

    
      
          
            
  
Welcome to Network4Dev!

Network4Dev is a community-driven initiative to explain networking
infrastructure concepts & challenges to a wider audience
(for example, but not only, devs & sysadmins).
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Introduction

Welcome to Network4Dev! Network4Dev is a community-driven, open source
networking site. The site was founded by
Daniel Dib [http://lostintransit.se/about/] in 2018 and all
work behind the scenes is done by
Cristian Sirbu [https://www.trueneutral.eu/pages/about.html].
At the time of this writing 2018-08-19, the two maintainers of the
GitHub repository [https://github.com/network4dev/n4d] are
Cristian and Daniel.

As infrastructure is moving towards more elastic, composable and
automated setups, infrastructure engineers must have a broader
set of skills while still remaining relevant within their speciality.
This means that networking people must understand compute, storage,
applications, systems and coding at a level where they can interact
with the other teams. Conversely, it means that people working
mainly with systems and apps must have some understanding of
networking. While there are plenty of sites and courses for
networking people to learn about automation, there are a lot less
resources for people working with systems and apps to learn about
networking. The goal of N4D is to fill this gap.

In order to write for people that don’t have a strict networking
background, the articles will be written to be short, concise and
to the point. The articles will not be deep dives but instead
focus on fundamentals and the WHY of networking.

By making this site open source and community driven, more people
can contribute into making this site living and more frequently
updated than a site where only one or a couple of people are
contributing.

In order to contribute to this site, read the Contributing
guide.

Please note that all contributions to this site will be reviewed
and edited by the maintainers for quality, accuracy and clarity
both in terms of language and technical level in order to maintain
our goals.





          

      

      

    

  

    
      
          
            
  
Audience

The target audience for N4D is mainly people working as developers or
system administrators. However, this site will be useful for anyone
that wants to learn more about networking, especially junior networking
people. The reason for this being that this site aims to explain networking
concepts in a clear and concise manner, although not in depth.





          

      

      

    

  

    
      
          
            
  
Contributing

This site was created to be open for contributions from the open-source
community. This is achieved by commiting files to Github in .rst format.

In order to contribute to this site, the following is needed:


	Github account


	Github client


	Text editor


	(optional) Local install of Sphinx




By leveraging Github, multiple people can write documents for the site
without having to use a platform like Wordpress using many different
accounts.


Architectures

N4D chapters are based on architectures. At the start these are:


	Cloud


	Datacenter


	Design


	Networking


	Security


	Services




These are quite self-explanatory but the following adds more context to
each architecture:

Cloud - Focus on networking in the public cloud, such as AWS, Azure and GCP.

Datacenter - Focus on on-premises datacenter technologies and design.

Design - Focus on networking design principles such as scalability, fault
domains and more.

Networking - Focus on “standard” networking such as LAN and WAN.

Security - Focus on security such as firewalls, IPSec and more.

Services - Focus on networking related services such as DNS and DHCP.




N4D structure

N4D, using Read the Docs, thus using Sphinx as the backend, has the following
structure setup:


	docs - All the documents go here


	_static - All static content, such as images, go here




In order to keep things sorted, there are also subdirectories based on
different architectures, for the docs directory these are:


	Cloud (docs/cloud)


	Datacenter (docs/datacenter)


	Design (docs/design)


	Networking (docs/networking)


	Security (docs/security)


	Services (docs/services)




The _static directory also has the same layout:


	Cloud (docs/_static/cloud)


	Datacenter (docs/_static/datacenter)


	Design (docs/_static/design)


	Networking (docs/_static/networking)


	Security (docs/_static/security)


	Services (docs/_static/services)







Workflow

This site uses a forking [https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow]
workflow, meaning that each contributor forks the official repository to create
their own server-side copy of the project. This allows the maintainers to
keep write access for the maintainers and instead approving incoming
Pull Requests.




Setting up the environment

The first step to contributing is to create a fork of the N4D [https://github.com/network4dev/n4d] repository.
This is done by clicking the fork icon in the top right corner.

[image: ../_images/Fork.png]
When this is done, clone the forked repo to a local directory.

daniel@demo:~/n4d-fork$ git clone https://github.com/ddib-ccde/n4d.git
Cloning into 'n4d'...
remote: Counting objects: 22, done.
remote: Compressing objects: 100% (16/16), done.
remote: Total 22 (delta 2), reused 18 (delta 1), pack-reused 0
Unpacking objects: 100% (22/22), done.





When using the forking workflow, the upstream repository needs to be added.

git remote add upstream https://github.com/network4dev/n4d.git

The command git remote -v can be used to verify the origin and upstream
repo.

daniel@demo:~/n4d-fork/n4d$ git remote -v
origin  https://github.com/ddib-ccde/n4d.git (fetch)
origin  https://github.com/ddib-ccde/n4d.git (push)
upstream        https://github.com/network4dev/n4d.git (fetch)
upstream        https://github.com/network4dev/n4d.git (push)








Contributing text

Before committing any text, it’s recommended to make sure that your local
copy of the repo is up to date. This is accomplished by fetching from
the upstream master and merging it with your local copy.

If you are already synched, it will look like in the demo below.

daniel@demo:~/n4d-fork/n4d$ git fetch upstream
From https://github.com/network4dev/n4d
* [new branch]      master     -> upstream/master
daniel@demo:~/n4d-fork/n4d$ git checkout master
Already on 'master'
Your branch is up to date with 'origin/master'.
daniel@demo:~/n4d-fork/n4d$ git merge upstream/master
Already up to date.





Before working on a document, create a branch and name it appropriately,
such as osi-model-text with git checkout -b osi-model-text.
Using your text editor, edit the file and then commit the changes
git commit -a -m "Wrote about the OSI model. Then the commit
is pushed to origin, using git push origin osi-model-text. When
pushing to Github, you will need to supply your credentials.

The demo below shows an update to the scrollbar for N4D:

daniel@demo:~/n4d-fork/n4d$ git checkout -b fix-issue-5-edit-scrollbar
Switched to a new branch 'fix-issue-5-edit-scrollbar'
daniel@demo:~/n4d-fork/n4d$ git commit -a -m "Updated index.rst to set caption to main page"
[fix-issue-5-edit-scrollbar d5ac8bf] Updated index.rst to set caption to main page
1 file changed, 1 insertion(+), 1 deletion(-)
daniel@demo:~/n4d-fork/n4d$ git push origin fix-issue-5-edit-scrollbar
Username for 'https://github.com': ddib-ccde
Password for 'https://ddib-ccde@github.com':
Counting objects: 3, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 324 bytes | 324.00 KiB/s, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/ddib-ccde/n4d.git
* [new branch]      fix-issue-5-edit-scrollbar -> fix-issue-5-edit-scrollbar





Once the commit has been pushed to your forked repo at Github, you
can submit a PR to upstream. By navigating to your forked repo at Github,
Github will see that you have pushed a new branch, in order to create a
PR from the branch, click on compare & pull request.

[image: ../_images/Branch-pushed.PNG]
When this is done, it will look like the picture below.

[image: ../_images/Open-PR.PNG]
If this PR is a fix to an issue, this can be indicated in the text, as it
is in this example with “Fixes #5”. Issues can be referenced by putting
the hash sign followed by the number of the issue.

When the PR has been opened, it will look like the picture below.

[image: ../_images/PR-opened.PNG]
The PR will then have to be approved by one of the maintainers before it
will be merged to upstream.




Brief intro to reStructuredText

reStructuredText (reST) is the default plaintext markup language used by
Sphinx. People familiar with Markdown will recognize some of the syntax.

First in every .rst document is the header. This is created by using
equal sign above and below the text, like below:

=================
This is a heading
=================






Inline markup


	one asterisk: *text* for italics


	two asterisks: **text** for boldface


	backquotes: ``text`` for code samples




Below is a sample of what it looks like:


	italics


	boldface


	code sample







Hyperlinks

To put a hyperlink in the text, use the following syntax:

`Link text <https://domain.invalid/>`_




Images

Images are referenced with the image directive, like below:

.. image:: static_/my_image.png





Remember to put a blank line before and after this directive.




Code samples

It is supported to highlight different code examples, for example output
from console with:

.. code-block:: console





It looks like the output below:

daniel@demo:~/n4d-fork/n4d/docs$ ls
audience.rst  changelog.rst  contributing.rst  design  infrastructure.rst  networking  services
_build        cloud          datacenter        images  introduction.rst    security    _static





It is also possible to highlight programming languages such as Python.

For a more complete guide, refer to
reStructuredText Primer [http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html]

To test your syntax, it’s possible to use
Online reStructuredText editor [http://rst.ninjs.org/]

If unsure of the syntax, check one of the existing files in the docs directory.






Local Sphinx build

It is also possible to install Sphinx locally to test out your changes, this
process is described here [https://github.com/network4dev/n4d/blob/master/README.md]

Note that you should clone your forked repo if you want to be able to push changes
upstream.




Issues

If there is an issue with the site, an article or if you need support. Open an
issue [https://github.com/network4dev/n4d/issues] by clicking New issue.







          

      

      

    

  

    
      
          
            
  
Infrastructure

This site uses Read the Docs [https://readthedocs.org/] which is a platform
commonly used for technical documentation. Read the Docs is using
Sphinx [http://www.sphinx-doc.org/en/master/] to create the documents.
The source files are kept in a Github [https://github.com/] repository
leveraging webhooks to push any updates to Read the Docs.

By leveraging Github for the source files, this project can be contributed
to from multiple parties and when a PR has been approved, the update
will automatically be pushed to Read the Docs.





          

      

      

    

  

    
      
          
            
  
Changelog

v1.0 - Work in progress





          

      

      

    

  

    
      
          
            
  
General Networking

This part of the site is about general networking, i.e. networking
technologies that are general enough to be used in many parts of the network.



	OSI Model

	Physical

	Ethernet

	Discovery Protocols - CDP and LLDP

	Switching

	IPv4

	IPv6

	Routing

	Ping and Traceroute

	Troubleshooting









          

      

      

    

  

    
      
          
            
  
OSI Model





          

      

      

    

  

    
      
          
            
  
Physical





          

      

      

    

  

    
      
          
            
  
Ethernet


Link Aggregation

Link aggregation is a general term to describe using multiple Ethernet
interfaces simultaneously. There are several terms for this, including bonding,
teaming, EtherChannel, and more. However, there are ongoing debates as to what
each term means specifically, hence the reason there are many different terms
to describe the same overall concept. Link aggregation has two primary goals:
increased throughput and increased redundancy.

From a network infrastructure context, link aggregation normally means to
combine two or more physical Ethernet interfaces with identical properties
(such as link speed and duplex) into a single logical interface. For example,
two physical 10 Gbps Ethernet links can be combined into a single 20 Gbps
logical link. However, the data is not actually transmitted at 20 Gbps.

The most common analogy for link aggregation is adding more lanes to a highway,
but the speed limit stays the same. In other words, with multiple aggregated
10 Gbps interfaces, a data transfer in a single session will not go faster than
10 Gbps, but multiple sessions can be distributed over each of the links, which
enables an aggregate throughput of more than an individual link.


Why is link aggregation needed?

Network switches build internal tables to correspond MAC addresses to
interfaces so network traffic can be appropriately forwarded. Within the switch,
this is referred to as the Content Addressable Memory (CAM) table. When you
connect a device such as a PC or a server to a port on a switch, the switch
sees the MAC address of the device’s network interface and records in the CAM
table that it is associated with that particular port. When devices communicate
with each other, the switch knows which interfaces to forward the traffic
between based on the CAM table.

Individual MAC addresses can be associated to only a single interface in the
CAM table, though each interface can have multiple MAC addresses associated. A
single IP address is typically associated with a single MAC address (with some
exceptions). The Address Resolution Protocol (ARP) runs on both the host and
the host’s default gateway to map IP addresses to MAC addresses. When link
aggregation is used, a MAC address is assigned to the aggregated logical
interface. When an IP address is configured on the logical link, ARP resolves
the IP address to the MAC address of the virtual link. This allows the multiple
physical interfaces to be used simultaneously with the single IP address.




How is link aggregation different than NIC teaming?

Link aggregation requires coordination between the network infrastructure and
the device containing multiple physical links with either static configuration
or a negotiation protocol such as Link Aggregation Control Protocol (LACP).
NIC teaming does not require coordination with the network infrastructure and
is entirely host-dependent. With link aggregation, both the host and the
network infrastructure share the same view of the local network. With NIC
teaming, the network is unaware of the configuration on the host.

For example, VMware’s ESXi operating system supports both link aggregation and
NIC teaming. When link aggregation with LACP is configured, both the network
and ESXi host share the same view of the network with the logical link. By
default, ESXi uses NIC teaming. Virtual machines have virtual network
interfaces that each have their own associated MAC addresses. When the VM is
powered on, the virtual network interfaces are associated with a network
interface on the ESXi host. When LACP is used, the VM MAC address becomes
associated with the LACP logical link. When the default NIC teaming is used,
the VM MAC address becomes associated with one of the ESXi host’s physical
network interfaces. When a second VM is powered on, its VM MAC address is
associated with a different physical network interface on the ESXi host. This
facilitates rudimentary network load distribution across multiple physical
interfaces on the ESXi host without involving the network infrastructure.

Both LACP and NIC teaming support “active/active” and “active/standby”
configurations. In “active/active” mode, all links are used simultaneously. In
“active/standby” mode, one or more physical links are intentionally disabled.
If one of the active links fails, the standby link becomes active and takes
over for the failed link.




Why would I use link aggregation instead of NIC teaming?

Using VMware ESXi as an example, NIC teaming maps each virtual network
interface (vNIC) onto a single host physical network interface. The mapping
does not change unless the VM is powered off or migrated to another host, or
if the physical link on the host goes down. This means network traffic to and
from the VM’s vNIC will always traverse the same physical interface and is
limited to the speed of that interface.

With link aggregation using LACP, the same VM vNIC is mapped to the ESXi
host’s logical aggregated interface. The same rules still apply where a single
network session (also known as a flow) is still limited to the speed of an
individual physical link, but multiple flows can take advantage of the
multiple links simultaneously, thereby increasing the overall throughput.

For example, with NIC teaming, if a VM is acting as a web server, it will use
the same physical link when serving content to multiple clients. With link
aggregation, the same VM will use multiple physical interfaces across the
single logical interface to serve content to clients.

The choice of using link aggregation or NIC teaming is partly dependent on the
network demands of your workload. If redundancy is your primary concern without
regard for throughput, such as for workloads that do not generate large volumes
of network traffic, NIC teaming may be the best and simplest option. However,
workloads that deal with high volumes of network traffic are typically served
better by using link aggregation, which provides both redundancy and higher
overall network throughput across multiple sessions.




What happens if I configure link aggregation on the host, but not the network?

Unlike NIC teaming, link aggregation requires coordination with the network
infrastructure. The two most common methods are static configuration, and LACP
(originally IEEE 802.3ad, now part of IEEE 802.1AX). With LACP, the host and
the network switch communicate with each other to make sure each physical link
is part of the same link bundle (otherwise known as a Link Aggregation Group
or LAG). Any links that are determined to not be a part of the bundle are
disabled to prevent forwarding loops and other issues.

For example, assume two different LAGs are configured on a switch and LACP is
used. Two different servers are connected with multiple links, one server per
LAG. If the links are accidentally misconnected so that each server connected
to both LAGs, LACP will detect this and disable the links that do not belong
to the proper group. Static configuration has no way to detect this problem,
and is therefore not recommended unless both the server and the network switch
do not support LACP (which is extremely rare).

Remember that in a network switch, a single MAC address must correspond with a
single entry in its CAM table, which represents the interface the MAC address
is associated with. If the server is configured to use link aggregation but
the network is not, MAC addresses associated with the server appear on
multiple switch interfaces simultaneously. Since a MAC address can only be on
a single switch interface, the MAC address is disassociated from one interface
and re-associated with another as the MAC address is seen from the connected
server.

This disassociation and re-association happens over and over again between
interfaces on the switch. This is known as “MAC flapping”. Different network
equipment handles this situation differently. Typically, network interfaces
associated with MAC flapping are disabled, either permanently or for a short
period of time. Log messages on the switch are also typically generated.

Here is an example of the error message generated on a switch running Cisco’s
NX-OS:

switch1 %L2FM-2-L2FM_MAC_FLAP_DISABLE_LEARN_N3K: Loops detected in the
network for mac 1234.5678.90ab among ports Eth1/1 and Eth1/2 vlan 111 -
Disabling dynamic learning notifications for a period between 120 and 240
seconds on vlan 111

switch1 %L2FM-2-L2FM_MAC_FLAP_RE_ENABLE_LEARN_N3K: Re-enabling dynamic
learning on vlan 111





In this case, Cisco’s NX-OS handles the issue by disabling dynamic MAC
learning for a period of time for the entire VLAN. This means that during this
“quiet” period, no MAC address changes will be registered for that VLAN. If a
new device comes online in the VLAN, or an existing device changes ports, the
change will not be registered in the switch and the device will not be able to
communicate with the network until MAC learning is re-enabled. This will
happen over and over again until the issue is corrected. The issue can be
corrected by shutting down the misconfigured links or correctly configuring
link aggregation between the switch and the server.




What is MC-LAG?

Traditional link aggregation involves multiple connections to a single switch.
Multi-Chassis Link Aggregation Groups aim to further increase redundancy
levels by connecting a single device, such as a server, to multiple switches
while still presenting a single logical interface to the server. This
introduces device-level redundancy along with link-level redundancy. Currently,
all MC-LAG solutions are proprietary to the networking vendor, and require both
switches to be running the same network operating system.

For example, Cisco’s NX-OS uses an MC-LAG technology called “Virtual Port
Channel”, or vPC. Two switches running NX-OS are configured to recognize each
other and present a single unified LACP-based LAG to the downstream device,
such as a server. The server believes it is connected to a single upstream
switch. The two switches coordinate with each other to handle the redundancy
and prevent loops and MAC flapping.









          

      

      

    

  

    
      
          
            
  
Discovery Protocols - CDP and LLDP





          

      

      

    

  

    
      
          
            
  
Switching





          

      

      

    

  

    
      
          
            
  
IPv4


NAT44

Network Address Translation is a technique used to change, or translate,
the source or destination IPv4 address. This is not an exclusive “or” as both
addresses can be translated. This document is iterative in that each use case
is described and demonstrated sequentially and in small batches.


Definitions

Master these terms before continuing:


	inside: The network behind the NAT point, often where source
addresses are translated from private to public.


	outside: The network in front of the NAT point. Often packets in
this network hae publicly routable source IP addresses.


	state: The information stored in the NAT device about each translation.
NAT state is typically stored in a table containing pre and post NAT
addressing, and sometimes layer-4 port/protocol information as well.


	pool: A range of addresses which can be used as outputs from the NAT
process. Addresses in a pool are dynamic resources which are allocated
on-demand when hosts traverse a NAT point and require different IPs.


	ALG: Application Level Gateway is a form of payload inspection that
looks for embedded IP addresses inside the packet’s payload, which
traditional NAT devices cannot see. ALGs are NAT enhancements on a
per-application basis (yuck) to translate these embedded addresses.
Applications such as active FTP and SIP require ALGs.


	unsolicited traffic: In the context of NAT, this refers to traffic
originating from the outside network and destined for some device on
the inside network. It is called “unsolicited” because the inside host did
not initiate the communication.




In Cisco-speak, some additional terms are defined. These seem confusing at
first, but are a blessing in disguise because they are unambiguous.


	Inside local: IP on the inside network from the perspective of other
hosts on the inside network. This is often a private RFC 1918 IP
address and is seen by other hosts on the inside as such.


	Inside global: IP on the inside network from the perspective of
hosts on the outside network. This is often a publicly routable
address which represents the inside host to outside hosts.


	Outside global: IP on the outside network from the perspective of other
hosts on the outside network. This is often a publicly routable
address and is seen by other hosts on the outside as such.


	Outside local: IP on the outside network from the perspective of
hosts on the inside network. This is usually the same as the outside
global since the all hosts, whether inside or outside, view outside hosts
as having a single, public IP address (but not always).







Notes

Things to keep in mind:


	All demonstrations assume Cisco Express Forwarding (CEF) has been disabled
which allows IP packet debugging (routing lookups) to be shown. This is
not supported on newer Cisco routers, so older devices running 12.4T are
used in these demonstrations.


	This document describes NAT, but does not prescribe NAT. NAT designs are
almost never the best overall solutions and should be considered short-term,
tactical options. Software should avoid using duplicate and/or
hardcoded IPs, then relying on NAT later to fix the blunder.


	Mastery of the NAT order of operations is required for any developer
building an application that may traverse a NAT device. This affects which
addresses are revealed (and when), impacts DNS, impacts packet payloads
(ie, embedded IPs), and more. The basic inside source NAT order of
operations is described below.


	Packet arrives on inside


	Router performs route lookup to destination


	Router translates source address


	Reply arrives on outside


	Route translates source address back


	Router performs route lookup to destination











Static One-to-one (1:1) Inside Source NAT

The simplest type of NAT is 1:1 NAT where a single source IP is mapped to
another. This technique is useful in the following cases:


	Inside host should not or cannot share a source IP with other hosts


	Custom IP protocols are used (not TCP, UDP, or ICMP)


	Outside-to-inside unsolicited traffic flow is required


	Address traceability is required, typically for security audits




When traffic traverses NAT, only the source IP changes. In this
example, inside hosts 192.0.2.1 and 192.0.2.2 are mapped to
203.0.113.1 and 203.0.113.1, respectively. Cisco IOS syntax is below:

# ip nat inside source static (inside_local) (inside_global)
ip nat inside source static 192.0.2.1 203.0.113.1
ip nat inside source static 192.0.2.2 203.0.113.2





[image: ../../_images/nat44-static11.png]
Enabling NAT (debug ip nat) and IP packet (debug ip packet) debug
reveals how this technology works. Follow the order of operations:


	Initial packet arrives from 192.0.2.1 to 198.51.100.1 (not in debug)


	NAT device performs routing lookup towards 198.51.100.1


	NAT device translates source from 192.0.2.1 to 203.0.113.1


	NAT device forwards packet to 198.51.100.1 in the outside network


	Return packet arrives from 198.51.100.42 to 203.0.113.1 (not in debug)


	NAT device translates destination from 203.0.113.1 to 192.0.2.1


	NAT device perform routing lookup towards 192.0.2.1


	NAT device forwards packet to 192.0.2.1 in the inside network




Some information has been hand-edited from the debug for clarity:

IP: tableid=0, s=192.0.2.1, d=198.51.100.1, routed via RIB
NAT: s=192.0.2.1->203.0.113.1, d=198.51.100.1
IP: s=203.0.113.1, d=198.51.100.1, g=203.0.113.253, len 100, forward
NAT*: s=198.51.100.1, d=203.0.113.1->192.0.2.1
IP: tableid=0, s=198.51.100.1, d=192.0.2.1, routed via RIB
IP: s=198.51.100.1, d=192.0.2.1, g=192.0.2.253, len 100, forward





See if you can work through the following example on your own, explaining
each step, for the second host 192.0.2.2. Say each step aloud or hand-write
it on paper. Mastering the NAT order of operations is essential:

IP: tableid=0, s=192.0.2.2, d=198.51.100.2, routed via RIB
NAT: s=192.0.2.2->203.0.113.2, d=198.51.100.2
IP: s=203.0.113.2, d=198.51.100.2, g=203.0.113.253, len 100, forward
NAT*: s=198.51.100.2, d=203.0.113.2->192.0.2.2
IP: tableid=0, s=198.51.100.2, d=192.0.2.2, routed via RIB
IP: s=198.51.100.2, d=192.0.2.2, g=192.0.2.253, len 100, forward





The main drawbacks of this solution are scalability and manageability. A
network with 10,000 hosts would require 10,000 dedicated addresses with
no sharing, which limits scale. Managing all these NAT statements,
made massively simpler with modern network automation, is still burdensome
as someone must still maintain the mapping source of truth.




Dynamic One-to-one (1:1) Inside Source NAT

Rather than identify every inside global address and its corresponding
mapping to an inside local address, one can use a NAT pool to define a
collection of addresses for dynamic allocation when traffic traverses the
NAT. It has the following benefits:
* Arbitrary pool size coupled with arbitrary inside host list
* Easy management and configuration
* Dynamically-allocated state

When traffic traverses NAT, only the source IP changes. In this example,
inside hosts within 192.0.2.0/25 are dynamically mapped to an available
address in the pool 203.0.113.0/27. Note that the two network masks do
not need to match, and that the ACL can match any inside local address.
Cisco IOS syntax is below:

# ACL defines the inside local addresses (pre NAT source)
ip access-list standard ACL_INSIDE_SOURCES
 permit 192.0.2.0 0.0.0.127

# Pool defines the inside global addresses (post NAT source)
ip nat pool POOL_203 203.0.113.12 203.0.113.31 prefix-length 27

# Binds the inside local list to the inside global pool for translation
ip nat inside source list ACL_INSIDE_SOURCES pool POOL_203





[image: ../../_images/nat44-dynamic11.png]
The output from NAT and IP packet debugging shows an identical flow from the
previous section. The process has not changed, but the manner in which inside
local addresses are mapped to inside global addresses is fully dynamic:

IP: tableid=0, s=192.0.2.1, d=198.51.100.1, routed via RIB
NAT: s=192.0.2.1->203.0.113.12, d=198.51.100.1
IP: s=203.0.113.12, d=198.51.100.1, g=203.0.113.253, len 100, forward
NAT: s=198.51.100.1, d=203.0.113.12->192.0.2.1
IP: tableid=0, s=198.51.100.1, d=192.0.2.1, routed via RIB
IP: s=198.51.100.1, d=192.0.2.1, g=192.0.2.253, len 100, forward





Like the static 1:1 solution, this solution still requires a large number of
publicly routable (post NAT) addresses. Though the administrator does not
have to manage the addresses individually, simply obtaining public IPv4
addresses is a challenge given its impending exhaustion. The solution can
optionally allow outside-to-inside traffic but only after the NAT state
has already been created. The solution does not provide traceability
between inside local and inside global unless the administrator specifically
captures the NAT state table through shell commands, logging, or some
other means.
the




Static One-to-one (1:1) Inside Network NAT

This option is a hybrid of the previous static and dynamic 1:1 NAT techniques.
The solution requires one inside local prefix and one inside global prefix,
both of the same prefix length, to be mapped at once. The solution can be
repeated for multiple inside local/global prefix pairs.

It has the best of both worlds:
* Inside host should not or cannot share a source IP with other hosts
* Custom IP protocols are used (not TCP, UDP, or ICMP)
* Outside-to-inside unsolicited traffic flow is required
* Address traceability is required, typically for security audits
* Easy management and configuration
* Dynamically-allocated state

When traffic traverses NAT, only the source IP changes. In this example,
inside hosts within 192.0.2.0/25 are statically mapped to their matching
address in the pool 203.0.113.0/25. The network masks must match.
Cisco IOS syntax is below:

# ip nat inside source static network (inside_local) (inside_global) (pfx_len)
ip nat inside source static network 192.0.2.0 203.0.113.0 /25
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The output from NAT and IP packet debugging shows an identical flow from the
previous section:

IP: tableid=0, s=192.0.2.1, d=198.51.100.1, routed via RIB
NAT: s=192.0.2.1->203.0.113.1, d=198.51.100.1
IP: s=203.0.113.1, d=198.51.100.1, g=203.0.113.253, len 100, forward
NAT: s=198.51.100.1, d=203.0.113.1->192.0.2.1
IP: tableid=0, s=198.51.100.1, d=192.0.2.1, routed via RIB
IP: s=198.51.100.1, d=192.0.2.1, g=192.0.2.253, len 100, forward

IP: tableid=0, s=192.0.2.2, d=198.51.100.2, routed via RIB
NAT: s=192.0.2.2->203.0.113.2, d=198.51.100.2
IP: s=203.0.113.2, d=198.51.100.2, g=203.0.113.253, len 100, forward
NAT: s=198.51.100.2, d=203.0.113.2->192.0.2.2
IP: tableid=0, s=198.51.100.2, d=192.0.2.2, routed via RIB
IP: s=198.51.100.2, d=192.0.2.2, g=192.0.2.253, len 100, forward








Static Many-to-one (N:1) Inside Source NAT (Port Forwarding)

This technique is used to provide overloaded outside-to-inside access
using TCP or UDP ports. It’s particularly useful for reaching devices
typically hidden behind NAT that need to receive unsolicited traffic.

In these examples, telnet (TCP 23) and SSH (TCP 22) access is needed from
the outside network towards 192.0.2.1. To reach this inside local address,
outside clients will target 203.0.113.1 using ports 9022 for SSH and
9023 for telnet, respectively. Cisco IOS syntax is below:

ip nat inside source static tcp 192.0.2.1 22 203.0.113.1 9022
ip nat inside source static tcp 192.0.2.1 23 203.0.113.1 9023





Generating traffic to test this solution requires more than a simple ping.
From the outside, a user telnets to 203.0.113.1 on port 9023 which the NAT
device “forwards” to 192.0.2.1 on port 23. That is how this feature earned
the name “port forwarding”. The inside local device sees the session coming from
198.51.100.1, the outside local address, which in this example is
untranslated:

R3#telnet 203.0.113.1 9023
Trying 203.0.113.1, 9023 ... Open
Username: nick
Password: nick

R1#who
    Line       User       Host(s)   Idle       Location
   0 con 0                idle      00:00:47
* 98 vty 0     nick       idle      00:00:00 198.51.100.1
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Enabling NAT (debug ip nat) and IP packet (debug ip packet) debug
reveals how this technology works. The NAT process is similar but
starts from the outside.


	Initial packet arrives from 198.51.100.1 to 192.0.2.1 (not in debug)


	NAT device translates destination port from 9023 to 23


	NAT device translates destination from 203.0.113.1 to 192.0.2.1


	NAT device perform routing lookup towards 192.0.2.1


	NAT device forwards packet to 192.0.2.1 in the inside network


	Return packet arrives from 192.0.2.1 to 198.51.100.1 (not in debug)


	NAT device performs routing lookup towards 198.51.100.1


	NAT device translates source port from 23 to 9023


	NAT device translates source from 192.0.2.1 to 203.0.113.1


	NAT device forwards packet to 198.51.100.1 in the outside network




Device output:

NAT: TCP s=37189, d=9023->23
NAT: s=198.51.100.1, d=203.0.113.1->192.0.2.1
IP: tableid=0, s=198.51.100.1, d=192.0.2.1, routed via RIB
IP: s=198.51.100.1, d=192.0.2.1, g=192.0.2.253, len 42, forward
IP: tableid=0, s=192.0.2.1, d=198.51.100.1, routed via RIB
NAT: TCP s=23->9023, d=37189
NAT: s=192.0.2.1->203.0.113.1, d=198.51.100.1
IP: s=203.0.113.1, d=198.51.100.1, g=203.0.113.253, len 42, forward





The next example is almost identical except uses SSH. Use this opportunity
to test your understanding by following the debug output and reciting
the NAT order of operations:

R3#ssh -l nick -p 9022 203.0.113.1

Password: nick

R1#who
    Line       User       Host(s)              Idle       Location
   0 con 0                idle                 00:02:23
* 98 vty 0     nick       idle                 00:00:00 198.51.100.1

  Interface    User               Mode         Idle     Peer Address

NAT: TCP s=20534, d=9022->22
NAT: s=198.51.100.1, d=203.0.113.1->192.0.2.1 [21542]
IP: tableid=0, s=198.51.100.1, d=192.0.2.1, routed via RIB
IP: s=198.51.100.1, d=192.0.2.1, g=192.0.2.253, len 40, forward
IP: tableid=0, s=192.0.2.1, d=198.51.100.1, routed via RIB
NAT: TCP s=22->9022, d=20534
NAT: s=192.0.2.1->203.0.113.1, d=198.51.100.1
IP: s=203.0.113.1, d=198.51.100.1, g=203.0.113.253, len 268, forward








Dynamic Many-to-one (N:1) Inside Source NAT

This type of NAT is the most commonly deployed. Almost every consumer Internet
connection has a LAN network for wired/wireless access. All hosts on this
segment are translated to a single source IP address by using layer-4 source
port overloading. The changed source port serves as the demultiplexer to
translate return traffic back to the proper source IP address.

This solution is also called NAT overload, Port Address Translation (PAT), or
Network Address/Port Translation (NAPT). The solution can consume a NAT pool
(range) but can reuse inside global addresses in the pool across many inside
local addresses:

# ACL defines the inside local addresses (pre NAT source)
ip access-list standard ACL_INSIDE_SOURCES
 permit 192.0.2.0 0.0.0.127

# Pool defines the inside global addresses (post NAT source)
ip nat pool POOL_203 203.0.113.12 203.0.113.31 prefix-length 27

# Binds the inside local list to the inside global pool for translation
# Addresses allocated from the pool can be re-used
ip nat inside source list ACL_INSIDE_SOURCES pool POOL_203 overload





[image: ../../_images/nat44-dynamicn1.png]
In order to see this solution, debug ip nat detailed is used to more
explicitly show the inside and outside packets and their layer-4 ports. The
first example uses telnet from 192.0.2.1 to 198.51.100.1.


	Initial packet arrives from 192.0.2.1 to 198.51.100.1 (not in debug)


	NAT device performs routing lookup towards 198.51.100.1


	NAT device identifies inside translation using source port 57186.


	NAT device translates source from 192.0.2.1 to 203.0.113.12


	NAT device forwards packet to 198.51.100.1 in the outside network


	Return packet arrives from 198.51.100.42 to 203.0.113.1 (not in debug)


	NAT device identifies outside translation using destination port 57186.


	NAT device translates destination from 203.0.113.12 to 192.0.2.1


	NAT device perform routing lookup towards 192.0.2.1


	NAT device forwards packet to 192.0.2.1 in the inside network




Device output below explains how this works. Note that TCP port 23 is
irrelevant for this type of NAT because only the source port matters:

IP: tableid=0, s=192.0.2.1, d=198.51.100.1, routed via RIB
NAT: i: tcp (192.0.2.1, 57186) -> (198.51.100.1, 23)
NAT: s=192.0.2.1->203.0.113.12, d=198.51.100.1
IP: s=203.0.113.12, d=198.51.100.1, g=203.0.113.253, len 42, forward
NAT: o: tcp (198.51.100.1, 23) -> (203.0.113.12, 57186)
NAT: s=198.51.100.1, d=203.0.113.12->192.0.2.1
IP: tableid=0, s=198.51.100.1, d=192.0.2.1, routed via RIB
IP: s=198.51.100.1, d=192.0.2.1, g=192.0.2.253, len 42, forward





The power of the solution is illustrated in the output below. A new source,
192.0.2.2 also initiates a telnet session to 198.51.100.1 and is
translated to the same inside global address 203.0.113.12 except has
a source port of 55943. Try to follow the order of operations:

IP: tableid=0, s=192.0.2.2, d=198.51.100.1, routed via RIB
NAT: i: tcp (192.0.2.2, 55943) -> (198.51.100.1, 23)
NAT: s=192.0.2.2->203.0.113.12, d=198.51.100.1
IP: s=203.0.113.12, d=198.51.100.1, g=203.0.113.253, len 42, forward
NAT: o: tcp (198.51.100.1, 23) -> (203.0.113.12, 55943)
NAT: s=198.51.100.1, d=203.0.113.12->192.0.2.2
IP: tableid=0, s=198.51.100.1, d=192.0.2.2, routed via RIB
IP: s=198.51.100.1, d=192.0.2.2, g=192.0.2.253, len 42, forward





The solution, while very widely used, has many drawbacks:


	Many hosts use a common IP address; removes end-to-end addressing


	Applications that require source ports to remain unchanged may not work.
The NAT would have to retain source ports, which assumes inside local
devices never use the same source port for inside-to-outside flows.


	It only works TCP and UDP traditionally, but most implementations also
support ICMP. Protocols like GRE, IPv6-in-IPv4, and L2TP do not work.







Twice NAT

This NAT technique is by far the most complex. It is generally limited to
in environments where there are overlapping IPs between two hosts that must
communicate directly. This can occur between RFC 1918 addressing when
organizations undergo mergers and acquisitions.

In this example, an inside host 192.0.2.1 needs to communicate to an
outside host 198.51.100.1. Both of these problems exist:


	There is already a host with IP 198.51.100.1 on the inside network


	There is already a host with IP 192.0.2.1 on the outside network




To make this work, each host must see the other as some other address.
That is, both the inside source and outside source must be concurrently
translated, hence the name “twice NAT”. This should not be confused with
“double NAT” which is discussed in the CGN section.

Twice NAT is where all four of the NAT address types are different:


	inside local: 192.0.2.1


	inside global: 203.0.113.1


	outside global: 198.51.100.1


	outside local: 192.0.2.99




Cisco IOS example syntax:

# ip nat inside source static (inside_local) (inside_global)
ip nat inside source static 192.0.2.1 203.0.113.1

# ip nat outside source static (outside_global) (outside_local)
ip nat outside source static 198.51.100.1 192.0.2.99 add-route
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The order of operations is similar to previous inside source NAT examples,
except that following every source translation is a destination translation.


	Initial packet arrives from 192.0.2.1 to 192.0.2.99 (not in debug)


	NAT device performs routing lookup towards 192.0.2.99


	NAT device translates source from 192.0.2.1 to 203.0.113.1


	NAT device translates destination from 192.0.2.99 to 198.51.100.1


	NAT device forwards packet to 198.51.100.1 in the outside network


	Return packet arrives from 198.51.100.1 to 203.0.113.1 (not in debug)


	NAT device translates source from 198.51.100.1 to 192.0.2.99


	NAT device translates destination from 203.0.113.1 to 192.0.2.1


	NAT device perform routing lookup towards 192.0.2.1


	NAT device forwards packet to 192.0.2.1 in the inside network




Device output showing the order of operations is below:

IP: tableid=0, s=192.0.2.1, d=192.0.2.99, routed via RIB
NAT: s=192.0.2.1->203.0.113.1, d=192.0.2.99 [40]
NAT: s=203.0.113.1, d=192.0.2.99->198.51.100.1 [40]
IP: s=203.0.113.1, d=198.51.100.1, g=203.0.113.253, len 100, forward
NAT*: s=198.51.100.1->192.0.2.99, d=203.0.113.1 [40]
NAT*: s=192.0.2.99, d=203.0.113.1->192.0.2.1 [40]
IP: tableid=0, s=192.0.2.99, d=192.0.2.1, routed via RIB
IP: s=192.0.2.99, d=192.0.2.1, g=192.0.2.253, len 100, forward








NAT as a crude load balancer

This use case is uncommonly used but does, at a basic level, represent how
a server load balancer might work. It combines the logic of port forwarding
(unsolicited outside-to-inside access) with a rotary NAT pool to create
a dynamic solution whereby external clients can access internal hosts in
round-robin fashion, typically for load balancing.

Cisco IOS syntax example:

# Define a list of virtual IPs for outside-to-inside access
ip access-list standard ACL_VIRTUAL_IP
 permit 203.0.113.99

# Define the inside local "servers" in the pool
ip nat pool POOL_192 192.0.2.1 192.0.2.4 prefix-length 29 type rotary

# Bind the virtual IP list to the server pool
ip nat inside destination list ACL_VIRTUAL_IP pool POOL_192





Each time the outside host with IP 198.51.100.1 telnets to the
virtual IP address used to represent the server pool of 203.0.113.99,
the NAT device selects a different inside local address for the destination
of the connection. The range of inside IP addresses goes from 192.0.2.1
to 192.0.2.4, which are actual server IP addresses behind the NAT.
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The debug is shown below with RIB/packet forwarding output
excluded for clarity as it reveals nothing new. Each block of output
is from a separate telnet session, and represents a single keystroke:

# Choose server 192.0.2.1
NAT*: s=198.51.100.1, d=203.0.113.99->192.0.2.1
NAT*: s=192.0.2.1->203.0.113.99, d=198.51.100.1

# Choose server 192.0.2.2
NAT*: s=198.51.100.1, d=203.0.113.99->192.0.2.2
NAT*: s=192.0.2.2->203.0.113.99, d=198.51.100.1

# Choose server 192.0.2.3
NAT*: s=198.51.100.1, d=203.0.113.99->192.0.2.3
NAT*: s=192.0.2.3->203.0.113.99, d=198.51.100.1

# Choose server 192.0.2.4
NAT*: s=198.51.100.1, d=203.0.113.99->192.0.2.4
NAT*: s=192.0.2.4->203.0.113.99, d=198.51.100.1








Carrier Grade NAT (CGN)

This NAT technique does not introduce any new technology as it usually
refers to simply chaining PAT solutions (dynamic inside source NAT) in
series to create an aggregated, more overloaded design. Consider the home
network of a typical consumer that has perhaps 5 IP-enabled devices on the
network concurrently. Each device may have 50 connections for a total of 250
flows. A single IP address could theoretically support more than 65,000 flows
using PAT given the expanse of the layer-4 port range. Aggregating flows at
every higher point in a hierarchical NAT design helps achieve greater
NAT efficiency/density. Thus, given ~250 flows per home, a single CGN could
perform NAT aggregation services for ~260 homes to result in ~65,000
ports utilized from a single address.

The purpose of CGN has always been to slow to exhaustion of IPv4 addresses,
buying time for a proper IPv6 deployment. The vast majority of network
engineers acknowledge that CGN is not a permanent solution.

CGN is also known as Large Scale NAT (LSN), LSN444, NAT444, hierarchical NAT,
and double NAT. Do not confuse CGN with “twice NAT” which is typically a
single NAT point where the source and destination are both translated.

Cisco IOS sample syntax on the home router (first NAT point):

# ACL defines the inside local addresses (pre NAT source)
ip access-list standard ACL_INSIDE_SOURCES
 permit 192.0.2.0 0.0.0.127

# Use the single outside IP (often a DHCP address) to translate inside hosts
ip nat inside source list ACL_INSIDE_SOURCES interface FastEthernet0/1 overload





Cisco IOS sample syntax on the CGN router (second NAT point):

# Contains the inside global addresses (CGN range) from the home routers
ip access-list standard ACL_CONSUMER_ROUTERS
 permit 100.64.0.0 0.63.255.255

# Create NAT pool, typically a small number of public IPs for the CGN domain
ip nat pool POOL_CGN 203.0.113.0 203.0.113.3 prefix-length 30

# Bind the home routers using CGN 100.64.0.0/10 space to the CGN pool
ip nat inside source list ACL_CONSUMER_ROUTERS pool POOL_CGN overload





Given that no new technology is introduced, the debug below can be summarized
in 4 main steps. The debugs are broken up to help visualize the NAT actions
across multiple devices along the packet’s journey upstream and downstream.


	Inside-to-outside NAT at home router


	Inside-to-outside NAT at CGN router


	Outside-to-inside NAT at CGN router


	Outside-to-inside NAT at home router
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Device output:

# Inside-to-outside NAT at home router
IP: tableid=0, s=192.0.2.1, d=198.51.100.4, routed via RIB
NAT: s=192.0.2.1->100.64.23.254, d=198.51.100.4
IP: s=100.64.23.254, d=198.51.100.4, g=100.64.23.253, len 100, forward

# Inside-to-outside NAT at CGN router
IP: tableid=0, s=100.64.23.254, d=198.51.100.4, routed via RIB
NAT: s=100.64.23.254->203.0.113.2, d=198.51.100.4
IP: s=203.0.113.2, d=198.51.100.4, g=203.0.113.254, len 100, forward

# Outside-to-inside NAT at CGN router
NAT*: s=198.51.100.4, d=203.0.113.2->100.64.23.254
IP: tableid=0, s=198.51.100.4, d=100.64.23.254, routed via RIB
IP: s=198.51.100.4, d=100.64.23.254, g=100.64.23.254, len 100, forward

# Outside-to-inside NAT at home router
NAT*: s=198.51.100.4, d=100.64.23.254->192.0.2.1
IP: tableid=0, s=198.51.100.4, d=192.0.2.1, routed via RIB
IP: s=198.51.100.4, d=192.0.2.1, g=192.0.2.253, len 100, forward





Like most “quick fix” solutions, CGN has serious drawbacks:


	Massive capital investment for specialized hardware to perform high-density
NAT with good performance and reliability.


	Burdensome regulatory requirements on NAT logging. If ~260 households all
share a single public IP, criminal activity tracking becomes more difficult.
Carriers are often required to retain NAT logging, along with consumer router
IP addressing bindings, to identify where malicious activity originates. This
comes with additional capital and operating expense.


	ALG support is already hard with NAT. With CGN, almost impossible.


	No possibility of outside-to-inside traffic, even with port forwarding,
for customers.


	No possibility of peer-to-peer applications working.


	Restricted ports per consumer (250 in the theoretical example above)




In closing, developers should build applications that can use IPv6, totally
obviating the complex and costly workarounds need to get them working across
CGN in many cases. Applications that can be dual-stacked from the beginning
provide an easy migration path to IPv6.




NAT as a security tool

This is a topic of much debate, and there are two sides to the coin.

NAT provides the following security advantages:



	No reachability: In one-to-many NAT scenarios where unsolicited
outside-to-inside flows are technically impossible, the inside hosts
are insulated from direct external attacks.


	Obfuscation: The original IP address of the inside host is never
revealed to the outside world, making targeted attacks more difficult.


	Automatic firewalling: As a stateful device, only outside-to-inside
flows already in the state table are allowed, and the inside-to-outside
NAT state is created based on an ACL, much like a firewall.







Many of these security advantages are easily defeated:



	Relatively simple attacks like phishing and social engineering cause
clients to initiate connections to the outside. Such attacks are
easy to stage and more effective than outside-in frontal assaults.


	Most applications don’t use their IP addresses as identification. A web
application might have usernames or a digital certificate. The IP address
itself is mostly irrelevant and not worth protecting. It’s entirely
irrelevant when clients receive IP addresses dynamically (via DHCP).


	A NAT device drops outside-in flows due to lack of state, but does not
provide any protection against spoofed, replayed, or otherwise bogus
packets that piggy-back on existing flows. Security appliances do.
The only similarity between NATs and firewalls is that they maintain
state. They should not be categorized in any other way.







In closing, do not rely on NAT as a real security technology. It’s roughly
equivalent to closing your blinds in your home. It adds marginal security
value but there are clearly better alternatives. Like blinds on windows,
NAT may conceal and slow down some attacks, but should never be confused for
a legitimate security component in the design.

Section author: Nick Russo <njrusmc@gmail.com>
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AWS

Amazon Web Services (AWS) is at the time of this writing (2018-09-04) the
largest provider of cloud services in the world. AWS offers a breadth of
services in both compute, storage, databases, serverless, CDN and
much more. The purpose of this section is to describe the networking
services in AWS and an overview of AWS networking.


Networking in AWS Overview

Networking in public cloud is quite different from an on-premises network.
In order to build a multi-tenant, scalable, fault tolerant and high speed
network, AWS has designed the network quite differently than a
“traditional” network. The most notable difference is:


	No support for multicast


	No support for broadcast




What this means is that routing protocols using multicast are not
supported without some form of tunneling but more importantly this means
that because broadcast is not supported, ARP requests are not flooded
in the network. Without ARP, how can a host learn the MAC address of
another host? This requires some magic. Which is performed by the
hypervisor. When the hypervisor sees an ARP request, it will proxy
the ARP response back to the host. More about the specifics of networking
in AWS later.




AWS Fundamentals


Instance

With AWS terminology, a virtual machine (VM) is called an instance.




Availability Zone

An Availability Zone (AZ) is one or several datacenters in the same
geographical area sharing infrastructure such as power and internet transports.




Region

A region [http://aws.amazon.com/about-aws/global-infrastructure/] is a
collection of AZs. The number of regions is always growing and currently
there are regions in North America, Europe, Asia, and South America.

All regions consist of at least two AZs, some three and some even four.
To provide high availability, applications should be deployed in more than
one AZ.

Some of AWS’ services are regional and some are global.




VPC

Virtual Private Cloud (VPC) is one of the foundational building blocks
of AWS. VPC is a virtual datacenter deployed in AWS’ multi-tenant cloud.
By default, all instances deployed in AWS, are deployed to a default VPC.
The default VPC is designed to help organizations start quickly. For that
reason, the instances will by default get a public IP assigned, and have
a route to the internet by default. This is not true for customer created
VPCs.

These are actions that are performed in the default VPC:


	Creates a VPC with a /16 CIDR block (172.31.0.0/16)


	Creates a /20 subnet in each AZ


	Creates an internet gateway and attaches it to the VPC


	Creates a route table with a default route (0.0.0.0/0) pointing to the IGW


	Creates a default security group (SG) and associates it with instances in the VPC


	Creates a Network ACL (NACL) and associates it with the subnets in the VPC


	Associates the default DHCP options set for the AWS account with the default VPC




The default security group has the following logic:


	Allows all inbound traffic from other instances associated with the same SG


	Allows all outbound traffic




The default NACL allows all traffic both inbound and outbound.




Subnet

When a VPC is created, it must have a subnet in order to be able to address
the instances. For the default VPC, 172.31.0.0/16 is used. For customer
created VPCs, the user will assign a subnet ranging from a /16 up to a /28.

Subnets are always specific to an AZ, but there can be several subnets in
an AZ.

Note that some addresses in a subnet are reserved for use by Amazon.
For example, in the subnet 192.168.0.0/24, the following addresses would be
reserved:


	192.168.0.0   - Network address


	192.168.0.1   - Reserved by AWS for VPC router


	192.168.0.2   - Reserved by AWS for DNS server


	192.168.0.3   - Reserved by Aws for future use


	192.168.0.255 - Broadcast address




So what does a VPC look like? This image from Amazon’s blog shows the
VPC construct:

[image: ../../_images/aws-vpc-overview-1.PNG]



Route Table

Every subnet needs a route table, by default a subnet gets assigned to a
default route table. It is also possible to create custom route tables.
A route table can be associated with multiple subnets but every subnet
can only belong to one route table.

It is common practice to have private and public subnets and using
different route tables for each. The public subnet would then have
a public IP or elastic IP and be reachable from the internet while
the private subnet wouldn’t be, at least not without first passing
an NAT gateway or instance.

Note that routes always point to some form of gateway or endpoint, such as an
internet gateway (IGW), NAT gateway, virtual gateway (VGW), EC2 instance,
VPC peer or VPC endpoint and not towards an IP address directly.

It’s important to know that forwarding can’t be changed for local traffic,
that is traffic inside of the VPC. It’s not possible to override this
behavior with a longer route so routing in a VPC is not strictly
longest prefix matching (LPM).




Security Group

A security group is similar to a stateful ACL or a basic form of firewall,
albeit distributed. The SG is applied to the instance directly and keeps
track of TCP, UDP and ICMP connection status. Rules are white list only,
consisting of ACL entries, and contain an implicity deny, meaning that
anything not permitted, is denied. A SG can reference another SG, for
example a database SG allowing any instance in the application SG to
send traffic inbound on the port that the database service is exposing.

Note that an instance can be associated with several SGs, and that all
rules would be evaluated before permitting or denying a flow. It’s possible
to change the SG applied to an instance after it has been launched.




Network ACL

The Network ACL (NACL) is a stateless ACL, applied at the subnet level.
Logically, any traffic going to an instance, will be evaluated in the
NACL first, before being evaluated by the SG. NACLs are ordered and
can have both permit and deny statements. It’s only possible to reference
CIDR ranges and not instances or other ACLs.

For example, to deny all SSH traffic into a subnet, a NACL could block
TCP port 22 inbound instead of putting rules in each SG.




Elastic Network Interface

The Elastic Network Interface (ENI) is a virtual network interface card (NIC).
An instance can have multiple ENIs and an ENI can be moved to another instance
within the same subnet. It’s also possible to have multiple addresses assigned
to an ENI. An ENI has a dynamically assigned private IP and optionally a public
one as well. While the primary ENI assigned to an instance has dynamically
allocated IP addresses, with a customly created ENI, there’s flexibility to
auto-assign or statically assign IP addresses within the given subnet.
An instance primary ENI may also have one or more statically provided secondary
addresses through the console or API.




Public IP Address

Public IP addresses are addresses that are reachable from the internet. AWS
uses two types of public IP addresses:


	Dynamically assigned public IP addresses


	Elastic IP addresses




If the instance does not need to have a persistent public IP, it can use
the public IP (dynamically assigned). This IP is however released if the
instance terminates. For instances needing a persistent IP, use the Elastic
IP instead. Note that this IP comes with a cost when not assigned to an
instance.




Elastic IP

The Elastic IP is not dynamically assigned but rather statically assigned
to instances that need a persistent IP address. It can be associated with
another instance if the first one is terminated.

Having a persistent IP can simplify writing ACLs, DNS entries and having
the IP address whitelisted in other systems. Note that there is always
a private IP assigned to the instance, this is the one that is seen
when looking at the OS level. This holds true for both dynamically assigned
addresses and the Elastic IP. The private IP address remains the same
unless the EIP is moved to another instance.

How can the instance have a private IP but still be publically accessible?
NAT. AWS will perform 1:1 NAT so that the instance can be reached from the
outside.

The VPC then, with added details, looks like below, once again the picture
from Amazon’s blog.

[image: ../../_images/aws-vpc-routing-1.PNG]





External Connectivity to the VPC

There are multiple ways to connect to a VPC but keep in mind that a VPC
does not do transitive routing. This picture, from Amazon’s blog, shows
the different options of connecting to the VPC.

[image: ../../_images/aws-vpc-external-1.PNG]

Internet Gateway

The internet gateway (IGW) provides access to the internet. This device
is provided by Amazon, is highly available and is used by pointing a default
route at the IGW. The IGW is a regional service.




NAT Gateway

The NAT gateway is a service provided per AZ, used for translating private
IP addresses into public ones. This is mainly used for instances that need
to reach the internet, for example for downloading software updates, but that
should not be reachable from the outside. The devices having ther private
IP addresses being translated, will share a single Elastic IP.

As noted above, because it is a service provided per AZ, if multiple AZs
are leveraged, use one NAT gateway per AZ.




Virtual Private Gateway

The virtual private gateway (VGW) is a regional service, highly available, that
terminates two AWS services:


	Virtual Private Networks (VPNs)


	AWS Direct Connect




The VGW terminates IPSec tunnels and can either use static routing or
Border Gateway Protocl (BGP) for dynamic routing. It’s also possible
to propagate routes learned dynamically into the VPC.

Direct Connect circuits point to the VGW which is the entry point into
the VPC.




Virtual Private Network

VPNs are provided through the VGW, as noted above or by having an instance
terminate the VPN. For example by using AMIs from networking vendors such
as Cisco, Palo Alto and others. A VGW can never setup a tunnel to another
VGW. This is because a VGW is always only a responder, never the initiator.

Only 100 routes are supported to be added into the VPC through the use of
VPNs.




Direct Connect (DX)

AWS Direct Connect provides the ability to establish a dedicated network
connection from sites such as data centers, offices, or colocation enviroments
to AWS. It provides a more consistent network experience than internet-based
connections at bandwidths ranging from 50 Mbps to 10 Gbps on a single connection.
Direct Connect (DX) has the following requirements :


	802.1Q


	BGP


	BFD (Optional)







Virtual Interfaces (VIFs)

A VIF is a configuration consisting primarily of an 802.1Q VLAN and the options
for an associated BGP Session. It contains all the configuration parameters
required for both the AWS end of a connection and your end of the connection
AWS Direct connect support two types of VIFs:


	Public VIFs


	Private VIFs




1. Public VIFs: Public Virtual interfaces enable your network to reach all of
the AWS public IP addresses for the AWS region with which your AWS Direct Connect
connection is associated. Public VIFs are typically used to enable direct network
access to services that are not reachable via a private IP address within your
own VPC. These include Amazon S3, Amazon DynamoDB and Amazon SQS.

2. Private VIFs: Private Virtual Interfaces enable your network to reach resources
that have been provisioned within your VPC via their private IP address.
A Private VIF is associated with the VGW for your VPC to enable this connectivity.
Private VIFs are used to enable direct network access to services that are reachable
via an IP address within your own VPC. These include Amazon EC2, Amazon RDS and
Amazon Redshift.




802.1Q Virtual Local Area Networks (VLANs)

802.1Q is an Ethernet standard that enables Virtual Local Area Networks
(VLANs) on an Ethernet network, it uses the addition of a VLAN tag to the
header of an Ethernet frame to define membership of a particular VLAN.




Link Aggregation Groups (LAGs)

A LAG is a logical interface that uses the LACP (Link Aggregation Control
Protocol) to aggregate multiple 1 Gbps or 10 Gbps connections at a single
AWS Direct Connect location, allowing you to treat them as a single, managed
connection.




Direct Connect Gateway

A Direct Connect gateway enables you to combine private VIFs with multiple VGWs in local
or in the remote regions.
You can use this feature to establish connectivity from an AWS Direct Connect location
in one geographical zone to an AWS region in a different geographical zone.




Bidirectional Forwarding Detection (BFD)

Bidirectional forwarding detection (BFD) is a network fault detection protocol
that provides fast failure detection times, which facilitates faster
re-convergence for dynamic routing protocols.
It is a mechanism used to support fast failover of connections in the event of
a failure in the forwarding path between two routers.
If a failover occurs, then BFD notifies the associated routing prorocols
to recalculate available routes.




Border Gateway Protocol

Border Gateway Prorocol (BGP) is a routing prorocol used to exchange network
routing and reachability information, either within the same AS (iBGP)
or a different autonomous system (eBGP).




BGP Best Path Selection (VGW)

The best path algorithm in AWS follows this logic:


	Local routes to the VPC


	Longest prefix match first


	Static route table entries to:





	IGW


	VGW


	Network interface


	Instance ID


	VPC peering


	NAT gateway


	VPC endpoint





	VPN routes


	Prefer Direct Connect BGP routes


	VPN static routes


	BGP Routes from VPN (not direct connect)








For BGP routes coming from VPN, the following priority applies:


	Shortest AS-path


	Lowest origin (IGP over EGP)









Other Interesting Information


Virtual Router

There is a “virtual” router attached to the VPC. In reality, this is a
distributed service provided by both HW and a hypervisor, of course.




DNS in a VPC

DNS is handled by the VPC by default. Every instance is assigned a DNS name
with its IP address, automatically managed by AWS. It’s possible to use Route53
to setup a private zone as well or using an instance hosting the DNS service.

Be mindful that DNS service is only available to DNS clients within the same VPC.
Although the “plus two” address (e.g. 172.31.0.2) for each VPC is reserved for DNS
service by default, for simplicity Amazon also reserves the IP address 169.254.169.253 which
can be used by any DNS client to reach the DNS service endpoint configured for
its local VPC.




Routing and Switching


	AWS only supports unicast traffic, no multicast or broadcast. As described previously, ARP responses are proxied by the hypervisor


	Traffic between subnets in a VPC is allowed, unless restricted by a security group, NACL or filtered at the host


	Traffic between two instances in the same VPC is always local and can’t be overridden with more specific routes


	Traffic that is not sourced by or destined to an instance is dropped, unless disabling the source/destination check


	Transitive routing is not supported, meaning that VPC A can’t communicate with VPC C by going through VPC B


	Jumbo frames are supported inside of a VPC but traffic leaving a VPC always uses a Maximum Transmission Unit (MTU) of 1500 bytes




Section author: Daniel Dib









          

      

      

    

  

    
      
          
            
  
Azure

Microsoft Azure is a relative newcomer in cloud computing compared to AWS. Over
the past couple of years Microsoft has done some incredible work with the Azure
platform and open source community to become one of the leading cloud providers.

The services they offer include compute, storage, database, serverless, CDN
and much more. The purpose of this section is to describe the networking
services in Azure and an overview of Azure networking.


Networking in Azure Overview

Networking in public cloud is quite different from an on-premises network.
In order to build a multi-tenant, scalable, fault tolerant and high speed
network, Azure has designed the network quite differently than a
“traditional” network. The most notable difference is:


	No support for multicast


	No support for broadcast




What this means is that routing protocols using multicast are not
supported without some form of tunneling but more importantly this means
that because broadcast is not supported, ARP requests are not flooded
in the network. Without ARP, how can a host learn the MAC address of
another host? This requires some magic. Which is performed by the
hypervisor. When the hypervisor sees an ARP request, it will proxy
the ARP response back to the host. More about the specifics of networking
in Azure later.




Azure Fundamentals


Geopolitical Region

A Geopolitical region is a collection of Azure regions which can be reached
from a standard ExpressRoute.

https://docs.microsoft.com/en-us/azure/expressroute/expressroute-locations has more details around this.




Regions & Availability Zones

A Region in Azure is one or several datacenters in the same
geographical area sharing infrastructure such as power and internet transports.

Within a region there are multiple Availability Zones.
Each Availability Zone is a separate physical location, for example a separate data centre room, or another building with very low latency to the other availability zones within the region.

[image: ../../_images/1bf8b298ca3b3a91ce10486988ad21508d024bb5.png]
https://azure.microsoft.com/en-gb/global-infrastructure/regions/




Resource Group (RG)

A resource group is a logical grouping of infrastructure resources.
For example a Production RG may include:


	Production VNet


	Storage account(s) related to VMs


	VM Servers


	Azure Traffic Manager DNZ zones







VNet

A VNet is an IP Prefix allocated for use in Azure.

You can have multiple VNets within a subscription/resource group.

VNets are isolated instances by default, if you have multiple VNets within a region
or globally they will be unable to communicate with each other.

VNet Peering, VPNs, or ExpressRoute can allow this communication.

Example of VNet assignments might be:







	VNet

	Assignment



	10.0.0.0/16

	Western Europe (Prod)



	10.0.16.0/16

	North Europe (DR)









Subnet

A subnet is an IP Prefix allocation within a VNet.
Multiple Subnets are generally assigned within a VNet. Depending on the application deployment model
you might want to assign a VNet for Management, Apps, Databases, etc…


Note

This is just an example and not a recommended subnet layout.









	Subnet

	Usage



	10.0.0.0/24

	GatewaySubnet



	10.0.1.0/24

	Management



	10.0.2.0/24

	Apps



	10.0.3.0/24

	Database









Network Security Group (NSG)

A NSG is a stateful firewall in Azure. They can be associated either with a specific VM, or with an entire subnet.
See https://docs.microsoft.com/en-us/azure/virtual-network/security-overview for more information.




Network Virtual Appliance (NVA)

A Network Virtual Appliance (NVA) is the name for using a traditional network vendor VM in Azure.

For example you can deploy VMs from vendors such as Juniper VSRX firewalls, Palo Alto firewalls, Cisco CSR routers and integrate them into your standard networking toolset.

There is nothing special about these VMs, many people deploy Linux VMs to manage routing and  firewalling.




User Defined Routes (UDR)

UDR is a routing table within Azure. It allows static routes to be defined and system
Routes overwritten.
UDRs are assigned at a subnet level, and you can assign the same UDR to multiple subnets.
Generally you wouldn’t use a UDR unless you’re using a Network Virtual Appliance (NVA)

Section author: Daniel Rowe <n4d@danrowe.email>









          

      

      

    

  

    
      
          
            
  
Datacenter Networking

This part of the site is about datacenter networking, i.e. networking
technologies used in on-premises datacenters.


Further Reading










          

      

      

    

  

    
      
          
            
  
Network Security

This part of the site is about network security such as firewalls, IDS/IPS,
VPNs and more.


Further Reading
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