar index will be computed for each pair of nodes given
in the iterable. The pairs must be given as 2-tuples (u, v)
where u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their Adamic-Adar index.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.adamic_adar_index(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 1) -> 2.16404256'
'(2, 3) -> 2.16404256'

References

	1

	D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf

NetworkX

preferential_attachment

	
preferential_attachment(G, ebunch=None)

	Compute the preferential attachment score of all node pairs in ebunch.

Preferential attachment score of \(u\) and \(v\) is defined as

\[|\Gamma(u)| |\Gamma(v)|\]

where \(\Gamma(u)\) denotes the set of neighbors of \(u\).

	Parameters

	
	G (graph) – NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – Preferential attachment score will be computed for each pair of
nodes given in the iterable. The pairs must be given as
2-tuples (u, v) where u and v are nodes in the graph. If ebunch
is None then all non-existent edges in the graph will be used.
Default value: None.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their preferential attachment score.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.complete_graph(5)
>>> preds = nx.preferential_attachment(G, [(0, 1), (2, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
...
'(0, 1) -> 16'
'(2, 3) -> 16'

References

	1

	D. Liben-Nowell, J. Kleinberg.
The Link Prediction Problem for Social Networks (2004).
http://www.cs.cornell.edu/home/kleinber/link-pred.pdf

NetworkX

cn_soundarajan_hopcroft

	
cn_soundarajan_hopcroft(G, ebunch=None, community='community')

	
	Count the number of common neighbors of all node pairs in ebunch

	using community information.

For two nodes \(u\) and \(v\), this function computes the number of
common neighbors and bonus one for each common neighbor belonging to
the same community as \(u\) and \(v\). Mathematically,

\[|\Gamma(u) \cap \Gamma(v)| + \sum_{w \in \Gamma(u) \cap \Gamma(v)} f(w)\]

where \(f(w)\) equals 1 if \(w\) belongs to the same community as \(u\)
and \(v\) or 0 otherwise and \(\Gamma(u)\) denotes the set of
neighbors of \(u\).

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – The score will be computed for each pair of nodes given in the
iterable. The pairs must be given as 2-tuples (u, v) where u
and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.

	community (string [https://docs.python.org/2/library/string.html#module-string], optional (default = 'community')) – Nodes attribute name containing the community information.
G[u][community] identifies which community u belongs to. Each
node belongs to at most one community. Default value: ‘community’.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their score.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.path_graph(3)
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 0
>>> preds = nx.cn_soundarajan_hopcroft(G, [(0, 2)])
>>> for u, v, p in preds:
... '(%d, %d) -> %d' % (u, v, p)
...
'(0, 2) -> 2'

References

	1

	Sucheta Soundarajan and John Hopcroft.
Using community information to improve the precision of link
prediction methods.
In Proceedings of the 21st international conference companion on
World Wide Web (WWW ‘12 Companion). ACM, New York, NY, USA, 607-608.
http://doi.acm.org/10.1145/2187980.2188150

NetworkX

ra_index_soundarajan_hopcroft

	
ra_index_soundarajan_hopcroft(G, ebunch=None, community='community')

	Compute the resource allocation index of all node pairs in
ebunch using community information.

For two nodes \(u\) and \(v\), this function computes the resource
allocation index considering only common neighbors belonging to the
same community as \(u\) and \(v\). Mathematically,

\[\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{f(w)}{|\Gamma(w)|}\]

where \(f(w)\) equals 1 if \(w\) belongs to the same community as \(u\)
and \(v\) or 0 otherwise and \(\Gamma(u)\) denotes the set of
neighbors of \(u\).

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – The score will be computed for each pair of nodes given in the
iterable. The pairs must be given as 2-tuples (u, v) where u
and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.

	community (string [https://docs.python.org/2/library/string.html#module-string], optional (default = 'community')) – Nodes attribute name containing the community information.
G[u][community] identifies which community u belongs to. Each
node belongs to at most one community. Default value: ‘community’.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their score.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 0
>>> G.node[2]['community'] = 1
>>> G.node[3]['community'] = 0
>>> preds = nx.ra_index_soundarajan_hopcroft(G, [(0, 3)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 3) -> 0.50000000'

References

	1

	Sucheta Soundarajan and John Hopcroft.
Using community information to improve the precision of link
prediction methods.
In Proceedings of the 21st international conference companion on
World Wide Web (WWW ‘12 Companion). ACM, New York, NY, USA, 607-608.
http://doi.acm.org/10.1145/2187980.2188150

NetworkX

within_inter_cluster

	
within_inter_cluster(G, ebunch=None, delta=0.001, community='community')

	Compute the ratio of within- and inter-cluster common neighbors
of all node pairs in ebunch.

For two nodes \(u\) and \(v\), if a common neighbor \(w\) belongs to the
same community as them, \(w\) is considered as within-cluster common
neighbor of \(u\) and \(v\). Otherwise, it is considered as
inter-cluster common neighbor of \(u\) and \(v\). The ratio between the
size of the set of within- and inter-cluster common neighbors is
defined as the WIC measure. 1

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	ebunch (iterable of node pairs, optional (default = None)) – The WIC measure will be computed for each pair of nodes given in
the iterable. The pairs must be given as 2-tuples (u, v) where
u and v are nodes in the graph. If ebunch is None then all
non-existent edges in the graph will be used.
Default value: None.

	delta (float [https://docs.python.org/2/library/functions.html#float], optional (default = 0.001)) – Value to prevent division by zero in case there is no
inter-cluster common neighbor between two nodes. See 1 for
details. Default value: 0.001.

	community (string [https://docs.python.org/2/library/string.html#module-string], optional (default = 'community')) – Nodes attribute name containing the community information.
G[u][community] identifies which community u belongs to. Each
node belongs to at most one community. Default value: ‘community’.

	Returns

	piter – An iterator of 3-tuples in the form (u, v, p) where (u, v) is a
pair of nodes and p is their WIC measure.

	Return type

	iterator

Examples

>>> import networkx as nx
>>> G = nx.Graph()
>>> G.add_edges_from([(0, 1), (0, 2), (0, 3), (1, 4), (2, 4), (3, 4)])
>>> G.node[0]['community'] = 0
>>> G.node[1]['community'] = 1
>>> G.node[2]['community'] = 0
>>> G.node[3]['community'] = 0
>>> G.node[4]['community'] = 0
>>> preds = nx.within_inter_cluster(G, [(0, 4)])
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 4) -> 1.99800200'
>>> preds = nx.within_inter_cluster(G, [(0, 4)], delta=0.5)
>>> for u, v, p in preds:
... '(%d, %d) -> %.8f' % (u, v, p)
...
'(0, 4) -> 1.33333333'

References

	1(1,2)

	Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes.
Link prediction in complex networks based on cluster information.
In Proceedings of the 21st Brazilian conference on Advances in
Artificial Intelligence (SBIA‘12)
http://dx.doi.org/10.1007/978-3-642-34459-6_10

NetworkX

Matching

Matching

	maximal_matching(G)

	Find a maximal cardinality matching in the graph.

	max_weight_matching(G[, maxcardinality])

	Compute a maximum-weighted matching of G.

NetworkX

maximal_matching

	
maximal_matching(G)

	Find a maximal cardinality matching in the graph.

A matching is a subset of edges in which no node occurs more than once.
The cardinality of a matching is the number of matched edges.

	Parameters

	G (NetworkX graph) – Undirected graph

	Returns

	matching – A maximal matching of the graph.

	Return type

	set [https://docs.python.org/2/library/stdtypes.html#set]

Notes

The algorithm greedily selects a maximal matching M of the graph G
(i.e. no superset of M exists). It runs in \(O(|E|)\) time.

NetworkX

max_weight_matching

	
max_weight_matching(G, maxcardinality=False)

	Compute a maximum-weighted matching of G.

A matching is a subset of edges in which no node occurs more than once.
The cardinality of a matching is the number of matched edges.
The weight of a matching is the sum of the weights of its edges.

	Parameters

	
	G (NetworkX graph) – Undirected graph

	maxcardinality (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If maxcardinality is True, compute the maximum-cardinality matching
with maximum weight among all maximum-cardinality matchings.

	Returns

	mate – The matching is returned as a dictionary, mate, such that
mate[v] == w if node v is matched to node w. Unmatched nodes do not
occur as a key in mate.

	Return type

	dictionary

Notes

If G has edges with ‘weight’ attribute the edge data are used as
weight values else the weights are assumed to be 1.

This function takes time O(number_of_nodes ** 3).

If all edge weights are integers, the algorithm uses only integer
computations. If floating point weights are used, the algorithm
could return a slightly suboptimal matching due to numeric
precision errors.

This method is based on the “blossom” method for finding augmenting
paths and the “primal-dual” method for finding a matching of maximum
weight, both methods invented by Jack Edmonds 1.

Bipartite graphs can also be matched using the functions present in
networkx.algorithms.bipartite.matching.

References

	1

	“Efficient Algorithms for Finding Maximum Matching in Graphs”,
Zvi Galil, ACM Computing Surveys, 1986.

NetworkX

Minors

Provides functions for computing minors of a graph.

	contracted_edge(G, edge[, self_loops])

	Returns the graph that results from contracting the specified edge.

	contracted_nodes(G, u, v[, self_loops])

	Returns the graph that results from contracting u and v.

	identified_nodes(G, u, v[, self_loops])

	Returns the graph that results from contracting u and v.

	quotient_graph(G, node_relation[, …])

	Returns the quotient graph of G under the specified equivalence relation on nodes.

NetworkX

contracted_edge

	
contracted_edge(G, edge, self_loops=True)

	Returns the graph that results from contracting the specified edge.

Edge contraction identifies the two endpoints of the edge as a single node
incident to any edge that was incident to the original two nodes. A graph
that results from edge contraction is called a minor of the original
graph.

	Parameters

	
	G (NetworkX graph) – The graph whose edge will be contracted.

	edge (tuple [https://docs.python.org/2/library/functions.html#tuple]) – Must be a pair of nodes in G.

	self_loops (Boolean) – If this is True, any edges (including edge) joining the
endpoints of edge in G become self-loops on the new node in the
returned graph.

	Returns

	A new graph object of the same type as G (leaving G unmodified)
with endpoints of edge identified in a single node. The right node
of edge will be merged into the left one, so only the left one will
appear in the returned graph.

	Return type

	Networkx graph

	Raises

	ValueError – If edge is not an edge in G.

Examples

Attempting to contract two nonadjacent nodes yields an error:

>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> nx.contracted_edge(G, (1, 3))
Traceback (most recent call last):
 ...
ValueError: Edge (1, 3) does not exist in graph G; cannot contract it

Contracting two adjacent nodes in the cycle graph on n nodes yields the
cycle graph on n - 1 nodes:

>>> import networkx as nx
>>> C5 = nx.cycle_graph(5)
>>> C4 = nx.cycle_graph(4)
>>> M = nx.contracted_edge(C5, (0, 1), self_loops=False)
>>> nx.is_isomorphic(M, C4)
True

See also

contracted_nodes(), quotient_graph()

NetworkX

contracted_nodes

	
contracted_nodes(G, u, v, self_loops=True)

	Returns the graph that results from contracting u and v.

Node contraction identifies the two nodes as a single node incident to any
edge that was incident to the original two nodes.

	Parameters

	
	G (NetworkX graph) – The graph whose nodes will be contracted.

	v (u,) – Must be nodes in G.

	self_loops (Boolean) – If this is True, any edges joining u and v in G become
self-loops on the new node in the returned graph.

	Returns

	A new graph object of the same type as G (leaving G unmodified)
with u and v identified in a single node. The right node v
will be merged into the node u, so only u will appear in the
returned graph.

	Return type

	Networkx graph

Examples

Contracting two nonadjacent nodes of the cycle graph on four nodes \(C_4\)
yields the path graph (ignoring parallel edges):

>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True

See also

contracted_edge(), quotient_graph()

Notes

This function is also available as identified_nodes.

NetworkX

identified_nodes

	
identified_nodes(G, u, v, self_loops=True)

	Returns the graph that results from contracting u and v.

Node contraction identifies the two nodes as a single node incident to any
edge that was incident to the original two nodes.

	Parameters

	
	G (NetworkX graph) – The graph whose nodes will be contracted.

	v (u,) – Must be nodes in G.

	self_loops (Boolean) – If this is True, any edges joining u and v in G become
self-loops on the new node in the returned graph.

	Returns

	A new graph object of the same type as G (leaving G unmodified)
with u and v identified in a single node. The right node v
will be merged into the node u, so only u will appear in the
returned graph.

	Return type

	Networkx graph

Examples

Contracting two nonadjacent nodes of the cycle graph on four nodes \(C_4\)
yields the path graph (ignoring parallel edges):

>>> import networkx as nx
>>> G = nx.cycle_graph(4)
>>> M = nx.contracted_nodes(G, 1, 3)
>>> P3 = nx.path_graph(3)
>>> nx.is_isomorphic(M, P3)
True

See also

contracted_edge(), quotient_graph()

Notes

This function is also available as identified_nodes.

NetworkX

quotient_graph

	
quotient_graph(G, node_relation, edge_relation=None, create_using=None)

	Returns the quotient graph of G under the specified equivalence
relation on nodes.

	Parameters

	
	G (NetworkX graph) – The graph for which to return the quotient graph with the specified node
relation.

	node_relation (Boolean function with two arguments) – This function must represent an equivalence relation on the nodes of
G. It must take two arguments u and v and return True
exactly when u and v are in the same equivalence class. The
equivalence classes form the nodes in the returned graph.

	edge_relation (Boolean function with two arguments) – This function must represent an edge relation on the blocks of G
in the partition induced by node_relation. It must take two
arguments, B and C, each one a set of nodes, and return True
exactly when there should be an edge joining block B to block C in
the returned graph.

If edge_relation is not specified, it is assumed to be the following
relation. Block B is related to block C if and only if some node in
B is adjacent to some node in C, according to the edge set of G.

	create_using (NetworkX graph) – If specified, this must be an instance of a NetworkX graph class. The
nodes and edges of the quotient graph will be added to this graph and
returned. If not specified, the returned graph will have the same type
as the input graph.

	Returns

	The quotient graph of G under the equivalence relation specified by
node_relation.

	Return type

	NetworkX graph

Examples

The quotient graph of the complete bipartite graph under the “same
neighbors” equivalence relation is \(K_2\). Under this relation, two nodes
are equivalent if they are not adjacent but have the same neighbor set:

>>> import networkx as nx
>>> G = nx.complete_bipartite_graph(2, 3)
>>> same_neighbors = lambda u, v: (u not in G[v] and v not in G[u]
... and G[u] == G[v])
>>> Q = nx.quotient_graph(G, same_neighbors)
>>> K2 = nx.complete_graph(2)
>>> nx.is_isomorphic(Q, K2)
True

The quotient graph of a directed graph under the “same strongly connected
component” equivalence relation is the condensation of the graph (see
condensation()). This example comes from the Wikipedia article
`Strongly connected component`_:

>>> import networkx as nx
>>> G = nx.DiGraph()
>>> edges = ['ab', 'be', 'bf', 'bc', 'cg', 'cd', 'dc', 'dh', 'ea',
... 'ef', 'fg', 'gf', 'hd', 'hf']
>>> G.add_edges_from(tuple(x) for x in edges)
>>> components = list(nx.strongly_connected_components(G))
>>> sorted(sorted(component) for component in components)
[['a', 'b', 'e'], ['c', 'd', 'h'], ['f', 'g']]
>>>
>>> C = nx.condensation(G, components)
>>> component_of = C.graph['mapping']
>>> same_component = lambda u, v: component_of[u] == component_of[v]
>>> Q = nx.quotient_graph(G, same_component)
>>> nx.is_isomorphic(C, Q)
True

Node identification can be represented as the quotient of a graph under the
equivalence relation that places the two nodes in one block and each other
node in its own singleton block:

>>> import networkx as nx
>>> K24 = nx.complete_bipartite_graph(2, 4)
>>> K34 = nx.complete_bipartite_graph(3, 4)
>>> C = nx.contracted_nodes(K34, 1, 2)
>>> nodes = {1, 2}
>>> is_contracted = lambda u, v: u in nodes and v in nodes
>>> Q = nx.quotient_graph(K34, is_contracted)
>>> nx.is_isomorphic(Q, C)
True
>>> nx.is_isomorphic(Q, K24)
True

NetworkX

Maximal independent set

Algorithm to find a maximal (not maximum) independent set.

	maximal_independent_set(G[, nodes])

	Return a random maximal independent set guaranteed to contain a given set of nodes.

NetworkX

maximal_independent_set

	
maximal_independent_set(G, nodes=None)

	Return a random maximal independent set guaranteed to contain
a given set of nodes.

An independent set is a set of nodes such that the subgraph
of G induced by these nodes contains no edges. A maximal
independent set is an independent set such that it is not possible
to add a new node and still get an independent set.

	Parameters

	
	G (NetworkX graph) –

	nodes (list or iterable) – Nodes that must be part of the independent set. This set of nodes
must be independent.

	Returns

	indep_nodes – List of nodes that are part of a maximal independent set.

	Return type

	list

	Raises

	NetworkXUnfeasible – If the nodes in the provided list are not part of the graph or
do not form an independent set, an exception is raised.

Examples

>>> G = nx.path_graph(5)
>>> nx.maximal_independent_set(G)
[4, 0, 2]
>>> nx.maximal_independent_set(G, [1])
[1, 3]

Notes

This algorithm does not solve the maximum independent set problem.

NetworkX

Minimum Spanning Tree

Computes minimum spanning tree of a weighted graph.

	minimum_spanning_tree(G[, weight])

	Return a minimum spanning tree or forest of an undirected weighted graph.

	minimum_spanning_edges(G[, weight, data])

	Generate edges in a minimum spanning forest of an undirected weighted graph.

NetworkX

minimum_spanning_tree

	
minimum_spanning_tree(G, weight='weight')

	Return a minimum spanning tree or forest of an undirected
weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with
the minimum sum of edge weights.

If the graph is not connected a spanning forest is constructed. A
spanning forest is a union of the spanning trees for each
connected component of the graph.

	Parameters

	
	G (NetworkX Graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edge data key to use for weight (default ‘weight’).

	Returns

	G – A minimum spanning tree or forest.

	Return type

	NetworkX Graph

Examples

>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> T=nx.minimum_spanning_tree(G)
>>> print(sorted(T.edges(data=True)))
[(0, 1, {}), (1, 2, {}), (2, 3, {})]

Notes

Uses Kruskal’s algorithm.

If the graph edges do not have a weight attribute a default weight of 1
will be used.

NetworkX

minimum_spanning_edges

	
minimum_spanning_edges(G, weight='weight', data=True)

	Generate edges in a minimum spanning forest of an undirected
weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree)
with the minimum sum of edge weights. A spanning forest is a
union of the spanning trees for each connected component of the graph.

	Parameters

	
	G (NetworkX Graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Edge data key to use for weight (default ‘weight’).

	data (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True yield the edge data along with the edge.

	Returns

	edges – A generator that produces edges in the minimum spanning tree.
The edges are three-tuples (u,v,w) where w is the weight.

	Return type

	iterator

Examples

>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> mst=nx.minimum_spanning_edges(G,data=False) # a generator of MST edges
>>> edgelist=list(mst) # make a list of the edges
>>> print(sorted(edgelist))
[(0, 1), (1, 2), (2, 3)]

Notes

Uses Kruskal’s algorithm.

If the graph edges do not have a weight attribute a default weight of 1
will be used.

Modified code from David Eppstein, April 2006
http://www.ics.uci.edu/~eppstein/PADS/

NetworkX

Operators

Unary operations on graphs

	complement(G[, name])

	Return the graph complement of G.

	reverse(G[, copy])

	Return the reverse directed graph of G.

Operations on graphs including union, intersection, difference.

	compose(G, H[, name])

	Return a new graph of G composed with H.

	union(G, H[, rename, name])

	Return the union of graphs G and H.

	disjoint_union(G, H)

	Return the disjoint union of graphs G and H.

	intersection(G, H)

	Return a new graph that contains only the edges that exist in both G and H.

	difference(G, H)

	Return a new graph that contains the edges that exist in G but not in H.

	symmetric_difference(G, H)

	Return new graph with edges that exist in either G or H but not both.

Operations on many graphs.

	compose_all(graphs[, name])

	Return the composition of all graphs.

	union_all(graphs[, rename, name])

	Return the union of all graphs.

	disjoint_union_all(graphs)

	Return the disjoint union of all graphs.

	intersection_all(graphs)

	Return a new graph that contains only the edges that exist in all graphs.

Graph products.

	cartesian_product(G, H)

	Return the Cartesian product of G and H.

	lexicographic_product(G, H)

	Return the lexicographic product of G and H.

	strong_product(G, H)

	Return the strong product of G and H.

	tensor_product(G, H)

	Return the tensor product of G and H.

	power(G, k)

	Returns the specified power of a graph.

NetworkX

complement

	
complement(G, name=None)

	Return the graph complement of G.

	Parameters

	
	G (graph) – A NetworkX graph

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify name for new graph

	Returns

	GC

	Return type

	A new graph.

Notes

Note that complement() does not create self-loops and also
does not produce parallel edges for MultiGraphs.

Graph, node, and edge data are not propagated to the new graph.

NetworkX

reverse

	
reverse(G, copy=True)

	Return the reverse directed graph of G.

	Parameters

	
	G (directed graph) – A NetworkX directed graph

	copy (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, then a new graph is returned. If False, then the graph is
reversed in place.

	Returns

	H – The reversed G.

	Return type

	directed graph

NetworkX

compose

	
compose(G, H, name=None)

	Return a new graph of G composed with H.

Composition is the simple union of the node sets and edge sets.
The node sets of G and H do not need to be disjoint.

	Parameters

	
	G,H (graph) – A NetworkX graph

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify name for new graph

	Returns

	C

	Return type

	A new graph with the same type as G

Notes

It is recommended that G and H be either both directed or both undirected.
Attributes from H take precedent over attributes from G.

NetworkX

union

	
union(G, H, rename=(None, None), name=None)

	Return the union of graphs G and H.

Graphs G and H must be disjoint, otherwise an exception is raised.

	Parameters

	
	G,H (graph) – A NetworkX graph

	create_using (NetworkX graph) – Use specified graph for result. Otherwise

	rename (bool [https://docs.python.org/2/library/functions.html#bool] , default=(None [https://docs.python.org/2/library/constants.html#None], None [https://docs.python.org/2/library/constants.html#None])) – Node names of G and H can be changed by specifying the tuple
rename=(‘G-‘,’H-‘) (for example). Node “u” in G is then renamed
“G-u” and “v” in H is renamed “H-v”.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify the name for the union graph

	Returns

	U

	Return type

	A union graph with the same type as G.

Notes

To force a disjoint union with node relabeling, use
disjoint_union(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated from G and H
to the union graph. If a graph attribute is present in both
G and H the value from H is used.

See also

disjoint_union()

NetworkX

disjoint_union

	
disjoint_union(G, H)

	Return the disjoint union of graphs G and H.

This algorithm forces distinct integer node labels.

	Parameters

	G,H (graph) – A NetworkX graph

	Returns

	U

	Return type

	A union graph with the same type as G.

Notes

A new graph is created, of the same class as G. It is recommended
that G and H be either both directed or both undirected.

The nodes of G are relabeled 0 to len(G)-1, and the nodes of H are
relabeled len(G) to len(G)+len(H)-1.

Graph, edge, and node attributes are propagated from G and H
to the union graph. If a graph attribute is present in both
G and H the value from H is used.

NetworkX

intersection

	
intersection(G, H)

	Return a new graph that contains only the edges that exist in
both G and H.

The node sets of H and G must be the same.

	Parameters

	G,H (graph) – A NetworkX graph. G and H must have the same node sets.

	Returns

	GH

	Return type

	A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new
graph. If you want a new graph of the intersection of G and H
with the attributes (including edge data) from G use remove_nodes_from()
as follows

>>> G=nx.path_graph(3)
>>> H=nx.path_graph(5)
>>> R=G.copy()
>>> R.remove_nodes_from(n for n in G if n not in H)

NetworkX

difference

	
difference(G, H)

	Return a new graph that contains the edges that exist in G but not in H.

The node sets of H and G must be the same.

	Parameters

	G,H (graph) – A NetworkX graph. G and H must have the same node sets.

	Returns

	D

	Return type

	A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new
graph. If you want a new graph of the difference of G and H with
with the attributes (including edge data) from G use remove_nodes_from()
as follows:

>>> G = nx.path_graph(3)
>>> H = nx.path_graph(5)
>>> R = G.copy()
>>> R.remove_nodes_from(n for n in G if n in H)

NetworkX

symmetric_difference

	
symmetric_difference(G, H)

	Return new graph with edges that exist in either G or H but not both.

The node sets of H and G must be the same.

	Parameters

	G,H (graph) – A NetworkX graph. G and H must have the same node sets.

	Returns

	D

	Return type

	A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new
graph.

NetworkX

compose_all

	
compose_all(graphs, name=None)

	Return the composition of all graphs.

Composition is the simple union of the node sets and edge sets.
The node sets of the supplied graphs need not be disjoint.

	Parameters

	
	graphs (list) – List of NetworkX graphs

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify name for new graph

	Returns

	C

	Return type

	A graph with the same type as the first graph in list

Notes

It is recommended that the supplied graphs be either all directed or all
undirected.

Graph, edge, and node attributes are propagated to the union graph.
If a graph attribute is present in multiple graphs, then the value
from the last graph in the list with that attribute is used.

NetworkX

union_all

	
union_all(graphs, rename=(None,), name=None)

	Return the union of all graphs.

The graphs must be disjoint, otherwise an exception is raised.

	Parameters

	
	graphs (list of graphs) – List of NetworkX graphs

	rename (bool [https://docs.python.org/2/library/functions.html#bool] , default=(None [https://docs.python.org/2/library/constants.html#None], None [https://docs.python.org/2/library/constants.html#None])) – Node names of G and H can be changed by specifying the tuple
rename=(‘G-‘,’H-‘) (for example). Node “u” in G is then renamed
“G-u” and “v” in H is renamed “H-v”.

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Specify the name for the union graph@not_implemnted_for(‘direct

	Returns

	U

	Return type

	a graph with the same type as the first graph in list

Notes

To force a disjoint union with node relabeling, use
disjoint_union_all(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated to the union graph.
If a graph attribute is present in multiple graphs, then the value
from the last graph in the list with that attribute is used.

See also

union(), disjoint_union_all()

NetworkX

disjoint_union_all

	
disjoint_union_all(graphs)

	Return the disjoint union of all graphs.

This operation forces distinct integer node labels starting with 0
for the first graph in the list and numbering consecutively.

	Parameters

	graphs (list) – List of NetworkX graphs

	Returns

	U

	Return type

	A graph with the same type as the first graph in list

Notes

It is recommended that the graphs be either all directed or all undirected.

Graph, edge, and node attributes are propagated to the union graph.
If a graph attribute is present in multiple graphs, then the value
from the last graph in the list with that attribute is used.

NetworkX

intersection_all

	
intersection_all(graphs)

	Return a new graph that contains only the edges that exist in
all graphs.

All supplied graphs must have the same node set.

	Parameters

	graphs_list (list) – List of NetworkX graphs

	Returns

	R

	Return type

	A new graph with the same type as the first graph in list

Notes

Attributes from the graph, nodes, and edges are not copied to the new
graph.

NetworkX

cartesian_product

	
cartesian_product(G, H)

	Return the Cartesian product of G and H.

The Cartesian product P of the graphs G and H has a node set that
is the Cartesian product of the node sets, \(V(P)=V(G) imes V(H)\).
P has an edge ((u,v),(x,y)) if and only if either u is equal to x and
v & y are adjacent in H or if v is equal to y and u & x are adjacent in G.

	Parameters

	H (G,) – Networkx graphs.

	Returns

	P – The Cartesian product of G and H. P will be a multi-graph if either G
or H is a multi-graph. Will be a directed if G and H are directed,
and undirected if G and H are undirected.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes.
Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.cartesian_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the
new product graph

NetworkX

lexicographic_product

	
lexicographic_product(G, H)

	Return the lexicographic product of G and H.

The lexicographical product P of the graphs G and H has a node set that
is the Cartesian product of the node sets, $V(P)=V(G) imes V(H)$.
P has an edge ((u,v),(x,y)) if and only if (u,v) is an edge in G
or u==v and (x,y) is an edge in H.

	Parameters

	H (G,) – Networkx graphs.

	Returns

	P – The Cartesian product of G and H. P will be a multi-graph if either G
or H is a multi-graph. Will be a directed if G and H are directed,
and undirected if G and H are undirected.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes.
Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.lexicographic_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the
new product graph

NetworkX

strong_product

	
strong_product(G, H)

	Return the strong product of G and H.

The strong product P of the graphs G and H has a node set that
is the Cartesian product of the node sets, $V(P)=V(G) imes V(H)$.
P has an edge ((u,v),(x,y)) if and only if
u==v and (x,y) is an edge in H, or
x==y and (u,v) is an edge in G, or
(u,v) is an edge in G and (x,y) is an edge in H.

	Parameters

	H (G,) – Networkx graphs.

	Returns

	P – The Cartesian product of G and H. P will be a multi-graph if either G
or H is a multi-graph. Will be a directed if G and H are directed,
and undirected if G and H are undirected.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes.
Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.strong_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the
new product graph

NetworkX

tensor_product

	
tensor_product(G, H)

	Return the tensor product of G and H.

The tensor product P of the graphs G and H has a node set that
is the Cartesian product of the node sets, \(V(P)=V(G) \times V(H)\).
P has an edge ((u,v),(x,y)) if and only if (u,x) is an edge in G
and (v,y) is an edge in H.

Tensor product is sometimes also referred to as the categorical product,
direct product, cardinal product or conjunction.

	Parameters

	H (G,) – Networkx graphs.

	Returns

	P – The tensor product of G and H. P will be a multi-graph if either G
or H is a multi-graph, will be a directed if G and H are directed,
and undirected if G and H are undirected.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes.
Missing attributes are assigned None.

Examples

>>> G = nx.Graph()
>>> H = nx.Graph()
>>> G.add_node(0,a1=True)
>>> H.add_node('a',a2='Spam')
>>> P = nx.tensor_product(G,H)
>>> P.nodes()
[(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the
new product graph

NetworkX

power

	
power(G, k)

	Returns the specified power of a graph.

The \(k\)-th power of a simple graph \(G = (V, E)\) is the graph
\(G^k\) whose vertex set is \(V\), two distinct vertices \(u,v\) are
adjacent in \(G^k\) if and only if the shortest path
distance between \(u\) and \(v\) in \(G\) is at most \(k\).

	Parameters

	
	G (graph) – A NetworkX simple graph object.

	k (positive integer) – The power to which to raise the graph \(G\).

	Returns

	\(G\) to the \(k\)-th power.

	Return type

	NetworkX simple graph

	Raises

	
	ValueError – If the exponent \(k\) is not positive.

	NetworkXError – If G is not a simple graph.

Examples

>>> G = nx.path_graph(4)
>>> nx.power(G,2).edges()
[(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)]
>>> nx.power(G,3).edges()
[(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)]

A complete graph of order n is returned if k is greater than equal to n/2
for a cycle graph of even order n, and if k is greater than equal to
(n-1)/2 for a cycle graph of odd order.

>>> G = nx.cycle_graph(5)
>>> nx.power(G,2).edges() == nx.complete_graph(5).edges()
True
>>> G = nx.cycle_graph(8)
>>> nx.power(G,4).edges() == nx.complete_graph(8).edges()
True

References

	1

	
	
	Bondy, U. S. R. Murty, Graph Theory. Springer, 2008.

Notes

Exercise 3.1.6 of Graph Theory by J. A. Bondy and U. S. R. Murty 1.

NetworkX

Rich Club

	rich_club_coefficient(G[, normalized, Q])

	Return the rich-club coefficient of the graph G.

NetworkX

rich_club_coefficient

	
rich_club_coefficient(G, normalized=True, Q=100)

	Return the rich-club coefficient of the graph G.

The rich-club coefficient is the ratio, for every degree k, of the
number of actual to the number of potential edges for nodes
with degree greater than k:

\[\phi(k) = \frac{2 Ek}{Nk(Nk-1)}\]

where Nk is the number of nodes with degree larger than k, and Ek
be the number of edges among those nodes.

	Parameters

	
	G (NetworkX graph) –

	normalized (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – Normalize using randomized network (see 1)

	Q (float [https://docs.python.org/2/library/functions.html#float] (optional, default=100)) – If normalized=True build a random network by performing
Q*M double-edge swaps, where M is the number of edges in G,
to use as a null-model for normalization.

	Returns

	rc – A dictionary, keyed by degree, with rich club coefficient values.

	Return type

	dictionary

Examples

>>> G = nx.Graph([(0,1),(0,2),(1,2),(1,3),(1,4),(4,5)])
>>> rc = nx.rich_club_coefficient(G,normalized=False)
>>> rc[0]
0.4

Notes

The rich club definition and algorithm are found in 1. This
algorithm ignores any edge weights and is not defined for directed
graphs or graphs with parallel edges or self loops.

Estimates for appropriate values of Q are found in 2.

References

	1(1,2)

	Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano,
“The rich-club phenomenon across complex network hierarchies”,
Applied Physics Letters Vol 91 Issue 8, August 2007.
http://arxiv.org/abs/physics/0701290

	2

	R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon,
“Uniform generation of random graphs with arbitrary degree
sequences”, 2006. http://arxiv.org/abs/cond-mat/0312028

NetworkX

Shortest Paths

Compute the shortest paths and path lengths between nodes in the graph.

These algorithms work with undirected and directed graphs.

	shortest_path(G[, source, target, weight])

	Compute shortest paths in the graph.

	all_shortest_paths(G, source, target[, weight])

	Compute all shortest paths in the graph.

	shortest_path_length(G[, source, target, weight])

	Compute shortest path lengths in the graph.

	average_shortest_path_length(G[, weight])

	Return the average shortest path length.

	has_path(G, source, target)

	Return True if G has a path from source to target, False otherwise.

Advanced Interface

Shortest path algorithms for unweighted graphs.

	single_source_shortest_path(G, source[, cutoff])

	Compute shortest path between source and all other nodes reachable from source.

	single_source_shortest_path_length(G, source)

	Compute the shortest path lengths from source to all reachable nodes.

	all_pairs_shortest_path(G[, cutoff])

	Compute shortest paths between all nodes.

	all_pairs_shortest_path_length(G[, cutoff])

	Computes the shortest path lengths between all nodes in G.

	predecessor(G, source[, target, cutoff, …])

	Returns dictionary of predecessors for the path from source to all nodes in G.

Shortest path algorithms for weighed graphs.

	dijkstra_path(G, source, target[, weight])

	Returns the shortest path from source to target in a weighted graph G.

	dijkstra_path_length(G, source, target[, weight])

	Returns the shortest path length from source to target in a weighted graph.

	single_source_dijkstra_path(G, source[, …])

	Compute shortest path between source and all other reachable nodes for a weighted graph.

	single_source_dijkstra_path_length(G, source)

	Compute the shortest path length between source and all other reachable nodes for a weighted graph.

	all_pairs_dijkstra_path(G[, cutoff, weight])

	Compute shortest paths between all nodes in a weighted graph.

	all_pairs_dijkstra_path_length(G[, cutoff, …])

	Compute shortest path lengths between all nodes in a weighted graph.

	single_source_dijkstra(G, source[, target, …])

	Compute shortest paths and lengths in a weighted graph G.

	bidirectional_dijkstra(G, source, target[, …])

	Dijkstra’s algorithm for shortest paths using bidirectional search.

	dijkstra_predecessor_and_distance(G, source)

	Compute shortest path length and predecessors on shortest paths in weighted graphs.

	bellman_ford(G, source[, weight])

	Compute shortest path lengths and predecessors on shortest paths in weighted graphs.

	negative_edge_cycle(G[, weight])

	Return True if there exists a negative edge cycle anywhere in G.

	johnson(G[, weight])

	Compute shortest paths between all nodes in a weighted graph using Johnson’s algorithm.

Dense Graphs

Floyd-Warshall algorithm for shortest paths.

	floyd_warshall(G[, weight])

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	floyd_warshall_predecessor_and_distance(G[, …])

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	floyd_warshall_numpy(G[, nodelist, weight])

	Find all-pairs shortest path lengths using Floyd’s algorithm.

A* Algorithm

Shortest paths and path lengths using A* (“A star”) algorithm.

	astar_path(G, source, target[, heuristic, …])

	Return a list of nodes in a shortest path between source and target using the A* (“A-star”) algorithm.

	astar_path_length(G, source, target[, …])

	Return the length of the shortest path between source and target using the A* (“A-star”) algorithm.

NetworkX

shortest_path

	
shortest_path(G, source=None, target=None, weight=None)

	Compute shortest paths in the graph.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Starting node for path.
If not specified, compute shortest paths using all nodes as source nodes.

	target (node, optional) – Ending node for path.
If not specified, compute shortest paths using all nodes as target nodes.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.

	Returns

	path – All returned paths include both the source and target in the path.

If the source and target are both specified, return a single list
of nodes in a shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by
targets with a list of nodes in a shortest path from the source
to one of the targets.

If only the target is specified, return a dictionary keyed by
sources with a list of nodes in a shortest path from one of the
sources to the target.

If neither the source nor target are specified return a dictionary
of dictionaries with path[source][target]=[list of nodes in path].

	Return type

	list or dictionary

Examples

>>> G=nx.path_graph(5)
>>> print(nx.shortest_path(G,source=0,target=4))
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,source=0) # target not specified
>>> p[4]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,target=4) # source not specified
>>> p[0]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G) # source,target not specified
>>> p[0][4]
[0, 1, 2, 3, 4]

Notes

There may be more than one shortest path between a source and target.
This returns only one of them.

See also

all_pairs_shortest_path(), all_pairs_dijkstra_path(), single_source_shortest_path(), single_source_dijkstra_path()

NetworkX

all_shortest_paths

	
all_shortest_paths(G, source, target, weight=None)

	Compute all shortest paths in the graph.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path.

	target (node) – Ending node for path.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.

	Returns

	paths – A generator of all paths between source and target.

	Return type

	generator of lists

Examples

>>> G=nx.Graph()
>>> G.add_path([0,1,2])
>>> G.add_path([0,10,2])
>>> print([p for p in nx.all_shortest_paths(G,source=0,target=2)])
[[0, 1, 2], [0, 10, 2]]

Notes

There may be many shortest paths between the source and target.

See also

shortest_path(), single_source_shortest_path(), all_pairs_shortest_path()

NetworkX

shortest_path_length

	
shortest_path_length(G, source=None, target=None, weight=None)

	Compute shortest path lengths in the graph.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Starting node for path.
If not specified, compute shortest path lengths using all nodes as
source nodes.

	target (node, optional) – Ending node for path.
If not specified, compute shortest path lengths using all nodes as
target nodes.

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.

	Returns

	length – If the source and target are both specified, return the length of
the shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by
targets whose values are the lengths of the shortest path from the
source to one of the targets.

If only the target is specified, return a dictionary keyed by
sources whose values are the lengths of the shortest path from one
of the sources to the target.

If neither the source nor target are specified return a dictionary
of dictionaries with path[source][target]=L, where L is the length
of the shortest path from source to target.

	Return type

	int [https://docs.python.org/2/library/functions.html#int] or dictionary

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.shortest_path_length(G,source=0,target=4))
4
>>> p=nx.shortest_path_length(G,source=0) # target not specified
>>> p[4]
4
>>> p=nx.shortest_path_length(G,target=4) # source not specified
>>> p[0]
4
>>> p=nx.shortest_path_length(G) # source,target not specified
>>> p[0][4]
4

Notes

The length of the path is always 1 less than the number of nodes involved
in the path since the length measures the number of edges followed.

For digraphs this returns the shortest directed path length. To find path
lengths in the reverse direction use G.reverse(copy=False) first to flip
the edge orientation.

See also

all_pairs_shortest_path_length(), all_pairs_dijkstra_path_length(), single_source_shortest_path_length(), single_source_dijkstra_path_length()

NetworkX

average_shortest_path_length

	
average_shortest_path_length(G, weight=None)

	Return the average shortest path length.

The average shortest path length is

\[a =\sum_{s,t \in V} \frac{d(s, t)}{n(n-1)}\]

where \(V\) is the set of nodes in \(G\),
\(d(s, t)\) is the shortest path from \(s\) to \(t\),
and \(n\) is the number of nodes in \(G\).

	Parameters

	
	G (NetworkX graph) –

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string], optional (default = None)) – If None, every edge has weight/distance/cost 1.
If a string, use this edge attribute as the edge weight.
Any edge attribute not present defaults to 1.

	Raises

	NetworkXError: – if the graph is not connected.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.average_shortest_path_length(G))
2.0

For disconnected graphs you can compute the average shortest path
length for each component:
>>> G=nx.Graph([(1,2),(3,4)])
>>> for g in nx.connected_component_subgraphs(G):
… print(nx.average_shortest_path_length(g))
1.0
1.0

NetworkX

has_path

	
has_path(G, source, target)

	Return True if G has a path from source to target, False otherwise.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

NetworkX

single_source_shortest_path

	
single_source_shortest_path(G, source, cutoff=None)

	Compute shortest path between source
and all other nodes reachable from source.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	cutoff (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	lengths – Dictionary, keyed by target, of shortest paths.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.single_source_shortest_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]

Notes

The shortest path is not necessarily unique. So there can be multiple
paths between the source and each target node, all of which have the
same ‘shortest’ length. For each target node, this function returns
only one of those paths.

See also

shortest_path()

NetworkX

single_source_shortest_path_length

	
single_source_shortest_path_length(G, source, cutoff=None)

	Compute the shortest path lengths from source to all reachable nodes.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	cutoff (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	lengths – Dictionary of shortest path lengths keyed by target.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.single_source_shortest_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

See also

shortest_path_length()

NetworkX

all_pairs_shortest_path

	
all_pairs_shortest_path(G, cutoff=None)

	Compute shortest paths between all nodes.

	Parameters

	
	G (NetworkX graph) –

	cutoff (integer, optional) – Depth at which to stop the search. Only paths of length at most
cutoff are returned.

	Returns

	lengths – Dictionary, keyed by source and target, of shortest paths.

	Return type

	dictionary

Examples

>>> G = nx.path_graph(5)
>>> path = nx.all_pairs_shortest_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]

See also

floyd_warshall()

NetworkX

all_pairs_shortest_path_length

	
all_pairs_shortest_path_length(G, cutoff=None)

	Computes the shortest path lengths between all nodes in G.

	Parameters

	
	G (NetworkX graph) –

	cutoff (integer, optional) – Depth at which to stop the search. Only paths of length at most
cutoff are returned.

	Returns

	lengths – Dictionary of shortest path lengths keyed by source and target.

	Return type

	dictionary

Notes

The dictionary returned only has keys for reachable node pairs.

Examples

>>> G = nx.path_graph(5)
>>> length = nx.all_pairs_shortest_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

NetworkX

predecessor

	
predecessor(G, source, target=None, cutoff=None, return_seen=None)

	Returns dictionary of predecessors for the path from source to all nodes in G.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	target (node label, optional) – Ending node for path. If provided only predecessors between
source and target are returned

	cutoff (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	pred – Dictionary, keyed by node, of predecessors in the shortest path.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(4)
>>> print(G.nodes())
[0, 1, 2, 3]
>>> nx.predecessor(G,0)
{0: [], 1: [0], 2: [1], 3: [2]}

NetworkX

dijkstra_path

	
dijkstra_path(G, source, target, weight='weight')

	Returns the shortest path from source to target in a weighted graph G.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node

	target (node) – Ending node

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	path – List of nodes in a shortest path.

	Return type

	list

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path(G,0,4))
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

bidirectional_dijkstra()

NetworkX

dijkstra_path_length

	
dijkstra_path_length(G, source, target, weight='weight')

	Returns the shortest path length from source to target
in a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – starting node for path

	target (node label) – ending node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	length – Shortest path length.

	Return type

	number

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.dijkstra_path_length(G,0,4))
4

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

bidirectional_dijkstra()

NetworkX

single_source_dijkstra_path

	
single_source_dijkstra_path(G, source, cutoff=None, weight='weight')

	Compute shortest path between source and all other reachable
nodes for a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	paths – Dictionary of shortest path lengths keyed by target.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

single_source_dijkstra()

NetworkX

single_source_dijkstra_path_length

	
single_source_dijkstra_path_length(G, source, cutoff=None, weight='weight')

	Compute the shortest path length between source and all other
reachable nodes for a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight.

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	length – Dictionary of shortest lengths keyed by target.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.single_source_dijkstra_path_length(G,0)
>>> length[4]
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

single_source_dijkstra()

NetworkX

all_pairs_dijkstra_path

	
all_pairs_dijkstra_path(G, cutoff=None, weight='weight')

	Compute shortest paths between all nodes in a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	distance – Dictionary, keyed by source and target, of shortest paths.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> path=nx.all_pairs_dijkstra_path(G)
>>> print(path[0][4])
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

See also

floyd_warshall()

NetworkX

all_pairs_dijkstra_path_length

	
all_pairs_dijkstra_path_length(G, cutoff=None, weight='weight')

	Compute shortest path lengths between all nodes in a weighted graph.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	distance – Dictionary, keyed by source and target, of shortest path lengths.

	Return type

	dictionary

Examples

>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_dijkstra_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

The dictionary returned only has keys for reachable node pairs.

NetworkX

single_source_dijkstra

	
single_source_dijkstra(G, source, target=None, cutoff=None, weight='weight')

	Compute shortest paths and lengths in a weighted graph G.

Uses Dijkstra’s algorithm for shortest paths.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	target (node label, optional) – Ending node for path

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	distance,path – Returns a tuple of two dictionaries keyed by node.
The first dictionary stores distance from the source.
The second stores the path from the source to that node.

	Return type

	dictionaries

Examples

>>> G=nx.path_graph(5)
>>> length,path=nx.single_source_dijkstra(G,0)
>>> print(length[4])
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>> path[4]
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

Based on the Python cookbook recipe (119466) at
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

This algorithm is not guaranteed to work if edge weights
are negative or are floating point numbers
(overflows and roundoff errors can cause problems).

See also

single_source_dijkstra_path(), single_source_dijkstra_path_length()

NetworkX

bidirectional_dijkstra

	
bidirectional_dijkstra(G, source, target, weight='weight')

	Dijkstra’s algorithm for shortest paths using bidirectional search.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node.

	target (node) – Ending node.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	
	length (number) – Shortest path length.

	Returns a tuple of two dictionaries keyed by node.

	The first dictionary stores distance from the source.

	The second stores the path from the source to that node.

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> length,path=nx.bidirectional_dijkstra(G,0,4)
>>> print(length)
4
>>> print(path)
[0, 1, 2, 3, 4]

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

In practice bidirectional Dijkstra is much more than twice as fast as
ordinary Dijkstra.

Ordinary Dijkstra expands nodes in a sphere-like manner from the
source. The radius of this sphere will eventually be the length
of the shortest path. Bidirectional Dijkstra will expand nodes
from both the source and the target, making two spheres of half
this radius. Volume of the first sphere is pi*r*r while the
others are 2*pi*r/2*r/2, making up half the volume.

This algorithm is not guaranteed to work if edge weights
are negative or are floating point numbers
(overflows and roundoff errors can cause problems).

See also

shortest_path(), shortest_path_length()

NetworkX

dijkstra_predecessor_and_distance

	
dijkstra_predecessor_and_distance(G, source, cutoff=None, weight='weight')

	Compute shortest path length and predecessors on shortest paths
in weighted graphs.

	Parameters

	
	G (NetworkX graph) –

	source (node label) – Starting node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	cutoff (integer or float [https://docs.python.org/2/library/functions.html#float], optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	pred,distance – Returns two dictionaries representing a list of predecessors
of a node and the distance to each node.

	Return type

	dictionaries

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

The list of predecessors contains more than one element only when
there are more than one shortest paths to the key node.

NetworkX

bellman_ford

	
bellman_ford(G, source, weight='weight')

	Compute shortest path lengths and predecessors on shortest paths
in weighted graphs.

The algorithm has a running time of O(mn) where n is the number of
nodes and m is the number of edges. It is slower than Dijkstra but
can handle negative edge weights.

	Parameters

	
	G (NetworkX graph) – The algorithm works for all types of graphs, including directed
graphs and multigraphs.

	source (node label) – Starting node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	pred, dist – Returns two dictionaries keyed by node to predecessor in the
path and to the distance from the source respectively.

	Return type

	dictionaries

	Raises

	NetworkXUnbounded – If the (di)graph contains a negative cost (di)cycle, the
algorithm raises an exception to indicate the presence of the
negative cost (di)cycle. Note: any negative weight edge in an
undirected graph is a negative cost cycle.

Examples

>>> import networkx as nx
>>> G = nx.path_graph(5, create_using = nx.DiGraph())
>>> pred, dist = nx.bellman_ford(G, 0)
>>> sorted(pred.items())
[(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]
>>> sorted(dist.items())
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]

>>> from nose.tools import assert_raises
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> G[1][2]['weight'] = -7
>>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0)

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

The dictionaries returned only have keys for nodes reachable from
the source.

In the case where the (di)graph is not connected, if a component
not containing the source contains a negative cost (di)cycle, it
will not be detected.

NetworkX

negative_edge_cycle

	
negative_edge_cycle(G, weight='weight')

	Return True if there exists a negative edge cycle anywhere in G.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight

	Returns

	negative_cycle – True if a negative edge cycle exists, otherwise False.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Examples

>>> import networkx as nx
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> print(nx.negative_edge_cycle(G))
False
>>> G[1][2]['weight'] = -7
>>> print(nx.negative_edge_cycle(G))
True

Notes

Edge weight attributes must be numerical.
Distances are calculated as sums of weighted edges traversed.

This algorithm uses bellman_ford() but finds negative cycles
on any component by first adding a new node connected to
every node, and starting bellman_ford on that node. It then
removes that extra node.

NetworkX

johnson

	
johnson(G, weight='weight')

	Compute shortest paths between all nodes in a weighted graph using
Johnson’s algorithm.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight.

	Returns

	distance – Dictionary, keyed by source and target, of shortest paths.

	Return type

	dictionary

	Raises

	NetworkXError – If given graph is not weighted.

Examples

>>> import networkx as nx
>>> graph = nx.DiGraph()
>>> graph.add_weighted_edges_from([('0', '3', 3), ('0', '1', -5),
... ('0', '2', 2), ('1', '2', 4), ('2', '3', 1)])
>>> paths = nx.johnson(graph, weight='weight')
>>> paths['0']['2']
['0', '1', '2']

Notes

Johnson’s algorithm is suitable even for graphs with negative weights. It
works by using the Bellman–Ford algorithm to compute a transformation of
the input graph that removes all negative weights, allowing Dijkstra’s
algorithm to be used on the transformed graph.

It may be faster than Floyd - Warshall algorithm in sparse graphs.
Algorithm complexity: O(V^2 * logV + V * E)

See also

floyd_warshall_predecessor_and_distance(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length(), all_pairs_dijkstra_path(), bellman_ford()

NetworkX

floyd_warshall

	
floyd_warshall(G, weight='weight')

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – Edge data key corresponding to the edge weight.

	Returns

	distance – A dictionary, keyed by source and target, of shortest paths distances
between nodes.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Notes

Floyd’s algorithm is appropriate for finding shortest paths
in dense graphs or graphs with negative weights when Dijkstra’s algorithm
fails. This algorithm can still fail if there are negative cycles.
It has running time O(n^3) with running space of O(n^2).

See also

floyd_warshall_predecessor_and_distance(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length()

NetworkX

floyd_warshall_predecessor_and_distance

	
floyd_warshall_predecessor_and_distance(G, weight='weight')

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	Parameters

	
	G (NetworkX graph) –

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – Edge data key corresponding to the edge weight.

	Returns

	predecessor,distance – Dictionaries, keyed by source and target, of predecessors and distances
in the shortest path.

	Return type

	dictionaries

Notes

Floyd’s algorithm is appropriate for finding shortest paths
in dense graphs or graphs with negative weights when Dijkstra’s algorithm
fails. This algorithm can still fail if there are negative cycles.
It has running time O(n^3) with running space of O(n^2).

See also

floyd_warshall(), floyd_warshall_numpy(), all_pairs_shortest_path(), all_pairs_shortest_path_length()

NetworkX

floyd_warshall_numpy

	
floyd_warshall_numpy(G, nodelist=None, weight='weight')

	Find all-pairs shortest path lengths using Floyd’s algorithm.

	Parameters

	
	G (NetworkX graph) –

	nodelist (list, optional) – The rows and columns are ordered by the nodes in nodelist.
If nodelist is None then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default= 'weight')) – Edge data key corresponding to the edge weight.

	Returns

	distance – A matrix of shortest path distances between nodes.
If there is no path between to nodes the corresponding matrix entry
will be Inf.

	Return type

	NumPy matrix

Notes

Floyd’s algorithm is appropriate for finding shortest paths in
dense graphs or graphs with negative weights when Dijkstra’s
algorithm fails. This algorithm can still fail if there are
negative cycles. It has running time O(n^3) with running space of O(n^2).

NetworkX

astar_path

	
astar_path(G, source, target, heuristic=None, weight='weight')

	Return a list of nodes in a shortest path between source and target
using the A* (“A-star”) algorithm.

There may be more than one shortest path. This returns only one.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

	heuristic (function) – A function to evaluate the estimate of the distance
from the a node to the target. The function takes
two nodes arguments and must return a number.

	weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='weight')) – Edge data key corresponding to the edge weight.

	Raises

	NetworkXNoPath – If no path exists between source and target.

Examples

>>> G=nx.path_graph(5)
>>> print(nx.astar_path(G,0,4))
[0, 1, 2, 3, 4]
>>> G=nx.grid_graph(dim=[3,3]) # nodes are two-tuples (x,y)
>>> def dist(a, b):
... (x1, y1) = a
... (x2, y2) = b
... return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5
>>> print(nx.astar_path(G,(0,0),(2,2),dist))
[(0, 0), (0, 1), (1, 1), (1, 2), (2, 2)]

See also

shortest_path(), dijkstra_path()

NetworkX

astar_path_length

	
astar_path_length(G, source, target, heuristic=None, weight='weight')

	Return the length of the shortest path between source and target using
the A* (“A-star”) algorithm.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

	heuristic (function) – A function to evaluate the estimate of the distance
from the a node to the target. The function takes
two nodes arguments and must return a number.

	Raises

	NetworkXNoPath – If no path exists between source and target.

See also

astar_path()

NetworkX

Simple Paths

	all_simple_paths(G, source, target[, cutoff])

	Generate all simple paths in the graph G from source to target.

	shortest_simple_paths(G, source, target[, …])

	Generate all simple paths in the graph G from source to target, starting from shortest ones.

NetworkX

all_simple_paths

	
all_simple_paths(G, source, target, cutoff=None)

	Generate all simple paths in the graph G from source to target.

A simple path is a path with no repeated nodes.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

	cutoff (integer, optional) – Depth to stop the search. Only paths of length <= cutoff are returned.

	Returns

	path_generator – A generator that produces lists of simple paths. If there are no paths
between the source and target within the given cutoff the generator
produces no output.

	Return type

	generator

Examples

>>> G = nx.complete_graph(4)
>>> for path in nx.all_simple_paths(G, source=0, target=3):
... print(path)
...
[0, 1, 2, 3]
[0, 1, 3]
[0, 2, 1, 3]
[0, 2, 3]
[0, 3]
>>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
>>> print(list(paths))
[[0, 1, 3], [0, 2, 3], [0, 3]]

Notes

This algorithm uses a modified depth-first search to generate the
paths 1. A single path can be found in \(O(V+E)\) time but the
number of simple paths in a graph can be very large, e.g. \(O(n!)\) in
the complete graph of order n.

References

	1

	R. Sedgewick, “Algorithms in C, Part 5: Graph Algorithms”,
Addison Wesley Professional, 3rd ed., 2001.

See also

all_shortest_paths(), shortest_path()

NetworkX

shortest_simple_paths

	
shortest_simple_paths(G, source, target, weight=None)

	
	Generate all simple paths in the graph G from source to target,

	starting from shortest ones.

A simple path is a path with no repeated nodes.

If a weighted shortest path search is to be used, no negative weights
are allawed.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Starting node for path

	target (node) – Ending node for path

	weight (string [https://docs.python.org/2/library/string.html#module-string]) – Name of the edge attribute to be used as a weight. If None all
edges are considered to have unit weight. Default value None.

	Returns

	path_generator – A generator that produces lists of simple paths, in order from
shortest to longest.

	Return type

	generator

	Raises

	
	NetworkXNoPath – If no path exists between source and target.

	NetworkXError – If source or target nodes are not in the input graph.

	NetworkXNotImplemented – If the input graph is a Multi[Di]Graph.

Examples

>>> G = nx.cycle_graph(7)
>>> paths = list(nx.shortest_simple_paths(G, 0, 3))
>>> print(paths)
[[0, 1, 2, 3], [0, 6, 5, 4, 3]]

You can use this function to efficiently compute the k shortest/best
paths between two nodes.

>>> from itertools import islice
>>> def k_shortest_paths(G, source, target, k, weight=None):
... return list(islice(nx.shortest_simple_paths(G, source, target, weight=weight), k))
>>> for path in k_shortest_paths(G, 0, 3, 2):
... print(path)
[0, 1, 2, 3]
[0, 6, 5, 4, 3]

Notes

This procedure is based on algorithm by Jin Y. Yen 1. Finding
the first K paths requires O(KN^3) operations.

See also

all_shortest_paths(), shortest_path(), all_simple_paths()

References

	1

	Jin Y. Yen, “Finding the K Shortest Loopless Paths in a
Network”, Management Science, Vol. 17, No. 11, Theory Series
(Jul., 1971), pp. 712-716.

NetworkX

Swap

Swap edges in a graph.

	double_edge_swap(G[, nswap, max_tries])

	Swap two edges in the graph while keeping the node degrees fixed.

	connected_double_edge_swap(G[, nswap, …])

	Attempts the specified number of double-edge swaps in the graph G.

NetworkX

double_edge_swap

	
double_edge_swap(G, nswap=1, max_tries=100)

	Swap two edges in the graph while keeping the node degrees fixed.

A double-edge swap removes two randomly chosen edges u-v and x-y
and creates the new edges u-x and v-y:

u--v u v
 becomes | |
x--y x y

If either the edge u-x or v-y already exist no swap is performed
and another attempt is made to find a suitable edge pair.

	Parameters

	
	G (graph) – An undirected graph

	nswap (integer (optional, default=1)) – Number of double-edge swaps to perform

	max_tries (integer (optional)) – Maximum number of attempts to swap edges

	Returns

	G – The graph after double edge swaps.

	Return type

	graph

Notes

Does not enforce any connectivity constraints.

The graph G is modified in place.

NetworkX

connected_double_edge_swap

	
connected_double_edge_swap(G, nswap=1, _window_threshold=3)

	Attempts the specified number of double-edge swaps in the graph G.

A double-edge swap removes two randomly chosen edges (u, v) and (x,
y) and creates the new edges (u, x) and (v, y):

u--v u v
 becomes | |
x--y x y

If either (u, x) or (v, y) already exist, then no swap is performed
so the actual number of swapped edges is always at most nswap.

	Parameters

	
	G (graph) – An undirected graph

	nswap (integer (optional, default=1)) – Number of double-edge swaps to perform

	_window_threshold (integer) – The window size below which connectedness of the graph will be checked
after each swap.

The “window” in this function is a dynamically updated integer that
represents the number of swap attempts to make before checking if the
graph remains connected. It is an optimization used to decrease the
running time of the algorithm in exchange for increased complexity of
implementation.

If the window size is below this threshold, then the algorithm checks
after each swap if the graph remains connected by checking if there is a
path joining the two nodes whose edge was just removed. If the window
size is above this threshold, then the algorithm performs do all the
swaps in the window and only then check if the graph is still connected.

	Returns

	The number of successful swaps

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	Raises

	NetworkXError – If the input graph is not connected, or if the graph has fewer than four
nodes.

Notes

The initial graph G must be connected, and the resulting graph is
connected. The graph G is modified in place.

References

	1

	C. Gkantsidis and M. Mihail and E. Zegura,
The Markov chain simulation method for generating connected
power law random graphs, 2003.
http://citeseer.ist.psu.edu/gkantsidis03markov.html

NetworkX

Traversal

Depth First Search

Depth-first search

Basic algorithms for depth-first searching the nodes of a graph.

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

	dfs_edges(G[, source])

	Produce edges in a depth-first-search (DFS).

	dfs_tree(G, source)

	Return oriented tree constructed from a depth-first-search from source.

	dfs_predecessors(G[, source])

	Return dictionary of predecessors in depth-first-search from source.

	dfs_successors(G[, source])

	Return dictionary of successors in depth-first-search from source.

	dfs_preorder_nodes(G[, source])

	Produce nodes in a depth-first-search pre-ordering starting from source.

	dfs_postorder_nodes(G[, source])

	Produce nodes in a depth-first-search post-ordering starting from source.

	dfs_labeled_edges(G[, source])

	Produce edges in a depth-first-search (DFS) labeled by type.

Breadth First Search

Breadth-first search

Basic algorithms for breadth-first searching the nodes of a graph.

	bfs_edges(G, source[, reverse])

	Produce edges in a breadth-first-search starting at source.

	bfs_tree(G, source[, reverse])

	Return an oriented tree constructed from of a breadth-first-search starting at source.

	bfs_predecessors(G, source)

	Return dictionary of predecessors in breadth-first-search from source.

	bfs_successors(G, source)

	Return dictionary of successors in breadth-first-search from source.

Depth First Search on Edges

Depth First Search on Edges

Algorithms for a depth-first traversal of edges in a graph.

	edge_dfs(G[, source, orientation])

	A directed, depth-first traversal of edges in G, beginning at source.

NetworkX

dfs_edges

	
dfs_edges(G, source=None)

	Produce edges in a depth-first-search (DFS).

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	edges – A generator of edges in the depth-first-search.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_tree

	
dfs_tree(G, source)

	Return oriented tree constructed from a depth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search.

	Returns

	T – An oriented tree

	Return type

	NetworkX DiGraph

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> T = nx.dfs_tree(G,0)
>>> print(T.edges())
[(0, 1), (1, 2)]

NetworkX

dfs_predecessors

	
dfs_predecessors(G, source=None)

	Return dictionary of predecessors in depth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	pred – A dictionary with nodes as keys and predecessor nodes as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_predecessors(G,0))
{1: 0, 2: 1}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_successors

	
dfs_successors(G, source=None)

	Return dictionary of successors in depth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	succ – A dictionary with nodes as keys and list of successor nodes as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.dfs_successors(G,0))
{0: [1], 1: [2]}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_preorder_nodes

	
dfs_preorder_nodes(G, source=None)

	Produce nodes in a depth-first-search pre-ordering starting
from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	nodes – A generator of nodes in a depth-first-search pre-ordering.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_preorder_nodes(G,0)))
[0, 1, 2]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_postorder_nodes

	
dfs_postorder_nodes(G, source=None)

	Produce nodes in a depth-first-search post-ordering starting
from source.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	nodes – A generator of nodes in a depth-first-search post-ordering.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.dfs_postorder_nodes(G,0)))
[2, 1, 0]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

dfs_labeled_edges

	
dfs_labeled_edges(G, source=None)

	Produce edges in a depth-first-search (DFS) labeled by type.

	Parameters

	
	G (NetworkX graph) –

	source (node, optional) – Specify starting node for depth-first search and return edges in
the component reachable from source.

	Returns

	edges – A generator of edges in the depth-first-search labeled with ‘forward’,
‘nontree’, and ‘reverse’.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> edges = (list(nx.dfs_labeled_edges(G,0)))

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py
by D. Eppstein, July 2004.

If a source is not specified then a source is chosen arbitrarily and
repeatedly until all components in the graph are searched.

NetworkX

bfs_edges

	
bfs_edges(G, source, reverse=False)

	Produce edges in a breadth-first-search starting at source.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Specify starting node for breadth-first search and return edges in
the component reachable from source.

	reverse (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True traverse a directed graph in the reverse direction

	Returns

	edges – A generator of edges in the breadth-first-search.

	Return type

	generator

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.

NetworkX

bfs_tree

	
bfs_tree(G, source, reverse=False)

	Return an oriented tree constructed from of a breadth-first-search
starting at source.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Specify starting node for breadth-first search and return edges in
the component reachable from source.

	reverse (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True traverse a directed graph in the reverse direction

	Returns

	T – An oriented tree

	Return type

	NetworkX DiGraph

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(list(nx.bfs_edges(G,0)))
[(0, 1), (1, 2)]

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.

NetworkX

bfs_predecessors

	
bfs_predecessors(G, source)

	Return dictionary of predecessors in breadth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Specify starting node for breadth-first search and return edges in
the component reachable from source.

	Returns

	pred – A dictionary with nodes as keys and predecessor nodes as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_predecessors(G,0))
{1: 0, 2: 1}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.

NetworkX

bfs_successors

	
bfs_successors(G, source)

	Return dictionary of successors in breadth-first-search from source.

	Parameters

	
	G (NetworkX graph) –

	source (node) – Specify starting node for breadth-first search and return edges in
the component reachable from source.

	Returns

	succ – A dictionary with nodes as keys and list of succssors nodes as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print(nx.bfs_successors(G,0))
{0: [1], 1: [2]}

Notes

Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py
by D. Eppstein, July 2004.

NetworkX

edge_dfs

	
edge_dfs(G, source=None, orientation='original')

	A directed, depth-first traversal of edges in G, beginning at source.

	Parameters

	
	G (graph) – A directed/undirected graph/multigraph.

	source (node, list of nodes) – The node from which the traversal begins. If None, then a source
is chosen arbitrarily and repeatedly until all edges from each node in
the graph are searched.

	orientation ('original' | 'reverse' | 'ignore') – For directed graphs and directed multigraphs, edge traversals need not
respect the original orientation of the edges. When set to ‘reverse’,
then every edge will be traversed in the reverse direction. When set to
‘ignore’, then each directed edge is treated as a single undirected
edge that can be traversed in either direction. For undirected graphs
and undirected multigraphs, this parameter is meaningless and is not
consulted by the algorithm.

	Yields

	edge (directed edge) – A directed edge indicating the path taken by the depth-first traversal.
For graphs, edge is of the form (u, v) where u and v
are the tail and head of the edge as determined by the traversal. For
multigraphs, edge is of the form (u, v, key), where \(key\) is
the key of the edge. When the graph is directed, then u and v
are always in the order of the actual directed edge. If orientation is
‘reverse’ or ‘ignore’, then edge takes the form
(u, v, key, direction) where direction is a string, ‘forward’ or
‘reverse’, that indicates if the edge was traversed in the forward
(tail to head) or reverse (head to tail) direction, respectively.

Examples

>>> import networkx as nx
>>> nodes = [0, 1, 2, 3]
>>> edges = [(0, 1), (1, 0), (1, 0), (2, 1), (3, 1)]

>>> list(nx.edge_dfs(nx.Graph(edges), nodes))
[(0, 1), (1, 2), (1, 3)]

>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes))
[(0, 1), (1, 0), (2, 1), (3, 1)]

>>> list(nx.edge_dfs(nx.MultiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 1), (0, 1, 2), (1, 2, 0), (1, 3, 0)]

>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes))
[(0, 1, 0), (1, 0, 0), (1, 0, 1), (2, 1, 0), (3, 1, 0)]

>>> list(nx.edge_dfs(nx.DiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 'forward'), (1, 0, 'forward'), (2, 1, 'reverse'), (3, 1, 'reverse')]

>>> list(nx.edge_dfs(nx.MultiDiGraph(edges), nodes, orientation='ignore'))
[(0, 1, 0, 'forward'), (1, 0, 0, 'forward'), (1, 0, 1, 'reverse'), (2, 1, 0, 'reverse'), (3, 1, 0, 'reverse')]

Notes

The goal of this function is to visit edges. It differs from the more
familiar depth-first traversal of nodes, as provided by
networkx.algorithms.traversal.depth_first_search.dfs_edges(), in
that it does not stop once every node has been visited. In a directed graph
with edges [(0, 1), (1, 2), (2, 1)], the edge (2, 1) would not be visited
if not for the functionality provided by this function.

See also

dfs_edges()

NetworkX

Tree

Recognition

Recognition Tests

A forest is an acyclic, undirected graph, and a tree is a connected forest.
Depending on the subfield, there are various conventions for generalizing these
definitions to directed graphs.

In one convention, directed variants of forest and tree are defined in an
identical manner, except that the direction of the edges is ignored. In effect,
each directed edge is treated as a single undirected edge. Then, additional
restrictions are imposed to define branchings and arborescences.

In another convention, directed variants of forest and tree correspond to
the previous convention’s branchings and arborescences, respectively. Then two
new terms, polyforest and polytree, are defined to correspond to the other
convention’s forest and tree.

Summarizing:

+-----------------------------+
| Convention A | Convention B |
+=============================+
forest	polyforest
tree	polytree
branching	forest
arborescence	tree
+-----------------------------+

Each convention has its reasons. The first convention emphasizes definitional
similarity in that directed forests and trees are only concerned with
acyclicity and do not have an in-degree constraint, just as their undirected
counterparts do not. The second convention emphasizes functional similarity
in the sense that the directed analog of a spanning tree is a spanning
arborescence. That is, take any spanning tree and choose one node as the root.
Then every edge is assigned a direction such there is a directed path from the
root to every other node. The result is a spanning arborescence.

NetworkX follows convention “A”. Explicitly, these are:

	undirected forest

	An undirected graph with no undirected cycles.

	undirected tree

	A connected, undirected forest.

	directed forest

	A directed graph with no undirected cycles. Equivalently, the underlying
graph structure (which ignores edge orientations) is an undirected forest.
In convention B, this is known as a polyforest.

	directed tree

	A weakly connected, directed forest. Equivalently, the underlying graph
structure (which ignores edge orientations) is an undirected tree. In
convention B, this is known as a polytree.

	branching

	A directed forest with each node having, at most, one parent. So the maximum
in-degree is equal to 1. In convention B, this is known as a forest.

	arborescence

	A directed tree with each node having, at most, one parent. So the maximum
in-degree is equal to 1. In convention B, this is known as a tree.

For trees and arborescences, the adjective “spanning” may be added to designate
that the graph, when considered as a forest/branching, consists of a single
tree/arborescence that includes all nodes in the graph. It is true, by
definition, that every tree/arborescence is spanning with respect to the nodes
that define the tree/arborescence and so, it might seem redundant to introduce
the notion of “spanning”. However, the nodes may represent a subset of
nodes from a larger graph, and it is in this context that the term “spanning”
becomes a useful notion.

	is_tree(G)

	Returns True if G is a tree.

	is_forest(G)

	Returns True if G is a forest.

	is_arborescence(G)

	Returns True if G is an arborescence.

	is_branching(G)

	Returns True if G is a branching.

Branchings and Spanning Arborescences

Algorithms for finding optimum branchings and spanning arborescences.

This implementation is based on:

J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967),
233–240. URL: http://archive.org/details/jresv71Bn4p233

	branching_weight(G[, attr, default])

	Returns the total weight of a branching.

	greedy_branching(G[, attr, default, kind])

	Returns a branching obtained through a greedy algorithm.

	maximum_branching(G[, attr, default])

	Returns a maximum branching from G.

	minimum_branching(G[, attr, default])

	Returns a minimum branching from G.

	maximum_spanning_arborescence(G[, attr, default])

	Returns a maximum spanning arborescence from G.

	minimum_spanning_arborescence(G[, attr, default])

	Returns a minimum spanning arborescence from G.

	Edmonds(G[, seed])

	Edmonds algorithm for finding optimal branchings and spanning arborescences.

NetworkX

is_tree

	
is_tree(G)

	Returns True if G is a tree.

A tree is a connected graph with no undirected cycles.

For directed graphs, G is a tree if the underlying graph is a tree. The
underlying graph is obtained by treating each directed edge as a single
undirected edge in a multigraph.

	Parameters

	G (graph) – The graph to test.

	Returns

	b – A boolean that is True if G is a tree.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

In another convention, a directed tree is known as a polytree and then
tree corresponds to an arborescence.

See also

is_arborescence()

NetworkX

is_forest

	
is_forest(G)

	Returns True if G is a forest.

A forest is a graph with no undirected cycles.

For directed graphs, G is a forest if the underlying graph is a forest.
The underlying graph is obtained by treating each directed edge as a single
undirected edge in a multigraph.

	Parameters

	G (graph) – The graph to test.

	Returns

	b – A boolean that is True if G is a forest.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

In another convention, a directed forest is known as a polyforest and
then forest corresponds to a branching.

See also

is_branching()

NetworkX

is_arborescence

	
is_arborescence(G)

	Returns True if G is an arborescence.

An arborescence is a directed tree with maximum in-degree equal to 1.

	Parameters

	G (graph) – The graph to test.

	Returns

	b – A boolean that is True if G is an arborescence.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

In another convention, an arborescence is known as a tree.

See also

is_tree()

NetworkX

is_branching

	
is_branching(G)

	Returns True if G is a branching.

A branching is a directed forest with maximum in-degree equal to 1.

	Parameters

	G (directed graph) – The directed graph to test.

	Returns

	b – A boolean that is True if G is a branching.

	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]

Notes

In another convention, a branching is also known as a forest.

See also

is_forest()

NetworkX

branching_weight

	
branching_weight(G, attr='weight', default=1)

	Returns the total weight of a branching.

NetworkX

greedy_branching

	
greedy_branching(G, attr='weight', default=1, kind='max')

	Returns a branching obtained through a greedy algorithm.

This algorithm is wrong, and cannot give a proper optimal branching.
However, we include it for pedagogical reasons, as it can be helpful to
see what its outputs are.

The output is a branching, and possibly, a spanning arborescence. However,
it is not guaranteed to be optimal in either case.

	Parameters

	
	G (DiGraph) – The directed graph to scan.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The attribute to use as weights. If None, then each edge will be
treated equally with a weight of 1.

	default (float [https://docs.python.org/2/library/functions.html#float]) – When \(attr\) is not None, then if an edge does not have that attribute,
\(default\) specifies what value it should take.

	kind (str [https://docs.python.org/2/library/functions.html#str]) – The type of optimum to search for: ‘min’ or ‘max’ greedy branching.

	Returns

	B – The greedily obtained branching.

	Return type

	directed graph

NetworkX

maximum_branching

	
maximum_branching(G, attr='weight', default=1)

	Returns a maximum branching from G.

	Parameters

	
	G ((multi)digraph-like) – The graph to be searched.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The edge attribute used to in determining optimality.

	default (float [https://docs.python.org/2/library/functions.html#float]) – The value of the edge attribute used if an edge does not have
the attribute \(attr\).

	Returns

	B – A maximum branching.

	Return type

	(multi)digraph-like

NetworkX

minimum_branching

	
minimum_branching(G, attr='weight', default=1)

	Returns a minimum branching from G.

	Parameters

	
	G ((multi)digraph-like) – The graph to be searched.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The edge attribute used to in determining optimality.

	default (float [https://docs.python.org/2/library/functions.html#float]) – The value of the edge attribute used if an edge does not have
the attribute \(attr\).

	Returns

	B – A minimum branching.

	Return type

	(multi)digraph-like

NetworkX

maximum_spanning_arborescence

	
maximum_spanning_arborescence(G, attr='weight', default=1)

	Returns a maximum spanning arborescence from G.

	Parameters

	
	G ((multi)digraph-like) – The graph to be searched.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The edge attribute used to in determining optimality.

	default (float [https://docs.python.org/2/library/functions.html#float]) – The value of the edge attribute used if an edge does not have
the attribute \(attr\).

	Returns

	B – A maximum spanning arborescence.

	Return type

	(multi)digraph-like

	Raises

	NetworkXException – If the graph does not contain a maximum spanning arborescence.

NetworkX

minimum_spanning_arborescence

	
minimum_spanning_arborescence(G, attr='weight', default=1)

	Returns a minimum spanning arborescence from G.

	Parameters

	
	G ((multi)digraph-like) – The graph to be searched.

	attr (str [https://docs.python.org/2/library/functions.html#str]) – The edge attribute used to in determining optimality.

	default (float [https://docs.python.org/2/library/functions.html#float]) – The value of the edge attribute used if an edge does not have
the attribute \(attr\).

	Returns

	B – A minimum spanning arborescence.

	Return type

	(multi)digraph-like

	Raises

	NetworkXException – If the graph does not contain a minimum spanning arborescence.

NetworkX

Edmonds

	
class Edmonds(G, seed=None)

	Edmonds algorithm for finding optimal branchings and spanning arborescences.

	
__init__(G, seed=None)

	

Methods

	__init__(G[, seed])

	

	find_optimum([attr, default, kind, style])

	Returns a branching from G.

NetworkX

Triads

Functions for analyzing triads of a graph.

	triadic_census(G)

	Determines the triadic census of a directed graph.

NetworkX

triadic_census

	
triadic_census(G)

	Determines the triadic census of a directed graph.

The triadic census is a count of how many of the 16 possible types of
triads are present in a directed graph.

	Parameters

	G (digraph) – A NetworkX DiGraph

	Returns

	census – Dictionary with triad names as keys and number of occurrences as values.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Notes

This algorithm has complexity \(O(m)\) where \(m\) is the number of edges in
the graph.

References

	1

	Vladimir Batagelj and Andrej Mrvar, A subquadratic triad census
algorithm for large sparse networks with small maximum degree,
University of Ljubljana,
http://vlado.fmf.uni-lj.si/pub/networks/doc/triads/triads.pdf

NetworkX

Vitality

Vitality measures.

	closeness_vitality(G[, weight])

	Compute closeness vitality for nodes.

NetworkX

closeness_vitality

	
closeness_vitality(G, weight=None)

	Compute closeness vitality for nodes.

Closeness vitality of a node is the change in the sum of distances
between all node pairs when excluding that node.

	Parameters

	
	G (graph) –

	weight (None [https://docs.python.org/2/library/constants.html#None] or string [https://docs.python.org/2/library/string.html#module-string] (optional)) – The name of the edge attribute used as weight. If None the edge
weights are ignored.

	Returns

	nodes – Dictionary with nodes as keys and closeness vitality as the value.

	Return type

	dictionary

Examples

>>> G=nx.cycle_graph(3)
>>> nx.closeness_vitality(G)
{0: 4.0, 1: 4.0, 2: 4.0}

See also

closeness_centrality()

References

	1

	Ulrik Brandes, Sec. 3.6.2 in
Network Analysis: Methodological Foundations, Springer, 2005.
http://books.google.com/books?id=TTNhSm7HYrIC

NetworkX

Functions

Functional interface to graph methods and assorted utilities.

Graph

	degree(G[, nbunch, weight])

	Return degree of single node or of nbunch of nodes.

	degree_histogram(G)

	Return a list of the frequency of each degree value.

	density(G)

	Return the density of a graph.

	info(G[, n])

	Print short summary of information for the graph G or the node n.

	create_empty_copy(G[, with_nodes])

	Return a copy of the graph G with all of the edges removed.

	is_directed(G)

	Return True if graph is directed.

Nodes

	nodes(G)

	Return a copy of the graph nodes in a list.

	number_of_nodes(G)

	Return the number of nodes in the graph.

	nodes_iter(G)

	Return an iterator over the graph nodes.

	all_neighbors(graph, node)

	Returns all of the neighbors of a node in the graph.

	non_neighbors(graph, node)

	Returns the non-neighbors of the node in the graph.

	common_neighbors(G, u, v)

	Return the common neighbors of two nodes in a graph.

Edges

	edges(G[, nbunch])

	Return list of edges incident to nodes in nbunch.

	number_of_edges(G)

	Return the number of edges in the graph.

	edges_iter(G[, nbunch])

	Return iterator over edges incident to nodes in nbunch.

	non_edges(graph)

	Returns the non-existent edges in the graph.

Attributes

	set_node_attributes(G, name, values)

	Set node attributes from dictionary of nodes and values

	get_node_attributes(G, name)

	Get node attributes from graph

	set_edge_attributes(G, name, values)

	Set edge attributes from dictionary of edge tuples and values.

	get_edge_attributes(G, name)

	Get edge attributes from graph

Freezing graph structure

	freeze(G)

	Modify graph to prevent further change by adding or removing nodes or edges.

	is_frozen(G)

	Return True if graph is frozen.

NetworkX

degree

	
degree(G, nbunch=None, weight=None)

	Return degree of single node or of nbunch of nodes.
If nbunch is ommitted, then return degrees of all nodes.

NetworkX

degree_histogram

	
degree_histogram(G)

	Return a list of the frequency of each degree value.

	Parameters

	G (Networkx graph) – A graph

	Returns

	hist – A list of frequencies of degrees.
The degree values are the index in the list.

	Return type

	list

Notes

Note: the bins are width one, hence len(list) can be large
(Order(number_of_edges))

NetworkX

density

	
density(G)

	Return the density of a graph.

The density for undirected graphs is

\[d = \frac{2m}{n(n-1)},\]

and for directed graphs is

\[d = \frac{m}{n(n-1)},\]

where \(n\) is the number of nodes and \(m\) is the number of edges in \(G\).

Notes

The density is 0 for a graph without edges and 1 for a complete graph.
The density of multigraphs can be higher than 1.

Self loops are counted in the total number of edges so graphs with self
loops can have density higher than 1.

NetworkX

info

	
info(G, n=None)

	Print short summary of information for the graph G or the node n.

	Parameters

	
	G (Networkx graph) – A graph

	n (node (any hashable)) – A node in the graph G

NetworkX

create_empty_copy

	
create_empty_copy(G, with_nodes=True)

	Return a copy of the graph G with all of the edges removed.

	Parameters

	
	G (graph) – A NetworkX graph

	with_nodes (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Include nodes.

Notes

Graph, node, and edge data is not propagated to the new graph.

NetworkX

is_directed

	
is_directed(G)

	Return True if graph is directed.

NetworkX

nodes

	
nodes(G)

	Return a copy of the graph nodes in a list.

NetworkX

number_of_nodes

	
number_of_nodes(G)

	Return the number of nodes in the graph.

NetworkX

nodes_iter

	
nodes_iter(G)

	Return an iterator over the graph nodes.

NetworkX

all_neighbors

	
all_neighbors(graph, node)

	Returns all of the neighbors of a node in the graph.

If the graph is directed returns predecessors as well as successors.

	Parameters

	
	graph (NetworkX graph) – Graph to find neighbors.

	node (node) – The node whose neighbors will be returned.

	Returns

	neighbors – Iterator of neighbors

	Return type

	iterator

NetworkX

non_neighbors

	
non_neighbors(graph, node)

	Returns the non-neighbors of the node in the graph.

	Parameters

	
	graph (NetworkX graph) – Graph to find neighbors.

	node (node) – The node whose neighbors will be returned.

	Returns

	non_neighbors – Iterator of nodes in the graph that are not neighbors of the node.

	Return type

	iterator

NetworkX

common_neighbors

	
common_neighbors(G, u, v)

	Return the common neighbors of two nodes in a graph.

	Parameters

	
	G (graph) – A NetworkX undirected graph.

	v (u,) – Nodes in the graph.

	Returns

	cnbors – Iterator of common neighbors of u and v in the graph.

	Return type

	iterator

	Raises

	NetworkXError – If u or v is not a node in the graph.

Examples

>>> G = nx.complete_graph(5)
>>> sorted(nx.common_neighbors(G, 0, 1))
[2, 3, 4]

NetworkX

edges

	
edges(G, nbunch=None)

	Return list of edges incident to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out_edges

NetworkX

number_of_edges

	
number_of_edges(G)

	Return the number of edges in the graph.

NetworkX

edges_iter

	
edges_iter(G, nbunch=None)

	Return iterator over edges incident to nodes in nbunch.

Return all edges if nbunch is unspecified or nbunch=None.

For digraphs, edges=out_edges

NetworkX

non_edges

	
non_edges(graph)

	Returns the non-existent edges in the graph.

	Parameters

	graph (NetworkX graph.) – Graph to find non-existent edges.

	Returns

	non_edges – Iterator of edges that are not in the graph.

	Return type

	iterator

NetworkX

set_node_attributes

	
set_node_attributes(G, name, values)

	Set node attributes from dictionary of nodes and values

	Parameters

	
	G (NetworkX Graph) –

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Attribute name

	values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dictionary of attribute values keyed by node. If \(values\) is not a
dictionary, then it is treated as a single attribute value that is then
applied to every node in \(G\).

Examples

>>> G = nx.path_graph(3)
>>> bb = nx.betweenness_centrality(G)
>>> nx.set_node_attributes(G, 'betweenness', bb)
>>> G.node[1]['betweenness']
1.0

NetworkX

get_node_attributes

	
get_node_attributes(G, name)

	Get node attributes from graph

	Parameters

	
	G (NetworkX Graph) –

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Attribute name

	Returns

	

	Return type

	Dictionary of attributes keyed by node.

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([1,2,3],color='red')
>>> color=nx.get_node_attributes(G,'color')
>>> color[1]
'red'

NetworkX

set_edge_attributes

	
set_edge_attributes(G, name, values)

	Set edge attributes from dictionary of edge tuples and values.

	Parameters

	
	G (NetworkX Graph) –

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Attribute name

	values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dictionary of attribute values keyed by edge (tuple). For multigraphs,
the keys tuples must be of the form (u, v, key). For non-multigraphs,
the keys must be tuples of the form (u, v). If \(values\) is not a
dictionary, then it is treated as a single attribute value that is then
applied to every edge in \(G\).

Examples

>>> G = nx.path_graph(3)
>>> bb = nx.edge_betweenness_centrality(G, normalized=False)
>>> nx.set_edge_attributes(G, 'betweenness', bb)
>>> G[1][2]['betweenness']
2.0

NetworkX

get_edge_attributes

	
get_edge_attributes(G, name)

	Get edge attributes from graph

	Parameters

	
	G (NetworkX Graph) –

	name (string [https://docs.python.org/2/library/string.html#module-string]) – Attribute name

	Returns

	
	Dictionary of attributes keyed by edge. For (di)graphs, the keys are

	2-tuples of the form ((u,v). For multi(di)graphs, the keys are 3-tuples of)

	the form ((u, v, key).)

Examples

>>> G=nx.Graph()
>>> G.add_path([1,2,3],color='red')
>>> color=nx.get_edge_attributes(G,'color')
>>> color[(1,2)]
'red'

NetworkX

freeze

	
freeze(G)

	Modify graph to prevent further change by adding or removing
nodes or edges.

Node and edge data can still be modified.

	Parameters

	G (graph) – A NetworkX graph

Examples

>>> G=nx.Graph()
>>> G.add_path([0,1,2,3])
>>> G=nx.freeze(G)
>>> try:
... G.add_edge(4,5)
... except nx.NetworkXError as e:
... print(str(e))
Frozen graph can't be modified

Notes

To “unfreeze” a graph you must make a copy by creating a new graph object:

>>> graph = nx.path_graph(4)
>>> frozen_graph = nx.freeze(graph)
>>> unfrozen_graph = nx.Graph(frozen_graph)
>>> nx.is_frozen(unfrozen_graph)
False

See also

is_frozen()

NetworkX

is_frozen

	
is_frozen(G)

	Return True if graph is frozen.

	Parameters

	G (graph) – A NetworkX graph

See also

freeze()

NetworkX

Graph generators

Atlas

Generators for the small graph atlas.

See
“An Atlas of Graphs” by Ronald C. Read and Robin J. Wilson,
Oxford University Press, 1998.

Because of its size, this module is not imported by default.

	graph_atlas_g()

	Return the list [G0,G1,…,G1252] of graphs as named in the Graph Atlas.

Classic

Generators for some classic graphs.

The typical graph generator is called as follows:

>>> G=nx.complete_graph(100)

returning the complete graph on n nodes labeled 0,..,99
as a simple graph. Except for empty_graph, all the generators
in this module return a Graph class (i.e. a simple, undirected graph).

	balanced_tree(r, h[, create_using])

	Return the perfectly balanced r-tree of height h.

	barbell_graph(m1, m2[, create_using])

	Return the Barbell Graph: two complete graphs connected by a path.

	complete_graph(n[, create_using])

	Return the complete graph K_n with n nodes.

	complete_multipartite_graph(*block_sizes)

	Returns the complete multipartite graph with the specified block sizes.

	circular_ladder_graph(n[, create_using])

	Return the circular ladder graph CL_n of length n.

	cycle_graph(n[, create_using])

	Return the cycle graph C_n over n nodes.

	dorogovtsev_goltsev_mendes_graph(n[, …])

	Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

	empty_graph([n, create_using])

	Return the empty graph with n nodes and zero edges.

	grid_2d_graph(m, n[, periodic, create_using])

	Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors.

	grid_graph(dim[, periodic])

	Return the n-dimensional grid graph.

	hypercube_graph(n)

	Return the n-dimensional hypercube.

	ladder_graph(n[, create_using])

	Return the Ladder graph of length n.

	lollipop_graph(m, n[, create_using])

	Return the Lollipop Graph; \(K_m\) connected to \(P_n\).

	null_graph([create_using])

	Return the Null graph with no nodes or edges.

	path_graph(n[, create_using])

	Return the Path graph P_n of n nodes linearly connected by n-1 edges.

	star_graph(n[, create_using])

	Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.

	trivial_graph([create_using])

	Return the Trivial graph with one node (with integer label 0) and no edges.

	wheel_graph(n[, create_using])

	Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.

Expanders

Provides explicit constructions of expander graphs.

	margulis_gabber_galil_graph(n[, create_using])

	Return the Margulis-Gabber-Galil undirected MultiGraph on \(n^2\) nodes.

	chordal_cycle_graph(p[, create_using])

	Return the chordal cycle graph on \(p\) nodes.

Small

Various small and named graphs, together with some compact generators.

	make_small_graph(graph_description[, …])

	Return the small graph described by graph_description.

	LCF_graph(n, shift_list, repeats[, create_using])

	Return the cubic graph specified in LCF notation.

	bull_graph([create_using])

	Return the Bull graph.

	chvatal_graph([create_using])

	Return the Chvátal graph.

	cubical_graph([create_using])

	Return the 3-regular Platonic Cubical graph.

	desargues_graph([create_using])

	Return the Desargues graph.

	diamond_graph([create_using])

	Return the Diamond graph.

	dodecahedral_graph([create_using])

	Return the Platonic Dodecahedral graph.

	frucht_graph([create_using])

	Return the Frucht Graph.

	heawood_graph([create_using])

	Return the Heawood graph, a (3,6) cage.

	house_graph([create_using])

	Return the House graph (square with triangle on top).

	house_x_graph([create_using])

	Return the House graph with a cross inside the house square.

	icosahedral_graph([create_using])

	Return the Platonic Icosahedral graph.

	krackhardt_kite_graph([create_using])

	Return the Krackhardt Kite Social Network.

	moebius_kantor_graph([create_using])

	Return the Moebius-Kantor graph.

	octahedral_graph([create_using])

	Return the Platonic Octahedral graph.

	pappus_graph()

	Return the Pappus graph.

	petersen_graph([create_using])

	Return the Petersen graph.

	sedgewick_maze_graph([create_using])

	Return a small maze with a cycle.

	tetrahedral_graph([create_using])

	Return the 3-regular Platonic Tetrahedral graph.

	truncated_cube_graph([create_using])

	Return the skeleton of the truncated cube.

	truncated_tetrahedron_graph([create_using])

	Return the skeleton of the truncated Platonic tetrahedron.

	tutte_graph([create_using])

	Return the Tutte graph.

Random Graphs

Generators for random graphs.

	fast_gnp_random_graph(n, p[, seed, directed])

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

	gnp_random_graph(n, p[, seed, directed])

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

	dense_gnm_random_graph(n, m[, seed])

	Returns a \(G_{n,m}\) random graph.

	gnm_random_graph(n, m[, seed, directed])

	Returns a \(G_{n,m}\) random graph.

	erdos_renyi_graph(n, p[, seed, directed])

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

	binomial_graph(n, p[, seed, directed])

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or a binomial graph.

	newman_watts_strogatz_graph(n, k, p[, seed])

	Return a Newman–Watts–Strogatz small-world graph.

	watts_strogatz_graph(n, k, p[, seed])

	Return a Watts–Strogatz small-world graph.

	connected_watts_strogatz_graph(n, k, p[, …])

	Returns a connected Watts–Strogatz small-world graph.

	random_regular_graph(d, n[, seed])

	Returns a random d-regular graph on n nodes.

	barabasi_albert_graph(n, m[, seed])

	Returns a random graph according to the Barabási–Albert preferential attachment model.

	powerlaw_cluster_graph(n, m, p[, seed])

	Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering.

	duplication_divergence_graph(n, p[, seed])

	Returns an undirected graph using the duplication-divergence model.

	random_lobster(n, p1, p2[, seed])

	Returns a random lobster graph.

	random_shell_graph(constructor[, seed])

	Returns a random shell graph for the constructor given.

	random_powerlaw_tree(n[, gamma, seed, tries])

	Returns a tree with a power law degree distribution.

	random_powerlaw_tree_sequence(n[, gamma, …])

	Returns a degree sequence for a tree with a power law distribution.

Degree Sequence

Generate graphs with a given degree sequence or expected degree sequence.

	configuration_model(deg_sequence[, …])

	Return a random graph with the given degree sequence.

	directed_configuration_model(…[, …])

	Return a directed_random graph with the given degree sequences.

	expected_degree_graph(w[, seed, selfloops])

	Return a random graph with given expected degrees.

	havel_hakimi_graph(deg_sequence[, create_using])

	Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm.

	directed_havel_hakimi_graph(in_deg_sequence, …)

	Return a directed graph with the given degree sequences.

	degree_sequence_tree(deg_sequence[, …])

	Make a tree for the given degree sequence.

	random_degree_sequence_graph(sequence[, …])

	Return a simple random graph with the given degree sequence.

Random Clustered

Generate graphs with given degree and triangle sequence.

	random_clustered_graph(joint_degree_sequence)

	Generate a random graph with the given joint independent edge degree and triangle degree sequence.

Directed

Generators for some directed graphs, including growing network (GN) graphs and
scale-free graphs.

	gn_graph(n[, kernel, create_using, seed])

	Return the growing network (GN) digraph with n nodes.

	gnr_graph(n, p[, create_using, seed])

	Return the growing network with redirection (GNR) digraph with n nodes and redirection probability p.

	gnc_graph(n[, create_using, seed])

	Return the growing network with copying (GNC) digraph with n nodes.

	scale_free_graph(n[, alpha, beta, gamma, …])

	Returns a scale-free directed graph.

Geometric

Generators for geometric graphs.

	random_geometric_graph(n, radius[, dim, pos])

	Returns a random geometric graph in the unit cube.

	geographical_threshold_graph(n, theta[, …])

	Returns a geographical threshold graph.

	waxman_graph(n[, alpha, beta, L, domain])

	Return a Waxman random graph.

	navigable_small_world_graph(n[, p, q, r, …])

	Return a navigable small-world graph.

Line Graph

Functions for generating line graphs.

	line_graph(G[, create_using])

	Returns the line graph of the graph or digraph G.

Ego Graph

Ego graph.

	ego_graph(G, n[, radius, center, …])

	Returns induced subgraph of neighbors centered at node n within a given radius.

Stochastic

Functions for generating stochastic graphs from a given weighted directed
graph.

	stochastic_graph(G[, copy, weight])

	Returns a right-stochastic representation of the directed graph G.

Intersection

Generators for random intersection graphs.

	uniform_random_intersection_graph(n, m, p[, …])

	Return a uniform random intersection graph.

	k_random_intersection_graph(n, m, k)

	Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k).

	general_random_intersection_graph(n, m, p)

	Return a random intersection graph with independent probabilities for connections between node and attribute sets.

Social Networks

Famous social networks.

	karate_club_graph()

	Return Zachary’s Karate Club graph.

	davis_southern_women_graph()

	Return Davis Southern women social network.

	florentine_families_graph()

	Return Florentine families graph.

Community

Generators for classes of graphs used in studying social networks.

	caveman_graph(l, k)

	Returns a caveman graph of l cliques of size k.

	connected_caveman_graph(l, k)

	Returns a connected caveman graph of l cliques of size k.

	relaxed_caveman_graph(l, k, p[, seed])

	Return a relaxed caveman graph.

	random_partition_graph(sizes, p_in, p_out[, …])

	Return the random partition graph with a partition of sizes.

	planted_partition_graph(l, k, p_in, p_out[, …])

	Return the planted l-partition graph.

	gaussian_random_partition_graph(n, s, v, …)

	Generate a Gaussian random partition graph.

Non Isomorphic Trees

Implementation of the Wright, Richmond, Odlyzko and McKay (WROM)
algorithm for the enumeration of all non-isomorphic free trees of a
given order. Rooted trees are represented by level sequences, i.e.,
lists in which the i-th element specifies the distance of vertex i to
the root.

	nonisomorphic_trees(order[, create])

	Returns a list of nonisomporphic trees

	number_of_nonisomorphic_trees(order)

	Returns the number of nonisomorphic trees

NetworkX

graph_atlas_g

	
graph_atlas_g()

	Return the list [G0,G1,…,G1252] of graphs as named in the Graph Atlas.
G0,G1,…,G1252 are all graphs with up to 7 nodes.

	The graphs are listed:

	
	in increasing order of number of nodes;

	for a fixed number of nodes,
in increasing order of the number of edges;

	for fixed numbers of nodes and edges,
in increasing order of the degree sequence,
for example 111223 < 112222;

	for fixed degree sequence, in increasing number of automorphisms.

Note that indexing is set up so that for
GAG=graph_atlas_g(), then
G123=GAG[123] and G[0]=empty_graph(0)

NetworkX

balanced_tree

	
balanced_tree(r, h, create_using=None)

	Return the perfectly balanced r-tree of height h.

	Parameters

	
	r (int [https://docs.python.org/2/library/functions.html#int]) – Branching factor of the tree

	h (int [https://docs.python.org/2/library/functions.html#int]) – Height of the tree

	create_using (NetworkX graph type, optional) – Use specified type to construct graph (default = networkx.Graph)

	Returns

	G – A tree with n nodes

	Return type

	networkx Graph

Notes

This is the rooted tree where all leaves are at distance h from
the root. The root has degree r and all other internal nodes have
degree r+1.

Node labels are the integers 0 (the root) up to number_of_nodes - 1.

Also refered to as a complete r-ary tree.

NetworkX

barbell_graph

	
barbell_graph(m1, m2, create_using=None)

	Return the Barbell Graph: two complete graphs connected by a path.

For m1 > 1 and m2 >= 0.

Two identical complete graphs K_{m1} form the left and right bells,
and are connected by a path P_{m2}.

	The 2*m1+m2 nodes are numbered

	0,…,m1-1 for the left barbell,
m1,…,m1+m2-1 for the path,
and m1+m2,…,2*m1+m2-1 for the right barbell.

The 3 subgraphs are joined via the edges (m1-1,m1) and (m1+m2-1,m1+m2).
If m2=0, this is merely two complete graphs joined together.

This graph is an extremal example in David Aldous
and Jim Fill’s etext on Random Walks on Graphs.

NetworkX

complete_graph

	
complete_graph(n, create_using=None)

	Return the complete graph K_n with n nodes.

Node labels are the integers 0 to n-1.

NetworkX

complete_multipartite_graph

	
complete_multipartite_graph(*block_sizes)

	Returns the complete multipartite graph with the specified block sizes.

	Parameters

	block_sizes (tuple of integers) – The number of vertices in each block of the multipartite graph. The
length of this tuple is the number of blocks.

	Returns

	G – Returns the complete multipartite graph with the specified block sizes.

For each node, the node attribute 'block' is an integer indicating
which block contains the node.

	Return type

	NetworkX Graph

Examples

Creating a complete tripartite graph, with blocks of one, two, and three
vertices, respectively.

>>> import networkx as nx
>>> G = nx.complete_multipartite_graph(1, 2, 3)
>>> [G.node[u]['block'] for u in G]
[0, 1, 1, 2, 2, 2]
>>> G.edges(0)
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5)]
>>> G.edges(2)
[(2, 0), (2, 3), (2, 4), (2, 5)]
>>> G.edges(4)
[(4, 0), (4, 1), (4, 2)]

Notes

This function generalizes several other graph generator functions.

	If no block sizes are given, this returns the null graph.

	If a single block size n is given, this returns the empty graph on
n nodes.

	If two block sizes m and n are given, this returns the complete
bipartite graph on m + n nodes.

	If block sizes 1 and n are given, this returns the star graph on
n + 1 nodes.

See also

complete_bipartite_graph()

NetworkX

circular_ladder_graph

	
circular_ladder_graph(n, create_using=None)

	Return the circular ladder graph CL_n of length n.

CL_n consists of two concentric n-cycles in which
each of the n pairs of concentric nodes are joined by an edge.

Node labels are the integers 0 to n-1

NetworkX

cycle_graph

	
cycle_graph(n, create_using=None)

	Return the cycle graph C_n over n nodes.

C_n is the n-path with two end-nodes connected.

Node labels are the integers 0 to n-1
If create_using is a DiGraph, the direction is in increasing order.

NetworkX

dorogovtsev_goltsev_mendes_graph

	
dorogovtsev_goltsev_mendes_graph(n, create_using=None)

	Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

n is the generation.
See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.

NetworkX

empty_graph

	
empty_graph(n=0, create_using=None)

	Return the empty graph with n nodes and zero edges.

Node labels are the integers 0 to n-1

For example:
>>> G=nx.empty_graph(10)
>>> G.number_of_nodes()
10
>>> G.number_of_edges()
0

The variable create_using should point to a “graph”-like object that
will be cleaned (nodes and edges will be removed) and refitted as
an empty “graph” with n nodes with integer labels. This capability
is useful for specifying the class-nature of the resulting empty
“graph” (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).

The variable create_using has two main uses:
Firstly, the variable create_using can be used to create an
empty digraph, network,etc. For example,

>>> n=10
>>> G=nx.empty_graph(n,create_using=nx.DiGraph())

will create an empty digraph on n nodes.

Secondly, one can pass an existing graph (digraph, pseudograph,
etc.) via create_using. For example, if G is an existing graph
(resp. digraph, pseudograph, etc.), then empty_graph(n,create_using=G)
will empty G (i.e. delete all nodes and edges using G.clear() in
base) and then add n nodes and zero edges, and return the modified
graph (resp. digraph, pseudograph, etc.).

See also create_empty_copy(G).

NetworkX

grid_2d_graph

	
grid_2d_graph(m, n, periodic=False, create_using=None)

	Return the 2d grid graph of mxn nodes,
each connected to its nearest neighbors.
Optional argument periodic=True will connect
boundary nodes via periodic boundary conditions.

NetworkX

grid_graph

	
grid_graph(dim, periodic=False)

	Return the n-dimensional grid graph.

The dimension is the length of the list ‘dim’ and the
size in each dimension is the value of the list element.

E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

NetworkX

hypercube_graph

	
hypercube_graph(n)

	Return the n-dimensional hypercube.

Node labels are the integers 0 to 2**n - 1.

NetworkX

ladder_graph

	
ladder_graph(n, create_using=None)

	Return the Ladder graph of length n.

This is two rows of n nodes, with
each pair connected by a single edge.

Node labels are the integers 0 to 2*n - 1.

NetworkX

lollipop_graph

	
lollipop_graph(m, n, create_using=None)

	Return the Lollipop Graph; \(K_m\) connected to \(P_n\).

This is the Barbell Graph without the right barbell.

For m>1 and n>=0, the complete graph K_m is connected to the
path P_n. The resulting m+n nodes are labelled 0,…,m-1 for the
complete graph and m,…,m+n-1 for the path. The 2 subgraphs
are joined via the edge (m-1,m). If n=0, this is merely a complete
graph.

Node labels are the integers 0 to number_of_nodes - 1.

(This graph is an extremal example in David Aldous and Jim
Fill’s etext on Random Walks on Graphs.)

NetworkX

null_graph

	
null_graph(create_using=None)

	Return the Null graph with no nodes or edges.

See empty_graph for the use of create_using.

NetworkX

path_graph

	
path_graph(n, create_using=None)

	Return the Path graph P_n of n nodes linearly connected by n-1 edges.

Node labels are the integers 0 to n - 1.
If create_using is a DiGraph then the edges are directed in
increasing order.

NetworkX

star_graph

	
star_graph(n, create_using=None)

	Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.

Node labels are the integers 0 to n.

NetworkX

trivial_graph

	
trivial_graph(create_using=None)

	Return the Trivial graph with one node (with integer label 0) and no edges.

NetworkX

wheel_graph

	
wheel_graph(n, create_using=None)

	Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.

Node labels are the integers 0 to n - 1.

NetworkX

margulis_gabber_galil_graph

	
margulis_gabber_galil_graph(n, create_using=None)

	Return the Margulis-Gabber-Galil undirected MultiGraph on \(n^2\) nodes.

The undirected MultiGraph is regular with degree \(8\). Nodes are integer
pairs. The second-largest eigenvalue of the adjacency matrix of the graph
is at most \(5 \sqrt{2}\), regardless of \(n\).

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Determines the number of nodes in the graph: \(n^2\).

	create_using (graph-like) – A graph-like object that receives the constructed edges. If None,
then a MultiGraph instance is used.

	Returns

	G – The constructed undirected multigraph.

	Return type

	graph

	Raises

	NetworkXError – If the graph is directed or not a multigraph.

NetworkX

chordal_cycle_graph

	
chordal_cycle_graph(p, create_using=None)

	Return the chordal cycle graph on \(p\) nodes.

The returned graph is a cycle graph on \(p\) nodes with chords joining each
vertex \(x\) to its inverse modulo \(p\). This graph is a (mildly explicit)
3-regular expander 1.

p must be a prime number.

	Parameters

	
	p (a prime number) – The number of vertices in the graph. This also indicates where the
chordal edges in the cycle will be created.

	create_using (graph-like) – A graph-like object that receives the constructed edges. If None,
then a MultiGraph instance is used.

	Returns

	G – The constructed undirected multigraph.

	Return type

	graph

	Raises

	NetworkXError – If the graph provided in create_using is directed or not a
multigraph.

References

	1

	Theorem 4.4.2 in A. Lubotzky. “Discrete groups, expanding graphs and
invariant measures”, volume 125 of Progress in Mathematics.
Birkhäuser Verlag, Basel, 1994.

NetworkX

make_small_graph

	
make_small_graph(graph_description, create_using=None)

	Return the small graph described by graph_description.

graph_description is a list of the form [ltype,name,n,xlist]

Here ltype is one of “adjacencylist” or “edgelist”,
name is the name of the graph and n the number of nodes.
This constructs a graph of n nodes with integer labels 0,..,n-1.

If ltype=”adjacencylist” then xlist is an adjacency list
with exactly n entries, in with the j’th entry (which can be empty)
specifies the nodes connected to vertex j.
e.g. the “square” graph C_4 can be obtained by

>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]])

or, since we do not need to add edges twice,

>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[3],[4],[]]])

If ltype=”edgelist” then xlist is an edge list
written as [[v1,w2],[v2,w2],…,[vk,wk]],
where vj and wj integers in the range 1,..,n
e.g. the “square” graph C_4 can be obtained by

>>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2],[3,4],[2,3],[4,1]]])

Use the create_using argument to choose the graph class/type.

NetworkX

LCF_graph

	
LCF_graph(n, shift_list, repeats, create_using=None)

	Return the cubic graph specified in LCF notation.

LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed
notation used in the generation of various cubic Hamiltonian
graphs of high symmetry. See, for example, dodecahedral_graph,
desargues_graph, heawood_graph and pappus_graph below.

	n (number of nodes)

	The starting graph is the n-cycle with nodes 0,…,n-1.
(The null graph is returned if n < 0.)

shift_list = [s1,s2,..,sk], a list of integer shifts mod n,

	repeats

	integer specifying the number of times that shifts in shift_list
are successively applied to each v_current in the n-cycle
to generate an edge between v_current and v_current+shift mod n.

For v1 cycling through the n-cycle a total of k*repeats
with shift cycling through shiftlist repeats times connect
v1 with v1+shift mod n

The utility graph K_{3,3}

>>> G=nx.LCF_graph(6,[3,-3],3)

The Heawood graph

>>> G=nx.LCF_graph(14,[5,-5],7)

See http://mathworld.wolfram.com/LCFNotation.html for a description
and references.

NetworkX

bull_graph

	
bull_graph(create_using=None)

	Return the Bull graph.

NetworkX

chvatal_graph

	
chvatal_graph(create_using=None)

	Return the Chvátal graph.

NetworkX

cubical_graph

	
cubical_graph(create_using=None)

	Return the 3-regular Platonic Cubical graph.

NetworkX

desargues_graph

	
desargues_graph(create_using=None)

	Return the Desargues graph.

NetworkX

diamond_graph

	
diamond_graph(create_using=None)

	Return the Diamond graph.

NetworkX

dodecahedral_graph

	
dodecahedral_graph(create_using=None)

	Return the Platonic Dodecahedral graph.

NetworkX

frucht_graph

	
frucht_graph(create_using=None)

	Return the Frucht Graph.

The Frucht Graph is the smallest cubical graph whose
automorphism group consists only of the identity element.

NetworkX

heawood_graph

	
heawood_graph(create_using=None)

	Return the Heawood graph, a (3,6) cage.

NetworkX

house_graph

	
house_graph(create_using=None)

	Return the House graph (square with triangle on top).

NetworkX

house_x_graph

	
house_x_graph(create_using=None)

	Return the House graph with a cross inside the house square.

NetworkX

icosahedral_graph

	
icosahedral_graph(create_using=None)

	Return the Platonic Icosahedral graph.

NetworkX

krackhardt_kite_graph

	
krackhardt_kite_graph(create_using=None)

	Return the Krackhardt Kite Social Network.

A 10 actor social network introduced by David Krackhardt
to illustrate: degree, betweenness, centrality, closeness, etc.
The traditional labeling is:
Andre=1, Beverley=2, Carol=3, Diane=4,
Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.

NetworkX

moebius_kantor_graph

	
moebius_kantor_graph(create_using=None)

	Return the Moebius-Kantor graph.

NetworkX

octahedral_graph

	
octahedral_graph(create_using=None)

	Return the Platonic Octahedral graph.

NetworkX

pappus_graph

	
pappus_graph()

	Return the Pappus graph.

NetworkX

petersen_graph

	
petersen_graph(create_using=None)

	Return the Petersen graph.

NetworkX

sedgewick_maze_graph

	
sedgewick_maze_graph(create_using=None)

	Return a small maze with a cycle.

This is the maze used in Sedgewick,3rd Edition, Part 5, Graph
Algorithms, Chapter 18, e.g. Figure 18.2 and following.
Nodes are numbered 0,..,7

NetworkX

tetrahedral_graph

	
tetrahedral_graph(create_using=None)

	Return the 3-regular Platonic Tetrahedral graph.

NetworkX

truncated_cube_graph

	
truncated_cube_graph(create_using=None)

	Return the skeleton of the truncated cube.

NetworkX

truncated_tetrahedron_graph

	
truncated_tetrahedron_graph(create_using=None)

	Return the skeleton of the truncated Platonic tetrahedron.

NetworkX

tutte_graph

	
tutte_graph(create_using=None)

	Return the Tutte graph.

NetworkX

fast_gnp_random_graph

	
fast_gnp_random_graph(n, p, seed=None, directed=False)

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or
a binomial graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, this function returns a directed graph.

Notes

The \(G_{n,p}\) graph algorithm chooses each of the \([n (n - 1)] / 2\)
(undirected) or \(n (n - 1)\) (directed) possible edges with probability \(p\).

This algorithm runs in \(O(n + m)\) time, where \(m\) is the expected number of
edges, which equals \(p n (n - 1) / 2\). This should be faster than
gnp_random_graph() when \(p\) is small and the expected number of edges
is small (that is, the graph is sparse).

See also

gnp_random_graph()

References

	1

	Vladimir Batagelj and Ulrik Brandes,
“Efficient generation of large random networks”,
Phys. Rev. E, 71, 036113, 2005.

NetworkX

gnp_random_graph

	
gnp_random_graph(n, p, seed=None, directed=False)

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or
a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability
p.

The functions binomial_graph() and erdos_renyi_graph() are
aliases of this function.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, this function returns a directed graph.

See also

fast_gnp_random_graph()

Notes

This algorithm runs in \(O(n^2)\) time. For sparse graphs (that is, for
small values of \(p\)), fast_gnp_random_graph() is a faster algorithm.

References

	1

	
	Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).

	2

	
	
	Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

NetworkX

dense_gnm_random_graph

	
dense_gnm_random_graph(n, m, seed=None)

	Returns a \(G_{n,m}\) random graph.

In the \(G_{n,m}\) model, a graph is chosen uniformly at random from the set
of all graphs with \(n\) nodes and \(m\) edges.

This algorithm should be faster than gnm_random_graph() for dense
graphs.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of edges.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

See also

gnm_random_graph()

Notes

Algorithm by Keith M. Briggs Mar 31, 2006.
Inspired by Knuth’s Algorithm S (Selection sampling technique),
in section 3.4.2 of 1.

References

	1

	Donald E. Knuth, The Art of Computer Programming,
Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.

NetworkX

gnm_random_graph

	
gnm_random_graph(n, m, seed=None, directed=False)

	Returns a \(G_{n,m}\) random graph.

In the \(G_{n,m}\) model, a graph is chosen uniformly at random from the set
of all graphs with \(n\) nodes and \(m\) edges.

This algorithm should be faster than dense_gnm_random_graph() for
sparse graphs.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of edges.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True return a directed graph

See also

dense_gnm_random_graph()

NetworkX

erdos_renyi_graph

	
erdos_renyi_graph(n, p, seed=None, directed=False)

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or
a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability
p.

The functions binomial_graph() and erdos_renyi_graph() are
aliases of this function.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, this function returns a directed graph.

See also

fast_gnp_random_graph()

Notes

This algorithm runs in \(O(n^2)\) time. For sparse graphs (that is, for
small values of \(p\)), fast_gnp_random_graph() is a faster algorithm.

References

	1

	
	Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).

	2

	
	
	Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

NetworkX

binomial_graph

	
binomial_graph(n, p, seed=None, directed=False)

	Returns a \(G_{n,p}\) random graph, also known as an Erdős-Rényi graph or
a binomial graph.

The \(G_{n,p}\) model chooses each of the possible edges with probability
p.

The functions binomial_graph() and erdos_renyi_graph() are
aliases of this function.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability for edge creation.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	directed (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, this function returns a directed graph.

See also

fast_gnp_random_graph()

Notes

This algorithm runs in \(O(n^2)\) time. For sparse graphs (that is, for
small values of \(p\)), fast_gnp_random_graph() is a faster algorithm.

References

	1

	
	Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).

	2

	
	
	Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

NetworkX

newman_watts_strogatz_graph

	
newman_watts_strogatz_graph(n, k, p, seed=None)

	Return a Newman–Watts–Strogatz small-world graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	k (int [https://docs.python.org/2/library/functions.html#int]) – Each node is joined with its k nearest neighbors in a ring
topology.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The probability of adding a new edge for each edge.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – The seed for the random number generator (the default is None).

Notes

First create a ring over n nodes. Then each node in the ring is
connected with its k nearest neighbors (or k - 1 neighbors if k
is odd). Then shortcuts are created by adding new edges as follows: for
each edge (u, v) in the underlying “n-ring with k nearest
neighbors” with probability p add a new edge (u, w) with
randomly-chosen existing node w. In contrast with
watts_strogatz_graph(), no edges are removed.

See also

watts_strogatz_graph()

References

	1

	M. E. J. Newman and D. J. Watts,
Renormalization group analysis of the small-world network model,
Physics Letters A, 263, 341, 1999.
http://dx.doi.org/10.1016/S0375-9601(99)00757-4

NetworkX

watts_strogatz_graph

	
watts_strogatz_graph(n, k, p, seed=None)

	Return a Watts–Strogatz small-world graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes

	k (int [https://docs.python.org/2/library/functions.html#int]) – Each node is joined with its k nearest neighbors in a ring
topology.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The probability of rewiring each edge

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None)

See also

newman_watts_strogatz_graph(), connected_watts_strogatz_graph()

Notes

First create a ring over n nodes. Then each node in the ring is joined
to its k nearest neighbors (or k - 1 neighbors if k is odd).
Then shortcuts are created by replacing some edges as follows: for each
edge (u, v) in the underlying “n-ring with k nearest neighbors”
with probability p replace it with a new edge (u, w) with uniformly
random choice of existing node w.

In contrast with newman_watts_strogatz_graph(), the random rewiring
does not increase the number of edges. The rewired graph is not guaranteed
to be connected as in connected_watts_strogatz_graph().

References

	1

	Duncan J. Watts and Steven H. Strogatz,
Collective dynamics of small-world networks,
Nature, 393, pp. 440–442, 1998.

NetworkX

connected_watts_strogatz_graph

	
connected_watts_strogatz_graph(n, k, p, tries=100, seed=None)

	Returns a connected Watts–Strogatz small-world graph.

Attempts to generate a connected graph by repeated generation of
Watts–Strogatz small-world graphs. An exception is raised if the maximum
number of tries is exceeded.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes

	k (int [https://docs.python.org/2/library/functions.html#int]) – Each node is joined with its k nearest neighbors in a ring
topology.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The probability of rewiring each edge

	tries (int [https://docs.python.org/2/library/functions.html#int]) – Number of attempts to generate a connected graph.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – The seed for random number generator.

See also

newman_watts_strogatz_graph(), watts_strogatz_graph()

NetworkX

random_regular_graph

	
random_regular_graph(d, n, seed=None)

	Returns a random d-regular graph on n nodes.

The resulting graph has no self-loops or parallel edges.

	Parameters

	
	d (int [https://docs.python.org/2/library/functions.html#int]) – The degree of each node.

	n (integer) – The number of nodes. The value of n * d must be even.

	seed (hashable object) – The seed for random number generator.

Notes

The nodes are numbered from 0 to n - 1.

Kim and Vu’s paper 2 shows that this algorithm samples in an
asymptotically uniform way from the space of random graphs when
\(d = O(n^{1 / 3 - \epsilon})\).

	Raises

	NetworkXError – If n * d is odd or d is greater than or equal to n.

References

	1

	A. Steger and N. Wormald,
Generating random regular graphs quickly,
Probability and Computing 8 (1999), 377-396, 1999.
http://citeseer.ist.psu.edu/steger99generating.html

	2

	Jeong Han Kim and Van H. Vu,
Generating random regular graphs,
Proceedings of the thirty-fifth ACM symposium on Theory of computing,
San Diego, CA, USA, pp 213–222, 2003.
http://portal.acm.org/citation.cfm?id=780542.780576

NetworkX

barabasi_albert_graph

	
barabasi_albert_graph(n, m, seed=None)

	Returns a random graph according to the Barabási–Albert preferential
attachment model.

A graph of n nodes is grown by attaching new nodes each with m
edges that are preferentially attached to existing nodes with high degree.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes

	m (int [https://docs.python.org/2/library/functions.html#int]) – Number of edges to attach from a new node to existing nodes

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	Returns

	G

	Return type

	Graph

	Raises

	NetworkXError – If m does not satisfy 1 <= m < n.

References

	1

	A. L. Barabási and R. Albert “Emergence of scaling in
random networks”, Science 286, pp 509-512, 1999.

NetworkX

powerlaw_cluster_graph

	
powerlaw_cluster_graph(n, m, p, seed=None)

	Holme and Kim algorithm for growing graphs with powerlaw
degree distribution and approximate average clustering.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – the number of nodes

	m (int [https://docs.python.org/2/library/functions.html#int]) – the number of random edges to add for each new node

	p (float [https://docs.python.org/2/library/functions.html#float],) – Probability of adding a triangle after adding a random edge

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

Notes

The average clustering has a hard time getting above a certain
cutoff that depends on m. This cutoff is often quite low. The
transitivity (fraction of triangles to possible triangles) seems to
decrease with network size.

It is essentially the Barabási–Albert (BA) growth model with an
extra step that each random edge is followed by a chance of
making an edge to one of its neighbors too (and thus a triangle).

This algorithm improves on BA in the sense that it enables a
higher average clustering to be attained if desired.

It seems possible to have a disconnected graph with this algorithm
since the initial m nodes may not be all linked to a new node
on the first iteration like the BA model.

	Raises

	NetworkXError – If m does not satisfy 1 <= m <= n or p does not
satisfy 0 <= p <= 1.

References

	1

	P. Holme and B. J. Kim,
“Growing scale-free networks with tunable clustering”,
Phys. Rev. E, 65, 026107, 2002.

NetworkX

duplication_divergence_graph

	
duplication_divergence_graph(n, p, seed=None)

	Returns an undirected graph using the duplication-divergence model.

A graph of n nodes is created by duplicating the initial nodes
and retaining edges incident to the original nodes with a retention
probability p.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The desired number of nodes in the graph.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The probability for retaining the edge of the replicated node.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – A seed for the random number generator of random (default=None).

	Returns

	G

	Return type

	Graph

	Raises

	NetworkXError – If \(p\) is not a valid probability.
If \(n\) is less than 2.

References

	1

	I. Ispolatov, P. L. Krapivsky, A. Yuryev,
“Duplication-divergence model of protein interaction network”,
Phys. Rev. E, 71, 061911, 2005.

NetworkX

random_lobster

	
random_lobster(n, p1, p2, seed=None)

	Returns a random lobster graph.

A lobster is a tree that reduces to a caterpillar when pruning all
leaf nodes. A caterpillar is a tree that reduces to a path graph
when pruning all leaf nodes; setting p2 to zero produces a caterillar.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The expected number of nodes in the backbone

	p1 (float [https://docs.python.org/2/library/functions.html#float]) – Probability of adding an edge to the backbone

	p2 (float [https://docs.python.org/2/library/functions.html#float]) – Probability of adding an edge one level beyond backbone

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

NetworkX

random_shell_graph

	
random_shell_graph(constructor, seed=None)

	Returns a random shell graph for the constructor given.

	Parameters

	
	constructor (list of three-tuples) – Represents the parameters for a shell, starting at the center
shell. Each element of the list must be of the form (n, m,
d), where n is the number of nodes in the shell, m is
the number of edges in the shell, and d is the ratio of
inter-shell (next) edges to intra-shell edges. If d is zero,
there will be no intra-shell edges, and if d is one there
will be all possible intra-shell edges.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

Examples

>>> constructor = [(10, 20, 0.8), (20, 40, 0.8)]
>>> G = nx.random_shell_graph(constructor)

NetworkX

random_powerlaw_tree

	
random_powerlaw_tree(n, gamma=3, seed=None, tries=100)

	Returns a tree with a power law degree distribution.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	gamma (float [https://docs.python.org/2/library/functions.html#float]) – Exponent of the power law.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	tries (int [https://docs.python.org/2/library/functions.html#int]) – Number of attempts to adjust the sequence to make it a tree.

	Raises

	NetworkXError – If no valid sequence is found within the maximum number of
attempts.

Notes

A trial power law degree sequence is chosen and then elements are
swapped with new elements from a powerlaw distribution until the
sequence makes a tree (by checking, for example, that the number of
edges is one smaller than the number of nodes).

NetworkX

random_powerlaw_tree_sequence

	
random_powerlaw_tree_sequence(n, gamma=3, seed=None, tries=100)

	Returns a degree sequence for a tree with a power law distribution.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int],) – The number of nodes.

	gamma (float [https://docs.python.org/2/library/functions.html#float]) – Exponent of the power law.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

	tries (int [https://docs.python.org/2/library/functions.html#int]) – Number of attempts to adjust the sequence to make it a tree.

	Raises

	NetworkXError – If no valid sequence is found within the maximum number of
attempts.

Notes

A trial power law degree sequence is chosen and then elements are
swapped with new elements from a power law distribution until
the sequence makes a tree (by checking, for example, that the number of
edges is one smaller than the number of nodes).

NetworkX

configuration_model

	
configuration_model(deg_sequence, create_using=None, seed=None)

	Return a random graph with the given degree sequence.

The configuration model generates a random pseudograph (graph with
parallel edges and self loops) by randomly assigning edges to
match the given degree sequence.

	Parameters

	
	deg_sequence (list of integers) – Each list entry corresponds to the degree of a node.

	create_using (graph, optional (default MultiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – Seed for random number generator.

	Returns

	G – A graph with the specified degree sequence.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence.

	Return type

	MultiGraph

	Raises

	NetworkXError – If the degree sequence does not have an even sum.

See also

is_valid_degree_sequence()

Notes

As described by Newman 1.

A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the degree
sequence does not have an even sum.

This configuration model construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn’t have the exact degree sequence specified.

The density of self-loops and parallel edges tends to decrease
as the number of nodes increases. However, typically the number
of self-loops will approach a Poisson distribution with a nonzero
mean, and similarly for the number of parallel edges. Consider a
node with k stubs. The probability of being joined to another stub of
the same node is basically (k-1)/N where k is the degree and N is
the number of nodes. So the probability of a self-loop scales like c/N
for some constant c. As N grows, this means we expect c self-loops.
Similarly for parallel edges.

References

	1

	M.E.J. Newman, “The structure and function of complex networks”,
SIAM REVIEW 45-2, pp 167-256, 2003.

Examples

>>> from networkx.utils import powerlaw_sequence
>>> z=nx.utils.create_degree_sequence(100,powerlaw_sequence)
>>> G=nx.configuration_model(z)

To remove parallel edges:

>>> G=nx.Graph(G)

To remove self loops:

>>> G.remove_edges_from(G.selfloop_edges())

NetworkX

directed_configuration_model

	
directed_configuration_model(in_degree_sequence, out_degree_sequence, create_using=None, seed=None)

	Return a directed_random graph with the given degree sequences.

The configuration model generates a random directed pseudograph
(graph with parallel edges and self loops) by randomly assigning
edges to match the given degree sequences.

	Parameters

	
	in_degree_sequence (list of integers) – Each list entry corresponds to the in-degree of a node.

	out_degree_sequence (list of integers) – Each list entry corresponds to the out-degree of a node.

	create_using (graph, optional (default MultiDiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – Seed for random number generator.

	Returns

	G – A graph with the specified degree sequences.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence.

	Return type

	MultiDiGraph

	Raises

	NetworkXError – If the degree sequences do not have the same sum.

See also

configuration_model()

Notes

Algorithm as described by Newman 1.

A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the degree
sequences does not have the same sum.

This configuration model construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn’t have the exact degree sequence specified. This
“finite-size effect” decreases as the size of the graph increases.

References

	1

	Newman, M. E. J. and Strogatz, S. H. and Watts, D. J.
Random graphs with arbitrary degree distributions and their applications
Phys. Rev. E, 64, 026118 (2001)

Examples

>>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph
>>> din=list(D.in_degree().values())
>>> dout=list(D.out_degree().values())
>>> din.append(1)
>>> dout[0]=2
>>> D=nx.directed_configuration_model(din,dout)

To remove parallel edges:

>>> D=nx.DiGraph(D)

To remove self loops:

>>> D.remove_edges_from(D.selfloop_edges())

NetworkX

expected_degree_graph

	
expected_degree_graph(w, seed=None, selfloops=True)

	Return a random graph with given expected degrees.

Given a sequence of expected degrees \(W=(w_0,w_1,\ldots,w_{n-1}\))
of length \(n\) this algorithm assigns an edge between node \(u\) and
node \(v\) with probability

\[p_{uv} = \frac{w_u w_v}{\sum_k w_k} .\]

	Parameters

	
	w (list) – The list of expected degrees.

	selfloops (bool [https://docs.python.org/2/library/functions.html#bool] (default=True)) – Set to False to remove the possibility of self-loop edges.

	seed (hashable object, optional) – The seed for the random number generator.

	Returns

	

	Return type

	Graph

Examples

>>> z=[10 for i in range(100)]
>>> G=nx.expected_degree_graph(z)

Notes

The nodes have integer labels corresponding to index of expected degrees
input sequence.

The complexity of this algorithm is \(\mathcal{O}(n+m)\) where \(n\) is the
number of nodes and \(m\) is the expected number of edges.

The model in 1 includes the possibility of self-loop edges.
Set selfloops=False to produce a graph without self loops.

For finite graphs this model doesn’t produce exactly the given
expected degree sequence. Instead the expected degrees are as
follows.

For the case without self loops (selfloops=False),

\[E[deg(u)] = \sum_{v \ne u} p_{uv}
 = w_u \left(1 - \frac{w_u}{\sum_k w_k} \right) .\]

NetworkX uses the standard convention that a self-loop edge counts 2
in the degree of a node, so with self loops (selfloops=True),

\[E[deg(u)] = \sum_{v \ne u} p_{uv} + 2 p_{uu}
 = w_u \left(1 + \frac{w_u}{\sum_k w_k} \right) .\]

References

	1

	Fan Chung and L. Lu, Connected components in random graphs with
given expected degree sequences, Ann. Combinatorics, 6,
pp. 125-145, 2002.

	2

	Joel Miller and Aric Hagberg,
Efficient generation of networks with given expected degrees,
in Algorithms and Models for the Web-Graph (WAW 2011),
Alan Frieze, Paul Horn, and Paweł Prałat (Eds), LNCS 6732,
pp. 115-126, 2011.

NetworkX

havel_hakimi_graph

	
havel_hakimi_graph(deg_sequence, create_using=None)

	Return a simple graph with given degree sequence constructed
using the Havel-Hakimi algorithm.

	Parameters

	
	deg_sequence (list of integers) – Each integer corresponds to the degree of a node (need not be sorted).

	create_using (graph, optional (default Graph)) – Return graph of this type. The instance will be cleared.
Directed graphs are not allowed.

	Raises

	NetworkXException – For a non-graphical degree sequence (i.e. one
not realizable by some simple graph).

Notes

The Havel-Hakimi algorithm constructs a simple graph by
successively connecting the node of highest degree to other nodes
of highest degree, resorting remaining nodes by degree, and
repeating the process. The resulting graph has a high
degree-associativity. Nodes are labeled 1,.., len(deg_sequence),
corresponding to their position in deg_sequence.

The basic algorithm is from Hakimi 1 and was generalized by
Kleitman and Wang 2.

References

	1

	Hakimi S., On Realizability of a Set of Integers as
Degrees of the Vertices of a Linear Graph. I,
Journal of SIAM, 10(3), pp. 496-506 (1962)

	2

	Kleitman D.J. and Wang D.L.
Algorithms for Constructing Graphs and Digraphs with Given Valences
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)

NetworkX

directed_havel_hakimi_graph

	
directed_havel_hakimi_graph(in_deg_sequence, out_deg_sequence, create_using=None)

	Return a directed graph with the given degree sequences.

	Parameters

	
	in_deg_sequence (list of integers) – Each list entry corresponds to the in-degree of a node.

	out_deg_sequence (list of integers) – Each list entry corresponds to the out-degree of a node.

	create_using (graph, optional (default DiGraph)) – Return graph of this type. The instance will be cleared.

	Returns

	G – A graph with the specified degree sequences.
Nodes are labeled starting at 0 with an index
corresponding to the position in deg_sequence

	Return type

	DiGraph

	Raises

	NetworkXError – If the degree sequences are not digraphical.

See also

configuration_model()

Notes

Algorithm as described by Kleitman and Wang 1.

References

	1

	D.J. Kleitman and D.L. Wang
Algorithms for Constructing Graphs and Digraphs with Given Valences
and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)

NetworkX

degree_sequence_tree

	
degree_sequence_tree(deg_sequence, create_using=None)

	Make a tree for the given degree sequence.

A tree has #nodes-#edges=1 so
the degree sequence must have
len(deg_sequence)-sum(deg_sequence)/2=1

NetworkX

random_degree_sequence_graph

	
random_degree_sequence_graph(sequence, seed=None, tries=10)

	Return a simple random graph with the given degree sequence.

If the maximum degree \(d_m\) in the sequence is \(O(m^{1/4})\) then the
algorithm produces almost uniform random graphs in \(O(m d_m)\) time
where \(m\) is the number of edges.

	Parameters

	
	sequence (list of integers) – Sequence of degrees

	seed (hashable object, optional) – Seed for random number generator

	tries (int [https://docs.python.org/2/library/functions.html#int], optional) – Maximum number of tries to create a graph

	Returns

	G – A graph with the specified degree sequence.
Nodes are labeled starting at 0 with an index
corresponding to the position in the sequence.

	Return type

	Graph

	Raises

	
	NetworkXUnfeasible – If the degree sequence is not graphical.

	NetworkXError – If a graph is not produced in specified number of tries

See also

is_valid_degree_sequence(), configuration_model()

Notes

The generator algorithm 1 is not guaranteed to produce a graph.

References

	1

	Moshen Bayati, Jeong Han Kim, and Amin Saberi,
A sequential algorithm for generating random graphs.
Algorithmica, Volume 58, Number 4, 860-910,
DOI: 10.1007/s00453-009-9340-1

Examples

>>> sequence = [1, 2, 2, 3]
>>> G = nx.random_degree_sequence_graph(sequence)
>>> sorted(G.degree().values())
[1, 2, 2, 3]

NetworkX

random_clustered_graph

	
random_clustered_graph(joint_degree_sequence, create_using=None, seed=None)

	Generate a random graph with the given joint independent edge degree and
triangle degree sequence.

This uses a configuration model-like approach to generate a random graph
(with parallel edges and self-loops) by randomly assigning edges to match
the given joint degree sequence.

The joint degree sequence is a list of pairs of integers of the form
\([(d_{1,i}, d_{1,t}), \dotsc, (d_{n,i}, d_{n,t})]\). According to this list,
vertex \(u\) is a member of \(d_{u,t}\) triangles and has \(d_{u, i}\) other
edges. The number \(d_{u,t}\) is the triangle degree of \(u\) and the number
\(d_{u,i}\) is the independent edge degree.

	Parameters

	
	joint_degree_sequence (list of integer pairs) – Each list entry corresponds to the independent edge degree and
triangle degree of a node.

	create_using (graph, optional (default MultiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – The seed for the random number generator.

	Returns

	G – A graph with the specified degree sequence. Nodes are labeled
starting at 0 with an index corresponding to the position in
deg_sequence.

	Return type

	MultiGraph

	Raises

	NetworkXError – If the independent edge degree sequence sum is not even
or the triangle degree sequence sum is not divisible by 3.

Notes

As described by Miller 1 (see also Newman 2 for an equivalent
description).

A non-graphical degree sequence (not realizable by some simple
graph) is allowed since this function returns graphs with self
loops and parallel edges. An exception is raised if the
independent degree sequence does not have an even sum or the
triangle degree sequence sum is not divisible by 3.

This configuration model-like construction process can lead to
duplicate edges and loops. You can remove the self-loops and
parallel edges (see below) which will likely result in a graph
that doesn’t have the exact degree sequence specified. This
“finite-size effect” decreases as the size of the graph increases.

References

	1

	Joel C. Miller. “Percolation and epidemics in random clustered
networks”. In: Physical review. E, Statistical, nonlinear, and soft
matter physics 80 (2 Part 1 August 2009).

	2

	M. E. J. Newman. “Random Graphs with Clustering”.
In: Physical Review Letters 103 (5 July 2009)

Examples

>>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)]
>>> G = nx.random_clustered_graph(deg)

To remove parallel edges:

>>> G = nx.Graph(G)

To remove self loops:

>>> G.remove_edges_from(G.selfloop_edges())

NetworkX

gn_graph

	
gn_graph(n, kernel=None, create_using=None, seed=None)

	Return the growing network (GN) digraph with n nodes.

The GN graph is built by adding nodes one at a time with a link to one
previously added node. The target node for the link is chosen with
probability based on degree. The default attachment kernel is a linear
function of the degree of a node.

The graph is always a (directed) tree.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes for the generated graph.

	kernel (function) – The attachment kernel.

	create_using (graph, optional (default DiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – The seed for the random number generator.

Examples

To create the undirected GN graph, use the to_directed()
method:

>>> D = nx.gn_graph(10) # the GN graph
>>> G = D.to_undirected() # the undirected version

To specify an attachment kernel, use the kernel keyword argument:

>>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5) # A_k = k^1.5

References

	1

	P. L. Krapivsky and S. Redner,
Organization of Growing Random Networks,
Phys. Rev. E, 63, 066123, 2001.

NetworkX

gnr_graph

	
gnr_graph(n, p, create_using=None, seed=None)

	Return the growing network with redirection (GNR) digraph with n
nodes and redirection probability p.

The GNR graph is built by adding nodes one at a time with a link to one
previously added node. The previous target node is chosen uniformly at
random. With probabiliy p the link is instead “redirected” to the
successor node of the target.

The graph is always a (directed) tree.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes for the generated graph.

	p (float [https://docs.python.org/2/library/functions.html#float]) – The redirection probability.

	create_using (graph, optional (default DiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – The seed for the random number generator.

Examples

To create the undirected GNR graph, use the to_directed()
method:

>>> D = nx.gnr_graph(10, 0.5) # the GNR graph
>>> G = D.to_undirected() # the undirected version

References

	1

	P. L. Krapivsky and S. Redner,
Organization of Growing Random Networks,
Phys. Rev. E, 63, 066123, 2001.

NetworkX

gnc_graph

	
gnc_graph(n, create_using=None, seed=None)

	Return the growing network with copying (GNC) digraph with n nodes.

The GNC graph is built by adding nodes one at a time with a link to one
previously added node (chosen uniformly at random) and to all of that
node’s successors.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes for the generated graph.

	create_using (graph, optional (default DiGraph)) – Return graph of this type. The instance will be cleared.

	seed (hashable object, optional) – The seed for the random number generator.

References

	1

	P. L. Krapivsky and S. Redner,
Network Growth by Copying,
Phys. Rev. E, 71, 036118, 2005k.},

NetworkX

scale_free_graph

	
scale_free_graph(n, alpha=0.41, beta=0.54, gamma=0.05, delta_in=0.2, delta_out=0, create_using=None, seed=None)

	Returns a scale-free directed graph.

	Parameters

	
	n (integer) – Number of nodes in graph

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Probability for adding a new node connected to an existing node
chosen randomly according to the in-degree distribution.

	beta (float [https://docs.python.org/2/library/functions.html#float]) – Probability for adding an edge between two existing nodes.
One existing node is chosen randomly according the in-degree
distribution and the other chosen randomly according to the out-degree
distribution.

	gamma (float [https://docs.python.org/2/library/functions.html#float]) – Probability for adding a new node conecgted to an existing node
chosen randomly according to the out-degree distribution.

	delta_in (float [https://docs.python.org/2/library/functions.html#float]) – Bias for choosing ndoes from in-degree distribution.

	delta_out (float [https://docs.python.org/2/library/functions.html#float]) – Bias for choosing ndoes from out-degree distribution.

	create_using (graph, optional (default MultiDiGraph)) – Use this graph instance to start the process (default=3-cycle).

	seed (integer, optional) – Seed for random number generator

Examples

Create a scale-free graph on one hundred nodes:

>>> G = nx.scale_free_graph(100)

Notes

The sum of alpha, beta, and gamma must be 1.

References

	1

	B. Bollobás, C. Borgs, J. Chayes, and O. Riordan,
Directed scale-free graphs,
Proceedings of the fourteenth annual ACM-SIAM Symposium on
Discrete Algorithms, 132–139, 2003.

NetworkX

random_geometric_graph

	
random_geometric_graph(n, radius, dim=2, pos=None)

	Returns a random geometric graph in the unit cube.

The random geometric graph model places n nodes uniformly at random in
the unit cube. Two nodes are joined by an edge if the Euclidean distance
between the nodes is at most radius.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes

	radius (float [https://docs.python.org/2/library/functions.html#float]) – Distance threshold value

	dim (int [https://docs.python.org/2/library/functions.html#int], optional) – Dimension of graph

	pos (dict [https://docs.python.org/2/library/stdtypes.html#dict], optional) – A dictionary keyed by node with node positions as values.

	Returns

	

	Return type

	Graph

Examples

Create a random geometric graph on twenty nodes where nodes are joined by
an edge if their distance is at most 0.1:

>>> G = nx.random_geometric_graph(20, 0.1)

Notes

This algorithm currently only supports Euclidean distance.

This uses an \(O(n^2)\) algorithm to build the graph. A faster algorithm
is possible using k-d trees.

The pos keyword argument can be used to specify node positions so you
can create an arbitrary distribution and domain for positions.

For example, to use a 2D Gaussian distribution of node positions with mean
(0, 0) and standard deviation 2:

>>> import random
>>> n = 20
>>> p = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> G = nx.random_geometric_graph(n, 0.2, pos=p)

References

	1

	Penrose, Mathew, Random Geometric Graphs,
Oxford Studies in Probability, 5, 2003.

NetworkX

geographical_threshold_graph

	
geographical_threshold_graph(n, theta, alpha=2, dim=2, pos=None, weight=None)

	Returns a geographical threshold graph.

The geographical threshold graph model places n nodes uniformly at
random in a rectangular domain. Each node \(u\) is assigned a weight \(w_u\).
Two nodes \(u\) and \(v\) are joined by an edge if

\[w_u + w_v \ge \theta r^{\alpha}\]

where \(r\) is the Euclidean distance between \(u\) and \(v\), and \(\theta\),
\(\alpha\) are parameters.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes

	theta (float [https://docs.python.org/2/library/functions.html#float]) – Threshold value

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional) – Exponent of distance function

	dim (int [https://docs.python.org/2/library/functions.html#int], optional) – Dimension of graph

	pos (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Node positions as a dictionary of tuples keyed by node.

	weight (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Node weights as a dictionary of numbers keyed by node.

	Returns

	

	Return type

	Graph

Examples

>>> G = nx.geographical_threshold_graph(20, 50)

Notes

If weights are not specified they are assigned to nodes by drawing randomly
from the exponential distribution with rate parameter \(\lambda=1\). To
specify weights from a different distribution, use the weight keyword
argument:

>>> import random
>>> n = 20
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.geographical_threshold_graph(20, 50, weight=w)

If node positions are not specified they are randomly assigned from the
uniform distribution.

References

	1

	Masuda, N., Miwa, H., Konno, N.:
Geographical threshold graphs with small-world and scale-free
properties.
Physical Review E 71, 036108 (2005)

	2

	Milan Bradonjić, Aric Hagberg and Allon G. Percus,
Giant component and connectivity in geographical threshold graphs,
in Algorithms and Models for the Web-Graph (WAW 2007),
Antony Bonato and Fan Chung (Eds), pp. 209–216, 2007

NetworkX

waxman_graph

	
waxman_graph(n, alpha=0.4, beta=0.1, L=None, domain=(0, 0, 1, 1))

	Return a Waxman random graph.

The Waxman random graph model places n nodes uniformly at random in a
rectangular domain. Each pair of nodes at Euclidean distance \(d\) is joined
by an edge with probability

\[p = \alpha \exp(-d / \beta L).\]

This function implements both Waxman models, using the L keyword
argument.

	Waxman-1: if L is not specified, it is set to be the maximum distance
between any pair of nodes.

	Waxman-2: if L is specified, the distance between a pair of nodes is
chosen uniformly at random from the interval \([0, L]\).

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Model parameter

	beta (float [https://docs.python.org/2/library/functions.html#float]) – Model parameter

	L (float [https://docs.python.org/2/library/functions.html#float], optional) – Maximum distance between nodes. If not specified, the actual distance
is calculated.

	domain (four-tuple of numbers, optional) – Domain size, given as a tuple of the form \((x_min, y_min, x_max,
y_max)\).

	Returns

	G

	Return type

	Graph

References

	1

	B. M. Waxman, Routing of multipoint connections.
IEEE J. Select. Areas Commun. 6(9),(1988) 1617-1622.

NetworkX

navigable_small_world_graph

	
navigable_small_world_graph(n, p=1, q=1, r=2, dim=2, seed=None)

	Return a navigable small-world graph.

A navigable small-world graph is a directed grid with additional long-range
connections that are chosen randomly.

[…] we begin with a set of nodes […] that are identified with the set
of lattice points in an \(n imes n\) square, \(\{(i, j): i \in \{1, 2,
\ldots, n\}, j \in \{1, 2, \ldots, n\}\}\), and we define the lattice
distance between two nodes \((i, j)\) and \((k, l)\) to be the number of
“lattice steps” separating them: \(d((i, j), (k, l)) = |k - i| + |l - j|\).
For a universal constant \(p \geq 1\), the node \(u\) has a directed edge to
every other node within lattice distance \(p\) — these are its local
contacts. For universal constants \(q \ge 0\) and \(r \ge 0\) we also
construct directed edges from \(u\) to \(q\) other nodes (the long-range
contacts) using independent random trials; the \(i`th directed edge from
`u\) has endpoint \(v\) with probability proportional to \([d(u,v)]^{-r}\).

—1

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes.

	p (int [https://docs.python.org/2/library/functions.html#int]) – The diameter of short range connections. Each node is joined with every
other node within this lattice distance.

	q (int [https://docs.python.org/2/library/functions.html#int]) – The number of long-range connections for each node.

	r (float [https://docs.python.org/2/library/functions.html#float]) – Exponent for decaying probability of connections. The probability of
connecting to a node at lattice distance \(d\) is \(1/d^r\).

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of grid

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

References

	1

	J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.

NetworkX

line_graph

	
line_graph(G, create_using=None)

	Returns the line graph of the graph or digraph G.

The line graph of a graph G has a node for each edge in G and an
edge joining those nodes if the two edges in G share a common node. For
directed graphs, nodes are adjacent exactly when the edges they represent
form a directed path of length two.

The nodes of the line graph are 2-tuples of nodes in the original graph (or
3-tuples for multigraphs, with the key of the edge as the third element).

For information about self-loops and more discussion, see the Notes
section below.

	Parameters

	G (graph) – A NetworkX Graph, DiGraph, MultiGraph, or MultiDigraph.

	Returns

	L – The line graph of G.

	Return type

	graph

Examples

>>> import networkx as nx
>>> G = nx.star_graph(3)
>>> L = nx.line_graph(G)
>>> print(sorted(map(sorted, L.edges()))) # makes a 3-clique, K3
[[(0, 1), (0, 2)], [(0, 1), (0, 3)], [(0, 2), (0, 3)]]

Notes

Graph, node, and edge data are not propagated to the new graph. For
undirected graphs, the nodes in G must be sortable, otherwise the
constructed line graph may not be correct.

Self-loops in undirected graphs

For an undirected graph \(G\) without multiple edges, each edge can be
written as a set \(\{u, v\}\). Its line graph \(L\) has the edges of \(G\) as
its nodes. If \(x\) and \(y\) are two nodes in \(L\), then \(\{x, y\}\) is an edge
in \(L\) if and only if the intersection of \(x\) and \(y\) is nonempty. Thus,
the set of all edges is determined by the set of all pairwise intersections
of edges in \(G\).

Trivially, every edge in G would have a nonzero intersection with itself,
and so every node in \(L\) should have a self-loop. This is not so
interesting, and the original context of line graphs was with simple
graphs, which had no self-loops or multiple edges. The line graph was also
meant to be a simple graph and thus, self-loops in \(L\) are not part of the
standard definition of a line graph. In a pairwise intersection matrix,
this is analogous to excluding the diagonal entries from the line graph
definition.

Self-loops and multiple edges in \(G\) add nodes to \(L\) in a natural way, and
do not require any fundamental changes to the definition. It might be
argued that the self-loops we excluded before should now be included.
However, the self-loops are still “trivial” in some sense and thus, are
usually excluded.

Self-loops in directed graphs

For a directed graph \(G\) without multiple edges, each edge can be written
as a tuple \((u, v)\). Its line graph \(L\) has the edges of \(G\) as its
nodes. If \(x\) and \(y\) are two nodes in \(L\), then \((x, y)\) is an edge in \(L\)
if and only if the tail of \(x\) matches the head of \(y\), for example, if \(x
= (a, b)\) and \(y = (b, c)\) for some vertices \(a\), \(b\), and \(c\) in \(G\).

Due to the directed nature of the edges, it is no longer the case that
every edge in \(G\) should have a self-loop in \(L\). Now, the only time
self-loops arise is if a node in \(G\) itself has a self-loop. So such
self-loops are no longer “trivial” but instead, represent essential
features of the topology of \(G\). For this reason, the historical
development of line digraphs is such that self-loops are included. When the
graph \(G\) has multiple edges, once again only superficial changes are
required to the definition.

References

	Harary, Frank, and Norman, Robert Z., “Some properties of line digraphs”,
Rend. Circ. Mat. Palermo, II. Ser. 9 (1960), 161–168.

	Hemminger, R. L.; Beineke, L. W. (1978), “Line graphs and line digraphs”,
in Beineke, L. W.; Wilson, R. J., Selected Topics in Graph Theory,
Academic Press Inc., pp. 271–305.

NetworkX

ego_graph

	
ego_graph(G, n, radius=1, center=True, undirected=False, distance=None)

	Returns induced subgraph of neighbors centered at node n within
a given radius.

	Parameters

	
	G (graph) – A NetworkX Graph or DiGraph

	n (node) – A single node

	radius (number, optional) – Include all neighbors of distance<=radius from n.

	center (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If False, do not include center node in graph

	undirected (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True use both in- and out-neighbors of directed graphs.

	distance (key, optional) – Use specified edge data key as distance. For example, setting
distance=’weight’ will use the edge weight to measure the
distance from the node n.

Notes

For directed graphs D this produces the “out” neighborhood
or successors. If you want the neighborhood of predecessors
first reverse the graph with D.reverse(). If you want both
directions use the keyword argument undirected=True.

Node, edge, and graph attributes are copied to the returned subgraph.

NetworkX

stochastic_graph

	
stochastic_graph(G, copy=True, weight='weight')

	Returns a right-stochastic representation of the directed graph G.

A right-stochastic graph is a weighted digraph in which for each node, the
sum of the weights of all the out-edges of that node is 1. If the graph is
already weighted (for example, via a 'weight' edge attribute), the
reweighting takes that into account.

	Parameters

	
	G (directed graph) – A DiGraph or MultiDiGraph.

	copy (boolean, optional) – If this is True, then this function returns a new instance of
networkx.Digraph. Otherwise, the original graph is modified
in-place (and also returned, for convenience).

	weight (edge attribute key (optional, default='weight')) – Edge attribute key used for reading the existing weight and setting the
new weight. If no attribute with this key is found for an edge, then the
edge weight is assumed to be 1. If an edge has a weight, it must be a
a positive number.

NetworkX

uniform_random_intersection_graph

	
uniform_random_intersection_graph(n, m, p, seed=None)

	Return a uniform random intersection graph.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set (nodes)

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set (attributes)

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probability of connecting nodes between bipartite sets

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

See also

gnp_random_graph()

References

	1

	K.B. Singer-Cohen, Random Intersection Graphs, 1995,
PhD thesis, Johns Hopkins University

	2

	Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B.,
Random intersection graphs when m = !(n):
An equivalence theorem relating the evolution of the g(n, m, p)
and g(n, p) models. Random Struct. Algorithms 16, 2 (2000), 156–176.

NetworkX

k_random_intersection_graph

	
k_random_intersection_graph(n, m, k)

	Return a intersection graph with randomly chosen attribute sets for
each node that are of equal size (k).

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set (nodes)

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set (attributes)

	k (float [https://docs.python.org/2/library/functions.html#float]) – Size of attribute set to assign to each node.

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

See also

gnp_random_graph(), uniform_random_intersection_graph()

References

	1

	Godehardt, E., and Jaworski, J.
Two models of random intersection graphs and their applications.
Electronic Notes in Discrete Mathematics 10 (2001), 129–132.

NetworkX

general_random_intersection_graph

	
general_random_intersection_graph(n, m, p)

	Return a random intersection graph with independent probabilities
for connections between node and attribute sets.

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the first bipartite set (nodes)

	m (int [https://docs.python.org/2/library/functions.html#int]) – The number of nodes in the second bipartite set (attributes)

	p (list of floats of length m) – Probabilities for connecting nodes to each attribute

	seed (int [https://docs.python.org/2/library/functions.html#int], optional) – Seed for random number generator (default=None).

See also

gnp_random_graph(), uniform_random_intersection_graph()

References

	1

	Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G.
The existence and efficient construction of large independent sets
in general random intersection graphs. In ICALP (2004), J. D´ıaz,
J. Karhum¨aki, A. Lepist¨o, and D. Sannella, Eds., vol. 3142
of Lecture Notes in Computer Science, Springer, pp. 1029–1040.

NetworkX

karate_club_graph

	
karate_club_graph()

	Return Zachary’s Karate Club graph.

Each node in the returned graph has a node attribute 'club' that
indicates the name of the club to which the member represented by that node
belongs, either 'Mr. Hi' or 'Officer'.

Examples

To get the name of the club to which a node belongs:

>>> import networkx as nx
>>> G = nx.karate_club_graph()
>>> G.node[5]['club']
'Mr. Hi'
>>> G.node[9]['club']
'Officer'

References

	1

	Zachary, Wayne W.
“An Information Flow Model for Conflict and Fission in Small Groups.”
Journal of Anthropological Research, 33, 452–473, (1977).

	2

	Data file from:
http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm

NetworkX

davis_southern_women_graph

	
davis_southern_women_graph()

	Return Davis Southern women social network.

This is a bipartite graph.

References

	1

	A. Davis, Gardner, B. B., Gardner, M. R., 1941. Deep South.
University of Chicago Press, Chicago, IL.

NetworkX

florentine_families_graph

	
florentine_families_graph()

	Return Florentine families graph.

References

	1

	Ronald L. Breiger and Philippa E. Pattison
Cumulated social roles: The duality of persons and their algebras,1
Social Networks, Volume 8, Issue 3, September 1986, Pages 215-256

NetworkX

caveman_graph

	
caveman_graph(l, k)

	Returns a caveman graph of l cliques of size k.

	Parameters

	
	l (int [https://docs.python.org/2/library/functions.html#int]) – Number of cliques

	k (int [https://docs.python.org/2/library/functions.html#int]) – Size of cliques

	Returns

	G – caveman graph

	Return type

	NetworkX Graph

Notes

This returns an undirected graph, it can be converted to a directed
graph using nx.to_directed(), or a multigraph using
nx.MultiGraph(nx.caveman_graph(l, k)). Only the undirected version is
described in 1 and it is unclear which of the directed
generalizations is most useful.

Examples

>>> G = nx.caveman_graph(3, 3)

See also

connected_caveman_graph()

References

	1

	Watts, D. J. ‘Networks, Dynamics, and the Small-World Phenomenon.’
Amer. J. Soc. 105, 493-527, 1999.

NetworkX

connected_caveman_graph

	
connected_caveman_graph(l, k)

	Returns a connected caveman graph of l cliques of size k.

The connected caveman graph is formed by creating n cliques of size
k, then a single edge in each clique is rewired to a node in an
adjacent clique.

	Parameters

	
	l (int [https://docs.python.org/2/library/functions.html#int]) – number of cliques

	k (int [https://docs.python.org/2/library/functions.html#int]) – size of cliques

	Returns

	G – connected caveman graph

	Return type

	NetworkX Graph

Notes

This returns an undirected graph, it can be converted to a directed
graph using nx.to_directed(), or a multigraph using
nx.MultiGraph(nx.caveman_graph(l, k)). Only the undirected version is
described in 1 and it is unclear which of the directed
generalizations is most useful.

Examples

>>> G = nx.connected_caveman_graph(3, 3)

References

	1

	Watts, D. J. ‘Networks, Dynamics, and the Small-World Phenomenon.’
Amer. J. Soc. 105, 493-527, 1999.

NetworkX

relaxed_caveman_graph

	
relaxed_caveman_graph(l, k, p, seed=None)

	Return a relaxed caveman graph.

A relaxed caveman graph starts with l cliques of size k. Edges are
then randomly rewired with probability p to link different cliques.

	Parameters

	
	l (int [https://docs.python.org/2/library/functions.html#int]) – Number of groups

	k (int [https://docs.python.org/2/library/functions.html#int]) – Size of cliques

	p (float [https://docs.python.org/2/library/functions.html#float]) – Probabilty of rewiring each edge.

	seed (int [https://docs.python.org/2/library/functions.html#int],optional) – Seed for random number generator(default=None)

	Returns

	G – Relaxed Caveman Graph

	Return type

	NetworkX Graph

	Raises

	NetworkXError: – If p is not in [0,1]

Examples

>>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42)

References

	1

	Santo Fortunato, Community Detection in Graphs,
Physics Reports Volume 486, Issues 3-5, February 2010, Pages 75-174.
http://arxiv.org/abs/0906.0612

NetworkX

random_partition_graph

	
random_partition_graph(sizes, p_in, p_out, seed=None, directed=False)

	Return the random partition graph with a partition of sizes.

A partition graph is a graph of communities with sizes defined by
s in sizes. Nodes in the same group are connected with probability
p_in and nodes of different groups are connected with probability
p_out.

	Parameters

	
	sizes (list of ints) – Sizes of groups

	p_in (float [https://docs.python.org/2/library/functions.html#float]) – probability of edges with in groups

	p_out (float [https://docs.python.org/2/library/functions.html#float]) – probability of edges between groups

	directed (boolean optional, default=False) – Whether to create a directed graph

	seed (int optional, default None) – A seed for the random number generator

	Returns

	G – random partition graph of size sum(gs)

	Return type

	NetworkX Graph or DiGraph

	Raises

	NetworkXError – If p_in or p_out is not in [0,1]

Examples

>>> G = nx.random_partition_graph([10,10,10],.25,.01)
>>> len(G)
30
>>> partition = G.graph['partition']
>>> len(partition)
3

Notes

This is a generalization of the planted-l-partition described in
1. It allows for the creation of groups of any size.

The partition is store as a graph attribute ‘partition’.

References

	1

	Santo Fortunato ‘Community Detection in Graphs’ Physical Reports
Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612
http://arxiv.org/abs/0906.0612

NetworkX

planted_partition_graph

	
planted_partition_graph(l, k, p_in, p_out, seed=None, directed=False)

	Return the planted l-partition graph.

This model partitions a graph with n=l*k vertices in
l groups with k vertices each. Vertices of the same
group are linked with a probability p_in, and vertices
of different groups are linked with probability p_out.

	Parameters

	
	l (int [https://docs.python.org/2/library/functions.html#int]) – Number of groups

	k (int [https://docs.python.org/2/library/functions.html#int]) – Number of vertices in each group

	p_in (float [https://docs.python.org/2/library/functions.html#float]) – probability of connecting vertices within a group

	p_out (float [https://docs.python.org/2/library/functions.html#float]) – probability of connected vertices between groups

	seed (int [https://docs.python.org/2/library/functions.html#int],optional) – Seed for random number generator(default=None)

	directed (bool [https://docs.python.org/2/library/functions.html#bool],optional (default=False)) – If True return a directed graph

	Returns

	G – planted l-partition graph

	Return type

	NetworkX Graph or DiGraph

	Raises

	NetworkXError: – If p_in,p_out are not in [0,1] or

Examples

>>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1,seed=42)

See also

random_partition_model()

References

	1

	A. Condon, R.M. Karp, Algorithms for graph partitioning
on the planted partition model,
Random Struct. Algor. 18 (2001) 116-140.

	2

	Santo Fortunato ‘Community Detection in Graphs’ Physical Reports
Volume 486, Issue 3-5 p. 75-174. http://arxiv.org/abs/0906.0612

NetworkX

gaussian_random_partition_graph

	
gaussian_random_partition_graph(n, s, v, p_in, p_out, directed=False, seed=None)

	Generate a Gaussian random partition graph.

A Gaussian random partition graph is created by creating k partitions
each with a size drawn from a normal distribution with mean s and variance
s/v. Nodes are connected within clusters with probability p_in and
between clusters with probability p_out[1]

	Parameters

	
	n (int [https://docs.python.org/2/library/functions.html#int]) – Number of nodes in the graph

	s (float [https://docs.python.org/2/library/functions.html#float]) – Mean cluster size

	v (float [https://docs.python.org/2/library/functions.html#float]) – Shape parameter. The variance of cluster size distribution is s/v.

	p_in (float [https://docs.python.org/2/library/functions.html#float]) – Probabilty of intra cluster connection.

	p_out (float [https://docs.python.org/2/library/functions.html#float]) – Probability of inter cluster connection.

	directed (boolean, optional default=False) – Whether to create a directed graph or not

	seed (int [https://docs.python.org/2/library/functions.html#int]) – Seed value for random number generator

	Returns

	G – gaussian random partition graph

	Return type

	NetworkX Graph or DiGraph

	Raises

	NetworkXError – If s is > n
If p_in or p_out is not in [0,1]

Notes

Note the number of partitions is dependent on s,v and n, and that the
last partition may be considerably smaller, as it is sized to simply
fill out the nodes [1]

See also

random_partition_graph()

Examples

>>> G = nx.gaussian_random_partition_graph(100,10,10,.25,.1)
>>> len(G)
100

References

	1

	Ulrik Brandes, Marco Gaertler, Dorothea Wagner,
Experiments on Graph Clustering Algorithms,
In the proceedings of the 11th Europ. Symp. Algorithms, 2003.

NetworkX

nonisomorphic_trees

	
nonisomorphic_trees(order, create='graph')

	Returns a list of nonisomporphic trees

	Parameters

	
	order (int [https://docs.python.org/2/library/functions.html#int]) – order of the desired tree(s)

	create (graph or matrix (default="Graph)) – If graph is selected a list of trees will be returned,
if matrix is selected a list of adjancency matrix will
be returned

	Returns

	
	G (List of NetworkX Graphs)

	M (List of Adjacency matrices)

References

NetworkX

number_of_nonisomorphic_trees

	
number_of_nonisomorphic_trees(order)

	Returns the number of nonisomorphic trees

	Parameters

	order (int [https://docs.python.org/2/library/functions.html#int]) – order of the desired tree(s)

	Returns

	length

	Return type

	Number of nonisomorphic graphs for the given order

References

NetworkX

Linear algebra

Graph Matrix

Adjacency matrix and incidence matrix of graphs.

	adjacency_matrix(G[, nodelist, weight])

	Return adjacency matrix of G.

	incidence_matrix(G[, nodelist, edgelist, …])

	Return incidence matrix of G.

Laplacian Matrix

Laplacian matrix of graphs.

	laplacian_matrix(G[, nodelist, weight])

	Return the Laplacian matrix of G.

	normalized_laplacian_matrix(G[, nodelist, …])

	Return the normalized Laplacian matrix of G.

	directed_laplacian_matrix(G[, nodelist, …])

	Return the directed Laplacian matrix of G.

Spectrum

Eigenvalue spectrum of graphs.

	laplacian_spectrum(G[, weight])

	Return eigenvalues of the Laplacian of G

	adjacency_spectrum(G[, weight])

	Return eigenvalues of the adjacency matrix of G.

Algebraic Connectivity

Algebraic connectivity and Fiedler vectors of undirected graphs.

	algebraic_connectivity(G[, weight, …])

	Return the algebraic connectivity of an undirected graph.

	fiedler_vector(G[, weight, normalized, tol, …])

	Return the Fiedler vector of a connected undirected graph.

	spectral_ordering(G[, weight, normalized, …])

	Compute the spectral_ordering of a graph.

Attribute Matrices

Functions for constructing matrix-like objects from graph attributes.

	attr_matrix(G[, edge_attr, node_attr, …])

	Returns a NumPy matrix using attributes from G.

	attr_sparse_matrix(G[, edge_attr, …])

	Returns a SciPy sparse matrix using attributes from G.

NetworkX

adjacency_matrix

	
adjacency_matrix(G, nodelist=None, weight='weight')

	Return adjacency matrix of G.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to provide each value in the matrix.
If None, then each edge has weight 1.

	Returns

	A – Adjacency matrix representation of G.

	Return type

	SciPy sparse matrix

Notes

For directed graphs, entry i,j corresponds to an edge from i to j.

If you want a pure Python adjacency matrix representation try
networkx.convert.to_dict_of_dicts which will return a
dictionary-of-dictionaries format that can be addressed as a
sparse matrix.

For MultiGraph/MultiDiGraph with parallel edges the weights are summed.
See to_numpy_matrix for other options.

The convention used for self-loop edges in graphs is to assign the
diagonal matrix entry value to the edge weight attribute
(or the number 1 if the edge has no weight attribute). If the
alternate convention of doubling the edge weight is desired the
resulting Scipy sparse matrix can be modified as follows:

>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.adjacency_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]

See also

to_numpy_matrix(), to_scipy_sparse_matrix(), to_dict_of_dicts()

NetworkX

incidence_matrix

	
incidence_matrix(G, nodelist=None, edgelist=None, oriented=False, weight=None)

	Return incidence matrix of G.

The incidence matrix assigns each row to a node and each column to an edge.
For a standard incidence matrix a 1 appears wherever a row’s node is
incident on the column’s edge. For an oriented incidence matrix each
edge is assigned an orientation (arbitrarily for undirected and aligning to
direction for directed). A -1 appears for the tail of an edge and 1
for the head of the edge. The elements are zero otherwise.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list, optional (default= all nodes in G)) – The rows are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	edgelist (list, optional (default= all edges in G)) – The columns are ordered according to the edges in edgelist.
If edgelist is None, then the ordering is produced by G.edges().

	oriented (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=False)) – If True, matrix elements are +1 or -1 for the head or tail node
respectively of each edge. If False, +1 occurs at both nodes.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – The edge data key used to provide each value in the matrix.
If None, then each edge has weight 1. Edge weights, if used,
should be positive so that the orientation can provide the sign.

	Returns

	A – The incidence matrix of G.

	Return type

	SciPy sparse matrix

Notes

For MultiGraph/MultiDiGraph, the edges in edgelist should be
(u,v,key) 3-tuples.

“Networks are the best discrete model for so many problems in
applied mathematics” 1.

References

	1

	Gil Strang, Network applications: A = incidence matrix,
http://academicearth.org/lectures/network-applications-incidence-matrix

NetworkX

laplacian_matrix

	
laplacian_matrix(G, nodelist=None, weight='weight')

	Return the Laplacian matrix of G.

The graph Laplacian is the matrix L = D - A, where
A is the adjacency matrix and D is the diagonal matrix of node degrees.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	Returns

	L – The Laplacian matrix of G.

	Return type

	SciPy sparse matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.

See also

to_numpy_matrix(), normalized_laplacian_matrix()

NetworkX

normalized_laplacian_matrix

	
normalized_laplacian_matrix(G, nodelist=None, weight='weight')

	Return the normalized Laplacian matrix of G.

The normalized graph Laplacian is the matrix

\[N = D^{-1/2} L D^{-1/2}\]

where \(L\) is the graph Laplacian and \(D\) is the diagonal matrix of
node degrees.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	Returns

	N – The normalized Laplacian matrix of G.

	Return type

	NumPy matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.
See to_numpy_matrix for other options.

If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is
the adjacency matrix 2.

See also

laplacian_matrix()

References

	1

	Fan Chung-Graham, Spectral Graph Theory,
CBMS Regional Conference Series in Mathematics, Number 92, 1997.

	2

	Steve Butler, Interlacing For Weighted Graphs Using The Normalized
Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,
March 2007.

NetworkX

directed_laplacian_matrix

	
directed_laplacian_matrix(G, nodelist=None, weight='weight', walk_type=None, alpha=0.95)

	Return the directed Laplacian matrix of G.

The graph directed Laplacian is the matrix

\[L = I - (\Phi^{1/2} P \Phi^{-1/2} + \Phi^{-1/2} P^T \Phi^{1/2}) / 2\]

where \(I\) is the identity matrix, \(P\) is the transition matrix of the
graph, and \(\Phi\) a matrix with the Perron vector of \(P\) in the diagonal and
zeros elsewhere.

Depending on the value of walk_type, \(P\) can be the transition matrix
induced by a random walk, a lazy random walk, or a random walk with
teleportation (PageRank).

	Parameters

	
	G (DiGraph) – A NetworkX graph

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	walk_type (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default=None)) – If None, \(P\) is selected depending on the properties of the
graph. Otherwise is one of ‘random’, ‘lazy’, or ‘pagerank’

	alpha (real) – (1 - alpha) is the teleportation probability used with pagerank

	Returns

	L – Normalized Laplacian of G.

	Return type

	NumPy array

	Raises

	
	NetworkXError – If NumPy cannot be imported

	NetworkXNotImplemnted – If G is not a DiGraph

Notes

Only implemented for DiGraphs

See also

laplacian_matrix()

References

	1

	Fan Chung (2005).
Laplacians and the Cheeger inequality for directed graphs.
Annals of Combinatorics, 9(1), 2005

NetworkX

laplacian_spectrum

	
laplacian_spectrum(G, weight='weight')

	Return eigenvalues of the Laplacian of G

	Parameters

	
	G (graph) – A NetworkX graph

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	Returns

	evals – Eigenvalues

	Return type

	NumPy array

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.
See to_numpy_matrix for other options.

See also

laplacian_matrix()

NetworkX

adjacency_spectrum

	
adjacency_spectrum(G, weight='weight')

	Return eigenvalues of the adjacency matrix of G.

	Parameters

	
	G (graph) – A NetworkX graph

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional (default='weight')) – The edge data key used to compute each value in the matrix.
If None, then each edge has weight 1.

	Returns

	evals – Eigenvalues

	Return type

	NumPy array

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed.
See to_numpy_matrix for other options.

See also

adjacency_matrix()

NetworkX

algebraic_connectivity

	
algebraic_connectivity(G, weight='weight', normalized=False, tol=1e-08, method='tracemin')

	Return the algebraic connectivity of an undirected graph.

The algebraic connectivity of a connected undirected graph is the second
smallest eigenvalue of its Laplacian matrix.

	Parameters

	
	G (NetworkX graph) – An undirected graph.

	weight (object [https://docs.python.org/2/library/functions.html#object], optional) – The data key used to determine the weight of each edge. If None, then
each edge has unit weight. Default value: None.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether the normalized Laplacian matrix is used. Default value: False.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Tolerance of relative residual in eigenvalue computation. Default
value: 1e-8.

	method (string [https://docs.python.org/2/library/string.html#module-string], optional) – Method of eigenvalue computation. It should be one of ‘tracemin’
(TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG).
Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following
values allow specifying the solver to be used.

	Value

	Solver

	’tracemin_pcg’

	Preconditioned conjugate gradient method

	’tracemin_chol’

	Cholesky factorization

	’tracemin_lu’

	LU factorization

	Returns

	algebraic_connectivity – Algebraic connectivity.

	Return type

	float [https://docs.python.org/2/library/functions.html#float]

	Raises

	
	NetworkXNotImplemented – If G is directed.

	NetworkXError – If G has less than two nodes.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s,
weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the
scikits.sparse package must be installed.

See also

laplacian_matrix()

NetworkX

fiedler_vector

	
fiedler_vector(G, weight='weight', normalized=False, tol=1e-08, method='tracemin')

	Return the Fiedler vector of a connected undirected graph.

The Fiedler vector of a connected undirected graph is the eigenvector
corresponding to the second smallest eigenvalue of the Laplacian matrix of
of the graph.

	Parameters

	
	G (NetworkX graph) – An undirected graph.

	weight (object [https://docs.python.org/2/library/functions.html#object], optional) – The data key used to determine the weight of each edge. If None, then
each edge has unit weight. Default value: None.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether the normalized Laplacian matrix is used. Default value: False.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Tolerance of relative residual in eigenvalue computation. Default
value: 1e-8.

	method (string [https://docs.python.org/2/library/string.html#module-string], optional) – Method of eigenvalue computation. It should be one of ‘tracemin’
(TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG).
Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following
values allow specifying the solver to be used.

	Value

	Solver

	’tracemin_pcg’

	Preconditioned conjugate gradient method

	’tracemin_chol’

	Cholesky factorization

	’tracemin_lu’

	LU factorization

	Returns

	fiedler_vector – Fiedler vector.

	Return type

	NumPy array of floats.

	Raises

	
	NetworkXNotImplemented – If G is directed.

	NetworkXError – If G has less than two nodes or is not connected.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s,
weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the
scikits.sparse package must be installed.

See also

laplacian_matrix()

NetworkX

spectral_ordering

	
spectral_ordering(G, weight='weight', normalized=False, tol=1e-08, method='tracemin')

	Compute the spectral_ordering of a graph.

The spectral ordering of a graph is an ordering of its nodes where nodes
in the same weakly connected components appear contiguous and ordered by
their corresponding elements in the Fiedler vector of the component.

	Parameters

	
	G (NetworkX graph) – A graph.

	weight (object [https://docs.python.org/2/library/functions.html#object], optional) – The data key used to determine the weight of each edge. If None, then
each edge has unit weight. Default value: None.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Whether the normalized Laplacian matrix is used. Default value: False.

	tol (float [https://docs.python.org/2/library/functions.html#float], optional) – Tolerance of relative residual in eigenvalue computation. Default
value: 1e-8.

	method (string [https://docs.python.org/2/library/string.html#module-string], optional) – Method of eigenvalue computation. It should be one of ‘tracemin’
(TraceMIN), ‘lanczos’ (Lanczos iteration) and ‘lobpcg’ (LOBPCG).
Default value: ‘tracemin’.

The TraceMIN algorithm uses a linear system solver. The following
values allow specifying the solver to be used.

	Value

	Solver

	’tracemin_pcg’

	Preconditioned conjugate gradient method

	’tracemin_chol’

	Cholesky factorization

	’tracemin_lu’

	LU factorization

	Returns

	spectral_ordering – Spectral ordering of nodes.

	Return type

	NumPy array of floats.

	Raises

	NetworkXError – If G is empty.

Notes

Edge weights are interpreted by their absolute values. For MultiGraph’s,
weights of parallel edges are summed. Zero-weighted edges are ignored.

To use Cholesky factorization in the TraceMIN algorithm, the
scikits.sparse package must be installed.

See also

laplacian_matrix()

NetworkX

attr_matrix

	
attr_matrix(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None, order=None)

	Returns a NumPy matrix using attributes from G.

If only \(G\) is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute \(node_attr\). Then
the elements of A represent the rows and columns of the constructed matrix.
Now, iterate through every edge e=(u,v) in \(G\) and consider the value
of the edge attribute \(edge_attr\). If ua and va are the values of the
node attribute \(node_attr\) for u and v, respectively, then the value of
the edge attribute is added to the matrix element at (ua, va).

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	edge_attr (str [https://docs.python.org/2/library/functions.html#str], optional) – Each element of the matrix represents a running total of the
specified edge attribute for edges whose node attributes correspond
to the rows/cols of the matirx. The attribute must be present for
all edges in the graph. If no attribute is specified, then we
just count the number of edges whose node attributes correspond
to the matrix element.

	node_attr (str [https://docs.python.org/2/library/functions.html#str], optional) – Each row and column in the matrix represents a particular value
of the node attribute. The attribute must be present for all nodes
in the graph. Note, the values of this attribute should be reliably
hashable. So, float values are not recommended. If no attribute is
specified, then the rows and columns will be the nodes of the graph.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True, then each row is normalized by the summation of its values.

	rc_order (list, optional) – A list of the node attribute values. This list specifies the ordering
of rows and columns of the array. If no ordering is provided, then
the ordering will be random (and also, a return value).

	Other Parameters

	
	dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array. Keep in mind certain
dtypes can yield unexpected results if the array is to be normalized.
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
default is used.

	order ({‘C’, ‘F’}, optional) – Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. This parameter is passed to
numpy.zeros(). If unspecified, the NumPy default is used.

	Returns

	
	M (NumPy matrix) – The attribute matrix.

	ordering (list) – If \(rc_order\) was specified, then only the matrix is returned.
However, if \(rc_order\) was None, then the ordering used to construct
the matrix is returned as well.

Examples

Construct an adjacency matrix:

>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
>>> nx.attr_matrix(G, rc_order=[0,1,2])
matrix([[0., 1., 1.],
 [1., 0., 1.],
 [1., 1., 0.]])

Alternatively, we can obtain the matrix describing edge thickness.

>>> nx.attr_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
matrix([[0., 1., 2.],
 [1., 0., 3.],
 [2., 3., 0.]])

We can also color the nodes and ask for the probability distribution over
all edges (u,v) describing:

Pr(v has color Y | u has color X)

>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> nx.attr_matrix(G, node_attr='color', normalized=True, rc_order=rc)
matrix([[0.33333333, 0.66666667],
 [1. , 0.]])

For example, the above tells us that for all edges (u,v):

Pr(v is red | u is red) = 1/3
Pr(v is blue | u is red) = 2/3

Pr(v is red | u is blue) = 1
Pr(v is blue | u is blue) = 0

Finally, we can obtain the total weights listed by the node colors.

>>> nx.attr_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
matrix([[3., 2.],
 [2., 0.]])

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1)
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
(blue, red) is 2 # same as (red, blue) since graph is undirected
(blue, blue) is 0 # there are no edges with blue endpoints

NetworkX

attr_sparse_matrix

	
attr_sparse_matrix(G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None)

	Returns a SciPy sparse matrix using attributes from G.

If only \(G\) is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute \(node_attr\). Then
the elements of A represent the rows and columns of the constructed matrix.
Now, iterate through every edge e=(u,v) in \(G\) and consider the value
of the edge attribute \(edge_attr\). If ua and va are the values of the
node attribute \(node_attr\) for u and v, respectively, then the value of
the edge attribute is added to the matrix element at (ua, va).

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	edge_attr (str [https://docs.python.org/2/library/functions.html#str], optional) – Each element of the matrix represents a running total of the
specified edge attribute for edges whose node attributes correspond
to the rows/cols of the matirx. The attribute must be present for
all edges in the graph. If no attribute is specified, then we
just count the number of edges whose node attributes correspond
to the matrix element.

	node_attr (str [https://docs.python.org/2/library/functions.html#str], optional) – Each row and column in the matrix represents a particular value
of the node attribute. The attribute must be present for all nodes
in the graph. Note, the values of this attribute should be reliably
hashable. So, float values are not recommended. If no attribute is
specified, then the rows and columns will be the nodes of the graph.

	normalized (bool [https://docs.python.org/2/library/functions.html#bool], optional) – If True, then each row is normalized by the summation of its values.

	rc_order (list, optional) – A list of the node attribute values. This list specifies the ordering
of rows and columns of the array. If no ordering is provided, then
the ordering will be random (and also, a return value).

	Other Parameters

	dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array. Keep in mind certain
dtypes can yield unexpected results if the array is to be normalized.
The parameter is passed to numpy.zeros(). If unspecified, the NumPy
default is used.

	Returns

	
	M (SciPy sparse matrix) – The attribute matrix.

	ordering (list) – If \(rc_order\) was specified, then only the matrix is returned.
However, if \(rc_order\) was None, then the ordering used to construct
the matrix is returned as well.

Examples

Construct an adjacency matrix:

>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
>>> M = nx.attr_sparse_matrix(G, rc_order=[0,1,2])
>>> M.todense()
matrix([[0., 1., 1.],
 [1., 0., 1.],
 [1., 1., 0.]])

Alternatively, we can obtain the matrix describing edge thickness.

>>> M = nx.attr_sparse_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
>>> M.todense()
matrix([[0., 1., 2.],
 [1., 0., 3.],
 [2., 3., 0.]])

We can also color the nodes and ask for the probability distribution over
all edges (u,v) describing:

Pr(v has color Y | u has color X)

>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> M = nx.attr_sparse_matrix(G, node_attr='color', normalized=True, rc_order=rc)
>>> M.todense()
matrix([[0.33333333, 0.66666667],
 [1. , 0.]])

For example, the above tells us that for all edges (u,v):

Pr(v is red | u is red) = 1/3
Pr(v is blue | u is red) = 2/3

Pr(v is red | u is blue) = 1
Pr(v is blue | u is blue) = 0

Finally, we can obtain the total weights listed by the node colors.

>>> M = nx.attr_sparse_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
>>> M.todense()
matrix([[3., 2.],
 [2., 0.]])

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1)
(red, blue) is 2 # contributions from edges (0,2) and (1,2)
(blue, red) is 2 # same as (red, blue) since graph is undirected
(blue, blue) is 0 # there are no edges with blue endpoints

NetworkX

Converting to and from other data formats

To NetworkX Graph

Functions to convert NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph is through the
graph constuctor. The constructor calls the to_networkx_graph() function
which attempts to guess the input type and convert it automatically.

Examples

Create a graph with a single edge from a dictionary of dictionaries

>>> d={0: {1: 1}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)

See also

nx_agraph, nx_pydot

	to_networkx_graph(data[, create_using, …])

	Make a NetworkX graph from a known data structure.

Dictionaries

	to_dict_of_dicts(G[, nodelist, edge_data])

	Return adjacency representation of graph as a dictionary of dictionaries.

	from_dict_of_dicts(d[, create_using, …])

	Return a graph from a dictionary of dictionaries.

Lists

	to_dict_of_lists(G[, nodelist])

	Return adjacency representation of graph as a dictionary of lists.

	from_dict_of_lists(d[, create_using])

	Return a graph from a dictionary of lists.

	to_edgelist(G[, nodelist])

	Return a list of edges in the graph.

	from_edgelist(edgelist[, create_using])

	Return a graph from a list of edges.

Numpy

Functions to convert NetworkX graphs to and from numpy/scipy matrices.

The preferred way of converting data to a NetworkX graph is through the
graph constuctor. The constructor calls the to_networkx_graph() function
which attempts to guess the input type and convert it automatically.

Examples

Create a 10 node random graph from a numpy matrix

>>> import numpy
>>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))
>>> D = nx.DiGraph(a)

or equivalently

>>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph())

See also

nx_agraph, nx_pydot

	to_numpy_matrix(G[, nodelist, dtype, order, …])

	Return the graph adjacency matrix as a NumPy matrix.

	to_numpy_recarray(G[, nodelist, dtype, order])

	Return the graph adjacency matrix as a NumPy recarray.

	from_numpy_matrix(A[, parallel_edges, …])

	Return a graph from numpy matrix.

Scipy

	to_scipy_sparse_matrix(G[, nodelist, dtype, …])

	Return the graph adjacency matrix as a SciPy sparse matrix.

	from_scipy_sparse_matrix(A[, …])

	Creates a new graph from an adjacency matrix given as a SciPy sparse matrix.

Pandas

	to_pandas_dataframe(G[, nodelist, …])

	Return the graph adjacency matrix as a Pandas DataFrame.

	from_pandas_dataframe(df, source, target[, …])

	Return a graph from Pandas DataFrame.

NetworkX

to_networkx_graph

	
to_networkx_graph(data, create_using=None, multigraph_input=False)

	Make a NetworkX graph from a known data structure.

The preferred way to call this is automatically
from the class constructor

>>> d={0: {1: {'weight':1}}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)

instead of the equivalent

>>> G=nx.from_dict_of_dicts(d)

	Parameters

	
	data (a object to be converted) –
	Current known types are:

	any NetworkX graph
dict-of-dicts
dist-of-lists
list of edges
numpy matrix
numpy ndarray
scipy sparse matrix
pygraphviz agraph

	create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

	multigraph_input (bool [https://docs.python.org/2/library/functions.html#bool] (default False)) – If True and data is a dict_of_dicts,
try to create a multigraph assuming dict_of_dict_of_lists.
If data and create_using are both multigraphs then create
a multigraph from a multigraph.

NetworkX

to_dict_of_dicts

	
to_dict_of_dicts(G, nodelist=None, edge_data=None)

	Return adjacency representation of graph as a dictionary of dictionaries.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list) – Use only nodes specified in nodelist

	edge_data (list, optional) – If provided, the value of the dictionary will be
set to edge_data for all edges. This is useful to make
an adjacency matrix type representation with 1 as the edge data.
If edgedata is None, the edgedata in G is used to fill the values.
If G is a multigraph, the edgedata is a dict for each pair (u,v).

NetworkX

from_dict_of_dicts

	
from_dict_of_dicts(d, create_using=None, multigraph_input=False)

	Return a graph from a dictionary of dictionaries.

	Parameters

	
	d (dictionary of dictionaries) – A dictionary of dictionaries adjacency representation.

	create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

	multigraph_input (bool [https://docs.python.org/2/library/functions.html#bool] (default False)) – When True, the values of the inner dict are assumed
to be containers of edge data for multiple edges.
Otherwise this routine assumes the edge data are singletons.

Examples

>>> dod= {0: {1:{'weight':1}}} # single edge (0,1)
>>> G=nx.from_dict_of_dicts(dod)

or
>>> G=nx.Graph(dod) # use Graph constructor

NetworkX

to_dict_of_lists

	
to_dict_of_lists(G, nodelist=None)

	Return adjacency representation of graph as a dictionary of lists.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list) – Use only nodes specified in nodelist

Notes

Completely ignores edge data for MultiGraph and MultiDiGraph.

NetworkX

from_dict_of_lists

	
from_dict_of_lists(d, create_using=None)

	Return a graph from a dictionary of lists.

	Parameters

	
	d (dictionary of lists) – A dictionary of lists adjacency representation.

	create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

Examples

>>> dol= {0:[1]} # single edge (0,1)
>>> G=nx.from_dict_of_lists(dol)

or
>>> G=nx.Graph(dol) # use Graph constructor

NetworkX

to_edgelist

	
to_edgelist(G, nodelist=None)

	Return a list of edges in the graph.

	Parameters

	
	G (graph) – A NetworkX graph

	nodelist (list) – Use only nodes specified in nodelist

NetworkX

from_edgelist

	
from_edgelist(edgelist, create_using=None)

	Return a graph from a list of edges.

	Parameters

	
	edgelist (list or iterator) – Edge tuples

	create_using (NetworkX graph) – Use specified graph for result. Otherwise a new graph is created.

Examples

>>> edgelist= [(0,1)] # single edge (0,1)
>>> G=nx.from_edgelist(edgelist)

or
>>> G=nx.Graph(edgelist) # use Graph constructor

NetworkX

to_numpy_matrix

	
to_numpy_matrix(G, nodelist=None, dtype=None, order=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0)

	Return the graph adjacency matrix as a NumPy matrix.

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in nodelist.
If nodelist is None, then the ordering is produced by G.nodes().

	dtype (NumPy data type, optional) – A valid single NumPy data type used to initialize the array.
This must be a simple type such as int or numpy.float64 and
not a compound data type (see to_numpy_recarray)
If None, then the NumPy default is used.

	order ({'C', 'F'}, optional) – Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. If None, then the NumPy default
is used.

	multigraph_weight ({sum, min [https://docs.python.org/2/library/functions.html#min], max}, optional) – An operator that determines how weights in multigraphs are handled.
The default is to sum the weights of the multiple edges.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default = 'weight')) – The edge attribute that holds the numerical value used for
the edge weight. If an edge does not have that attribute, then the
value 1 is used instead.

	nonedge (float [https://docs.python.org/2/library/functions.html#float] (default = 0.0)) – The matrix values corresponding to nonedges are typically set to zero.
However, this could be undesirable if there are matrix values
corresponding to actual edges that also have the value zero. If so,
one might prefer nonedges to have some other value, such as nan.

	Returns

	M – Graph adjacency matrix

	Return type

	NumPy matrix

See also

to_numpy_recarray(), from_numpy_matrix()

Notes

The matrix entries are assigned to the weight edge attribute. When
an edge does not have a weight attribute, the value of the entry is set to
the number 1. For multiple (parallel) edges, the values of the entries
are determined by the multigraph_weight parameter. The default is to
sum the weight attributes for each of the parallel edges.

When nodelist does not contain every node in G, the matrix is built
from the subgraph of G that is induced by the nodes in nodelist.

The convention used for self-loop edges in graphs is to assign the
diagonal matrix entry value to the weight attribute of the edge
(or the number 1 if the edge has no weight attribute). If the
alternate convention of doubling the edge weight is desired the
resulting Numpy matrix can be modified as follows:

>>> import numpy as np
>>> G = nx.Graph([(1, 1)])
>>> A = nx.to_numpy_matrix(G)
>>> A
matrix([[1.]])
>>> A.A[np.diag_indices_from(A)] *= 2
>>> A
matrix([[2.]])

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_numpy_matrix(G, nodelist=[0,1,2])
matrix([[0., 2., 0.],
 [1., 0., 0.],
 [0., 0., 4.]])

NetworkX

to_numpy_recarray

	
to_numpy_recarray(G, nodelist=None, dtype=[('weight', <type 'float'>)], order=None)

	Return the graph adjacency matrix as a NumPy recarray.

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in \(nodelist\).
If \(nodelist\) is None, then the ordering is produced by G.nodes().

	dtype (NumPy data-type, optional) – A valid NumPy named dtype used to initialize the NumPy recarray.
The data type names are assumed to be keys in the graph edge attribute
dictionary.

	order ({'C', 'F'}, optional) – Whether to store multidimensional data in C- or Fortran-contiguous
(row- or column-wise) order in memory. If None, then the NumPy default
is used.

	Returns

	M – The graph with specified edge data as a Numpy recarray

	Return type

	NumPy recarray

Notes

When \(nodelist\) does not contain every node in \(G\), the matrix is built
from the subgraph of \(G\) that is induced by the nodes in \(nodelist\).

Examples

>>> G = nx.Graph()
>>> G.add_edge(1,2,weight=7.0,cost=5)
>>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
>>> print(A.weight)
[[0. 7.]
 [7. 0.]]
>>> print(A.cost)
[[0 5]
 [5 0]]

NetworkX

from_numpy_matrix

	
from_numpy_matrix(A, parallel_edges=False, create_using=None)

	Return a graph from numpy matrix.

The numpy matrix is interpreted as an adjacency matrix for the graph.

	Parameters

	
	A (numpy matrix) – An adjacency matrix representation of a graph

	parallel_edges (Boolean) – If this is True, create_using is a multigraph, and A is an
integer matrix, then entry (i, j) in the matrix is interpreted as the
number of parallel edges joining vertices i and j in the graph. If it
is False, then the entries in the adjacency matrix are interpreted as
the weight of a single edge joining the vertices.

	create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

Notes

If create_using is an instance of networkx.MultiGraph or
networkx.MultiDiGraph, parallel_edges is True, and the
entries of A are of type int, then this function returns a multigraph
(of the same type as create_using) with parallel edges.

If create_using is an undirected multigraph, then only the edges
indicated by the upper triangle of the matrix \(A\) will be added to the
graph.

If the numpy matrix has a single data type for each matrix entry it
will be converted to an appropriate Python data type.

If the numpy matrix has a user-specified compound data type the names
of the data fields will be used as attribute keys in the resulting
NetworkX graph.

See also

to_numpy_matrix(), to_numpy_recarray()

Examples

Simple integer weights on edges:

>>> import numpy
>>> A=numpy.matrix([[1, 1], [2, 1]])
>>> G=nx.from_numpy_matrix(A)

If create_using is a multigraph and the matrix has only integer entries,
the entries will be interpreted as weighted edges joining the vertices
(without creating parallel edges):

>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}

If create_using is a multigraph and the matrix has only integer entries
but parallel_edges is True, then the entries will be interpreted as
the number of parallel edges joining those two vertices:

>>> import numpy
>>> A = numpy.matrix([[1, 1], [1, 2]])
>>> temp = nx.MultiGraph()
>>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp)
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}

User defined compound data type on edges:

>>> import numpy
>>> dt = [('weight', float), ('cost', int)]
>>> A = numpy.matrix([[(1.0, 2)]], dtype = dt)
>>> G = nx.from_numpy_matrix(A)
>>> G.edges()
[(0, 0)]
>>> G[0][0]['cost']
2
>>> G[0][0]['weight']
1.0

NetworkX

to_scipy_sparse_matrix

	
to_scipy_sparse_matrix(G, nodelist=None, dtype=None, weight='weight', format='csr')

	Return the graph adjacency matrix as a SciPy sparse matrix.

	Parameters

	
	G (graph) – The NetworkX graph used to construct the NumPy matrix.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in \(nodelist\).
If \(nodelist\) is None, then the ordering is produced by G.nodes().

	dtype (NumPy data-type, optional) – A valid NumPy dtype used to initialize the array. If None, then the
NumPy default is used.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default='weight')) – The edge attribute that holds the numerical value used for
the edge weight. If None then all edge weights are 1.

	format (str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'}) – The type of the matrix to be returned (default ‘csr’). For
some algorithms different implementations of sparse matrices
can perform better. See 1 for details.

	Returns

	M – Graph adjacency matrix.

	Return type

	SciPy sparse matrix

Notes

The matrix entries are populated using the edge attribute held in
parameter weight. When an edge does not have that attribute, the
value of the entry is 1.

For multiple edges the matrix values are the sums of the edge weights.

When \(nodelist\) does not contain every node in \(G\), the matrix is built
from the subgraph of \(G\) that is induced by the nodes in \(nodelist\).

Uses coo_matrix format. To convert to other formats specify the
format= keyword.

The convention used for self-loop edges in graphs is to assign the
diagonal matrix entry value to the weight attribute of the edge
(or the number 1 if the edge has no weight attribute). If the
alternate convention of doubling the edge weight is desired the
resulting Scipy sparse matrix can be modified as follows:

>>> import scipy as sp
>>> G = nx.Graph([(1,1)])
>>> A = nx.to_scipy_sparse_matrix(G)
>>> print(A.todense())
[[1]]
>>> A.setdiag(A.diagonal()*2)
>>> print(A.todense())
[[2]]

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2])
>>> print(S.todense())
[[0 2 0]
 [1 0 0]
 [0 0 4]]

References

	1

	Scipy Dev. References, “Sparse Matrices”,
http://docs.scipy.org/doc/scipy/reference/sparse.html

NetworkX

from_scipy_sparse_matrix

	
from_scipy_sparse_matrix(A, parallel_edges=False, create_using=None, edge_attribute='weight')

	Creates a new graph from an adjacency matrix given as a SciPy sparse
matrix.

	Parameters

	
	A (scipy sparse matrix) – An adjacency matrix representation of a graph

	parallel_edges (Boolean) – If this is True, \(create_using\) is a multigraph, and \(A\) is an
integer matrix, then entry (i, j) in the matrix is interpreted as the
number of parallel edges joining vertices i and j in the graph. If it
is False, then the entries in the adjacency matrix are interpreted as
the weight of a single edge joining the vertices.

	create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

	edge_attribute (string [https://docs.python.org/2/library/string.html#module-string]) – Name of edge attribute to store matrix numeric value. The data will
have the same type as the matrix entry (int, float, (real,imag)).

Notes

If \(create_using\) is an instance of networkx.MultiGraph or
networkx.MultiDiGraph, \(parallel_edges\) is True, and the
entries of \(A\) are of type int, then this function returns a multigraph
(of the same type as \(create_using\)) with parallel edges. In this case,
\(edge_attribute\) will be ignored.

If \(create_using\) is an undirected multigraph, then only the edges
indicated by the upper triangle of the matrix \(A\) will be added to the
graph.

Examples

>>> import scipy.sparse
>>> A = scipy.sparse.eye(2,2,1)
>>> G = nx.from_scipy_sparse_matrix(A)

If \(create_using\) is a multigraph and the matrix has only integer entries,
the entries will be interpreted as weighted edges joining the vertices
(without creating parallel edges):

>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 2}}

If \(create_using\) is a multigraph and the matrix has only integer entries
but \(parallel_edges\) is True, then the entries will be interpreted as
the number of parallel edges joining those two vertices:

>>> import scipy
>>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]])
>>> G = nx.from_scipy_sparse_matrix(A, parallel_edges=True,
... create_using=nx.MultiGraph())
>>> G[1][1]
{0: {'weight': 1}, 1: {'weight': 1}}

NetworkX

to_pandas_dataframe

	
to_pandas_dataframe(G, nodelist=None, multigraph_weight=<built-in function sum>, weight='weight', nonedge=0.0)

	Return the graph adjacency matrix as a Pandas DataFrame.

	Parameters

	
	G (graph) – The NetworkX graph used to construct the Pandas DataFrame.

	nodelist (list, optional) – The rows and columns are ordered according to the nodes in \(nodelist\).
If \(nodelist\) is None, then the ordering is produced by G.nodes().

	multigraph_weight ({sum, min [https://docs.python.org/2/library/functions.html#min], max}, optional) – An operator that determines how weights in multigraphs are handled.
The default is to sum the weights of the multiple edges.

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None [https://docs.python.org/2/library/constants.html#None], optional) – The edge attribute that holds the numerical value used for
the edge weight. If an edge does not have that attribute, then the
value 1 is used instead.

	nonedge (float [https://docs.python.org/2/library/functions.html#float], optional) – The matrix values corresponding to nonedges are typically set to zero.
However, this could be undesirable if there are matrix values
corresponding to actual edges that also have the value zero. If so,
one might prefer nonedges to have some other value, such as nan.

	Returns

	df – Graph adjacency matrix

	Return type

	Pandas DataFrame

Notes

The DataFrame entries are assigned to the weight edge attribute. When
an edge does not have a weight attribute, the value of the entry is set to
the number 1. For multiple (parallel) edges, the values of the entries
are determined by the ‘multigraph_weight’ parameter. The default is to
sum the weight attributes for each of the parallel edges.

When \(nodelist\) does not contain every node in \(G\), the matrix is built
from the subgraph of \(G\) that is induced by the nodes in \(nodelist\).

The convention used for self-loop edges in graphs is to assign the
diagonal matrix entry value to the weight attribute of the edge
(or the number 1 if the edge has no weight attribute). If the
alternate convention of doubling the edge weight is desired the
resulting Pandas DataFrame can be modified as follows:

>>> import pandas as pd
>>> import numpy as np
>>> G = nx.Graph([(1,1)])
>>> df = nx.to_pandas_dataframe(G)
>>> df
 1
1 1
>>> df.values[np.diag_indices_from(df)] *= 2
>>> df
 1
1 2

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_pandas_dataframe(G, nodelist=[0,1,2])
 0 1 2
0 0 2 0
1 1 0 0
2 0 0 4

NetworkX

from_pandas_dataframe

	
from_pandas_dataframe(df, source, target, edge_attr=None, create_using=None)

	Return a graph from Pandas DataFrame.

The Pandas DataFrame should contain at least two columns of node names and
zero or more columns of node attributes. Each row will be processed as one
edge instance.

Note: This function iterates over DataFrame.values, which is not
guaranteed to retain the data type across columns in the row. This is only
a problem if your row is entirely numeric and a mix of ints and floats. In
that case, all values will be returned as floats. See the
DataFrame.iterrows documentation for an example.

	Parameters

	
	df (Pandas DataFrame) – An edge list representation of a graph

	source (str [https://docs.python.org/2/library/functions.html#str] or int [https://docs.python.org/2/library/functions.html#int]) – A valid column name (string or iteger) for the source nodes (for the
directed case).

	target (str [https://docs.python.org/2/library/functions.html#str] or int [https://docs.python.org/2/library/functions.html#int]) – A valid column name (string or iteger) for the target nodes (for the
directed case).

	edge_attr (str [https://docs.python.org/2/library/functions.html#str] or int [https://docs.python.org/2/library/functions.html#int], iterable, True [https://docs.python.org/2/library/constants.html#True]) – A valid column name (str or integer) or list of column names that will
be used to retrieve items from the row and add them to the graph as edge
attributes. If \(True\), all of the remaining columns will be added.

	create_using (NetworkX graph) – Use specified graph for result. The default is Graph()

See also

to_pandas_dataframe()

Examples

Simple integer weights on edges:

>>> import pandas as pd
>>> import numpy as np
>>> r = np.random.RandomState(seed=5)
>>> ints = r.random_integers(1, 10, size=(3,2))
>>> a = ['A', 'B', 'C']
>>> b = ['D', 'A', 'E']
>>> df = pd.DataFrame(ints, columns=['weight', 'cost'])
>>> df[0] = a
>>> df['b'] = b
>>> df
 weight cost 0 b
0 4 7 A D
1 7 1 B A
2 10 9 C E
>>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost'])
>>> G['E']['C']['weight']
10
>>> G['E']['C']['cost']
9

NetworkX

Reading and writing graphs

	Adjacency List
	Adjacency List

	read_adjlist

	write_adjlist

	parse_adjlist

	generate_adjlist

	Multiline Adjacency List
	Multi-line Adjacency List

	read_multiline_adjlist

	write_multiline_adjlist

	parse_multiline_adjlist

	generate_multiline_adjlist

	Edge List
	Edge Lists

	read_edgelist

	write_edgelist

	read_weighted_edgelist

	write_weighted_edgelist

	generate_edgelist

	parse_edgelist

	GEXF
	GEXF

	read_gexf

	write_gexf

	relabel_gexf_graph

	GML
	Format

	read_gml

	write_gml

	parse_gml

	generate_gml

	literal_destringizer

	literal_stringizer

	Pickle
	Pickled Graphs

	read_gpickle

	write_gpickle

	GraphML
	GraphML

	read_graphml

	write_graphml

	JSON
	JSON data

	node_link_data

	node_link_graph

	adjacency_data

	adjacency_graph

	tree_data

	tree_graph

	LEDA
	Format

	read_leda

	parse_leda

	YAML
	YAML

	read_yaml

	write_yaml

	SparseGraph6
	Graph6

	Sparse6

	Pajek
	Pajek

	read_pajek

	write_pajek

	parse_pajek

	GIS Shapefile
	Shapefile

	read_shp

	write_shp

NetworkX

Adjacency List

Adjacency List

Read and write NetworkX graphs as adjacency lists.

Adjacency list format is useful for graphs without data associated
with nodes or edges and for nodes that can be meaningfully represented
as strings.

Format

The adjacency list format consists of lines with node labels. The
first label in a line is the source node. Further labels in the line
are considered target nodes and are added to the graph along with an edge
between the source node and target node.

The graph with edges a-b, a-c, d-e can be represented as the following
adjacency list (anything following the # in a line is a comment):

a b c # source target target
d e

	read_adjlist(path[, comments, delimiter, …])

	Read graph in adjacency list format from path.

	write_adjlist(G, path[, comments, …])

	Write graph G in single-line adjacency-list format to path.

	parse_adjlist(lines[, comments, delimiter, …])

	Parse lines of a graph adjacency list representation.

	generate_adjlist(G[, delimiter])

	Generate a single line of the graph G in adjacency list format.

NetworkX

read_adjlist

	
read_adjlist(path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8')

	Read graph in adjacency list format from path.

	Parameters

	
	path (string [https://docs.python.org/2/library/string.html#module-string] or file [https://docs.python.org/2/library/functions.html#file]) – Filename or file handle to read.
Filenames ending in .gz or .bz2 will be uncompressed.

	create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels. The default is whitespace.

	create_using – Use given NetworkX graph for holding nodes or edges.

	Returns

	G – The graph corresponding to the lines in adjacency list format.

	Return type

	NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G, "test.adjlist")
>>> G=nx.read_adjlist("test.adjlist")

The path can be a filehandle or a string with the name of the file. If a
filehandle is provided, it has to be opened in ‘rb’ mode.

>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_adjlist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_adjlist("test.adjlist.gz")

The optional nodetype is a function to convert node strings to nodetype.

For example

>>> G=nx.read_adjlist("test.adjlist", nodetype=int)

will attempt to convert all nodes to integer type.

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

The optional create_using parameter is a NetworkX graph container.
The default is Graph(), an undirected graph. To read the data as
a directed graph use

>>> G=nx.read_adjlist("test.adjlist", create_using=nx.DiGraph())

Notes

This format does not store graph or node data.

See also

write_adjlist()

NetworkX

write_adjlist

	
write_adjlist(G, path, comments='#', delimiter=' ', encoding='utf-8')

	Write graph G in single-line adjacency-list format to path.

	Parameters

	
	G (NetworkX graph) –

	path (string [https://docs.python.org/2/library/string.html#module-string] or file [https://docs.python.org/2/library/functions.html#file]) – Filename or file handle for data output.
Filenames ending in .gz or .bz2 will be compressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Text encoding.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G,"test.adjlist")

The path can be a filehandle or a string with the name of the file. If a
filehandle is provided, it has to be opened in ‘wb’ mode.

>>> fh=open("test.adjlist",'wb')
>>> nx.write_adjlist(G, fh)

Notes

This format does not store graph, node, or edge data.

See also

read_adjlist(), generate_adjlist()

NetworkX

parse_adjlist

	
parse_adjlist(lines, comments='#', delimiter=None, create_using=None, nodetype=None)

	Parse lines of a graph adjacency list representation.

	Parameters

	
	lines (list or iterator of strings) – Input data in adjlist format

	create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels. The default is whitespace.

	create_using – Use given NetworkX graph for holding nodes or edges.

	Returns

	G – The graph corresponding to the lines in adjacency list format.

	Return type

	NetworkX graph

Examples

>>> lines = ['1 2 5',
... '2 3 4',
... '3 5',
... '4',
... '5']
>>> G = nx.parse_adjlist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4, 5]
>>> G.edges()
[(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)]

See also

read_adjlist()

NetworkX

generate_adjlist

	
generate_adjlist(G, delimiter=' ')

	Generate a single line of the graph G in adjacency list format.

	Parameters

	
	G (NetworkX graph) –

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	Returns

	lines – Lines of data in adjlist format.

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_adjlist(G):
... print(line)
0 1 2 3
1 2 3
2 3
3 4
4 5
5 6
6

See also

write_adjlist(), read_adjlist()

NetworkX

Multiline Adjacency List

Multi-line Adjacency List

Read and write NetworkX graphs as multi-line adjacency lists.

The multi-line adjacency list format is useful for graphs with
nodes that can be meaningfully represented as strings. With this format
simple edge data can be stored but node or graph data is not.

Format

The first label in a line is the source node label followed by the node degree
d. The next d lines are target node labels and optional edge data.
That pattern repeats for all nodes in the graph.

The graph with edges a-b, a-c, d-e can be represented as the following
adjacency list (anything following the # in a line is a comment):

example.multiline-adjlist
a 2
b
c
d 1
e

	read_multiline_adjlist(path[, comments, …])

	Read graph in multi-line adjacency list format from path.

	write_multiline_adjlist(G, path[, …])

	Write the graph G in multiline adjacency list format to path

	parse_multiline_adjlist(lines[, comments, …])

	Parse lines of a multiline adjacency list representation of a graph.

	generate_multiline_adjlist(G[, delimiter])

	Generate a single line of the graph G in multiline adjacency list format.

NetworkX

read_multiline_adjlist

	
read_multiline_adjlist(path, comments='#', delimiter=None, create_using=None, nodetype=None, edgetype=None, encoding='utf-8')

	Read graph in multi-line adjacency list format from path.

	Parameters

	
	path (string [https://docs.python.org/2/library/string.html#module-string] or file [https://docs.python.org/2/library/functions.html#file]) – Filename or file handle to read.
Filenames ending in .gz or .bz2 will be uncompressed.

	create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	edgetype (Python type, optional) – Convert edge data to this type.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels. The default is whitespace.

	create_using – Use given NetworkX graph for holding nodes or edges.

	Returns

	G

	Return type

	NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")
>>> G=nx.read_multiline_adjlist("test.adjlist")

The path can be a file or a string with the name of the file. If a
file s provided, it has to be opened in ‘rb’ mode.

>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_multiline_adjlist(fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_multiline_adjlist("test.adjlist.gz")

The optional nodetype is a function to convert node strings to nodetype.

For example

>>> G=nx.read_multiline_adjlist("test.adjlist", nodetype=int)

will attempt to convert all nodes to integer type.

The optional edgetype is a function to convert edge data strings to
edgetype.

>>> G=nx.read_multiline_adjlist("test.adjlist")

The optional create_using parameter is a NetworkX graph container.
The default is Graph(), an undirected graph. To read the data as
a directed graph use

>>> G=nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph())

Notes

This format does not store graph, node, or edge data.

See also

write_multiline_adjlist()

NetworkX

write_multiline_adjlist

	
write_multiline_adjlist(G, path, delimiter=' ', comments='#', encoding='utf-8')

	Write the graph G in multiline adjacency list format to path

	Parameters

	
	G (NetworkX graph) –

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Text encoding.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")

The path can be a file handle or a string with the name of the file. If a
file handle is provided, it has to be opened in ‘wb’ mode.

>>> fh=open("test.adjlist",'wb')
>>> nx.write_multiline_adjlist(G,fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")

See also

read_multiline_adjlist()

NetworkX

parse_multiline_adjlist

	
parse_multiline_adjlist(lines, comments='#', delimiter=None, create_using=None, nodetype=None, edgetype=None)

	Parse lines of a multiline adjacency list representation of a graph.

	Parameters

	
	lines (list or iterator of strings) – Input data in multiline adjlist format

	create_using (NetworkX graph container) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels. The default is whitespace.

	create_using – Use given NetworkX graph for holding nodes or edges.

	Returns

	G – The graph corresponding to the lines in multiline adjacency list format.

	Return type

	NetworkX graph

Examples

>>> lines = ['1 2',
... "2 {'weight':3, 'name': 'Frodo'}",
... "3 {}",
... "2 1",
... "5 {'weight':6, 'name': 'Saruman'}"]
>>> G = nx.parse_multiline_adjlist(iter(lines), nodetype = int)
>>> G.nodes()
[1, 2, 3, 5]

NetworkX

generate_multiline_adjlist

	
generate_multiline_adjlist(G, delimiter=' ')

	Generate a single line of the graph G in multiline adjacency list format.

	Parameters

	
	G (NetworkX graph) –

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	Returns

	lines – Lines of data in multiline adjlist format.

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> for line in nx.generate_multiline_adjlist(G):
... print(line)
0 3
1 {}
2 {}
3 {}
1 2
2 {}
3 {}
2 1
3 {}
3 1
4 {}
4 1
5 {}
5 1
6 {}
6 0

See also

write_multiline_adjlist(), read_multiline_adjlist()

NetworkX

Edge List

Edge Lists

Read and write NetworkX graphs as edge lists.

The multi-line adjacency list format is useful for graphs with nodes
that can be meaningfully represented as strings. With the edgelist
format simple edge data can be stored but node or graph data is not.
There is no way of representing isolated nodes unless the node has a
self-loop edge.

Format

You can read or write three formats of edge lists with these functions.

Node pairs with no data:

1 2

Python dictionary as data:

1 2 {'weight':7, 'color':'green'}

Arbitrary data:

1 2 7 green

	read_edgelist(path[, comments, delimiter, …])

	Read a graph from a list of edges.

	write_edgelist(G, path[, comments, …])

	Write graph as a list of edges.

	read_weighted_edgelist(path[, comments, …])

	Read a graph as list of edges with numeric weights.

	write_weighted_edgelist(G, path[, comments, …])

	Write graph G as a list of edges with numeric weights.

	generate_edgelist(G[, delimiter, data])

	Generate a single line of the graph G in edge list format.

	parse_edgelist(lines[, comments, delimiter, …])

	Parse lines of an edge list representation of a graph.

NetworkX

read_edgelist

	
read_edgelist(path, comments='#', delimiter=None, create_using=None, nodetype=None, data=True, edgetype=None, encoding='utf-8')

	Read a graph from a list of edges.

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to read. If a file is provided, it must be
opened in ‘rb’ mode.
Filenames ending in .gz or .bz2 will be uncompressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – The character used to indicate the start of a comment.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – The string used to separate values. The default is whitespace.

	create_using (Graph container, optional,) – Use specified container to build graph. The default is networkx.Graph,
an undirected graph.

	nodetype (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str], Python type, optional) – Convert node data from strings to specified type

	data (bool [https://docs.python.org/2/library/functions.html#bool] or list of (label,type [https://docs.python.org/2/library/functions.html#type]) tuples) – Tuples specifying dictionary key names and types for edge data

	edgetype (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str], Python type, optional OBSOLETE) – Convert edge data from strings to specified type and use as ‘weight’

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when reading file.

	Returns

	G – A networkx Graph or other type specified with create_using

	Return type

	graph

Examples

>>> nx.write_edgelist(nx.path_graph(4), "test.edgelist")
>>> G=nx.read_edgelist("test.edgelist")

>>> fh=open("test.edgelist", 'rb')
>>> G=nx.read_edgelist(fh)
>>> fh.close()

>>> G=nx.read_edgelist("test.edgelist", nodetype=int)
>>> G=nx.read_edgelist("test.edgelist",create_using=nx.DiGraph())

Edgelist with data in a list:

>>> textline = '1 2 3'
>>> fh = open('test.edgelist','w')
>>> d = fh.write(textline)
>>> fh.close()
>>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(('weight',float),))
>>> G.nodes()
[1, 2]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0})]

See parse_edgelist() for more examples of formatting.

See also

parse_edgelist()

Notes

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

NetworkX

write_edgelist

	
write_edgelist(G, path, comments='#', delimiter=' ', data=True, encoding='utf-8')

	Write graph as a list of edges.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write. If a file is provided, it must be
opened in ‘wb’ mode. Filenames ending in .gz or .bz2 will be compressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – The character used to indicate the start of a comment

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – The string used to separate values. The default is whitespace.

	data (bool [https://docs.python.org/2/library/functions.html#bool] or list, optional) – If False write no edge data.
If True write a string representation of the edge data dictionary..
If a list (or other iterable) is provided, write the keys specified
in the list.

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_edgelist(G, "test.edgelist")
>>> G=nx.path_graph(4)
>>> fh=open("test.edgelist",'wb')
>>> nx.write_edgelist(G, fh)
>>> nx.write_edgelist(G, "test.edgelist.gz")
>>> nx.write_edgelist(G, "test.edgelist.gz", data=False)

>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7,color='red')
>>> nx.write_edgelist(G,'test.edgelist',data=False)
>>> nx.write_edgelist(G,'test.edgelist',data=['color'])
>>> nx.write_edgelist(G,'test.edgelist',data=['color','weight'])

See also

write_edgelist(), write_weighted_edgelist()

NetworkX

read_weighted_edgelist

	
read_weighted_edgelist(path, comments='#', delimiter=None, create_using=None, nodetype=None, encoding='utf-8')

	Read a graph as list of edges with numeric weights.

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to read. If a file is provided, it must be
opened in ‘rb’ mode.
Filenames ending in .gz or .bz2 will be uncompressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – The character used to indicate the start of a comment.

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – The string used to separate values. The default is whitespace.

	create_using (Graph container, optional,) – Use specified container to build graph. The default is networkx.Graph,
an undirected graph.

	nodetype (int [https://docs.python.org/2/library/functions.html#int], float [https://docs.python.org/2/library/functions.html#float], str [https://docs.python.org/2/library/functions.html#str], Python type, optional) – Convert node data from strings to specified type

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when reading file.

	Returns

	G – A networkx Graph or other type specified with create_using

	Return type

	graph

Notes

Since nodes must be hashable, the function nodetype must return hashable
types (e.g. int, float, str, frozenset - or tuples of those, etc.)

Example edgelist file format.

With numeric edge data:

read with
>>> G=nx.read_weighted_edgelist(fh)
source target data
a b 1
a c 3.14159
d e 42

NetworkX

write_weighted_edgelist

	
write_weighted_edgelist(G, path, comments='#', delimiter=' ', encoding='utf-8')

	Write graph G as a list of edges with numeric weights.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write. If a file is provided, it must be
opened in ‘wb’ mode.
Filenames ending in .gz or .bz2 will be compressed.

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – The character used to indicate the start of a comment

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – The string used to separate values. The default is whitespace.

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=7)
>>> nx.write_weighted_edgelist(G, 'test.weighted.edgelist')

See also

read_edgelist(), write_edgelist(), write_weighted_edgelist()

NetworkX

generate_edgelist

	
generate_edgelist(G, delimiter=' ', data=True)

	Generate a single line of the graph G in edge list format.

	Parameters

	
	G (NetworkX graph) –

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	data (bool [https://docs.python.org/2/library/functions.html#bool] or list of keys) – If False generate no edge data. If True use a dictionary
representation of edge data. If a list of keys use a list of data
values corresponding to the keys.

	Returns

	lines – Lines of data in adjlist format.

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> G[1][2]['weight'] = 3
>>> G[3][4]['capacity'] = 12
>>> for line in nx.generate_edgelist(G, data=False):
... print(line)
0 1
0 2
0 3
1 2
1 3
2 3
3 4
4 5
5 6

>>> for line in nx.generate_edgelist(G):
... print(line)
0 1 {}
0 2 {}
0 3 {}
1 2 {'weight': 3}
1 3 {}
2 3 {}
3 4 {'capacity': 12}
4 5 {}
5 6 {}

>>> for line in nx.generate_edgelist(G,data=['weight']):
... print(line)
0 1
0 2
0 3
1 2 3
1 3
2 3
3 4
4 5
5 6

See also

write_adjlist(), read_adjlist()

NetworkX

parse_edgelist

	
parse_edgelist(lines, comments='#', delimiter=None, create_using=None, nodetype=None, data=True)

	Parse lines of an edge list representation of a graph.

	Parameters

	
	lines (list or iterator of strings) – Input data in edgelist format

	comments (string [https://docs.python.org/2/library/string.html#module-string], optional) – Marker for comment lines

	delimiter (string [https://docs.python.org/2/library/string.html#module-string], optional) – Separator for node labels

	create_using (NetworkX graph container, optional) – Use given NetworkX graph for holding nodes or edges.

	nodetype (Python type, optional) – Convert nodes to this type.

	data (bool [https://docs.python.org/2/library/functions.html#bool] or list of (label,type [https://docs.python.org/2/library/functions.html#type]) tuples) – If False generate no edge data or if True use a dictionary
representation of edge data or a list tuples specifying dictionary
key names and types for edge data.

	Returns

	G – The graph corresponding to lines

	Return type

	NetworkX Graph

Examples

Edgelist with no data:

>>> lines = ["1 2",
... "2 3",
... "3 4"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges()
[(1, 2), (2, 3), (3, 4)]

Edgelist with data in Python dictionary representation:

>>> lines = ["1 2 {'weight':3}",
... "2 3 {'weight':27}",
... "3 4 {'weight':3.0}"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]

Edgelist with data in a list:

>>> lines = ["1 2 3",
... "2 3 27",
... "3 4 3.0"]
>>> G = nx.parse_edgelist(lines, nodetype = int, data=(('weight',float),))
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]

See also

read_weighted_edgelist()

NetworkX

GEXF

GEXF

Read and write graphs in GEXF format.

GEXF (Graph Exchange XML Format) is a language for describing complex
network structures, their associated data and dynamics.

This implementation does not support mixed graphs (directed and
undirected edges together).

Format

GEXF is an XML format. See http://gexf.net/format/schema.html for the
specification and http://gexf.net/format/basic.html for examples.

	read_gexf(path[, node_type, relabel, version])

	Read graph in GEXF format from path.

	write_gexf(G, path[, encoding, prettyprint, …])

	Write G in GEXF format to path.

	relabel_gexf_graph(G)

	Relabel graph using “label” node keyword for node label.

NetworkX

read_gexf

	
read_gexf(path, node_type=None, relabel=False, version='1.1draft')

	Read graph in GEXF format from path.

“GEXF (Graph Exchange XML Format) is a language for describing
complex networks structures, their associated data and dynamics” 1.

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or file name to write.
File names ending in .gz or .bz2 will be compressed.

	node_type (Python type (default: None)) – Convert node ids to this type if not None.

	relabel (bool [https://docs.python.org/2/library/functions.html#bool] (default: False)) – If True relabel the nodes to use the GEXF node “label” attribute
instead of the node “id” attribute as the NetworkX node label.

	Returns

	graph – If no parallel edges are found a Graph or DiGraph is returned.
Otherwise a MultiGraph or MultiDiGraph is returned.

	Return type

	NetworkX graph

Notes

This implementation does not support mixed graphs (directed and undirected
edges together).

References

	1

	GEXF graph format, http://gexf.net/format/

NetworkX

write_gexf

	
write_gexf(G, path, encoding='utf-8', prettyprint=True, version='1.1draft')

	Write G in GEXF format to path.

“GEXF (Graph Exchange XML Format) is a language for describing
complex networks structures, their associated data and dynamics” 1.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or file name to write.
File names ending in .gz or .bz2 will be compressed.

	encoding (string [https://docs.python.org/2/library/string.html#module-string] (optional)) – Encoding for text data.

	prettyprint (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – If True use line breaks and indenting in output XML.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_gexf(G, "test.gexf")

Notes

This implementation does not support mixed graphs (directed and undirected
edges together).

The node id attribute is set to be the string of the node label.
If you want to specify an id use set it as node data, e.g.
node[‘a’][‘id’]=1 to set the id of node ‘a’ to 1.

References

	1

	GEXF graph format, http://gexf.net/format/

NetworkX

relabel_gexf_graph

	
relabel_gexf_graph(G)

	Relabel graph using “label” node keyword for node label.

	Parameters

	G (graph) – A NetworkX graph read from GEXF data

	Returns

	H – A NetworkX graph with relabed nodes

	Return type

	graph

Notes

This function relabels the nodes in a NetworkX graph with the
“label” attribute. It also handles relabeling the specific GEXF
node attributes “parents”, and “pid”.

NetworkX

GML

Read graphs in GML format.

“GML, the G>raph Modelling Language, is our proposal for a portable
file format for graphs. GML’s key features are portability, simple
syntax, extensibility and flexibility. A GML file consists of a
hierarchical key-value lists. Graphs can be annotated with arbitrary
data structures. The idea for a common file format was born at the
GD‘95; this proposal is the outcome of many discussions. GML is the
standard file format in the Graphlet graph editor system. It has been
overtaken and adapted by several other systems for drawing graphs.”

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

Format

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
for format specification.

Example graphs in GML format:
http://www-personal.umich.edu/~mejn/netdata/

	read_gml(path[, label, destringizer])

	Read graph in GML format from path.

	write_gml(G, path[, stringizer])

	Write a graph G in GML format to the file or file handle path.

	parse_gml(lines[, label, destringizer])

	Parse GML graph from a string or iterable.

	generate_gml(G[, stringizer])

	Generate a single entry of the graph G in GML format.

	literal_destringizer(rep)

	Convert a Python literal to the value it represents.

	literal_stringizer(value)

	Convert a value to a Python literal in GML representation.

NetworkX

read_gml

	
read_gml(path, label='label', destringizer=None)

	Read graph in GML format from path.

	Parameters

	
	path (filename or filehandle) – The filename or filehandle to read from.

	label (string [https://docs.python.org/2/library/string.html#module-string], optional) – If not None, the parsed nodes will be renamed according to node
attributes indicated by label. Default value: 'label'.

	destringizer (callable [https://docs.python.org/2/library/functions.html#callable], optional) – A destringizer that recovers values stored as strings in GML. If it
cannot convert a string to a value, a ValueError is raised. Default
value : None.

	Returns

	G – The parsed graph.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If the input cannot be parsed.

See also

write_gml(), parse_gml()

Notes

The GML specification says that files should be ASCII encoded, with any
extended ASCII characters (iso8859-1) appearing as HTML character entities.

References

GML specification:
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gml(G, 'test.gml')
>>> H = nx.read_gml('test.gml')

NetworkX

write_gml

	
write_gml(G, path, stringizer=None)

	Write a graph G in GML format to the file or file handle path.

	Parameters

	
	G (NetworkX graph) – The graph to be converted to GML.

	path (filename or filehandle) – The filename or filehandle to write. Files whose names end with .gz or
.bz2 will be compressed.

	stringizer (callable [https://docs.python.org/2/library/functions.html#callable], optional) – A stringizer which converts non-int/non-float/non-dict values into
strings. If it cannot convert a value into a string, it should raise a
ValueError to indicate that. Default value: None.

	Raises

	NetworkXError – If stringizer cannot convert a value into a string, or the value to
convert is not a string while stringizer is None.

See also

read_gml(), generate_gml()

Notes

Graph attributes named 'directed', 'multigraph', 'node' or
'edge',node attributes named 'id' or 'label', edge attributes
named 'source' or 'target' (or 'key' if G is a multigraph)
are ignored because these attribute names are used to encode the graph
structure.

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gml(G, "test.gml")

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_gml(G, "test.gml.gz")

NetworkX

parse_gml

	
parse_gml(lines, label='label', destringizer=None)

	Parse GML graph from a string or iterable.

	Parameters

	
	lines (string [https://docs.python.org/2/library/string.html#module-string] or iterable of strings) – Data in GML format.

	label (string [https://docs.python.org/2/library/string.html#module-string], optional) – If not None, the parsed nodes will be renamed according to node
attributes indicated by label. Default value: 'label'.

	destringizer (callable [https://docs.python.org/2/library/functions.html#callable], optional) – A destringizer that recovers values stored as strings in GML. If it
cannot convert a string to a value, a ValueError is raised. Default
value : None.

	Returns

	G – The parsed graph.

	Return type

	NetworkX graph

	Raises

	NetworkXError – If the input cannot be parsed.

See also

write_gml(), read_gml()

Notes

This stores nested GML attributes as dictionaries in the
NetworkX graph, node, and edge attribute structures.

References

GML specification:
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

NetworkX

generate_gml

	
generate_gml(G, stringizer=None)

	Generate a single entry of the graph G in GML format.

	Parameters

	
	G (NetworkX graph) – The graph to be converted to GML.

	stringizer (callable [https://docs.python.org/2/library/functions.html#callable], optional) – A stringizer which converts non-int/float/dict values into strings. If
it cannot convert a value into a string, it should raise a
ValueError raised to indicate that. Default value: None.

	Returns

	lines – Lines of GML data. Newlines are not appended.

	Return type

	generator of strings

	Raises

	NetworkXError – If stringizer cannot convert a value into a string, or the value to
convert is not a string while stringizer is None.

Notes

Graph attributes named 'directed', 'multigraph', 'node' or
'edge',node attributes named 'id' or 'label', edge attributes
named 'source' or 'target' (or 'key' if G is a multigraph)
are ignored because these attribute names are used to encode the graph
structure.

NetworkX

literal_destringizer

	
literal_destringizer(rep)

	Convert a Python literal to the value it represents.

	Parameters

	rep (string [https://docs.python.org/2/library/string.html#module-string]) – A Python literal.

	Returns

	value – The value of the Python literal.

	Return type

	object [https://docs.python.org/2/library/functions.html#object]

	Raises

	ValueError – If rep is not a Python literal.

NetworkX

literal_stringizer

	
literal_stringizer(value)

	Convert a value to a Python literal in GML representation.

	Parameters

	value (object [https://docs.python.org/2/library/functions.html#object]) – The value to be converted to GML representation.

	Returns

	rep – A double-quoted Python literal representing value. Unprintable
characters are replaced by XML character references.

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

	Raises

	ValueError – If value cannot be converted to GML.

Notes

literal_stringizer is largely the same as repr in terms of
functionality but attempts prefix unicode and bytes literals with
u and b to provide better interoperability of data generated by
Python 2 and Python 3.

The original value can be recovered using the
networkx.readwrite.gml.literal_destringizer function.

NetworkX

Pickle

Pickled Graphs

Read and write NetworkX graphs as Python pickles.

“The pickle module implements a fundamental, but powerful algorithm
for serializing and de-serializing a Python object
structure. “Pickling” is the process whereby a Python object hierarchy
is converted into a byte stream, and “unpickling” is the inverse
operation, whereby a byte stream is converted back into an object
hierarchy.”

Note that NetworkX graphs can contain any hashable Python object as
node (not just integers and strings). For arbitrary data types it may
be difficult to represent the data as text. In that case using Python
pickles to store the graph data can be used.

Format

See http://docs.python.org/library/pickle.html

	read_gpickle(path)

	Read graph object in Python pickle format.

	write_gpickle(G, path[, protocol])

	Write graph in Python pickle format.

NetworkX

read_gpickle

	
read_gpickle(path)

	Read graph object in Python pickle format.

Pickles are a serialized byte stream of a Python object 1.
This format will preserve Python objects used as nodes or edges.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be uncompressed.

	Returns

	G – A NetworkX graph

	Return type

	graph

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")
>>> G = nx.read_gpickle("test.gpickle")

References

	1

	http://docs.python.org/library/pickle.html

NetworkX

write_gpickle

	
write_gpickle(G, path, protocol=2)

	Write graph in Python pickle format.

Pickles are a serialized byte stream of a Python object 1.
This format will preserve Python objects used as nodes or edges.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

	protocol (integer) – Pickling protocol to use. Default value: pickle.HIGHEST_PROTOCOL.

Examples

>>> G = nx.path_graph(4)
>>> nx.write_gpickle(G, "test.gpickle")

References

	1

	http://docs.python.org/library/pickle.html

NetworkX

GraphML

GraphML

Read and write graphs in GraphML format.

This implementation does not support mixed graphs (directed and unidirected
edges together), hyperedges, nested graphs, or ports.

“GraphML is a comprehensive and easy-to-use file format for graphs. It
consists of a language core to describe the structural properties of a
graph and a flexible extension mechanism to add application-specific
data. Its main features include support of

	directed, undirected, and mixed graphs,

	hypergraphs,

	hierarchical graphs,

	graphical representations,

	references to external data,

	application-specific attribute data, and

	light-weight parsers.

Unlike many other file formats for graphs, GraphML does not use a
custom syntax. Instead, it is based on XML and hence ideally suited as
a common denominator for all kinds of services generating, archiving,
or processing graphs.”

http://graphml.graphdrawing.org/

Format

GraphML is an XML format. See
http://graphml.graphdrawing.org/specification.html for the specification and
http://graphml.graphdrawing.org/primer/graphml-primer.html
for examples.

	read_graphml(path[, node_type])

	Read graph in GraphML format from path.

	write_graphml(G, path[, encoding, prettyprint])

	Write G in GraphML XML format to path

NetworkX

read_graphml

	
read_graphml(path, node_type=<type 'str'>)

	Read graph in GraphML format from path.

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

	node_type (Python type (default: str)) – Convert node ids to this type

	Returns

	graph – If no parallel edges are found a Graph or DiGraph is returned.
Otherwise a MultiGraph or MultiDiGraph is returned.

	Return type

	NetworkX graph

Notes

This implementation does not support mixed graphs (directed and unidirected
edges together), hypergraphs, nested graphs, or ports.

For multigraphs the GraphML edge “id” will be used as the edge
key. If not specified then they “key” attribute will be used. If
there is no “key” attribute a default NetworkX multigraph edge key
will be provided.

Files with the yEd “yfiles” extension will can be read but the graphics
information is discarded.

yEd compressed files (“file.graphmlz” extension) can be read by renaming
the file to “file.graphml.gz”.

NetworkX

write_graphml

	
write_graphml(G, path, encoding='utf-8', prettyprint=True)

	Write G in GraphML XML format to path

	Parameters

	
	G (graph) – A networkx graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

	encoding (string [https://docs.python.org/2/library/string.html#module-string] (optional)) – Encoding for text data.

	prettyprint (bool [https://docs.python.org/2/library/functions.html#bool] (optional)) – If True use line breaks and indenting in output XML.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_graphml(G, "test.graphml")

Notes

This implementation does not support mixed graphs (directed and unidirected
edges together) hyperedges, nested graphs, or ports.

NetworkX

JSON

JSON data

Generate and parse JSON serializable data for NetworkX graphs.

These formats are suitable for use with the d3.js examples http://d3js.org/

The three formats that you can generate with NetworkX are:

	node-link like in the d3.js example http://bl.ocks.org/mbostock/4062045

	tree like in the d3.js example http://bl.ocks.org/mbostock/4063550

	adjacency like in the d3.js example http://bost.ocks.org/mike/miserables/

	node_link_data(G[, attrs])

	Return data in node-link format that is suitable for JSON serialization and use in Javascript documents.

	node_link_graph(data[, directed, …])

	Return graph from node-link data format.

	adjacency_data(G[, attrs])

	Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents.

	adjacency_graph(data[, directed, …])

	Return graph from adjacency data format.

	tree_data(G, root[, attrs])

	Return data in tree format that is suitable for JSON serialization and use in Javascript documents.

	tree_graph(data[, attrs])

	Return graph from tree data format.

NetworkX

node_link_data

	
node_link_data(G, attrs={'source': 'source', 'target': 'target', 'key': 'key', 'id': 'id'})

	Return data in node-link format that is suitable for JSON serialization
and use in Javascript documents.

	Parameters

	
	G (NetworkX graph) –

	attrs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary that contains four keys ‘id’, ‘source’, ‘target’ and
‘key’. The corresponding values provide the attribute names for storing
NetworkX-internal graph data. The values should be unique. Default
value:
dict(id='id', source='source', target='target', key='key').

If some user-defined graph data use these attribute names as data keys,
they may be silently dropped.

	Returns

	data – A dictionary with node-link formatted data.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises

	NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Graph, node, and link attributes are stored in this format. Note that
attribute keys will be converted to strings in order to comply with
JSON.

The default value of attrs will be changed in a future release of NetworkX.

See also

node_link_graph(), adjacency_data(), tree_data()

NetworkX

node_link_graph

	
node_link_graph(data, directed=False, multigraph=True, attrs={'source': 'source', 'target': 'target', 'key': 'key', 'id': 'id'})

	Return graph from node-link data format.

	Parameters

	
	data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – node-link formatted graph data

	directed (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, and direction not specified in data, return a directed graph.

	multigraph (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, and multigraph not specified in data, return a multigraph.

	attrs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary that contains four keys ‘id’, ‘source’, ‘target’ and
‘key’. The corresponding values provide the attribute names for storing
NetworkX-internal graph data. Default value:
dict(id='id', source='source', target='target', key='key').

	Returns

	G – A NetworkX graph object

	Return type

	NetworkX graph

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)
>>> H = json_graph.node_link_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also

node_link_data(), adjacency_data(), tree_data()

NetworkX

adjacency_data

	
adjacency_data(G, attrs={'id': 'id', 'key': 'key'})

	Return data in adjacency format that is suitable for JSON serialization
and use in Javascript documents.

	Parameters

	
	G (NetworkX graph) –

	attrs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary that contains two keys ‘id’ and ‘key’. The corresponding
values provide the attribute names for storing NetworkX-internal graph
data. The values should be unique. Default value:
dict(id='id', key='key').

If some user-defined graph data use these attribute names as data keys,
they may be silently dropped.

	Returns

	data – A dictionary with adjacency formatted data.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises

	NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Graph, node, and link attributes will be written when using this format
but attribute keys must be strings if you want to serialize the resulting
data with JSON.

The default value of attrs will be changed in a future release of NetworkX.

See also

adjacency_graph(), node_link_data(), tree_data()

NetworkX

adjacency_graph

	
adjacency_graph(data, directed=False, multigraph=True, attrs={'id': 'id', 'key': 'key'})

	Return graph from adjacency data format.

	Parameters

	data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Adjacency list formatted graph data

	Returns

	
	G (NetworkX graph) – A NetworkX graph object

	directed (bool) – If True, and direction not specified in data, return a directed graph.

	multigraph (bool) – If True, and multigraph not specified in data, return a multigraph.

	attrs (dict) – A dictionary that contains two keys ‘id’ and ‘key’. The corresponding
values provide the attribute names for storing NetworkX-internal graph
data. The values should be unique. Default value:
dict(id='id', key='key').

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.adjacency_data(G)
>>> H = json_graph.adjacency_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also

adjacency_graph(), node_link_data(), tree_data()

NetworkX

tree_data

	
tree_data(G, root, attrs={'children': 'children', 'id': 'id'})

	Return data in tree format that is suitable for JSON serialization
and use in Javascript documents.

	Parameters

	
	G (NetworkX graph) – G must be an oriented tree

	root (node) – The root of the tree

	attrs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – A dictionary that contains two keys ‘id’ and ‘children’. The
corresponding values provide the attribute names for storing
NetworkX-internal graph data. The values should be unique. Default
value: dict(id='id', children='children').

If some user-defined graph data use these attribute names as data keys,
they may be silently dropped.

	Returns

	data – A dictionary with node-link formatted data.

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises

	NetworkXError – If values in attrs are not unique.

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)

To serialize with json

>>> import json
>>> s = json.dumps(data)

Notes

Node attributes are stored in this format but keys
for attributes must be strings if you want to serialize with JSON.

Graph and edge attributes are not stored.

The default value of attrs will be changed in a future release of NetworkX.

See also

tree_graph(), node_link_data(), node_link_data()

NetworkX

tree_graph

	
tree_graph(data, attrs={'children': 'children', 'id': 'id'})

	Return graph from tree data format.

	Parameters

	data (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Tree formatted graph data

	Returns

	
	G (NetworkX DiGraph)

	attrs (dict) – A dictionary that contains two keys ‘id’ and ‘children’. The
corresponding values provide the attribute names for storing
NetworkX-internal graph data. The values should be unique. Default
value: dict(id='id', children='children').

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)
>>> H = json_graph.tree_graph(data)

Notes

The default value of attrs will be changed in a future release of NetworkX.

See also

tree_graph(), node_link_data(), adjacency_data()

NetworkX

LEDA

Read graphs in LEDA format.

LEDA is a C++ class library for efficient data types and algorithms.

Format

See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

	read_leda(path[, encoding])

	Read graph in LEDA format from path.

	parse_leda(lines)

	Read graph in LEDA format from string or iterable.

NetworkX

read_leda

	
read_leda(path, encoding='UTF-8')

	Read graph in LEDA format from path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to read. Filenames ending in .gz or .bz2 will be
uncompressed.

	Returns

	G

	Return type

	NetworkX graph

Examples

G=nx.read_leda(‘file.leda’)

References

	1

	http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

NetworkX

parse_leda

	
parse_leda(lines)

	Read graph in LEDA format from string or iterable.

	Parameters

	lines (string [https://docs.python.org/2/library/string.html#module-string] or iterable) – Data in LEDA format.

	Returns

	G

	Return type

	NetworkX graph

Examples

G=nx.parse_leda(string)

References

	1

	http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

NetworkX

YAML

YAML

Read and write NetworkX graphs in YAML format.

“YAML is a data serialization format designed for human readability
and interaction with scripting languages.”
See http://www.yaml.org for documentation.

Format

http://pyyaml.org/wiki/PyYAML

	read_yaml(path)

	Read graph in YAML format from path.

	write_yaml(G, path[, encoding])

	Write graph G in YAML format to path.

NetworkX

read_yaml

	
read_yaml(path)

	Read graph in YAML format from path.

YAML is a data serialization format designed for human readability
and interaction with scripting languages 1.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to read. Filenames ending in .gz or .bz2
will be uncompressed.

	Returns

	G

	Return type

	NetworkX graph

Examples

>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')
>>> G=nx.read_yaml('test.yaml')

References

	1

	http://www.yaml.org

NetworkX

write_yaml

	
write_yaml(G, path, encoding='UTF-8', **kwds)

	Write graph G in YAML format to path.

YAML is a data serialization format designed for human readability
and interaction with scripting languages 1.

	Parameters

	
	G (graph) – A NetworkX graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

	encoding (string [https://docs.python.org/2/library/string.html#module-string], optional) – Specify which encoding to use when writing file.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_yaml(G,'test.yaml')

References

	1

	http://www.yaml.org

NetworkX

SparseGraph6

Graph6

Graph6

Read and write graphs in graph6 format.

Format

“graph6 and sparse6 are formats for storing undirected graphs in a
compact manner, using only printable ASCII characters. Files in these
formats have text type and contain one line per graph.”

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

	parse_graph6(string)

	Read a simple undirected graph in graph6 format from string.

	read_graph6(path)

	Read simple undirected graphs in graph6 format from path.

	generate_graph6(G[, nodes, header])

	Generate graph6 format string from a simple undirected graph.

	write_graph6(G, path[, nodes, header])

	Write a simple undirected graph to path in graph6 format.

Sparse6

Sparse6

Read and write graphs in sparse6 format.

Format

“graph6 and sparse6 are formats for storing undirected graphs in a
compact manner, using only printable ASCII characters. Files in these
formats have text type and contain one line per graph.”

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

	parse_sparse6(string)

	Read an undirected graph in sparse6 format from string.

	read_sparse6(path)

	Read an undirected graph in sparse6 format from path.

	generate_sparse6(G[, nodes, header])

	Generate sparse6 format string from an undirected graph.

	write_sparse6(G, path[, nodes, header])

	Write graph G to given path in sparse6 format.

NetworkX

parse_graph6

	
parse_graph6(string)

	Read a simple undirected graph in graph6 format from string.

	Parameters

	string (string [https://docs.python.org/2/library/string.html#module-string]) – Data in graph6 format

	Returns

	G

	Return type

	Graph

	Raises

	NetworkXError – If the string is unable to be parsed in graph6 format

Examples

>>> G = nx.parse_graph6('A_')
>>> sorted(G.edges())
[(0, 1)]

See also

generate_graph6(), read_graph6(), write_graph6()

References

Graph6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

read_graph6

	
read_graph6(path)

	Read simple undirected graphs in graph6 format from path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.

	Returns

	G – If the file contains multiple lines then a list of graphs is returned

	Return type

	Graph or list of Graphs

	Raises

	NetworkXError – If the string is unable to be parsed in graph6 format

Examples

>>> nx.write_graph6(nx.Graph([(0,1)]), 'test.g6')
>>> G = nx.read_graph6('test.g6')
>>> sorted(G.edges())
[(0, 1)]

See also

generate_graph6(), parse_graph6(), write_graph6()

References

Graph6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

generate_graph6

	
generate_graph6(G, nodes=None, header=True)

	Generate graph6 format string from a simple undirected graph.

	Parameters

	
	G (Graph (undirected)) –

	nodes (list or iterable) – Nodes are labeled 0…n-1 in the order provided. If None the ordering
given by G.nodes() is used.

	header (bool [https://docs.python.org/2/library/functions.html#bool]) – If True add ‘>>graph6<<’ string to head of data

	Returns

	s – String in graph6 format

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

	Raises

	NetworkXError – If the graph is directed or has parallel edges

Examples

>>> G = nx.Graph([(0, 1)])
>>> nx.generate_graph6(G)
'>>graph6<<A_'

See also

read_graph6(), parse_graph6(), write_graph6()

Notes

The format does not support edge or node labels, parallel edges or
self loops. If self loops are present they are silently ignored.

References

Graph6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

write_graph6

	
write_graph6(G, path, nodes=None, header=True)

	Write a simple undirected graph to path in graph6 format.

	Parameters

	
	G (Graph (undirected)) –

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.

	nodes (list or iterable) – Nodes are labeled 0…n-1 in the order provided. If None the ordering
given by G.nodes() is used.

	header (bool [https://docs.python.org/2/library/functions.html#bool]) – If True add ‘>>graph6<<’ string to head of data

	Raises

	NetworkXError – If the graph is directed or has parallel edges

Examples

>>> G = nx.Graph([(0, 1)])
>>> nx.write_graph6(G, 'test.g6')

See also

generate_graph6(), parse_graph6(), read_graph6()

Notes

The format does not support edge or node labels, parallel edges or
self loops. If self loops are present they are silently ignored.

References

Graph6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

parse_sparse6

	
parse_sparse6(string)

	Read an undirected graph in sparse6 format from string.

	Parameters

	string (string [https://docs.python.org/2/library/string.html#module-string]) – Data in sparse6 format

	Returns

	G

	Return type

	Graph

	Raises

	NetworkXError – If the string is unable to be parsed in sparse6 format

Examples

>>> G = nx.parse_sparse6(':A_')
>>> sorted(G.edges())
[(0, 1), (0, 1), (0, 1)]

See also

generate_sparse6(), read_sparse6(), write_sparse6()

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt

NetworkX

read_sparse6

	
read_sparse6(path)

	Read an undirected graph in sparse6 format from path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.

	Returns

	G – If the file contains multple lines then a list of graphs is returned

	Return type

	Graph/Multigraph or list of Graphs/MultiGraphs

	Raises

	NetworkXError – If the string is unable to be parsed in sparse6 format

Examples

>>> nx.write_sparse6(nx.Graph([(0,1),(0,1),(0,1)]), 'test.s6')
>>> G = nx.read_sparse6('test.s6')
>>> sorted(G.edges())
[(0, 1)]

See also

generate_sparse6(), read_sparse6(), parse_sparse6()

References

Sparse6 specification: http://cs.anu.edu.au/~bdm/data/formats.txt

NetworkX

generate_sparse6

	
generate_sparse6(G, nodes=None, header=True)

	Generate sparse6 format string from an undirected graph.

	Parameters

	
	G (Graph (undirected)) –

	nodes (list or iterable) – Nodes are labeled 0…n-1 in the order provided. If None the ordering
given by G.nodes() is used.

	header (bool [https://docs.python.org/2/library/functions.html#bool]) – If True add ‘>>sparse6<<’ string to head of data

	Returns

	s – String in sparse6 format

	Return type

	string [https://docs.python.org/2/library/string.html#module-string]

	Raises

	NetworkXError – If the graph is directed

Examples

>>> G = nx.MultiGraph([(0, 1), (0, 1), (0, 1)])
>>> nx.generate_sparse6(G)
'>>sparse6<<:A_'

See also

read_sparse6(), parse_sparse6(), write_sparse6()

Notes

The format does not support edge or node labels.

References

Sparse6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

write_sparse6

	
write_sparse6(G, path, nodes=None, header=True)

	Write graph G to given path in sparse6 format.
:param G:
:type G: Graph (undirected)
:param path: File or filename to write
:type path: file or string
:param nodes: Nodes are labeled 0…n-1 in the order provided. If None the ordering

given by G.nodes() is used.

	Parameters

	header (bool [https://docs.python.org/2/library/functions.html#bool]) – If True add ‘>>sparse6<<’ string to head of data

	Raises

	NetworkXError – If the graph is directed

Examples

>>> G = nx.Graph([(0, 1), (0, 1), (0, 1)])
>>> nx.write_sparse6(G, 'test.s6')

See also

read_sparse6(), parse_sparse6(), generate_sparse6()

Notes

The format does not support edge or node labels.

References

Sparse6 specification:
http://cs.anu.edu.au/~bdm/data/formats.txt for details.

NetworkX

Pajek

Pajek

Read graphs in Pajek format.

This implementation handles directed and undirected graphs including
those with self loops and parallel edges.

Format

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
for format information.

	read_pajek(path[, encoding])

	Read graph in Pajek format from path.

	write_pajek(G, path[, encoding])

	Write graph in Pajek format to path.

	parse_pajek(lines)

	Parse Pajek format graph from string or iterable.

NetworkX

read_pajek

	
read_pajek(path, encoding='UTF-8')

	Read graph in Pajek format from path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be uncompressed.

	Returns

	G

	Return type

	NetworkX MultiGraph or MultiDiGraph.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
>>> G=nx.read_pajek("test.net")

To create a Graph instead of a MultiGraph use

>>> G1=nx.Graph(G)

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
for format information.

NetworkX

write_pajek

	
write_pajek(G, path, encoding='UTF-8')

	Write graph in Pajek format to path.

	Parameters

	
	G (graph) – A Networkx graph

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File or filename to write.
Filenames ending in .gz or .bz2 will be compressed.

Examples

>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm
for format information.

NetworkX

parse_pajek

	
parse_pajek(lines)

	Parse Pajek format graph from string or iterable.

	Parameters

	lines (string [https://docs.python.org/2/library/string.html#module-string] or iterable) – Data in Pajek format.

	Returns

	G

	Return type

	NetworkX graph

See also

read_pajek()

NetworkX

GIS Shapefile

Shapefile

Generates a networkx.DiGraph from point and line shapefiles.

“The Esri Shapefile or simply a shapefile is a popular geospatial vector
data format for geographic information systems software. It is developed
and regulated by Esri as a (mostly) open specification for data
interoperability among Esri and other software products.”
See http://en.wikipedia.org/wiki/Shapefile for additional information.

	read_shp(path[, simplify])

	Generates a networkx.DiGraph from shapefiles.

	write_shp(G, outdir)

	Writes a networkx.DiGraph to two shapefiles, edges and nodes.

NetworkX

read_shp

	
read_shp(path, simplify=True)

	Generates a networkx.DiGraph from shapefiles. Point geometries are
translated into nodes, lines into edges. Coordinate tuples are used as
keys. Attributes are preserved, line geometries are simplified into start
and end coordinates. Accepts a single shapefile or directory of many
shapefiles.

“The Esri Shapefile or simply a shapefile is a popular geospatial vector
data format for geographic information systems software 1.”

	Parameters

	
	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File, directory, or filename to read.

	simplify (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, simplify line geometries to start and end coordinates.
If False, and line feature geometry has multiple segments, the
non-geometric attributes for that feature will be repeated for each
edge comprising that feature.

	Returns

	G

	Return type

	NetworkX graph

Examples

>>> G=nx.read_shp('test.shp')

References

	1

	http://en.wikipedia.org/wiki/Shapefile

NetworkX

write_shp

	
write_shp(G, outdir)

	Writes a networkx.DiGraph to two shapefiles, edges and nodes.
Nodes and edges are expected to have a Well Known Binary (Wkb) or
Well Known Text (Wkt) key in order to generate geometries. Also
acceptable are nodes with a numeric tuple key (x,y).

“The Esri Shapefile or simply a shapefile is a popular geospatial vector
data format for geographic information systems software 1.”

	Parameters

	outdir (directory path) – Output directory for the two shapefiles.

	Returns

	

	Return type

	None [https://docs.python.org/2/library/constants.html#None]

Examples

nx.write_shp(digraph, ‘/shapefiles’) # doctest +SKIP

References

	1

	http://en.wikipedia.org/wiki/Shapefile

NetworkX

Drawing

NetworkX provides basic functionality for visualizing graphs, but its main goal
is to enable graph analysis rather than perform graph visualization. In the
future, graph visualization functionality may be removed from NetworkX or only
available as an add-on package.

Proper graph visualization is hard, and we highly recommend that people
visualize their graphs with tools dedicated to that task. Notable examples of
dedicated and fully-featured graph visualization tools are
Cytoscape [http://www.cytoscape.org/],
Gephi [http://gephi.github.io/],
Graphviz [http://www.graphviz.org/] and, for
LaTeX [http://www.latex-project.org/] typesetting,
PGF/TikZ [http://sourceforge.net/projects/pgf/].
To use these and other such tools, you should export your NetworkX graph into
a format that can be read by those tools. For example, Cytoscape can read the
GraphML format, and so, \(networkx.write_graphml(G)\) might be an appropriate
choice.

Matplotlib

Matplotlib

Draw networks with matplotlib.

See also

	matplotlib

	http://matplotlib.org/

	pygraphviz

	http://pygraphviz.github.io/

	draw(G[, pos, ax, hold])

	Draw the graph G with Matplotlib.

	draw_networkx(G[, pos, arrows, with_labels])

	Draw the graph G using Matplotlib.

	draw_networkx_nodes(G, pos[, nodelist, …])

	Draw the nodes of the graph G.

	draw_networkx_edges(G, pos[, edgelist, …])

	Draw the edges of the graph G.

	draw_networkx_labels(G, pos[, labels, …])

	Draw node labels on the graph G.

	draw_networkx_edge_labels(G, pos[, …])

	Draw edge labels.

	draw_circular(G, **kwargs)

	Draw the graph G with a circular layout.

	draw_random(G, **kwargs)

	Draw the graph G with a random layout.

	draw_spectral(G, **kwargs)

	Draw the graph G with a spectral layout.

	draw_spring(G, **kwargs)

	Draw the graph G with a spring layout.

	draw_shell(G, **kwargs)

	Draw networkx graph with shell layout.

	draw_graphviz(G[, prog])

	Draw networkx graph with graphviz layout.

Graphviz AGraph (dot)

Graphviz AGraph

Interface to pygraphviz AGraph class.

Examples

>>> G = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(G)
>>> H = nx.nx_agraph.from_agraph(A)

See also

	Pygraphviz

	http://pygraphviz.github.io/

	from_agraph(A[, create_using])

	Return a NetworkX Graph or DiGraph from a PyGraphviz graph.

	to_agraph(N)

	Return a pygraphviz graph from a NetworkX graph N.

	write_dot(G, path)

	Write NetworkX graph G to Graphviz dot format on path.

	read_dot(path)

	Return a NetworkX graph from a dot file on path.

	graphviz_layout(G[, prog, root, args])

	Create node positions for G using Graphviz.

	pygraphviz_layout(G[, prog, root, args])

	Create node positions for G using Graphviz.

Graphviz with pydot

Pydot

Import and export NetworkX graphs in Graphviz dot format using pydotplus.

Either this module or nx_agraph can be used to interface with graphviz.

See also

	PyDotPlus

	https://github.com/carlos-jenkins/pydotplus

	Graphviz

	http://www.research.att.com/sw/tools/graphviz/

DOT

	from_pydot(P)

	Return a NetworkX graph from a Pydot graph.

	to_pydot(N[, strict])

	Return a pydot graph from a NetworkX graph N.

	write_dot(G, path)

	Write NetworkX graph G to Graphviz dot format on path.

	read_dot(path)

	Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.

	graphviz_layout(G[, prog, root])

	Create node positions using Pydot and Graphviz.

	pydot_layout(G[, prog, root])

	Create node positions using Pydot and Graphviz.

Graph Layout

Layout

Node positioning algorithms for graph drawing.

The default scales and centering for these layouts are
typically squares with side [0, 1] or [0, scale].
The two circular layout routines (circular_layout and
shell_layout) have size [-1, 1] or [-scale, scale].

	circular_layout(G[, dim, scale, center])

	Position nodes on a circle.

	fruchterman_reingold_layout(G[, dim, k, …])

	Position nodes using Fruchterman-Reingold force-directed algorithm.

	random_layout(G[, dim, scale, center])

	Position nodes uniformly at random.

	shell_layout(G[, nlist, dim, scale, center])

	Position nodes in concentric circles.

	spring_layout(G[, dim, k, pos, fixed, …])

	Position nodes using Fruchterman-Reingold force-directed algorithm.

	spectral_layout(G[, dim, weight, scale, center])

	Position nodes using the eigenvectors of the graph Laplacian.

NetworkX

draw

	
draw(G, pos=None, ax=None, hold=None, **kwds)

	Draw the graph G with Matplotlib.

Draw the graph as a simple representation with no node
labels or edge labels and using the full Matplotlib figure area
and no axis labels by default. See draw_networkx() for more
full-featured drawing that allows title, axis labels etc.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary, optional) – A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See networkx.layout for functions that compute node positions.

	ax (Matplotlib Axes object, optional) – Draw the graph in specified Matplotlib axes.

	hold (bool [https://docs.python.org/2/library/functions.html#bool], optional) – Set the Matplotlib hold state. If True subsequent draw
commands will be added to the current axes.

	kwds (optional keywords) – See networkx.draw_networkx() for a description of optional keywords.

Examples

>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout

See also

draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels()

Notes

This function has the same name as pylab.draw and pyplot.draw
so beware when using

>>> from networkx import *

since you might overwrite the pylab.draw function.

With pyplot use

>>> import matplotlib.pyplot as plt
>>> import networkx as nx
>>> G=nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

NetworkX

draw_networkx

	
draw_networkx(G, pos=None, arrows=True, with_labels=True, **kwds)

	Draw the graph G using Matplotlib.

Draw the graph with Matplotlib with options for node positions,
labeling, titles, and many other drawing features.
See draw() for simple drawing without labels or axes.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary, optional) – A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See networkx.layout for functions that compute node positions.

	arrows (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – For directed graphs, if True draw arrowheads.

	with_labels (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – Set to True to draw labels on the nodes.

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	nodelist (list, optional (default G.nodes())) – Draw only specified nodes

	edgelist (list, optional (default=G.edges())) – Draw only specified edges

	node_size (scalar or array [https://docs.python.org/2/library/array.html#module-array], optional (default=300)) – Size of nodes. If an array is specified it must be the
same length as nodelist.

	node_color (color string, or array of floats, (default='r')) – Node color. Can be a single color format string,
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.

	node_shape (string [https://docs.python.org/2/library/string.html#module-string], optional (default='o')) – The shape of the node. Specification is as matplotlib.scatter
marker, one of ‘so^>v<dph8’.

	alpha (float [https://docs.python.org/2/library/functions.html#float], optional (default=1.0)) – The node and edge transparency

	cmap (Matplotlib colormap, optional (default=None)) – Colormap for mapping intensities of nodes

	vmin,vmax (float [https://docs.python.org/2/library/functions.html#float], optional (default=None)) – Minimum and maximum for node colormap scaling

	linewidths ([None | scalar | sequence]) – Line width of symbol border (default =1.0)

	width (float [https://docs.python.org/2/library/functions.html#float], optional (default=1.0)) – Line width of edges

	edge_color (color string, or array of floats (default='r')) – Edge color. Can be a single color format string,
or a sequence of colors with the same length as edgelist.
If numeric values are specified they will be mapped to
colors using the edge_cmap and edge_vmin,edge_vmax parameters.

	edge_cmap (Matplotlib colormap, optional (default=None)) – Colormap for mapping intensities of edges

	edge_vmin,edge_vmax (floats, optional (default=None)) – Minimum and maximum for edge colormap scaling

	style (string [https://docs.python.org/2/library/string.html#module-string], optional (default='solid')) – Edge line style (solid|dashed|dotted,dashdot)

	labels (dictionary, optional (default=None)) – Node labels in a dictionary keyed by node of text labels

	font_size (int [https://docs.python.org/2/library/functions.html#int], optional (default=12)) – Font size for text labels

	font_color (string [https://docs.python.org/2/library/string.html#module-string], optional (default='k' black)) – Font color string

	font_weight (string [https://docs.python.org/2/library/string.html#module-string], optional (default='normal')) – Font weight

	font_family (string [https://docs.python.org/2/library/string.html#module-string], optional (default='sans-serif')) – Font family

	label (string [https://docs.python.org/2/library/string.html#module-string], optional) – Label for graph legend

Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn
at the head end. Arrows can be turned off with keyword arrows=False.
Yes, it is ugly but drawing proper arrows with Matplotlib this
way is tricky.

Examples

>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout

>>> import matplotlib.pyplot as plt
>>> limits=plt.axis('off') # turn of axis

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels()

NetworkX

draw_networkx_nodes

	
draw_networkx_nodes(G, pos, nodelist=None, node_size=300, node_color='r', node_shape='o', alpha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, label=None, **kwds)

	Draw the nodes of the graph G.

This draws only the nodes of the graph G.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary) – A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	nodelist (list, optional) – Draw only specified nodes (default G.nodes())

	node_size (scalar or array [https://docs.python.org/2/library/array.html#module-array]) – Size of nodes (default=300). If an array is specified it must be the
same length as nodelist.

	node_color (color string, or array of floats) – Node color. Can be a single color format string (default=’r’),
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.

	node_shape (string [https://docs.python.org/2/library/string.html#module-string]) – The shape of the node. Specification is as matplotlib.scatter
marker, one of ‘so^>v<dph8’ (default=’o’).

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The node transparency (default=1.0)

	cmap (Matplotlib colormap) – Colormap for mapping intensities of nodes (default=None)

	vmin,vmax (floats) – Minimum and maximum for node colormap scaling (default=None)

	linewidths ([None | scalar | sequence]) – Line width of symbol border (default =1.0)

	label ([None| string]) – Label for legend

	Returns

	\(PathCollection\) of the nodes.

	Return type

	matplotlib.collections.PathCollection

Examples

>>> G=nx.dodecahedral_graph()
>>> nodes=nx.draw_networkx_nodes(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx(), draw_networkx_edges(), draw_networkx_labels(), draw_networkx_edge_labels()

NetworkX

draw_networkx_edges

	
draw_networkx_edges(G, pos, edgelist=None, width=1.0, edge_color='k', style='solid', alpha=1.0, edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True, label=None, **kwds)

	Draw the edges of the graph G.

This draws only the edges of the graph G.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary) – A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.

	edgelist (collection of edge tuples) – Draw only specified edges(default=G.edges())

	width (float [https://docs.python.org/2/library/functions.html#float], or array of floats) – Line width of edges (default=1.0)

	edge_color (color string, or array of floats) – Edge color. Can be a single color format string (default=’r’),
or a sequence of colors with the same length as edgelist.
If numeric values are specified they will be mapped to
colors using the edge_cmap and edge_vmin,edge_vmax parameters.

	style (string [https://docs.python.org/2/library/string.html#module-string]) – Edge line style (default=’solid’) (solid|dashed|dotted,dashdot)

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The edge transparency (default=1.0)

	cmap (edge) – Colormap for mapping intensities of edges (default=None)

	edge_vmin,edge_vmax (floats) – Minimum and maximum for edge colormap scaling (default=None)

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	arrows (bool [https://docs.python.org/2/library/functions.html#bool], optional (default=True)) – For directed graphs, if True draw arrowheads.

	label ([None| string]) – Label for legend

	Returns

	\(LineCollection\) of the edges

	Return type

	matplotlib.collection.LineCollection

Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn
at the head end. Arrows can be turned off with keyword arrows=False.
Yes, it is ugly but drawing proper arrows with Matplotlib this
way is tricky.

Examples

>>> G=nx.dodecahedral_graph()
>>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_labels(), draw_networkx_edge_labels()

NetworkX

draw_networkx_labels

	
draw_networkx_labels(G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, **kwds)

	Draw node labels on the graph G.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary) – A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.

	labels (dictionary, optional (default=None)) – Node labels in a dictionary keyed by node of text labels

	font_size (int [https://docs.python.org/2/library/functions.html#int]) – Font size for text labels (default=12)

	font_color (string [https://docs.python.org/2/library/string.html#module-string]) – Font color string (default=’k’ black)

	font_family (string [https://docs.python.org/2/library/string.html#module-string]) – Font family (default=’sans-serif’)

	font_weight (string [https://docs.python.org/2/library/string.html#module-string]) – Font weight (default=’normal’)

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The text transparency (default=1.0)

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	Returns

	\(dict\) of labels keyed on the nodes

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.dodecahedral_graph()
>>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_edge_labels()

NetworkX

draw_networkx_edge_labels

	
draw_networkx_edge_labels(G, pos, edge_labels=None, label_pos=0.5, font_size=10, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, rotate=True, **kwds)

	Draw edge labels.

	Parameters

	
	G (graph) – A networkx graph

	pos (dictionary) – A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.

	ax (Matplotlib Axes object, optional) – Draw the graph in the specified Matplotlib axes.

	alpha (float [https://docs.python.org/2/library/functions.html#float]) – The text transparency (default=1.0)

	edge_labels (dictionary) – Edge labels in a dictionary keyed by edge two-tuple of text
labels (default=None). Only labels for the keys in the dictionary
are drawn.

	label_pos (float [https://docs.python.org/2/library/functions.html#float]) – Position of edge label along edge (0=head, 0.5=center, 1=tail)

	font_size (int [https://docs.python.org/2/library/functions.html#int]) – Font size for text labels (default=12)

	font_color (string [https://docs.python.org/2/library/string.html#module-string]) – Font color string (default=’k’ black)

	font_weight (string [https://docs.python.org/2/library/string.html#module-string]) – Font weight (default=’normal’)

	font_family (string [https://docs.python.org/2/library/string.html#module-string]) – Font family (default=’sans-serif’)

	bbox (Matplotlib bbox) – Specify text box shape and colors.

	clip_on (bool [https://docs.python.org/2/library/functions.html#bool]) – Turn on clipping at axis boundaries (default=True)

	Returns

	\(dict\) of labels keyed on the edges

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.dodecahedral_graph()
>>> edge_labels=nx.draw_networkx_edge_labels(G,pos=nx.spring_layout(G))

Also see the NetworkX drawing examples at
http://networkx.github.io/documentation/latest/gallery.html

See also

draw(), draw_networkx(), draw_networkx_nodes(), draw_networkx_edges(), draw_networkx_labels()

NetworkX

draw_circular

	
draw_circular(G, **kwargs)

	Draw the graph G with a circular layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_random

	
draw_random(G, **kwargs)

	Draw the graph G with a random layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_spectral

	
draw_spectral(G, **kwargs)

	Draw the graph G with a spectral layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_spring

	
draw_spring(G, **kwargs)

	Draw the graph G with a spring layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_shell

	
draw_shell(G, **kwargs)

	Draw networkx graph with shell layout.

	Parameters

	
	G (graph) – A networkx graph

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords,
with the exception of the pos parameter which is not used by this
function.

NetworkX

draw_graphviz

	
draw_graphviz(G, prog='neato', **kwargs)

	Draw networkx graph with graphviz layout.

	Parameters

	
	G (graph) – A networkx graph

	prog (string [https://docs.python.org/2/library/string.html#module-string], optional) – Name of Graphviz layout program

	kwargs (optional keywords) – See networkx.draw_networkx() for a description of optional keywords.

NetworkX

from_agraph

	
from_agraph(A, create_using=None)

	Return a NetworkX Graph or DiGraph from a PyGraphviz graph.

	Parameters

	
	A (PyGraphviz AGraph) – A graph created with PyGraphviz

	create_using (NetworkX graph class instance) – The output is created using the given graph class instance

Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(K5)
>>> G = nx.nx_agraph.from_agraph(A)
>>> G = nx.nx_agraph.from_agraph(A)

Notes

The Graph G will have a dictionary G.graph_attr containing
the default graphviz attributes for graphs, nodes and edges.

Default node attributes will be in the dictionary G.node_attr
which is keyed by node.

Edge attributes will be returned as edge data in G. With
edge_attr=False the edge data will be the Graphviz edge weight
attribute or the value 1 if no edge weight attribute is found.

NetworkX

to_agraph

	
to_agraph(N)

	Return a pygraphviz graph from a NetworkX graph N.

	Parameters

	N (NetworkX graph) – A graph created with NetworkX

Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_agraph.to_agraph(K5)

Notes

If N has an dict N.graph_attr an attempt will be made first
to copy properties attached to the graph (see from_agraph)
and then updated with the calling arguments if any.

NetworkX

write_dot

	
write_dot(G, path)

	Write NetworkX graph G to Graphviz dot format on path.

	Parameters

	
	G (graph) – A networkx graph

	path (filename) – Filename or file handle to write

NetworkX

read_dot

	
read_dot(path)

	Return a NetworkX graph from a dot file on path.

	Parameters

	path (file [https://docs.python.org/2/library/functions.html#file] or string [https://docs.python.org/2/library/string.html#module-string]) – File name or file handle to read.

NetworkX

graphviz_layout

	
graphviz_layout(G, prog='neato', root=None, args='')

	Create node positions for G using Graphviz.

	Parameters

	
	G (NetworkX graph) – A graph created with NetworkX

	prog (string [https://docs.python.org/2/library/string.html#module-string]) – Name of Graphviz layout program

	root (string [https://docs.python.org/2/library/string.html#module-string], optional) – Root node for twopi layout

	args (string [https://docs.python.org/2/library/string.html#module-string], optional) – Extra arguments to Graphviz layout program

	Returns (dictionary) – Dictionary of x,y, positions keyed by node.

Examples

>>> G = nx.petersen_graph()
>>> pos = nx.nx_agraph.graphviz_layout(G)
>>> pos = nx.nx_agraph.graphviz_layout(G, prog='dot')

Notes

This is a wrapper for pygraphviz_layout.

NetworkX

pygraphviz_layout

	
pygraphviz_layout(G, prog='neato', root=None, args='')

	Create node positions for G using Graphviz.

	Parameters

	
	G (NetworkX graph) – A graph created with NetworkX

	prog (string [https://docs.python.org/2/library/string.html#module-string]) – Name of Graphviz layout program

	root (string [https://docs.python.org/2/library/string.html#module-string], optional) – Root node for twopi layout

	args (string [https://docs.python.org/2/library/string.html#module-string], optional) – Extra arguments to Graphviz layout program

	Returns (dictionary) – Dictionary of x,y, positions keyed by node.

Examples

>>> G = nx.petersen_graph()
>>> pos = nx.nx_agraph.graphviz_layout(G)
>>> pos = nx.nx_agraph.graphviz_layout(G, prog='dot')

NetworkX

from_pydot

	
from_pydot(P)

	Return a NetworkX graph from a Pydot graph.

	Parameters

	P (Pydot graph) – A graph created with Pydot

	Returns

	G – A MultiGraph or MultiDiGraph.

	Return type

	NetworkX multigraph

Examples

>>> K5 = nx.complete_graph(5)
>>> A = nx.nx_pydot.to_pydot(K5)
>>> G = nx.nx_pydot.from_pydot(A) # return MultiGraph

make a Graph instead of MultiGraph
>>> G = nx.Graph(nx.nx_pydot.from_pydot(A))

NetworkX

to_pydot

	
to_pydot(N, strict=True)

	Return a pydot graph from a NetworkX graph N.

	Parameters

	N (NetworkX graph) – A graph created with NetworkX

Examples

>>> K5 = nx.complete_graph(5)
>>> P = nx.nx_pydot.to_pydot(K5)

Notes

NetworkX

write_dot

	
write_dot(G, path)

	Write NetworkX graph G to Graphviz dot format on path.

Path can be a string or a file handle.

NetworkX

read_dot

	
read_dot(path)

	Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.

	Parameters

	path (filename or file handle) –

	Returns

	G – A MultiGraph or MultiDiGraph.

	Return type

	NetworkX multigraph

Notes

Use G = nx.Graph(read_dot(path)) to return a Graph instead of a MultiGraph.

NetworkX

graphviz_layout

	
graphviz_layout(G, prog='neato', root=None, **kwds)

	Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.

Examples

>>> G = nx.complete_graph(4)
>>> pos = nx.nx_pydot.graphviz_layout(G)
>>> pos = nx.nx_pydot.graphviz_layout(G, prog='dot')

Notes

This is a wrapper for pydot_layout.

NetworkX

pydot_layout

	
pydot_layout(G, prog='neato', root=None, **kwds)

	Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.

Examples

>>> G = nx.complete_graph(4)
>>> pos = nx.nx_pydot.pydot_layout(G)
>>> pos = nx.nx_pydot.pydot_layout(G, prog='dot')

NetworkX

circular_layout

	
circular_layout(G, dim=2, scale=1.0, center=None)

	Position nodes on a circle.

	Parameters

	
	G (NetworkX graph or list of nodes) –

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout, currently only dim=2 is supported

	scale (float [https://docs.python.org/2/library/functions.html#float] (default 1)) – Scale factor for positions, i.e. radius of circle.

	center (array-like (default origin)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.circular_layout(G)

Notes

This algorithm currently only works in two dimensions and does not
try to minimize edge crossings.

NetworkX

fruchterman_reingold_layout

	
fruchterman_reingold_layout(G, dim=2, k=None, pos=None, fixed=None, iterations=50, weight='weight', scale=1.0, center=None)

	Position nodes using Fruchterman-Reingold force-directed algorithm.

	Parameters

	
	G (NetworkX graph) –

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout

	k (float [https://docs.python.org/2/library/functions.html#float] (default=None)) – Optimal distance between nodes. If None the distance is set to
1/sqrt(n) where n is the number of nodes. Increase this value
to move nodes farther apart.

	pos (dict [https://docs.python.org/2/library/stdtypes.html#dict] or None optional (default=None)) – Initial positions for nodes as a dictionary with node as keys
and values as a list or tuple. If None, then use random initial
positions.

	fixed (list or None optional (default=None)) – Nodes to keep fixed at initial position.
If any nodes are fixed, the scale and center features are not used.

	iterations (int optional (default=50)) – Number of iterations of spring-force relaxation

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default='weight')) – The edge attribute that holds the numerical value used for
the effective spring constant. If None, edge weights are 1.

	scale (float [https://docs.python.org/2/library/functions.html#float] (default=1.0)) – Scale factor for positions. The nodes are positioned
in a box of size \(scale\) in each dim centered at \(center\).

	center (array-like (default scale/2 in each dim)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout(G)

this function has two names:
spring_layout and fruchterman_reingold_layout
>>> pos=nx.fruchterman_reingold_layout(G)

NetworkX

random_layout

	
random_layout(G, dim=2, scale=1.0, center=None)

	Position nodes uniformly at random.

For every node, a position is generated by choosing each of dim
coordinates uniformly at random on the default interval [0.0, 1.0),
or on an interval of length \(scale\) centered at \(center\).

NumPy (http://scipy.org) is required for this function.

	Parameters

	
	G (NetworkX graph or list of nodes) – A position will be assigned to every node in G.

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout.

	scale (float [https://docs.python.org/2/library/functions.html#float] (default 1)) – Scale factor for positions

	center (array-like (default scale*0.5 in each dim)) – Coordinate around which to center the layout.

	Returns

	pos – A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.lollipop_graph(4, 3)
>>> pos = nx.random_layout(G)

NetworkX

shell_layout

	
shell_layout(G, nlist=None, dim=2, scale=1.0, center=None)

	Position nodes in concentric circles.

	Parameters

	
	G (NetworkX graph or list of nodes) –

	nlist (list of lists) – List of node lists for each shell.

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout, currently only dim=2 is supported

	scale (float [https://docs.python.org/2/library/functions.html#float] (default 1)) – Scale factor for positions, i.e.radius of largest shell

	center (array-like (default origin)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G = nx.path_graph(4)
>>> shells = [[0], [1,2,3]]
>>> pos = nx.shell_layout(G, shells)

Notes

This algorithm currently only works in two dimensions and does not
try to minimize edge crossings.

NetworkX

spring_layout

	
spring_layout(G, dim=2, k=None, pos=None, fixed=None, iterations=50, weight='weight', scale=1.0, center=None)

	Position nodes using Fruchterman-Reingold force-directed algorithm.

	Parameters

	
	G (NetworkX graph) –

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout

	k (float [https://docs.python.org/2/library/functions.html#float] (default=None)) – Optimal distance between nodes. If None the distance is set to
1/sqrt(n) where n is the number of nodes. Increase this value
to move nodes farther apart.

	pos (dict [https://docs.python.org/2/library/stdtypes.html#dict] or None optional (default=None)) – Initial positions for nodes as a dictionary with node as keys
and values as a list or tuple. If None, then use random initial
positions.

	fixed (list or None optional (default=None)) – Nodes to keep fixed at initial position.
If any nodes are fixed, the scale and center features are not used.

	iterations (int optional (default=50)) – Number of iterations of spring-force relaxation

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default='weight')) – The edge attribute that holds the numerical value used for
the effective spring constant. If None, edge weights are 1.

	scale (float [https://docs.python.org/2/library/functions.html#float] (default=1.0)) – Scale factor for positions. The nodes are positioned
in a box of size \(scale\) in each dim centered at \(center\).

	center (array-like (default scale/2 in each dim)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout(G)

this function has two names:
spring_layout and fruchterman_reingold_layout
>>> pos=nx.fruchterman_reingold_layout(G)

NetworkX

spectral_layout

	
spectral_layout(G, dim=2, weight='weight', scale=1.0, center=None)

	Position nodes using the eigenvectors of the graph Laplacian.

	Parameters

	
	G (NetworkX graph or list of nodes) –

	dim (int [https://docs.python.org/2/library/functions.html#int]) – Dimension of layout

	weight (string [https://docs.python.org/2/library/string.html#module-string] or None optional (default='weight')) – The edge attribute that holds the numerical value used for
the edge weight. If None, then all edge weights are 1.

	scale (float optional (default 1)) – Scale factor for positions, i.e. nodes placed in a box with
side [0, scale] or centered on \(center\) if provided.

	center (array-like (default scale/2 in each dim)) – Coordinate around which to center the layout.

	Returns

	A dictionary of positions keyed by node

	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]

Examples

>>> G=nx.path_graph(4)
>>> pos=nx.spectral_layout(G)

Notes

Directed graphs will be considered as undirected graphs when
positioning the nodes.

For larger graphs (>500 nodes) this will use the SciPy sparse
eigenvalue solver (ARPACK).

NetworkX

Exceptions

Exceptions

Base exceptions and errors for NetworkX.

	
class NetworkXException

	Base class for exceptions in NetworkX.

	
class NetworkXError

	Exception for a serious error in NetworkX

	
class NetworkXPointlessConcept

	Harary, F. and Read, R. “Is the Null Graph a Pointless Concept?”
In Graphs and Combinatorics Conference, George Washington University.
New York: Springer-Verlag, 1973.

	
class NetworkXAlgorithmError

	Exception for unexpected termination of algorithms.

	
class NetworkXUnfeasible

	Exception raised by algorithms trying to solve a problem
instance that has no feasible solution.

	
class NetworkXNoPath

	Exception for algorithms that should return a path when running
on graphs where such a path does not exist.

	
class NetworkXUnbounded

	Exception raised by algorithms trying to solve a maximization
or a minimization problem instance that is unbounded.

NetworkX

Utilities

Helper Functions

Miscellaneous Helpers for NetworkX.

These are not imported into the base networkx namespace but
can be accessed, for example, as

>>> import networkx
>>> networkx.utils.is_string_like('spam')
True

	is_string_like(obj)

	Check if obj is string.

	flatten(obj[, result])

	Return flattened version of (possibly nested) iterable object.

	iterable(obj)

	Return True if obj is iterable with a well-defined len().

	is_list_of_ints(intlist)

	Return True if list is a list of ints.

	make_str(x)

	Return the string representation of t.

	generate_unique_node()

	Generate a unique node label.

	default_opener(filename)

	Opens \(filename\) using system’s default program.

Data Structures and Algorithms

Union-find data structure.

	UnionFind.union(*objects)

	Find the sets containing the objects and merge them all.

Random Sequence Generators

Utilities for generating random numbers, random sequences, and
random selections.

	create_degree_sequence(n[, sfunction, max_tries])

	

	pareto_sequence(n[, exponent])

	Return sample sequence of length n from a Pareto distribution.

	powerlaw_sequence(n[, exponent])

	Return sample sequence of length n from a power law distribution.

	uniform_sequence(n)

	Return sample sequence of length n from a uniform distribution.

	cumulative_distribution(distribution)

	Return normalized cumulative distribution from discrete distribution.

	discrete_sequence(n[, distribution, …])

	Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution.

	zipf_sequence(n[, alpha, xmin])

	Return a sample sequence of length n from a Zipf distribution with exponent parameter alpha and minimum value xmin.

	zipf_rv(alpha[, xmin, seed])

	Return a random value chosen from the Zipf distribution.

	random_weighted_sample(mapping, k)

	Return k items without replacement from a weighted sample.

	weighted_choice(mapping)

	Return a single element from a weighted sample.

Decorators

	open_file(path_arg[, mode])

	Decorator to ensure clean opening and closing of files.

Cuthill-Mckee Ordering

Cuthill-McKee ordering of graph nodes to produce sparse matrices

	cuthill_mckee_ordering(G[, heuristic])

	Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

	reverse_cuthill_mckee_ordering(G[, heuristic])

	Generate an ordering (permutation) of the graph nodes to make a sparse matrix.

Context Managers

	reversed(*args, **kwds)

	A context manager for temporarily reversing a directed graph in place.

NetworkX

is_string_like

	
is_string_like(obj)

	Check if obj is string.

NetworkX

flatten

	
flatten(obj, result=None)

	Return flattened version of (possibly nested) iterable object.

NetworkX

iterable

	
iterable(obj)

	Return True if obj is iterable with a well-defined len().

NetworkX

is_list_of_ints

	
is_list_of_ints(intlist)

	Return True if list is a list of ints.

NetworkX

make_str

	
make_str(x)

	Return the string representation of t.

NetworkX

generate_unique_node

	
generate_unique_node()

	Generate a unique node label.

NetworkX

default_opener

	
default_opener(filename)

	Opens \(filename\) using system’s default program.

	Parameters

	filename (str [https://docs.python.org/2/library/functions.html#str]) – The path of the file to be opened.

NetworkX

union

	
UnionFind.union(*objects)

	Find the sets containing the objects and merge them all.

NetworkX

create_degree_sequence

	
create_degree_sequence(n, sfunction=None, max_tries=50, **kwds)

	

NetworkX

pareto_sequence

	
pareto_sequence(n, exponent=1.0)

	Return sample sequence of length n from a Pareto distribution.

NetworkX

powerlaw_sequence

	
powerlaw_sequence(n, exponent=2.0)

	Return sample sequence of length n from a power law distribution.

NetworkX

uniform_sequence

	
uniform_sequence(n)

	Return sample sequence of length n from a uniform distribution.

NetworkX

cumulative_distribution

	
cumulative_distribution(distribution)

	Return normalized cumulative distribution from discrete distribution.

NetworkX

discrete_sequence

	
discrete_sequence(n, distribution=None, cdistribution=None)

	Return sample sequence of length n from a given discrete distribution
or discrete cumulative distribution.

One of the following must be specified.

distribution = histogram of values, will be normalized

cdistribution = normalized discrete cumulative distribution

NetworkX

zipf_sequence

	
zipf_sequence(n, alpha=2.0, xmin=1)

	Return a sample sequence of length n from a Zipf distribution with
exponent parameter alpha and minimum value xmin.

See also

zipf_rv()

NetworkX

zipf_rv

	
zipf_rv(alpha, xmin=1, seed=None)

	Return a random value chosen from the Zipf distribution.

The return value is an integer drawn from the probability distribution
::math:

p(x)=\frac{x^{-\alpha}}{\zeta(\alpha,x_{min})},

where \(\zeta(\alpha,x_{min})\) is the Hurwitz zeta function.

	Parameters

	
	alpha (float [https://docs.python.org/2/library/functions.html#float]) – Exponent value of the distribution

	xmin (int [https://docs.python.org/2/library/functions.html#int]) – Minimum value

	seed (int [https://docs.python.org/2/library/functions.html#int]) – Seed value for random number generator

	Returns

	x – Random value from Zipf distribution

	Return type

	int [https://docs.python.org/2/library/functions.html#int]

	Raises

	ValueError: – If xmin < 1 or
If alpha <= 1

Notes

The rejection algorithm generates random values for a the power-law
distribution in uniformly bounded expected time dependent on
parameters. See [1] for details on its operation.

Examples

>>> nx.zipf_rv(alpha=2, xmin=3, seed=42)

References

	..[1] Luc Devroye, Non-Uniform Random Variate Generation,

	Springer-Verlag, New York, 1986.

NetworkX

random_weighted_sample

	
random_weighted_sample(mapping, k)

	Return k items without replacement from a weighted sample.

The input is a dictionary of items with weights as values.

NetworkX

weighted_choice

	
weighted_choice(mapping)

	Return a single element from a weighted sample.

The input is a dictionary of items with weights as values.

NetworkX

open_file

	
open_file(path_arg, mode='r')

	Decorator to ensure clean opening and closing of files.

	Parameters

	
	path_arg (int [https://docs.python.org/2/library/functions.html#int]) – Location of the path argument in args. Even if the argument is a
named positional argument (with a default value), you must specify its
index as a positional argument.

	mode (str [https://docs.python.org/2/library/functions.html#str]) – String for opening mode.

	Returns

	_open_file – Function which cleanly executes the io.

	Return type

	function

Examples

Decorate functions like this:

@open_file(0,'r')
def read_function(pathname):
 pass

@open_file(1,'w')
def write_function(G,pathname):
 pass

@open_file(1,'w')
def write_function(G, pathname='graph.dot')
 pass

@open_file('path', 'w+')
def another_function(arg, **kwargs):
 path = kwargs['path']
 pass

NetworkX

cuthill_mckee_ordering

	
cuthill_mckee_ordering(G, heuristic=None)

	Generate an ordering (permutation) of the graph nodes to make
a sparse matrix.

Uses the Cuthill-McKee heuristic (based on breadth-first search) 1.

	Parameters

	
	G (graph) – A NetworkX graph

	heuristic (function, optional) – Function to choose starting node for RCM algorithm. If None
a node from a psuedo-peripheral pair is used. A user-defined function
can be supplied that takes a graph object and returns a single node.

	Returns

	nodes – Generator of nodes in Cuthill-McKee ordering.

	Return type

	generator

Examples

>>> from networkx.utils import cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)

Smallest degree node as heuristic function:

>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(cuthill_mckee_ordering(G, heuristic=smallest_degree))

See also

reverse_cuthill_mckee_ordering()

Notes

The optimal solution the the bandwidth reduction is NP-complete 2.

References

	1

	E. Cuthill and J. McKee.
Reducing the bandwidth of sparse symmetric matrices,
In Proc. 24th Nat. Conf. ACM, pages 157-172, 1969.
http://doi.acm.org/10.1145/800195.805928

	2

	Steven S. Skiena. 1997. The Algorithm Design Manual.
Springer-Verlag New York, Inc., New York, NY, USA.

NetworkX

reverse_cuthill_mckee_ordering

	
reverse_cuthill_mckee_ordering(G, heuristic=None)

	Generate an ordering (permutation) of the graph nodes to make
a sparse matrix.

Uses the reverse Cuthill-McKee heuristic (based on breadth-first search)
1.

	Parameters

	
	G (graph) – A NetworkX graph

	heuristic (function, optional) – Function to choose starting node for RCM algorithm. If None
a node from a psuedo-peripheral pair is used. A user-defined function
can be supplied that takes a graph object and returns a single node.

	Returns

	nodes – Generator of nodes in reverse Cuthill-McKee ordering.

	Return type

	generator

Examples

>>> from networkx.utils import reverse_cuthill_mckee_ordering
>>> G = nx.path_graph(4)
>>> rcm = list(reverse_cuthill_mckee_ordering(G))
>>> A = nx.adjacency_matrix(G, nodelist=rcm)

Smallest degree node as heuristic function:

>>> def smallest_degree(G):
... return min(G, key=G.degree)
>>> rcm = list(reverse_cuthill_mckee_ordering(G, heuristic=smallest_degree))

See also

cuthill_mckee_ordering()

Notes

The optimal solution the the bandwidth reduction is NP-complete 2.

References

	1

	E. Cuthill and J. McKee.
Reducing the bandwidth of sparse symmetric matrices,
In Proc. 24th Nat. Conf. ACM, pages 157-72, 1969.
http://doi.acm.org/10.1145/800195.805928

	2

	Steven S. Skiena. 1997. The Algorithm Design Manual.
Springer-Verlag New York, Inc., New York, NY, USA.

NetworkX

reversed

	
reversed(*args, **kwds)

	A context manager for temporarily reversing a directed graph in place.

This is a no-op for undirected graphs.

	Parameters

	G (graph) – A NetworkX graph.

NetworkX

License

NetworkX is distributed with the BSD license.

Copyright (C) 2004-2016, NetworkX Developers
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

 * Neither the name of the NetworkX Developers nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetworkX

Citing

To cite NetworkX please use the following publication:

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart,
“Exploring network structure, dynamics, and function using NetworkX” [http://conference.scipy.org/proceedings/SciPy2008/paper_2/],
in
Proceedings of the 7th Python in Science Conference (SciPy2008) [http://conference.scipy.org/proceedings/SciPy2008/index.html], Gäel
Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA
USA), pp. 11–15, Aug 2008

PDF [http://math.lanl.gov/~hagberg/Papers/hagberg-2008-exploring.pdf]
BibTeX [http://math.lanl.gov/~hagberg/Publications/hagberg-2008-exploring.shtml]

NetworkX

Credits

NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart,
and has been developed with the help of many others. Thanks to everyone who has
improved NetworkX by contributing code, bug reports (and fixes), documentation,
and input on design, features, and the future of NetworkX.

Contributions

This section aims to provide a list of people and projects that have
contributed to networkx. It is intended to be an inclusive list, and
anyone who has contributed and wishes to make that contribution known is
welcome to add an entry into this file. Generally, no name should be added to
this list without the approval of the person associated with that name.

Creating a comprehensive list of contributors can be difficult, and the list
within this file is almost certainly incomplete. Contributors include
testers, bug reporters, contributors who wish to remain anonymous, funding
sources, academic advisors, end users, and even build/integration systems (such
as TravisCI [https://travis-ci.org], coveralls [https://coveralls.io],
and readthedocs [https://readthedocs.org]).

Do you want to make your contribution known? If you have commit access, edit
this file and add your name. If you do not have commit access, feel free to
open an issue [https://github.com/networkx/networkx/issues/new], submit a
pull request [https://github.com/networkx/networkx/compare/], or get in
contact with one of the official team
members [https://github.com/networkx?tab=members].

A supplementary (but still incomplete) list of contributors is given by the
list of names that have commits in networkx’s
git [http://git-scm.com] repository. This can be obtained via:

git log --raw | grep "^Author: " | sort | uniq

A historical, partial listing of contributors and their contributions to some
of the earlier versions of NetworkX can be found
here [https://github.com/networkx/networkx/blob/886e790437bcf30e9f58368829d483efef7a2acc/doc/source/reference/credits_old.rst].

Original Authors

Aric Hagberg

Dan Schult

Pieter Swart

Contributors

Optionally, add your desired name and include a few relevant links. The order
is partially historical, and now, mostly arbitrary.

	Aric Hagberg, GitHub: hagberg [https://github.com/hagberg]

	Dan Schult, GitHub: dschult [https://github.com/dschult]

	Pieter Swart

	Katy Bold

	Hernan Rozenfeld

	Brendt Wohlberg

	Jim Bagrow

	Holly Johnsen

	Arnar Flatberg

	Chris Myers

	Joel Miller

	Keith Briggs

	Ignacio Rozada

	Phillipp Pagel

	Sverre Sundsdal

	Ross M. Richardson

	Eben Kenah

	Sasha Gutfriend

	Udi Weinsberg

	Matteo Dell’Amico

	Andrew Conway

	Raf Guns

	Salim Fadhley

	Matteo Dell’Amico

	Fabrice Desclaux

	Arpad Horvath

	Minh Van Nguyen

	Willem Ligtenberg

	Loïc Séguin-C.

	Paul McGuire

	Jesus Cerquides

	Ben Edwards

	Jon Olav Vik

	Hugh Brown

	Ben Reilly

	Leo Lopes

	Jordi Torrents, GitHub: jtorrents [https://github.com/jtorrents]

	Dheeraj M R

	Franck Kalala

	Simon Knight

	Conrad Lee

	Sérgio Nery Simões

	Robert King

	Nick Mancuso

	Brian Cloteaux

	Alejandro Weinstein

	Dustin Smith

	Mathieu Larose

	Vincent Gauthier

	Sérgio Nery Simões

	chebee7i, GitHub: chebee7i [https://github.com/chebee7i]

	Jeffrey Finkelstein

	Jean-Gabriel Young, Github: jg-you [https://github.com/jgyou]

	Andrey Paramonov, http://aparamon.msk.ru

	Mridul Seth, GitHub: MridulS [https://github.com/MridulS]

	Thodoris Sotiropoulos, GitHub: theosotr [https://github.com/theosotr]

	Konstantinos Karakatsanis, GitHub: k-karakatsanis [https://github.com/k-karakatsanis]

	Ryan Nelson, GitHub: rnelsonchem [https://github.com/rnelsonchem]

Support

networkx and those who have contributed to networkx have received
support throughout the years from a variety of sources. We list them below.
If you have provided support to networkx and a support acknowledgment does
not appear below, please help us remedy the situation, and similarly, please
let us know if you’d like something modified or corrected.

Research Groups

networkx acknowledges support from the following:

	Center for Nonlinear Studies [http://cnls.lanl.gov], Los Alamos National
Laboratory, PI: Aric Hagberg

	Open Source Programs Office [https://developers.google.com/open-source/],
Google

	Complexity Sciences Center [http://csc.ucdavis.edu/], Department of
Physics, University of California-Davis, PI: James P. Crutchfield

	Center for Complexity and Collective Computation [http://c4.discovery.wisc.edu],
Wisconsin Institute for Discovery, University of Wisconsin-Madison,
PIs: Jessica C. Flack and David C. Krakauer

Funding

networkx acknowledges support from the following:

	Google Summer of Code via Python Software Foundation

	U.S. Army Research Office grant W911NF-12-1-0288

	DARPA Physical Intelligence Subcontract No. 9060-000709

	NSF Grant No. PHY-0748828

	John Templeton Foundation through a grant to the Santa Fe Institute to
study complexity

	U.S. Army Research Laboratory and the U.S. Army Research Office under
contract number W911NF-13-1-0340

NetworkX

Glossary

	dictionary

	A Python dictionary maps keys to values. Also known as “hashes”,
or “associative arrays”.
See http://docs.python.org/tutorial/datastructures.html#dictionaries

	ebunch

	An iteratable container of edge tuples like a list, iterator,
or file.

	edge

	Edges are either two-tuples of nodes (u,v) or three tuples
of nodes with an edge attribute dictionary (u,v,dict).

	edge attribute

	Edges can have arbitrary Python objects assigned as attributes
by using keyword/value pairs when adding an edge
assigning to the G.edge[u][v] attribute dictionary for the
specified edge u-v.

	hashable

	An object is hashable if it has a hash value which never changes
during its lifetime (it needs a __hash__() method), and can be
compared to other objects (it needs an __eq__() or __cmp__()
method). Hashable objects which compare equal must have the same
hash value.

Hashability makes an object usable as a dictionary key and a set
member, because these data structures use the hash value internally.

All of Python’s immutable built-in objects are hashable, while no
mutable containers (such as lists or dictionaries) are. Objects
which are instances of user-defined classes are hashable by
default; they all compare unequal, and their hash value is their
id().

Definition from http://docs.python.org/glossary.html

	nbunch

	An nbunch is any iterable container of nodes that is not itself
a node in the graph. It can be an iterable or an iterator,
e.g. a list, set, graph, file, etc..

	node

	A node can be any hashable Python object except None.

	node attribute

	Nodes can have arbitrary Python objects assigned as attributes
by using keyword/value pairs when adding a node or
assigning to the G.node[n] attribute dictionary for the
specified node n.

NetworkX

Testing

Requirements for testing

NetworkX uses the Python nose testing package.
If you don’t already have that package installed, follow
the directions here
http://somethingaboutorange.com/mrl/projects/nose

Testing a source distribution

You can test the complete package from the unpacked source directory with:

python setup_egg.py nosetests

Testing an installed package

If you have a file-based (not a Python egg) installation you can
test the installed package with

>>> import networkx
>>> networkx.test()

or:

python -c "import networkx; networkx.test()"

Testing for developers

You can test any or all of NetworkX by using the “nosetests”
test runner.

First make sure the NetworkX version you want to test
is in your PYTHONPATH (either installed or pointing to your
unpacked source directory).

Then you can run individual test files with:

nosetests path/to/file

or all tests found in dir and an directories contained in dir:

nosetests path/to/dir

By default nosetests doesn’t test docutils style tests in
Python modules but you can turn that on with:

nosetests --with-doctest

For doctests in stand-alone files NetworkX uses the extension txt so
you can add:

nosetests --with-doctest --doctest-extension=txt

to also execute those tests.

These options are on by default if you run nosetests from
the root of the NetworkX distribution since they are specified
in the setup.cfg file found there.

NetworkX

Developer Guide

	Working with networkx source code
	Introduction

	Install git

	Following the latest source

	Making a patch

	Git for development

	git resources

NetworkX

Working with networkx source code

Contents:

	Introduction

	Install git
	Overview

	In detail

	Following the latest source
	Get the local copy of the code

	Updating the code

	Making a patch
	Making patches

	Moving from patching to development

	Git for development
	Making your own copy (fork) of networkx

	Set up your fork

	Configure git

	Development workflow

	Maintainer workflow

	git resources
	Tutorials and summaries

	Manual pages online

NetworkX

Introduction

These pages describe a git [http://git-scm.com/] and github [http://github.com] workflow for the networkx [http://networkx.github.io]
project.

There are several different workflows here, for different ways of
working with networkx.

This is not a comprehensive git reference, it’s just a workflow for our
own project. It’s tailored to the github hosting service. You may well
find better or quicker ways of getting stuff done with git, but these
should get you started.

For general resources for learning git, see git resources.

NetworkX

Install git

Overview

	Debian / Ubuntu

	sudo apt-get install git

	Fedora

	sudo yum install git-core

	Windows

	Download and install msysGit [http://code.google.com/p/msysgit/downloads/list]

	OS X

	Use the git-osx-installer [http://code.google.com/p/git-osx-installer/downloads/list]

In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help [http://help.github.com]

There are good instructions here: http://book.git-scm.com/2_installing_git.html

NetworkX

Following the latest source

These are the instructions if you just want to follow the latest
networkx source, but you don’t need to do any development for now.

The steps are:

	Install git

	get local copy of the networkx github [http://github.com/networkx/networkx] git repository

	update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/networkx/networkx.git

You now have a copy of the code tree in the new networkx directory.

Updating the code

From time to time you may want to pull down the latest code. It is necessary
to add the networkx repository as a remote to your configuration file. We call it
upstream.

git remote set-url upstream https://github.com/networkx/networkx.git

Now git knows where to fetch updates from.

cd networkx
git fetch upstream

The tree in networkx will now have the latest changes from the initial
repository, unless you have made local changes in the meantime. In this case, you have to merge.

git merge upstream/master

It is also possible to update your local fork directly from GitHub:

	Open your fork on GitHub.

	Click on ‘Pull Requests’.

	Click on ‘New Pull Request’. By default, GitHub will compare the original with your fork. If you didn’t make any changes, there is nothing to compare.

	Click on ‘Switching the base’ or click ‘Edit’ and switch the base manually. Now GitHub will compare your fork with the original, and you should see all the latest changes.

	Click on ‘Click to create a pull request for this comparison’ and name your pull request.

	Click on Send pull request.

	Scroll down and click ‘Merge pull request’ and finally ‘Confirm merge’. You will be able to merge it automatically unless you did not change you local repo.

NetworkX

Making a patch

You’ve discovered a bug or something else you want to change
in networkx [http://networkx.github.io] .. — excellent!

You’ve worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here
we explain how. Making a patch is the simplest and quickest,
but if you’re going to be doing anything more than simple
quick things, please consider following the
Git for development model instead.

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/networkx/networkx.git
make a branch for your patching
cd networkx
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the networkx
mailing list [http://groups.google.com/group/networkx-discuss/] — where we will thank you warmly.

In detail

	Tell git who you are so it can label the commits you’ve
made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

	If you don’t already have one, clone a copy of the
networkx [http://networkx.github.io] repository:

git clone git://github.com/networkx/networkx.git
cd networkx

	Make a ‘feature branch’. This will be where you work on
your bug fix. It’s nice and safe and leaves you with
access to an unmodified copy of the code in the main
branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

	Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just
signals that you’re going to type a message on the command
line. The a flag — you can just take on faith —
or see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html].

	When you have finished, check you have committed all your
changes:

git status

	Finally, make your commits into patches. You want all the
commits since you branched from the master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the networkx mailing list [http://groups.google.com/group/networkx-discuss/].

When you are done, to switch back to the main copy of the
code, just return to the master branch:

git checkout master

Moving from patching to development

If you find you have done some patches, and you have one or
more feature branches, you will probably want to switch to
development mode. You can do this with the repository you
have.

Fork the networkx [http://networkx.github.io] repository on github — Making your own copy (fork) of networkx.
Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to 'upstream'
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/networkx.git
push up any branches you've made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the
Development workflow.

NetworkX

Git for development

Contents:

	Making your own copy (fork) of networkx
	Set up and configure a github account

	Create your own forked copy of networkx

	Set up your fork
	Overview

	In detail

	Configure git
	Overview

	In detail

	Development workflow
	Workflow summary

	Consider deleting your master branch

	Update the mirror of trunk

	Make a new feature branch

	The editing workflow

	Ask for your changes to be reviewed or merged

	Some other things you might want to do

	Maintainer workflow
	Integrating changes

NetworkX

Making your own copy (fork) of networkx

You need to do this only once. The instructions here are very similar
to the instructions at https://help.github.com/articles/fork-a-repo/ — please see
that page for more detail. We’re repeating some of it here just to give the
specifics for the networkx [http://networkx.github.io] project, and to suggest some default names.

Set up and configure a github account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access — see
the Generating SSH keys help on github help [http://help.github.com].

Create your own forked copy of networkx [http://networkx.github.io]

	Log into your github account.

	Go to the networkx [http://networkx.github.io] github home at networkx github [http://github.com/networkx/networkx].

	Click on the fork button:

[image: ../../_images/forking_button.png]
Now, after a short pause and some ‘Hardcore forking action’, you
should find yourself at the home page for your own forked copy of networkx [http://networkx.github.io].

NetworkX

Set up your fork

First you follow the instructions for Making your own copy (fork) of networkx.

Overview

git clone git@github.com:your-user-name/networkx.git
cd networkx
git remote add upstream git://github.com/networkx/networkx.git

In detail

Clone your fork

	Clone your fork to the local computer with git clone
git@github.com:your-user-name/networkx.git

	Investigate. Change directory to your new repo: cd networkx. Then
git branch -a to show you all branches. You’ll get something
like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and
that you also have a remote connection to origin/master.
What remote repository is remote/origin? Try git remote -v to
see the URLs for the remote. They will point to your github fork.

Now you want to connect to the upstream networkx github [http://github.com/networkx/networkx] repository, so
you can merge in changes from trunk.

Linking your repository to the upstream repo

cd networkx
git remote add upstream git://github.com/networkx/networkx.git

upstream here is just the arbitrary name we’re using to refer to the
main networkx [http://networkx.github.io] repository at networkx github [http://github.com/networkx/networkx].

Note that we’ve used git:// for the URL rather than git@. The
git:// URL is read only. This means we that we can’t accidentally
(or deliberately) write to the upstream repo, and we are only going to
use it to merge into our own code.

Just for your own satisfaction, show yourself that you now have a new
‘remote’, with git remote -v show, giving you something like:

upstream git://github.com/networkx/networkx.git (fetch)
upstream git://github.com/networkx/networkx.git (push)
origin git@github.com:your-user-name/networkx.git (fetch)
origin git@github.com:your-user-name/networkx.git (push)

NetworkX

Configure git

Overview

Your personal git configurations are saved in the .gitconfig file in
your home directory.

Here is an example .gitconfig file:

[user]
 name = Your Name
 email = you@yourdomain.example.com

[alias]
 ci = commit -a
 co = checkout
 st = status
 stat = status
 br = branch
 wdiff = diff --color-words

[core]
 editor = vim

[merge]
 summary = true

You can edit this file directly or you can use the git config --global
command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file,
or run the commands above.

In detail

user.name and user.email

It is good practice to tell git [http://git-scm.com/] who you are, for labeling any changes
you make to the code. The simplest way to do this is from the command
line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which
should now contain a user section with your name and email:

[user]
 name = Your Name
 email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com
with your actual name and email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout
to git co. Or you may want to alias git diff --color-words
(which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents
like this:

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
 log = true

Or from the command line:

git config --global merge.log true

Fancy log output

This is a very nice alias to get a fancy log output; it should go in the
alias section of your .gitconfig file:

lg = log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)[%an]%Creset' --abbrev-commit --date=relative

You use the alias with:

git lg

and it gives graph / text output something like this (but with color!):

* 6d8e1ee - (HEAD, origin/my-fancy-feature, my-fancy-feature) NF - a fancy file (45 minutes ago) [Matthew Brett]
* d304a73 - (origin/placeholder, placeholder) Merge pull request #48 from hhuuggoo/master (2 weeks ago) [Jonathan Terhorst]
|\
| * 4aff2a8 - fixed bug 35, and added a test in test_bugfixes (2 weeks ago) [Hugo]
|/
* a7ff2e5 - Added notes on discussion/proposal made during Data Array Summit. (2 weeks ago) [Corran Webster]
* 68f6752 - Initial implimentation of AxisIndexer - uses 'index_by' which needs to be changed to a call on an Axes object - this is all very sketchy right now. (2 weeks ago) [Corr
* 376adbd - Merge pull request #46 from terhorst/master (2 weeks ago) [Jonathan Terhorst]
|\
| * b605216 - updated joshu example to current api (3 weeks ago) [Jonathan Terhorst]
| * 2e991e8 - add testing for outer ufunc (3 weeks ago) [Jonathan Terhorst]
| * 7beda5a - prevent axis from throwing an exception if testing equality with non-axis object (3 weeks ago) [Jonathan Terhorst]
| * 65af65e - convert unit testing code to assertions (3 weeks ago) [Jonathan Terhorst]
| * 956fbab - Merge remote-tracking branch 'upstream/master' (3 weeks ago) [Jonathan Terhorst]
| |\
| |/

Thanks to Yury V. Zaytsev for posting it.

NetworkX

Development workflow

You already have your own forked copy of the networkx [http://networkx.github.io] repository, by
following Making your own copy (fork) of networkx. You have Set up your fork. You have configured
git by following Configure git. Now you are ready for some real work.

Workflow summary

In what follows we’ll refer to the upstream networkx master branch, as
“trunk”.

	Don’t use your master branch for anything. Consider deleting it.

	When you are starting a new set of changes, fetch any changes from trunk,
and start a new feature branch from that.

	Make a new branch for each separable set of changes — “one task, one
branch” (ipython git workflow [http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html]).

	Name your branch for the purpose of the changes - e.g.
bugfix-for-issue-14 or refactor-database-code.

	If you can possibly avoid it, avoid merging trunk or any other branches into
your feature branch while you are working.

	If you do find yourself merging from trunk, consider Rebasing on trunk

	Ask on the networkx mailing list [http://groups.google.com/group/networkx-discuss/] if you get stuck.

	Ask for code review!

This way of working helps to keep work well organized, with readable history.
This in turn makes it easier for project maintainers (that might be you) to see
what you’ve done, and why you did it.

See ipython git workflow [http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html] for some explanation.

Consider deleting your master branch

It may sound strange, but deleting your own master branch can help reduce
confusion about which branch you are on. See deleting master on github [http://matthew-brett.github.com/pydagogue/gh_delete_master.html] for
details.

Update the mirror of trunk

First make sure you have done Linking your repository to the upstream repo.

From time to time you should fetch the upstream (trunk) changes from github:

git fetch upstream

This will pull down any commits you don’t have, and set the remote branches to
point to the right commit. For example, ‘trunk’ is the branch referred to by
(remote/branchname) upstream/master - and if there have been commits since
you last checked, upstream/master will change after you do the fetch.

Make a new feature branch

When you are ready to make some changes to the code, you should start a new
branch. Branches that are for a collection of related edits are often called
‘feature branches’.

Making an new branch for each set of related changes will make it easier for
someone reviewing your branch to see what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us
what the changes in the branch are for. For example add-ability-to-fly, or
buxfix-for-issue-42.

Update the mirror of trunk
git fetch upstream
Make new feature branch starting at current trunk
git branch my-new-feature upstream/master
git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github [http://github.com]
fork of networkx [http://networkx.github.io]. To do this, you git push [http://schacon.github.com/git/git-push.html] this new branch up to your
github repo. Generally (if you followed the instructions in these pages, and by
default), git will have a link to your github repo, called origin. You push
up to your own repo on github with:

git push origin my-new-feature

In git >= 1.7 you can ensure that the link is correctly set by using the
--set-upstream option:

git push --set-upstream origin my-new-feature

From now on git will know that my-new-feature is related to the
my-new-feature branch in the github repo.

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In more detail

	Make some changes

	See which files have changed with git status (see git status [http://schacon.github.com/git/git-status.html]).
You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

	Check what the actual changes are with git diff (git diff [http://schacon.github.com/git/git-diff.html]).

	Add any new files to version control git add new_file_name (see
git add [http://schacon.github.com/git/git-add.html]).

	To commit all modified files into the local copy of your repo,, do
git commit -am 'A commit message'. Note the -am options to
commit. The m flag just signals that you’re going to type a
message on the command line. The a flag — you can just take on
faith — or see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html] — and the helpful use-case
description in the tangled working copy problem [http://tomayko.com/writings/the-thing-about-git]. The git commit [http://schacon.github.com/git/git-commit.html] manual
page might also be useful.

	To push the changes up to your forked repo on github, do a git
push (see git push [http://schacon.github.com/git/git-push.html]).

Ask for your changes to be reviewed or merged

When you are ready to ask for someone to review your code and consider a merge:

	Go to the URL of your forked repo, say
http://github.com/your-user-name/networkx.

	Use the ‘Switch Branches’ dropdown menu near the top left of the page to
select the branch with your changes:

[image: ../../_images/branch_dropdown.png]

	Click on the ‘Pull request’ button:

[image: ../../_images/pull_button.png]
Enter a title for the set of changes, and some explanation of what you’ve
done. Say if there is anything you’d like particular attention for - like a
complicated change or some code you are not happy with.

If you don’t think your request is ready to be merged, just say so in your
pull request message. This is still a good way of getting some preliminary
code review.

Some other things you might want to do

Delete a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also:
http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all
committing into the same repository, or even the same branch, then just
share it via github.

First fork networkx into your account, as from Making your own copy (fork) of networkx.

Then, go to your forked repository github page, say
http://github.com/your-user-name/networkx

Click on the ‘Admin’ button, and add anyone else to the repo as a
collaborator:

[image: ../../_images/pull_button.png]

Now all those people can do:

git clone git@githhub.com:your-user-name/networkx.git

Remember that links starting with git@ use the ssh protocol and are
read-write; links starting with git:// are read-only.

Your collaborators can then commit directly into that repo with the
usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Explore your repository

To see a graphical representation of the repository branches and
commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer [http://github.com/blog/39-say-hello-to-the-network-graph-visualizer] for your github
repo.

Finally the Fancy log output lg alias will give you a reasonable text-based
graph of the repository.

Rebasing on trunk

Let’s say you thought of some work you’d like to do. You
Update the mirror of trunk and Make a new feature branch called
cool-feature. At this stage trunk is at some commit, let’s call it E. Now
you make some new commits on your cool-feature branch, let’s call them A, B,
C. Maybe your changes take a while, or you come back to them after a while. In
the meantime, trunk has progressed from commit E to commit (say) G:

 A---B---C cool-feature
 /
D---E---F---G trunk

At this stage you consider merging trunk into your feature branch, and you
remember that this here page sternly advises you not to do that, because the
history will get messy. Most of the time you can just ask for a review, and not
worry that trunk has got a little ahead. But sometimes, the changes in trunk
might affect your changes, and you need to harmonize them. In this situation
you may prefer to do a rebase.

rebase takes your changes (A, B, C) and replays them as if they had been made to
the current state of trunk. In other words, in this case, it takes the
changes represented by A, B, C and replays them on top of G. After the rebase,
your history will look like this:

 A'--B'--C' cool-feature
 /
D---E---F---G trunk

See rebase without tears [http://matthew-brett.github.com/pydagogue/rebase_without_tears.html] for more detail.

To do a rebase on trunk:

Update the mirror of trunk
git fetch upstream
go to the feature branch
git checkout cool-feature
make a backup in case you mess up
git branch tmp cool-feature
rebase cool-feature onto trunk
git rebase --onto upstream/master upstream/master cool-feature

In this situation, where you are already on branch cool-feature, the last
command can be written more succinctly as:

git rebase upstream/master

When all looks good you can delete your backup branch:

git branch -D tmp

If it doesn’t look good you may need to have a look at
Recovering from mess-ups.

If you have made changes to files that have also changed in trunk, this may
generate merge conflicts that you need to resolve - see the git rebase [http://schacon.github.com/git/git-rebase.html] man
page for some instructions at the end of the “Description” section. There is
some related help on merging in the git user manual - see resolving a merge [http://schacon.github.com/git/user-manual.html#resolving-a-merge].

Recovering from mess-ups

Sometimes, you mess up merges or rebases. Luckily, in git it is
relatively straightforward to recover from such mistakes.

If you mess up during a rebase:

git rebase --abort

If you notice you messed up after the rebase:

reset branch back to the saved point
git reset --hard tmp

If you forgot to make a backup branch:

look at the reflog of the branch
git reflog show cool-feature

8630830 cool-feature@{0}: commit: BUG: io: close file handles immediately
278dd2a cool-feature@{1}: rebase finished: refs/heads/my-feature-branch onto 11ee694744f2552d
26aa21a cool-feature@{2}: commit: BUG: lib: make seek_gzip_factory not leak gzip obj
...

reset the branch to where it was before the botched rebase
git reset --hard cool-feature@{2}

Rewriting commit history

Note

Do this only for your own feature branches.

There’s an embarassing typo in a commit you made? Or perhaps the you
made several false starts you would like the posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log --oneline
eadc391 Fix some remaining bugs
a815645 Modify it so that it works
2dec1ac Fix a few bugs + disable
13d7934 First implementation
6ad92e5 * masked is now an instance of a new object, MaskedConstant
29001ed Add pre-nep for a copule of structured_array_extensions.
...

and 6ad92e5 is the last commit in the cool-feature branch. Suppose we
want to make the following changes:

	Rewrite the commit message for 13d7934 to something more sensible.

	Combine the commits 2dec1ac, a815645, eadc391 into a single one.

We do as follows:

make a backup of the current state
git branch tmp HEAD
interactive rebase
git rebase -i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92e5..eadc391 onto 6ad92e5
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for
13d7934, and (ii) collapse the last three commits into one. Now we
save and quit the editor.

Git will then immediately bring up an editor for editing the commit
message. After revising it, we get the output:

[detached HEAD 721fc64] FOO: First implementation
 2 files changed, 199 insertions(+), 66 deletions(-)
[detached HEAD 0f22701] Fix a few bugs + disable
 1 files changed, 79 insertions(+), 61 deletions(-)
Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

0f22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 * masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

NetworkX

Maintainer workflow

This page is for maintainers — those of us who merge our own or other
peoples’ changes into the upstream repository.

Being as how you’re a maintainer, you are completely on top of the basic stuff
in Development workflow.

The instructions in Linking your repository to the upstream repo add a remote that has read-only
access to the upstream repo. Being a maintainer, you’ve got read-write access.

It’s good to have your upstream remote have a scary name, to remind you that
it’s a read-write remote:

git remote add upstream-rw git@github.com:networkx/networkx.git
git fetch upstream-rw

Integrating changes

Let’s say you have some changes that need to go into trunk
(upstream-rw/master).

The changes are in some branch that you are currently on. For example, you are
looking at someone’s changes like this:

git remote add someone git://github.com/someone/networkx.git
git fetch someone
git branch cool-feature --track someone/cool-feature
git checkout cool-feature

So now you are on the branch with the changes to be incorporated upstream. The
rest of this section assumes you are on this branch.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
git fetch upstream-rw
rebase
git rebase upstream-rw/master

Remember that, if you do a rebase, and push that, you’ll have to close any
github pull requests manually, because github will not be able to detect the
changes have already been merged.

A long series of commits

If there are a longer series of related commits, consider a merge instead:

git fetch upstream-rw
git merge --no-ff upstream-rw/master

The merge will be detected by github, and should close any related pull requests
automatically.

Note the --no-ff above. This forces git to make a merge commit, rather than
doing a fast-forward, so that these set of commits branch off trunk then rejoin
the main history with a merge, rather than appearing to have been made directly
on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have
the right commits:

git log --oneline --graph
git log -p upstream-rw/master..

The first line above just shows the history in a compact way, with a text
representation of the history graph. The second line shows the log of commits
excluding those that can be reached from trunk (upstream-rw/master), and
including those that can be reached from current HEAD (implied with the ..
at the end). So, it shows the commits unique to this branch compared to trunk.
The -p option shows the diff for these commits in patch form.

Push to trunk

git push upstream-rw my-new-feature:master

This pushes the my-new-feature branch in this repository to the master
branch in the upstream-rw repository.

NetworkX

git resources

Tutorials and summaries

github help [http://help.github.com] is Git’s own help and tutorial site. github more help [https://help.github.com/articles/what-are-other-good-resources-for-learning-git-and-github/] lists more resources for learning Git and GitHub, including YouTube
channels. The list is constantly updated. In case you are used to subversion [http://subversion.tigris.org/]
, you can directly consult the git svn crash course [http://git-scm.com/course/svn.html].

To make full use of Git, you need to understand the concept behind Git.

The following pages might help you:

	git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html] — an easy read parable

	git foundation [http://matthew-brett.github.com/pydagogue/foundation.html] — more on the git parable

	git magic [http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html] — extended introduction with intermediate detail in many languages

	git concepts [http://www.eecs.harvard.edu/~cduan/technical/git/] — a technical page on the concepts

Other than that, many devlopers list their personal tips and tricks.
Among others there are Fernando Perez [http://www.fperez.org/py4science/git.html], Nick Quaranto [http://www.gitready.com/] and Linus Torvalds [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html].

Manual pages online

You can get these on your own machine with (e.g) git help push or
(same thing) git push --help, but, for convenience, here are the
online manual pages for some common commands:

	git add [http://schacon.github.com/git/git-add.html]

	git branch [http://schacon.github.com/git/git-branch.html]

	git checkout [http://schacon.github.com/git/git-checkout.html]

	git clone [http://schacon.github.com/git/git-clone.html]

	git commit [http://schacon.github.com/git/git-commit.html]

	git config [http://schacon.github.com/git/git-config.html]

	git diff [http://schacon.github.com/git/git-diff.html]

	git log [http://schacon.github.com/git/git-log.html]

	git pull [http://schacon.github.com/git/git-pull.html]

	git push [http://schacon.github.com/git/git-push.html]

	git remote [http://schacon.github.com/git/git-remote.html]

	git status [http://schacon.github.com/git/git-status.html]

NetworkX

History

Original Creators:

Aric Hagberg, hagberg@lanl.gov
Pieter Swart, swart@lanl.gov
Dan Schult, dschult@colgate.edu

	API changes
	Version 1.11 notes and API changes

	Version 1.10 notes and API changes

	Version 1.9 notes and API changes

	Version 1.8 notes and API changes

	Version 1.7 notes and API changes

	Version 1.6 notes and API changes

	Version 1.5 notes and API changes

	Version 1.4 notes and API changes

	Version 1.0 notes and API changes

	Version 0.99 API changes

	Release Log
	NetworkX 1.11

	NetworkX 1.10

	NetworkX 1.9.1

	NetworkX 1.9

	NetworkX 1.8.1

	NetworkX 1.8

	NetworkX 1.7

	NetworkX 1.6

	NetworkX 1.5

	NetworkX 1.4

	NetworkX 1.3

	NetworkX 1.2

	NetworkX 1.1

	NetworkX 1.0.1

	NetworkX 1.0

	NetworkX 0.99

	NetworkX 0.37

	NetworkX 0.36

	NetworkX 0.35.1

	NetworkX 0.35

	NetworkX 0.34

	NetworkX 0.33

	NetworkX 0.32

	NetworkX 0.31

	NetworkX 0.30

	NetworkX 0.29

	NetworkX 0.28

	NetworkX 0.27

	NetworkX 0.26

	NetworkX 0.25

	NetworkX 0.24

	NetworkX 0.23

	NetworkX 0.22

NetworkX

API changes

	Version 1.11 notes and API changes
	API changes

	Miscellaneous changes

	Version 1.10 notes and API changes
	API changes

	New functionalities

	Removed functionalities

	Miscellaneous changes

	Version 1.9 notes and API changes
	Flow package

	Connectivity package

	Other new functionalities

	Miscellaneous changes

	Version 1.8 notes and API changes

	Version 1.7 notes and API changes
	Other

	Version 1.6 notes and API changes
	Graph Classes

	Weighted graph algorithms

	Isomorphisms

	Other

	Version 1.5 notes and API changes
	Weighted graph algorithms

	Random geometric graph

	Version 1.4 notes and API changes
	Algorithms changed

	Version 1.0 notes and API changes
	Version numbering

	Changes in base classes

	Additional functions/generators

	Converting your existing code to networkx-1.0

	Version 0.99 API changes
	Changes in base classes

	Other possible incompatibilities with existing code

	Converting your old code to Version 0.99

NetworkX

Version 1.11 notes and API changes

This page includes more detailed release information and API changes from
NetworkX 1.10 to NetworkX 1.11.

Please send comments and questions to the networkx-discuss mailing list:
<http://groups.google.com/group/networkx-discuss>.

API changes

	[#1930 [https://github.com/networkx/networkx/pull/1930]]
No longer import nx_agraph and nx_pydot into the top-level namespace.
They can be accessed within networkx as e.g. nx.nx_agraph.write_dot
or imported as from networkx.drawing.nx_agraph import write_dot.

	[#1750 [https://github.com/networkx/networkx/pull/1750]]
Arguments center and scale are now available for all layout functions.
The defaul values revert to the v1.9 values (center is the origin
for circular layouts and domain is [0, scale) for others.

	[#1924 [https://github.com/networkx/networkx/pull/1924]]
Replace pydot with pydotplus for drawing with the pydot interface.

	[#1888 [https://github.com/networkx/networkx/pull/1888]]
Replace support for Python3.2 with support for Python 3.5.

Miscellaneous changes

	[#1763 [https://github.com/networkx/networkx/pull/1763]]
Set up appveyor to automatically test installation on Windows machines.
Remove symbolic links in examples to help such istallation.

Change many doc_string typos to allow sphinx
to build the docs without errors or warnings.

Enable the docs to be automatically built on
readthedocs.org by changing requirements.txt

NetworkX

Version 1.10 notes and API changes

This page includes more detailed release information and API changes from
NetworkX 1.9 to NetworkX 1.10.

Please send comments and questions to the networkx-discuss mailing list:
<http://groups.google.com/group/networkx-discuss>.

API changes

	[#1501 [https://github.com/networkx/networkx/pull/1501]]
connected_components, weakly_connected_components, and
strongly_connected_components return now a generator of sets of
nodes. Previously the generator was of lists of nodes. This PR also
refactored the connected_components and weakly_connected_components
implementations making them faster, especially for large graphs.

	[#1547 [https://github.com/networkx/networkx/issues/1547]]
The func_iter functions in Di/Multi/Graphs classes are slated for
removal in NetworkX 2.0 release. func will behave like func_iter
and return an iterator instead of list. These functions are deprecated in
NetworkX 1.10 release.

New functionalities

	[#823 [https://github.com/networkx/networkx/pull/823]]
A enumerate_all_cliques function is added in the clique package
(networkx.algorithms.clique) for enumerating all cliques (including
nonmaximal ones) of undirected graphs.

	[#1105 [https://github.com/networkx/networkx/pull/1105]]
A coloring package (networkx.algorithms.coloring) is created for
graph coloring algorithms. Initially, a greedy_color function is
provided for coloring graphs using various greedy heuristics.

	[#1193 [https://github.com/networkx/networkx/pull/1193]]
A new generator edge_dfs, added to networkx.algorithms.traversal,
implements a depth-first traversal of the edges in a graph. This complements
functionality provided by a depth-first traversal of the nodes in a graph.
For multigraphs, it allows the user to know precisely which edges were
followed in a traversal. All NetworkX graph types are supported. A traversal
can also reverse edge orientations or ignore them.

	[#1194 [https://github.com/networkx/networkx/pull/1194]]
A find_cycle function is added to the networkx.algorithms.cycles
package to find a cycle in a graph. Edge orientations can be optionally
reversed or ignored.

	[#1210 [https://github.com/networkx/networkx/pull/1210]]
Add a random generator for the duplication-divergence model.

	[#1241 [https://github.com/networkx/networkx/pull/1241]]
A new networkx.algorithms.dominance package is added for
dominance/dominator algorithms on directed graphs. It contains a
immediate_dominators function for computing immediate
dominators/dominator trees and a dominance_frontiers function for
computing dominance frontiers.

	[#1269 [https://github.com/networkx/networkx/pull/1269]]
The GML reader/parser and writer/generator are rewritten to remove the
dependence on pyparsing and enable handling of arbitrary graph data.

	[#1280 [https://github.com/networkx/networkx/pull/1280]]
The network simplex method in the networkx.algorithms.flow package is
rewritten to improve its performance and support multi- and disconnected
networks. For some cases, the new implementation is two or three orders of
magnitude faster than the old implementation.

	[#1286 [https://github.com/networkx/networkx/pull/1286]]
Added the Margulis–Gabber–Galil graph to networkx.generators.

	[#1306 [https://github.com/networkx/networkx/pull/1306]]
Added the chordal p-cycle graph, a mildly explicit algebraic construction
of a family of 3-regular expander graphs. Also, moves both the existing
expander graph generator function (for the Margulis-Gabber-Galil
expander) and the new chordal cycle graph function to a new module,
networkx.generators.expanders.

	[#1314 [https://github.com/networkx/networkx/pull/1314]]
Allow overwriting of base class dict with dict-like:
OrderedGraph, ThinGraph, LogGraph, etc.

	[#1321 [https://github.com/networkx/networkx/pull/1321]]
Added to_pandas_dataframe and from_pandas_dataframe.

	[#1322 [https://github.com/networkx/networkx/pull/1322]]
Added the Hopcroft–Karp algorithm for finding a maximum cardinality
matching in bipartite graphs.

	[#1336 [https://github.com/networkx/networkx/pull/1336]]
Expanded data keyword in G.edges and added default keyword.

	[#1338 [https://github.com/networkx/networkx/pull/1338]]
Added support for finding optimum branchings and arborescences.

	[#1340 [https://github.com/networkx/networkx/pull/1340]]
Added a from_pandas_dataframe function that accepts Pandas DataFrames
and returns a new graph object. At a minimum, the DataFrame must have two
columns, which define the nodes that make up an edge. However, the function
can also process an arbitrary number of additional columns as edge
attributes, such as ‘weight’.

	[#1354 [https://github.com/networkx/networkx/pull/1354]]
Expanded layout functions to add flexibility for drawing subsets of nodes
with distinct layouts and for centering each layout around given
coordinates.

	[#1356 [https://github.com/networkx/networkx/pull/1356]]
Added ordered variants of default graph class.

	[#1360 [https://github.com/networkx/networkx/pull/1360]]
Added harmonic centrality to network.algorithms.centrality.

	[#1390 [https://github.com/networkx/networkx/pull/1390]]
The generators.bipartite have been moved to
algorithms.bipartite.generators. The functions are not imported in the
main namespace, so to use it, the bipartite package has to be imported.

	[#1391 [https://github.com/networkx/networkx/pull/1391]]
Added Kanevsky’s algorithm for finding all minimum-size separating
node sets in an undirected graph. It is implemented as a generator
of node cut sets.

	[#1399 [https://github.com/networkx/networkx/pull/1399]]
Added power function for simple graphs

	[#1405 [https://github.com/networkx/networkx/pull/1405]]
Added fast approximation for node connectivity based on White and
Newman’s approximation algorithm for finding node independent paths
between two nodes.

	[#1413 [https://github.com/networkx/networkx/pull/1413]]
Added transitive closure and antichains function for directed acyclic
graphs in algorithms.dag. The antichains function was contributed
by Peter Jipsen and Franco Saliola and originally developed for the
SAGE project.

	[#1425 [https://github.com/networkx/networkx/pull/1425]]
Added generator function for the complete multipartite graph.

	[#1427 [https://github.com/networkx/networkx/pull/1427]]
Added nonisomorphic trees generator.

	[#1436 [https://github.com/networkx/networkx/pull/1436]]
Added a generator function for circulant graphs to the
networkx.generators.classic module.

	[#1437 [https://github.com/networkx/networkx/pull/1437]]
Added function for computing quotient graphs; also created a new module,
networkx.algorithms.minors.

	[#1438 [https://github.com/networkx/networkx/pull/1438]]
Added longest_path and longest_path_length for DAG.

	[#1439 [https://github.com/networkx/networkx/pull/1439]]
Added node and edge contraction functions to
networkx.algorithms.minors.

	[#1445 [https://github.com/networkx/networkx/pull/1448]]
Added a new modularity matrix module to networkx.linalg,
and associated spectrum functions to the networkx.linalg.spectrum
module.

	[#1447 [https://github.com/networkx/networkx/pull/1447]]
Added function to generate all simple paths starting with the shortest
ones based on Yen’s algorithm for finding k shortest paths at
algorithms.simple_paths.

	[#1455 [https://github.com/networkx/networkx/pull/1455]]
Added the directed modularity matrix to the
networkx.linalg.modularity_matrix module.

	[#1474 [https://github.com/networkx/networkx/pull/1474]]
Adds triadic_census function; also creates a new module,
networkx.algorithms.triads.

	[#1476 [https://github.com/networkx/networkx/pull/1476]]
Adds functions for testing if a graph has weighted or negatively weighted
edges. Also adds a function for testing if a graph is empty. These are
is_weighted, is_negatively_weighted, and is_empty.

	[#1481 [https://github.com/networkx/networkx/pull/1481]]
Added Johnson’s algorithm; one more algorithm for shortest paths. It
solves all pairs shortest path problem. This is johnson at
algorithms.shortest_paths

	[#1414 [https://github.com/networkx/networkx/pull/1414]]
Added Moody and White algorithm for identifying k_components in a
graph, which is based on Kanevsky’s algorithm for finding all minimum-size
node cut-sets (implemented in all_node_cuts #1391).

	[#1415 [https://github.com/networkx/networkx/pull/1415]]
Added fast approximation for k_components to the
networkx.approximation package. This is based on White and Newman
approximation algorithm for finding node independent paths between two
nodes (see #1405).

Removed functionalities

	[#1236 [https://github.com/networkx/networkx/pull/1236]]
The legacy ford_fulkerson maximum flow function is removed. Use
edmonds_karp instead.

Miscellaneous changes

	[#1192 [https://github.com/networkx/networkx/pull/1192]]
Support for Python 2.6 is dropped.

NetworkX

Version 1.9 notes and API changes

This page reflects API changes from NetworkX 1.8 to NetworkX 1.9.

Please send comments and questions to the networkx-discuss mailing list:
<http://groups.google.com/group/networkx-discuss>.

Flow package

The flow package (networkx.algorithms.flow) is completely rewritten
with backward incompatible changes. It introduces a new interface to flow
algorithms. Existing code that uses the flow package will not work unmodified
with NetworkX 1.9.

Main changes

	We added two new maximum flow algorithms (preflow_push and
shortest_augmenting_path) and rewrote the Edmonds–Karp algorithm in
flow_fulkerson which is now in edmonds_karp.
@ysitu [https://github.com/ysitu] contributed implementations of all new
maximum flow algorithms. The legacy Edmonds–Karp algorithm implementation in
ford_fulkerson is still available but will be removed in the next
release.

	All maximum flow algorithm implementations (including the legacy
ford_fulkerson) output now a residual network (i.e., a
DiGraph) after computing the maximum flow. See maximum_flow
documentation for the details on the conventions that NetworkX uses for
defining a residual network.

	We removed the old max_flow and min_cut functions. The main
entry points to flow algorithms are now the functions maximum_flow,
maximum_flow_value, minimum_cut and
minimum_cut_value, which have new parameters that control maximum
flow computation: flow_func for specifying the algorithm that will
do the actual computation (it accepts a function as argument that implements
a maximum flow algorithm), cutoff for suggesting a maximum flow
value at which the algorithm stops, value_only for stopping the
computation as soon as we have the value of the flow, and residual
that accepts as argument a residual network to be reused in repeated maximum
flow computation.

	All flow algorithms are required to accept arguments for these parameters
but may selectively ignored the inapplicable ones. For instance,
preflow_push algorithm can stop after the preflow phase without
computing a maximum flow if we only need the flow value, but both
edmonds_karp and shortest_augmenting_path always compute a
maximum flow to obtain the flow value.

	The new function minimum_cut returns the cut value and a node
partition that defines the minimum cut. The function
minimum_cut_value returns only the value of the cut, which is what
the removed min_cut function used to return before 1.9.

	The functions that implement flow algorithms (i.e., preflow_push,
edmonds_karp, shortest_augmenting_path and
ford_fulkerson) are not imported to the base NetworkX namespace. You
have to explicitly import them from the flow package:

>>> from networkx.algorithms.flow import (ford_fulkerson, preflow_push,
... edmonds_karp, shortest_augmenting_path)

	We also added a capacity-scaling minimum cost flow algorithm:
capacity_scaling. It supports MultiDiGraph and disconnected
networks.

Examples

Below are some small examples illustrating how to obtain the same output than in
NetworkX 1.8.1 using the new interface to flow algorithms introduced in 1.9:

>>> import networkx as nx
>>> G = nx.icosahedral_graph()
>>> nx.set_edge_attributes(G, 'capacity', 1)

With NetworkX 1.8:

>>> flow_value = nx.max_flow(G, 0, 6)
>>> cut_value = nx.min_cut(G, 0, 6)
>>> flow_value == cut_value
True
>>> flow_value, flow_dict = nx.ford_fulkerson(G, 0, 6)

With NetworkX 1.9:

>>> from networkx.algorithms.flow import (ford_fulkerson, preflow_push,
... edmonds_karp, shortest_augmenting_path)
>>> flow_value = nx.maximum_flow_value(G, 0, 6)
>>> cut_value = nx.minimum_cut_value(G, 0, 6)
>>> flow_value == cut_value
True
>>> # Legacy: this returns the exact same output than ford_fulkerson in 1.8.1
>>> flow_value, flow_dict = nx.maximum_flow(G, 0, 6, flow_func=ford_fulkerson)
>>> # We strongly recommend to use the new algorithms:
>>> flow_value, flow_dict = nx.maximum_flow(G, 0, 6)
>>> # If no flow_func is passed as argument, the default flow_func
>>> # (preflow-push) is used. Therefore this is the same than:
>>> flow_value, flow_dict = nx.maximum_flow(G, 0, 6, flow_func=preflow_push)
>>> # You can also use alternative maximum flow algorithms:
>>> flow_value, flow_dict = nx.maximum_flow(G, 0, 6, flow_func=shortest_augmenting_path)
>>> flow_value, flow_dict = nx.maximum_flow(G, 0, 6, flow_func=edmonds_karp)

Connectivity package

The flow-based connecitivity and cut algorithms from the connectivity
package (networkx.algorithms.connectivity) are adapted to take
advantage of the new interface to flow algorithms. As a result, flow-based
connectivity algorithms are up to 10x faster than in NetworkX 1.8 for some
problems, such as sparse networks with highly skewed degree distributions.
A few backwards incompatible changes were introduced.

	The functions for local connectivity and cuts accept now
arguments for the new parameters defined for the flow interface:
flow_func for defining the algorithm that will perform the
underlying maximum flow computations, residual that accepts
as argument a residual network to be reused in repeated maximum
flow computations, and cutoff for defining a maximum flow
value at which the underlying maximum flow algorithm stops. The big
speed improvement with respect to 1.8 comes mainly from the reuse
of the residual network and the use of cutoff.

	We removed the flow-based local connectivity and cut functions from
the base namespace. Now they have to be explicitly imported from the
connectivity package. The main entry point to flow-based connectivity
and cut functions are the functions edge_connectivity,
node_connectivity, minimum_edge_cut, and
minimum_node_cut. All these functions accept a couple of nodes
as optional arguments for computing local connectivity and cuts.

	We improved the auxiliary network for connectivity functions: The node
mapping dict needed for node connectivity and minimum node cuts is now a
graph attribute of the auxiliary network. Thus we removed the
mapping parameter from the local versions of connectivity and cut
functions. We also changed the parameter name for the auxuliary digraph
from aux_digraph to auxiliary.

	We changed the name of the function all_pairs_node_connectiviy_matrix
to all_pairs_node_connectivity. This function now returns a dictionary
instead of a NumPy 2D array. We added a new parameter nbunch for
computing node connectivity only among pairs of nodes in nbunch.

	A stoer_wagner function is added to the connectivity package
for computing the weighted minimum cuts of undirected graphs using
the Stoer–Wagner algorithm. This algorithm is not based on maximum flows.
Several heap implementations are also added in the utility package
(networkx.utils) for use in this function.
BinaryHeap is recommeded over PairingHeap for Python
implementations without optimized attribute accesses (e.g., CPython)
despite a slower asymptotic running time. For Python implementations
with optimized attribute accesses (e.g., PyPy), PairingHeap
provides better performance.

Other new functionalities

	A disperson function is added in the centrality package
(networkx.algorithms.centrality) for computing the dispersion of
graphs.

	A community package (networkx.generators.community) is added for
generating community graphs.

	An is_semiconnected function is added in the connectivity package
(networkx.algorithms.connectivity) for recognizing semiconnected
graphs.

	The eulerian_circuit function in the Euler package
(networkx.algorithm.euler) is changed to use a linear-time algorithm.

	A non_edges function in added in the function package
(networkx.functions) for enumerating nonexistent edges between
existing nodes of graphs.

	The linear algebra package (networkx.linalg) is changed to use SciPy
sparse matrices.

	Functions algebraic_connectivity, fiedler_vector and
spectral_ordering are added in the linear algebra package
(networkx.linalg) for computing the algebraic connectivity, Fiedler
vectors and spectral orderings of undirected graphs.

	A link prediction package (networkx.algorithms.link_prediction) is
added to provide link prediction-related functionalities.

	Write Support for the graph6 and sparse6 formats is added in the read/write
package (networx.readwrite).

	A goldberg_radzik function is added in the shortest path package
(networkx.algorithms.shortest_paths) for computing shortest paths
using the Goldberg–Radzik algorithm.

	A tree package (networkx.tree) is added to provide tree recognition
functionalities.

	A context manager reversed is added in the utility package
(networkx.utils) for temporary in-place reversal of graphs.

Miscellaneous changes

	The functions in the components package
(networkx.algorithms.components) such as connected_components,
connected_components_subgraph now return generators instead of lists.
To recover the earlier behavior, use list(connected_components(G)).

	JSON helpers in the JSON graph package (networkx.readwrite.json_graph)
are removed. Use functions from the standard library (e.g.,
json.dumps) instead.

	Support for Python 3.1 is dropped. Basic support is added for Jython 2.7 and
IronPython 2.7, although they remain not officially supported.

	Numerous reported issues are fixed.

NetworkX

Version 1.8 notes and API changes

This page reflects API changes from networkx-1.7 to networkx-1.8.

Please send comments and questions to the networkx-discuss mailing list:
http://groups.google.com/group/networkx-discuss .

	Laplacian functions now all return matrices. To get a numpy array from a matrix use L = nx.laplacian_matrix(G).A

	is_directed_acyclic_graph() now returns false on undirected graphs (instead of raising exception)

	cycles returned from simple_cycles() do not include repeated last node

NetworkX

Version 1.7 notes and API changes

This page reflects API changes from networkx-1.6 to networkx-1.7.

Please send comments and questions to the networkx-discuss mailing list:
http://groups.google.com/group/networkx-discuss .

Other

	Untested bipartite_random_regular_graph() removed.

NetworkX

Version 1.6 notes and API changes

This page reflects API changes from networkx-1.5 to networkx-1.6.

Please send comments and questions to the networkx-discuss mailing list:
http://groups.google.com/group/networkx-discuss .

Graph Classes

The degree* methods in the graph classes (Graph, DiGraph, MultiGraph,
MultiDiGraph) now take an optional weight= keyword that allows computing
weighted degree with arbitrary (numerical) edge attributes. Setting
weight=None is equivalent to the previous weighted=False.

Weighted graph algorithms

Many ‘weighted’ graph algorithms now take optional parameter to
specifiy which edge attribute should be used for the weight
(default=’weight’) (ticket https://networkx.lanl.gov/trac/ticket/573)

In some cases the parameter name was changed from weighted, to weight. Here is
how to specify which edge attribute will be used in the algorithms:

	Use weight=None to consider all weights equally (unweighted case)

	Use weight=’weight’ to use the ‘weight’ edge atribute

	Use weight=’other’ to use the ‘other’ edge attribute

Algorithms affected are:

to_scipy_sparse_matrix,
clustering,
average_clustering,
bipartite.degree,
spectral_layout,
neighbor_degree,
is_isomorphic,
betweenness_centrality,
betweenness_centrality_subset,
vitality,
load_centrality,
mincost,
shortest_path,
shortest_path_length,
average_shortest_path_length

Isomorphisms

Node and edge attributes are now more easily incorporated into isomorphism
checks via the ‘node_match’ and ‘edge_match’ parameters. As part of this
change, the following classes were removed:

WeightedGraphMatcher
WeightedDiGraphMatcher
WeightedMultiGraphMatcher
WeightedMultiDiGraphMatcher

The function signature for ‘is_isomorphic’ is now simply:

is_isomorphic(g1, g2, node_match=None, edge_match=None)

See its docstring for more details. To aid in the creation of ‘node_match’
and ‘edge_match’ functions, users are encouraged to work with:

categorical_node_match
categorical_edge_match
categroical_multiedge_match
numerical_node_match
numerical_edge_match
numerical_multiedge_match
generic_node_match
generic_edge_match
generic_multiedge_match

These functions construct functions which can be passed to ‘is_isomorphic’.
Finally, note that the above functions are not imported into the top-level
namespace and should be accessed from ‘networkx.algorithms.isomorphism’.
A useful import statement that will be repeated throughout documentation is:

import networkx.algorithms.isomorphism as iso

Other

	attracting_components

A list of lists is returned instead of a list of tuples.

	condensation

The condensation algorithm now takes a second argument (scc) and returns a
graph with nodes labeled as integers instead of node tuples.

	degree connectivity

average_in_degree_connectivity and average_out_degree_connectivity have
have been replaced with

average_degree_connectivity(G, source=’in’, target=’in’)

and

average_degree_connectivity(G, source=’out’, target=’out’)

	neighbor degree

average_neighbor_in_degree and average_neighbor_out_degreey have
have been replaced with

average_neighbor_degree(G, source=’in’, target=’in’)

and

average_neighbor_degree(G, source=’out’, target=’out’)

NetworkX

Version 1.5 notes and API changes

This page reflects API changes from networkx-1.4 to networkx-1.5.

Please send comments and questions to the networkx-discuss mailing list:
http://groups.google.com/group/networkx-discuss .

Weighted graph algorithms

Many ‘weighted’ graph algorithms now take optional parameter to
specifiy which edge attribute should be used for the weight
(default=’weight’) (ticket https://networkx.lanl.gov/trac/ticket/509)

In some cases the parameter name was changed from weighted_edges,
or weighted, to weight. Here is how to specify which edge attribute
will be used in the algorithms:

	Use weight=None to consider all weights equally (unweighted case)

	Use weight=True or weight=’weight’ to use the ‘weight’ edge atribute

	Use weight=’other’ to use the ‘other’ edge attribute

Algorithms affected are:

betweenness_centrality, closeness_centrality, edge_bewteeness_centrality,
betweeness_centrality_subset, edge_betweenness_centrality_subset,
betweenness_centrality_source, load, closness_vitality,
weiner_index, spectral_bipartivity
current_flow_betweenness_centrality,
edge_current_flow_betweenness_centrality,
current_flow_betweenness_centrality_subset,
edge_current_flow_betweenness_centrality_subset,
laplacian, normalized_laplacian, adj_matrix, adjacency_spectrum,
shortest_path, shortest_path_length, average_shortest_path_length,
single_source_dijkstra_path_basic, astar_path, astar_path_length

Random geometric graph

The random geometric graph generator has been simplified.
It no longer supports the create_using, repel, or verbose parameters.
An optional pos keyword was added to allow specification of node positions.

NetworkX

Version 1.4 notes and API changes

We have made some API changes, detailed below, to add clarity.
This page reflects changes from networkx-1.3 to networkx-1.4.
For changes from earlier versions to networkx-1.0 see
Version 1.0 API changes.

Please send comments and questions to the networkx-discuss mailing list:
http://groups.google.com/group/networkx-discuss .

Algorithms changed

Shortest path

astar_path(), astar_path_length(), shortest_path(), shortest_path_length(),

bidirectional_shortest_path(), dijkstra_path(), dijkstra_path_length(),

bidirectional_dijkstra()

These algorithms now raise an exception when a source and a target are
specified and no path exist between these two nodes. The exception is
a NetworkXNoPath exception.

NetworkX

Version 1.0 notes and API changes

We have made some significant API changes, detailed below, to add
functionality and clarity. This page reflects changes from
networkx-0.99 to networkx-1.0. For changes from earlier versions to
networkx-0.99 see Version 0.99 API changes.

Version 1.0 requires Python 2.4 or greater.

Please send comments and questions to the networkx-discuss mailing list:
http://groups.google.com/group/networkx-discuss .

Version numbering

In the future we will use a more standard release numbering system
with major.minor[build] labels where major and minor are numbers and
[build] is a label such as “dev1379” to indicate a development version
or “rc1” to indicate a release candidate.

We plan on sticking closer to a time-based release schedule with smaller
incremental changes released on a roughly quarterly basis. The graph
classes API will remain fixed, unless we determine there are serious
bugs or other defects in the existing classes, until networkx-2.0 is
released at some time in the future.

Changes in base classes

The most significant changes in are in the graph classes. All of the
graph classes now allow optional graph, node, and edge attributes. Those
attributes are stored internally in the graph classes as dictionaries
and can be accessed simply like Python dictionaries in most cases.

Graph attributes

Each graph keeps a dictionary of key=value attributes
in the member G.graph. These attributes can be accessed
directly using G.graph or added at instantiation using
keyword arguments.

>>> G=nx.Graph(region='Africa')
>>> G.graph['color']='green'
>>> G.graph
{'color': 'green', 'region': 'Africa'}

Node attributes

Each node has a corresponding dictionary of attributes.
Adding attributes to nodes is optional.

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> G.nodes(data=True)
[(1, {'room': 714, 'time': '5pm'}), (3, {'time': '2pm'})]

Edge attributes

Each edge has a corresponding dictionary of attributes.
The default edge data is now an empty dictionary of attributes
and adding attributes to edges is optional.

A common use case is to add a weight attribute to an edge:

>>> G.add_edge(1,2,weight=3.14159)

Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edge.

>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4

Methods changed

Graph(), DiGraph(), MultiGraph(), MultiDiGraph()

Now takes optional keyword=value attributes on initialization.

>>> G=nx.Graph(year='2009',city='New York')

add_node()

Now takes optional keyword=value attributes or a dictionary of attributes.

>>> G.add_node(1,room=714)

add_nodes_from()

Now takes optional keyword=value attributes or a dictionary of
attributes applied to all affected nodes.

>>> G.add_nodes_from([1,2],time='2pm') # all nodes have same attribute

add_edge()

Now takes optional keyword=value attributes or a dictionary of attributes.

>>> G.add_edge(1, 2, weight=4.7)

add_edges_from()

Now takes optional keyword=value attributes or a dictionary of
attributes applied to all affected edges.

>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])

nodes() and nodes_iter()

New keyword data=True|False keyword determines whether to return
two-tuples (n,dict) (True) with node attribution dictionary

>>> G=nx.Graph([(1,2),(3,4)])
>>> G.nodes(data=True)
[(1, {}), (2, {}), (3, {}), (4, {})]

copy()

Now returns a deep copy of the graph (copies all underlying
data and attributes for nodes and edges). Use the class
initializer to make a shallow copy:

>>> G=nx.Graph()
>>> G_shallow=nx.Graph(G) # shallow copy
>>> G_deep=G.copy() # deep copy

to_directed(), to_undirected()

Now returns a deep copy of the graph (copies all underlying
data and attributes for nodes and edges). Use the class
initializer to make a shallow copy:

>>> G=nx.Graph()
>>> D_shallow=nx.DiGraph(G) # shallow copy
>>> D_deep=G.to_directed() # deep copy

subgraph()

With copy=True now returns a deep copy of the graph
(copies all underlying data and attributes for nodes and edges).

>>> G=nx.Graph()
>>> # note: copy keyword deprecated in networkx>1.0
>>> # H=G.subgraph([],copy=True) # deep copy of all data

add_cycle(), add_path(), add_star()

Now take optional keyword=value attributes or a dictionary of
attributes which are applied to all edges affected by the method.

>>> G=nx.Graph()
>>> G.add_path([0,1,2,3],width=3.2)

Methods removed

delete_node()

The preferred name is now remove_node().

delete_nodes_from()

No longer raises an exception on an attempt to delete a node not in
the graph. The preferred name is now remove_nodes_from().

delete_edge()

Now raises an exception on an attempt to delete an edge not in the graph.
The preferred name is now remove_edge().

delete_edges_from()

The preferred name is now remove_edges_from().

has_neighbor():

Use has_edge()

get_edge()

Renamed to get_edge_data(). Returns the edge attribute dictionary.

The fastest way to get edge data for edge (u,v) is to use G[u][v]
instead of G.get_edge_data(u,v)

Members removed

directed, multigraph, weighted

Use methods G.is_directed() and G.is_multigraph().
All graphs are weighted graphs now if they have numeric
values in the ‘weight’ edge attribute.

Methods added

add_weighted edges_from()

Convenience method to add weighted edges to graph using a list of
3-tuples (u,v,weight).

get_edge_data()

Renamed from get_edge().

The fastest way to get edge data for edge (u,v) is to use G[u][v]
instead of G.get_edge_data(u,v)

is_directed()

replaces member G.directed

is_multigraph()

replaces member G.multigraph

Classes Removed

LabeledGraph, LabeledDiGraph

These classes have been folded into the regular classes.

UbiGraph

Removed as the ubigraph platform is no longer being supported.

Additional functions/generators

ego_graph, stochastic_graph, PageRank algorithm, HITS algorithm,
GraphML writer, freeze, is_frozen, A* algorithm,
directed scale-free generator, random clustered graph.

Converting your existing code to networkx-1.0

Weighted edges

Edge information is now stored in an attribution dictionary
so all edge data must be given a key to identify it.

There is currently only one standard/reserved key, ‘weight’, which is
used by algorithms and functions that use weighted edges. The
associated value should be numeric. All other keys are available for
users to assign as needed.

>>> G=nx.Graph()
>>> G.add_edge(1,2,weight=3.1415) # add the edge 1-2 with a weight
>>> G[1][2]['weight']=2.3 # set the weight to 2.3

Similarly, for direct access the edge data, use
the key of the edge data to retrieve it.

>>> w = G[1][2]['weight']

All NetworkX algorithms that require/use weighted edges now use the
‘weight’ edge attribute. If you have existing algorithms that assumed
the edge data was numeric, you should replace G[u][v] and
G.get_edge(u,v) with G[u][v][‘weight’].

An idiom for getting a weight for graphs with or without an assigned
weight key is

>>> w= G[1][2].get('weight',1) # set w to 1 if there is no 'weight' key

NetworkX

Version 0.99 API changes

The version networkx-0.99 is the penultimate release before
networkx-1.0. We have bumped the version from 0.37 to 0.99 to
indicate (in our unusual version number scheme) that this is a major
change to NetworkX.

We have made some significant changes, detailed below, to NetworkX
to improve performance, functionality, and clarity.

Version 0.99 requires Python 2.4 or greater.

Please send comments and questions to the networkx-discuss mailing list.
http://groups.google.com/group/networkx-discuss

Changes in base classes

The most significant changes are in the graph classes.
We have redesigned the Graph() and DiGraph() classes
to optionally allow edge data.
This change allows Graph and DiGraph to naturally represent
weighted graphs and to hold arbitrary information on edges.

	Both Graph and DiGraph take an optional argument weighted=True|False.
When weighted=True the graph is assumed to have numeric edge data
(with default 1). The Graph and DiGraph classes in earlier versions
used the Python None as data (which is still allowed as edge data).

	The Graph and DiGraph classes now allow self loops.

	The XGraph and XDiGraph classes are removed and replaced with
MultiGraph and MultiDiGraph. MultiGraph and MultiDiGraph
optionally allow parallel (multiple) edges between two nodes.

The mapping from old to new classes is as follows:

- Graph -> Graph (self loops allowed now, default edge data is 1)
- DiGraph -> DiGraph (self loops allowed now, default edge data is 1)
- XGraph(multiedges=False) -> Graph
- XGraph(multiedges=True) -> MultiGraph
- XDiGraph(multiedges=False) -> DiGraph
- XDiGraph(multiedges=True) -> MultiDiGraph

Methods changed

edges()

New keyword data=True|False keyword determines whether to return
two-tuples (u,v) (False) or three-tuples (u,v,d) (True)

delete_node()

The preferred name is now remove_node().

delete_nodes_from()

No longer raises an exception on an attempt to delete a node not in
the graph. The preferred name is now remove_nodes_from().

delete_edge()

Now raises an exception on an attempt to delete an edge not in the graph.
The preferred name is now remove_edge().

delete_edges_from()

The preferred name is now remove_edges_from().

add_edge()

The add_edge() method no longer accepts an edge tuple (u,v)
directly. The tuple must be unpacked into individual nodes.

>>> import networkx as nx
>>> u='a'
>>> v='b'
>>> e=(u,v)
>>> G=nx.Graph()

Old

>>> # G.add_edge((u,v)) # or G.add_edge(e)

New

>>> G.add_edge(*e) # or G.add_edge(*(u,v))

The * operator unpacks the edge tuple in the argument list.

Add edge now has
a data keyword parameter for setting the default (data=1) edge
data.

>>> # G.add_edge('a','b','foo') # add edge with string "foo" as data
>>> # G.add_edge(1,2,5.0) # add edge with float 5 as data

add_edges_from()

Now can take list or iterator of either 2-tuples (u,v),
3-tuples (u,v,data) or a mix of both.

Now has data keyword parameter (default 1) for setting the edge data
for any edge in the edge list that is a 2-tuple.

has_edge()

The has_edge() method no longer accepts an edge tuple (u,v)
directly. The tuple must be unpacked into individual nodes.

Old:

>>> # G.has_edge((u,v)) # or has_edge(e)

New:

>>> G.has_edge(*e) # or has_edge(*(u,v))
True

The * operator unpacks the edge tuple in the argument list.

get_edge()

Now has the keyword argument “default” to specify
what value to return if no edge is found. If not specified
an exception is raised if no edge is found.

The fastest way to get edge data for edge (u,v) is to use G[u][v]
instead of G.get_edge(u,v)

degree_iter()

The degree_iter method now returns an iterator over pairs of (node,
degree). This was the previous behavior of degree_iter(with_labels=true)
Also there is a new keyword weighted=False|True for weighted degree.

subgraph()

The argument inplace=False|True has been replaced with copy=True|False.

Subgraph no longer takes create_using keyword. To change the graph
type either make a copy of
the graph first and then change type or change type and make
a subgraph. E.g.

>>> G=nx.path_graph(5)
>>> H=nx.DiGraph(G.subgraph([0,1])) # digraph of copy of induced subgraph

__getitem__()

Getting node neighbors from the graph with G[v] now returns
a dictionary.

>>> G=nx.path_graph(5)
>>> # G[0]
{1: 1}

To get a list of neighbors you can either use the keys of that
dictionary or use

>>> G.neighbors(0)
[1]

This change allows algorithms to use the underlying dict-of-dict
representation through G[v] for substantial performance gains.
Warning: The returned dictionary should not be modified as it may
corrupt the graph data structure. Make a copy G[v].copy() if you
wish to modify the dict.

Methods removed

info()

now a function

>>> G=nx.Graph(name='test me')
>>> nx.info(G)
Name: test me
Type: Graph
Number of nodes: 0
Number of edges: 0

node_boundary()

now a function

edge_boundary()

now a function

is_directed()

use the directed attribute

>>> G=nx.DiGraph()
>>> # G.directed
True

G.out_edges()

use G.edges()

G.in_edges()

use

>>> G=nx.DiGraph()
>>> R=G.reverse()
>>> R.edges()
[]

or

>>> [(v,u) for (u,v) in G.edges()]
[]

Methods added

adjacency_list()

Returns a list-of-lists adjacency list representation of the graph.

adjacency_iter()

Returns an iterator of (node, adjacency_dict[node]) over all
nodes in the graph. Intended for fast access to the internal
data structure for use in internal algorithms.

Other possible incompatibilities with existing code

Imports

Some of the code modules were moved into subdirectories.

Import statements such as:

import networkx.centrality
from networkx.centrality import *

may no longer work (including that example).

Use either

>>> import networkx # e.g. centrality functions available as networkx.fcn()

or

>>> from networkx import * # e.g. centrality functions available as fcn()

Self-loops

For Graph and DiGraph self loops are now allowed.
This might affect code or algorithms that add self loops
which were intended to be ignored.

Use the methods

	nodes_with_selfloops()

	selfloop_edges()

	number_of_selfloops()

to discover any self loops.

Copy

Copies of NetworkX graphs including using the copy() method
now return complete copies of the graph. This means that all
connection information is copied–subsequent changes in the
copy do not change the old graph. But node keys and edge
data in the original and copy graphs are pointers to the same data.

prepare_nbunch

Used internally - now called nbunch_iter and returns an iterator.

Converting your old code to Version 0.99

Mostly you can just run the code and python will raise an exception
for features that changed. Common places for changes are

	Converting XGraph() to either Graph or MultiGraph

	Converting XGraph.edges() to Graph.edges(data=True)

	Switching some rarely used methods to attributes (e.g. directed)
or to functions (e.g. node_boundary)

	If you relied on the old default edge data being None, you will
have to account for it now being 1.

You may also want to look through your code for places which could
improve speed or readability. The iterators are helpful with large
graphs and getting edge data via G[u][v] is quite fast. You may also
want to change G.neighbors(n) to G[n] which returns the dict keyed by
neighbor nodes to the edge data. It is faster for many purposes but
does not work well when you are changing the graph.

NetworkX

Release Log

NetworkX 1.11

Release date: 30 January 2016

Support for Python 3.5 added, drop support for Python 3.2.

Highlights

Pydot features now use pydotplus.
Fixes installation on some machines and test with appveyor,
Restores default center and scale of layout routines,
Fixes various docs including no symbolic links in examples.
Docs can now build using autosummary on readthedocs.org.

NetworkX 1.10

Release date: 2 August 2015

Support for Python 2.6 is dropped in this release.

Highlights

	Connected components now return generators

	new functions including

	enumerate_all_cliques, greedy_coloring, edge_dfs, find_cycle
immediate_dominators, harmonic_centrality

	Hopcraft–Karp algorithm for maximum matchings

	optimum branchings and arborescences.

	all_simple_paths

	pyparsing dependence removed from GML reader/parser

	improve flow algorithms

	new generators releated to expander graphs.

	new generators for multipartite graphs, nonisomorphic trees,
circulant graphs

	allow graph subclasses to use dict-like objects in place of dicts

	added ordered graph subclasses

	pandas dataframe read/write added.

	data keyword in G.edges() allows requesting edge attribute directly

	expanded layout flexibility for node subsets

	Kanesky’s algorithm for cut sets and k_components

	power function for graphs

	approximation of node connectivity

	transitive closure, triadic census and antichains

	quotient graphs and minors

	longest_path for DAGS

	modularity matrix routines

API changes

See Version 1.10 notes and API changes.

NetworkX 1.9.1

Release date: 13 September 2014

Bugfix release for minor installation and documentation issues.

NetworkX 1.9

Release date: 21 June 2014

Support for Python 3.1 is dropped in this release.

Highlights

	Completely rewritten maximum flow and flow-based connectivity algorithms with
backwards incompatible interfaces

	Community graph generators

	Stoer–Wagner minimum cut algorithm

	Linear-time Eulerian circuit algorithm

	Linear algebra package changed to use SciPy sparse matrices

	Algebraic connectivity, Fiedler vector, spectral ordering algorithms

	Link prediction algorithms

	Goldberg–Radzik shortest path algorithm

	Semiconnected graph and tree recognition algorithms

API changes

See Version 1.9 notes and API changes.

NetworkX 1.8.1

Release date: 4 August 2013

Bugfix release for missing files in source packaging.

NetworkX 1.8

Release date: 28 July 2013

Highlights

	Faster (linear-time) graphicality tests and Havel-Hakimi graph generators

	Directed Laplacian matrix generator

	Katz centrality algorithm

	Functions to generate all simple paths

	Improved shapefile reader

	More flexible weighted projection of bipartite graphs

	Faster topological sort, decendents and ancestors of DAGs

	Scaling parameter for force-directed layout

Bug fixes

	Error with average weighted connectivity for digraphs, correct normalized laplacian with self-loops, load betweenness for single node graphs, isolated nodes missing from dfs/bfs trees, normalize HITS using l1, handle density of graphs with self loops

	Cleaner handling of current figure status with Matplotlib, Pajek files now don’t write troublesome header line, default alpha value for GEXF files, read curved edges from yEd GraphML

For full details of the issues closed for this release (added features and bug fixes) see: https://github.com/networkx/networkx/issues?milestone=1&page=1&state=closed

API changes

See Version 1.8 notes and API changes

NetworkX 1.7

Release date: 4 July 2012

Highlights

	New functions for k-clique community finding, flow hierarchy,
union, disjoint union, compose, and intersection operators that work on
lists of graphs, and creating the biadjacency matrix of a bipartite graph.

	New approximation algorithms for dominating set, edge dominating set,
independent set, max clique, and min-weighted vertex cover.

	Many bug fixes and other improvements.

For full details of the tickets closed for this release (added features and bug fixes) see:
https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.7

API changes

See Version 1.7 notes and API changes

NetworkX 1.6

Release date: 20 November 2011

Highlights

New functions for finding articulation points, generating random bipartite graphs, constructing adjacency matrix representations, forming graph products, computing assortativity coefficients, measuring subgraph centrality and communicability, finding k-clique communities, and writing JSON format output.

New examples for drawing with D3 Javascript library, and ordering matrices with the Cuthill-McKee algorithm.

More memory efficient implementation of current-flow betweenness and new approximation algorithms for current-flow betweenness and shortest-path betweenness.

Simplified handling of “weight” attributes for algorithms that use weights/costs/values. See Version 1.6 notes and API changes.

Updated all code to work with the PyPy Python implementation http://pypy.org which produces faster performance on many algorithms.

For full details of the tickets closed for this release (added features and bug fixes) see:
https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.6

API changes

See Version 1.6 notes and API changes

NetworkX 1.5

Release date: 4 June 2011

For full details of the tickets closed for this release see:
https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.5

Highlights

New features

	Algorithms for generating
and analyzing bipartite graphs

	Maximal independent set algorithm

	Erdős-Gallai graphical degree sequence test

	Negative edge cycle test

	More memory efficient Dijkstra path length with cutoff parameter

	Weighted clustering coefficient

	Read and write version 1.2 of GEXF reader format

	Neighbor degree correlation
that handle subsets of nodes

	In-place node relabeling

	Many ‘weighted’ graph algorithms now take optional parameter to use
specified edge attribute (default=’weight’)
(ticket https://networkx.lanl.gov/trac/ticket/509)

	Test for distance regular graphs

	Fast directed Erdős-Renyi graph generator

	Fast expected degree graph generator

	Navigable small world generator

	Waxman model generator

	Geographical threshold graph generator

	Karate Club, Florentine Families, and Davis' Women's Club graphs

API changes

See Version 1.5 notes and API changes

Bug fixes

	Fix edge handling for multigraphs in networkx/graphviz interface
(ticket https://networkx.lanl.gov/trac/ticket/507)

	Update networkx/pydot interface for new versions of pydot
(ticket https://networkx.lanl.gov/trac/ticket/506)
(ticket https://networkx.lanl.gov/trac/ticket/535)

	Fix negative cycle handling in Bellman-Ford
(ticket https://networkx.lanl.gov/trac/ticket/502)

	Write more attributes with GraphML and GML formats
(ticket https://networkx.lanl.gov/trac/ticket/480)

	Handle white space better in read_edgelist
(ticket https://networkx.lanl.gov/trac/ticket/513)

	Better parsing of Pajek format files
(ticket https://networkx.lanl.gov/trac/ticket/524)
(ticket https://networkx.lanl.gov/trac/ticket/542)

	Isolates functions work with directed graphs
(ticket https://networkx.lanl.gov/trac/ticket/526)

	Faster conversion to numpy matrices
(ticket https://networkx.lanl.gov/trac/ticket/529)

	Add graph[‘name’] and use properties to access Graph.name
(ticket https://networkx.lanl.gov/trac/ticket/544)

	Topological sort confused None and 0
(ticket https://networkx.lanl.gov/trac/ticket/546)

	GEXF writer mishandled weight=0
(ticket https://networkx.lanl.gov/trac/ticket/550)

	Speedup in SciPy version of PageRank
(ticket https://networkx.lanl.gov/trac/ticket/554)

	Numpy PageRank node order incorrect + speedups
(ticket https://networkx.lanl.gov/trac/ticket/555)

NetworkX 1.4

Release date: 23 January 2011

New features

	k-shell,k-crust,k-corona

	read GraphML files from yEd

	read/write GEXF format files

	find cycles in a directed graph

	DFS and BFS algorithms

	chordal graph functions

	Prim's algorithm for minimum spanning tree

	r-ary tree generator

	rich club coefficient

	NumPy matrix version of Floyd's algorithm for all-pairs shortest path

	read GIS shapefiles

	functions to get and set node and edge attributes

	and more, see https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.4

API changes

	gnp_random_graph() now takes a
directed=True|False keyword instead of create_using

	gnm_random_graph() now takes a
directed=True|False keyword instead of create_using

Bug fixes

	see https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.4

NetworkX 1.3

Release date: 28 August 2010

See: https://networkx.lanl.gov/trac/timeline

New features

	Works with Python versions 2.6, 2.7, 3.1, and 3.2 (but not 2.4 and 2.5).

	Minimum cost flow algorithms

	Bellman-Ford shortest paths

	GraphML reader and writer

	More exception/error types

	Updated many tests to unittest style. Run with: “import networkx; networkx.test()” (requires nose testing package)

	and more, see https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.3

API changes

	minimum_spanning_tree() now returns a NetworkX Graph (a tree or forest)

Bug fixes

	see https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.3

NetworkX 1.2

Release date: 28 July 2010

See: https://networkx.lanl.gov/trac/timeline

New features

	Ford-Fulkerson max flow and min cut

	Closeness vitality

	Eulerian circuits

	Functions for isolates

	Simpler s_max generator

	Compatible with IronPython-2.6

	Improved testing functionality: import networkx; networkx.test() tests
entire package and skips tests with missing optional packages

	All tests work with Python-2.4

	and more, see https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.2

NetworkX 1.1

Release date: 21 April 2010

See: https://networkx.lanl.gov/trac/timeline

New features

	Algorithm for finding a basis for graph cycles

	Blockmodeling

	Assortativity and mixing matrices

	in-degree and out-degree centrality

	Attracting components
and condensation.

	Weakly connected components

	Simpler interface to shortest path algorithms

	Edgelist format to read and write data with attributes

	Attribute matrices

	GML reader for nested attributes

	Current-flow (random walk)
betweenness
and
closeness.

	Directed configuration model,
and directed random graph model.

	Improved documentation of drawing, shortest paths, and other algorithms

	Many more tests, can be run with “import networkx; networkx.test()”

	and much more, see https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.1

API changes

Returning dictionaries

Several of the algorithms and the degree() method now return dictionaries
keyed by node instead of lists. In some cases there was a with_labels
keyword which is no longer necessary. For example,

>>> G=nx.Graph()
>>> G.add_edge('a','b')
>>> G.degree() # returns dictionary of degree keyed by node
{'a': 1, 'b': 1}

Asking for the degree of a single node still returns a single number

>>> G.degree('a')
1

The following now return dictionaries by default (instead of lists)
and the with_labels keyword has been removed:

	Graph.degree(),
MultiGraph.degree(),
DiGraph.degree(),
DiGraph.in_degree(),
DiGraph.out_degree(),
MultiDiGraph.degree(),
MultiDiGraph.in_degree(),
MultiDiGraph.out_degree().

	clustering(),
triangles()

	node_clique_number(),
number_of_cliques(),
cliques_containing_node()

	eccentricity()

The following now return dictionaries by default (instead of lists)

	pagerank()

	hits()

Adding nodes

add_nodes_from now accepts (node,attrdict) two-tuples

>>> G=nx.Graph()
>>> G.add_nodes_from([(1,{'color':'red'})])

Examples

	Mayvi2 drawing [http://networkx.github.io/documentation/latest/examples/3d_drawing/mayavi2_spring.html]

	Blockmodel [http://networkx.lanl.gov/examples/algorithms/blockmodel.html]

	Sampson’s monastery [http://networkx.lanl.gov/examples/drawing/sampson.html]

	Ego graph [http://networkx.lanl.gov/examples/drawing/ego_graph.html]

Bug fixes

	Support graph attributes with union, intersection, and other graph operations

	Improve subgraph speed (and related algorithms such as
connected_components_subgraphs())

	Handle multigraphs in more operators (e.g. union)

	Handle double-quoted labels with pydot

	Normalize betweenness_centrality for undirected graphs correctly

	Normalize eigenvector_centrality by l2 norm

	read_gml() now returns multigraphs

NetworkX 1.0.1

Release date: 11 Jan 2010

See: https://networkx.lanl.gov/trac/timeline

Bug fix release for missing setup.py in manifest.

NetworkX 1.0

Release date: 8 Jan 2010

See: https://networkx.lanl.gov/trac/timeline

New features

This release has significant changes to parts of the graph API
to allow graph, node, and edge attributes.
See http://networkx.lanl.gov//reference/api_changes.html

	Update Graph, DiGraph, and MultiGraph classes to allow attributes.

	Default edge data is now an empty dictionary (was the integer 1)

	Difference and intersection operators

	Average shortest path

	A* (A-Star) algorithm

	PageRank, HITS, and eigenvector centrality

	Read Pajek files

	Line graphs

	Minimum spanning tree (Kruskal’s algorithm)

	Dense and sparse Fruchterman-Reingold layout

	Random clustered graph generator

	Directed scale-free graph generator

	Faster random regular graph generator

	Improved edge color and label drawing with Matplotlib

	and much more, see https://networkx.lanl.gov/trac/query?status=closed&group=milestone&milestone=networkx-1.0

Examples

	Update to work with networkx-1.0 API

	Graph subclass example

NetworkX 0.99

Release date: 18 November 2008

See: https://networkx.lanl.gov/trac/timeline

New features

This release has significant changes to parts of the graph API.
See http://networkx.lanl.gov//reference/api_changes.html

	Update Graph and DiGraph classes to use weighted graphs as default
Change in API for performance and code simplicity.

	New MultiGraph and MultiDiGraph classes (replace XGraph and XDiGraph)

	Update to use Sphinx documentation system http://networkx.lanl.gov/

	Developer site at https://networkx.lanl.gov/trac/

	Experimental LabeledGraph and LabeledDiGraph

	Moved package and file layout to subdirectories.

Bug fixes

	handle root= option to draw_graphviz correctly

Examples

	Update to work with networkx-0.99 API

	Drawing examples now use matplotlib.pyplot interface

	Improved drawings in many examples

	New examples - see http://networkx.lanl.gov/examples/

NetworkX 0.37

Release date: 17 August 2008

See: https://networkx.lanl.gov/trac/timeline

NetworkX now requires Python 2.4 or later for full functionality.

New features

	Edge coloring and node line widths with Matplotlib drawings

	Update pydot functions to work with pydot-1.0.2

	Maximum-weight matching algorithm

	Ubigraph interface for 3D OpenGL layout and drawing

	Pajek graph file format reader and writer

	p2g graph file format reader and writer

	Secondary sort in topological sort

Bug fixes

	Better edge data handling with GML writer

	Edge betweenness fix for XGraph with default data of None

	Handle Matplotlib version strings (allow “pre”)

	Interface to PyGraphviz (to_agraph()) now handles parallel edges

	Fix bug in copy from XGraph to XGraph with multiedges

	Use SciPy sparse lil matrix format instead of coo format

	Clear up ambiguous cases for Barabasi-Albert model

	Better care of color maps with Matplotlib when drawing colored nodes
and edges

	Fix error handling in layout.py

Examples

	Ubigraph examples showing 3D drawing

NetworkX 0.36

Release date: 13 January 2008

See: https://networkx.lanl.gov/trac/timeline

New features

	GML format graph reader, tests, and example (football.py)

	edge_betweenness() and load_betweenness()

Bug fixes

	remove obsolete parts of pygraphviz interface

	improve handling of Matplotlib version strings

	write_dot() now writes parallel edges and self loops

	is_bipartite() and bipartite_color() fixes

	configuration model speedup using random.shuffle()

	convert with specified nodelist now works correctly

	vf2 isomorphism checker updates

NetworkX 0.35.1

Release date: 27 July 2007

See: https://networkx.lanl.gov/trac/timeline

Small update to fix import readwrite problem and maintain Python2.3
compatibility.

NetworkX 0.35

Release date: 22 July 2007

See: https://networkx.lanl.gov/trac/timeline

New features

	algorithms for strongly connected components.

	Brandes betweenness centrality algorithm (weighted and unweighted versions)

	closeness centrality for weighted graphs

	dfs_preorder, dfs_postorder, dfs_tree, dfs_successor, dfs_predecessor

	readers for GraphML, LEDA, sparse6, and graph6 formats.

	allow arguments in graphviz_layout to be passed directly to graphviz

Bug fixes

	more detailed installation instructions

	replaced dfs_preorder,dfs_postorder (see search.py)

	allow initial node positions in spectral_layout

	report no error on attempting to draw empty graph

	report errors correctly when using tuples as nodes #114

	handle conversions from incomplete dict-of-dict data

NetworkX 0.34

Release date: 12 April 2007

See: https://networkx.lanl.gov/trac/timeline

New features

	benchmarks for graph classes

	Brandes betweenness centrality algorithm

	Dijkstra predecessor and distance algorithm

	xslt to convert DIA graphs to NetworkX

	number_of_edges(u,v) counts edges between nodes u and v

	run tests with python setup_egg.py test (needs setuptools)
else use python -c “import networkx; networkx.test()”

	is_isomorphic() that uses vf2 algorithm

Bug fixes

	speedups of neighbors()

	simplified Dijkstra’s algorithm code

	better exception handling for shortest paths

	get_edge(u,v) returns None (instead of exception) if no edge u-v

	floyd_warshall_array fixes for negative weights

	bad G467, docs, and unittest fixes for graph atlas

	don’t put nans in numpy or scipy sparse adjacency matrix

	handle get_edge() exception (return None if no edge)

	remove extra kwds arguments in many places

	no multi counting edges in conversion to dict of lists for multigraphs

	allow passing tuple to get_edge()

	bad parameter order in node/edge betweenness

	edge betweenness doesn’t fail with XGraph

	don’t throw exceptions for nodes not in graph (silently ignore instead)
in edges_* and degree_*

NetworkX 0.33

Release date: 27 November 2006

See: https://networkx.lanl.gov/trac/timeline

New features

	draw edges with specified colormap

	more efficient version of Floyd’s algorithm for all pairs shortest path

	use numpy only, Numeric is deprecated

	include tests in source package (networkx/tests)

	include documentation in source package (doc)

	
	tests can now be run with

	>>> import networkx
>>> networkx.test()

Bug fixes

	read_gpickle now works correctly with Windows

	refactored large modules into smaller code files

	degree(nbunch) now returns degrees in same order as nbunch

	degree() now works for multiedges=True

	update node_boundary and edge_boundary for efficiency

	edited documentation for graph classes, now mostly in info.py

Examples

	Draw edges with colormap

NetworkX 0.32

Release date: 29 September 2006

See: https://networkx.lanl.gov/trac/timeline

New features

	Update to work with numpy-1.0x

	Make egg usage optional: use python setup_egg.py bdist_egg to build egg

	Generators and functions for bipartite graphs

	Experimental classes for trees and forests

	Support for new pygraphviz update (in nx_agraph.py) , see
http://networkx.lanl.gov/pygraphviz/ for pygraphviz details

Bug fixes

	Handle special cases correctly in triangles function

	Typos in documentation

	Handle special cases in shortest_path and shortest_path_length,
allow cutoff parameter for maximum depth to search

	Update examples: erdos_renyi.py, miles.py, roget,py, eigenvalues.py

Examples

	Expected degree sequence

	New pygraphviz interface

NetworkX 0.31

Release date: 20 July 2006

See: https://networkx.lanl.gov/trac/timeline

New features

	arbitrary node relabeling (use relabel_nodes)

	conversion of NetworkX graphs to/from Python dict/list types,
numpy matrix or array types, and scipy_sparse_matrix types

	generator for random graphs with given expected degree sequence

Bug fixes

	Allow drawing graphs with no edges using pylab

	Use faster heapq in dijkstra

	Don’t complain if X windows is not available

Examples

	update drawing examples

NetworkX 0.30

Release date: 23 June 2006

See: https://networkx.lanl.gov/trac/timeline

New features

	update to work with Python 2.5

	bidirectional version of shortest_path and Dijkstra

	single_source_shortest_path and all_pairs_shortest_path

	s-metric and experimental code to generate maximal s-metric graph

	double_edge_swap and connected_double_edge_swap

	Floyd’s algorithm for all pairs shortest path

	read and write unicode graph data to text files

	read and write YAML format text files, http://yaml.org

Bug fixes

	speed improvements (faster version of subgraph, is_connected)

	added cumulative distribution and modified discrete distribution utilities

	report error if DiGraphs are sent to connected_components routines

	removed with_labels keywords for many functions where it was
causing confusion

	function name changes in shortest_path routines

	saner internal handling of nbunch (node bunches), raise an
exception if an nbunch isn’t a node or iterable

	better keyword handling in io.py allows reading multiple graphs

	don’t mix Numeric and numpy arrays in graph layouts and drawing

	avoid automatically rescaling matplotlib axes when redrawing graph layout

Examples

	unicode node labels

NetworkX 0.29

Release date: 28 April 2006

See: https://networkx.lanl.gov/trac/timeline

New features

	Algorithms for betweenness, eigenvalues, eigenvectors, and
spectral projection for threshold graphs

	Use numpy when available

	dense_gnm_random_graph generator

	Generators for some directed graphs: GN, GNR, and GNC by Krapivsky
and Redner

	Grid graph generators now label by index tuples. Helper
functions for manipulating labels.

	relabel_nodes_with_function

Bug fixes

	Betweenness centrality now correctly uses Brandes definition and
has normalization option outside main loop

	Empty graph now labeled as empty_graph(n)

	shortest_path_length used python2.4 generator feature

	degree_sequence_tree off by one error caused nonconsecutive labeling

	periodic_grid_2d_graph removed in favor of grid_2d_graph with
periodic=True

NetworkX 0.28

Release date: 13 March 2006

See: https://networkx.lanl.gov/trac/timeline

New features

	Option to construct Laplacian with rows and columns in specified order

	Option in convert_node_labels_to_integers to use sorted order

	predecessor(G,n) function that returns dictionary of
nodes with predecessors from breadth-first search of G
starting at node n.
https://networkx.lanl.gov/trac/ticket/26

Examples

	Formation of giant component in binomial_graph:

	Chess masters matches:

	Gallery https://networkx.lanl.gov/gallery.html

Bug fixes

	
	Adjusted names for random graphs.

	
	erdos_renyi_graph=binomial_graph=gnp_graph: n nodes with
edge probability p

	gnm_graph: n nodes and m edges

	fast_gnp_random_graph: gnp for sparse graphs (small p)

	Documentation contains correct spelling of Barabási, Bollobás,
Erdős, and Rényi in UTF-8 encoding

	Increased speed of connected_components and related functions
by using faster BFS algorithm in networkx.paths
https://networkx.lanl.gov/trac/ticket/27

	XGraph and XDiGraph with multiedges=True produced error on delete_edge

	Cleaned up docstring errors

	Normalize names of some graphs to produce strings that represent
calling sequence

NetworkX 0.27

Release date: 5 February 2006

See: https://networkx.lanl.gov/trac/timeline

New features

	sparse_binomial_graph: faster graph generator for sparse random graphs

	read/write routines in io.py now handle XGraph() type and
gzip and bzip2 files

	optional mapping of type for read/write routine to allow
on-the-fly conversion of node and edge datatype on read

	Substantial changes related to digraphs and definitions of
neighbors() and edges(). For digraphs edges=out_edges.
Neighbors now returns a list of neighboring nodes with
possible duplicates for graphs with parallel edges
See https://networkx.lanl.gov/trac/ticket/24

	Addition of out_edges, in_edges and corresponding out_neighbors
and in_neighbors for digraphs. For digraphs edges=out_edges.

Examples

	Minard’s data for Napoleon’s Russian campaign

Bug fixes

	XGraph(multiedges=True) returns a copy of the list of edges
for get_edge()

NetworkX 0.26

Release date: 6 January 2006

New features

	Simpler interface to drawing with pylab

	G.info(node=None) function returns short information about graph
or node

	adj_matrix now takes optional nodelist to force ordering of
rows/columns in matrix

	optional pygraphviz and pydot interface to graphviz is now callable as
“graphviz” with pygraphviz preferred. Use draw_graphviz(G).

Examples

	Several new examples showing how draw to graphs with various
properties of nodes, edges, and labels

Bug fixes

	Default data type for all graphs is now None (was the integer 1)

	add_nodes_from now won’t delete edges if nodes added already exist

	Added missing names to generated graphs

	Indexes for nodes in graphs start at zero by default (was 1)

NetworkX 0.25

Release date: 5 December 2005

New features

	Uses setuptools for installation http://peak.telecommunity.com/DevCenter/setuptools

	Improved testing infrastructure, can now run python setup.py test

	Added interface to draw graphs with pygraphviz
https://networkx.lanl.gov/pygraphviz/

	is_directed() function call

Examples

	Email example shows how to use XDiGraph with Python objects as
edge data

Documentation

	Reformat menu, minor changes to Readme, better stylesheet

Bug fixes

	use create_using= instead of result= keywords for graph types
in all cases

	missing weights for degree 0 and 1 nodes in clustering

	configuration model now uses XGraph, returns graph with identical
degree sequence as input sequence

	fixed Dijkstra priority queue

	fixed non-recursive toposort and is_directed_acyclic graph

NetworkX 0.24

Release date: 20 August 2005

Bug fixes

	Update of Dijkstra algorithm code

	dfs_successor now calls proper search method

	Changed to list comprehension in DiGraph.reverse() for python2.3
compatibility

	Barabasi-Albert graph generator fixed

	Attempt to add self loop should add node even if parallel edges not
allowed

NetworkX 0.23

Release date: 14 July 2005

The NetworkX web locations have changed:

http://networkx.lanl.gov/ - main documentation site
http://networkx.lanl.gov/svn/ - subversion source code repository
https://networkx.lanl.gov/trac/ - bug tracking and info

Important Change

The naming conventions in NetworkX have changed.
The package name “NX” is now “networkx”.

The suggested ways to import the NetworkX package are

	import networkx

	import networkx as NX

	from networkx import *

New features

	DiGraph reverse

	
	Graph generators

	
	watts_strogatz_graph now does rewiring method

	old watts_strogatz_graph->newman_watts_strogatz_graph

Examples

Documentation

	Changed to reflect NX-networkx change

	main site is now https://networkx.lanl.gov/

Bug fixes

	Fixed logic in io.py for reading DiGraphs.

	Path based centrality measures (betweenness, closeness)
modified so they work on graphs that are not connected and
produce the same result as if each connected component were
considered separately.

NetworkX 0.22

Release date: 17 June 2005

New features

	Topological sort, testing for directed acyclic graphs (DAGs)

	Dijkstra’s algorithm for shortest paths in weighted graphs

	Multidimensional layout with dim=n for drawing

	3d rendering demonstration with vtk

	
	Graph generators

	
	random_powerlaw_tree

	dorogovtsev_goltsev_mendes_graph

Examples

	Kevin Bacon movie actor graph: Examples/kevin_bacon.py

	Compute eigenvalues of graph Laplacian: Examples/eigenvalues.py

	Atlas of small graphs: Examples/atlas.py

Documentation

	Rewrite of setup scripts to install documentation and
tests in documentation directory specified

Bug fixes

	Handle calls to edges() with non-node, non-iterable items.

	truncated_tetrahedral_graph was just plain wrong

	Speedup of betweenness_centrality code

	bfs_path_length now returns correct lengths

	Catch error if target of search not in connected component of source

	Code cleanup to label internal functions with _name

	Changed import statement lines to always use “import NX” to
protect name-spaces

	Other minor bug-fixes and testing added

NetworkX

Bibliography

	BA02

	R. Albert and A.-L. Barabási, “Statistical mechanics of complex
networks”, Reviews of Modern Physics, 74, pp. 47-97, 2002.
http://arxiv.org/abs/cond-mat/0106096

	Bollobas01

	B. Bollobás, “Random Graphs”, Second Edition,
Cambridge University Press, 2001.

	BE05

	U. Brandes and T. Erlebach, “Network Analysis:
Methodological Foundations”, Lecture Notes in Computer Science,
Volume 3418, Springer-Verlag, 2005.

	CL1996

	G. Chartrand and L. Lesniak, “Graphs and Digraphs”,
Chapman and Hall/CRC, 1996.

	choudum1986

	S.A. Choudum. “A simple proof of the Erdős-Gallai theorem on
graph sequences.” Bulletin of the Australian Mathematical Society, 33,
pp 67-70, 1986. http://dx.doi.org/10.1017/S0004972700002872

	Diestel97

	R. Diestel, “Graph Theory”, Springer-Verlag, 1997.
http://diestel-graph-theory.com/index.html

	DM03

	S.N. Dorogovtsev and J.F.F. Mendes, “Evolution of Networks”,
Oxford University Press, 2003.

	EppsteinPads

	David Eppstein.
PADS, A library of Python Algorithms and Data Structures.
http://www.ics.uci.edu/~eppstein/PADS

	EG1960

	Erdős and Gallai, Mat. Lapok 11 264, 1960.

	hakimi1962

	Hakimi, S. “On the Realizability of a Set of Integers as
Degrees of the Vertices of a Graph.” SIAM J. Appl. Math. 10, 496-506, 1962.

	havel1955

	Havel, V. “A Remark on the Existence of Finite Graphs”
Casopis Pest. Mat. 80, 477-480, 1955.

	Langtangen04

	H.P. Langtangen, “Python Scripting for Computational
Science.”, Springer Verlag Series in Computational Science and
Engineering, 2004.

	Martelli03

	A. Martelli, “Python in a Nutshell”, O’Reilly Media
Inc, 2003.

	Newman03

	M.E.J. Newman, “The Structure and Function of Complex
Networks”, SIAM Review, 45, pp. 167-256, 2003.
http://epubs.siam.org/doi/abs/10.1137/S003614450342480

	Sedgewick02

	R. Sedgewick, “Algorithms in C: Parts 1-4:
Fundamentals, Data Structure, Sorting, Searching”, Addison Wesley
Professional, 3rd ed., 2002.

	Sedgewick01

	R. Sedgewick, “Algorithms in C, Part 5: Graph Algorithms”,
Addison Wesley Professional, 3rd ed., 2001.

	West01

	D. B. West, “Introduction to Graph Theory”, Prentice Hall,
2nd ed., 2001.

	vanRossum98

	Guido van Rossum. Python Patterns - Implementing Graphs, 1998.
http://www.python.org/doc/essays/graphs

NetworkX

NetworkX Examples

	Release

	1.11

	Date

	Jul 05, 2017

	3D_Drawing
	Mayavi2 Spring

	Advanced
	Eigenvalues

	Heavy Metal Umlaut

	Iterated Dynamical Systems

	Parallel Betweenness

	Algorithms
	Blockmodel

	Davis Club

	Krackhardt Centrality

	Rcm

	Basic
	Properties

	Read Write

	Drawing
	Atlas

	Chess Masters

	Circular Tree

	Degree Histogram

	Edge Colormap

	Ego Graph

	Four Grids

	Giant Component

	House With Colors

	Knuth Miles

	Labels And Colors

	Lanl Routes

	Node Colormap

	Random Geometric Graph

	Sampson

	Simple Path

	Unix Email

	Weighted Graph

	Graph
	Atlas

	Atlas2

	Degree Sequence

	Erdos Renyi

	Expected Degree Sequence

	Football

	Karate Club

	Knuth Miles

	Napoleon Russian Campaign

	Roget

	Unix Email

	Words

	Javascript
	Force

	Http Server

	Multigraph
	Chess Masters

	Pygraphviz
	Pygraphviz Attributes

	Pygraphviz Draw

	Pygraphviz Simple

	Write Dotfile

	Subclass
	Antigraph

	Printgraph

NetworkX

3D_Drawing

	Release

	1.11

	Date

	Jul 05, 2017

	Mayavi2 Spring

NetworkX

Mayavi2 Spring

[source code]

needs mayavi2
run with ipython -wthread
import networkx as nx
import numpy as np
from enthought.mayavi import mlab

some graphs to try
#H=nx.krackhardt_kite_graph()
#H=nx.Graph();H.add_edge('a','b');H.add_edge('a','c');H.add_edge('a','d')
#H=nx.grid_2d_graph(4,5)
H=nx.cycle_graph(20)

reorder nodes from 0,len(G)-1
G=nx.convert_node_labels_to_integers(H)
3d spring layout
pos=nx.spring_layout(G,dim=3)
numpy array of x,y,z positions in sorted node order
xyz=np.array([pos[v] for v in sorted(G)])
scalar colors
scalars=np.array(G.nodes())+5

mlab.figure(1, bgcolor=(0, 0, 0))
mlab.clf()

pts = mlab.points3d(xyz[:,0], xyz[:,1], xyz[:,2],
 scalars,
 scale_factor=0.1,
 scale_mode='none',
 colormap='Blues',
 resolution=20)

pts.mlab_source.dataset.lines = np.array(G.edges())
tube = mlab.pipeline.tube(pts, tube_radius=0.01)
mlab.pipeline.surface(tube, color=(0.8, 0.8, 0.8))

mlab.savefig('mayavi2_spring.png')
mlab.show() # interactive window

NetworkX

Advanced

	Release

	1.11

	Date

	Jul 05, 2017

	Eigenvalues

	Heavy Metal Umlaut

	Iterated Dynamical Systems

	Parallel Betweenness

NetworkX

Eigenvalues

[source code]

#!/usr/bin/env python
"""
Create an G{n,m} random graph and compute the eigenvalues.
Requires numpy and matplotlib.
"""
import networkx as nx
import numpy.linalg
import matplotlib.pyplot as plt

n = 1000 # 1000 nodes
m = 5000 # 5000 edges
G = nx.gnm_random_graph(n,m)

L = nx.normalized_laplacian_matrix(G)
e = numpy.linalg.eigvals(L.A)
print("Largest eigenvalue:", max(e))
print("Smallest eigenvalue:", min(e))
plt.hist(e,bins=100) # histogram with 100 bins
plt.xlim(0,2) # eigenvalues between 0 and 2
plt.show()

NetworkX

Heavy Metal Umlaut

[source code]

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
Example using unicode strings as graph labels.

Also shows creative use of the Heavy Metal Umlaut:
http://en.wikipedia.org/wiki/Heavy_metal_umlaut

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as NX
try:
 import pylab as P
except ImportError:
 pass

try:
 hd='H' + unichr(252) + 'sker D' + unichr(252)
 mh='Mot' + unichr(246) + 'rhead'
 mc='M' + unichr(246) + 'tley Cr' + unichr(252) + 'e'
 st='Sp' + unichr(305) + 'n' + unichr(776) + 'al Tap'
 q='Queensr' + unichr(255) + 'che'
 boc='Blue ' + unichr(214) +'yster Cult'
 dt='Deatht' + unichr(246) + 'ngue'
except NameError:
 hd='H' + chr(252) + 'sker D' + chr(252)
 mh='Mot' + chr(246) + 'rhead'
 mc='M' + chr(246) + 'tley Cr' + chr(252) + 'e'
 st='Sp' + chr(305) + 'n' + chr(776) + 'al Tap'
 q='Queensr' + chr(255) + 'che'
 boc='Blue ' + chr(214) +'yster Cult'
 dt='Deatht' + chr(246) + 'ngue'

G=NX.Graph()
G.add_edge(hd,mh)
G.add_edge(mc,st)
G.add_edge(boc,mc)
G.add_edge(boc,dt)
G.add_edge(st,dt)
G.add_edge(q,st)
G.add_edge(dt,mh)
G.add_edge(st,mh)

write in UTF-8 encoding
fh=open('edgelist.utf-8','wb')
fh.write('# -*- coding: utf-8 -*-\n'.encode('utf-8')) # encoding hint for emacs
NX.write_multiline_adjlist(G,fh,delimiter='\t', encoding = 'utf-8')

read and store in UTF-8
fh=open('edgelist.utf-8','rb')
H=NX.read_multiline_adjlist(fh,delimiter='\t', encoding = 'utf-8')

for n in G.nodes():
 if n not in H:
 print(False)

print(G.nodes())

try:
 pos=NX.spring_layout(G)
 NX.draw(G,pos,font_size=16,with_labels=False)
 for p in pos: # raise text positions
 pos[p][1]+=0.07
 NX.draw_networkx_labels(G,pos)
 P.show()
except:
 pass

NetworkX

Iterated Dynamical Systems

[source code]

"""
Digraphs from Integer-valued Iterated Functions
===

Sums of cubes on 3N

The number 153 has a curious property.

Let 3N={3,6,9,12,...} be the set of positive multiples of 3. Define an
iterative process f:3N->3N as follows: for a given n, take each digit
of n (in base 10), cube it and then sum the cubes to obtain f(n).

When this process is repeated, the resulting series n, f(n), f(f(n)),...
terminate in 153 after a finite number of iterations (the process ends
because 153 = 1**3 + 5**3 + 3**3).

In the language of discrete dynamical systems, 153 is the global
attractor for the iterated map f restricted to the set 3N.

For example: take the number 108

f(108) = 1**3 + 0**3 + 8**3 = 513

and

f(513) = 5**3 + 1**3 + 3**3 = 153

So, starting at 108 we reach 153 in two iterations,
represented as:

108->513->153

Computing all orbits of 3N up to 10**5 reveals that the attractor
153 is reached in a maximum of 14 iterations. In this code we
show that 13 cycles is the maximum required for all integers (in 3N)
less than 10,000.

The smallest number that requires 13 iterations to reach 153, is 177, i.e.,

177->687->1071->345->216->225->141->66->432->99->1458->702->351->153

The resulting large digraphs are useful for testing network software.

The general problem

Given numbers n, a power p and base b, define F(n; p, b) as the sum of
the digits of n (in base b) raised to the power p. The above example
corresponds to f(n)=F(n; 3,10), and below F(n; p, b) is implemented as
the function powersum(n,p,b). The iterative dynamical system defined by
the mapping n:->f(n) above (over 3N) converges to a single fixed point;
153. Applying the map to all positive integers N, leads to a discrete
dynamical process with 5 fixed points: 1, 153, 370, 371, 407. Modulo 3
those numbers are 1, 0, 1, 2, 2. The function f above has the added
property that it maps a multiple of 3 to another multiple of 3; i.e. it
is invariant on the subset 3N.

The squaring of digits (in base 10) result in cycles and the
single fixed point 1. I.e., from a certain point on, the process
starts repeating itself.

keywords: "Recurring Digital Invariant", "Narcissistic Number",
"Happy Number"

The 3n+1 problem

There is a rich history of mathematical recreations
associated with discrete dynamical systems. The most famous
is the Collatz 3n+1 problem. See the function
collatz_problem_digraph below. The Collatz conjecture
--- that every orbit returrns to the fixed point 1 in finite time
--- is still unproven. Even the great Paul Erdos said "Mathematics
is not yet ready for such problems", and offered $500
for its solution.

keywords: "3n+1", "3x+1", "Collatz problem", "Thwaite's conjecture"

"""
from networkx import *
from math import *

nmax=10000
p=3
mach_eps=0.00000000001

def digitsrep(n,b=10):
 """Return list of digits comprising n represented in base b.
 n must be a nonnegative integer"""

 # very inefficient if you only work with base 10
 dlist=[]
 if n<=0:
 return [0]
 maxpow=int(floor(log(n)/log(b) + mach_eps))
 pow=maxpow
 while pow>=0:
 x=int(floor(n // b**pow))
 dlist.append(x)
 n=n-x*b**pow
 pow=pow-1
 return dlist

def powersum(n,p,b=10):
 """Return sum of digits of n (in base b) raised to the power p."""
 dlist=digitsrep(n,b)
 sum=0
 for k in dlist:
 sum+=k**p
 return sum

def attractor153_graph(n,p,multiple=3,b=10):
 """Return digraph of iterations of powersum(n,3,10)."""
 G=DiGraph()
 for k in range(1,n+1):
 if k%multiple==0 and k not in G:
 k1=k
 knext=powersum(k1,p,b)
 while k1!=knext:
 G.add_edge(k1,knext)
 k1=knext
 knext=powersum(k1,p,b)
 return G

def squaring_cycle_graph_old(n,b=10):
 """Return digraph of iterations of powersum(n,2,10)."""
 G=DiGraph()
 for k in range(1,n+1):
 k1=k
 G.add_node(k1) # case k1==knext, at least add node
 knext=powersum(k1,2,b)
 G.add_edge(k1,knext)
 while k1!=knext: # stop if fixed point
 k1=knext
 knext=powersum(k1,2,b)
 G.add_edge(k1,knext)
 if G.out_degree(knext) >=1:
 # knext has already been iterated in and out
 break
 return G

def sum_of_digits_graph(nmax,b=10):
 def f(n): return powersum(n,1,b)
 return discrete_dynamics_digraph(nmax,f)

def squaring_cycle_digraph(nmax,b=10):
 def f(n): return powersum(n,2,b)
 return discrete_dynamics_digraph(nmax,f)

def cubing_153_digraph(nmax):
 def f(n): return powersum(n,3,10)
 return discrete_dynamics_digraph(nmax,f)

def discrete_dynamics_digraph(nmax,f,itermax=50000):
 G=DiGraph()
 for k in range(1,nmax+1):
 kold=k
 G.add_node(kold)
 knew=f(kold)
 G.add_edge(kold,knew)
 while kold!=knew and kold<<itermax:
 # iterate until fixed point reached or itermax is exceeded
 kold=knew
 knew=f(kold)
 G.add_edge(kold,knew)
 if G.out_degree(knew) >=1:
 # knew has already been iterated in and out
 break
 return G

def collatz_problem_digraph(nmax):
 def f(n):
 if n%2==0:
 return n // 2
 else:
 return 3*n+1
 return discrete_dynamics_digraph(nmax,f)

def fixed_points(G):
 """Return a list of fixed points for the discrete dynamical
 system represented by the digraph G.
 """
 return [n for n in G if G.out_degree(n)==0]

if __name__ == "__main__":
 nmax=10000
 print("Building cubing_153_digraph(%d)"% nmax)
 G=cubing_153_digraph(nmax)
 print("Resulting digraph has", len(G), "nodes and",
 G.size()," edges")
 print("Shortest path from 177 to 153 is:")
 print(shortest_path(G,177,153))
 print("fixed points are %s" % fixed_points(G))

NetworkX

Parallel Betweenness

[source code]

"""
Example of parallel implementation of betweenness centrality using the
multiprocessing module from Python Standard Library.

The function betweenness centrality accepts a bunch of nodes and computes
the contribution of those nodes to the betweenness centrality of the whole
network. Here we divide the network in chunks of nodes and we compute their
contribution to the betweenness centrality of the whole network.
"""

from multiprocessing import Pool
import time
import itertools
import networkx as nx

def chunks(l, n):
 """Divide a list of nodes `l` in `n` chunks"""
 l_c = iter(l)
 while 1:
 x = tuple(itertools.islice(l_c, n))
 if not x:
 return
 yield x

def _betmap(G_normalized_weight_sources_tuple):
 """Pool for multiprocess only accepts functions with one argument.
 This function uses a tuple as its only argument. We use a named tuple for
 python 3 compatibility, and then unpack it when we send it to
 `betweenness_centrality_source`
 """
 return nx.betweenness_centrality_source(*G_normalized_weight_sources_tuple)

def betweenness_centrality_parallel(G, processes=None):
 """Parallel betweenness centrality function"""
 p = Pool(processes=processes)
 node_divisor = len(p._pool)*4
 node_chunks = list(chunks(G.nodes(), int(G.order()/node_divisor)))
 num_chunks = len(node_chunks)
 bt_sc = p.map(_betmap,
 zip([G]*num_chunks,
 [True]*num_chunks,
 [None]*num_chunks,
 node_chunks))

 # Reduce the partial solutions
 bt_c = bt_sc[0]
 for bt in bt_sc[1:]:
 for n in bt:
 bt_c[n] += bt[n]
 return bt_c

if __name__ == "__main__":
 G_ba = nx.barabasi_albert_graph(1000, 3)
 G_er = nx.gnp_random_graph(1000, 0.01)
 G_ws = nx.connected_watts_strogatz_graph(1000, 4, 0.1)
 for G in [G_ba, G_er, G_ws]:
 print("")
 print("Computing betweenness centrality for:")
 print(nx.info(G))
 print("\tParallel version")
 start = time.time()
 bt = betweenness_centrality_parallel(G)
 print("\t\tTime: %.4F" % (time.time()-start))
 print("\t\tBetweenness centrality for node 0: %.5f" % (bt[0]))
 print("\tNon-Parallel version")
 start = time.time()
 bt = nx.betweenness_centrality(G)
 print("\t\tTime: %.4F seconds" % (time.time()-start))
 print("\t\tBetweenness centrality for node 0: %.5f" % (bt[0]))
 print("")

NetworkX

Algorithms

	Release

	1.11

	Date

	Jul 05, 2017

	Blockmodel

	Davis Club

	Krackhardt Centrality

	Rcm

NetworkX

Blockmodel

[source code]

#!/usr/bin/env python
encoding: utf-8
"""
Example of creating a block model using the blockmodel function in NX. Data used is the Hartford, CT drug users network:

@article{,
 title = {Social Networks of Drug Users in {High-Risk} Sites: Finding the Connections},
 volume = {6},
 shorttitle = {Social Networks of Drug Users in {High-Risk} Sites},
 url = {http://dx.doi.org/10.1023/A:1015457400897},
 doi = {10.1023/A:1015457400897},
 number = {2},
 journal = {{AIDS} and Behavior},
 author = {Margaret R. Weeks and Scott Clair and Stephen P. Borgatti and Kim Radda and Jean J. Schensul},
 month = jun,
 year = {2002},
 pages = {193--206}
}

"""
Authors: Drew Conway <drew.conway@nyu.edu>, Aric Hagberg <hagberg@lanl.gov>

from collections import defaultdict
import networkx as nx
import numpy
from scipy.cluster import hierarchy
from scipy.spatial import distance
import matplotlib.pyplot as plt

def create_hc(G):
 """Creates hierarchical cluster of graph G from distance matrix"""
 path_length=nx.all_pairs_shortest_path_length(G)
 distances=numpy.zeros((len(G),len(G)))
 for u,p in path_length.items():
 for v,d in p.items():
 distances[u][v]=d
 # Create hierarchical cluster
 Y=distance.squareform(distances)
 Z=hierarchy.complete(Y) # Creates HC using farthest point linkage
 # This partition selection is arbitrary, for illustrive purposes
 membership=list(hierarchy.fcluster(Z,t=1.15))
 # Create collection of lists for blockmodel
 partition=defaultdict(list)
 for n,p in zip(list(range(len(G))),membership):
 partition[p].append(n)
 return list(partition.values())

if __name__ == '__main__':
 G=nx.read_edgelist("hartford_drug.edgelist")

 # Extract largest connected component into graph H
 H=nx.connected_component_subgraphs(G)[0]
 # Makes life easier to have consecutively labeled integer nodes
 H=nx.convert_node_labels_to_integers(H)
 # Create parititions with hierarchical clustering
 partitions=create_hc(H)
 # Build blockmodel graph
 BM=nx.blockmodel(H,partitions)

 # Draw original graph
 pos=nx.spring_layout(H,iterations=100)
 fig=plt.figure(1,figsize=(6,10))
 ax=fig.add_subplot(211)
 nx.draw(H,pos,with_labels=False,node_size=10)
 plt.xlim(0,1)
 plt.ylim(0,1)

 # Draw block model with weighted edges and nodes sized by number of internal nodes
 node_size=[BM.node[x]['nnodes']*10 for x in BM.nodes()]
 edge_width=[(2*d['weight']) for (u,v,d) in BM.edges(data=True)]
 # Set positions to mean of positions of internal nodes from original graph
 posBM={}
 for n in BM:
 xy=numpy.array([pos[u] for u in BM.node[n]['graph']])
 posBM[n]=xy.mean(axis=0)
 ax=fig.add_subplot(212)
 nx.draw(BM,posBM,node_size=node_size,width=edge_width,with_labels=False)
 plt.xlim(0,1)
 plt.ylim(0,1)
 plt.axis('off')
 plt.savefig('hartford_drug_block_model.png')

NetworkX

Davis Club

[source code]

#!/usr/bin/env python
"""
Davis Southern Club Women

Shows how to make unipartite projections of the graph and compute the
properties of those graphs.

These data were collected by Davis et al. in the 1930s.
They represent observed attendance at 14 social events by 18 Southern women.
The graph is bipartite (clubs, women).
"""
import networkx as nx
import networkx.algorithms.bipartite as bipartite

G = nx.davis_southern_women_graph()
women = G.graph['top']
clubs = G.graph['bottom']

print("Biadjacency matrix")
print(bipartite.biadjacency_matrix(G,women,clubs))

project bipartite graph onto women nodes
W = bipartite.projected_graph(G, women)
print('')
print("#Friends, Member")
for w in women:
 print('%d %s' % (W.degree(w),w))

project bipartite graph onto women nodes keeping number of co-occurence
the degree computed is weighted and counts the total number of shared contacts
W = bipartite.weighted_projected_graph(G, women)
print('')
print("#Friend meetings, Member")
for w in women:
 print('%d %s' % (W.degree(w,weight='weight'),w))

NetworkX

Krackhardt Centrality

[source code]

#!/usr/bin/env python
"""
Centrality measures of Krackhardt social network.
"""
Author: Aric Hagberg (hagberg@lanl.gov)
Date: 2005-05-12 14:33:11 -0600 (Thu, 12 May 2005)
Revision: 998

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

from networkx import *

G=krackhardt_kite_graph()

print("Betweenness")
b=betweenness_centrality(G)
for v in G.nodes():
 print("%0.2d %5.3f"%(v,b[v]))

print("Degree centrality")
d=degree_centrality(G)
for v in G.nodes():
 print("%0.2d %5.3f"%(v,d[v]))

print("Closeness centrality")
c=closeness_centrality(G)
for v in G.nodes():
 print("%0.2d %5.3f"%(v,c[v]))

NetworkX

Rcm

[source code]

Cuthill-McKee ordering of matrices
The reverse Cuthill-McKee algorithm gives a sparse matrix ordering that
reduces the matrix bandwidth.
Requires NumPy
Copyright (C) 2011-2016 by
Author: Aric Hagberg <aric.hagberg@gmail.com>
BSD License
import networkx as nx
from networkx.utils import reverse_cuthill_mckee_ordering
import numpy as np

build low-bandwidth numpy matrix
G=nx.grid_2d_graph(3,3)
rcm = list(reverse_cuthill_mckee_ordering(G))
print("ordering",rcm)

print("unordered Laplacian matrix")
A = nx.laplacian_matrix(G)
x,y = np.nonzero(A)
#print("lower bandwidth:",(y-x).max())
#print("upper bandwidth:",(x-y).max())
print("bandwidth: %d"%((y-x).max()+(x-y).max()+1))
print(A)

B = nx.laplacian_matrix(G,nodelist=rcm)
print("low-bandwidth Laplacian matrix")
x,y = np.nonzero(B)
#print("lower bandwidth:",(y-x).max())
#print("upper bandwidth:",(x-y).max())
print("bandwidth: %d"%((y-x).max()+(x-y).max()+1))
print(B)

NetworkX

Basic

	Release

	1.11

	Date

	Jul 05, 2017

	Properties

	Read Write

NetworkX

Properties

[source code]

#!/usr/bin/env python
"""
Compute some network properties for the lollipop graph.
"""
Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

from networkx import *

G = lollipop_graph(4,6)

pathlengths=[]

print("source vertex {target:length, }")
for v in G.nodes():
 spl=single_source_shortest_path_length(G,v)
 print('%s %s' % (v,spl))
 for p in spl.values():
 pathlengths.append(p)

print('')
print("average shortest path length %s" % (sum(pathlengths)/len(pathlengths)))

histogram of path lengths
dist={}
for p in pathlengths:
 if p in dist:
 dist[p]+=1
 else:
 dist[p]=1

print('')
print("length #paths")
verts=dist.keys()
for d in sorted(verts):
 print('%s %d' % (d,dist[d]))

print("radius: %d" % radius(G))
print("diameter: %d" % diameter(G))
print("eccentricity: %s" % eccentricity(G))
print("center: %s" % center(G))
print("periphery: %s" % periphery(G))
print("density: %s" % density(G))

NetworkX

Read Write

[source code]

#!/usr/bin/env python
"""
Read and write graphs.
"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

from networkx import *
import sys
G=grid_2d_graph(5,5) # 5x5 grid
try: # Python 2.6+
 write_adjlist(G,sys.stdout) # write adjacency list to screen
except TypeError: # Python 3.x
 write_adjlist(G,sys.stdout.buffer) # write adjacency list to screen
write edgelist to grid.edgelist
write_edgelist(G,path="grid.edgelist",delimiter=":")
read edgelist from grid.edgelist
H=read_edgelist(path="grid.edgelist",delimiter=":")

NetworkX

Drawing

	Release

	1.11

	Date

	Jul 05, 2017

	Atlas

	Chess Masters

	Circular Tree

	Degree Histogram

	Edge Colormap

	Ego Graph

	Four Grids

	Giant Component

	House With Colors

	Knuth Miles

	Labels And Colors

	Lanl Routes

	Node Colormap

	Random Geometric Graph

	Sampson

	Simple Path

	Unix Email

	Weighted Graph

NetworkX

Atlas

[image: ../../_images/atlas.png]
[source code]

#!/usr/bin/env python
"""
Atlas of all graphs of 6 nodes or less.

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx
from networkx.generators.atlas import *
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic as isomorphic
import random

def atlas6():
 """ Return the atlas of all connected graphs of 6 nodes or less.
 Attempt to check for isomorphisms and remove.
 """

 Atlas = graph_atlas_g()[0:208] # 208
 # remove isolated nodes, only connected graphs are left
 U = nx.Graph() # graph for union of all graphs in atlas
 for G in Atlas:
 zerodegree = [n for n in G if G.degree(n)==0]
 for n in zerodegree:
 G.remove_node(n)
 U = nx.disjoint_union(U, G)

 # list of graphs of all connected components
 C = nx.connected_component_subgraphs(U)

 UU = nx.Graph()
 # do quick isomorphic-like check, not a true isomorphism checker
 nlist = [] # list of nonisomorphic graphs
 for G in C:
 # check against all nonisomorphic graphs so far
 if not iso(G, nlist):
 nlist.append(G)
 UU = nx.disjoint_union(UU, G) # union the nonisomorphic graphs
 return UU

def iso(G1, glist):
 """Quick and dirty nonisomorphism checker used to check isomorphisms."""
 for G2 in glist:
 if isomorphic(G1, G2):
 return True
 return False

if __name__ == '__main__':
 G=atlas6()

 print("graph has %d nodes with %d edges"\
 %(nx.number_of_nodes(G), nx.number_of_edges(G)))
 print(nx.number_connected_components(G), "connected components")

 try:
 import pygraphviz
 from networkx.drawing.nx_agraph import graphviz_layout
 except ImportError:
 try:
 import pydotplus
 from networkx.drawing.nx_pydot import graphviz_layout
 except ImportError:
 raise ImportError("This example needs Graphviz and either "
 "PyGraphviz or PyDotPlus")

 import matplotlib.pyplot as plt
 plt.figure(1, figsize=(8, 8))
 # layout graphs with positions using graphviz neato
 pos = graphviz_layout(G, prog="neato")
 # color nodes the same in each connected subgraph
 C = nx.connected_component_subgraphs(G)
 for g in C:
 c = [random.random()] * nx.number_of_nodes(g) # random color...
 nx.draw(g,
 pos,
 node_size=40,
 node_color=c,
 vmin=0.0,
 vmax=1.0,
 with_labels=False
)
 plt.savefig("atlas.png", dpi=75)

NetworkX

Chess Masters

[image: ../../_images/chess_masters.png]
[source code]

#!/usr/bin/env python

"""
An example of the MultiDiGraph clas

The function chess_pgn_graph reads a collection of chess
matches stored in the specified PGN file
(PGN ="Portable Game Notation")
Here the (compressed) default file ---
 chess_masters_WCC.pgn.bz2 ---
contains all 685 World Chess Championship matches
from 1886 - 1985.
(data from http://chessproblem.my-free-games.com/chess/games/Download-PGN.php)

The chess_pgn_graph() function returns a MultiDiGraph
with multiple edges. Each node is
the last name of a chess master. Each edge is directed
from white to black and contains selected game info.

The key statement in chess_pgn_graph below is
 G.add_edge(white, black, game_info)
where game_info is a dict describing each game.

"""
Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

tag names specifying what game info should be
stored in the dict on each digraph edge
game_details=["Event",
 "Date",
 "Result",
 "ECO",
 "Site"]

def chess_pgn_graph(pgn_file="chess_masters_WCC.pgn.bz2"):
 """Read chess games in pgn format in pgn_file.

 Filenames ending in .gz or .bz2 will be uncompressed.

 Return the MultiDiGraph of players connected by a chess game.
 Edges contain game data in a dict.

 """
 import bz2
 G=nx.MultiDiGraph()
 game={}
 datafile = bz2.BZ2File(pgn_file)
 lines = (line.decode().rstrip('\r\n') for line in datafile)
 for line in lines:
 if line.startswith('['):
 tag,value=line[1:-1].split(' ',1)
 game[str(tag)]=value.strip('"')
 else:
 # empty line after tag set indicates
 # we finished reading game info
 if game:
 white=game.pop('White')
 black=game.pop('Black')
 G.add_edge(white, black, **game)
 game={}
 return G

if __name__ == '__main__':
 G=chess_pgn_graph()

 ngames=G.number_of_edges()
 nplayers=G.number_of_nodes()

 print("Loaded %d chess games between %d players\n"\
 % (ngames,nplayers))

 # identify connected components
 # of the undirected version
 Gcc=list(nx.connected_component_subgraphs(G.to_undirected()))
 if len(Gcc)>1:
 print("Note the disconnected component consisting of:")
 print(Gcc[1].nodes())

 # find all games with B97 opening (as described in ECO)
 openings=set([game_info['ECO']
 for (white,black,game_info) in G.edges(data=True)])
 print("\nFrom a total of %d different openings,"%len(openings))
 print('the following games used the Sicilian opening')
 print('with the Najdorff 7...Qb6 "Poisoned Pawn" variation.\n')

 for (white,black,game_info) in G.edges(data=True):
 if game_info['ECO']=='B97':
 print(white,"vs",black)
 for k,v in game_info.items():
 print(" ",k,": ",v)
 print("\n")

 try:
 import matplotlib.pyplot as plt
 except ImportError:
 import sys
 print("Matplotlib needed for drawing. Skipping")
 sys.exit(0)

 # make new undirected graph H without multi-edges
 H=nx.Graph(G)

 # edge width is proportional number of games played
 edgewidth=[]
 for (u,v,d) in H.edges(data=True):
 edgewidth.append(len(G.get_edge_data(u,v)))

 # node size is proportional to number of games won
 wins=dict.fromkeys(G.nodes(),0.0)
 for (u,v,d) in G.edges(data=True):
 r=d['Result'].split('-')
 if r[0]=='1':
 wins[u]+=1.0
 elif r[0]=='1/2':
 wins[u]+=0.5
 wins[v]+=0.5
 else:
 wins[v]+=1.0
 try:
 pos=nx.nx_agraph.graphviz_layout(H)
 except:
 pos=nx.spring_layout(H,iterations=20)

 plt.rcParams['text.usetex'] = False
 plt.figure(figsize=(8,8))
 nx.draw_networkx_edges(H,pos,alpha=0.3,width=edgewidth, edge_color='m')
 nodesize=[wins[v]*50 for v in H]
 nx.draw_networkx_nodes(H,pos,node_size=nodesize,node_color='w',alpha=0.4)
 nx.draw_networkx_edges(H,pos,alpha=0.4,node_size=0,width=1,edge_color='k')
 nx.draw_networkx_labels(H,pos,fontsize=14)
 font = {'fontname' : 'Helvetica',
 'color' : 'k',
 'fontweight' : 'bold',
 'fontsize' : 14}
 plt.title("World Chess Championship Games: 1886 - 1985", font)

 # change font and write text (using data coordinates)
 font = {'fontname' : 'Helvetica',
 'color' : 'r',
 'fontweight' : 'bold',
 'fontsize' : 14}

 plt.text(0.5, 0.97, "edge width = # games played",
 horizontalalignment='center',
 transform=plt.gca().transAxes)
 plt.text(0.5, 0.94, "node size = # games won",
 horizontalalignment='center',
 transform=plt.gca().transAxes)

 plt.axis('off')
 plt.savefig("chess_masters.png",dpi=75)
 print("Wrote chess_masters.png")
 plt.show() # display

NetworkX

Circular Tree

[image: ../../_images/circular_tree.png]
[source code]

import networkx as nx
import matplotlib.pyplot as plt

try:
 import pygraphviz
 from networkx.drawing.nx_agraph import graphviz_layout
except ImportError:
 try:
 import pydotplus
 from networkx.drawing.nx_pydot import graphviz_layout
 except ImportError:
 raise ImportError("This example needs Graphviz and either "
 "PyGraphviz or PyDotPlus")

G = nx.balanced_tree(3, 5)
pos = graphviz_layout(G, prog='twopi', args='')
plt.figure(figsize=(8, 8))
nx.draw(G, pos, node_size=20, alpha=0.5, node_color="blue", with_labels=False)
plt.axis('equal')
plt.savefig('circular_tree.png')
plt.show()

NetworkX

Degree Histogram

[image: ../../_images/degree_histogram.png]
[source code]

#!/usr/bin/env python
"""
Random graph from given degree sequence.
Draw degree rank plot and graph with matplotlib.
"""
Author: Aric Hagberg <aric.hagberg@gmail.com>
import matplotlib.pyplot as plt
import networkx as nx

G = nx.gnp_random_graph(100,0.02)

degree_sequence=sorted(nx.degree(G).values(),reverse=True) # degree sequence
#print "Degree sequence", degree_sequence
dmax=max(degree_sequence)

plt.loglog(degree_sequence,'b-',marker='o')
plt.title("Degree rank plot")
plt.ylabel("degree")
plt.xlabel("rank")

draw graph in inset
plt.axes([0.45,0.45,0.45,0.45])
Gcc=sorted(nx.connected_component_subgraphs(G), key = len, reverse=True)[0]
pos=nx.spring_layout(Gcc)
plt.axis('off')
nx.draw_networkx_nodes(Gcc,pos,node_size=20)
nx.draw_networkx_edges(Gcc,pos,alpha=0.4)

plt.savefig("degree_histogram.png")
plt.show()

NetworkX

Edge Colormap

[image: ../../_images/edge_colormap.png]
[source code]

#!/usr/bin/env python
"""
Draw a graph with matplotlib, color edges.
You must have matplotlib>=87.7 for this to work.
"""
Author: Aric Hagberg (hagberg@lanl.gov)
try:
 import matplotlib.pyplot as plt
except:
 raise

import networkx as nx

G=nx.star_graph(20)
pos=nx.spring_layout(G)
colors=range(20)
nx.draw(G,pos,node_color='#A0CBE2',edge_color=colors,width=4,edge_cmap=plt.cm.Blues,with_labels=False)
plt.savefig("edge_colormap.png") # save as png
plt.show() # display

NetworkX

Ego Graph

[image: ../../_images/ego_graph.png]
[source code]

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
Example using the NetworkX ego_graph() function to return the main egonet of
the largest hub in a Barabási-Albert network.
"""
Author: Drew Conway (drew.conway@nyu.edu)

from operator import itemgetter
import networkx as nx
import matplotlib.pyplot as plt

if __name__ == '__main__':
 # Create a BA model graph
 n=1000
 m=2
 G=nx.generators.barabasi_albert_graph(n,m)
 # find node with largest degree
 node_and_degree=G.degree()
 (largest_hub,degree)=sorted(node_and_degree.items(),key=itemgetter(1))[-1]
 # Create ego graph of main hub
 hub_ego=nx.ego_graph(G,largest_hub)
 # Draw graph
 pos=nx.spring_layout(hub_ego)
 nx.draw(hub_ego,pos,node_color='b',node_size=50,with_labels=False)
 # Draw ego as large and red
 nx.draw_networkx_nodes(hub_ego,pos,nodelist=[largest_hub],node_size=300,node_color='r')
 plt.savefig('ego_graph.png')
 plt.show()

NetworkX

Four Grids

[image: ../../_images/four_grids.png]
[source code]

#!/usr/bin/env python
"""
Draw a graph with matplotlib.
You must have matplotlib for this to work.
"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

try:
 import matplotlib.pyplot as plt
except:
 raise

import networkx as nx

G=nx.grid_2d_graph(4,4) #4x4 grid

pos=nx.spring_layout(G,iterations=100)

plt.subplot(221)
nx.draw(G,pos,font_size=8)

plt.subplot(222)
nx.draw(G,pos,node_color='k',node_size=0,with_labels=False)

plt.subplot(223)
nx.draw(G,pos,node_color='g',node_size=250,with_labels=False,width=6)

plt.subplot(224)
H=G.to_directed()
nx.draw(H,pos,node_color='b',node_size=20,with_labels=False)

plt.savefig("four_grids.png")
plt.show()

NetworkX

Giant Component

[image: ../../_images/giant_component.png]
[source code]

#!/usr/bin/env python
"""
This example illustrates the sudden appearance of a
giant connected component in a binomial random graph.

Requires pygraphviz and matplotlib to draw.

"""
Copyright (C) 2006-2016
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

try:
 import matplotlib.pyplot as plt
except:
 raise

import networkx as nx
import math

try:
 import pygraphviz
 from networkx.drawing.nx_agraph import graphviz_layout
 layout = graphviz_layout
except ImportError:
 try:
 import pydotplus
 from networkx.drawing.nx_pydot import graphviz_layout
 layout = graphviz_layout
 except ImportError:
 print("PyGraphviz and PyDotPlus not found;\n"
 "drawing with spring layout;\n"
 "will be slow.")
 layout = nx.spring_layout

n=150 # 150 nodes
p value at which giant component (of size log(n) nodes) is expected
p_giant=1.0/(n-1)
p value at which graph is expected to become completely connected
p_conn=math.log(n)/float(n)

the following range of p values should be close to the threshold
pvals=[0.003, 0.006, 0.008, 0.015]

region=220 # for pylab 2x2 subplot layout
plt.subplots_adjust(left=0,right=1,bottom=0,top=0.95,wspace=0.01,hspace=0.01)
for p in pvals:
 G=nx.binomial_graph(n,p)
 pos=layout(G)
 region+=1
 plt.subplot(region)
 plt.title("p = %6.3f"%(p))
 nx.draw(G,pos,
 with_labels=False,
 node_size=10
)
 # identify largest connected component
 Gcc=sorted(nx.connected_component_subgraphs(G), key = len, reverse=True)
 G0=Gcc[0]
 nx.draw_networkx_edges(G0,pos,
 with_labels=False,
 edge_color='r',
 width=6.0
)
 # show other connected components
 for Gi in Gcc[1:]:
 if len(Gi)>1:
 nx.draw_networkx_edges(Gi,pos,
 with_labels=False,
 edge_color='r',
 alpha=0.3,
 width=5.0
)
plt.savefig("giant_component.png")
plt.show() # display

NetworkX

House With Colors

[image: ../../_images/house_with_colors.png]
[source code]

#!/usr/bin/env python
"""
Draw a graph with matplotlib.
You must have matplotlib for this to work.
"""
Author: Aric Hagberg (hagberg@lanl.gov)
try:
 import matplotlib.pyplot as plt
except:
 raise

import networkx as nx

G=nx.house_graph()
explicitly set positions
pos={0:(0,0),
 1:(1,0),
 2:(0,1),
 3:(1,1),
 4:(0.5,2.0)}

nx.draw_networkx_nodes(G,pos,node_size=2000,nodelist=[4])
nx.draw_networkx_nodes(G,pos,node_size=3000,nodelist=[0,1,2,3],node_color='b')
nx.draw_networkx_edges(G,pos,alpha=0.5,width=6)
plt.axis('off')
plt.savefig("house_with_colors.png") # save as png
plt.show() # display

NetworkX

Knuth Miles

[image: ../../_images/knuth_miles.png]
[source code]

#!/usr/bin/env python
"""
An example using networkx.Graph().

miles_graph() returns an undirected graph over the 128 US cities from
the datafile miles_dat.txt. The cities each have location and population
data. The edges are labeled with the distance betwen the two cities.

This example is described in Section 1.1 in Knuth's book [1,2].

References.

[1] Donald E. Knuth,
 "The Stanford GraphBase: A Platform for Combinatorial Computing",
 ACM Press, New York, 1993.
[2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

def miles_graph():
 """ Return the cites example graph in miles_dat.txt
 from the Stanford GraphBase.
 """
 # open file miles_dat.txt.gz (or miles_dat.txt)
 import gzip
 fh = gzip.open('knuth_miles.txt.gz','r')

 G=nx.Graph()
 G.position={}
 G.population={}

 cities=[]
 for line in fh.readlines():
 line = line.decode()
 if line.startswith("*"): # skip comments
 continue

 numfind=re.compile("^\d+")

 if numfind.match(line): # this line is distances
 dist=line.split()
 for d in dist:
 G.add_edge(city,cities[i],weight=int(d))
 i=i+1
 else: # this line is a city, position, population
 i=1
 (city,coordpop)=line.split("[")
 cities.insert(0,city)
 (coord,pop)=coordpop.split("]")
 (y,x)=coord.split(",")

 G.add_node(city)
 # assign position - flip x axis for matplotlib, shift origin
 G.position[city]=(-int(x)+7500,int(y)-3000)
 G.population[city]=float(pop)/1000.0
 return G

if __name__ == '__main__':
 import networkx as nx
 import re
 import sys

 G=miles_graph()

 print("Loaded miles_dat.txt containing 128 cities.")
 print("digraph has %d nodes with %d edges"\
 %(nx.number_of_nodes(G),nx.number_of_edges(G)))

 # make new graph of cites, edge if less then 300 miles between them
 H=nx.Graph()
 for v in G:
 H.add_node(v)
 for (u,v,d) in G.edges(data=True):
 if d['weight'] < 300:
 H.add_edge(u,v)

 # draw with matplotlib/pylab

 try:
 import matplotlib.pyplot as plt
 plt.figure(figsize=(8,8))
 # with nodes colored by degree sized by population
 node_color=[float(H.degree(v)) for v in H]
 nx.draw(H,G.position,
 node_size=[G.population[v] for v in H],
 node_color=node_color,
 with_labels=False)

 # scale the axes equally
 plt.xlim(-5000,500)
 plt.ylim(-2000,3500)

 plt.savefig("knuth_miles.png")
 except:
 pass

NetworkX

Labels And Colors

[image: ../../_images/labels_and_colors.png]
[source code]

#!/usr/bin/env python
"""
Draw a graph with matplotlib, color by degree.

You must have matplotlib for this to work.
"""
Author: Aric Hagberg (hagberg@lanl.gov)
import matplotlib.pyplot as plt

import networkx as nx

G=nx.cubical_graph()
pos=nx.spring_layout(G) # positions for all nodes

nodes
nx.draw_networkx_nodes(G,pos,
 nodelist=[0,1,2,3],
 node_color='r',
 node_size=500,
 alpha=0.8)
nx.draw_networkx_nodes(G,pos,
 nodelist=[4,5,6,7],
 node_color='b',
 node_size=500,
 alpha=0.8)

edges
nx.draw_networkx_edges(G,pos,width=1.0,alpha=0.5)
nx.draw_networkx_edges(G,pos,
 edgelist=[(0,1),(1,2),(2,3),(3,0)],
 width=8,alpha=0.5,edge_color='r')
nx.draw_networkx_edges(G,pos,
 edgelist=[(4,5),(5,6),(6,7),(7,4)],
 width=8,alpha=0.5,edge_color='b')

some math labels
labels={}
labels[0]=r'a'
labels[1]=r'b'
labels[2]=r'c'
labels[3]=r'd'
labels[4]=r'α'
labels[5]=r'β'
labels[6]=r'γ'
labels[7]=r'δ'
nx.draw_networkx_labels(G,pos,labels,font_size=16)

plt.axis('off')
plt.savefig("labels_and_colors.png") # save as png
plt.show() # display

NetworkX

Lanl Routes

[image: ../../_images/lanl_routes.png]
[source code]

#!/usr/bin/env python
"""
Routes to LANL from 186 sites on the Internet.

This uses Graphviz for layout so you need PyGraphviz or PyDotPlus.

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

def lanl_graph():
 """ Return the lanl internet view graph from lanl.edges
 """
 import networkx as nx
 try:
 fh = open('lanl_routes.edgelist' , 'r')
 except IOError:
 print("lanl.edges not found")
 raise

 G = nx.Graph()

 time = {}
 time[0] = 0 # assign 0 to center node
 for line in fh.readlines():
 (head, tail, rtt) = line.split()
 G.add_edge(int(head), int(tail))
 time[int(head)] = float(rtt)

 # get largest component and assign ping times to G0time dictionary
 G0 = sorted(nx.connected_component_subgraphs(G), key = len, reverse=True)[0]
 G0.rtt = {}
 for n in G0:
 G0.rtt[n] = time[n]

 return G0

if __name__ == '__main__':
 import networkx as nx
 import math
 try:
 import pygraphviz
 from networkx.drawing.nx_agraph import graphviz_layout
 except ImportError:
 try:
 import pydotplus
 from networkx.drawing.nx_pydot import graphviz_layout
 except ImportError:
 raise ImportError("This example needs Graphviz and either "
 "PyGraphviz or PyDotPlus")

 G=lanl_graph()

 print("graph has %d nodes with %d edges"\
 %(nx.number_of_nodes(G), nx.number_of_edges(G)))
 print(nx.number_connected_components(G), "connected components")

 import matplotlib.pyplot as plt
 plt.figure(figsize=(8, 8))
 # use graphviz to find radial layout
 pos = graphviz_layout(G, prog="twopi", root=0)
 # draw nodes, coloring by rtt ping time
 nx.draw(G, pos,
 node_color=[G.rtt[v] for v in G],
 with_labels=False,
 alpha=0.5,
 node_size=15)
 # adjust the plot limits
 xmax = 1.02 * max(xx for xx,yy in pos.values())
 ymax = 1.02 * max(yy for xx,yy in pos.values())
 plt.xlim(0, xmax)
 plt.ylim(0, ymax)
 plt.savefig("lanl_routes.png")

NetworkX

Node Colormap

[image: ../../_images/node_colormap.png]
[source code]

#!/usr/bin/env python
"""
Draw a graph with matplotlib, color by degree.
You must have matplotlib for this to work.
"""
Author: Aric Hagberg (hagberg@lanl.gov)

try:
 import matplotlib.pyplot as plt
except:
 raise
import networkx as nx

G=nx.cycle_graph(24)
pos=nx.spring_layout(G,iterations=200)
nx.draw(G,pos,node_color=range(24),node_size=800,cmap=plt.cm.Blues)
plt.savefig("node_colormap.png") # save as png
plt.show() # display

NetworkX

Random Geometric Graph

[image: ../../_images/random_geometric_graph.png]
[source code]

import networkx as nx
import matplotlib.pyplot as plt

G=nx.random_geometric_graph(200,0.125)
position is stored as node attribute data for random_geometric_graph
pos=nx.get_node_attributes(G,'pos')

find node near center (0.5,0.5)
dmin=1
ncenter=0
for n in pos:
 x,y=pos[n]
 d=(x-0.5)**2+(y-0.5)**2
 if d<dmin:
 ncenter=n
 dmin=d

color by path length from node near center
p=nx.single_source_shortest_path_length(G,ncenter)

plt.figure(figsize=(8,8))
nx.draw_networkx_edges(G,pos,nodelist=[ncenter],alpha=0.4)
nx.draw_networkx_nodes(G,pos,nodelist=p.keys(),
 node_size=80,
 node_color=p.values(),
 cmap=plt.cm.Reds_r)

plt.xlim(-0.05,1.05)
plt.ylim(-0.05,1.05)
plt.axis('off')
plt.savefig('random_geometric_graph.png')
plt.show()

NetworkX

Sampson

[image: ../../_images/sampson.png]
[source code]

#!/usr/bin/env python
"""
Sampson's monastery data.

Shows how to read data from a zip file and plot multiple frames.

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2010-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import zipfile, cStringIO
import networkx as nx
import matplotlib.pyplot as plt

zf = zipfile.ZipFile('sampson_data.zip') # zipfile object
e1=cStringIO.StringIO(zf.read('samplike1.txt')) # read info file
e2=cStringIO.StringIO(zf.read('samplike2.txt')) # read info file
e3=cStringIO.StringIO(zf.read('samplike3.txt')) # read info file
G1=nx.read_edgelist(e1,delimiter='\t')
G2=nx.read_edgelist(e2,delimiter='\t')
G3=nx.read_edgelist(e3,delimiter='\t')
pos=nx.spring_layout(G3,iterations=100)
plt.clf()

plt.subplot(221)
plt.title('samplike1')
nx.draw(G1,pos,node_size=50,with_labels=False)
plt.subplot(222)
plt.title('samplike2')
nx.draw(G2,pos,node_size=50,with_labels=False)
plt.subplot(223)
plt.title('samplike3')
nx.draw(G3,pos,node_size=50,with_labels=False)
plt.subplot(224)
plt.title('samplike1,2,3')
nx.draw(G3,pos,edgelist=G3.edges(),node_size=50,with_labels=False)
nx.draw_networkx_edges(G1,pos,alpha=0.25)
nx.draw_networkx_edges(G2,pos,alpha=0.25)
plt.savefig("sampson.png") # save as png
plt.show() # display

NetworkX

Simple Path

[image: ../../_images/simple_path.png]
[source code]

#!/usr/bin/env python
"""
Draw a graph with matplotlib.
You must have matplotlib for this to work.
"""
try:
 import matplotlib.pyplot as plt
except:
 raise

import networkx as nx

G=nx.path_graph(8)
nx.draw(G)
plt.savefig("simple_path.png") # save as png
plt.show() # display

NetworkX

Unix Email

[image: ../../_images/unix_email.png]
[source code]

#!/usr/bin/env python
"""
Create a directed graph, allowing multiple edges and self loops, from
a unix mailbox. The nodes are email addresses with links
that point from the sender to the recievers. The edge data
is a Python email.Message object which contains all of
the email message data.

This example shows the power of XDiGraph to hold edge data
of arbitrary Python objects (in this case a list of email messages).

By default, load the sample unix email mailbox called "unix_email.mbox".
You can load your own mailbox by naming it on the command line, eg

python unixemail.py /var/spool/mail/username

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2005-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import email
from email.utils import getaddresses,parseaddr
import mailbox
import sys

unix mailbox recipe
see http://www.python.org/doc/current/lib/module-mailbox.html
def msgfactory(fp):
 try:
 return email.message_from_file(fp)
 except email.Errors.MessageParseError:
 # Don't return None since that will stop the mailbox iterator
 return ''

if __name__ == '__main__':

 import networkx as nx
 try:
 import matplotlib.pyplot as plt
 except:
 pass

 if len(sys.argv)==1:
 filePath = "unix_email.mbox"
 else:
 filePath = sys.argv[1]

 mbox = mailbox.mbox(filePath, msgfactory) # parse unix mailbox

 G=nx.MultiDiGraph() # create empty graph

 # parse each messages and build graph
 for msg in mbox: # msg is python email.Message.Message object
 (source_name,source_addr) = parseaddr(msg['From']) # sender
 # get all recipients
 # see http://www.python.org/doc/current/lib/module-email.Utils.html
 tos = msg.get_all('to', [])
 ccs = msg.get_all('cc', [])
 resent_tos = msg.get_all('resent-to', [])
 resent_ccs = msg.get_all('resent-cc', [])
 all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)
 # now add the edges for this mail message
 for (target_name,target_addr) in all_recipients:
 G.add_edge(source_addr,target_addr,message=msg)

 # print edges with message subject
 for (u,v,d) in G.edges_iter(data=True):
 print("From: %s To: %s Subject: %s"%(u,v,d['message']["Subject"]))

 try: # draw
 pos=nx.spring_layout(G,iterations=10)
 nx.draw(G,pos,node_size=0,alpha=0.4,edge_color='r',font_size=16)
 plt.savefig("unix_email.png")
 plt.show()
 except: # matplotlib not available
 pass

NetworkX

Weighted Graph

[image: ../../_images/weighted_graph.png]
[source code]

#!/usr/bin/env python
"""
An example using Graph as a weighted network.
"""
Author: Aric Hagberg (hagberg@lanl.gov)
try:
 import matplotlib.pyplot as plt
except:
 raise

import networkx as nx

G=nx.Graph()

G.add_edge('a','b',weight=0.6)
G.add_edge('a','c',weight=0.2)
G.add_edge('c','d',weight=0.1)
G.add_edge('c','e',weight=0.7)
G.add_edge('c','f',weight=0.9)
G.add_edge('a','d',weight=0.3)

elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] >0.5]
esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] <=0.5]

pos=nx.spring_layout(G) # positions for all nodes

nodes
nx.draw_networkx_nodes(G,pos,node_size=700)

edges
nx.draw_networkx_edges(G,pos,edgelist=elarge,
 width=6)
nx.draw_networkx_edges(G,pos,edgelist=esmall,
 width=6,alpha=0.5,edge_color='b',style='dashed')

labels
nx.draw_networkx_labels(G,pos,font_size=20,font_family='sans-serif')

plt.axis('off')
plt.savefig("weighted_graph.png") # save as png
plt.show() # display

NetworkX

Graph

	Release

	1.11

	Date

	Jul 05, 2017

	Atlas

	Atlas2

	Degree Sequence

	Erdos Renyi

	Expected Degree Sequence

	Football

	Karate Club

	Knuth Miles

	Napoleon Russian Campaign

	Roget

	Unix Email

	Words

NetworkX

Atlas

[image: ../../_images/atlas1.png]
[source code]

#!/usr/bin/env python
"""
Atlas of all graphs of 6 nodes or less.

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx
from networkx.generators.atlas import *
from networkx.algorithms.isomorphism.isomorph import graph_could_be_isomorphic as isomorphic
import random

def atlas6():
 """ Return the atlas of all connected graphs of 6 nodes or less.
 Attempt to check for isomorphisms and remove.
 """

 Atlas = graph_atlas_g()[0:208] # 208
 # remove isolated nodes, only connected graphs are left
 U = nx.Graph() # graph for union of all graphs in atlas
 for G in Atlas:
 zerodegree = [n for n in G if G.degree(n)==0]
 for n in zerodegree:
 G.remove_node(n)
 U = nx.disjoint_union(U, G)

 # list of graphs of all connected components
 C = nx.connected_component_subgraphs(U)

 UU = nx.Graph()
 # do quick isomorphic-like check, not a true isomorphism checker
 nlist = [] # list of nonisomorphic graphs
 for G in C:
 # check against all nonisomorphic graphs so far
 if not iso(G, nlist):
 nlist.append(G)
 UU = nx.disjoint_union(UU, G) # union the nonisomorphic graphs
 return UU

def iso(G1, glist):
 """Quick and dirty nonisomorphism checker used to check isomorphisms."""
 for G2 in glist:
 if isomorphic(G1, G2):
 return True
 return False

if __name__ == '__main__':
 G=atlas6()

 print("graph has %d nodes with %d edges"\
 %(nx.number_of_nodes(G), nx.number_of_edges(G)))
 print(nx.number_connected_components(G), "connected components")

 try:
 import pygraphviz
 from networkx.drawing.nx_agraph import graphviz_layout
 except ImportError:
 try:
 import pydotplus
 from networkx.drawing.nx_pydot import graphviz_layout
 except ImportError:
 raise ImportError("This example needs Graphviz and either "
 "PyGraphviz or PyDotPlus")

 import matplotlib.pyplot as plt
 plt.figure(1, figsize=(8, 8))
 # layout graphs with positions using graphviz neato
 pos = graphviz_layout(G, prog="neato")
 # color nodes the same in each connected subgraph
 C = nx.connected_component_subgraphs(G)
 for g in C:
 c = [random.random()] * nx.number_of_nodes(g) # random color...
 nx.draw(g,
 pos,
 node_size=40,
 node_color=c,
 vmin=0.0,
 vmax=1.0,
 with_labels=False
)
 plt.savefig("atlas.png", dpi=75)

NetworkX

Atlas2

[source code]

#!/usr/bin/env python
"""
Write first 20 graphs from the graph atlas as graphviz dot files
Gn.dot where n=0,19.
Requires pygraphviz and graphviz.
"""
Author: Aric Hagberg (hagberg@lanl.gov)
Date: 2005-05-19 14:23:02 -0600 (Thu, 19 May 2005)

Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx
from networkx.generators.atlas import *
from pygraphviz import *

atlas = graph_atlas_g()[0:20]

for G in atlas:
 print("graph %s has %d nodes with %d edges"
 %(G.name,NX.number_of_nodes(G),NX.number_of_edges(G)))
 A = nx.nx_agraph.to_agraph(G)
 A.graph_attr['label'] = G.name
 # set default node attributes
 A.node_attr['color'] = 'red'
 A.node_attr['style'] = 'filled'
 A.node_attr['shape'] = 'circle'
 A.write(G.name + '.dot')

NetworkX

Degree Sequence

[source code]

#!/usr/bin/env python
"""
Random graph from given degree sequence.
"""
Author: Aric Hagberg (hagberg@lanl.gov)
Date: 2004-11-03 08:11:09 -0700 (Wed, 03 Nov 2004)
Revision: 503

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

from networkx import *

z=[5,3,3,3,3,2,2,2,1,1,1]
print(is_valid_degree_sequence(z))

print("Configuration model")
G=configuration_model(z) # configuration model
degree_sequence=list(degree(G).values()) # degree sequence
print("Degree sequence %s" % degree_sequence)
print("Degree histogram")
hist={}
for d in degree_sequence:
 if d in hist:
 hist[d]+=1
 else:
 hist[d]=1
print("degree #nodes")
for d in hist:
 print('%d %d' % (d,hist[d]))

NetworkX

Erdos Renyi

[source code]

-*- coding: utf-8 -*-
#!/usr/bin/env python
"""
Create an G{n,m} random graph with n nodes and m edges
and report some properties.

This graph is sometimes called the Erdős-Rényi graph
but is different from G{n,p} or binomial_graph which is also
sometimes called the Erdős-Rényi graph.
"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

from networkx import *
import sys

n=10 # 10 nodes
m=20 # 20 edges

G=gnm_random_graph(n,m)

some properties
print("node degree clustering")
for v in nodes(G):
 print('%s %d %f' % (v,degree(G,v),clustering(G,v)))

print the adjacency list to terminal
try:
 write_adjlist(G,sys.stdout)
except TypeError: # Python 3.x
 write_adjlist(G,sys.stdout.buffer)

NetworkX

Expected Degree Sequence

[source code]

#!/usr/bin/env python
"""
Random graph from given degree sequence.
"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

from networkx import *
from networkx.generators.degree_seq import *

make a random graph of 500 nodes with expected degrees of 50
n=500 # n nodes
p=0.1
w=[p*n for i in range(n)] # w = p*n for all nodes
G=expected_degree_graph(w) # configuration model
print("Degree histogram")
print("degree (#nodes) ****")
dh=degree_histogram(G)
low=min(degree(G))
for i in range(low,len(dh)):
 bar=''.join(dh[i]*['*'])
 print("%2s (%2s) %s"%(i,dh[i],bar))

NetworkX

Football

[source code]

#!/usr/bin/env python
"""
Load football network in GML format and compute some network statistcs.

Shows how to download GML graph in a zipped file, unpack it, and load
into a NetworkX graph.

Requires Internet connection to download the URL
http://www-personal.umich.edu/~mejn/netdata/football.zip

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2007-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

from networkx import *

url="http://www-personal.umich.edu/~mejn/netdata/football.zip"

try: # Python 3.x
 import urllib.request as urllib
except ImportError: # Python 2.x
 import urllib
import io
import zipfile

sock = urllib.urlopen(url) # open URL
s=io.BytesIO(sock.read()) # read into BytesIO "file"
sock.close()

zf = zipfile.ZipFile(s) # zipfile object
txt=zf.read('football.txt').decode() # read info file
gml=zf.read('football.gml').decode() # read gml data
throw away bogus first line with # from mejn files
gml=gml.split('\n')[1:]
G=parse_gml(gml) # parse gml data

print(txt)
print degree for each team - number of games
for n,d in G.degree_iter():
 print('%s %d' % (n, d))

NetworkX

Karate Club

[source code]

#!/usr/bin/env python
"""
Zachary's Karate Club graph

Data file from:
http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm

Reference:
Zachary W. (1977).
An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33, 452-473.
"""
import networkx as nx
G=nx.karate_club_graph()
print("Node Degree")
for v in G:
 print('%s %s' % (v,G.degree(v)))

NetworkX

Knuth Miles

[image: ../../_images/knuth_miles1.png]
[source code]

#!/usr/bin/env python
"""
An example using networkx.Graph().

miles_graph() returns an undirected graph over the 128 US cities from
the datafile miles_dat.txt. The cities each have location and population
data. The edges are labeled with the distance betwen the two cities.

This example is described in Section 1.1 in Knuth's book [1,2].

References.

[1] Donald E. Knuth,
 "The Stanford GraphBase: A Platform for Combinatorial Computing",
 ACM Press, New York, 1993.
[2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

def miles_graph():
 """ Return the cites example graph in miles_dat.txt
 from the Stanford GraphBase.
 """
 # open file miles_dat.txt.gz (or miles_dat.txt)
 import gzip
 fh = gzip.open('knuth_miles.txt.gz','r')

 G=nx.Graph()
 G.position={}
 G.population={}

 cities=[]
 for line in fh.readlines():
 line = line.decode()
 if line.startswith("*"): # skip comments
 continue

 numfind=re.compile("^\d+")

 if numfind.match(line): # this line is distances
 dist=line.split()
 for d in dist:
 G.add_edge(city,cities[i],weight=int(d))
 i=i+1
 else: # this line is a city, position, population
 i=1
 (city,coordpop)=line.split("[")
 cities.insert(0,city)
 (coord,pop)=coordpop.split("]")
 (y,x)=coord.split(",")

 G.add_node(city)
 # assign position - flip x axis for matplotlib, shift origin
 G.position[city]=(-int(x)+7500,int(y)-3000)
 G.population[city]=float(pop)/1000.0
 return G

if __name__ == '__main__':
 import networkx as nx
 import re
 import sys

 G=miles_graph()

 print("Loaded miles_dat.txt containing 128 cities.")
 print("digraph has %d nodes with %d edges"\
 %(nx.number_of_nodes(G),nx.number_of_edges(G)))

 # make new graph of cites, edge if less then 300 miles between them
 H=nx.Graph()
 for v in G:
 H.add_node(v)
 for (u,v,d) in G.edges(data=True):
 if d['weight'] < 300:
 H.add_edge(u,v)

 # draw with matplotlib/pylab

 try:
 import matplotlib.pyplot as plt
 plt.figure(figsize=(8,8))
 # with nodes colored by degree sized by population
 node_color=[float(H.degree(v)) for v in H]
 nx.draw(H,G.position,
 node_size=[G.population[v] for v in H],
 node_color=node_color,
 with_labels=False)

 # scale the axes equally
 plt.xlim(-5000,500)
 plt.ylim(-2000,3500)

 plt.savefig("knuth_miles.png")
 except:
 pass

NetworkX

Napoleon Russian Campaign

[source code]

#!/usr/bin/env python
"""
Minard's data from Napoleon's 1812-1813 Russian Campaign.
http://www.math.yorku.ca/SCS/Gallery/minard/minard.txt

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import string
import networkx as nx

def minard_graph():
 data1="""\
24.0,54.9,340000,A,1
24.5,55.0,340000,A,1
25.5,54.5,340000,A,1
26.0,54.7,320000,A,1
27.0,54.8,300000,A,1
28.0,54.9,280000,A,1
28.5,55.0,240000,A,1
29.0,55.1,210000,A,1
30.0,55.2,180000,A,1
30.3,55.3,175000,A,1
32.0,54.8,145000,A,1
33.2,54.9,140000,A,1
34.4,55.5,127100,A,1
35.5,55.4,100000,A,1
36.0,55.5,100000,A,1
37.6,55.8,100000,A,1
37.7,55.7,100000,R,1
37.5,55.7,98000,R,1
37.0,55.0,97000,R,1
36.8,55.0,96000,R,1
35.4,55.3,87000,R,1
34.3,55.2,55000,R,1
33.3,54.8,37000,R,1
32.0,54.6,24000,R,1
30.4,54.4,20000,R,1
29.2,54.3,20000,R,1
28.5,54.2,20000,R,1
28.3,54.3,20000,R,1
27.5,54.5,20000,R,1
26.8,54.3,12000,R,1
26.4,54.4,14000,R,1
25.0,54.4,8000,R,1
24.4,54.4,4000,R,1
24.2,54.4,4000,R,1
24.1,54.4,4000,R,1"""
 data2="""\
24.0,55.1,60000,A,2
24.5,55.2,60000,A,2
25.5,54.7,60000,A,2
26.6,55.7,40000,A,2
27.4,55.6,33000,A,2
28.7,55.5,33000,R,2
29.2,54.2,30000,R,2
28.5,54.1,30000,R,2
28.3,54.2,28000,R,2"""
 data3="""\
24.0,55.2,22000,A,3
24.5,55.3,22000,A,3
24.6,55.8,6000,A,3
24.6,55.8,6000,R,3
24.2,54.4,6000,R,3
24.1,54.4,6000,R,3"""
 cities="""\
24.0,55.0,Kowno
25.3,54.7,Wilna
26.4,54.4,Smorgoni
26.8,54.3,Moiodexno
27.7,55.2,Gloubokoe
27.6,53.9,Minsk
28.5,54.3,Studienska
28.7,55.5,Polotzk
29.2,54.4,Bobr
30.2,55.3,Witebsk
30.4,54.5,Orscha
30.4,53.9,Mohilow
32.0,54.8,Smolensk
33.2,54.9,Dorogobouge
34.3,55.2,Wixma
34.4,55.5,Chjat
36.0,55.5,Mojaisk
37.6,55.8,Moscou
36.6,55.3,Tarantino
36.5,55.0,Malo-Jarosewii"""

 c={}
 for line in cities.split('\n'):
 x,y,name=line.split(',')
 c[name]=(float(x),float(y))

 g=[]

 for data in [data1,data2,data3]:
 G=nx.Graph()
 i=0
 G.pos={} # location
 G.pop={} # size
 last=None
 for line in data.split('\n'):
 x,y,p,r,n=line.split(',')
 G.pos[i]=(float(x),float(y))
 G.pop[i]=int(p)
 if last is None:
 last=i
 else:
 G.add_edge(i,last,{r:int(n)})
 last=i
 i=i+1
 g.append(G)

 return g,c

if __name__ == "__main__":

 (g,city)=minard_graph()

 try:
 import matplotlib.pyplot as plt
 plt.figure(1,figsize=(11,5))
 plt.clf()
 colors=['b','g','r']
 for G in g:
 c=colors.pop(0)
 node_size=[int(G.pop[n]/300.0) for n in G]
 nx.draw_networkx_edges(G,G.pos,edge_color=c,width=4,alpha=0.5)
 nx.draw_networkx_nodes(G,G.pos,node_size=node_size,node_color=c,alpha=0.5)
 nx.draw_networkx_nodes(G,G.pos,node_size=5,node_color='k')

 for c in city:
 x,y=city[c]
 plt.text(x,y+0.1,c)
 plt.savefig("napoleon_russian_campaign.png")
 except ImportError:
 pass

NetworkX

Roget

[source code]

#!/usr/bin/env python
"""
Build a directed graph of 1022 categories and
5075 cross-references as defined in the 1879 version of Roget's Thesaurus
contained in the datafile roget_dat.txt. This example is described in
Section 1.2 in Knuth's book [1,2].

Note that one of the 5075 cross references is a self loop yet
it is included in the graph built here because
the standard networkx DiGraph class allows self loops.
(cf. 400pungency:400 401 403 405).

References.

[1] Donald E. Knuth,
 "The Stanford GraphBase: A Platform for Combinatorial Computing",
 ACM Press, New York, 1993.
[2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html

"""
from __future__ import print_function
Authors: Brendt Wohlberg, Aric Hagberg (hagberg@lanl.gov)
Date: 2005-04-01 07:56:22 -0700 (Fri, 01 Apr 2005)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

from networkx import *
import re
import sys

def roget_graph():
 """ Return the thesaurus graph from the roget.dat example in
 the Stanford Graph Base.
 """
 # open file roget_dat.txt.gz (or roget_dat.txt)
 import gzip
 fh=gzip.open('roget_dat.txt.gz','r')

 G=DiGraph()

 for line in fh.readlines():
 line = line.decode()
 if line.startswith("*"): # skip comments
 continue
 if line.startswith(" "): # this is a continuation line, append
 line=oldline+line
 if line.endswith("\\\n"): # continuation line, buffer, goto next
 oldline=line.strip("\\\n")
 continue

 (headname,tails)=line.split(":")

 # head
 numfind=re.compile("^\d+") # re to find the number of this word
 head=numfind.findall(headname)[0] # get the number

 G.add_node(head)

 for tail in tails.split():
 if head==tail:
 print("skipping self loop",head,tail, file=sys.stderr)
 G.add_edge(head,tail)

 return G

if __name__ == '__main__':
 from networkx import *
 G=roget_graph()
 print("Loaded roget_dat.txt containing 1022 categories.")
 print("digraph has %d nodes with %d edges"\
 %(number_of_nodes(G),number_of_edges(G)))
 UG=G.to_undirected()
 print(number_connected_components(UG),"connected components")

NetworkX

Unix Email

[image: ../../_images/unix_email1.png]
[source code]

#!/usr/bin/env python
"""
Create a directed graph, allowing multiple edges and self loops, from
a unix mailbox. The nodes are email addresses with links
that point from the sender to the recievers. The edge data
is a Python email.Message object which contains all of
the email message data.

This example shows the power of XDiGraph to hold edge data
of arbitrary Python objects (in this case a list of email messages).

By default, load the sample unix email mailbox called "unix_email.mbox".
You can load your own mailbox by naming it on the command line, eg

python unixemail.py /var/spool/mail/username

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2005-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import email
from email.utils import getaddresses,parseaddr
import mailbox
import sys

unix mailbox recipe
see http://www.python.org/doc/current/lib/module-mailbox.html
def msgfactory(fp):
 try:
 return email.message_from_file(fp)
 except email.Errors.MessageParseError:
 # Don't return None since that will stop the mailbox iterator
 return ''

if __name__ == '__main__':

 import networkx as nx
 try:
 import matplotlib.pyplot as plt
 except:
 pass

 if len(sys.argv)==1:
 filePath = "unix_email.mbox"
 else:
 filePath = sys.argv[1]

 mbox = mailbox.mbox(filePath, msgfactory) # parse unix mailbox

 G=nx.MultiDiGraph() # create empty graph

 # parse each messages and build graph
 for msg in mbox: # msg is python email.Message.Message object
 (source_name,source_addr) = parseaddr(msg['From']) # sender
 # get all recipients
 # see http://www.python.org/doc/current/lib/module-email.Utils.html
 tos = msg.get_all('to', [])
 ccs = msg.get_all('cc', [])
 resent_tos = msg.get_all('resent-to', [])
 resent_ccs = msg.get_all('resent-cc', [])
 all_recipients = getaddresses(tos + ccs + resent_tos + resent_ccs)
 # now add the edges for this mail message
 for (target_name,target_addr) in all_recipients:
 G.add_edge(source_addr,target_addr,message=msg)

 # print edges with message subject
 for (u,v,d) in G.edges_iter(data=True):
 print("From: %s To: %s Subject: %s"%(u,v,d['message']["Subject"]))

 try: # draw
 pos=nx.spring_layout(G,iterations=10)
 nx.draw(G,pos,node_size=0,alpha=0.4,edge_color='r',font_size=16)
 plt.savefig("unix_email.png")
 plt.show()
 except: # matplotlib not available
 pass

NetworkX

Words

[source code]

"""
Words/Ladder Graph

Generate an undirected graph over the 5757 5-letter words in the
datafile words_dat.txt.gz. Two words are connected by an edge
if they differ in one letter, resulting in 14,135 edges. This example
is described in Section 1.1 in Knuth's book [1]_,[2]_.

References

.. [1] Donald E. Knuth,
 "The Stanford GraphBase: A Platform for Combinatorial Computing",
 ACM Press, New York, 1993.
.. [2] http://www-cs-faculty.stanford.edu/~knuth/sgb.html
"""
Authors: Aric Hagberg (hagberg@lanl.gov),
Brendt Wohlberg,
hughdbrown@yahoo.com

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

#---
The Words/Ladder graph of Section 1.1
#---
def generate_graph(words):
 from string import ascii_lowercase as lowercase
 G = nx.Graph(name="words")
 lookup = dict((c,lowercase.index(c)) for c in lowercase)
 def edit_distance_one(word):
 for i in range(len(word)):
 left, c, right = word[0:i], word[i], word[i+1:]
 j = lookup[c] # lowercase.index(c)
 for cc in lowercase[j+1:]:
 yield left + cc + right
 candgen = ((word, cand) for word in sorted(words)
 for cand in edit_distance_one(word) if cand in words)
 G.add_nodes_from(words)
 for word, cand in candgen:
 G.add_edge(word, cand)
 return G

def words_graph():
 """Return the words example graph from the Stanford GraphBase"""
 import gzip
 fh=gzip.open('words_dat.txt.gz','r')
 words=set()
 for line in fh.readlines():
 line = line.decode()
 if line.startswith('*'):
 continue
 w=str(line[0:5])
 words.add(w)
 return generate_graph(words)

if __name__ == '__main__':
 from networkx import *
 G=words_graph()
 print("Loaded words_dat.txt containing 5757 five-letter English words.")
 print("Two words are connected if they differ in one letter.")
 print("Graph has %d nodes with %d edges"
 %(number_of_nodes(G),number_of_edges(G)))
 print("%d connected components" % number_connected_components(G))

 for (source,target) in [('chaos','order'),
 ('nodes','graph'),
 ('pound','marks')]:
 print("Shortest path between %s and %s is"%(source,target))
 try:
 sp=shortest_path(G, source, target)
 for n in sp:
 print(n)
 except nx.NetworkXNoPath:
 print("None")

NetworkX

Javascript

	Release

	1.11

	Date

	Jul 05, 2017

	Force

	Http Server

NetworkX

Force

[source code]

"""Example of writing JSON format graph data and using the D3 Javascript library to produce an HTML/Javascript drawing.
"""
Author: Aric Hagberg <aric.hagberg@gmail.com>

Copyright (C) 2011-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.
import json
import networkx as nx
from networkx.readwrite import json_graph
import http_server

G = nx.barbell_graph(6,3)
this d3 example uses the name attribute for the mouse-hover value,
so add a name to each node
for n in G:
 G.node[n]['name'] = n
write json formatted data
d = json_graph.node_link_data(G) # node-link format to serialize
write json
json.dump(d, open('force/force.json','w'))
print('Wrote node-link JSON data to force/force.json')
open URL in running web browser
http_server.load_url('force/force.html')
print('Or copy all files in force/ to webserver and load force/force.html')

NetworkX

Http Server

[source code]

helper to load url
runs webserver and loads url with webbrowswer module
import sys

def load_url(path):
 PORT = 8000
 httpd = StoppableHTTPServer(("127.0.0.1",PORT), handler)
 thread.start_new_thread(httpd.serve, ())
 webbrowser.open_new('http://localhost:%s/%s'%(PORT,path))
 input("Press <RETURN> to stop server\n")
 httpd.stop()
 print("To restart server run: \n%s"%server)

if sys.version_info[0] == 2:
 import SimpleHTTPServer, BaseHTTPServer
 import socket
 import thread
 import webbrowser
 handler = SimpleHTTPServer.SimpleHTTPRequestHandler
 input = raw_input
 server = "python -m SimpleHTTPServer 8000"

 class StoppableHTTPServer(BaseHTTPServer.HTTPServer):

 def server_bind(self):
 BaseHTTPServer.HTTPServer.server_bind(self)
 self.socket.settimeout(1)
 self.run = True

 def get_request(self):
 while self.run:
 try:
 sock, addr = self.socket.accept()
 sock.settimeout(None)
 return (sock, addr)
 except socket.timeout:
 pass

 def stop(self):
 self.run = False

 def serve(self):
 while self.run:
 self.handle_request()

else:
 import http.server, http.server
 import socket
 import _thread as thread
 import webbrowser
 handler = http.server.SimpleHTTPRequestHandler
 server = "python -m http.server 8000"

 class StoppableHTTPServer(http.server.HTTPServer):

 def server_bind(self):
 http.server.HTTPServer.server_bind(self)
 self.socket.settimeout(1)
 self.run = True

 def get_request(self):
 while self.run:
 try:
 sock, addr = self.socket.accept()
 sock.settimeout(None)
 return (sock, addr)
 except socket.timeout:
 pass

 def stop(self):
 self.run = False

 def serve(self):
 while self.run:
 self.handle_request()

NetworkX

Multigraph

	Release

	1.11

	Date

	Jul 05, 2017

	Chess Masters

NetworkX

Chess Masters

[image: ../../_images/chess_masters1.png]
[source code]

#!/usr/bin/env python

"""
An example of the MultiDiGraph clas

The function chess_pgn_graph reads a collection of chess
matches stored in the specified PGN file
(PGN ="Portable Game Notation")
Here the (compressed) default file ---
 chess_masters_WCC.pgn.bz2 ---
contains all 685 World Chess Championship matches
from 1886 - 1985.
(data from http://chessproblem.my-free-games.com/chess/games/Download-PGN.php)

The chess_pgn_graph() function returns a MultiDiGraph
with multiple edges. Each node is
the last name of a chess master. Each edge is directed
from white to black and contains selected game info.

The key statement in chess_pgn_graph below is
 G.add_edge(white, black, game_info)
where game_info is a dict describing each game.

"""
Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

tag names specifying what game info should be
stored in the dict on each digraph edge
game_details=["Event",
 "Date",
 "Result",
 "ECO",
 "Site"]

def chess_pgn_graph(pgn_file="chess_masters_WCC.pgn.bz2"):
 """Read chess games in pgn format in pgn_file.

 Filenames ending in .gz or .bz2 will be uncompressed.

 Return the MultiDiGraph of players connected by a chess game.
 Edges contain game data in a dict.

 """
 import bz2
 G=nx.MultiDiGraph()
 game={}
 datafile = bz2.BZ2File(pgn_file)
 lines = (line.decode().rstrip('\r\n') for line in datafile)
 for line in lines:
 if line.startswith('['):
 tag,value=line[1:-1].split(' ',1)
 game[str(tag)]=value.strip('"')
 else:
 # empty line after tag set indicates
 # we finished reading game info
 if game:
 white=game.pop('White')
 black=game.pop('Black')
 G.add_edge(white, black, **game)
 game={}
 return G

if __name__ == '__main__':
 G=chess_pgn_graph()

 ngames=G.number_of_edges()
 nplayers=G.number_of_nodes()

 print("Loaded %d chess games between %d players\n"\
 % (ngames,nplayers))

 # identify connected components
 # of the undirected version
 Gcc=list(nx.connected_component_subgraphs(G.to_undirected()))
 if len(Gcc)>1:
 print("Note the disconnected component consisting of:")
 print(Gcc[1].nodes())

 # find all games with B97 opening (as described in ECO)
 openings=set([game_info['ECO']
 for (white,black,game_info) in G.edges(data=True)])
 print("\nFrom a total of %d different openings,"%len(openings))
 print('the following games used the Sicilian opening')
 print('with the Najdorff 7...Qb6 "Poisoned Pawn" variation.\n')

 for (white,black,game_info) in G.edges(data=True):
 if game_info['ECO']=='B97':
 print(white,"vs",black)
 for k,v in game_info.items():
 print(" ",k,": ",v)
 print("\n")

 try:
 import matplotlib.pyplot as plt
 except ImportError:
 import sys
 print("Matplotlib needed for drawing. Skipping")
 sys.exit(0)

 # make new undirected graph H without multi-edges
 H=nx.Graph(G)

 # edge width is proportional number of games played
 edgewidth=[]
 for (u,v,d) in H.edges(data=True):
 edgewidth.append(len(G.get_edge_data(u,v)))

 # node size is proportional to number of games won
 wins=dict.fromkeys(G.nodes(),0.0)
 for (u,v,d) in G.edges(data=True):
 r=d['Result'].split('-')
 if r[0]=='1':
 wins[u]+=1.0
 elif r[0]=='1/2':
 wins[u]+=0.5
 wins[v]+=0.5
 else:
 wins[v]+=1.0
 try:
 pos=nx.nx_agraph.graphviz_layout(H)
 except:
 pos=nx.spring_layout(H,iterations=20)

 plt.rcParams['text.usetex'] = False
 plt.figure(figsize=(8,8))
 nx.draw_networkx_edges(H,pos,alpha=0.3,width=edgewidth, edge_color='m')
 nodesize=[wins[v]*50 for v in H]
 nx.draw_networkx_nodes(H,pos,node_size=nodesize,node_color='w',alpha=0.4)
 nx.draw_networkx_edges(H,pos,alpha=0.4,node_size=0,width=1,edge_color='k')
 nx.draw_networkx_labels(H,pos,fontsize=14)
 font = {'fontname' : 'Helvetica',
 'color' : 'k',
 'fontweight' : 'bold',
 'fontsize' : 14}
 plt.title("World Chess Championship Games: 1886 - 1985", font)

 # change font and write text (using data coordinates)
 font = {'fontname' : 'Helvetica',
 'color' : 'r',
 'fontweight' : 'bold',
 'fontsize' : 14}

 plt.text(0.5, 0.97, "edge width = # games played",
 horizontalalignment='center',
 transform=plt.gca().transAxes)
 plt.text(0.5, 0.94, "node size = # games won",
 horizontalalignment='center',
 transform=plt.gca().transAxes)

 plt.axis('off')
 plt.savefig("chess_masters.png",dpi=75)
 print("Wrote chess_masters.png")
 plt.show() # display

NetworkX

Pygraphviz

	Release

	1.11

	Date

	Jul 05, 2017

	Pygraphviz Attributes

	Pygraphviz Draw

	Pygraphviz Simple

	Write Dotfile

NetworkX

Pygraphviz Attributes

[source code]

#!/usr/bin/env python
"""
An example showing how to use the interface to the pygraphviz
AGraph class to convert to and from graphviz.

Also see the pygraphviz documentation and examples at
http://pygraphviz.github.io/

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

networkx graph
G = nx.Graph()
ad edges with red color
G.add_edge(1, 2, color='red')
G.add_edge(2, 3, color='red')
add nodes 3 and 4
G.add_node(3)
G.add_node(4)

convert to a graphviz agraph
A = nx.nx_agraph.to_agraph(G)

write to dot file
A.write('k5_attributes.dot')

convert back to networkx Graph with attributes on edges and
default attributes as dictionary data
X = nx.nx_agraph.from_agraph(A)
print("edges")
print(X.edges(data=True))
print("default graph attributes")
print(X.graph)
print("node node attributes")
print(X.node)

NetworkX

Pygraphviz Draw

[source code]

#!/usr/bin/env python
"""
An example showing how to use the interface to the pygraphviz
AGraph class to draw a graph.

Also see the pygraphviz documentation and examples at
http://pygraphviz.github.io/

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

plain graph

G = nx.complete_graph(5) # start with K5 in networkx
A = nx.nx_agraph.to_agraph(G) # convert to a graphviz graph
A.layout() # neato layout
A.draw("k5.ps") # write postscript in k5.ps with neato layout

NetworkX

Pygraphviz Simple

[source code]

#!/usr/bin/env python
"""
An example showing how to use the interface to the pygraphviz
AGraph class to convert to and from graphviz.

Also see the pygraphviz documentation and examples at
http://pygraphviz.github.io/

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2006-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

plain graph

G = nx.complete_graph(5) # start with K5 in networkx
A = nx.nx_agraph.to_agraph(G) # convert to a graphviz graph
X1 = nx.nx_agraph.from_agraph(A) # convert back to networkx (but as Graph)
X2 = nx.Graph(A) # fancy way to do conversion
G1 = nx.Graph(X1) # now make it a Graph

A.write('k5.dot') # write to dot file
X3 = nx.nx_agraph.read_dot('k5.dot') # read from dotfile

NetworkX

Write Dotfile

[source code]

#!/usr/bin/env python
"""
Write a dot file from a networkx graph for further processing with graphviz.

You need to have either pygraphviz or pydotplus for this example.

See http://networkx.github.io/documentation/latest/reference/drawing.html
for more info.

"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.

import networkx as nx

and the following code block is not needed
but we want to see which module is used and
if and why it fails
try:
 import pygraphviz
 from networkx.drawing.nx_agraph import write_dot
 print("using package pygraphviz")
except ImportError:
 try:
 import pydotplus
 from networkx.drawing.nx_pydot import write_dot
 print("using package pydotplus")
 except ImportError:
 print()
 print("Both pygraphviz and pydotplus were not found ")
 print("see http://networkx.github.io/documentation"
 "/latest/reference/drawing.html for info")
 print()
 raise

G=nx.grid_2d_graph(5,5) # 5x5 grid
write_dot(G,"grid.dot")
print("Now run: neato -Tps grid.dot >grid.ps")

NetworkX

Subclass

	Release

	1.11

	Date

	Jul 05, 2017

	Antigraph

	Printgraph

NetworkX

Antigraph

[source code]

""" Complement graph class for small footprint when working on dense graphs.

This class allows you to add the edges that *do not exist* in the dense
graph. However, when applying algorithms to this complement graph data
structure, it behaves as if it were the dense version. So it can be used
directly in several NetworkX algorithms.

This subclass has only been tested for k-core, connected_components,
and biconnected_components algorithms but might also work for other
algorithms.

"""
Author: Jordi Torrents <jtorrents@milnou.net>

Copyright (C) 2015-2016 by
Jordi Torrents <jtorrents@milnou.net>
All rights reserved.
BSD license.
import networkx as nx
from networkx.exception import NetworkXError

__all__ = ['AntiGraph']

class AntiGraph(nx.Graph):
 """
 Class for complement graphs.

 The main goal is to be able to work with big and dense graphs with
 a low memory foodprint.

 In this class you add the edges that *do not exist* in the dense graph,
 the report methods of the class return the neighbors, the edges and
 the degree as if it was the dense graph. Thus it's possible to use
 an instance of this class with some of NetworkX functions.
 """

 all_edge_dict = {'weight': 1}
 def single_edge_dict(self):
 return self.all_edge_dict
 edge_attr_dict_factory = single_edge_dict

 def __getitem__(self, n):
 """Return a dict of neighbors of node n in the dense graph.

 Parameters

 n : node
 A node in the graph.

 Returns

 adj_dict : dictionary
 The adjacency dictionary for nodes connected to n.

 """
 return dict((node, self.all_edge_dict) for node in
 set(self.adj) - set(self.adj[n]) - set([n]))

 def neighbors(self, n):
 """Return a list of the nodes connected to the node n in
 the dense graph.

 Parameters

 n : node
 A node in the graph

 Returns

 nlist : list
 A list of nodes that are adjacent to n.

 Raises

 NetworkXError
 If the node n is not in the graph.

 """
 try:
 return list(set(self.adj) - set(self.adj[n]) - set([n]))
 except KeyError:
 raise NetworkXError("The node %s is not in the graph."%(n,))

 def neighbors_iter(self, n):
 """Return an iterator over all neighbors of node n in the
 dense graph.

 """
 try:
 return iter(set(self.adj) - set(self.adj[n]) - set([n]))
 except KeyError:
 raise NetworkXError("The node %s is not in the graph."%(n,))

 def degree(self, nbunch=None, weight=None):
 """Return the degree of a node or nodes in the dense graph.
 """
 if nbunch in self: # return a single node
 return next(self.degree_iter(nbunch,weight))[1]
 else: # return a dict
 return dict(self.degree_iter(nbunch,weight))

 def degree_iter(self, nbunch=None, weight=None):
 """Return an iterator for (node, degree) in the dense graph.

 The node degree is the number of edges adjacent to the node.

 Parameters

 nbunch : iterable container, optional (default=all nodes)
 A container of nodes. The container will be iterated
 through once.

 weight : string or None, optional (default=None)
 The edge attribute that holds the numerical value used
 as a weight. If None, then each edge has weight 1.
 The degree is the sum of the edge weights adjacent to the node.

 Returns

 nd_iter : an iterator
 The iterator returns two-tuples of (node, degree).

 See Also

 degree

 Examples

 >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
 >>> G.add_path([0,1,2,3])
 >>> list(G.degree_iter(0)) # node 0 with degree 1
 [(0, 1)]
 >>> list(G.degree_iter([0,1]))
 [(0, 1), (1, 2)]

 """
 if nbunch is None:
 nodes_nbrs = ((n, {v: self.all_edge_dict for v in
 set(self.adj) - set(self.adj[n]) - set([n])})
 for n in self.nodes_iter())
 else:
 nodes_nbrs= ((n, {v: self.all_edge_dict for v in
 set(self.nodes()) - set(self.adj[n]) - set([n])})
 for n in self.nbunch_iter(nbunch))

 if weight is None:
 for n,nbrs in nodes_nbrs:
 yield (n,len(nbrs)+(n in nbrs)) # return tuple (n,degree)
 else:
 # AntiGraph is a ThinGraph so all edges have weight 1
 for n,nbrs in nodes_nbrs:
 yield (n, sum((nbrs[nbr].get(weight, 1) for nbr in nbrs)) +
 (n in nbrs and nbrs[n].get(weight, 1)))

 def adjacency_iter(self):
 """Return an iterator of (node, adjacency set) tuples for all nodes
 in the dense graph.

 This is the fastest way to look at every edge.
 For directed graphs, only outgoing adjacencies are included.

 Returns

 adj_iter : iterator
 An iterator of (node, adjacency set) for all nodes in
 the graph.

 """
 for n in self.adj:
 yield (n, set(self.adj) - set(self.adj[n]) - set([n]))

if __name__ == '__main__':
 # Build several pairs of graphs, a regular graph
 # and the AntiGraph of it's complement, which behaves
 # as if it were the original graph.
 Gnp = nx.gnp_random_graph(20,0.8)
 Anp = AntiGraph(nx.complement(Gnp))
 Gd = nx.davis_southern_women_graph()
 Ad = AntiGraph(nx.complement(Gd))
 Gk = nx.karate_club_graph()
 Ak = AntiGraph(nx.complement(Gk))
 pairs = [(Gnp, Anp), (Gd, Ad), (Gk, Ak)]
 # test connected components
 for G, A in pairs:
 gc = [set(c) for c in nx.connected_components(G)]
 ac = [set(c) for c in nx.connected_components(A)]
 for comp in ac:
 assert comp in gc
 # test biconnected components
 for G, A in pairs:
 gc = [set(c) for c in nx.biconnected_components(G)]
 ac = [set(c) for c in nx.biconnected_components(A)]
 for comp in ac:
 assert comp in gc
 # test degree
 for G, A in pairs:
 node = list(G.nodes())[0]
 nodes = list(G.nodes())[1:4]
 assert G.degree(node) == A.degree(node)
 assert sum(G.degree().values()) == sum(A.degree().values())
 # AntiGraph is a ThinGraph, so all the weights are 1
 assert sum(A.degree().values()) == sum(A.degree(weight='weight').values())
 assert sum(G.degree(nodes).values()) == sum(A.degree(nodes).values())

NetworkX

Printgraph

[source code]

"""
Example subclass of the Graph class.
"""
Author: Aric Hagberg (hagberg@lanl.gov)

Copyright (C) 2004-2016 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>
All rights reserved.
BSD license.
#
__docformat__ = "restructuredtext en"

from networkx import Graph

from networkx.exception import NetworkXException, NetworkXError
import networkx.convert as convert
from copy import deepcopy

class PrintGraph(Graph):
 """
 Example subclass of the Graph class.

 Prints activity log to file or standard output.
 """
 def __init__(self, data=None, name='', file=None, **attr):
 Graph.__init__(self, data=data,name=name,**attr)
 if file is None:
 import sys
 self.fh=sys.stdout
 else:
 self.fh=open(file,'w')

 def add_node(self, n, attr_dict=None, **attr):
 Graph.add_node(self,n,attr_dict=attr_dict,**attr)
 self.fh.write("Add node: %s\n"%n)

 def add_nodes_from(self, nodes, **attr):
 for n in nodes:
 self.add_node(n, **attr)

 def remove_node(self,n):
 Graph.remove_node(self,n)
 self.fh.write("Remove node: %s\n"%n)

 def remove_nodes_from(self, nodes):
 adj = self.adj
 for n in nodes:
 self.remove_node(n)

 def add_edge(self, u, v, attr_dict=None, **attr):
 Graph.add_edge(self,u,v,attr_dict=attr_dict,**attr)
 self.fh.write("Add edge: %s-%s\n"%(u,v))

 def add_edges_from(self, ebunch, attr_dict=None, **attr):
 for e in ebunch:
 u,v=e[0:2]
 self.add_edge(u,v,attr_dict=attr_dict,**attr)

 def remove_edge(self, u, v):
 Graph.remove_edge(self,u,v)
 self.fh.write("Remove edge: %s-%s\n"%(u,v))

 def remove_edges_from(self, ebunch):
 for e in ebunch:
 u,v=e[0:2]
 self.remove_edge(u,v)

 def clear(self):
 self.name = ''
 self.adj.clear()
 self.node.clear()
 self.graph.clear()
 self.fh.write("Clear graph\n")

 def subgraph(self, nbunch, copy=True):
 # subgraph is needed here since it can destroy edges in the
 # graph (copy=False) and we want to keep track of all changes.
 #
 # Also for copy=True Graph() uses dictionary assignment for speed
 # Here we use H.add_edge()
 bunch =set(self.nbunch_iter(nbunch))

 if not copy:
 # remove all nodes (and attached edges) not in nbunch
 self.remove_nodes_from([n for n in self if n not in bunch])
 self.name = "Subgraph of (%s)"%(self.name)
 return self
 else:
 # create new graph and copy subgraph into it
 H = self.__class__()
 H.name = "Subgraph of (%s)"%(self.name)
 # add nodes
 H.add_nodes_from(bunch)
 # add edges
 seen=set()
 for u,nbrs in self.adjacency_iter():
 if u in bunch:
 for v,datadict in nbrs.items():
 if v in bunch and v not in seen:
 dd=deepcopy(datadict)
 H.add_edge(u,v,dd)
 seen.add(u)
 # copy node and graph attr dicts
 H.node=dict((n,deepcopy(d))
 for (n,d) in self.node.items() if n in H)
 H.graph=deepcopy(self.graph)
 return H

if __name__=='__main__':
 G=PrintGraph()
 G.add_node('foo')
 G.add_nodes_from('bar',weight=8)
 G.remove_node('b')
 G.remove_nodes_from('ar')
 print(G.nodes(data=True))
 G.add_edge(0,1,weight=10)
 print(G.edges(data=True))
 G.remove_edge(0,1)
 G.add_edges_from(list(zip(list(range(0o3)),list(range(1,4)))),weight=10)
 print(G.edges(data=True))
 G.remove_edges_from(list(zip(list(range(0o3)),list(range(1,4)))))
 print(G.edges(data=True))

 G=PrintGraph()
 G.add_path(list(range(10)))
 print("subgraph")
 H1=G.subgraph(list(range(4)),copy=False)
 H2=G.subgraph(list(range(4)),copy=False)
 print(H1.edges())
 print(H2.edges())

NetworkX

 Python Module Index

 a |
 c |
 d |
 e |
 g |
 l |
 r |
 u

 		 	

 		
 a	

 	[image: -]
 	
 networkx.algorithms	

 	
 	
 networkx.algorithms.approximation	

 	
 	
 networkx.algorithms.approximation.clique	

 	
 	
 networkx.algorithms.approximation.clustering_coefficient	

 	
 	
 networkx.algorithms.approximation.connectivity	

 	
 	
 networkx.algorithms.approximation.dominating_set	

 	
 	
 networkx.algorithms.approximation.independent_set	

 	
 	
 networkx.algorithms.approximation.kcomponents	

 	
 	
 networkx.algorithms.approximation.matching	

 	
 	
 networkx.algorithms.approximation.ramsey	

 	
 	
 networkx.algorithms.approximation.vertex_cover	

 	
 	
 networkx.algorithms.assortativity	

 	
 	
 networkx.algorithms.bipartite	

 	
 	
 networkx.algorithms.bipartite.basic	

 	
 	
 networkx.algorithms.bipartite.centrality	

 	
 	
 networkx.algorithms.bipartite.cluster	

 	
 	
 networkx.algorithms.bipartite.generators	

 	
 	
 networkx.algorithms.bipartite.matching	

 	
 	
 networkx.algorithms.bipartite.matrix	

 	
 	
 networkx.algorithms.bipartite.projection	

 	
 	
 networkx.algorithms.bipartite.redundancy	

 	
 	
 networkx.algorithms.bipartite.spectral	

 	
 	
 networkx.algorithms.block	

 	
 	
 networkx.algorithms.boundary	

 	
 	
 networkx.algorithms.centrality	

 	
 	
 networkx.algorithms.chordal.chordal_alg	

 	
 	
 networkx.algorithms.clique	

 	
 	
 networkx.algorithms.cluster	

 	
 	
 networkx.algorithms.coloring	

 	
 	
 networkx.algorithms.community	

 	
 	
 networkx.algorithms.community.kclique	

 	
 	
 networkx.algorithms.components	

 	
 	
 networkx.algorithms.components.attracting	

 	
 	
 networkx.algorithms.components.biconnected	

 	
 	
 networkx.algorithms.components.connected	

 	
 	
 networkx.algorithms.components.semiconnected	

 	
 	
 networkx.algorithms.components.strongly_connected	

 	
 	
 networkx.algorithms.components.weakly_connected	

 	
 	
 networkx.algorithms.connectivity	

 	
 	
 networkx.algorithms.connectivity.connectivity	

 	
 	
 networkx.algorithms.connectivity.cuts	

 	
 	
 networkx.algorithms.connectivity.kcomponents	

 	
 	
 networkx.algorithms.connectivity.kcutsets	

 	
 	
 networkx.algorithms.connectivity.stoerwagner	

 	
 	
 networkx.algorithms.connectivity.utils	

 	
 	
 networkx.algorithms.core	

 	
 	
 networkx.algorithms.cycles	

 	
 	
 networkx.algorithms.dag	

 	
 	
 networkx.algorithms.distance_measures	

 	
 	
 networkx.algorithms.distance_regular	

 	
 	
 networkx.algorithms.dominance	

 	
 	
 networkx.algorithms.dominating	

 	
 	
 networkx.algorithms.euler	

 	
 	
 networkx.algorithms.flow	

 	
 	
 networkx.algorithms.graphical	

 	
 	
 networkx.algorithms.hierarchy	

 	
 	
 networkx.algorithms.hybrid	

 	
 	
 networkx.algorithms.isolate	

 	
 	
 networkx.algorithms.isomorphism	

 	
 	
 networkx.algorithms.isomorphism.isomorphvf2	

 	
 	
 networkx.algorithms.link_analysis.hits_alg	

 	
 	
 networkx.algorithms.link_analysis.pagerank_alg	

 	
 	
 networkx.algorithms.link_prediction	

 	
 	
 networkx.algorithms.matching	

 	
 	
 networkx.algorithms.minors	

 	
 	
 networkx.algorithms.mis	

 	
 	
 networkx.algorithms.mst	

 	
 	
 networkx.algorithms.operators.all	

 	
 	
 networkx.algorithms.operators.binary	

 	
 	
 networkx.algorithms.operators.product	

 	
 	
 networkx.algorithms.operators.unary	

 	
 	
 networkx.algorithms.richclub	

 	
 	
 networkx.algorithms.shortest_paths.astar	

 	
 	
 networkx.algorithms.shortest_paths.dense	

 	
 	
 networkx.algorithms.shortest_paths.generic	

 	
 	
 networkx.algorithms.shortest_paths.unweighted	

 	
 	
 networkx.algorithms.shortest_paths.weighted	

 	
 	
 networkx.algorithms.simple_paths	

 	
 	
 networkx.algorithms.swap	

 	
 	
 networkx.algorithms.traversal.breadth_first_search	

 	
 	
 networkx.algorithms.traversal.depth_first_search	

 	
 	
 networkx.algorithms.traversal.edgedfs	

 	
 	
 networkx.algorithms.tree.branchings	

 	
 	
 networkx.algorithms.tree.recognition	

 	
 	
 networkx.algorithms.triads	

 	
 	
 networkx.algorithms.vitality	

 		 	

 		
 c	

 	[image: -]
 	
 networkx.classes	

 	
 	
 networkx.classes.function	

 	
 	
 networkx.convert	

 	
 	
 networkx.convert_matrix	

 		 	

 		
 d	

 	[image: -]
 	
 networkx.drawing	

 	
 	
 networkx.drawing.layout	

 	
 	
 networkx.drawing.nx_agraph	

 	
 	
 networkx.drawing.nx_pydot	

 	
 	
 networkx.drawing.nx_pylab	

 		 	

 		
 e	

 	
 	
 networkx.exception	

 		 	

 		
 g	

 	[image: -]
 	
 networkx.generators	

 	
 	
 networkx.generators.atlas	

 	
 	
 networkx.generators.classic	

 	
 	
 networkx.generators.community	

 	
 	
 networkx.generators.degree_seq	

 	
 	
 networkx.generators.directed	

 	
 	
 networkx.generators.ego	

 	
 	
 networkx.generators.expanders	

 	
 	
 networkx.generators.geometric	

 	
 	
 networkx.generators.intersection	

 	
 	
 networkx.generators.line	

 	
 	
 networkx.generators.nonisomorphic_trees	

 	
 	
 networkx.generators.random_clustered	

 	
 	
 networkx.generators.random_graphs	

 	
 	
 networkx.generators.small	

 	
 	
 networkx.generators.social	

 	
 	
 networkx.generators.stochastic	

 		 	

 		
 l	

 	[image: -]
 	
 networkx.linalg	

 	
 	
 networkx.linalg.algebraicconnectivity	

 	
 	
 networkx.linalg.attrmatrix	

 	
 	
 networkx.linalg.graphmatrix	

 	
 	
 networkx.linalg.laplacianmatrix	

 	
 	
 networkx.linalg.spectrum	

 		 	

 		
 r	

 	[image: -]
 	
 networkx.readwrite	

 	
 	
 networkx.readwrite.adjlist	

 	
 	
 networkx.readwrite.edgelist	

 	
 	
 networkx.readwrite.gexf	

 	
 	
 networkx.readwrite.gml	

 	
 	
 networkx.readwrite.gpickle	

 	
 	
 networkx.readwrite.graph6	

 	
 	
 networkx.readwrite.graphml	

 	
 	
 networkx.readwrite.json_graph	

 	
 	
 networkx.readwrite.leda	

 	
 	
 networkx.readwrite.multiline_adjlist	

 	
 	
 networkx.readwrite.nx_shp	

 	
 	
 networkx.readwrite.nx_yaml	

 	
 	
 networkx.readwrite.pajek	

 	
 	
 networkx.readwrite.sparse6	

 	
 	
 networkx.relabel	

 		 	

 		
 u	

 	[image: -]
 	
 networkx.utils	

 	
 	
 networkx.utils.contextmanagers	

 	
 	
 networkx.utils.decorators	

 	
 	
 networkx.utils.misc	

 	
 	
 networkx.utils.random_sequence	

 	
 	
 networkx.utils.rcm	

 	
 	
 networkx.utils.union_find	

NetworkX

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | Z

_

 	
 	__contains__() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	__getitem__() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	__init__() (DiGraph method)

 	(DiGraphMatcher method)

 	(Edmonds method)

 	(Graph method)

 	(GraphMatcher method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	
 	__iter__() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	__len__() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

A

 	
 	adamic_adar_index() (in module networkx.algorithms.link_prediction)

 	add_cycle() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	add_edge() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	add_edges_from() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	add_node() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	add_nodes_from() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	add_path() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	add_star() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	add_weighted_edges_from() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	adjacency_data() (in module networkx.readwrite.json_graph)

 	adjacency_graph() (in module networkx.readwrite.json_graph)

 	adjacency_iter() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	
 	adjacency_list() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	adjacency_matrix() (in module networkx.linalg.graphmatrix)

 	adjacency_spectrum() (in module networkx.linalg.spectrum)

 	algebraic_connectivity() (in module networkx.linalg.algebraicconnectivity)

 	all_neighbors() (in module networkx.classes.function)

 	all_node_cuts() (in module networkx.algorithms.connectivity.kcutsets)

 	all_pairs_dijkstra_path() (in module networkx.algorithms.shortest_paths.weighted)

 	all_pairs_dijkstra_path_length() (in module networkx.algorithms.shortest_paths.weighted)

 	all_pairs_node_connectivity() (in module networkx.algorithms.approximation.connectivity)

 	(in module networkx.algorithms.connectivity.connectivity)

 	all_pairs_shortest_path() (in module networkx.algorithms.shortest_paths.unweighted)

 	all_pairs_shortest_path_length() (in module networkx.algorithms.shortest_paths.unweighted)

 	all_shortest_paths() (in module networkx.algorithms.shortest_paths.generic)

 	all_simple_paths() (in module networkx.algorithms.simple_paths)

 	alternating_havel_hakimi_graph() (in module networkx.algorithms.bipartite.generators)

 	ancestors() (in module networkx.algorithms.dag)

 	antichains() (in module networkx.algorithms.dag)

 	approximate_current_flow_betweenness_centrality() (in module networkx.algorithms.centrality)

 	articulation_points() (in module networkx.algorithms.components.biconnected)

 	astar_path() (in module networkx.algorithms.shortest_paths.astar)

 	astar_path_length() (in module networkx.algorithms.shortest_paths.astar)

 	attr_matrix() (in module networkx.linalg.attrmatrix)

 	attr_sparse_matrix() (in module networkx.linalg.attrmatrix)

 	attracting_component_subgraphs() (in module networkx.algorithms.components.attracting)

 	attracting_components() (in module networkx.algorithms.components.attracting)

 	attribute_assortativity_coefficient() (in module networkx.algorithms.assortativity)

 	attribute_mixing_dict() (in module networkx.algorithms.assortativity)

 	attribute_mixing_matrix() (in module networkx.algorithms.assortativity)

 	authority_matrix() (in module networkx.algorithms.link_analysis.hits_alg)

 	average_clustering() (in module networkx.algorithms.approximation.clustering_coefficient)

 	(in module networkx.algorithms.bipartite.cluster)

 	(in module networkx.algorithms.cluster)

 	average_degree_connectivity() (in module networkx.algorithms.assortativity)

 	average_neighbor_degree() (in module networkx.algorithms.assortativity)

 	average_node_connectivity() (in module networkx.algorithms.connectivity.connectivity)

 	average_shortest_path_length() (in module networkx.algorithms.shortest_paths.generic)

B

 	
 	balanced_tree() (in module networkx.generators.classic)

 	barabasi_albert_graph() (in module networkx.generators.random_graphs)

 	barbell_graph() (in module networkx.generators.classic)

 	bellman_ford() (in module networkx.algorithms.shortest_paths.weighted)

 	betweenness_centrality() (in module networkx.algorithms.bipartite.centrality)

 	(in module networkx.algorithms.centrality)

 	bfs_edges() (in module networkx.algorithms.traversal.breadth_first_search)

 	bfs_predecessors() (in module networkx.algorithms.traversal.breadth_first_search)

 	bfs_successors() (in module networkx.algorithms.traversal.breadth_first_search)

 	bfs_tree() (in module networkx.algorithms.traversal.breadth_first_search)

 	biadjacency_matrix() (in module networkx.algorithms.bipartite.matrix)

 	
 	biconnected_component_edges() (in module networkx.algorithms.components.biconnected)

 	biconnected_component_subgraphs() (in module networkx.algorithms.components.biconnected)

 	biconnected_components() (in module networkx.algorithms.components.biconnected)

 	bidirectional_dijkstra() (in module networkx.algorithms.shortest_paths.weighted)

 	binomial_graph() (in module networkx.generators.random_graphs)

 	blockmodel() (in module networkx.algorithms.block)

 	branching_weight() (in module networkx.algorithms.tree.branchings)

 	build_auxiliary_edge_connectivity() (in module networkx.algorithms.connectivity.utils)

 	build_auxiliary_node_connectivity() (in module networkx.algorithms.connectivity.utils)

 	build_residual_network() (in module networkx.algorithms.flow)

 	bull_graph() (in module networkx.generators.small)

C

 	
 	candidate_pairs_iter() (DiGraphMatcher method)

 	(GraphMatcher method)

 	capacity_scaling() (in module networkx.algorithms.flow)

 	cartesian_product() (in module networkx.algorithms.operators.product)

 	categorical_edge_match() (in module networkx.algorithms.isomorphism)

 	categorical_multiedge_match() (in module networkx.algorithms.isomorphism)

 	categorical_node_match() (in module networkx.algorithms.isomorphism)

 	caveman_graph() (in module networkx.generators.community)

 	center() (in module networkx.algorithms.distance_measures)

 	chordal_cycle_graph() (in module networkx.generators.expanders)

 	chordal_graph_cliques() (in module networkx.algorithms.chordal.chordal_alg)

 	chordal_graph_treewidth() (in module networkx.algorithms.chordal.chordal_alg)

 	chvatal_graph() (in module networkx.generators.small)

 	circular_ladder_graph() (in module networkx.generators.classic)

 	circular_layout() (in module networkx.drawing.layout)

 	clear() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	clique_removal() (in module networkx.algorithms.approximation.clique)

 	cliques_containing_node() (in module networkx.algorithms.clique)

 	closeness_centrality() (in module networkx.algorithms.bipartite.centrality)

 	(in module networkx.algorithms.centrality)

 	closeness_vitality() (in module networkx.algorithms.vitality)

 	clustering() (in module networkx.algorithms.bipartite.cluster)

 	(in module networkx.algorithms.cluster)

 	cn_soundarajan_hopcroft() (in module networkx.algorithms.link_prediction)

 	collaboration_weighted_projected_graph() (in module networkx.algorithms.bipartite.projection)

 	color() (in module networkx.algorithms.bipartite.basic)

 	common_neighbors() (in module networkx.classes.function)

 	communicability() (in module networkx.algorithms.centrality)

 	communicability_betweenness_centrality() (in module networkx.algorithms.centrality)

 	communicability_centrality() (in module networkx.algorithms.centrality)

 	communicability_centrality_exp() (in module networkx.algorithms.centrality)

 	
 	communicability_exp() (in module networkx.algorithms.centrality)

 	complement() (in module networkx.algorithms.operators.unary)

 	complete_bipartite_graph() (in module networkx.algorithms.bipartite.generators)

 	complete_graph() (in module networkx.generators.classic)

 	complete_multipartite_graph() (in module networkx.generators.classic)

 	compose() (in module networkx.algorithms.operators.binary)

 	compose_all() (in module networkx.algorithms.operators.all)

 	condensation() (in module networkx.algorithms.components.strongly_connected)

 	configuration_model() (in module networkx.algorithms.bipartite.generators)

 	(in module networkx.generators.degree_seq)

 	connected_caveman_graph() (in module networkx.generators.community)

 	connected_component_subgraphs() (in module networkx.algorithms.components.connected)

 	connected_components() (in module networkx.algorithms.components.connected)

 	connected_double_edge_swap() (in module networkx.algorithms.swap)

 	connected_watts_strogatz_graph() (in module networkx.generators.random_graphs)

 	contracted_edge() (in module networkx.algorithms.minors)

 	contracted_nodes() (in module networkx.algorithms.minors)

 	convert_node_labels_to_integers() (in module networkx.relabel)

 	copy() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	core_number() (in module networkx.algorithms.core)

 	cost_of_flow() (in module networkx.algorithms.flow)

 	could_be_isomorphic() (in module networkx.algorithms.isomorphism)

 	create_degree_sequence() (in module networkx.utils.random_sequence)

 	create_empty_copy() (in module networkx.classes.function)

 	cubical_graph() (in module networkx.generators.small)

 	cumulative_distribution() (in module networkx.utils.random_sequence)

 	current_flow_betweenness_centrality() (in module networkx.algorithms.centrality)

 	current_flow_closeness_centrality() (in module networkx.algorithms.centrality)

 	cuthill_mckee_ordering() (in module networkx.utils.rcm)

 	cycle_basis() (in module networkx.algorithms.cycles)

 	cycle_graph() (in module networkx.generators.classic)

D

 	
 	dag_longest_path() (in module networkx.algorithms.dag)

 	dag_longest_path_length() (in module networkx.algorithms.dag)

 	davis_southern_women_graph() (in module networkx.generators.social)

 	default_opener() (in module networkx.utils.misc)

 	degree() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	(in module networkx.classes.function)

 	degree_assortativity_coefficient() (in module networkx.algorithms.assortativity)

 	degree_centrality() (in module networkx.algorithms.bipartite.centrality)

 	(in module networkx.algorithms.centrality)

 	degree_histogram() (in module networkx.classes.function)

 	degree_iter() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	degree_mixing_dict() (in module networkx.algorithms.assortativity)

 	degree_mixing_matrix() (in module networkx.algorithms.assortativity)

 	degree_pearson_correlation_coefficient() (in module networkx.algorithms.assortativity)

 	degree_sequence_tree() (in module networkx.generators.degree_seq)

 	degrees() (in module networkx.algorithms.bipartite.basic)

 	dense_gnm_random_graph() (in module networkx.generators.random_graphs)

 	density() (in module networkx.algorithms.bipartite.basic)

 	(in module networkx.classes.function)

 	desargues_graph() (in module networkx.generators.small)

 	descendants() (in module networkx.algorithms.dag)

 	dfs_edges() (in module networkx.algorithms.traversal.depth_first_search)

 	dfs_labeled_edges() (in module networkx.algorithms.traversal.depth_first_search)

 	dfs_postorder_nodes() (in module networkx.algorithms.traversal.depth_first_search)

 	dfs_predecessors() (in module networkx.algorithms.traversal.depth_first_search)

 	dfs_preorder_nodes() (in module networkx.algorithms.traversal.depth_first_search)

 	dfs_successors() (in module networkx.algorithms.traversal.depth_first_search)

 	
 	dfs_tree() (in module networkx.algorithms.traversal.depth_first_search)

 	diameter() (in module networkx.algorithms.distance_measures)

 	diamond_graph() (in module networkx.generators.small)

 	dictionary

 	difference() (in module networkx.algorithms.operators.binary)

 	DiGraph() (in module networkx)

 	dijkstra_path() (in module networkx.algorithms.shortest_paths.weighted)

 	dijkstra_path_length() (in module networkx.algorithms.shortest_paths.weighted)

 	dijkstra_predecessor_and_distance() (in module networkx.algorithms.shortest_paths.weighted)

 	directed_configuration_model() (in module networkx.generators.degree_seq)

 	directed_havel_hakimi_graph() (in module networkx.generators.degree_seq)

 	directed_laplacian_matrix() (in module networkx.linalg.laplacianmatrix)

 	discrete_sequence() (in module networkx.utils.random_sequence)

 	disjoint_union() (in module networkx.algorithms.operators.binary)

 	disjoint_union_all() (in module networkx.algorithms.operators.all)

 	dispersion() (in module networkx.algorithms.centrality)

 	dodecahedral_graph() (in module networkx.generators.small)

 	dominance_frontiers() (in module networkx.algorithms.dominance)

 	dominating_set() (in module networkx.algorithms.dominating)

 	dorogovtsev_goltsev_mendes_graph() (in module networkx.generators.classic)

 	double_edge_swap() (in module networkx.algorithms.swap)

 	draw() (in module networkx.drawing.nx_pylab)

 	draw_circular() (in module networkx.drawing.nx_pylab)

 	draw_graphviz() (in module networkx.drawing.nx_pylab)

 	draw_networkx() (in module networkx.drawing.nx_pylab)

 	draw_networkx_edge_labels() (in module networkx.drawing.nx_pylab)

 	draw_networkx_edges() (in module networkx.drawing.nx_pylab)

 	draw_networkx_labels() (in module networkx.drawing.nx_pylab)

 	draw_networkx_nodes() (in module networkx.drawing.nx_pylab)

 	draw_random() (in module networkx.drawing.nx_pylab)

 	draw_shell() (in module networkx.drawing.nx_pylab)

 	draw_spectral() (in module networkx.drawing.nx_pylab)

 	draw_spring() (in module networkx.drawing.nx_pylab)

 	duplication_divergence_graph() (in module networkx.generators.random_graphs)

E

 	
 	ebunch

 	eccentricity() (in module networkx.algorithms.distance_measures)

 	edge

 	edge attribute

 	edge_betweenness_centrality() (in module networkx.algorithms.centrality)

 	edge_boundary() (in module networkx.algorithms.boundary)

 	edge_connectivity() (in module networkx.algorithms.connectivity.connectivity)

 	edge_current_flow_betweenness_centrality() (in module networkx.algorithms.centrality)

 	edge_dfs() (in module networkx.algorithms.traversal.edgedfs)

 	edge_load() (in module networkx.algorithms.centrality)

 	edges() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	(in module networkx.classes.function)

 	edges_iter() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	(in module networkx.classes.function)

 	
 	Edmonds (class in networkx.algorithms.tree.branchings)

 	edmonds_karp() (in module networkx.algorithms.flow)

 	ego_graph() (in module networkx.generators.ego)

 	eigenvector_centrality() (in module networkx.algorithms.centrality)

 	eigenvector_centrality_numpy() (in module networkx.algorithms.centrality)

 	empty_graph() (in module networkx.generators.classic)

 	enumerate_all_cliques() (in module networkx.algorithms.clique)

 	eppstein_matching() (in module networkx.algorithms.bipartite.matching)

 	erdos_renyi_graph() (in module networkx.generators.random_graphs)

 	estrada_index() (in module networkx.algorithms.centrality)

 	eulerian_circuit() (in module networkx.algorithms.euler)

 	expected_degree_graph() (in module networkx.generators.degree_seq)

F

 	
 	fast_could_be_isomorphic() (in module networkx.algorithms.isomorphism)

 	fast_gnp_random_graph() (in module networkx.generators.random_graphs)

 	faster_could_be_isomorphic() (in module networkx.algorithms.isomorphism)

 	fiedler_vector() (in module networkx.linalg.algebraicconnectivity)

 	find_cliques() (in module networkx.algorithms.clique)

 	find_cycle() (in module networkx.algorithms.cycles)

 	find_induced_nodes() (in module networkx.algorithms.chordal.chordal_alg)

 	flatten() (in module networkx.utils.misc)

 	florentine_families_graph() (in module networkx.generators.social)

 	flow_hierarchy() (in module networkx.algorithms.hierarchy)

 	floyd_warshall() (in module networkx.algorithms.shortest_paths.dense)

 	floyd_warshall_numpy() (in module networkx.algorithms.shortest_paths.dense)

 	
 	floyd_warshall_predecessor_and_distance() (in module networkx.algorithms.shortest_paths.dense)

 	freeze() (in module networkx.classes.function)

 	from_agraph() (in module networkx.drawing.nx_agraph)

 	from_biadjacency_matrix() (in module networkx.algorithms.bipartite.matrix)

 	from_dict_of_dicts() (in module networkx.convert)

 	from_dict_of_lists() (in module networkx.convert)

 	from_edgelist() (in module networkx.convert)

 	from_numpy_matrix() (in module networkx.convert_matrix)

 	from_pandas_dataframe() (in module networkx.convert_matrix)

 	from_pydot() (in module networkx.drawing.nx_pydot)

 	from_scipy_sparse_matrix() (in module networkx.convert_matrix)

 	frucht_graph() (in module networkx.generators.small)

 	fruchterman_reingold_layout() (in module networkx.drawing.layout)

G

 	
 	gaussian_random_partition_graph() (in module networkx.generators.community)

 	general_random_intersection_graph() (in module networkx.generators.intersection)

 	generate_adjlist() (in module networkx.readwrite.adjlist)

 	generate_edgelist() (in module networkx.readwrite.edgelist)

 	generate_gml() (in module networkx.readwrite.gml)

 	generate_graph6() (in module networkx.readwrite.graph6)

 	generate_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist)

 	generate_sparse6() (in module networkx.readwrite.sparse6)

 	generate_unique_node() (in module networkx.utils.misc)

 	generic_edge_match() (in module networkx.algorithms.isomorphism)

 	generic_multiedge_match() (in module networkx.algorithms.isomorphism)

 	generic_node_match() (in module networkx.algorithms.isomorphism)

 	generic_weighted_projected_graph() (in module networkx.algorithms.bipartite.projection)

 	geographical_threshold_graph() (in module networkx.generators.geometric)

 	get_edge_attributes() (in module networkx.classes.function)

 	get_edge_data() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	
 	get_node_attributes() (in module networkx.classes.function)

 	global_parameters() (in module networkx.algorithms.distance_regular)

 	gn_graph() (in module networkx.generators.directed)

 	gnc_graph() (in module networkx.generators.directed)

 	gnm_random_graph() (in module networkx.generators.random_graphs)

 	gnmk_random_graph() (in module networkx.algorithms.bipartite.generators)

 	gnp_random_graph() (in module networkx.generators.random_graphs)

 	gnr_graph() (in module networkx.generators.directed)

 	google_matrix() (in module networkx.algorithms.link_analysis.pagerank_alg)

 	Graph() (in module networkx)

 	graph_atlas_g() (in module networkx.generators.atlas)

 	graph_clique_number() (in module networkx.algorithms.clique)

 	graph_number_of_cliques() (in module networkx.algorithms.clique)

 	graphviz_layout() (in module networkx.drawing.nx_agraph)

 	(in module networkx.drawing.nx_pydot)

 	greedy_branching() (in module networkx.algorithms.tree.branchings)

 	greedy_color() (in module networkx.algorithms.coloring)

 	grid_2d_graph() (in module networkx.generators.classic)

 	grid_graph() (in module networkx.generators.classic)

H

 	
 	has_edge() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	has_node() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	has_path() (in module networkx.algorithms.shortest_paths.generic)

 	hashable

 	
 	havel_hakimi_graph() (in module networkx.algorithms.bipartite.generators)

 	(in module networkx.generators.degree_seq)

 	heawood_graph() (in module networkx.generators.small)

 	hits() (in module networkx.algorithms.link_analysis.hits_alg)

 	hits_numpy() (in module networkx.algorithms.link_analysis.hits_alg)

 	hits_scipy() (in module networkx.algorithms.link_analysis.hits_alg)

 	hopcroft_karp_matching() (in module networkx.algorithms.bipartite.matching)

 	house_graph() (in module networkx.generators.small)

 	house_x_graph() (in module networkx.generators.small)

 	hub_matrix() (in module networkx.algorithms.link_analysis.hits_alg)

 	hypercube_graph() (in module networkx.generators.classic)

I

 	
 	icosahedral_graph() (in module networkx.generators.small)

 	identified_nodes() (in module networkx.algorithms.minors)

 	immediate_dominators() (in module networkx.algorithms.dominance)

 	in_degree() (DiGraph method)

 	(MultiDiGraph method)

 	in_degree_centrality() (in module networkx.algorithms.centrality)

 	in_degree_iter() (DiGraph method)

 	(MultiDiGraph method)

 	in_edges() (DiGraph method)

 	(MultiDiGraph method)

 	in_edges_iter() (DiGraph method)

 	(MultiDiGraph method)

 	incidence_matrix() (in module networkx.linalg.graphmatrix)

 	info() (in module networkx.classes.function)

 	initialize() (DiGraphMatcher method)

 	(GraphMatcher method)

 	intersection() (in module networkx.algorithms.operators.binary)

 	intersection_all() (in module networkx.algorithms.operators.all)

 	intersection_array() (in module networkx.algorithms.distance_regular)

 	is_aperiodic() (in module networkx.algorithms.dag)

 	is_arborescence() (in module networkx.algorithms.tree.recognition)

 	is_attracting_component() (in module networkx.algorithms.components.attracting)

 	is_biconnected() (in module networkx.algorithms.components.biconnected)

 	is_bipartite() (in module networkx.algorithms.bipartite.basic)

 	is_bipartite_node_set() (in module networkx.algorithms.bipartite.basic)

 	is_branching() (in module networkx.algorithms.tree.recognition)

 	is_chordal() (in module networkx.algorithms.chordal.chordal_alg)

 	is_connected() (in module networkx.algorithms.components.connected)

 	
 	is_digraphical() (in module networkx.algorithms.graphical)

 	is_directed() (in module networkx.classes.function)

 	is_directed_acyclic_graph() (in module networkx.algorithms.dag)

 	is_distance_regular() (in module networkx.algorithms.distance_regular)

 	is_dominating_set() (in module networkx.algorithms.dominating)

 	is_eulerian() (in module networkx.algorithms.euler)

 	is_forest() (in module networkx.algorithms.tree.recognition)

 	is_frozen() (in module networkx.classes.function)

 	is_graphical() (in module networkx.algorithms.graphical)

 	is_isolate() (in module networkx.algorithms.isolate)

 	is_isomorphic() (DiGraphMatcher method)

 	(GraphMatcher method)

 	(in module networkx.algorithms.isomorphism)

 	is_kl_connected() (in module networkx.algorithms.hybrid)

 	is_list_of_ints() (in module networkx.utils.misc)

 	is_multigraphical() (in module networkx.algorithms.graphical)

 	is_pseudographical() (in module networkx.algorithms.graphical)

 	is_semiconnected() (in module networkx.algorithms.components.semiconnected)

 	is_string_like() (in module networkx.utils.misc)

 	is_strongly_connected() (in module networkx.algorithms.components.strongly_connected)

 	is_tree() (in module networkx.algorithms.tree.recognition)

 	is_valid_degree_sequence_erdos_gallai() (in module networkx.algorithms.graphical)

 	is_valid_degree_sequence_havel_hakimi() (in module networkx.algorithms.graphical)

 	is_weakly_connected() (in module networkx.algorithms.components.weakly_connected)

 	isolates() (in module networkx.algorithms.isolate)

 	isomorphisms_iter() (DiGraphMatcher method)

 	(GraphMatcher method)

 	iterable() (in module networkx.utils.misc)

J

 	
 	jaccard_coefficient() (in module networkx.algorithms.link_prediction)

 	
 	johnson() (in module networkx.algorithms.shortest_paths.weighted)

K

 	
 	k_clique_communities() (in module networkx.algorithms.community.kclique)

 	k_components() (in module networkx.algorithms.approximation.kcomponents)

 	(in module networkx.algorithms.connectivity.kcomponents)

 	k_core() (in module networkx.algorithms.core)

 	k_corona() (in module networkx.algorithms.core)

 	k_crust() (in module networkx.algorithms.core)

 	k_nearest_neighbors() (in module networkx.algorithms.assortativity)

 	
 	k_random_intersection_graph() (in module networkx.generators.intersection)

 	k_shell() (in module networkx.algorithms.core)

 	karate_club_graph() (in module networkx.generators.social)

 	katz_centrality() (in module networkx.algorithms.centrality)

 	katz_centrality_numpy() (in module networkx.algorithms.centrality)

 	kl_connected_subgraph() (in module networkx.algorithms.hybrid)

 	kosaraju_strongly_connected_components() (in module networkx.algorithms.components.strongly_connected)

 	krackhardt_kite_graph() (in module networkx.generators.small)

L

 	
 	ladder_graph() (in module networkx.generators.classic)

 	laplacian_matrix() (in module networkx.linalg.laplacianmatrix)

 	laplacian_spectrum() (in module networkx.linalg.spectrum)

 	latapy_clustering() (in module networkx.algorithms.bipartite.cluster)

 	LCF_graph() (in module networkx.generators.small)

 	lexicographic_product() (in module networkx.algorithms.operators.product)

 	line_graph() (in module networkx.generators.line)

 	
 	literal_destringizer() (in module networkx.readwrite.gml)

 	literal_stringizer() (in module networkx.readwrite.gml)

 	load_centrality() (in module networkx.algorithms.centrality)

 	local_edge_connectivity() (in module networkx.algorithms.connectivity.connectivity)

 	local_node_connectivity() (in module networkx.algorithms.approximation.connectivity)

 	(in module networkx.algorithms.connectivity.connectivity)

 	lollipop_graph() (in module networkx.generators.classic)

M

 	
 	make_clique_bipartite() (in module networkx.algorithms.clique)

 	make_max_clique_graph() (in module networkx.algorithms.clique)

 	make_small_graph() (in module networkx.generators.small)

 	make_str() (in module networkx.utils.misc)

 	margulis_gabber_galil_graph() (in module networkx.generators.expanders)

 	match() (DiGraphMatcher method)

 	(GraphMatcher method)

 	max_clique() (in module networkx.algorithms.approximation.clique)

 	max_flow_min_cost() (in module networkx.algorithms.flow)

 	max_weight_matching() (in module networkx.algorithms.matching)

 	maximal_independent_set() (in module networkx.algorithms.mis)

 	maximal_matching() (in module networkx.algorithms.matching)

 	maximum_branching() (in module networkx.algorithms.tree.branchings)

 	maximum_flow() (in module networkx.algorithms.flow)

 	maximum_flow_value() (in module networkx.algorithms.flow)

 	maximum_independent_set() (in module networkx.algorithms.approximation.independent_set)

 	maximum_spanning_arborescence() (in module networkx.algorithms.tree.branchings)

 	min_cost_flow() (in module networkx.algorithms.flow)

 	
 	min_cost_flow_cost() (in module networkx.algorithms.flow)

 	min_edge_dominating_set() (in module networkx.algorithms.approximation.dominating_set)

 	min_maximal_matching() (in module networkx.algorithms.approximation.matching)

 	min_weighted_dominating_set() (in module networkx.algorithms.approximation.dominating_set)

 	min_weighted_vertex_cover() (in module networkx.algorithms.approximation.vertex_cover)

 	minimum_branching() (in module networkx.algorithms.tree.branchings)

 	minimum_cut() (in module networkx.algorithms.flow)

 	minimum_cut_value() (in module networkx.algorithms.flow)

 	minimum_edge_cut() (in module networkx.algorithms.connectivity.cuts)

 	minimum_node_cut() (in module networkx.algorithms.connectivity.cuts)

 	minimum_spanning_arborescence() (in module networkx.algorithms.tree.branchings)

 	minimum_spanning_edges() (in module networkx.algorithms.mst)

 	minimum_spanning_tree() (in module networkx.algorithms.mst)

 	minimum_st_edge_cut() (in module networkx.algorithms.connectivity.cuts)

 	minimum_st_node_cut() (in module networkx.algorithms.connectivity.cuts)

 	moebius_kantor_graph() (in module networkx.generators.small)

 	MultiDiGraph() (in module networkx)

 	MultiGraph() (in module networkx)

N

 	
 	navigable_small_world_graph() (in module networkx.generators.geometric)

 	nbunch

 	nbunch_iter() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	negative_edge_cycle() (in module networkx.algorithms.shortest_paths.weighted)

 	neighbors() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	neighbors_iter() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	network_simplex() (in module networkx.algorithms.flow)

 	networkx.algorithms.approximation (module)

 	networkx.algorithms.approximation.clique (module)

 	networkx.algorithms.approximation.clustering_coefficient (module)

 	networkx.algorithms.approximation.connectivity (module)

 	networkx.algorithms.approximation.dominating_set (module)

 	networkx.algorithms.approximation.independent_set (module)

 	networkx.algorithms.approximation.kcomponents (module)

 	networkx.algorithms.approximation.matching (module)

 	networkx.algorithms.approximation.ramsey (module)

 	networkx.algorithms.approximation.vertex_cover (module)

 	networkx.algorithms.assortativity (module)

 	networkx.algorithms.bipartite (module)

 	networkx.algorithms.bipartite.basic (module)

 	networkx.algorithms.bipartite.centrality (module)

 	networkx.algorithms.bipartite.cluster (module)

 	networkx.algorithms.bipartite.generators (module)

 	networkx.algorithms.bipartite.matching (module)

 	networkx.algorithms.bipartite.matrix (module)

 	networkx.algorithms.bipartite.projection (module)

 	networkx.algorithms.bipartite.redundancy (module)

 	networkx.algorithms.bipartite.spectral (module)

 	networkx.algorithms.block (module)

 	networkx.algorithms.boundary (module)

 	networkx.algorithms.centrality (module)

 	networkx.algorithms.chordal.chordal_alg (module)

 	networkx.algorithms.clique (module)

 	networkx.algorithms.cluster (module)

 	networkx.algorithms.coloring (module)

 	networkx.algorithms.community (module)

 	networkx.algorithms.community.kclique (module)

 	networkx.algorithms.components (module)

 	networkx.algorithms.components.attracting (module)

 	networkx.algorithms.components.biconnected (module)

 	networkx.algorithms.components.connected (module)

 	networkx.algorithms.components.semiconnected (module)

 	networkx.algorithms.components.strongly_connected (module)

 	networkx.algorithms.components.weakly_connected (module)

 	networkx.algorithms.connectivity (module)

 	networkx.algorithms.connectivity.connectivity (module)

 	networkx.algorithms.connectivity.cuts (module)

 	networkx.algorithms.connectivity.kcomponents (module)

 	networkx.algorithms.connectivity.kcutsets (module)

 	networkx.algorithms.connectivity.stoerwagner (module)

 	networkx.algorithms.connectivity.utils (module)

 	networkx.algorithms.core (module)

 	networkx.algorithms.cycles (module)

 	networkx.algorithms.dag (module)

 	networkx.algorithms.distance_measures (module)

 	networkx.algorithms.distance_regular (module)

 	networkx.algorithms.dominance (module)

 	networkx.algorithms.dominating (module)

 	networkx.algorithms.euler (module)

 	networkx.algorithms.flow (module)

 	networkx.algorithms.graphical (module)

 	networkx.algorithms.hierarchy (module)

 	networkx.algorithms.hybrid (module)

 	networkx.algorithms.isolate (module)

 	networkx.algorithms.isomorphism (module)

 	networkx.algorithms.isomorphism.isomorphvf2 (module)

 	networkx.algorithms.link_analysis.hits_alg (module)

 	networkx.algorithms.link_analysis.pagerank_alg (module)

 	networkx.algorithms.link_prediction (module)

 	networkx.algorithms.matching (module)

 	networkx.algorithms.minors (module)

 	networkx.algorithms.mis (module)

 	networkx.algorithms.mst (module)

 	networkx.algorithms.operators.all (module)

 	networkx.algorithms.operators.binary (module)

 	networkx.algorithms.operators.product (module)

 	networkx.algorithms.operators.unary (module)

 	networkx.algorithms.richclub (module)

 	networkx.algorithms.shortest_paths.astar (module)

 	networkx.algorithms.shortest_paths.dense (module)

 	networkx.algorithms.shortest_paths.generic (module)

 	networkx.algorithms.shortest_paths.unweighted (module)

 	networkx.algorithms.shortest_paths.weighted (module)

 	networkx.algorithms.simple_paths (module)

 	networkx.algorithms.swap (module)

 	networkx.algorithms.traversal.breadth_first_search (module)

 	networkx.algorithms.traversal.depth_first_search (module)

 	networkx.algorithms.traversal.edgedfs (module)

 	networkx.algorithms.tree.branchings (module)

 	networkx.algorithms.tree.recognition (module)

 	networkx.algorithms.triads (module)

 	networkx.algorithms.vitality (module)

 	networkx.classes.function (module)

 	networkx.convert (module)

 	networkx.convert_matrix (module)

 	networkx.drawing.layout (module)

 	networkx.drawing.nx_agraph (module)

 	
 	networkx.drawing.nx_pydot (module)

 	networkx.drawing.nx_pylab (module)

 	networkx.exception (module)

 	networkx.generators.atlas (module)

 	networkx.generators.classic (module)

 	networkx.generators.community (module)

 	networkx.generators.degree_seq (module)

 	networkx.generators.directed (module)

 	networkx.generators.ego (module)

 	networkx.generators.expanders (module)

 	networkx.generators.geometric (module)

 	networkx.generators.intersection (module)

 	networkx.generators.line (module)

 	networkx.generators.nonisomorphic_trees (module)

 	networkx.generators.random_clustered (module)

 	networkx.generators.random_graphs (module)

 	networkx.generators.small (module)

 	networkx.generators.social (module)

 	networkx.generators.stochastic (module)

 	networkx.linalg.algebraicconnectivity (module)

 	networkx.linalg.attrmatrix (module)

 	networkx.linalg.graphmatrix (module)

 	networkx.linalg.laplacianmatrix (module)

 	networkx.linalg.spectrum (module)

 	networkx.readwrite.adjlist (module)

 	networkx.readwrite.edgelist (module)

 	networkx.readwrite.gexf (module)

 	networkx.readwrite.gml (module)

 	networkx.readwrite.gpickle (module)

 	networkx.readwrite.graph6 (module)

 	networkx.readwrite.graphml (module)

 	networkx.readwrite.json_graph (module)

 	networkx.readwrite.leda (module)

 	networkx.readwrite.multiline_adjlist (module)

 	networkx.readwrite.nx_shp (module)

 	networkx.readwrite.nx_yaml (module)

 	networkx.readwrite.pajek (module)

 	networkx.readwrite.sparse6 (module)

 	networkx.relabel (module)

 	networkx.utils (module)

 	networkx.utils.contextmanagers (module)

 	networkx.utils.decorators (module)

 	networkx.utils.misc (module)

 	networkx.utils.random_sequence (module)

 	networkx.utils.rcm (module)

 	networkx.utils.union_find (module)

 	NetworkXAlgorithmError (class in networkx)

 	NetworkXError (class in networkx)

 	NetworkXException (class in networkx)

 	NetworkXNoPath (class in networkx)

 	NetworkXPointlessConcept (class in networkx)

 	NetworkXUnbounded (class in networkx)

 	NetworkXUnfeasible (class in networkx)

 	newman_watts_strogatz_graph() (in module networkx.generators.random_graphs)

 	node

 	node attribute

 	node_boundary() (in module networkx.algorithms.boundary)

 	node_clique_number() (in module networkx.algorithms.clique)

 	node_connected_component() (in module networkx.algorithms.components.connected)

 	node_connectivity() (in module networkx.algorithms.approximation.connectivity)

 	(in module networkx.algorithms.connectivity.connectivity)

 	node_link_data() (in module networkx.readwrite.json_graph)

 	node_link_graph() (in module networkx.readwrite.json_graph)

 	node_redundancy() (in module networkx.algorithms.bipartite.redundancy)

 	nodes() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	(in module networkx.classes.function)

 	nodes_iter() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	(in module networkx.classes.function)

 	nodes_with_selfloops() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	non_edges() (in module networkx.classes.function)

 	non_neighbors() (in module networkx.classes.function)

 	nonisomorphic_trees() (in module networkx.generators.nonisomorphic_trees)

 	normalized_laplacian_matrix() (in module networkx.linalg.laplacianmatrix)

 	null_graph() (in module networkx.generators.classic)

 	number_attracting_components() (in module networkx.algorithms.components.attracting)

 	number_connected_components() (in module networkx.algorithms.components.connected)

 	number_of_cliques() (in module networkx.algorithms.clique)

 	number_of_edges() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	(in module networkx.classes.function)

 	number_of_nodes() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	(in module networkx.classes.function)

 	number_of_nonisomorphic_trees() (in module networkx.generators.nonisomorphic_trees)

 	number_of_selfloops() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	number_strongly_connected_components() (in module networkx.algorithms.components.strongly_connected)

 	number_weakly_connected_components() (in module networkx.algorithms.components.weakly_connected)

 	numeric_assortativity_coefficient() (in module networkx.algorithms.assortativity)

 	numerical_edge_match() (in module networkx.algorithms.isomorphism)

 	numerical_multiedge_match() (in module networkx.algorithms.isomorphism)

 	numerical_node_match() (in module networkx.algorithms.isomorphism)

O

 	
 	octahedral_graph() (in module networkx.generators.small)

 	open_file() (in module networkx.utils.decorators)

 	order() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	out_degree() (DiGraph method)

 	(MultiDiGraph method)

 	
 	out_degree_centrality() (in module networkx.algorithms.centrality)

 	out_degree_iter() (DiGraph method)

 	(MultiDiGraph method)

 	out_edges() (DiGraph method)

 	(MultiDiGraph method)

 	out_edges_iter() (DiGraph method)

 	(MultiDiGraph method)

 	overlap_weighted_projected_graph() (in module networkx.algorithms.bipartite.projection)

P

 	
 	pagerank() (in module networkx.algorithms.link_analysis.pagerank_alg)

 	pagerank_numpy() (in module networkx.algorithms.link_analysis.pagerank_alg)

 	pagerank_scipy() (in module networkx.algorithms.link_analysis.pagerank_alg)

 	pappus_graph() (in module networkx.generators.small)

 	pareto_sequence() (in module networkx.utils.random_sequence)

 	parse_adjlist() (in module networkx.readwrite.adjlist)

 	parse_edgelist() (in module networkx.readwrite.edgelist)

 	parse_gml() (in module networkx.readwrite.gml)

 	parse_graph6() (in module networkx.readwrite.graph6)

 	parse_leda() (in module networkx.readwrite.leda)

 	parse_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist)

 	parse_pajek() (in module networkx.readwrite.pajek)

 	parse_sparse6() (in module networkx.readwrite.sparse6)

 	path_graph() (in module networkx.generators.classic)

 	periphery() (in module networkx.algorithms.distance_measures)

 	
 	petersen_graph() (in module networkx.generators.small)

 	planted_partition_graph() (in module networkx.generators.community)

 	power() (in module networkx.algorithms.operators.product)

 	powerlaw_cluster_graph() (in module networkx.generators.random_graphs)

 	powerlaw_sequence() (in module networkx.utils.random_sequence)

 	predecessor() (in module networkx.algorithms.shortest_paths.unweighted)

 	predecessors() (DiGraph method)

 	(MultiDiGraph method)

 	predecessors_iter() (DiGraph method)

 	(MultiDiGraph method)

 	preferential_attachment() (in module networkx.algorithms.link_prediction)

 	preferential_attachment_graph() (in module networkx.algorithms.bipartite.generators)

 	preflow_push() (in module networkx.algorithms.flow)

 	projected_graph() (in module networkx.algorithms.bipartite.projection)

 	pydot_layout() (in module networkx.drawing.nx_pydot)

 	pygraphviz_layout() (in module networkx.drawing.nx_agraph)

Q

 	
 	quotient_graph() (in module networkx.algorithms.minors)

R

 	
 	ra_index_soundarajan_hopcroft() (in module networkx.algorithms.link_prediction)

 	radius() (in module networkx.algorithms.distance_measures)

 	ramsey_R2() (in module networkx.algorithms.approximation.ramsey)

 	random_clustered_graph() (in module networkx.generators.random_clustered)

 	random_degree_sequence_graph() (in module networkx.generators.degree_seq)

 	random_geometric_graph() (in module networkx.generators.geometric)

 	random_graph() (in module networkx.algorithms.bipartite.generators)

 	random_layout() (in module networkx.drawing.layout)

 	random_lobster() (in module networkx.generators.random_graphs)

 	random_partition_graph() (in module networkx.generators.community)

 	random_powerlaw_tree() (in module networkx.generators.random_graphs)

 	random_powerlaw_tree_sequence() (in module networkx.generators.random_graphs)

 	random_regular_graph() (in module networkx.generators.random_graphs)

 	random_shell_graph() (in module networkx.generators.random_graphs)

 	random_weighted_sample() (in module networkx.utils.random_sequence)

 	read_adjlist() (in module networkx.readwrite.adjlist)

 	read_dot() (in module networkx.drawing.nx_agraph)

 	(in module networkx.drawing.nx_pydot)

 	read_edgelist() (in module networkx.readwrite.edgelist)

 	read_gexf() (in module networkx.readwrite.gexf)

 	read_gml() (in module networkx.readwrite.gml)

 	read_gpickle() (in module networkx.readwrite.gpickle)

 	read_graph6() (in module networkx.readwrite.graph6)

 	read_graphml() (in module networkx.readwrite.graphml)

 	read_leda() (in module networkx.readwrite.leda)

 	read_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist)

 	read_pajek() (in module networkx.readwrite.pajek)

 	read_shp() (in module networkx.readwrite.nx_shp)

 	read_sparse6() (in module networkx.readwrite.sparse6)

 	
 	read_weighted_edgelist() (in module networkx.readwrite.edgelist)

 	read_yaml() (in module networkx.readwrite.nx_yaml)

 	relabel_gexf_graph() (in module networkx.readwrite.gexf)

 	relabel_nodes() (in module networkx.relabel)

 	relaxed_caveman_graph() (in module networkx.generators.community)

 	remove_edge() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	remove_edges_from() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	remove_node() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	remove_nodes_from() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	resource_allocation_index() (in module networkx.algorithms.link_prediction)

 	reverse() (DiGraph method)

 	(MultiDiGraph method)

 	(in module networkx.algorithms.operators.unary)

 	reverse_cuthill_mckee_ordering() (in module networkx.utils.rcm)

 	reverse_havel_hakimi_graph() (in module networkx.algorithms.bipartite.generators)

 	reversed() (in module networkx.utils.contextmanagers)

 	rich_club_coefficient() (in module networkx.algorithms.richclub)

 	robins_alexander_clustering() (in module networkx.algorithms.bipartite.cluster)

S

 	
 	scale_free_graph() (in module networkx.generators.directed)

 	sedgewick_maze_graph() (in module networkx.generators.small)

 	selfloop_edges() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	semantic_feasibility() (DiGraphMatcher method)

 	(GraphMatcher method)

 	set_edge_attributes() (in module networkx.classes.function)

 	set_node_attributes() (in module networkx.classes.function)

 	sets() (in module networkx.algorithms.bipartite.basic)

 	shell_layout() (in module networkx.drawing.layout)

 	shortest_augmenting_path() (in module networkx.algorithms.flow)

 	shortest_path() (in module networkx.algorithms.shortest_paths.generic)

 	shortest_path_length() (in module networkx.algorithms.shortest_paths.generic)

 	shortest_simple_paths() (in module networkx.algorithms.simple_paths)

 	simple_cycles() (in module networkx.algorithms.cycles)

 	single_source_dijkstra() (in module networkx.algorithms.shortest_paths.weighted)

 	single_source_dijkstra_path() (in module networkx.algorithms.shortest_paths.weighted)

 	single_source_dijkstra_path_length() (in module networkx.algorithms.shortest_paths.weighted)

 	single_source_shortest_path() (in module networkx.algorithms.shortest_paths.unweighted)

 	single_source_shortest_path_length() (in module networkx.algorithms.shortest_paths.unweighted)

 	size() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	
 	spectral_bipartivity() (in module networkx.algorithms.bipartite.spectral)

 	spectral_layout() (in module networkx.drawing.layout)

 	spectral_ordering() (in module networkx.linalg.algebraicconnectivity)

 	spring_layout() (in module networkx.drawing.layout)

 	square_clustering() (in module networkx.algorithms.cluster)

 	star_graph() (in module networkx.generators.classic)

 	stochastic_graph() (in module networkx.generators.stochastic)

 	stoer_wagner() (in module networkx.algorithms.connectivity.stoerwagner)

 	strong_product() (in module networkx.algorithms.operators.product)

 	strongly_connected_component_subgraphs() (in module networkx.algorithms.components.strongly_connected)

 	strongly_connected_components() (in module networkx.algorithms.components.strongly_connected)

 	strongly_connected_components_recursive() (in module networkx.algorithms.components.strongly_connected)

 	subgraph() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	subgraph_is_isomorphic() (DiGraphMatcher method)

 	(GraphMatcher method)

 	subgraph_isomorphisms_iter() (DiGraphMatcher method)

 	(GraphMatcher method)

 	successors() (DiGraph method)

 	(MultiDiGraph method)

 	successors_iter() (DiGraph method)

 	(MultiDiGraph method)

 	symmetric_difference() (in module networkx.algorithms.operators.binary)

 	syntactic_feasibility() (DiGraphMatcher method)

 	(GraphMatcher method)

T

 	
 	tensor_product() (in module networkx.algorithms.operators.product)

 	tetrahedral_graph() (in module networkx.generators.small)

 	to_agraph() (in module networkx.drawing.nx_agraph)

 	to_dict_of_dicts() (in module networkx.convert)

 	to_dict_of_lists() (in module networkx.convert)

 	to_directed() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	to_edgelist() (in module networkx.convert)

 	to_networkx_graph() (in module networkx.convert)

 	to_numpy_matrix() (in module networkx.convert_matrix)

 	to_numpy_recarray() (in module networkx.convert_matrix)

 	to_pandas_dataframe() (in module networkx.convert_matrix)

 	to_pydot() (in module networkx.drawing.nx_pydot)

 	to_scipy_sparse_matrix() (in module networkx.convert_matrix)

 	
 	to_undirected() (DiGraph method)

 	(Graph method)

 	(MultiDiGraph method)

 	(MultiGraph method)

 	to_vertex_cover() (in module networkx.algorithms.bipartite.matching)

 	topological_sort() (in module networkx.algorithms.dag)

 	topological_sort_recursive() (in module networkx.algorithms.dag)

 	transitive_closure() (in module networkx.algorithms.dag)

 	transitivity() (in module networkx.algorithms.cluster)

 	tree_data() (in module networkx.readwrite.json_graph)

 	tree_graph() (in module networkx.readwrite.json_graph)

 	triadic_census() (in module networkx.algorithms.triads)

 	triangles() (in module networkx.algorithms.cluster)

 	trivial_graph() (in module networkx.generators.classic)

 	truncated_cube_graph() (in module networkx.generators.small)

 	truncated_tetrahedron_graph() (in module networkx.generators.small)

 	tutte_graph() (in module networkx.generators.small)

U

 	
 	uniform_random_intersection_graph() (in module networkx.generators.intersection)

 	uniform_sequence() (in module networkx.utils.random_sequence)

 	
 	union() (in module networkx.algorithms.operators.binary)

 	(UnionFind method)

 	union_all() (in module networkx.algorithms.operators.all)

W

 	
 	watts_strogatz_graph() (in module networkx.generators.random_graphs)

 	waxman_graph() (in module networkx.generators.geometric)

 	weakly_connected_component_subgraphs() (in module networkx.algorithms.components.weakly_connected)

 	weakly_connected_components() (in module networkx.algorithms.components.weakly_connected)

 	weighted_choice() (in module networkx.utils.random_sequence)

 	weighted_projected_graph() (in module networkx.algorithms.bipartite.projection)

 	wheel_graph() (in module networkx.generators.classic)

 	within_inter_cluster() (in module networkx.algorithms.link_prediction)

 	write_adjlist() (in module networkx.readwrite.adjlist)

 	write_dot() (in module networkx.drawing.nx_agraph)

 	(in module networkx.drawing.nx_pydot)

 	
 	write_edgelist() (in module networkx.readwrite.edgelist)

 	write_gexf() (in module networkx.readwrite.gexf)

 	write_gml() (in module networkx.readwrite.gml)

 	write_gpickle() (in module networkx.readwrite.gpickle)

 	write_graph6() (in module networkx.readwrite.graph6)

 	write_graphml() (in module networkx.readwrite.graphml)

 	write_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist)

 	write_pajek() (in module networkx.readwrite.pajek)

 	write_shp() (in module networkx.readwrite.nx_shp)

 	write_sparse6() (in module networkx.readwrite.sparse6)

 	write_weighted_edgelist() (in module networkx.readwrite.edgelist)

 	write_yaml() (in module networkx.readwrite.nx_yaml)

Z

 	
 	zipf_rv() (in module networkx.utils.random_sequence)

 	
 	zipf_sequence() (in module networkx.utils.random_sequence)

NetworkX

Click on any image to see source code

 _images/atlas.png

_images/atlas1.png

_images/branch_dropdown.png
Source Commits Network Pull Requests (0)

Switch Branches (2) v| SwichTags (0) Branch List

my-fancy-feature
amed axes for data management
placehoider ¢

_images/chess_masters.png
World Chess Championship Games: 1886 - 1985

edge width = # games played
node size = # games won

_images/chess_masters1.png
World Chess Championship Games: 1886 - 1985

edge width = # games played
node size = # games won

_images/four_grids.png

_images/giant_component.png

_images/house_with_colors.png

_images/knuth_miles.png

_images/knuth_miles1.png

_images/circular_tree.png

_images/degree_histogram.png
degree

101 Degree rank plot

rank

_images/edge_colormap.png

_images/ego_graph.png

_images/forking_button.png
© Unwatch 4 Fork (i Pull Request

Issues (0) Downloads (0) Wiki(1) Graphs

_images/simple_path.png

_images/unix_email.png

_images/unix_email1.png

_images/weighted_graph.png

_images/labels_and_colors.png

_images/lanl_routes.png
//

_images/node_colormap.png

_images/pull_button.png
#Admin | © Unwatch i Pull Roquost L1 Down!

Downloads (0) ~ Wiki (1) Graphs

_images/random_geometric_graph.png

_images/sampson.png
samplikel samplike2

samplike3

nav.xhtml

 Table of Contents

 		
 NetworkX documentation

 		
 Overview

 		
 Who uses NetworkX?

 		
 Goals

 		
 The Python programming language

 		
 Free software

 		
 History

 		
 What Next

 		
 Download

 		
 Software

 		
 Documentation

 		
 Installing

 		
 Quick install

 		
 Installing from source

 		
 Source archive file

 		
 GitHub

 		
 Requirements

 		
 Python

 		
 Optional packages

 		
 NumPy

 		
 SciPy

 		
 Matplotlib

 		
 GraphViz

 		
 PyYAML

 		
 Other packages

 		
 Tutorial

 		
 Creating a graph

 		
 Nodes

 		
 Edges

 		
 What to use as nodes and edges

 		
 Accessing edges

 		
 Adding attributes to graphs, nodes, and edges

 		
 Graph attributes

 		
 Node attributes

 		
 Edge Attributes

 		
 Directed graphs

 		
 Multigraphs

 		
 Graph generators and graph operations

 		
 Analyzing graphs

 		
 Drawing graphs

 		
 Reference

 		
 Introduction

 		
 NetworkX Basics

 		
 Nodes and Edges

 		
 Graph types

 		
 Which graph class should I use?

 		
 Basic graph types

 		
 Algorithms

 		
 Approximation

 		
 Assortativity

 		
 Bipartite

 		
 Blockmodeling

 		
 Boundary

 		
 Centrality

 		
 Chordal

 		
 Clique

 		
 Clustering

 		
 Coloring

 		
 Communities

 		
 Components

 		
 Connectivity

 		
 Cores

 		
 Cycles

 		
 Directed Acyclic Graphs

 		
 Distance Measures

 		
 Distance-Regular Graphs

 		
 Dominance

 		
 Dominating Sets

 		
 Eulerian

 		
 Flows

 		
 Graphical degree sequence

 		
 Hierarchy

 		
 Hybrid

 		
 Isolates

 		
 Isomorphism

 		
 Link Analysis

 		
 Link Prediction

 		
 Matching

 		
 Minors

 		
 Maximal independent set

 		
 Minimum Spanning Tree

 		
 Operators

 		
 Rich Club

 		
 Shortest Paths

 		
 Simple Paths

 		
 Swap

 		
 Traversal

 		
 Tree

 		
 Triads

 		
 Vitality

 		
 Functions

 		
 Graph

 		
 Nodes

 		
 Edges

 		
 Attributes

 		
 Freezing graph structure

 		
 Graph generators

 		
 Atlas

 		
 Classic

 		
 Expanders

 		
 Small

 		
 Random Graphs

 		
 Degree Sequence

 		
 Random Clustered

 		
 Directed

 		
 Geometric

 		
 Line Graph

 		
 Ego Graph

 		
 Stochastic

 		
 Intersection

 		
 Social Networks

 		
 Community

 		
 Non Isomorphic Trees

 		
 Linear algebra

 		
 Graph Matrix

 		
 Laplacian Matrix

 		
 Spectrum

 		
 Algebraic Connectivity

 		
 Attribute Matrices

 		
 Converting to and from other data formats

 		
 To NetworkX Graph

 		
 Dictionaries

 		
 Lists

 		
 Numpy

 		
 Scipy

 		
 Pandas

 		
 Relabeling nodes

 		
 Relabeling

 		
 Reading and writing graphs

 		
 Adjacency List

 		
 Multiline Adjacency List

 		
 Edge List

 		
 GEXF

 		
 GML

 		
 Pickle

 		
 GraphML

 		
 JSON

 		
 LEDA

 		
 YAML

 		
 SparseGraph6

 		
 Pajek

 		
 GIS Shapefile

 		
 Drawing

 		
 Matplotlib

 		
 Graphviz AGraph (dot)

 		
 Graphviz with pydot

 		
 Graph Layout

 		
 Exceptions

 		
 Exceptions

 		
 Utilities

 		
 Helper Functions

 		
 Data Structures and Algorithms

 		
 Random Sequence Generators

 		
 Decorators

 		
 Cuthill-Mckee Ordering

 		
 Context Managers

 		
 License

 		
 Citing

 		
 Credits

 		
 Contributions

 		
 Support

 		
 Glossary

 		
 Testing

 		
 Requirements for testing

 		
 Testing a source distribution

 		
 Testing an installed package

 		
 Testing for developers

 		
 Developer Guide

 		
 Working with networkx source code

 		
 Introduction

 		
 Install git

 		
 Following the latest source

 		
 Making a patch

 		
 Git for development

 		
 git resources

 		
 History

 		
 API changes

 		
 Version 1.11 notes and API changes

 		
 Version 1.10 notes and API changes

 		
 Version 1.9 notes and API changes

 		
 Version 1.8 notes and API changes

 		
 Version 1.7 notes and API changes

 		
 Version 1.6 notes and API changes

 		
 Version 1.5 notes and API changes

 		
 Version 1.4 notes and API changes

 		
 Version 1.0 notes and API changes

 		
 Version 0.99 API changes

 		
 Release Log

 		
 NetworkX 1.11

 		
 NetworkX 1.10

 		
 NetworkX 1.9.1

 		
 NetworkX 1.9

 		
 NetworkX 1.8.1

 		
 NetworkX 1.8

 		
 NetworkX 1.7

 		
 NetworkX 1.6

 		
 NetworkX 1.5

 		
 NetworkX 1.4

 		
 NetworkX 1.3

 		
 NetworkX 1.2

 		
 NetworkX 1.1

 		
 NetworkX 1.0.1

 		
 NetworkX 1.0

 		
 NetworkX 0.99

 		
 NetworkX 0.37

 		
 NetworkX 0.36

 		
 NetworkX 0.35.1

 		
 NetworkX 0.35

 		
 NetworkX 0.34

 		
 NetworkX 0.33

 		
 NetworkX 0.32

 		
 NetworkX 0.31

 		
 NetworkX 0.30

 		
 NetworkX 0.29

 		
 NetworkX 0.28

 		
 NetworkX 0.27

 		
 NetworkX 0.26

 		
 NetworkX 0.25

 		
 NetworkX 0.24

 		
 NetworkX 0.23

 		
 NetworkX 0.22

 		
 Bibliography

 		
 NetworkX Examples

 		
 3D_Drawing

 		
 Mayavi2 Spring

 		
 Advanced

 		
 Eigenvalues

 		
 Heavy Metal Umlaut

 		
 Iterated Dynamical Systems

 		
 Parallel Betweenness

 		
 Algorithms

 		
 Blockmodel

 		
 Davis Club

 		
 Krackhardt Centrality

 		
 Rcm

 		
 Basic

 		
 Properties

 		
 Read Write

 		
 Drawing

 		
 Atlas

 		
 Chess Masters

 		
 Circular Tree

 		
 Degree Histogram

 		
 Edge Colormap

 		
 Ego Graph

 		
 Four Grids

 		
 Giant Component

 		
 House With Colors

 		
 Knuth Miles

 		
 Labels And Colors

 		
 Lanl Routes

 		
 Node Colormap

 		
 Random Geometric Graph

 		
 Sampson

 		
 Simple Path

 		
 Unix Email

 		
 Weighted Graph

 		
 Graph

 		
 Atlas

 		
 Atlas2

 		
 Degree Sequence

 		
 Erdos Renyi

 		
 Expected Degree Sequence

 		
 Football

 		
 Karate Club

 		
 Knuth Miles

 		
 Napoleon Russian Campaign

 		
 Roget

 		
 Unix Email

 		
 Words

 		
 Javascript

 		
 Force

 		
 Http Server

 		
 Multigraph

 		
 Chess Masters

 		
 Pygraphviz

 		
 Pygraphviz Attributes

 		
 Pygraphviz Draw

 		
 Pygraphviz Simple

 		
 Write Dotfile

 		
 Subclass

 		
 Antigraph

 		
 Printgraph

_static/comment-bright.png

_static/comment-close.png

_static/art1.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/plus.png

_static/examples/atlas.png

_static/examples/atlas_thumb.png

_static/up.png

_static/examples/chess_masters.png
World Chess Championship Games: 1886 - 1985

edge width = # games played
node size = # games won

_static/examples/chess_masters_thumb.png

_static/examples/circular_tree.png

_static/examples/degree_histogram_thumb.png
Degree rank plot

st

_static/examples/edge_colormap.png

_static/examples/circular_tree_thumb.png

_static/examples/degree_histogram.png
degree

101 Degree rank plot

rank

_static/examples/ego_graph_thumb.png

_static/examples/four_grids.png

_static/examples/edge_colormap_thumb.png

_static/examples/ego_graph.png

_static/examples/giant_component.png

_static/examples/giant_component_thumb.png

_static/examples/four_grids_thumb.png

_static/examples/knuth_miles.png

_static/examples/knuth_miles_thumb.png

_static/examples/house_with_colors.png

_static/examples/house_with_colors_thumb.png

_static/examples/lanl_routes.png
//

_static/examples/labels_and_colors.png

_static/examples/labels_and_colors_thumb.png

_static/examples/node_colormap_thumb.png

_static/examples/random_geometric_graph.png

_static/examples/lanl_routes_thumb.png

_static/examples/node_colormap.png

_static/examples/sampson_thumb.png
5 15
15

_static/examples/simple_path.png

_static/examples/random_geometric_graph_thumb.png

_static/examples/sampson.png
samplikel samplike2

samplike3

_static/examples/simple_path_thumb.png

_static/examples/unix_email.png

_static/examples/weighted_graph.png

_static/examples/weighted_graph_thumb.png

_static/examples/unix_email_thumb.png

_static/ajax-loader.gif

