

NetConfig Documentation

	NetConfig
	What Is NetConfig?

	Features

	Installation

	Upgrade

	NetBox Integration

	Screenshots

	Important Caveats

	Contribute

	Support

	License

	Installation Guides
	Ubuntu 16.04 Server

	CentOS 7 Server

	Upgrading
	Upgrading NetConfig to Latest Version

	Netbox Integration
	Configuring NetConfig

	Configuring Netbox

	Configuring Devices in Netbox to be used by NetConfig

	Add Vendor Support
	Getting Started

	Create Base Devive Class

	Create Individual Devive Type Class

	Contributing to NetConfig
	How to Contribute to NetConfig

Index

	Index

	Search Page

NetConfig

Master / Development Branch

[image: _images/netconfig.svg]
 [https://travis-ci.org/v1tal3/netconfig][image: _images/netconfig1.svg]
 [https://travis-ci.org/v1tal3/netconfig]
What Is NetConfig?

NetConfig started out as a graphical overlay for my existing Python scripts, and I’ve been expanding it’s features ever since. It was originally built specifically for Cisco switches, routers, and firewalls, using IOS, IOS-XE, NX-OS, and ASA operating systems. All device data is pulled in real-time via SSH and Netmiko.

NetConfig can retrieve a list of devices in one of two ways:

	Stored in a local SQLAlchemy database file

	Retrieved via API calls on an existing NetBox installation

In version 1.1, vendor neutral support was added using individual device files.

Features

NetConfig was originally built as a graphical overlay for common CLI based interactions with non-API supported Cisco networking equipment. At the core of the program is a need to access accurate, real-time information about any SSH enabled network device. NetConfig accomplishes this by refreshing all page contents each time the page is refreshed, by pulling the information via SSH at the time of the page refresh.

NetConfig provides:

	Real-time information into your network devices

	Graphical overlay for existing Network devices without support for API’s or other web-based interfaces

Installation

Reference the Installation Guide section for instructions how on how to install NetConfig at readthedocs.io install guide [http://netconfig.readthedocs.io/en/latest/install.html]
Install instructions were written for an Ubuntu 16.04 64-bit server. NetConfig has not been tested with other OS’s.

Upgrade

Reference the Upgrading secion for instructions on upgrading the software at the readthedocs.io upgrade guide [http://netconfig.readthedocs.io/en/latest/upgrade.html]. See the latest release [https://github.com/v1tal3/netconfig/releases] page to download the most recent NetConfig version.

NetBox Integration

Reference the Netbox-Integration secion for instructions on pulling device inventory from an existing Netbox installation readthedocs.io Netbox integration guide [http://netconfig.readthedocs.io/en/latest/readme.html#netbox-integration].
Netbox can be found at their GitHub repository [https://github.com/digitalocean/netbox].

Screenshots

[image: _images/index.jpg]
[image: _images/example-switch.jpg]

Important Caveats

For all devices, Netconfig expects the hostname configured to match the actual hostname of the device (case-sensitive). If not, some features may not work properly.

Contribute

	Source Code: NetConfig on GitHub [https://github.com/v1tal3/netconfig]

	Issue Tracker: NetConfig Issue Tracker [https://github.com/v1tal3/netconfig/issues]

	Documentation: NetConfig on ReadTheDocs [https://netconfig.readthedocs.io/en/latest/]

	Subreddit: NetConfig on Reddit [https://www.reddit.com/r/netconfig/]

Support

If you are having issues, please let us know
Please file an issue in the GitHub issue tracker

License

NetConfig is licensed under the GPL v3.0 license. A copy of the license is provided in the root NetConfig directory, or you can view it online here [https://www.gnu.org/licenses/gpl-3.0.en.html]

Installation Guides

Ubuntu 16.04 Server

Installation guide for Ubuntu 16 04 Server

CentOS 7 Server

Installation guide for CentOS 7 Server

Upgrading

Upgrading NetConfig to Latest Version

Before Starting

If running NetConfig on a VM, it is highly recommended to take a snapshot prior to upgrading. In case of any issues, you can roll back any changes by reverting to the previous snapshot.

Upgrade Process

Version 1.3.0 (beta) or newer

As of Version 1.3.0 (beta), the Upgrade process has been fully automated into the ~/netconfig/upgrade.sh script.

If you are on v1.3.0 (beta) or higher, simply run the following commands to run the script as the local ‘netconfig’ user:

su - netconfig
/home/netconfig/netconfig/upgrade.sh

Version 1.2.3 (beta) or earlier

Change to NetConfig user

su - netconfig

Change to NetConfig directory

cd /home/netconfig/netconfig

Checkout master branch

git checkout master

Pull new files

git pull origin master

Verify git status

git status

Run Upgrade script. If upgrade script is not executable, run the ‘chmod’ command below first

chmod +x upgrade.sh
./upgrade.sh

Restart NetConfig service

sudo supervisorctl restart netconfig

Verifying Upgrade

In your web browser, navigate to the home NetConfig page. In the Top Menu, under About, you should see the latest software version displayed.

[image: _images/version-info.jpg]

Potential Caveats

If any manual changes are made to any NetConfig files (except for the settings and log files), the command ‘git pull origin master’ may fail or throw an error. If so, you can stash (delete) any manual changes made, then repull from NetConfig’s GitHub respository. This will replace any custom changes made in files with the standard NetConfig system files, so be careful if any custom changes are critical to your environment.

The command is:

Upgrade Script doesn’t run:

If the upgrade script doesn’t run, make sure it is executable first.

ls -lah
-rw-r--r-- 1 netconfig staff 1.2K Jan 2 14:30 upgrade.sh

If it is missing an ‘x’ in the above output, run this command:

chmod +x upgrade.sh

The ‘ls -lah’ output should now read as follows:

ls -lah
-rwxr-xr-x 1 netconfig staff 1.2K Jan 2 14:30 upgrade.sh

Netbox Integration

Configuring NetConfig

Netconfig supports two methods of tracking network device inventory:

	Local database using SQLAlchemy

	API call through Netbox, an open source DCIM solution found here: https://github.com/digitalocean/netbox

By default, NetConfig is set to use a local SQLAlchemy database

Configure Netconfig for Netbox API Access

In the root Netconfig directory, open file ‘instance/settings.py’ (this should be /home/netconfig/netconfig/instance/settings.py)

Navigate to the line that reads:

DATALOCATION = ‘local’

Change it to read:

DATALOCATION = ‘netbox’

Navigate to the line that reads:

NETBOXSERVER = ‘’

Set the URL for your Netbox server using single quotes. Example:

NETBOXSERVER = ‘http://netbox.domain.com’

Save and close the file

Configuring Netbox

Create Two Custom Fields

In Netbox, go to the site admin page. Log in as an admin user. Then click on your username, then select Admin.

Under Extras, click on Custom Fields

Custom Field #1

Click the Add Custom Field + button, and use the following settings. The Description field and the checkbox for ‘Required’ are both optional and up to you. Additonally the fields with “weight” in the name can be any number from 1-100, and are up to you.

Object: dcim > device
Type: Selection
Name: Netconfig
Label: [blank]
Is Filterable: Checked
Weight: 100
Custom Field Choices
 1st Value field: No
 1st Value weight: 99
 2nd Value field: Yes
 2nd Value weight: 100

Click Save

Screenshot example:

[image: _images/netbox-custom-field-1-1.jpg]
[image: _images/netbox-custom-field-1-2.jpg]

Custom Field #2

Click the Add Custom Field + button, and use the below settings. The Description field and the checkbox for ‘Required’ are both optional and up to you. Additonally the fields with “weight” in the name can be any number from 1-100, and are up to you.

Object: dcim > device type
Type: Selection
Name: Netconfig_OS
Label: [blank]
Is Filterable: Checked
Weight: 100
Custom Field Choices
 1st Value field: IOS
 1st Value weight: 97
 2nd Value field: IOS-XE
 2nd Value weight: 98
 3rd Value field: NX-OS
 3rd Value weight: 99
 4th Value field: ASA
 4th Value weight: 100

Click Save

Screenshot example:

[image: _images/netbox-custom-field-2-1.jpg]
[image: _images/netbox-custom-field-2-2.jpg]

Configuring Devices in Netbox to be used by NetConfig

For any new or existing devices you want to use with Netconfig, when creating or editing a device, the following conditions must be met:

	For each device, set the field Netconfig under the Custom Fields section to Yes

	A Primary IPv4 address must be configured for each device (IPv6 is not supported at this time)

	The IP address must be reachable by Netconfig, and Netconfig must be able to SSH into the device

	The Device Type (assigned to a device you want pulled) must have one of the 4 currently supported OS’s set in the Custom Fields: IOS, IOS-XE, NX-OS, or ASA

Add Vendor Support

Getting Started

Currently as of version 1.0b, NetConfig only support Cisco routers, switches, and firewalls, running IOS, IOS-XE, NX-OS, or ASA’s. However in version 1.1b, support was added for different vendors and different vendor model network devices.

This guide intends to document how to create a base device class for a vendor, as well as individual device model classes, for support with integrating into NetConfig. Any new device classes that work successfully and are tested thoroughly may be submitted as a Pull Request for official integration into the overall project.

Create Base Devive Class

The base device class is used for different vendors. Currently, the only existing base device class is for Cisco, titled “cisco_base_device.py”. In this example, we will create a new base device class for vendor “Acme”.

Before creating any files, make sure to SSH in to the NetConfig server as user ‘netconfig’, or switch over to the user ‘netconfig’ once logging in.

su - netconfig

File Location

In this example, the file is located in ~/netconfig/app/device_classes/device_definitions/acme_base_device.py.

cd ~/netconfig/app/device_classes/device_definitions
touch acme_base_device.py
vi acme_base_device.py

The basic structure of this file is as follows:

from base_device import BaseDevice

class AcmeBaseDevice(BaseDevice):
 # functions go here

The file has a few base functions that are required by the overall NetConfig program. As NetConfig grows its feature set, more required functions may be added, and will need to be added/updated in here as necessary.

All functions in here are expected to work with any/all network devices made by this vendor. Model specific functions will go in the individual device model classes, explained at the end of this file.

Required Functions

These functions and their specific names are required for NetConfig, including the required inputs and expected outputs. How they process the inputs in order to return the required output varies for each specific network vendor.

Input: None required
Purpose: Provide the command used to enter a configuration mode in the device
Output:
command (string) - Outputs the command used to enter configuration mode for all vendor devices

def get_cmd_enter_configuration_mode(self):
 # Function logic goes here
 return commandStr

Input: None required
Purpose: Provide the command used to exit the configuration mode in the device
Output:
command (string) - Outputs the command used to exit configuration mode for all vendor devices

def get_cmd_exit_configuration_mode(self):
 # Function logic goes here
 return commandStr

Input: None required
Purpose: Provide the command used to enable a specific interface
Output:
commandStr (string) - Outputs the command used to enable / activate / unshut / bring online an interface for all vendor devices
Output Type: String

def get_cmd_enable_interface(self):
 # Function logic goes here
 return commandStr

Input: None required
Purpose: Provide the command used to disable a specific interface
Output:
commandStr (string) - Outputs the command used to disable / deactivate / shutdown / bring offline an interface for all vendor devices

def get_cmd_disable_interface(self):
 # Function logic goes here
 return commandStr

Input:
interface (string) - The name of the interface that is to be enabled
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Enable a specific interface
Output:
resultsList (list) - Outputs all command results as displayed the client network device when enabling an interface

def run_enable_interface_cmd(self, interface, activeSession):
 # Function logic goes here
 return resultsList

Input:
interface (string) - The name of the interface that is to be disabled
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Disable a specific interface
Output:
resultsList (list) - Outputs all command results as displayed the client network device when disabling an interface

def run_disable_interface_cmd(self, interface, activeSession):
 # Function logic goes here
 return resultsList

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Saves the running-configuration settings on the device into memory
Output:
resultsList (list) - Outputs all command results as displayed the client network device when enabling an interface, with each new line (separated by carriage return) in its own line in the returned list

def save_config_on_device(self, activeSession):
 # Function logic goes here
 return resultsList

Input:
interface (string) - The name of the interface to edit the configuration settings
datavlan (string) - The data vlan ID to set on the interface. Note: This is an optional variable, and may submitted as an empty string instead
voicevlan (string) - The voice vlan ID to set on the interface. Note: This is an optional variable, and may submitted as an empty string instead
other (list) - A list (separated by carriage returns) of any additional commands, manually entered by the user, needing to be configured for the specified interface. Note: This is an optional variable, and may submitted as an empty string instead
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Edits the configuration settings for a specific interface on a device
Output:
resultsList (list) - Outputs all command results as displayed the client network device when edit an interface, with each new line (separated by carriage return) in its own line in the returned list

def run_edit_interface_cmd(self, interface, datavlan, voicevlan, other, activeSession):
 # Function logic goes here
 return resultsList

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls any inventory information about the device (Cisco equivalent: "show inventory")
Output:
resultsList (list) - Outputs all command results as displayed by the client network device as returned once executing the command, with each new line (separated by carriage return) in its own line in the returned list

def pull_inventory(self, activeSession):
 # Function logic goes here
 return resultsList

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls any version information about the device (Cisco equivalent: "show version")
Output:
resultsList (list) - Outputs all command results as displayed by the client network device as returned once executing the command. The list is formatted where each new line of output (as determined by \n [carriage-return]) is separated in the returned list.

def pull_version(self, activeSession):
 # Function logic goes here
 return resultsList

Create Individual Devive Type Class

The specific device type class is used for the same vendor (as created above). However a different device type file needs to be created for each type of device that uses different commands, unique commands, or returns output differently than other models by the same vendor.Currently, the only existing device type classeses are for Cisco, which are “cisco_ios.py”, “cisco_asa.py”, and “cisco_nxos.py”. Note that NetConfig support both IOS and IOS-XE, however their commands and outputs are identical, so they both use “cisco_ios.py”. In this example, we will create a new base device class for vendor “Acme”.

Before creating any files, make sure to SSH in to the NetConfig server as user ‘netconfig’, or switch over to the user ‘netconfig’ once logging in.

su - netconfig

File Location

Create a new directory for the vendor.

mkdir ~/netconfig/app/device_classes/device_definitions/acme
cd ~/netconfig/app/device_classes/device_definitions/acme

Create a new ‘init’ file

touch __init__.py
vi __init__.py

Add the following lines into the file:

from acme_os import AcmeOS

__all__ = ['AcmeOS']

Now create the new device file for Acme OS type devices:

touch acme_os.py
vi acme_os.py

The basic structure of this file is as follows:

from ..acme_base_device import AcmeBaseDevice

class AcmeOS(AcmeBaseDevice):
 # functions go here
 return x

The file has a few functions that are required by the overall NetConfig program. As NetConfig grows its feature set, more required functions may be added, and will need to be added/updated in here as necessary.

All functions in here are expected to work with only this specific network device type, by this specific vendor. Any functions that function identically, and are supported by this vendor across all of their device models/types, may go in the acme_base_device.py file instead.

Required Functions

These functions and their specific names are required for NetConfig, including the required inputs and expected outputs. How they process the inputs in order to return the required output varies for each specific network vendor.

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls any version information about the device (Cisco equivalent: "show version")
Output:
resultsList (list) - Outputs all command results as displayed by the client network device as returned once executing the command. The list is formatted where each new line of output (as determined by \n [carriage-return]) is separated in the returned list.

def pull_version(self, activeSession):
 # Function logic goes here
 return resultsList

Input: None required
Purpose: Provide the command used to display the active/running configuration settings
Output:
commandStr (string) - Outputs the command used to display the active/running configuration settings

def cmd_run_config(self):
 # Function logic goes here
 return commandStr

Input: None required
Purpose: Provide the command used to display the saved/startup configuration settings
Output:
commandStr (string) - Outputs the command used to display the saved/startup configuration settings

def cmd_start_config(self):
 # Function logic goes here
 return commandStr

Input: None required
Purpose: Provide the command used to display the the CDP/LLDP neighbors, with each new line (separated by carriage return) in its own line in the returned list
Output:
commandStr (string) - Outputs the command used to display the CDP/LLDP neighbors

def cmd_cdp_neighbor(self):
 # Function logic goes here
 return commandStr

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls the active/running configuration settings for the device
Output:
resultsList (list) - Outputs the active/running configuration settings, with each new line (separated by carriage return) in its own line in the returned list

def pull_run_config(self, activeSession):
 # Function logic goes here
 return resultsList

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls the saved/startup configuration settings for the device
Output:
resultsList (list) - Outputs the saved/startup configuration settings, with each new line (separated by carriage return) in its own line in the returned list

def pull_start_config(self, activeSession):
 # Function logic goes here
 return resultsList

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls the CDP/LLDP neighbors for the device
Output:
tableHeader (string) - String containing the table header lines, as retrieved from (usually) the first line of output, with each category separated by comma.
Example: Hostname,Src Port,Model,Dest Port,etc
tableBody (list) - List with each line an output row retrieved from the devices CDP/LLDP table. Each column separated by comma. There should be the same number of columns in each row, and the same number of columns as in the tableHeader.
Outputs the CDP/LLDP neighbors, with each new line (separated by carriage return) in its own line in the returned list

def pull_cdp_neighbor(self, activeSession):
 # Function logic goes here
 return tableHeader, tableBody

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls different information about a device, stored into 3 separate lists:
interfaceConfig (list) - Configuration settings for the interface
interfaceMacAddressesHeader (string) - A string containing the table header for the MAC Address table output, with each column separated by a comma
interfaceMacAddressesBody (list) - A list with each row containing each line of data in the interface MAC Address table output, with each column separated by a comma. Note: This should only be run on devices that store MAC addresses associated with their interface. Otherwise simply return an empty string
interfaceStatistics (list) - Any relevant interface statistics that should be shown for the interface (Cisco example: show interface FastEthernet0/1)
Output:
interfaceConfig, interfaceMacAddressesHeader, interfaceMacAddressesBody, interfaceStatistics (lists) - Array specifics detailed above

def pull_interface_info(self, activeSession):
 # Function logic goes here
 return interfaceConfig, interfaceMacAddressesHeader, interfaceMacAddressesBody, interfaceStatistics

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls the current device uptime
Output:
resultsStr (string) - Outputs the current uptime of the device as a string

def pull_device_uptime(self, activeSession):
 # Function logic goes here
 return resultsStr

Input:
activeSession (Netmiko class) - The active, existing SSH session for a device, stored as a Netmiko class
Purpose: Pulls the list of interfaces on the device
Output:
tableHeader (string) - String containing the table header lines.
resultsList (list) - Outputs a list of interfaces and relevant status settings, with each new line (separated by carriage return) in its own line in the returned list (Cisco example: "show ip interface brief")

def pull_host_interfaces(self, activeSession):
 # Function logic goes here
 return tableHeader, resultsList

Input:
interfaces (list) - Array of strings, returned from the device, where each string contains information on if the interface is up/online, down/offline, and administratively down/forced offline. This function does not correctly interface status with the interface directly, so tracking the interface names is irrelevant here
Purpose: Returns the number of interfaces online, offline, forced offline, and total count
Output:
upCount (int) - Total number of interfaces active/online
downCount (int) - Total number of interfaces down/offline
disabledCount (int) - Total number of interfaces administratvely down/forced offline
totalCount (int) - Total number of interfaces

def count_interface_status(self, interfaces):
 # Function logic goes here
 return upCount, downCount, disabledCount, totalCount

Contributing to NetConfig

How to Contribute to NetConfig

You can contribute to NetConfig in multiple ways.

Bugs/Issues

If you encounter a bug when using NetConfig, you can submit a new issue on GitHub at https://github.com/v1tal3/netconfig/issues

Please provide as much detail as possible, including:

	Exact steps taken to reproduce issue

	Any error messages you see

	Version of NetConfig you are using

	Any (non-private) information on the affected device (if your issue is with a specific device/model)

Feature Requests

If you have a feature request, you can file it on the issue submission page on GitHub at https://github.com/v1tal3/netconfig/issues

Please provide as much relevant detail into your request as possible.

Pull Requests

If you have a code contribution you’d like to make, pull requests are encouraged! All pull requests will reviewed, and feedback will be provided, regardless of if it’s accepted, rejected, or changes are requested first.

Please make sure to test any pull requests thoroughly on the latest Development branch changes.

A few requirments for any code contributions:

	Submit all pull requests on the ‘development’ branch in GitHub

	Test all pull requests as thoroughly as possible

	Note any bugs, outstanding issues, or anything that still needs to be tested (if you were unable to test a part)

	
	All submit .py files must adhere to PEP8/Flake8 standards. Currently, all NetConfig .py files adhere to Flake8 standards, with a few exceptions:

	
	E501 - line too long (82 > 79 characters)

	N802 - function name should be lowercase

	N803 - argument name should be lowercase

	N806 - variable in function should be lowercase

Documentation

Any and all documentation submissions are welcome. If you submit detailed documentation, I will be happy to format it and introduce it properly into the official readthedocs.io documentation.

Index

Installation Guide for CentOS 7

This document assumes a fresh CentOS 7 minimal installation. It also assumes you will use this server with a local database (noted where to diverge if using Netbox).

Prerequisites

Updates and requirements. Run as root, or preface ‘sudo’ for each command.

yum install -y epel-release
yum update -y
yum install -y gcc python python-devel python-pip nginx redis supervisor python-gunicorn openssl-devel git openldap-devel uwsgi policycoreutils-python

You likely got a kernel update. Reboot:
reboot

Create new Netconfig user

Set up the service account, give it a secure password, and add it to the NGINX group. Run as root, or preface ‘sudo’ for each command.

adduser netconfig
passwd netconfig
usermod -a -G nginx netconfig
usermod -a -G wheel netconfig

Switch to the new Netconfig user

su - netconfig

Download NetConfig

Download NetConfig and install required Python packages

cd ~/
git clone -b master https://github.com/v1tal3/netconfig.git
cd netconfig
sudo pip install --upgrade pip
sudo pip install -r requirements.txt

Configure NGINX

Edit the default nginx config file:

sudo vi /etc/nginx/nginx.conf

Within the http{} section, delete the server{} section (as we’re going to use a site-specific config). Make
sure that you get the correct braces when you delete and that the http section still closes at the end of file.

Once completed, add the config file for netconfig.

sudo vi /etc/nginx/conf.d/netconfig.conf

Replace both “netconfig.domain.com” with your actual FQDN.

Contents of /etc/nginx/conf.d/netconfig.conf

server {
 listen 80;
 server_name netconfig.domain.com;
 return 301 https://$host$request_uri;
}

server {
 listen 443;
 server_name netconfig.domain.com;

 ssl on;
 ssl_certificate /etc/nginx/ssl/server.crt;
 ssl_certificate_key /etc/nginx/ssl/server.key;

 location / {
 proxy_pass http://localhost:8000;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
 location /netconfig {
 alias /home/netconfig/netconfig/app/;
 }
}

Save and exit the file.

Netconfig Service

Create and fill out netconfig.service file

sudo vi /etc/systemd/system/netconfig.service

Contents of /etc/systemd/system/netconfig.service

[Unit]
Description=uWSGI instance to serve NetConfig
After=network.target

[Service]
User=netconfig
Group=nginx
WorkingDirectory=/home/netconfig/netconfig
Environment="PATH=/usr/bin/python"
ExecStart=/usr/bin/uwsgi --ini netconfig.ini

[Install]
WantedBy=multi-user.target

Start and Enable Netconfig services

Reload the systemd config manager and start/enable the new service.

sudo systemctl daemon-reload
sudo systemctl start netconfig
sudo systemctl enable netconfig

Supervisord Configuration

Add netconfig to supervisor configuration file for gUnicorn under the program section.
In a default supervisor configuration, this starts at line 79. sudo vi /etc/supervisord.conf

sudo vi /etc/supervisord.conf

Contents of /etc/supervisord.conf

[program:netconfig]
command = gunicorn app:app -b localhost:8000
directory = /home/netconfig/netconfig
user = netconfig

Then enable supervisord.

sudo systemctl enable supervisord

Configure Self-Signed SSL Cert

Run these commands to generate a self-signed SSL certificate

Create a new directory for the certs and move into it:

sudo mkdir /etc/nginx/ssl
cd /etc/nginx/ssl

Now, generate the self-signed SSL certs.

When prompted to create a key file password, anything will work (line 1).
This will be the same password used when prompted during certificate creation
when it prompts you.

When generating the certificate, fill out the relevant details as requested
(Country, State, etc.). However when asked for the Common Name, set it to your
domain name of the server.

sudo openssl genrsa -des3 -out server.key 2048
sudo openssl req -new -key server.key -out server.csr
sudo cp server.key server.key.org
sudo openssl rsa -in server.key.org -out server.key
sudo openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Restart Services

Enable and restart services for the program:

sudo systemctl enable nginx
sudo systemctl restart nginx
sudo systemctl enable supervisord
sudo systemctl restart supervisord
sudo supervisorctl reread
sudo supervisorctl update
sudo supervisorctl restart netconfig

Configure NetConfig Settings

Copy settings template file.

cd ~/netconfig
cp instance/settings_template.py instance/settings.py

Modify the contents of the file:

vi instance/settings.py

The only required settings that need to be changed in the file are as follows:

	SECRET_KEY - Generate a random key to use with the program. You can provide you own, or use the provided “generate_secret_key.py” script to generate one for you. This can be run with the command “python ~/netconfig/generate_secret_key.py”

	DATALOCATION - Specify if you want to use a local database on the server, and configure the inventory manually, or use an existing Netbox installation

	NETBOXSERVER - If using an existing Netbox installation, this is the Netbox server hostname. Otherwise this value is not used

Create local database

If using local SQLAlchemy database, create the database (this step is not needed if using Netbox)

python db_create.py

Restart NetConfig Service

Restart Netconfig service for all changes to take effect

sudo supervisorctl restart netconfig

Start and enable Redis:

sudo systemctl enable redis
sudo systemctl start redis

Final security changes

Open the proper ports using firewall-cmd:

sudo firewall-cmd --permanent --add-port 80/tcp
sudo firewall-cmd --permanent --add-port 443/tcp
sudo firewall-cmd --reload

And apply the needed SELinux permissions:

sudo setsebool -P httpd_can_network_connect 1

Important next steps!

If using Netbox, please consult the Netbox Integration section for instructions on setting up Netbox to interface with Netconfig

Credit

Credit /u/admiralspark for the CentOS instructions.

Installation Guide for Redhat Enterprise License (RHEL) Server 7

This document starts with an initial, clean installation of RHEL 7 Server already setup and ready

Update RHEL

Update RHEL, install required system packages, and reboot

sudo yum upgrade
sudo yum -y install gcc python python-devel python-pip nginx redis supervisor python-gunicorn git
sudo reboot now

Create new Netconfig user

Create a new netconfig user to install and run Netconfig under.
Set any password you choose.

sudo adduser netconfig
sudo passwd netconfig

Switch to the new Netconfig user

su - netconfig

Download NetConfig

Download NetConfig and install required Python packages

cd ~/
git clone -b master https://github.com/v1tal3/netconfig.git
cd netconfig
sudo pip install --upgrade pip
sudo pip install -r requirements.txt

Configure NGINX

Create the following folders in NGINX to allow server blocks and create a new site for NetConfig.
Replace “domain.com” with your actual domain name (lines highlighted)

sudo mkdir /etc/nginx/sites-available
sudo mkdir /etc/nginx/sites-enabled
sudo touch /etc/nginx/sites-available/netconfig
sudo vi /etc/nginx/sites-available/netconfig

Contents of /etc/nginx/sites-available/netconfig

 server {
 listen 80;
 server_name netconfig.domain.com;
 return 301 https://$host$request_uri;
 }

 server {
 listen 443;
 server_name netconfig.domain.com;

 ssl on;
 ssl_certificate /etc/nginx/ssl/server.crt;
 ssl_certificate_key /etc/nginx/ssl/server.key;

 location / {
 proxy_pass http://localhost:8000;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 }
 location /netconfig {
 alias /home/netconfig/netconfig/app/;
 }
 }

Create symlink

Create symlink for netconfig file into nginx/sites-enabled

sudo ln -s /etc/nginx/sites-available/netconfig /etc/nginx/sites-enabled

Service

Create and fill out netconfig.service file

sudo touch /etc/systemd/system/netconfig.service
sudo vi /etc/systemd/system/netconfig.service

Contents of /etc/systemd/system/netconfig.service

[Unit]
Description=uWSGI instance to serve NetConfig
After=network.target

[Service]
User=netconfig
Group=nginx
WorkingDirectory=/home/netconfig/netconfig
Environment="PATH=/usr/bin/python"
ExecStart=/usr/bin/uwsgi --ini netconfig.ini

[Install]
WantedBy=multi-user.target

Start and Enable Netconfig services

Start and enable services related to NetConfig running in the background

sudo systemctl daemon-reload
sudo systemctl start netconfig
sudo systemctl enable netconfig

Supervisord Configuration

Add netconfig to supervisor configuration file for gUnicorn under the program section.
In a default supervisor configuration, this starts at line 79. sudo vi /etc/supervisord.conf

sudo vi /etc/supervisord.conf

Contents of /etc/supervisord.conf

[program:netconfig]
command = gunicorn app:app -b localhost:8000
directory = /home/netconfig/netconfig
user = netconfig

Restart Services

sudo pkill gunicorn
sudo systemctl restart nginx
sudo systemctl restart supervisord
sudo supervisorctl reread
sudo supervisorctl update
sudo supervisorctl restart netconfig

Configure Self-Signed SSL Cert

Run these commands to generate a self-signed SSL certificate

Create a new directory for the certs and move into it

sudo mkdir /etc/nginx/ssl
cd /etc/nginx/ssl

Generate the self-signed SSL certs.

When prompted to create a key file password, anything will work (line 1). This will be the same password used when prompted during certificate creation (lines 2 and 4)

When generating the certificate, fill out the relevant details as requested (Country, State, etc.). However when asked for the common name, set it to your domain name

sudo openssl genrsa -des3 -out server.key 2048
sudo openssl req -new -key server.key -out server.csr
sudo cp server.key server.key.org
sudo openssl rsa -in server.key.org -out server.key
sudo openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Restart NGINX services

sudo systemctl restart nginx

Configure NetConfig Settings

Copy settings template file

cd ~/netconfig
cp instance/settings_template.py instance/settings.py

Modify the contents of the file:

vi instance/settings.py

The only required settings that need to be changed in the file are as follows:

	SECRET_KEY - Generate a random key to use with the program. You can provide you own, or use the provided “generate_secret_key.py” script to generate one for you. This can be run with the command “python ~/netconfig/generate_secret_key.py”

	DATALOCATION - Specify if you want to use a local database on the server, and configure the inventory manually, or use an existing Netbox installation

	NETBOXSERVER - If using an existing Netbox installation, this is the Netbox server hostname. Otherwise this value is not used

Create local database

If using local SQLAlchemy database, create the database (this step is not needed if using Netbox)

python db_create.py

Restart NetConfig Service

Restart Netconfig service for all changes to take effect

sudo supervisorctl restart netconfig

Important next steps!

If using Netbox, please consult the Netbox Integration section for instructions on setting up Netbox to interface with Netconfig

Credit

Credit to Reddit user /u/thewhitedragon for adapting the existing Install instructions to work on RHEL7

Installation Guide for Ubuntu 16.04

This document starts with an initial, clean installation of Ubuntu 16.04 Server already setup and ready

Update Ubuntu

Update Ubuntu, install required system packages, and reboot

sudo apt-get update && sudo apt-get -y upgrade && sudo apt-get -y dist-upgrade && sudo apt-get -y autoremove
sudo reboot now
sudo apt-get -y install python python-pip nginx redis-server supervisor libssl-dev libsasl2-dev gunicorn git

Create new Netconfig user

Create a new netconfig user to install and run Netconfig under.
Set any password you choose.
When prompted for full name, room number, phone numbers, etc, you can leave them all blank

sudo adduser netconfig
sudo usermod -aG sudo netconfig

Switch to the new Netconfig user

su - netconfig

Download NetConfig

Download NetConfig and install required Python packages

cd ~/
git clone -b master https://github.com/v1tal3/netconfig.git
cd netconfig
sudo pip install --upgrade pip
sudo pip install -r requirements.txt

Configure NGINX

Remove default in NGINX sites-enabled, and create a new site for Netconfig.
Replace “domain.com” with your actual domain name (lines highlighted)

sudo rm /etc/nginx/sites-enabled/default
sudo touch /etc/nginx/sites-available/netconfig
sudo vi /etc/nginx/sites-available/netconfig

Contents of /etc/nginx/sites-available/netconfig

 server {
 listen 80;
 server_name netconfig.domain.com;
 return 301 https://$host$request_uri;
 }

 server {
 listen 443;
 server_name netconfig.domain.com;

 ssl on;
 ssl_certificate /etc/nginx/ssl/server.crt;
 ssl_certificate_key /etc/nginx/ssl/server.key;

 location / {
 proxy_pass http://localhost:8000;
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
 location /netconfig {
 alias /home/netconfig/netconfig/app/;
 }
 }

Create symlink

Create symlink for netconfig file into nginx/sites-enabled

sudo ln -s /etc/nginx/sites-available/netconfig /etc/nginx/sites-enabled

Service

Create and fill out netconfig.service file

sudo touch /etc/systemd/system/netconfig.service
sudo vi /etc/systemd/system/netconfig.service

Contents of /etc/systemd/system/netconfig.service

[Unit]
Description=uWSGI instance to serve NetConfig
After=network.target

[Service]
User=netconfig
Group=www-data
WorkingDirectory=/home/netconfig/netconfig
Environment="PATH=/usr/bin/python"
ExecStart=/usr/bin/uwsgi --ini netconfig.ini

[Install]
WantedBy=multi-user.target

Start and Enable Netconfig services

Start and enable services related to NetConfig running in the background

sudo systemctl daemon-reload
sudo systemctl start netconfig
sudo systemctl enable netconfig

Supervisord Configuration

Create and fill out netconfig.conf for gUnicorn

sudo touch /etc/supervisor/conf.d/netconfig.conf
sudo vi /etc/supervisor/conf.d/netconfig.conf

Contents of /etc/supervisor/conf.d/netconfig.conf

[program:netconfig]
command = gunicorn app:app -b localhost:8000
directory = /home/netconfig/netconfig
user = netconfig

Restart Services

sudo pkill gunicorn
sudo supervisorctl reread
sudo supervisorctl update
sudo supervisorctl restart netconfig

Configure Self-Signed SSL Cert

Run these commands to generate a self-signed SSL certificate

Create a new directory for the certs and move into it

sudo mkdir /etc/nginx/ssl
cd /etc/nginx/ssl

Generate the self-signed SSL certs.

When prompted to create a key file password, anything will work (line 1). This will be the same password used when prompted during certificate creation (lines 2 and 4)

When generating the certificate, fill out the relevant details as requested (Country, State, etc.). However when asked for the common name, set it to your domain name

sudo openssl genrsa -des3 -out server.key 2048
sudo openssl req -new -key server.key -out server.csr
sudo cp server.key server.key.org
sudo openssl rsa -in server.key.org -out server.key
sudo openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

Restart NGINX services

sudo systemctl restart nginx

Configure NetConfig Settings

Copy settings template file

cd ~/netconfig
cp instance/settings_template.py instance/settings.py

Modify the contents of the file:

vi instance/settings.py

The only required settings that need to be changed in the file are as follows:

	SECRET_KEY - Generate a random key to use with the program. You can provide you own, or use the provided “generate_secret_key.py” script to generate one for you. This can be run with the command “python ~/netconfig/generate_secret_key.py”

	DATALOCATION - Specify if you want to use a local database on the server, and configure the inventory manually, or use an existing Netbox installation

	NETBOXSERVER - If using an existing Netbox installation, this is the Netbox server hostname. Otherwise this value is not used

Create local database

If using local SQLAlchemy database, create the database (this step is not needed if using Netbox)

python db_create.py

Restart NetConfig Service

Restart Netconfig service for all changes to take effect

sudo supervisorctl restart netconfig

Important next steps!

If using Netbox, please consult the Netbox Integration section for instructions on setting up Netbox to interface with Netconfig

 _static/up.png

_images/netbox-custom-field-2-1.jpg
[Change custom field | Django = X

& G m ‘D netbox/admin/extras/customfield/11/change/ ‘ N

WELCOME, MATT. VIEW SITE / CHANGE PASSWORD / LOG OUT

Home > Extras > Custom fields > Netconfig os

Change custom field

Object(s): circuits > circuit
circuits > provider
dcim > device

dcim > rack
dcim > site
ipam > aggregate
_inam < ID addrace
The object(s) to which this field applies. Hold down "Control”, or "Command” on a Mac, to select more than one.

Type: Selection :
Name: Netconfig_0S m ’
Label: ’

Name of the field as displayed to users (if not provided, the field's name will be used)

Description: ’

() Required

Determines whether this field is required when creating new objects or editing an existing object.

Is filterable

This field can be used to filter objects.

_images/netbox-custom-field-2-2.jpg
[Change custom field | Django = X

& = E o ‘D netbox/admin/extras/customfield/11/change/ ‘ =

Default: ‘ ’

Default value for the field. Use "true” or "false"” for booleans. N/A for selection fields.

Fields with higher weights appear lower in a form

CUSTOM FIELD CHOICES

VALUE WEIGHT © DELETE?
108
10S 97 O
10S-XE
10S-XE 98 O
NX-0S
NX-0S 99 O
ASA
ASA 100 O
100
100
100
100
100

_images/netbox-custom-field-1-1.jpg
[Change custom field | Django = X

SR Cfey ‘D netbox/admin/extras/customfield/10/change/

Home > Extras > Custom fields > Netconfig

WELCOME, MATT. VIEW SITE / CHANGE PASSWORD / LOG OUT

Change custom field

Object(s): circuits > circuit
circuits > provider

dcim > device type
dcim > rack

dcim > site
ipam > aggregate
Linam 1D addrace

Type: Selection :
Name: Netconfig m ’
Label: ’

Name of the field as displayed to users (if not provided, the field's name will be used)

Description: ’

) Required

Determines whether this field is required when creating new objects or editing an existing object.

Is filterable

This field can be used to filter objects.

The object(s) to which this field applies. Hold down "Control”, or "Command” on a Mac, to select more than one.

HISTORY

_images/netbox-custom-field-1-2.jpg
[Change custom field | Django = X

& ¢ oo ‘D netbox/admin/extras/customfield/10/change/ ‘ N

Default: ‘ N/A ’

Default value for the field. Use "true” or "false"” for booleans. N/A for selection fields.

Fields with higher weights appear lower in a form

CUSTOM FIELD CHOICES

VALUE WEIGHT © DELETE?
No
No 99 O
Yes
Yes 100 o
100
100
100
100
100

+ Add another Custom field choice

Save and add another Save and continue editing SAVE

_images/version-info.jpg
& C (| D hupsymetconfig

Home Network ~ About ~

redentials in the login page before proceeding.

_static/ajax-loader.gif

_static/comment-bright.png

_images/example-switch.jpg
®®® /! NetConfi x\ Matt
// [NetConfig S ¥

S C' © D https://netconfig/db/viewhosts/5 =
Home Network v About v admin ~
View Host List m Delete Host
View Host Interfaces Commands
Hostname: Example- Active Interfaces: 3 Uptime: > Save Running-Config
Switch-2 Down Interfaces: 26 11 weeks, 1 day,
IP Address: 10.0.0.46 Disabled Interfaces: 0 21 hours, 8
Device Type: Switch Total Interfaces: 29 minutes
> Show CDP Neighbors
Show 10 4 entries Search:
> Show Inventory
1% Interface IPv4 Address Status Protocol Options > Show Running Config
O Vian 10.0.0.46 D U a > Show Startup Config
O GigabitEthernet0/1 unassigned up up > Show Version
O GigabitEthernet0/2 unassigned up up
O GigabitEthernet0/3 unassigned down down
> iShell - New Tab
O GigabitEthernet0/4 unassigned down down
O GigabitEthernet0/5 unassigned down down
O GigabitEthernet0/6 unassigned down down
O GigabitEthernet0/7 unassigned down down
O GigabitEthernet0/8 unassigned down down
O GigabitEthernet0/9 unassigned down down

Showing 1 to 10 of 29 entries Previous 2 3 | Next

_images/index.jpg
L AN /' NetConfig x Y

& =2 ¢ o \D https://netconfig/db/viewhosts/

Home Network ~ About ~

View All Devices

All network devices in database

Show 10 4 entries

Hostname
Example-Firewall 1
Example-Router-1
Example-Router-2
Example-Switch-1
Example-Switch-2

Example-Switch-3

Showing 1 to 6 of 6 entries

12 IPv4 Address
10.18.91.4
10.105.18.1
172.16.18.5
192.168.0.15
10.0.0.46

10.10.15.189

Type
Firewall
Router
Router
Switch
Switch

Switch

v

YRR IR IR

Search:

Status

Options
(2] o]
(2] o]
(2] o]
(2] o]
(2] o]
(2] o]

Previous Next

admin ~

+ Add a Device

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 NetConfig Documentation

 		
 NetConfig

 		
 What Is NetConfig?

 		
 Features

 		
 Installation

 		
 Upgrade

 		
 NetBox Integration

 		
 Screenshots

 		
 Important Caveats

 		
 Contribute

 		
 Support

 		
 License

 		
 Installation Guides

 		
 Ubuntu 16.04 Server

 		
 CentOS 7 Server

 		
 Upgrading

 		
 Upgrading NetConfig to Latest Version

 		
 Before Starting

 		
 Upgrade Process

 		
 Verifying Upgrade

 		
 Potential Caveats

 		
 Netbox Integration

 		
 Configuring NetConfig

 		
 Configure Netconfig for Netbox API Access

 		
 Configuring Netbox

 		
 Create Two Custom Fields

 		
 Configuring Devices in Netbox to be used by NetConfig

 		
 Add Vendor Support

 		
 Getting Started

 		
 Create Base Devive Class

 		
 File Location

 		
 Create Individual Devive Type Class

 		
 File Location

 		
 Contributing to NetConfig

 		
 How to Contribute to NetConfig

 		
 Bugs/Issues

 		
 Feature Requests

 		
 Pull Requests

 		
 Documentation

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

