

    
      
          
            
  
Netengine

Netengine is a python library that aims to provide a single API to extract common
information from network devices with different firwmares (eg: OpenWRT, AirOS) using different protocols
such as the Simple Network Management Protocol (SNMP), and the ability to easily add other backends
like SSH and HTTP (read more).

You can immagine Netengine as a read-only ORM (Object Relational Mapper) equivalent for networks.



Motivations

While dealing with networks in the real world, it’s highly probable that you will
deal with a network which is made with very different routers, switches and servers.
Some may support standard SNMP mibs, some may not, some may implement other HTTP APIs,
some may even implement obscure/custom SNMP mibs.

If you need to develop a web application that automates some networking tasks, you
don’t want to deal with all those differences in the application code, because it
would become hard to mantain very soon. You also might not want to tie your web
app code to a specific vendor or firmware because that would make your software unflexible.

If we had a single API we could let web developers focus on the task they need to accomplish
rather than dealing with different firmwares, different linux distributions and so on.

The goal of this project is to build that single API.



Status of this project

We are currently in 0.1 alpha version.

The 0.1 final version will be out by August 2021.


Note

The legacy versions of this project had support for SSH and HTTP for extracting information from
devices. To see how it worked, visit the
0.1.0 alpha release [https://github.com/openwisp/netengine/releases/tag/0.1.0a] page on
github.





Install

Install the development version (tarball):

pip install https://github.com/openwisp/netengine/tarball/master





Alternatively, you can install via pip using git:

pip install -e git+git://github.com/openwisp/netengine#egg=netengine







Contents:



	Usage

	Running tests

	SNMP backend
	SNMP

	AirOS example

	OpenWRT example










Indices and tables


	Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Usage

The usage of Netengine module requires it to be installed properly as explained in index.
If you have an installation under a virtualenv, enter the folder /bin and type:

source activate





otherwise (if you have installed globally) just open an editor as bpython and you we are ready to go.

These are the main steps to follow to use the module:



	import the correct backend and supported framework


	declare a device using the proper constructor


	invoke methods over the device just declared







So we have:

from netengine.backends.<backend_name> import <supported_firmware>

<device_name> = supported_firmware_constructor





To invoke methods over the just declared device it’s necessary to use the dot notation as:

<device_name>.<method or property>





Further example will be found inside dedicated docs for every backend



Running tests

Install test reqirements:

pip install -r reqirements.txt
pip install -r requirements-test.txt





Clone repo:

git clone git://github.com/openwisp/netengine

./runtests.py





To run tests on real devices, first copy the settings file:

cp test-settings.example.json test-settings.json





Then change the credentials accordingly, now run tests with:

DISABLE_MOCKS=1 TEST_SETTINGS_FILE='test-settings.json' ./runtests.py





See test coverage with:

nose2 --with-coverage





Run specific tests by specifying the relative path:

# base tests
nose2 tests.base

# snmp tests
nose2 tests.snmp
# snmp openwrt specific tests
nose2 tests.snmp.openwrt

# run without mocks with a custom test file
DISABLE_MOCKS=1 TEST_SETTINGS_FILE='test-settings.json' nose2 tests.snmp








          

      

      

    

  

    
      
          
            
  
SNMP backend


SNMP

SNMP (Simple Network Management Protocol) is a network protocol very useful for retrieving info from a device.
All the information is retrieved by using codes called MIBs. All MIBs have a tree-like structure, every main information is the root and by adding more detail to the info
the tree gains more depth.
Obviously, by getting the smallest MIB which is “1” or simply ” . ” one can get all the tree.


	The SNMP backend provides support for 2 firmwares:

	
	AirOS


	OpenWRT










AirOS example

from netengine.backends.snmp import AirOS
device = AirOS("10.40.0.130")
device.name
'RM5PomeziaSNode'
device.uptime_tuple
(121, 0, 5)  # a tuple containing device uptime hours, mins and seconds






	We have just called two simple properties on device, but we can ask device for more specific values or portions of the SNMP tree not included in the API, just type::

	device.next(“1.3.6”)



	Otherwise, if you want simply a value of the tree just type::

	device.get_value(“oid_you_want_to_ask_for”)







OpenWRT example

The same instructions typed above can be applied to OpenWRT itself, just remember to import the correct firmware by typing:

from netengine.backends.snmp import OpenWRT









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Netengine
        


        		
          Usage
        


        		
          Running tests
        


        		
          SNMP backend
          
            		
              SNMP
            


            		
              AirOS example
            


            		
              OpenWRT example
            


          


        


      


    
  

_static/plus.png





_static/comment-bright.png





_static/file.png





_static/ajax-loader.gif





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





