

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Índice

 The NetBox API employs token-based authentication. For convenience, cookie authentication can also be used when navigating the browsable API.

Tokens

A token is a unique identifier that identifies a user to the API. Each user in NetBox may have one or more tokens which he or she can use to authenticate to the API. To create a token, navigate to the API tokens page at /user/api-tokens/.

Each token contains a 160-bit key represented as 40 hexadecimal characters. When creating a token, you’ll typically leave the key field blank so that a random key will be automatically generated. However, NetBox allows you to specify a key in case you need to restore a previously deleted token to operation.

By default, a token can be used for all operations available via the API. Deselecting the “write enabled” option will restrict API requests made with the token to read operations (e.g. GET) only.

Additionally, a token can be set to expire at a specific time. This can be useful if an external client needs to be granted temporary access to NetBox.

Authenticating to the API

By default, read operations will be available without authentication. In this case, a token may be included in the request, but is not necessary.

$ curl -H "Accept: application/json; indent=4" http://localhost/api/dcim/sites/
{
 "count": 10,
 "next": null,
 "previous": null,
 "results": [...]
}

However, if the LOGIN_REQUIRED configuration setting has been set to True, all requests must be authenticated.

$ curl -H "Accept: application/json; indent=4" http://localhost/api/dcim/sites/
{
 "detail": "Authentication credentials were not provided."
}

To authenticate to the API, set the HTTP Authorization header to the string Token (note the trailing space) followed by the token key.

$ curl -H "Authorization: Token d2f763479f703d80de0ec15254237bc651f9cdc0" -H "Accept: application/json; indent=4" http://localhost/api/dcim/sites/
{
 "count": 10,
 "next": null,
 "previous": null,
 "results": [...]
}

Additionally, the browsable interface to the API (which can be seen by navigating to the API root /api/ in a web browser) will attempt to authenticate requests using the same cookie that the normal NetBox front end uses. Thus, if you have logged into NetBox, you will be logged into the browsable API as well.

API Examples

Supported HTTP methods:

	GET: Retrieve an object or list of objects

	POST: Create a new object

	PUT: Update an existing object, all mandatory fields must be specified

	PATCH: Updates an existing object, only specifying the field to be changed

	DELETE: Delete an existing object

To authenticate a request, attach your token in an Authorization header:

curl -H "Authorization: Token d2f763479f703d80de0ec15254237bc651f9cdc0"

Retrieving a list of sites

Send a GET request to the object list endpoint. The response contains a paginated list of JSON objects.

$ curl -H "Accept: application/json; indent=4" http://localhost/api/dcim/sites/
{
 "count": 14,
 "next": null,
 "previous": null,
 "results": [
 {
 "id": 6,
 "name": "Corporate HQ",
 "slug": "corporate-hq",
 "region": null,
 "tenant": null,
 "facility": "",
 "asn": null,
 "physical_address": "742 Evergreen Terrace, Springfield, USA",
 "shipping_address": "",
 "contact_name": "",
 "contact_phone": "",
 "contact_email": "",
 "comments": "",
 "custom_fields": {},
 "count_prefixes": 108,
 "count_vlans": 46,
 "count_racks": 8,
 "count_devices": 254,
 "count_circuits": 6
 },
 ...
]
}

Retrieving a single site by ID

Send a GET request to the object detail endpoint. The response contains a single JSON object.

$ curl -H "Accept: application/json; indent=4" http://localhost/api/dcim/sites/6/
{
 "id": 6,
 "name": "Corporate HQ",
 "slug": "corporate-hq",
 "region": null,
 "tenant": null,
 "facility": "",
 "asn": null,
 "physical_address": "742 Evergreen Terrace, Springfield, USA",
 "shipping_address": "",
 "contact_name": "",
 "contact_phone": "",
 "contact_email": "",
 "comments": "",
 "custom_fields": {},
 "count_prefixes": 108,
 "count_vlans": 46,
 "count_racks": 8,
 "count_devices": 254,
 "count_circuits": 6
}

Creating a new site

Send a POST request to the site list endpoint with token authentication and JSON-formatted data. Only mandatory fields are required. This example includes one non required field, “region.”

$ curl -X POST -H "Authorization: Token d2f763479f703d80de0ec15254237bc651f9cdc0" -H "Content-Type: application/json" -H "Accept: application/json; indent=4" http://localhost:8000/api/dcim/sites/ --data '{"name": "My New Site", "slug": "my-new-site", "region": 5}'
{
 "id": 16,
 "name": "My New Site",
 "slug": "my-new-site",
 "region": 5,
 "tenant": null,
 "facility": "",
 "asn": null,
 "physical_address": "",
 "shipping_address": "",
 "contact_name": "",
 "contact_phone": "",
 "contact_email": "",
 "comments": ""
}

Note that in this example we are creating a site bound to a region with the ID of 5. For write API actions (POST, PUT, and PATCH) the integer ID value is used for ForeignKey (related model) relationships, instead of the nested representation that is used in the GET (list) action.

Modify an existing site

Make an authenticated PUT request to the site detail endpoint. As with a create (POST) request, all mandatory fields must be included.

$ curl -X PUT -H "Authorization: Token d2f763479f703d80de0ec15254237bc651f9cdc0" -H "Content-Type: application/json" -H "Accept: application/json; indent=4" http://localhost:8000/api/dcim/sites/16/ --data '{"name": "Renamed Site", "slug": "renamed-site"}'

Modify an object by changing a field

Make an authenticated PATCH request to the device endpoint. With PATCH, unlike POST and PUT, we only specify the field that is being changed. In this example, we add a serial number to a device.

$ curl -X PATCH -H "Authorization: Token d2f763479f703d80de0ec15254237bc651f9cdc0" -H "Content-Type: application/json" -H "Accept: application/json; indent=4" http://localhost:8000/api/dcim/devices/2549/ --data '{"serial": "FTX1123A090"}'

Delete an existing site

Send an authenticated DELETE request to the site detail endpoint.

$ curl -v -X DELETE -H "Authorization: Token d2f763479f703d80de0ec15254237bc651f9cdc0" -H "Content-Type: application/json" -H "Accept: application/json; indent=4" http://localhost:8000/api/dcim/sites/16/
* Connected to localhost (127.0.0.1) port 8000 (#0)
> DELETE /api/dcim/sites/16/ HTTP/1.1
> User-Agent: curl/7.35.0
> Host: localhost:8000
> Authorization: Token d2f763479f703d80de0ec15254237bc651f9cdc0
> Content-Type: application/json
> Accept: application/json; indent=4
>
* HTTP 1.0, assume close after body
< HTTP/1.0 204 No Content
< Date: Mon, 20 Mar 2017 16:13:08 GMT
< Server: WSGIServer/0.1 Python/2.7.6
< Vary: Accept, Cookie
< X-Frame-Options: SAMEORIGIN
< Allow: GET, PUT, PATCH, DELETE, OPTIONS
<
* Closing connection 0

The response to a successful DELETE request will have code 204 (No Content); the body of the response will be empty.

 NetBox v2.0 and later includes a full-featured REST API that allows its data model to be read and manipulated externally.

What is a REST API?

REST stands for representational state transfer [https://en.wikipedia.org/wiki/Representational_state_transfer]. It’s a particular type of API which employs HTTP to create, retrieve, update, and delete objects from a database. (This set of operations is commonly referred to as CRUD.) Each type of operation is associated with a particular HTTP verb:

	GET: Retrieve an object or list of objects

	POST: Create an object

	PUT / PATCH: Modify an existing object. PUT requires all mandatory fields to be specified, while PATCH only expects the field that is being modified to be specified.

	DELETE: Delete an existing object

The NetBox API represents all objects in JavaScript Object Notation (JSON) [http://www.json.org/]. This makes it very easy to interact with NetBox data on the command line with common tools. For example, we can request an IP address from NetBox and output the JSON using curl and jq. (Piping the output through jq isn’t strictly required but makes it much easier to read.)

$ curl -s http://localhost:8000/api/ipam/ip-addresses/2954/ | jq '.'
{
 "custom_fields": {},
 "nat_outside": null,
 "nat_inside": null,
 "description": "An example IP address",
 "id": 2954,
 "family": 4,
 "address": "5.101.108.132/26",
 "vrf": null,
 "tenant": null,
 "status": {
 "label": "Active",
 "value": 1
 },
 "role": null,
 "interface": null
}

Each attribute of the NetBox object is expressed as a field in the dictionary. Fields may include their own nested objects, as in the case of the status field above. Every object includes a primary key named id which uniquely identifies it in the database.

URL Hierarchy

NetBox’s entire API is housed under the API root at https://<hostname>/api/. The URL structure is divided at the root level by application: circuits, DCIM, extras, IPAM, secrets, and tenancy. Within each application, each model has its own path. For example, the provider and circuit objects are located under the “circuits” application:

	/api/circuits/providers/

	/api/circuits/circuits/

Likewise, the site, rack, and device objects are located under the “DCIM” application:

	/api/dcim/sites/

	/api/dcim/racks/

	/api/dcim/devices/

The full hierarchy of available endpoints can be viewed by navigating to the API root in a web browser.

Each model generally has two views associated with it: a list view and a detail view. The list view is used to request a list of multiple objects or to create a new object. The detail view is used to retrieve, update, or delete an existing object. All objects are referenced by their numeric primary key (id).

	/api/dcim/devices/ - List devices or create a new device

	/api/dcim/devices/123/ - Retrieve, update, or delete the device with ID 123

Lists of objects can be filtered using a set of query parameters. For example, to find all interfaces belonging to the device with ID 123:

GET /api/dcim/interfaces/?device_id=123

Serialization

The NetBox API employs three types of serializers to represent model data:

	Base serializer

	Nested serializer

	Writable serializer

The base serializer is used to represent the default view of a model. This includes all database table fields which comprise the model, and may include additional metadata. A base serializer includes relationships to parent objects, but does not include child objects. For example, the VLANSerializer includes a nested representation its parent VLANGroup (if any), but does not include any assigned Prefixes.

{
 "id": 1048,
 "site": {
 "id": 7,
 "url": "http://localhost:8000/api/dcim/sites/7/",
 "name": "Corporate HQ",
 "slug": "corporate-hq"
 },
 "group": {
 "id": 4,
 "url": "http://localhost:8000/api/ipam/vlan-groups/4/",
 "name": "Production",
 "slug": "production"
 },
 "vid": 101,
 "name": "Users-Floor1",
 "tenant": null,
 "status": {
 "value": 1,
 "label": "Active"
 },
 "role": {
 "id": 9,
 "url": "http://localhost:8000/api/ipam/roles/9/",
 "name": "User Access",
 "slug": "user-access"
 },
 "description": "",
 "display_name": "101 (Users-Floor1)",
 "custom_fields": {}
}

Related objects (e.g. ForeignKey fields) are represented using a nested serializer. A nested serializer provides a minimal representation of an object, including only its URL and enough information to construct its name. When performing write api actions (POST, PUT, and PATCH), any ForeignKey relationships do not use the nested serializer, instead you will pass just the integer ID of the related model.

When a base serializer includes one or more nested serializers, the hierarchical structure precludes it from being used for write operations. Thus, a flat representation of an object may be provided using a writable serializer. This serializer includes only raw database values and is not typically used for retrieval, except as part of the response to the creation or updating of an object.

{
 "id": 1201,
 "site": 7,
 "group": 4,
 "vid": 102,
 "name": "Users-Floor2",
 "tenant": null,
 "status": 1,
 "role": 9,
 "description": ""
}

Static Choice Fields

Some model fields, such as the status field in the above example, utilize static integers corresponding to static choices. The available choices can be retrieved from the read-only _choices endpoint within each app. A specific model:field tuple may optionally be specified in the URL.

Each choice includes a human-friendly label and its corresponding numeric value. For example, GET /api/ipam/_choices/prefix:status/ will return:

[
 {
 "value": 0,
 "label": "Container"
 },
 {
 "value": 1,
 "label": "Active"
 },
 {
 "value": 2,
 "label": "Reserved"
 },
 {
 "value": 3,
 "label": "Deprecated"
 }
]

Thus, to set a prefix’s status to “Reserved,” it would be assigned the integer 2.

A request for GET /api/ipam/_choices/ will return choices for all fields belonging to models within the IPAM app.

Pagination

API responses which contain a list of objects (for example, a request to /api/dcim/devices/) will be paginated to avoid unnecessary overhead. The root JSON object will contain the following attributes:

	count: The total count of all objects matching the query

	next: A hyperlink to the next page of results (if applicable)

	previous: A hyperlink to the previous page of results (if applicable)

	results: The list of returned objects

Here is an example of a paginated response:

HTTP 200 OK
Allow: GET, POST, OPTIONS
Content-Type: application/json
Vary: Accept

{
 "count": 2861,
 "next": "http://localhost:8000/api/dcim/devices/?limit=50&offset=50",
 "previous": null,
 "results": [
 {
 "id": 123,
 "name": "DeviceName123",
 ...
 },
 ...
]
}

The default page size derives from the PAGINATE_COUNT configuration setting, which defaults to 50. However, this can be overridden per request by specifying the desired offset and limit query parameters. For example, if you wish to retrieve a hundred devices at a time, you would make a request for:

http://localhost:8000/api/dcim/devices/?limit=100

The response will return devices 1 through 100. The URL provided in the next attribute of the response will return devices 101 through 200:

{
 "count": 2861,
 "next": "http://localhost:8000/api/dcim/devices/?limit=100&offset=100",
 "previous": null,
 "results": [...]
}

The maximum number of objects that can be returned is limited by the MAX_PAGE_SIZE setting, which is 1000 by default. Setting this to 0 or None will remove the maximum limit. An API consumer can then pass ?limit=0 to retrieve all matching objects with a single request.

!!! warning
Disabling the page size limit introduces a potential for very resource-intensive requests, since one API request can effectively retrieve an entire table from the database.

 As with most other objects, the NetBox API can be used to create, modify, and delete secrets. However, additional steps are needed to encrypt or decrypt secret data.

Generating a Session Key

In order to encrypt or decrypt secret data, a session key must be attached to the API request. To generate a session key, send an authenticated request to the /api/secrets/get-session-key/ endpoint with the private RSA key which matches your UserKey. The private key must be POSTed with the name private_key.

$ curl -X POST http://localhost:8000/api/secrets/get-session-key/ \
-H "Authorization: Token c639d619ecbeb1f3055c4141ba6870e20572edd7" \
-H "Accept: application/json; indent=4" \
--data-urlencode "private_key@<filename>"
{
 "session_key": "dyEnxlc9lnGzaOAV1dV/xqYPV63njIbdZYOgnAlGPHk="
}

!!! note
To read the private key from a file, use the convention above. Alternatively, the private key can be read from an environment variable using --data-urlencode "private_key=$PRIVATE_KEY".

The request uses your private key to unlock your stored copy of the master key and generate a session key which can be attached in the X-Session-Key header of future API requests.

Retrieving Secrets

A session key is not needed to retrieve unencrypted secrets: The secret is returned like any normal object with its plaintext field set to null.

$ curl http://localhost:8000/api/secrets/secrets/2587/ \
-H "Authorization: Token c639d619ecbeb1f3055c4141ba6870e20572edd7" \
-H "Accept: application/json; indent=4"
{
 "id": 2587,
 "device": {
 "id": 1827,
 "url": "http://localhost:8000/api/dcim/devices/1827/",
 "name": "MyTestDevice",
 "display_name": "MyTestDevice"
 },
 "role": {
 "id": 1,
 "url": "http://localhost:8000/api/secrets/secret-roles/1/",
 "name": "Login Credentials",
 "slug": "login-creds"
 },
 "name": "admin",
 "plaintext": null,
 "hash": "pbkdf2_sha256$1000$G6mMFe4FetZQ$f+0itZbAoUqW5pd8+NH8W5rdp/2QNLIBb+LGdt4OSKA=",
 "created": "2017-03-21",
 "last_updated": "2017-03-21T19:28:44.265582Z"
}

To decrypt a secret, we must include our session key in the X-Session-Key header:

$ curl http://localhost:8000/api/secrets/secrets/2587/ \
-H "Authorization: Token c639d619ecbeb1f3055c4141ba6870e20572edd7" \
-H "Accept: application/json; indent=4" \
-H "X-Session-Key: dyEnxlc9lnGzaOAV1dV/xqYPV63njIbdZYOgnAlGPHk="
{
 "id": 2587,
 "device": {
 "id": 1827,
 "url": "http://localhost:8000/api/dcim/devices/1827/",
 "name": "MyTestDevice",
 "display_name": "MyTestDevice"
 },
 "role": {
 "id": 1,
 "url": "http://localhost:8000/api/secrets/secret-roles/1/",
 "name": "Login Credentials",
 "slug": "login-creds"
 },
 "name": "admin",
 "plaintext": "foobar",
 "hash": "pbkdf2_sha256$1000$G6mMFe4FetZQ$f+0itZbAoUqW5pd8+NH8W5rdp/2QNLIBb+LGdt4OSKA=",
 "created": "2017-03-21",
 "last_updated": "2017-03-21T19:28:44.265582Z"
}

Lists of secrets can be decrypted in this manner as well:

$ curl http://localhost:8000/api/secrets/secrets/?limit=3 \
-H "Authorization: Token c639d619ecbeb1f3055c4141ba6870e20572edd7" \
-H "Accept: application/json; indent=4" \
-H "X-Session-Key: dyEnxlc9lnGzaOAV1dV/xqYPV63njIbdZYOgnAlGPHk="
{
 "count": 3482,
 "next": "http://localhost:8000/api/secrets/secrets/?limit=3&offset=3",
 "previous": null,
 "results": [
 {
 "id": 2587,
 ...
 "plaintext": "foobar",
 ...
 },
 {
 "id": 2588,
 ...
 "plaintext": "MyP@ssw0rd!",
 ...
 },
 {
 "id": 2589,
 ...
 "plaintext": "AnotherSecret!",
 ...
 },
]
}

Creating Secrets

Session keys are also used to decrypt new or modified secrets. This is done by setting the plaintext field of the submitted object:

$ curl -X POST http://localhost:8000/api/secrets/secrets/ \
-H "Content-Type: application/json" \
-H "Authorization: Token c639d619ecbeb1f3055c4141ba6870e20572edd7" \
-H "Accept: application/json; indent=4" \
-H "X-Session-Key: dyEnxlc9lnGzaOAV1dV/xqYPV63njIbdZYOgnAlGPHk=" \
--data '{"device": 1827, "role": 1, "name": "backup", "plaintext": "Drowssap1"}'
{
 "id": 2590,
 "device": 1827,
 "role": 1,
 "name": "backup",
 "plaintext": "Drowssap1"
}

!!! note
Don’t forget to include the Content-Type: application/json header when making a POST request.

 NetBox’s local configuration is held in netbox/netbox/configuration.py. An example configuration is provided at netbox/netbox/configuration.example.py. You may copy or rename the example configuration and make changes as appropriate. NetBox will not run without a configuration file.

ALLOWED_HOSTS

This is a list of valid fully-qualified domain names (FQDNs) that is used to reach the NetBox service. Usually this is the same as the hostname for the NetBox server, but can also be different (e.g. when using a reverse proxy serving the NetBox website under a different FQDN than the hostname of the NetBox server). NetBox will not permit access to the server via any other hostnames (or IPs). The value of this option is also used to set CSRF_TRUSTED_ORIGINS, which restricts HTTP POST to the same set of hosts (more about this here [https://docs.djangoproject.com/en/1.9/ref/settings/#std:setting-CSRF_TRUSTED_ORIGINS]). Keep in mind that NetBox, by default, has USE_X_FORWARDED_HOST = True (in netbox/netbox/settings.py) which means that if you’re using a reverse proxy, it’s the FQDN used to reach that reverse proxy which needs to be in this list (more about this here [https://docs.djangoproject.com/en/1.9/ref/settings/#allowed-hosts]).

Example:

ALLOWED_HOSTS = ['netbox.example.com', '192.0.2.123']

DATABASE

NetBox requires access to a PostgreSQL database service to store data. This service can run locally or on a remote system. The following parameters must be defined within the DATABASE dictionary:

	NAME - Database name

	USER - PostgreSQL username

	PASSWORD - PostgreSQL password

	HOST - Name or IP address of the database server (use localhost if running locally)

	PORT - TCP port of the PostgreSQL service; leave blank for default port (5432)

Example:

DATABASE = {
 'NAME': 'netbox', # Database name
 'USER': 'netbox', # PostgreSQL username
 'PASSWORD': 'J5brHrAXFLQSif0K', # PostgreSQL password
 'HOST': 'localhost', # Database server
 'PORT': '', # Database port (leave blank for default)
}

SECRET_KEY

This is a secret cryptographic key is used to improve the security of cookies and password resets. The key defined here should not be shared outside of the configuration file. SECRET_KEY can be changed at any time, however be aware that doing so will invalidate all existing sessions.

Please note that this key is not used for hashing user passwords or for the encrypted storage of secret data in NetBox.

SECRET_KEY should be at least 50 characters in length and contain a random mix of letters, digits, and symbols. The script located at netbox/generate_secret_key.py may be used to generate a suitable key.

 The following are optional settings which may be declared in netbox/netbox/configuration.py.

ADMINS

NetBox will email details about critical errors to the administrators listed here. This should be a list of (name, email) tuples. For example:

ADMINS = [
 ['Hank Hill', 'hhill@example.com'],
 ['Dale Gribble', 'dgribble@example.com'],
]

BANNER_TOP

BANNER_BOTTOM

Setting these variables will display content in a banner at the top and/or bottom of the page, respectively. HTML is allowed. To replicate the content of the top banner in the bottom banner, set:

BANNER_TOP = 'Your banner text'
BANNER_BOTTOM = BANNER_TOP

BANNER_LOGIN

The value of this variable will be displayed on the login page above the login form. HTML is allowed.

BASE_PATH

Default: None

The base URL path to use when accessing NetBox. Do not include the scheme or domain name. For example, if installed at http://example.com/netbox/, set:

BASE_PATH = 'netbox/'

CORS_ORIGIN_ALLOW_ALL

Default: False

If True, cross-origin resource sharing (CORS) requests will be accepted from all origins. If False, a whitelist will be used (see below).

CORS_ORIGIN_WHITELIST

CORS_ORIGIN_REGEX_WHITELIST

These settings specify a list of origins that are authorized to make cross-site API requests. Use CORS_ORIGIN_WHITELIST to define a list of exact hostnames, or CORS_ORIGIN_REGEX_WHITELIST to define a set of regular expressions. (These settings have no effect if CORS_ORIGIN_ALLOW_ALL is True.)

DEBUG

Default: False

This setting enables debugging. This should be done only during development or troubleshooting. Never enable debugging on a production system, as it can expose sensitive data to unauthenticated users.

EMAIL

In order to send email, NetBox needs an email server configured. The following items can be defined within the EMAIL setting:

	SERVER - Host name or IP address of the email server (use localhost if running locally)

	PORT - TCP port to use for the connection (default: 25)

	USERNAME - Username with which to authenticate

	PASSSWORD - Password with which to authenticate

	TIMEOUT - Amount of time to wait for a connection (seconds)

	FROM_EMAIL - Sender address for emails sent by NetBox

ENFORCE_GLOBAL_UNIQUE

Default: False

Enforcement of unique IP space can be toggled on a per-VRF basis. To enforce unique IP space within the global table (all prefixes and IP addresses not assigned to a VRF), set ENFORCE_GLOBAL_UNIQUE to True.

LOGGING

By default, all messages of INFO severity or higher will be logged to the console. Additionally, if DEBUG is False and email access has been configured, ERROR and CRITICAL messages will be emailed to the users defined in ADMINS.

The Django framework on which NetBox runs allows for the customization of logging, e.g. to write logs to file. Please consult the Django logging documentation [https://docs.djangoproject.com/en/1.11/topics/logging/] for more information on configuring this setting. Below is an example which will write all INFO and higher messages to a file:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'handlers': {
 'file': {
 'level': 'INFO',
 'class': 'logging.FileHandler',
 'filename': '/var/log/netbox.log',
 },
 },
 'loggers': {
 'django': {
 'handlers': ['file'],
 'level': 'INFO',
 },
 },
}

LOGIN_REQUIRED

Default: False

Setting this to True will permit only authenticated users to access any part of NetBox. By default, anonymous users are permitted to access most data in NetBox (excluding secrets) but not make any changes.

MAINTENANCE_MODE

Default: False

Setting this to True will display a “maintenance mode” banner at the top of every page.

MAX_PAGE_SIZE

Default: 1000

An API consumer can request an arbitrary number of objects by appending the “limit” parameter to the URL (e.g. ?limit=1000). This setting defines the maximum limit. Setting it to 0 or None will allow an API consumer to request all objects by specifying ?limit=0.

MEDIA_ROOT

Default: $BASE_DIR/netbox/media/

The file path to the location where media files (such as image attachments) are stored. By default, this is the netbox/media/ directory within the base NetBox installation path.

NAPALM_USERNAME

NAPALM_PASSWORD

NetBox will use these credentials when authenticating to remote devices via the NAPALM library [https://napalm-automation.net/], if installed. Both parameters are optional.

Note: If SSH public key authentication has been set up for the system account under which NetBox runs, these parameters are not needed.

NAPALM_ARGS

A dictionary of optional arguments to pass to NAPALM when instantiating a network driver. See the NAPALM documentation for a complete list of optional arguments [http://napalm.readthedocs.io/en/latest/support/#optional-arguments]. An example:

NAPALM_ARGS = {
 'api_key': '472071a93b60a1bd1fafb401d9f8ef41',
 'port': 2222,
}

Note: Some platforms (e.g. Cisco IOS) require an argument named secret to be passed in addition to the normal password. If desired, you can use the configured NAPALM_PASSWORD as the value for this argument:

NAPALM_USERNAME = 'username'
NAPALM_PASSWORD = 'MySecretPassword'
NAPALM_ARGS = {
 'secret': NAPALM_PASSWORD,
 # Include any additional args here
}

NAPALM_TIMEOUT

Default: 30 seconds

The amount of time (in seconds) to wait for NAPALM to connect to a device.

PAGINATE_COUNT

Default: 50

Determine how many objects to display per page within each list of objects.

PREFER_IPV4

Default: False

When determining the primary IP address for a device, IPv6 is preferred over IPv4 by default. Set this to True to prefer IPv4 instead.

REPORTS_ROOT

Default: $BASE_DIR/netbox/reports/

The file path to the location where custom reports will be kept. By default, this is the netbox/reports/ directory within the base NetBox installation path.

TIME_ZONE

Default: UTC

The time zone NetBox will use when dealing with dates and times. It is recommended to use UTC time unless you have a specific need to use a local time zone. List of available time zones [https://en.wikipedia.org/wiki/List_of_tz_database_time_zones].

Date and Time Formatting

You may define custom formatting for date and times. For detailed instructions on writing format strings, please see the Django documentation [https://docs.djangoproject.com/en/dev/ref/templates/builtins/#date].

Defaults:

DATE_FORMAT = 'N j, Y' # June 26, 2016
SHORT_DATE_FORMAT = 'Y-m-d' # 2016-06-27
TIME_FORMAT = 'g:i a' # 1:23 p.m.
SHORT_TIME_FORMAT = 'H:i:s' # 13:23:00
DATETIME_FORMAT = 'N j, Y g:i a' # June 26, 2016 1:23 p.m.
SHORT_DATETIME_FORMAT = 'Y-m-d H:i' # 2016-06-27 13:23

 The circuits component of NetBox deals with the management of long-haul Internet and private transit links and providers.

Providers

A provider is any entity which provides some form of connectivity. While this obviously includes carriers which offer Internet and private transit service, it might also include Internet exchange (IX) points and even organizations with whom you peer directly.

Each provider may be assigned an autonomous system number (ASN), an account number, and contact information.

Circuits

A circuit represents a single physical data link connecting two endpoints. Each circuit belongs to a provider and must be assigned a circuit ID which is unique to that provider.

Circuit Types

Circuits are classified by type. For example, you might define circuit types for:

	Internet transit

	Out-of-band connectivity

	Peering

	Private backhaul

Circuit types are fully customizable.

Circuit Terminations

A circuit may have one or two terminations, annotated as the “A” and “Z” sides of the circuit. A single-termination circuit can be used when you don’t know (or care) about the far end of a circuit (for example, an Internet access circuit which connects to a transit provider). A dual-termination circuit is useful for tracking circuits which connect two sites.

Each circuit termination is tied to a site, and optionally to a specific device and interface within that site. Each termination can be assigned a separate downstream and upstream speed independent from one another. Fields are also available to track cross-connect and patch panel details.

!!! note
A circuit represents a physical link, and cannot have more than two endpoints. When modeling a multi-point topology, each leg of the topology must be defined as a discrete circuit.

 Data center infrastructure management (DCIM) entails all physical assets: sites, racks, devices, cabling, etc.

Sites

How you choose to use sites will depend on the nature of your organization, but typically a site will equate to a building or campus. For example, a chain of banks might create a site to represent each of its branches, a site for its corporate headquarters, and two additional sites for its presence in two colocation facilities.

Sites can be assigned an optional facility ID to identify the actual facility housing colocated equipment, and an Autonomous System (AS) number.

Regions

Sites can be arranged geographically using regions. A region might represent a continent, country, city, campus, or other area depending on your use case. Regions can be nested recursively to construct a hierarchy. For example, you might define several country regions, and within each of those several state or city regions to which sites are assigned.

Racks

The rack model represents a physical two- or four-post equipment rack in which equipment is mounted. Each rack is assigned to a site. Rack height is measured in rack units (U); racks are commonly between 42U and 48U, but NetBox allows you to define racks of arbitrary height. Each rack has two faces (front and rear) on which devices can be mounted.

Each rack is assigned a name and (optionally) a separate facility ID. This is helpful when leasing space in a data center your organization does not own: The facility will often assign a seemingly arbitrary ID to a rack (for example, “M204.313”) whereas internally you refer to is simply as “R113.” The facility ID can alternatively be used to store a rack’s serial number.

The available rack types include 2- and 4-post frames, 4-post cabinet, and wall-mounted frame and cabinet. Rail-to-rail width may be 19 or 23 inches.

Rack Groups

Racks can be arranged into groups. As with sites, how you choose to designate rack groups will depend on the nature of your organization. For example, if each site represents a campus, each group might represent a building within a campus. If each site represents a building, each rack group might equate to a floor or room.

Each group is assigned to a parent site for easy navigation. Hierarchical recursion of rack groups is not supported.

Rack Roles

Each rack can optionally be assigned a functional role. For example, you might designate a rack for compute or storage resources, or to house colocated customer devices. Rack roles are fully customizable.

Rack Space Reservations

Users can reserve units within a rack for future use. Multiple non-contiguous rack units can be associated with a single reservation (but reservations cannot span multiple racks).

Device Types

A device type represents a particular hardware model that exists in the real world. Device types describe the physical attributes of a device (rack height and depth), its class (e.g. console server, PDU, etc.), and its individual components (console, power, and data).

Device types are instantiated as devices installed within racks. For example, you might define a device type to represent a Juniper EX4300-48T network switch with 48 Ethernet interfaces. You can then create multiple devices of this type named “switch1,” “switch2,” and so on. Each device will inherit the components (such as interfaces) of its device type.

Manufacturers

Each device type belongs to one manufacturer; e.g. Cisco, Opengear, or APC. The model number of a device type must be unique to its manufacturer.

Component Templates

Each device type is assigned a number of component templates which define the physical interfaces a device has. These are:

	Console ports

	Console server ports

	Power ports

	Power outlets

	Interfaces

	Device bays

Whenever a new device is created, it is automatically assigned components per the templates assigned to its device type. For example, a Juniper EX4300-48T device type might have the following component templates:

	One template for a console port (“Console”)

	Two templates for power ports (“PSU0” and “PSU1”)

	48 templates for 1GE interfaces (“ge-0/0/0” through “ge-0/0/47”)

	Four templates for 10GE interfaces (“xe-0/2/0” through “xe-0/2/3”)

Once component templates have been created, every new device that you create as an instance of this type will automatically be assigned each of the components listed above.

!!! note
Assignment of components from templates occurs only at the time of device creation. If you modify the templates of a device type, it will not affect devices which have already been created. However, you always have the option of adding, modifying, or deleting components of existing devices individually.

Devices

Every piece of hardware which is installed within a rack exists in NetBox as a device. Devices are measured in rack units (U) and depth. 0U devices which can be installed in a rack but don’t consume vertical rack space (such as a vertically-mounted power distribution unit) can also be defined.

When assigning a multi-U device to a rack, it is considered to be mounted in the lowest-numbered rack unit which it occupies. For example, a 3U device which occupies U8 through U10 shows as being mounted in U8. This logic applies to racks with both ascending and descending unit numbering.

A device is said to be “full depth” if its installation on one rack face prevents the installation of any other device on the opposite face within the same rack unit(s). This could be either because the device is physically too deep to allow a device behind it, or because the installation of an opposing device would impede air flow.

Roles

NetBox allows for the definition of arbitrary device roles by which devices can be organized. For example, you might create roles for core switches, distribution switches, and access switches. In the interest of simplicity, a device can belong to only one role.

Platforms

A device’s platform is used to denote the type of software running on it. This can be helpful when it is necessary to distinguish between, for instance, different feature sets. Note that two devices of same type may be assigned different platforms: for example, one Juniper MX240 running Junos 14 and another running Junos 15.

The assignment of platforms to devices is an optional feature, and may be disregarded if not desired.

Inventory Items

Inventory items represent hardware components installed within a device, such as a power supply or CPU. Currently, these are used merely for inventory tracking, although future development might see their functionality expand. Each item can optionally be assigned a manufacturer.

!!! note
Prior to version 2.0, inventory items were called modules.

Components

There are six types of device components which comprise all of the interconnection logic with NetBox:

	Console ports

	Console server ports

	Power ports

	Power outlets

	Interfaces

	Device bays

Console ports connect only to console server ports, and power ports connect only to power outlets. Interfaces connect to one another in a symmetric manner: If interface A connects to interface B, interface B therefore connects to interface A. (The relationship between two interfaces is actually represented in the database by an InterfaceConnection object, but this is transparent to the user.) Each type of connection can be classified as either planned or connected. This allows for easily denoting connections which have not yet been installed.

Each interface is a assigned a form factor denoting its physical properties. Two special form factors exist: the “virtual” form factor can be used to designate logical interfaces (such as SVIs), and the “LAG” form factor can be used to desinate link aggregation groups to which physical interfaces can be assigned. Each interface can also be designated as management-only (for out-of-band management) and assigned a short description.

Device bays represent the ability of a device to house child devices. For example, you might install four blade servers into a 2U chassis. The chassis would appear in the rack elevation as a 2U device with four device bays. Each server within it would be defined as a 0U device installed in one of the device bays. Child devices do not appear on rack elevations, but they are included in the “Non-Racked Devices” list within the rack view.

Virtual Chassis

A virtual chassis represents a set of devices which share a single control plane: for example, a stack of switches which are managed as a single device. Each device in the virtual chassis is assigned a position and (optionally) a priority. Exactly one device is designated the virtual chassis master: This device will typically be assigned a name, secrets, services, and other attributes related to its management.

It’s important to recognize the distinction between a virtual chassis and a chassis-based device. For instance, a virtual chassis is not used to model a chassis switch with removable line cards such as the Juniper EX9208, as its line cards are not physically separate devices capable of operating independently.

 This section entails features of NetBox which are not crucial to its primary functions, but provide additional value.

Custom Fields

Each object in NetBox is represented in the database as a discrete table, and each attribute of an object exists as a column within its table. For example, sites are stored in the dcim_site table, which has columns named name, facility, physical_address, and so on. As new attributes are added to objects throughout the development of NetBox, tables are expanded to include new rows.

However, some users might want to associate with objects attributes that are somewhat esoteric in nature, and that would not make sense to include in the core NetBox database schema. For instance, suppose your organization needs to associate each device with a ticket number pointing to the support ticket that was opened to have it installed. This is certainly a legitimate use for NetBox, but it’s perhaps not a common enough need to warrant expanding the internal data schema. Instead, you can create a custom field to hold this data.

Custom fields must be created through the admin UI under Extras > Custom Fields. To create a new custom field, select the object(s) to which you want it to apply, and the type of field it will be. NetBox supports six field types:

	Free-form text (up to 255 characters)

	Integer

	Boolean (true/false)

	Date

	URL

	Selection

Assign the field a name. This should be a simple database-friendly string, e.g. tps_report. You may optionally assign the field a human-friendly label (e.g. “TPS report”) as well; the label will be displayed on forms. If a description is provided, it will appear beneath the field in a form.

Marking the field as required will require the user to provide a value for the field when creating a new object or when saving an existing object. A default value for the field may also be provided. Use “true” or “false” for boolean fields. (The default value has no effect for selection fields.)

When creating a selection field, you should create at least two choices. These choices will be arranged first by weight, with lower weights appearing higher in the list, and then alphabetically.

Using Custom Fields

When a single object is edited, the form will include any custom fields which have been defined for the object type. These fields are included in the “Custom Fields” panel. On the backend, each custom field value is saved separately from the core object as an independent database call, so it’s best to avoid adding too many custom fields per object.

When editing multiple objects, custom field values are saved in bulk. There is no significant difference in overhead when saving a custom field value for 100 objects versus one object. However, the bulk operation must be performed separately for each custom field.

Export Templates

NetBox allows users to define custom templates that can be used when exporting objects. To create an export template, navigate to Extras > Export Templates under the admin interface.

Each export template is associated with a certain type of object. For instance, if you create an export template for VLANs, your custom template will appear under the “Export” button on the VLANs list.

Export templates are written in Django’s template language [https://docs.djangoproject.com/en/1.9/ref/templates/language/], which is very similar to Jinja2. The list of objects returned from the database is stored in the queryset variable, which you’ll typically want to iterate through using a for loop. Object properties can be access by name. For example:

{% for rack in queryset %}
Rack: {{ rack.name }}
Site: {{ rack.site.name }}
Height: {{ rack.u_height }}U
{% endfor %}

To access custom fields of an object within a template, use the cf attribute. For example, {{ obj.cf.color }} will return the value (if any) for a custom field named color on obj.

A MIME type and file extension can optionally be defined for each export template. The default MIME type is text/plain.

Example

Here’s an example device export template that will generate a simple Nagios configuration from a list of devices.

{% for device in queryset %}{% if device.status and device.primary_ip %}define host{
 use generic-switch
 host_name {{ device.name }}
 address {{ device.primary_ip.address.ip }}
}
{% endif %}{% endfor %}

The generated output will look something like this:

define host{
 use generic-switch
 host_name switch1
 address 192.0.2.1
}
define host{
 use generic-switch
 host_name switch2
 address 192.0.2.2
}
define host{
 use generic-switch
 host_name switch3
 address 192.0.2.3
}

Graphs

NetBox does not have the ability to generate graphs natively, but this feature allows you to embed contextual graphs from an external resources (such as a monitoring system) inside the site, provider, and interface views. Each embedded graph must be defined with the following parameters:

	Type: Site, provider, or interface. This determines in which view the graph will be displayed.

	Weight: Determines the order in which graphs are displayed (lower weights are displayed first). Graphs with equal weights will be ordered alphabetically by name.

	Name: The title to display above the graph.

	Source URL: The source of the image to be embedded. The associated object will be available as a template variable named obj.

	Link URL (optional): A URL to which the graph will be linked. The associated object will be available as a template variable named obj.

Examples

You only need to define one graph object for each graph you want to include when viewing an object. For example, if you want to include a graph of traffic through an interface over the past five minutes, your graph source might looks like this:

https://my.nms.local/graphs/?node={{ obj.device.name }}&interface={{ obj.name }}&duration=5m

You can define several graphs to provide multiple contexts when viewing an object. For example:

https://my.nms.local/graphs/?type=throughput&node={{ obj.device.name }}&interface={{ obj.name }}&duration=60m
https://my.nms.local/graphs/?type=throughput&node={{ obj.device.name }}&interface={{ obj.name }}&duration=24h
https://my.nms.local/graphs/?type=errors&node={{ obj.device.name }}&interface={{ obj.name }}&duration=60m

Topology Maps

NetBox can generate simple topology maps from the physical network connections recorded in its database. First, you’ll need to create a topology map definition under the admin UI at Extras > Topology Maps.

Each topology map is associated with a site. A site can have multiple topology maps, which might each illustrate a different aspect of its infrastructure (for example, production versus backend infrastructure).

To define the scope of a topology map, decide which devices you want to include. The map will only include interface connections with both points terminated on an included device. Specify the devices to include in the device patterns field by entering a list of regular expressions [https://en.wikipedia.org/wiki/Regular_expression] matching device names. For example, if you wanted to include “mgmt-switch1” through “mgmt-switch99”, you might use the regex mgmt-switch\d+.

Each line of the device patterns field represents a hierarchical layer within the topology map. For example, you might map a traditional network with core, distribution, and access tiers like this:

core-switch-[abcd]
dist-switch\d
access-switch\d+;oob-switch\d+

Note that you can combine multiple regexes onto one line using semicolons. The order in which regexes are listed on a line is significant: devices matching the first regex will be rendered first, and subsequent groups will be rendered to the right of those.

Image Attachments

Certain objects within NetBox (namely sites, racks, and devices) can have photos or other images attached to them. (Note that only image files are supported.) Each attachment may optionally be assigned a name; if omitted, the attachment will be represented by its file name.

!!! note
If you experience a server error while attempting to upload an image attachment, verify that the system user NetBox runs as has write permission to the media root directory (netbox/media/).

 IP address management (IPAM) entails the allocation of IP networks, addresses, and related numeric resources.

VRFs

A VRF object in NetBox represents a virtual routing and forwarding (VRF) domain within a network. Each VRF is essentially a separate routing table: the same IP prefix or address can exist in multiple VRFs. VRFs are commonly used to isolate customers or organizations from one another within a network.

Each VRF is assigned a name and a unique route distinguisher (RD). VRFs are an optional feature of NetBox: Any IP prefix or address not assigned to a VRF is said to belong to the “global” table.

!!! note
By default, NetBox allows for overlapping IP space both in the global table and within each VRF. Unique space enforcement can be toggled per-VRF as well as in the global table using the ENFORCE_GLOBAL_UNIQUE configuration setting.

Aggregates

IP address space is organized as a hierarchy, with more-specific (smaller) prefixes arranged as child nodes under less-specific (larger) prefixes. For example:

	10.0.0.0/8

	10.1.0.0/16

	10.1.2.0/24

The root of the IPv4 hierarchy is 0.0.0.0/0, which encompasses all possible IPv4 addresses (and similarly, ::/0 for IPv6). However, even the largest organizations use only a small fraction of the global address space. Therefore, it makes sense to track in NetBox only the address space which is of interest to your organization.

Aggregates serve as arbitrary top-level nodes in the IP space hierarchy. They allow you to easily construct your IP scheme without any clutter of unused address space. For instance, most organizations utilize some portion of the private IPv4 space set aside in RFC 1918. So, you might define three aggregates for this space:

	10.0.0.0/8

	172.16.0.0/12

	192.168.0.0/16

Additionally, you might define an aggregate for each large swath of public IPv4 space your organization uses. You’d also create aggregates for both globally routable and unique local IPv6 space. (Most organizations will not have a need to track IPv6 link local space.)

Prefixes you create in NetBox (discussed below) will be automatically organized under their respective aggregates. Any space within an aggregate which is not covered by an existing prefix will be annotated as available for allocation. Total utilization for each aggregate is displayed in the aggregates list.

Aggregates cannot overlap with one another; they can only exist in parallel. For instance, you cannot define both 10.0.0.0/8 and 10.16.0.0/16 as aggregates, because they overlap. 10.16.0.0/16 in this example would be created as a prefix and automatically grouped under 10.0.0.0/8.

RIRs

Regional Internet Registries (RIRs) are responsible for the allocation of global address space. The five RIRs are ARIN, RIPE, APNIC, LACNIC, and AFRINIC. However, some address space has been set aside for private or internal use only, such as defined in RFCs 1918 and 6598. NetBox considers these RFCs as a sort of RIR as well; that is, an authority which “owns” certain address space.

Each aggregate must be assigned to one RIR. You are free to define whichever RIRs you choose (or create your own). Each RIR can be annotated as representing only private space.

Prefixes

A prefix is an IPv4 or IPv6 network and mask expressed in CIDR notation (e.g. 192.0.2.0/24). A prefix entails only the “network portion” of an IP address; all bits in the address not covered by the mask must be zero.

Each prefix may be assigned to one VRF; prefixes not assigned to a VRF are assigned to the “global” table. Prefixes are also organized under their respective aggregates, irrespective of VRF assignment.

A prefix may optionally be assigned to one VLAN; a VLAN may have multiple prefixes assigned to it. Each prefix may also be assigned a short description.

Statuses

Each prefix is assigned an operational status. This is one of the following:

	Container - A summary of child prefixes

	Active - Provisioned and in use

	Reserved - Designated for future use

	Deprecated - No longer in use

Roles

Whereas a status describes a prefix’s operational state, a role describes its function. For example, roles might include:

	Access segment

	Infrastructure

	NAT

	Lab

	Out-of-band

Role assignment is optional and roles are fully customizable.

IP Addresses

An IP address comprises a single address (either IPv4 or IPv6) and its subnet mask. Its mask should match exactly how the IP address is configured on an interface in the real world.

Like prefixes, an IP address can optionally be assigned to a VRF (or it will appear in the “global” table). IP addresses are automatically organized under parent prefixes within their respective VRFs. Each IP address can also be assigned a short description.

An IP address can be assigned to a device’s interface; an interface may have multiple IP addresses assigned to it. Further, each device may have one of its interface IPs designated as its primary IP address (for both IPv4 and IPv6).

One IP address can be designated as the network address translation (NAT) IP address for exactly one other IP address. This is useful primarily to denote the public address for a private internal IP. Tracking one-to-many NAT (or PAT) assignments is not supported.

VLANs

A VLAN represents an isolated layer two domain, identified by a name and a numeric ID (1-4094) as defined in IEEE 802.1Q [https://en.wikipedia.org/wiki/IEEE_802.1Q]. Each VLAN may be assigned to a site and/or VLAN group. Like prefixes, each VLAN is assigned an operational status and (optionally) a functional role, and may include a short description.

VLAN Groups

VLAN groups can be employed for administrative organization within NetBox. Each VLAN within a group must have a unique ID and name. VLANs which are not assigned to a group may have overlapping names and IDs, including within a site.

Services

A service represents a TCP or UDP service available on a device or virtual machine. Each service must be defined with a name, protocol, and port number; for example, “SSH (TCP/22).” A service may optionally be bound to one or more specific IP addresses belonging to its parent. (If no IP addresses are bound, the service is assumed to be reachable via any assigned IP address.)

 “Secrets” are small amounts of data that must be kept confidential; for example, passwords and SNMP community strings. NetBox provides encrypted storage of secret data.

Secrets

A secret represents a single credential or other string which must be stored securely. Each secret is assigned to a device within NetBox. The plaintext value of a secret is encrypted to a ciphertext immediately prior to storage within the database using a 256-bit AES master key. A SHA256 hash of the plaintext is also stored along with each ciphertext to validate the decrypted plaintext.

Each secret can also store an optional name parameter, which is not encrypted. This may be useful for storing user names.

Roles

Each secret is assigned a functional role which indicates what it is used for. Typical roles might include:

	Login credentials

	SNMP community strings

	RADIUS/TACACS+ keys

	IKE key strings

	Routing protocol shared secrets

Roles are also used to control access to secrets. Each role is assigned an arbitrary number of groups and/or users. Only the users associated with a role have permission to decrypt the secrets assigned to that role. (A superuser has permission to decrypt all secrets, provided they have an active user key.)

User Keys

Each user within NetBox can associate his or her account with an RSA public key. If activated by an administrator, this user key will contain a unique, encrypted copy of the AES master key needed to retrieve secret data.

User keys may be created by users individually, however they are of no use until they have been activated by a user who already possesses an active user key.

Creating the First User Key

When NetBox is first installed, it contains no encryption keys. Before it can store secrets, a user (typically the superuser) must create a user key. This can be done by navigating to Profile > User Key.

To create a user key, you can either generate a new RSA key pair, or upload the public key belonging to a pair you already have. If generating a new key pair, you must save the private key locally before saving your new user key. Once your user key has been created, its public key will be displayed under your profile.

When the first user key is created in NetBox, a random master encryption key is generated automatically. This key is then encrypted using the public key provided and stored as part of your user key. The master key cannot be recovered without your private key.

Once a user key has been assigned an encrypted copy of the master key, it is considered activated and can now be used to encrypt and decrypt secrets.

Creating Additional User Keys

Any user can create his or her user key by generating or uploading a public RSA key. However, a user key cannot be used to encrypt or decrypt secrets until it has been activated with an encrypted copy of the master key.

Only an administrator with an active user key can activate other user keys. To do so, access the NetBox admin UI and navigate to Secrets > User Keys. Select the user key(s) to be activated, and select “activate selected user keys” from the actions dropdown. You will need to provide your private key in order to decrypt the master key. A copy of the master key is then encrypted using the public key associated with the user key being activated.

 NetBox supports the assignment of resources to tenant organizations. Typically, these are used to represent individual customers of or internal departments within the organization using NetBox.

Tenants

A tenant represents a discrete organization. The following objects can be assigned to tenants:

	Sites

	Racks

	Devices

	VRFs

	Prefixes

	IP addresses

	VLANs

	Circuits

If a prefix or IP address is not assigned to a tenant, it will appear to inherit the tenant to which its parent VRF is assigned, if any.

Tenant Groups

Tenants can be grouped by type. For instance, you might create one group called “Customers” and one called “Acquisitions.” The assignment of tenants to groups is optional.

 NetBox supports the definition of virtual machines arranged in clusters. A cluster can optionally have physical host devices associated with it.

Clusters

A cluster is a logical grouping of physical resources within which virtual machines run. A cluster must be assigned a type, and may optionally be assigned an organizational group.

Physical devices (from NetBox’s DCIM component) may be associated with clusters as hosts. This allows users to track on which host(s) a particular VM may reside. However, NetBox does not support pinning a specific VM within a cluster to a particular host device.

Cluster Types

A cluster type represents a technology or mechanism by which a cluster is formed. For example, you might create a cluster type named “VMware vSphere” for a locally hosted cluster or “DigitalOcean NYC3” for one hosted by a cloud provider.

Cluster Groups

Cluster groups may be created for the purpose of organizing clusters.

Virtual Machines

A virtual machine represents a virtual compute instance hosted within a cluster. Each VM must be associated with exactly one cluster.

Like devices, each VM can have interfaces created on it. These behave similarly to device interfaces, and can be assigned IP addresses, however given their virtual nature they cannot be connected to other interfaces. VMs can also be assigned layer four services. Unlike physical devices, VMs cannot be assigned console or power ports, or device bays.

The following resources can be defined for each VM:

	vCPU count

	Memory (MB)

	Disk space (GB)

Utility Views

Utility views are reusable views that handle common CRUD tasks, such as listing and updating objects. Some views operate on individual objects, whereas others (referred to as “bulk” views) operate on multiple objects at once.

Individual Views

ObjectListView

Generates a paginated table of objects from a given queryset, which may optionally be filtered.

ObjectEditView

Updates an object identified by a primary key (PK) or slug. If no existing object is specified, a new object will be created.

ObjectDeleteView

Deletes an object. The user is redirected to a confirmation page before the deletion is executed.

Bulk Views

BulkCreateView

Creates multiple objects at once based on a given pattern. Currently used only for IP addresses.

BulkImportView

Accepts CSV-formatted data and creates a new object for each line. Creation is all-or-none.

BulkEditView

Applies changes to multiple objects at once in a two-step operation. First, the list of PKs for selected objects is POSTed and an edit form is presented to the user. On submission of that form, the specified changes are made to all selected objects.

BulkDeleteView

Deletes multiple objects. The user selects the objects to be deleted and confirms the deletion.

Component Views

ComponentCreateView

Create one or more component objects beloning to a parent object (e.g. interfaces attached to a device).

ComponentEditView

A subclass of ObjectEditView: Updates an individual component object.

ComponentDeleteView

A subclass of ObjectDeleteView: Deletes an individual component object.

BulkComponentCreateView

Create a set of components objects for each of a selected set of parent objects. This view can be used e.g. to create multiple interfaces on multiple devices at once.

 This guide explains how to implement LDAP authentication using an external server. User authentication will fall back to built-in Django users in the event of a failure.

Requirements

Install openldap-devel

On Ubuntu:

sudo apt-get install -y python-dev libldap2-dev libsasl2-dev libssl-dev

On CentOS:

sudo yum install -y python-devel openldap-devel

Install django-auth-ldap

sudo pip install django-auth-ldap

Configuration

Create a file in the same directory as configuration.py (typically netbox/netbox/) named ldap_config.py. Define all of the parameters required below in ldap_config.py. Complete documentation of all django-auth-ldap configuration options is included in the project’s official documentation [http://django-auth-ldap.readthedocs.io/].

General Server Configuration

!!! info
When using Windows Server 2012 you may need to specify a port on AUTH_LDAP_SERVER_URI. Use 3269 for secure, or 3268 for non-secure.

import ldap

Server URI
AUTH_LDAP_SERVER_URI = "ldaps://ad.example.com"

The following may be needed if you are binding to Active Directory.
AUTH_LDAP_CONNECTION_OPTIONS = {
 ldap.OPT_REFERRALS: 0
}

Set the DN and password for the NetBox service account.
AUTH_LDAP_BIND_DN = "CN=NETBOXSA, OU=Service Accounts,DC=example,DC=com"
AUTH_LDAP_BIND_PASSWORD = "demo"

Include this setting if you want to ignore certificate errors. This might be needed to accept a self-signed cert.
Note that this is a NetBox-specific setting which sets:
ldap.set_option(ldap.OPT_X_TLS_REQUIRE_CERT, ldap.OPT_X_TLS_NEVER)
LDAP_IGNORE_CERT_ERRORS = True

STARTTLS can be configured by setting AUTH_LDAP_START_TLS = True and using the ldap:// URI scheme.

User Authentication

!!! info
When using Windows Server 2012, AUTH_LDAP_USER_DN_TEMPLATE should be set to None.

from django_auth_ldap.config import LDAPSearch

This search matches users with the sAMAccountName equal to the provided username. This is required if the user's
username is not in their DN (Active Directory).
AUTH_LDAP_USER_SEARCH = LDAPSearch("ou=Users,dc=example,dc=com",
 ldap.SCOPE_SUBTREE,
 "(sAMAccountName=%(user)s)")

If a user's DN is producible from their username, we don't need to search.
AUTH_LDAP_USER_DN_TEMPLATE = "uid=%(user)s,ou=users,dc=example,dc=com"

You can map user attributes to Django attributes as so.
AUTH_LDAP_USER_ATTR_MAP = {
 "first_name": "givenName",
 "last_name": "sn",
 "email": "mail"
}

User Groups for Permissions

!!! info
When using Microsoft Active Directory, support for nested groups can be activated by using NestedGroupOfNamesType() instead of GroupOfNamesType() for AUTH_LDAP_GROUP_TYPE.

from django_auth_ldap.config import LDAPSearch, GroupOfNamesType

This search ought to return all groups to which the user belongs. django_auth_ldap uses this to determine group
hierarchy.
AUTH_LDAP_GROUP_SEARCH = LDAPSearch("dc=example,dc=com", ldap.SCOPE_SUBTREE,
 "(objectClass=group)")
AUTH_LDAP_GROUP_TYPE = GroupOfNamesType()

Define a group required to login.
AUTH_LDAP_REQUIRE_GROUP = "CN=NETBOX_USERS,DC=example,DC=com"

Define special user types using groups. Exercise great caution when assigning superuser status.
AUTH_LDAP_USER_FLAGS_BY_GROUP = {
 "is_active": "cn=active,ou=groups,dc=example,dc=com",
 "is_staff": "cn=staff,ou=groups,dc=example,dc=com",
 "is_superuser": "cn=superuser,ou=groups,dc=example,dc=com"
}

For more granular permissions, we can map LDAP groups to Django groups.
AUTH_LDAP_FIND_GROUP_PERMS = True

Cache groups for one hour to reduce LDAP traffic
AUTH_LDAP_CACHE_GROUPS = True
AUTH_LDAP_GROUP_CACHE_TIMEOUT = 3600

	is_active - All users must be mapped to at least this group to enable authentication. Without this, users cannot log in.

	is_staff - Users mapped to this group are enabled for access to the administration tools; this is the equivalent of checking the “staff status” box on a manually created user. This doesn’t grant any specific permissions.

	is_superuser - Users mapped to this group will be granted superuser status. Superusers are implicitly granted all permissions.

Migration

Remove Python 2 packages

apt-get remove --purge -y python-dev python-pip

Install Python 3 packages

apt-get install -y python3 python3-dev python3-pip

Install Python Packages

cd /opt/netbox
pip3 install -r requirements.txt

Gunicorn Update

pip uninstall gunicorn
pip3 install gunicorn

Re-install LDAP Module (optional if using LDAP for auth)

sudo pip3 install django-auth-ldap

Installation

This section of the documentation discusses installing and configuring the NetBox application.

!!! note
Python 3 is strongly encouraged for new installations. Support for Python 2 will be discontinued in the near future. This documentation includes a guide on migrating from Python 2 to Python 3.

Ubuntu

Python 3:

apt-get install -y python3 python3-dev python3-setuptools build-essential libxml2-dev libxslt1-dev libffi-dev graphviz libpq-dev libssl-dev zlib1g-dev
easy_install3 pip

Python 2:

apt-get install -y python2.7 python-dev python-setuptools build-essential libxml2-dev libxslt1-dev libffi-dev graphviz libpq-dev libssl-dev zlib1g-dev
easy_install pip

CentOS

Python 3:

yum install -y epel-release
yum install -y gcc python34 python34-devel python34-setuptools libxml2-devel libxslt-devel libffi-devel graphviz openssl-devel redhat-rpm-config
easy_install-3.4 pip

Python 2:

yum install -y epel-release
yum install -y gcc python2 python-devel python-setuptools libxml2-devel libxslt-devel libffi-devel graphviz openssl-devel redhat-rpm-config
easy_install pip

You may opt to install NetBox either from a numbered release or by cloning the master branch of its repository on GitHub.

Option A: Download a Release

Download the latest stable release [https://github.com/digitalocean/netbox/releases] from GitHub as a tarball or ZIP archive and extract it to your desired path. In this example, we’ll use /opt/netbox.

wget https://github.com/digitalocean/netbox/archive/vX.Y.Z.tar.gz
tar -xzf vX.Y.Z.tar.gz -C /opt
cd /opt/
ln -s netbox-X.Y.Z/ netbox
cd /opt/netbox/

Option B: Clone the Git Repository

Create the base directory for the NetBox installation. For this guide, we’ll use /opt/netbox.

mkdir -p /opt/netbox/ && cd /opt/netbox/

If git is not already installed, install it:

Ubuntu

apt-get install -y git

CentOS

yum install -y git

Next, clone the master branch of the NetBox GitHub repository into the current directory:

git clone -b master https://github.com/digitalocean/netbox.git .
Cloning into '.'...
remote: Counting objects: 1994, done.
remote: Compressing objects: 100% (150/150), done.
remote: Total 1994 (delta 80), reused 0 (delta 0), pack-reused 1842
Receiving objects: 100% (1994/1994), 472.36 KiB | 0 bytes/s, done.
Resolving deltas: 100% (1495/1495), done.
Checking connectivity... done.

!!! warning
Ensure that the media directory (/opt/netbox/netbox/media/ in this example) and all its subdirectories are writable by the user account as which NetBox runs. If the NetBox process does not have permission to write to this directory, attempts to upload files (e.g. image attachments) will fail. (The appropriate user account will vary by platform.)

`# chown -R netbox:netbox /opt/netbox/netbox/media/`

Install Python Packages

Install the required Python packages using pip. (If you encounter any compilation errors during this step, ensure that you’ve installed all of the system dependencies listed above.)

Python 3:

pip3 install -r requirements.txt

Python 2:

pip install -r requirements.txt

!!! note
If you encounter errors while installing the required packages, check that you’re running a recent version of pip (v9.0.1 or higher) with the command pip -V or pip3 -V.

NAPALM Automation

As of v2.1.0, NetBox supports integration with the NAPALM automation [https://napalm-automation.net/] library. NAPALM allows NetBox to fetch live data from devices and return it to a requester via its REST API. Installation of NAPALM is optional. To enable it, install the napalm package using pip or pip3:

pip3 install napalm

Configuration

Move into the NetBox configuration directory and make a copy of configuration.example.py named configuration.py.

cd netbox/netbox/
cp configuration.example.py configuration.py

Open configuration.py with your preferred editor and set the following variables:

	ALLOWED_HOSTS

	DATABASE

	SECRET_KEY

ALLOWED_HOSTS

This is a list of the valid hostnames by which this server can be reached. You must specify at least one name or IP address.

Example:

ALLOWED_HOSTS = ['netbox.example.com', '192.0.2.123']

DATABASE

This parameter holds the database configuration details. You must define the username and password used when you configured PostgreSQL. If the service is running on a remote host, replace localhost with its address.

Example:

DATABASE = {
 'NAME': 'netbox', # Database name
 'USER': 'netbox', # PostgreSQL username
 'PASSWORD': 'J5brHrAXFLQSif0K', # PostgreSQL password
 'HOST': 'localhost', # Database server
 'PORT': '', # Database port (leave blank for default)
}

SECRET_KEY

Generate a random secret key of at least 50 alphanumeric characters. This key must be unique to this installation and must not be shared outside the local system.

You may use the script located at netbox/generate_secret_key.py to generate a suitable key.

!!! note
In the case of a highly available installation with multiple web servers, SECRET_KEY must be identical among all servers in order to maintain a persistent user session state.

Run Database Migrations

!!! warning
The examples on the rest of this page call the python3 executable. Replace this with python2 or python if you’re using Python 2.

Before NetBox can run, we need to install the database schema. This is done by running python3 manage.py migrate from the netbox directory (/opt/netbox/netbox/ in our example):

cd /opt/netbox/netbox/
python3 manage.py migrate
Operations to perform:
 Apply all migrations: dcim, sessions, admin, ipam, utilities, auth, circuits, contenttypes, extras, secrets, users
Running migrations:
 Rendering model states... DONE
 Applying contenttypes.0001_initial... OK
 Applying auth.0001_initial... OK
 Applying admin.0001_initial... OK
 ...

If this step results in a PostgreSQL authentication error, ensure that the username and password created in the database match what has been specified in configuration.py

Create a Super User

NetBox does not come with any predefined user accounts. You’ll need to create a super user to be able to log into NetBox:

python3 manage.py createsuperuser
Username: admin
Email address: admin@example.com
Password:
Password (again):
Superuser created successfully.

Collect Static Files

python3 manage.py collectstatic --no-input

You have requested to collect static files at the destination
location as specified in your settings:

 /opt/netbox/netbox/static

This will overwrite existing files!
Are you sure you want to do this?

Type 'yes' to continue, or 'no' to cancel: yes

Load Initial Data (Optional)

NetBox ships with some initial data to help you get started: RIR definitions, common devices roles, etc. You can delete any seed data that you don’t want to keep.

!!! note
This step is optional. It’s perfectly fine to start using NetBox without using this initial data if you’d rather create everything from scratch.

python3 manage.py loaddata initial_data
Installed 43 object(s) from 4 fixture(s)

Test the Application

At this point, NetBox should be able to run. We can verify this by starting a development instance:

python3 manage.py runserver 0.0.0.0:8000 --insecure
Performing system checks...

System check identified no issues (0 silenced).
June 17, 2016 - 16:17:36
Django version 1.9.7, using settings 'netbox.settings'
Starting development server at http://0.0.0.0:8000/
Quit the server with CONTROL-C.

Now if we navigate to the name or IP of the server (as defined in ALLOWED_HOSTS) we should be greeted with the NetBox home page. Note that this built-in web service is for development and testing purposes only. It is not suited for production use.

!!! warning
If the test service does not run, or you cannot reach the NetBox home page, something has gone wrong. Do not proceed with the rest of this guide until the installation has been corrected.

 NetBox requires a PostgreSQL database to store data. This can be hosted locally or on a remote server. (Please note that MySQL is not supported, as NetBox leverages PostgreSQL’s built-in network address types [https://www.postgresql.org/docs/current/static/datatype-net-types.html].)

!!! note
The installation instructions provided here have been tested to work on Ubuntu 16.04 and CentOS 7.4. The particular commands needed to install dependencies on other distributions may vary significantly. Unfortunately, this is outside the control of the NetBox maintainers. Please consult your distribution’s documentation for assistance with any errors.

!!! warning
NetBox v2.2 and later requires PostgreSQL 9.4 or higher.

Installation

Ubuntu

If a recent enough version of PostgreSQL is not available through your distribution’s package manager, you’ll need to install it from an official PostgreSQL repository [https://wiki.postgresql.org/wiki/Apt].

apt-get update
apt-get install -y postgresql libpq-dev

CentOS

CentOS 7.4 does not ship with a recent enough version of PostgreSQL, so it will need to be installed from an external repository. The instructions below show the installation of PostgreSQL 9.6.

yum install https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm
yum install postgresql96 postgresql96-server postgresql96-devel
/usr/pgsql-9.6/bin/postgresql96-setup initdb

CentOS users should modify the PostgreSQL configuration to accept password-based authentication by replacing ident with md5 for all host entries within /var/lib/pgsql/9.6/data/pg_hba.conf. For example:

host all all 127.0.0.1/32 md5
host all all ::1/128 md5

Then, start the service and enable it to run at boot:

systemctl start postgresql-9.6
systemctl enable postgresql-9.6

Database Creation

At a minimum, we need to create a database for NetBox and assign it a username and password for authentication. This is done with the following commands.

!!! danger
DO NOT USE THE PASSWORD FROM THE EXAMPLE.

sudo -u postgres psql
psql (9.4.5)
Type "help" for help.

postgres=# CREATE DATABASE netbox;
CREATE DATABASE
postgres=# CREATE USER netbox WITH PASSWORD 'J5brHrAXFLQSif0K';
CREATE ROLE
postgres=# GRANT ALL PRIVILEGES ON DATABASE netbox TO netbox;
GRANT
postgres=# \q

You can verify that authentication works issuing the following command and providing the configured password. (Replace localhost with your database server if using a remote database.)

psql -U netbox -W -h localhost netbox

If successful, you will enter a netbox prompt. Type \q to exit.

Install the Latest Code

As with the initial installation, you can upgrade NetBox by either downloading the latest release package or by cloning the master branch of the git repository.

Option A: Download a Release

Download the latest stable release [https://github.com/digitalocean/netbox/releases] from GitHub as a tarball or ZIP archive. Extract it to your desired path. In this example, we’ll use /opt/netbox.

Download and extract the latest version:

wget https://github.com/digitalocean/netbox/archive/vX.Y.Z.tar.gz
tar -xzf vX.Y.Z.tar.gz -C /opt
cd /opt/
ln -sf netbox-X.Y.Z/ netbox

Copy the ‘configuration.py’ you created when first installing to the new version:

cp /opt/netbox-X.Y.Z/netbox/netbox/configuration.py /opt/netbox/netbox/netbox/configuration.py

Be sure to replicate your uploaded media as well. (The exact action necessary will depend on where you choose to store your media, but in general moving or copying the media directory will suffice.)

cp -pr /opt/netbox-X.Y.Z/netbox/media/ /opt/netbox/netbox/

If you followed the original installation guide to set up gunicorn, be sure to copy its configuration as well:

cp /opt/netbox-X.Y.Z/gunicorn_config.py /opt/netbox/gunicorn_config.py

Copy the LDAP configuration if using LDAP:

cp /opt/netbox-X.Y.Z/netbox/netbox/ldap_config.py /opt/netbox/netbox/netbox/ldap_config.py

Option B: Clone the Git Repository (latest master release)

This guide assumes that NetBox is installed at /opt/netbox. Pull down the most recent iteration of the master branch:

cd /opt/netbox
git checkout master
git pull origin master
git status

Run the Upgrade Script

Once the new code is in place, run the upgrade script (which may need to be run as root depending on how your environment is configured).

./upgrade.sh

!!! warning
The upgrade script will prefer Python3 and pip3 if both executables are available. To force it to use Python2 and pip, use the -2 argument as below.

./upgrade.sh -2

This script:

	Installs or upgrades any new required Python packages

	Applies any database migrations that were included in the release

	Collects all static files to be served by the HTTP service

!!! note
It’s possible that the upgrade script will display a notice warning of unreflected database migrations:

 Your models have changes that are not yet reflected in a migration, and so won't be applied.
 Run 'manage.py makemigrations' to make new migrations, and then re-run 'manage.py migrate' to apply them.

This may occur due to semantic differences in environment, and can be safely ignored. Never attempt to create new migrations unless you are intentionally modifying the database schema.

Restart the WSGI Service

Finally, restart the WSGI service to run the new code. If you followed this guide for the initial installation, this is done using supervisorctl:

sudo supervisorctl restart netbox

 We’ll set up a simple WSGI front end using gunicorn [http://gunicorn.org/] for the purposes of this guide. For web servers, we provide example configurations for both nginx [https://www.nginx.com/resources/wiki/] and Apache [http://httpd.apache.org/docs/2.4]. (You are of course free to use whichever combination of HTTP and WSGI services you’d like.) We’ll also use supervisord [http://supervisord.org/] to enable service persistence.

!!! info
For the sake of brevity, only Ubuntu 16.04 instructions are provided here, but this sort of web server and WSGI configuration is not unique to NetBox. Please consult your distribution’s documentation for assistance if needed.

Web Server Installation

Option A: nginx

The following will serve as a minimal nginx configuration. Be sure to modify your server name and installation path appropriately.

apt-get install -y nginx

Once nginx is installed, save the following configuration to /etc/nginx/sites-available/netbox. Be sure to replace netbox.example.com with the domain name or IP address of your installation. (This should match the value configured for ALLOWED_HOSTS in configuration.py.)

server {
 listen 80;

 server_name netbox.example.com;

 client_max_body_size 25m;

 location /static/ {
 alias /opt/netbox/netbox/static/;
 }

 location / {
 proxy_pass http://127.0.0.1:8001;
 proxy_set_header X-Forwarded-Host $server_name;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-Proto $scheme;
 add_header P3P 'CP="ALL DSP COR PSAa PSDa OUR NOR ONL UNI COM NAV"';
 }
}

Then, delete /etc/nginx/sites-enabled/default and create a symlink in the sites-enabled directory to the configuration file you just created.

cd /etc/nginx/sites-enabled/
rm default
ln -s /etc/nginx/sites-available/netbox

Restart the nginx service to use the new configuration.

service nginx restart

To enable SSL, consider this guide on securing nginx with Let’s Encrypt [https://www.digitalocean.com/community/tutorials/how-to-secure-nginx-with-let-s-encrypt-on-ubuntu-16-04].

Option B: Apache

apt-get install -y apache2

Once Apache is installed, proceed with the following configuration (Be sure to modify the ServerName appropriately):

<VirtualHost *:80>
 ProxyPreserveHost On

 ServerName netbox.example.com

 Alias /static /opt/netbox/netbox/static

 # Needed to allow token-based API authentication
 WSGIPassAuthorization on

 <Directory /opt/netbox/netbox/static>
 Options Indexes FollowSymLinks MultiViews
 AllowOverride None
 Require all granted
 </Directory>

 <Location /static>
 ProxyPass !
 </Location>

 RequestHeader set "X-Forwarded-Proto" expr=%{REQUEST_SCHEME}
 ProxyPass / http://127.0.0.1:8001/
 ProxyPassReverse / http://127.0.0.1:8001/
</VirtualHost>

Save the contents of the above example in /etc/apache2/sites-available/netbox.conf, enable the proxy and proxy_http modules, and reload Apache:

a2enmod proxy
a2enmod proxy_http
a2enmod headers
a2ensite netbox
service apache2 restart

To enable SSL, consider this guide on securing Apache with Let’s Encrypt [https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-16-04].

gunicorn Installation

Install gunicorn using pip3 (Python 3) or pip (Python 2):

pip3 install gunicorn

Save the following configuration in the root netbox installation path as gunicorn_config.py (e.g. /opt/netbox/gunicorn_config.py per our example installation). Be sure to verify the location of the gunicorn executable on your server (e.g. which gunicorn) and to update the pythonpath variable if needed. If using CentOS/RHEL, change the username from www-data to nginx or apache.

command = '/usr/bin/gunicorn'
pythonpath = '/opt/netbox/netbox'
bind = '127.0.0.1:8001'
workers = 3
user = 'www-data'

supervisord Installation

Install supervisor:

apt-get install -y supervisor

Save the following as /etc/supervisor/conf.d/netbox.conf. Update the command and directory paths as needed. If using CentOS/RHEL, change the username from www-data to nginx or apache.

[program:netbox]
command = gunicorn -c /opt/netbox/gunicorn_config.py netbox.wsgi
directory = /opt/netbox/netbox/
user = www-data

Then, restart the supervisor service to detect and run the gunicorn service:

service supervisor restart

At this point, you should be able to connect to the nginx HTTP service at the server name or IP address you provided. If you are unable to connect, check that the nginx service is running and properly configured. If you receive a 502 (bad gateway) error, this indicates that gunicorn is misconfigured or not running.

!!! info
Please keep in mind that the configurations provided here are bare minimums required to get NetBox up and running. You will almost certainly want to make some changes to better suit your production environment.

NetBox Reports

A NetBox report is a mechanism for validating the integrity of data within NetBox. Running a report allows the user to verify that the objects defined within NetBox meet certain arbitrary conditions. For example, you can write reports to check that:

	All top-of-rack switches have a console connection

	Every router has a loopback interface with an IP address assigned

	Each interface description conforms to a standard format

	Every site has a minimum set of VLANs defined

	All IP addresses have a parent prefix

…and so on. Reports are completely customizable, so there’s practically no limit to what you can test for.

Writing Reports

Reports must be saved as files in the REPORTS_ROOT path (which defaults to netbox/reports/). Each file created within this path is considered a separate module. Each module holds one or more reports (Python classes), each of which performs a certain function. The logic of each report is broken into discrete test methods, each of which applies a small portion of the logic comprising the overall test.

!!! warning
The reports path includes a file named __init__.py, which registers the path as a Python module. Do not delete this file.

For example, we can create a module named devices.py to hold all of our reports which pertain to devices in NetBox. Within that module, we might define several reports. Each report is defined as a Python class inheriting from extras.reports.Report.

from extras.reports import Report

class DeviceConnectionsReport(Report):
 description = "Validate the minimum physical connections for each device"

class DeviceIPsReport(Report):
 description = "Check that every device has a primary IP address assigned"

Within each report class, we’ll create a number of test methods to execute our report’s logic. In DeviceConnectionsReport, for instance, we want to ensure that every live device has a console connection, an out-of-band management connection, and two power connections.

from dcim.constants import CONNECTION_STATUS_PLANNED, STATUS_ACTIVE
from dcim.models import ConsolePort, Device, PowerPort
from extras.reports import Report

class DeviceConnectionsReport(Report):
 description = "Validate the minimum physical connections for each device"

 def test_console_connection(self):

 # Check that every console port for every active device has a connection defined.
 for console_port in ConsolePort.objects.select_related('device').filter(device__status=STATUS_ACTIVE):
 if console_port.cs_port is None:
 self.log_failure(
 console_port.device,
 "No console connection defined for {}".format(console_port.name)
)
 elif console_port.connection_status == CONNECTION_STATUS_PLANNED:
 self.log_warning(
 console_port.device,
 "Console connection for {} marked as planned".format(console_port.name)
)
 else:
 self.log_success(console_port.device)

 def test_power_connections(self):

 # Check that every active device has at least two connected power supplies.
 for device in Device.objects.filter(status=STATUS_ACTIVE):
 connected_ports = 0
 for power_port in PowerPort.objects.filter(device=device):
 if power_port.power_outlet is not None:
 connected_ports += 1
 if power_port.connection_status == CONNECTION_STATUS_PLANNED:
 self.log_warning(
 device,
 "Power connection for {} marked as planned".format(power_port.name)
)
 if connected_ports < 2:
 self.log_failure(
 device,
 "{} connected power supplies found (2 needed)".format(connected_ports)
)
 else:
 self.log_success(device)

As you can see, reports are completely customizable. Validation logic can be as simple or as complex as needed.

!!! warning
Reports should never alter data: If you find yourself using the create(), save(), update(), or delete() methods on objects within reports, stop and re-evaluate what you’re trying to accomplish. Note that there are no safeguards against the accidental alteration or destruction of data.

The following methods are available to log results within a report:

	log(message)

	log_success(object, message=None)

	log_info(object, message)

	log_warning(object, message)

	log_failure(object, message)

The recording of one or more failure messages will automatically flag a report as failed. It is advised to log a success for each object that is evaluated so that the results will reflect how many objects are being reported on. (The inclusion of a log message is optional for successes.) Messages recorded with log() will appear in a report’s results but are not associated with a particular object or status.

To perform additional tasks, such as sending an email or calling a webhook, after a report has been run, extend the post_run() method. The status of the report is available as self.failed and the results object is self.result.

Once you have created a report, it will appear in the reports list. Initially, reports will have no results associated with them. To generate results, run the report.

Running Reports

Via the Web UI

Reports can be run via the web UI by navigating to the report and clicking the “run report” button at top right. Note that a user must have permission to create ReportResults in order to run reports. (Permissions can be assigned through the admin UI.)

Once a report has been run, its associated results will be included in the report view.

Via the API

To run a report via the API, simply issue a POST request to its run endpoint. Reports are identified by their module and class name.

 POST /api/extras/reports/<module>.<name>/run/

Our example report above would be called as:

 POST /api/extras/reports/devices.DeviceConnectionsReport/run/

Via the CLI

Reports can be run on the CLI by invoking the management command:

python3 manage.py runreport <module>

One or more report modules may be specified.

 NetBox includes a Python shell within which objects can be directly queried, created, modified, and deleted. To enter the shell, run the following command:

./manage.py nbshell

This will launch a customized version of the built-in Django shell [https://docs.djangoproject.com/en/dev/ref/django-admin/#shell] with all relevant NetBox models pre-loaded. (If desired, the stock Django shell is also available by executing ./manage.py shell.)

$./manage.py nbshell
NetBox interactive shell (jstretch-laptop)
Python 2.7.6 | Django 1.11.3 | NetBox 2.1.0-dev
lsmodels() will show available models. Use help(<model>) for more info.

The function lsmodels() will print a list of all available NetBox models:

>>> lsmodels()
DCIM:
 ConsolePort
 ConsolePortTemplate
 ConsoleServerPort
 ConsoleServerPortTemplate
 Device
 ...

Querying Objects

Objects are retrieved by forming a Django queryset [https://docs.djangoproject.com/en/dev/topics/db/queries/#retrieving-objects]. The base queryset for an object takes the form <model>.objects.all(), which will return a (truncated) list of all objects of that type.

>>> Device.objects.all()
<QuerySet [<Device: TestDevice1>, <Device: TestDevice2>, <Device: TestDevice3>, <Device: TestDevice4>, <Device: TestDevice5>, '...(remaining elements truncated)...']>

Use a for loop to cycle through all objects in the list:

>>> for device in Device.objects.all():
... print(device.name, device.device_type)
...
(u'TestDevice1', <DeviceType: PacketThingy 9000>)
(u'TestDevice2', <DeviceType: PacketThingy 9000>)
(u'TestDevice3', <DeviceType: PacketThingy 9000>)
(u'TestDevice4', <DeviceType: PacketThingy 9000>)
(u'TestDevice5', <DeviceType: PacketThingy 9000>)
...

To count all objects matching the query, replace all() with count():

>>> Device.objects.count()
1274

To retrieve a particular object (typically by its primary key or other unique field), use get():

>>> Site.objects.get(pk=7)
<Site: Test Lab>

Filtering Querysets

In most cases, you want to retrieve only a specific subset of objects. To filter a queryset, replace all() with filter() and pass one or more keyword arguments. For example:

>>> Device.objects.filter(status=STATUS_ACTIVE)
<QuerySet [<Device: TestDevice1>, <Device: TestDevice2>, <Device: TestDevice3>, <Device: TestDevice8>, <Device: TestDevice9>, '...(remaining elements truncated)...']>

Querysets support slicing to return a specific range of objects.

>>> Device.objects.filter(status=STATUS_ACTIVE)[:3]
<QuerySet [<Device: TestDevice1>, <Device: TestDevice2>, <Device: TestDevice3>]>

The count() method can be appended to the queryset to return a count of objects rather than the full list.

>>> Device.objects.filter(status=STATUS_ACTIVE).count()
982

Relationships with other models can be traversed by concatenating field names with a double-underscore. For example, the following will return all devices assigned to the tenant named “Pied Piper.”

>>> Device.objects.filter(tenant__name='Pied Piper')

This approach can span multiple levels of relations. For example, the following will return all IP addresses assigned to a device in North America:

>>> IPAddress.objects.filter(interface__device__site__region__slug='north-america')

!!! note
While the above query is functional, it is very inefficient. There are ways to optimize such requests, however they are out of the scope of this document. For more information, see the Django queryset method reference [https://docs.djangoproject.com/en/dev/ref/models/querysets/] documentation.

Reverse relationships can be traversed as well. For example, the following will find all devices with an interface named “em0”:

>>> Device.objects.filter(interfaces__name='em0')

Character fields can be filtered against partial matches using the contains or icontains field lookup (the later of which is case-insensitive).

>>> Device.objects.filter(name__icontains='testdevice')

Similarly, numeric fields can be filtered by values less than, greater than, and/or equal to a given value.

>>> VLAN.objects.filter(vid__gt=2000)

Multiple filters can be combined to further refine a queryset.

>>> VLAN.objects.filter(vid__gt=2000, name__icontains='engineering')

To return the inverse of a filtered queryset, use exclude() instead of filter().

>>> Device.objects.count()
4479
>>> Device.objects.filter(status=STATUS_ACTIVE).count()
4133
>>> Device.objects.exclude(status=STATUS_ACTIVE).count()
346

!!! info
The examples above are intended only to provide a cursory introduction to queryset filtering. For an exhaustive list of the available filters, please consult the Django queryset API docs [https://docs.djangoproject.com/en/dev/ref/models/querysets/].

Creating and Updating Objects

New objects can be created by instantiating the desired model, defining values for all required attributes, and calling save() on the instance.

>>> lab1 = Site.objects.get(pk=7)
>>> myvlan = VLAN(vid=123, name='MyNewVLAN', site=lab1)
>>> myvlan.save()

Alternatively, the above can be performed as a single operation:

>>> VLAN(vid=123, name='MyNewVLAN', site=Site.objects.get(pk=7)).save()

To modify an object, retrieve it, update the desired field(s), and call save() again.

>>> vlan = VLAN.objects.get(pk=1280)
>>> vlan.name
u'MyNewVLAN'
>>> vlan.name = 'BetterName'
>>> vlan.save()
>>> VLAN.objects.get(pk=1280).name
u'BetterName'

!!! warning
The Django ORM provides methods to create/edit many objects at once, namely bulk_create() and update(). These are best avoided in most cases as they bypass a model’s built-in validation and can easily lead to database corruption if not used carefully.

Deleting Objects

To delete an object, simply call delete() on its instance. This will return a dictionary of all objects (including related objects) which have been deleted as a result of this operation.

>>> vlan
<VLAN: 123 (BetterName)>
>>> vlan.delete()
(1, {u'extras.CustomFieldValue': 0, u'ipam.VLAN': 1})

To delete multiple objects at once, call delete() on a filtered queryset. It’s a good idea to always sanity-check the count of selected objects before deleting them.

>>> Device.objects.filter(name__icontains='test').count()
27
>>> Device.objects.filter(name__icontains='test').delete()
(35, {u'extras.CustomFieldValue': 0, u'dcim.DeviceBay': 0, u'secrets.Secret': 0, u'dcim.InterfaceConnection': 4, u'extras.ImageAttachment': 0, u'dcim.Device': 27, u'dcim.Interface': 4, u'dcim.ConsolePort': 0, u'dcim.PowerPort': 0})

!!! warning
Deletions are immediate and irreversible. Always think very carefully before calling delete() on an instance or queryset.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

