

    
      
          
            
  


Nestor Tagging Toolkit

Nestor is a toolkit for using Natural Language Processing (NLP) with efficient
user-interaction to perform structured data extraction with minimal annotation time-cost.


Table of Contents


	Introduction
	Purpose

	Who are we?





	Getting Started
	License/Terms-of-Use

	Installation

	Loading/Saving Data

	Using the Nestor GUI

	Using the Nestor Dashboard (Under Development!)





	Examples
	Showcase

	Case Studies





	Advanced Use
	Research Mode





	nestor package
	Subpackages

	Submodules









Index
Module Index
Search Page





          

      

      

    

  

    
      
          
            
  


Introduction


Purpose

This application was designed to help manufacturers “tag” their
maintenance work-order data according to the methods being researched [https://www.researchgate.net/project/Knowledge-Extraction-and-Application-for-Smart-Manufacturing] by the Knowledge Extraction and Applications project at the NIST Engineering Laboratory. The goal of this
application is to give understanding to data sets that previously were
too unstructured or filled with jargon to analyze. The current build is
in very early alpha, so please be patient in using this application. If
you have any questions, please do not hesitate to contact us (see Who
are we?. )


Why?

There is often a large amount of maintenance data already available
for use in Smart Manufacturing systems, but in a currently-unusable
form: service tickets and maintenance work orders (MWOs). Nestor is
a toolkit for using Natural Language Processing (NLP) with efficient
user-interaction to perform structured data extraction with minimal
annotation time-cost.




Features


	Ranks concepts to be annotated by importance, to save you time


	Suggests term unification by similarity, for you to quickly review


	Basic concept relationships builder, to assist assembling problem
code and taxonomy definitions


	Strucutred data output as tags, whether in readable (comma-sep) or
computation-friendly (sparse-mat) form.







What’s Inside?

Documentation is contained in the /docs subdirectory, and are hosted as
webpages and
PDF [https://media.readthedocs.org/pdf/nestor/latest/nestor.pdf]
available at readthedocs.io [https://nestor.readthedocs.io/en/latest/]
.

Current:


	Tagging Tool: Human-in-the-loop Annotation Interface (pyqt)


	Unstructured data processing toolkit (sklearn-style)


	Vizualization tools for tagged MWOs-style data (under development)




Planned/underway:


	KPI creation and visualization suite


	Machine-assisted functional taxonomy generation


	Quantitative skill assement and training suggestion engine


	Graph Database creation assistance and query tool







Pre-requisites

This package was built as compatible with Anaconda python distribution.
See our default requirements file [https://github.com/usnistgov/nestor/blob/master/requirements/defaults.txt] for a complete list of major dependencies, along with the requirements to run our experimental dashboard [https://github.com/usnistgov/nestor/blob/master/requirements/dash.txt] or to compile our documentation locally [https://github.com/usnistgov/nestor/blob/master/requirements/docs.txt]






Who are we?

This toolkit is a part of the Knowledge Extraction and Application for
Smart Manufacturing (KEA) project, within the Systems Integration
Division at NIST.


Points of Contact


	Michael Brundage [https://www.nist.gov/people/michael-p-brundage]
Principal Investigator


	Thurston Sexton [https://www.nist.gov/people/thurston-sexton] Nestor Technical Lead







Contributors:







	Name

	GitHub Handle





	Thurston Sexton

	@tbsexton [https://github.com/tbsexton]



	Sascha Moccozet

	@saschaMoccozet [https://github.com/saschaMoccozet]



	Michael Brundage

	@MichaelPBrundage [https://github.com/MichaelPBrundage]



	Madhusudanan N.

	@msngit [https://github.com/msngit]



	Emily Hastings

	@emhastings [https://github.com/emhastings]



	Lela Bones

	@lelatbones [https://github.com/lelatbones]









Why KEA?

The KEA project seeks to better frame data collection and transformation
systems within smart manufacturing as collaborations between human
experts and the machines they partner with, to more efficiently utilize
the digital and human resources available to manufacturers. Kea (nestor
notabilis) on the other hand, are the world’s only alpine parrots,
finding their home on the southern Island of NZ. Known for their
intelligence and ability to solve puzzles through the use of tools, they
will often work together to reach their goals, which is especially
important in their harsh, mountainous habitat.

Further reading: [SBHM17][SSB17]


	SBHM17

	Thurston Sexton, Michael P Brundage, Michael Hoffman, and Katherine C Morris. Hybrid datafication of maintenance logs from ai-assisted human tags. In Big Data (Big Data), 2017 IEEE International Conference on, 1769–1777. IEEE, 2017.



	SSB17

	Michael Sharp, Thurston Sexton, and Michael P Brundage. Toward semi-autonomous information. In IFIP International Conference on Advances in Production Management Systems, 425–432. Springer, 2017.















          

      

      

    

  

    
      
          
            
  


Getting Started



	License/Terms-of-Use
	Software Disclaimer / Release

	3rd-Party Endorsement Disclaimer





	Installation
	Standalone Executable

	Python-based Install
	System Requirements

	Nestor Installation using PyPI (Recommended)

	Nestor installation using local archive









	Loading/Saving Data
	New Project

	Persistence
	Disk Location

	Import/Export

	Research mode









	Using the Nestor GUI
	Settings
	Special Replace

	Number of words listed

	Similarity for ticked words

	Threshold for List of Similar Words





	Single Word Tagging
	Word annotation Overview

	Similar Words

	User-Input





	Multi Word Tagging
	Special options

	Auto-classification





	Reporting and Data Transfer
	Exporting

	Progress Report









	Using the Nestor Dashboard (Under Development!)
	Starting the Dashboard Server

	Uploading Data Files

	Viewing Visualizations on Nestor Dashboard













          

      

      

    

  

    
      
          
            
  


License/Terms-of-Use


Software Disclaimer / Release

This software was developed by employees of the National Institute of Standards
and Technology [http://www.nist.gov/] (NIST), an agency of the Federal Government and is provided to you as a public service. Pursuant to title 15 United States Code Section 105 [http://uscode.house.gov/uscode-cgi/fastweb.exe?getdoc+uscview+t17t20+9+0++], works of NIST employees are not subject to copyright protection within the United States.

The software is provided by NIST “AS IS.” NIST MAKES NO WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT AND DATA ACCURACY. NIST does not warrant or make any representations regarding the use of the software or the results thereof, including but not limited to the correctness, accuracy, reliability or usefulness of the software.

To the extent that NIST rights in countries other than the United States, you are hereby granted the non-exclusive irrevocable and unconditional right to print, publish, prepare derivative works and distribute the NIST software, in any medium, or authorize others to do so on your behalf, on a royalty-free basis throughout the World.

You may improve, modify, and create derivative works of the software or any portion of the software, and you may copy and distribute such modifications or works. Modified works should carry a notice stating that you changed the software and should note the date and nature of any such change.

You are solely responsible for determining the appropriateness of using and distributing the software and you assume all risks associated with its use, including but not limited to the risks and costs of program errors, compliance with applicable laws, damage to or loss of data, programs or equipment, and the unavailability or interruption of operation. This software is not intended to be used in any situation where a failure could cause risk of injury or damage to property.

Please provide appropriate acknowledgments of NIST’s creation of the software in any copies or derivative works of this software.




3rd-Party Endorsement Disclaimer

The use of any products described in this toolkit does not imply
recommendation or endorsement by the National Institute of Standards and
Technology, nor does it imply that products are necessarily the best
available for the purpose.







          

      

      

    

  

    
      
          
            
  


Installation


Standalone Executable

Starting with v0.3, standalone executables are available [https://github.com/usnistgov/nestor/releases] for windows, linux, and mac. This feature is new and very much in beta. Meant to be a temporary solution for those not needing access to the underlying Nestor API, it will eventually be replaced by more portable, web-app solutions.


Note that nestor-dash and nestor-gui command line scripts will not be installed, and therefore unavailable! Only the interface normally accessible via nestor-gui is bundled as an executable at this time.




At the link above, select a distribution (Linux 5.0 x86_64 or greater, tested on Ubuntu 18.10; Windows 10 or greater; OSx v10.1 or greater), which downloads a zipped folder containing dependencies and the program itself. Extract the folder to any directory and run the Nestor file to start tagging!


On Windows, you will see a Nestor.exe; on Linux you must ensure the Nestor script file is executable, and can be run in the terminal via ./<path-to-file>/Nestor







Python-based Install

If you want to use the Nestor API to access NLP/plotting functions, along with access to the (beta) nestor-dash analysis webtool, you will need to install Nestor as a python library. This will assume a basic level of familiarity with python and terminal usage.


System Requirements

The installation can be done using either the automatic pip method (recommended) or by downloading the installation and completing it manually.
To install Nestor, your computer must at least have the following configured:


	Operating system: Windows 10, Mac OS, or Ubuntu Linux


	A working installation of Python 3. If you do not have Python installation, an easy way to install it is using the Anaconda distribution [https://www.anaconda.com/download] of Python.


	The Comma Separated Value (csv) file that contains your raw data must be in UTF-8 encoding to be compatible with the tagging tool. Your computer has tools [https://www.ibm.com/support/knowledgecenter/en/SSWU4L/WebLanding/imc_WebLanding/WebLanding_q_a_watson_assistant/Saving_a_CSV_file_with_UTF-8_encoding.html] to help you save your csv as utf-8.


	If you decide to use a conda environment (recommended), ensure pip is installed in the environment itself to prevent references to the top-level pip installation







Nestor Installation using PyPI (Recommended)

This is the recommended way of installing Nestor since it is minimal. To install,


	Open a terminal, and type in pip install nist-nestor. The installation will then proceed automatically and will install the graphical user interface (GUI) for the Nestor Tagging Tool.


	Optionally, you can install additional dependencies for the Nestor Dashboard using the [dash] options flag, as: pip install nist-nestor[dash]


	The developer releases (unstable!) can be installed directly from the github master branch, if you have git installed: pip install git+https://github.com/usnistgov/nestor.git







Nestor installation using local archive

This step is necessary only if you did not install using the above method (using PyPI), or if you wish to edit code locally while still gaining access to the command-line scripts.


	Download a .zip file [https://github.com/usnistgov/nestor/archive/master.zip] of the entire nestor repository from Github.


	Extract the files to a directory, preferably with write access, and navigate a terminal to the folder where the files have been extracted to (the folder will have the file setup.py in it).


	Install nestor using the command pip install -e . (note the “.”)
..


(Optional Step) Type in pip install -e .[dash] to install the Nestor Dashboard with dependencies.
















          

      

      

    

  

    
      
          
            
  


Loading/Saving Data

Nestor comes with multiple options for loading your data, depending on if this is the first time you are tagging a dataset or you are returning for a follow up session.

New in v0.3: you are now able to create projects, which persist and can be exported/imported/shared. You will find all projects inside your home folder, in ~/.nestor-tmp (/home/<username> on unix-based sytems, <root>/Users/<username> for Windows)


New Project

If this is the first time tagging a specific file (new project):


	You can create a new project under “File” -> “New Project”


	Here, Nestor requires a “Project Name” and to load the .csv of the file you want to tag.


	Optional entries include a description of the project, the author of the tagging, and naming both the 1-gram and N-gram filenames.






	Select the (presumably natural-laguage) columns you want to tag using Nestor.


	(Optional) Map columns from the csv to a database schema as defined in this paper [https://www.nist.gov/publications/developing-maintenance-key-performance-indicators-maintenance-work-order-data]. This is detailed more in SECTION?


	Please note, you may map columns from your csv to this schema, which allows other plotting/analysis tools to access them (e.g. nestor-dash) while not selecting them to be tagged (they remain unchecked).











Persistence

Nestor has a number of ways to persist your work and make it portable:


Disk Location


	Nestor version 0.3 allows you to create projects. You will find all projects inside .nestor-tmp, found under a folder named after the chosen project name given at creation.
	Inside each folder, you will find:






	The application configuration file, config.yaml. This file contains information used by the application during the tagging process.


	The csv file you chose to tag.


	The single token vocabulary file


	The multiple token vocabulary file





By default (if not changed at the time of project creation) the filenames for the vocab files are respectively vocab1g.csv and vocabNg.csv.







Import/Export

Nestor allows a user to export an entire project, located under “File” -> “Export Project”, saving it as a portable .zip or .tar file, which can be easily shared among different users of Nestor.

If you are returning to tag a previously tagged dataset, you can either “Open Project,” found in .nestor-tmp, or “Import Project” from a .zip or .tar archive in another location.

You can additionally make use of previous work, such as other projects, by importing from vocabulary sheets that were saved from previous tagging sessions. This option is available under the “Auto-populate>From CSV” toolbar drop down menu. The user can select either single word or Multi-Word vocabulary, and select a compatible csv vocabulary, accordingly. Un-annotated words in the current project that are defined in the selected CSV will be updated with the annotations within.




Research mode

If you decide to use the research mode, a new project folder will be added to .nestor-tmp. In this case, additional folders will be added inside the project folder. These folders will be named after your chosen criteria.
For example, if you choose inside the research mode to save your project according to percentage of tokens tagged, then a new folder named percentage will appear in your project folder. This percentage folder will contain a version of your vocab files at a certain percentage.









          

      

      

    

  

    
      
          
            
  


Using the Nestor GUI


Settings

This window helps to set various parameters that control how Nestor behaves during the process of tagging. It can be accessed at any time during the tagging process by going to Python -> Preferences on a Mac. Similar settings can be found for Windows and Linux machines too.
(If you are a first time user, or do not really want to change the default settings, it is perfectly fine to leave these settings as they are).


Special Replace




Number of words listed

This setting controls the number of word tokens from your data, that are displayed for tagging. For example, you might be interested in tagging only the top 1000 words from your data. The ordering is decided based on a measure of importance called the *tf-idf* score [https://en.wikipedia.org/wiki/Tf%E2%80%93idf].




Similarity for ticked words

Recall that Nestor shows you a list of similar words (and check boxes) for each word that you are tagging. You can control which words you want to be ticked by default, when you are tagging. This is done by changing the setting for how similar are the tagged word and the word in the list, for the similar word to be ticked by default.




Threshold for List of Similar Words






Single Word Tagging

The Single word analysis tab of Nestor allows the user to classify and tag individual words. Likewise, the Multi word analysis tab will allow classification and tagging of two word phrases.


Word annotation Overview

Present on these tabs are several boxes, which let you interface with concepts found in your data, and assist you in annotating them First is the Word annotation” box, which has four columns:


	words: Also called “tokens”. Single words are presented in order of importance with respect to the user-loaded data.


	classification: The user’s classification, or “tag-type”, are stored here


	tag: This column will display the given “alias” (cannonical representation) defined for the given word/token


	note: This column stores any relevant notes from picking a given alias or classification.







Similar Words

The “Similar words from csv” box will present similar words to the highlighted selection in the “Words” column. These suggestions are taken directly from the user-loaded data. The slider on the bottom of this box can be adjusted to view more or less words, with decreasing similarity score further down the list. The user can select the words that should share a cannonical representation (alias) checking the checkbox.


For example, the user might highlight “replace” and decide that the “repalce” suggestion should refer to the same tag, by checking the box.
Note - all selected words will receive the same alias, classification, and notes.




If the user hovers over the word in this column, a box will appear and display examples that contain the word from the loaded data




User-Input

The “Tag current word” box contains three different fields:


	Preferred Alias: The user can input a preferred alias for the selected word any checked similar words.


	Classification: The user can select the classification for the selected word and checked similar words. The user has five options for classifications in v0.3


	Item


	Problem


	Solution


	Ambiguous (Unknown)


	Irrelevant (Stop-Word)









Ambiguous words will commonly arise in cases where surrounding words are needed to know the “right” classification. These can then be classified in the Multi word analysis tab.





	Notes (if necessary): The user can type notes for a specific word and checked similar words here.
The “Overall Progress” at the bottom of the app will track how much progress is completed while the user has annotated words in the single word analysis tab.
The next word button allows the user to navigate between different words when annotated.









Multi Word Tagging

The Multi word analysis tab allows the user to classify two word phrases.
There are the same four boxes in the Word Annotation window of nestor as the Single word analysis tab, with a few changes.


Special options

The “Word Composition” box (replaces “Similar words”) provides the user with the information on each constituent token comprising the two word phrase.


For example “Replace Hydraulic” will give the user all of the previously stored information for both “Replace” and “Hydraulic” tokens.




The “Tag current words” tab has added/changed the following options from before, as well, to capture meanings for the bi-gram as a whole:


	Classification: There are two new options to account for:


	Problem Item


	Solution Item








The “Overall Progress” at the bottom of the this tab will track how much progresshas been made specifically on annotated words in the Multi word analysis tab.




Auto-classification

The user can choose auto-populate the classification column on the multi-word tab using the “Auto-populate>Multi word from Single word vocabulary” toolbar drop down menu. This applies a set of logic rules to guess what classification a particular multi-word should receive, based on its constituents.


Note: auto-populated classifications must still be verified by the user. This is done upon entering/keeping the alias annotation. Only then will it be counted as “complete”




Nestor v0.3 provides the user with predefined rules based on auto population.


	Problem + Item = Problem Item


	Solution + Item = Solution Item


	Item + Item = Item


	Problem + Solution = Irrelevant




Additionally, Nestor will suggest a default alias for word1+word2, namely, word1_word2.






Reporting and Data Transfer

After a sufficient time spent annotating concepts from your corpus, you might like to know what coverage your annotation has on the detected information within. Nestor provides some metrics and functions on the Report tab, both for exporting your hard work and giving you visual feedback on just how far you’ve come.

First, you will need to process the data using your annotations!


Always start by pressing the UPDATE TAG EXTRACTION button.





Exporting

Nestor parses through the original text and unifies detected words into the tags you have now created. This is done in two ways: human-readable (CSV) and binary file store (HDFS)


	create new CSV: a new csv, containing your mapped column headers and new headers for each type of tag, will be exported. Each work-order will now have a list of tags of each type in its corresponding cell. Tags not annotated explicitly will be ommitted.


	create a HDFS (binary): This is a rapid-access filestore (*.h5), excellent for powering visualizations or analysis in other toolkits. Three keys represent three automatically created tables containing your annotated data:


	df: columns from original dataset whose csv headers have been mapped


	tags: binary tag-occurrence matrix for each tag-document pair


	rels PI/SI-document pair occurrence matrix.








The binary file is a requirement to utilize the (beta) nestor-dash functionality. You can use the dashboard by uploading your .h5 file to the dashboard, provided you have marked at least one column as being a .name type (e.g. machine.name is “Asset ID”, technician.name is Technician, etc.)




Progress Report

The bottom half of this window contains various metrics for annotation rates in a table, along with a histogram that shows a distribution of “completion” over all entries in your corpus. This is the completion-fraction distribution, where “1.0” means all extracted tokens in a work-order have a valid user-given tag and classification, while “0.0” means that none of them are annotated.









          

      

      

    

  

    
      
          
            
  


Using the Nestor Dashboard (Under Development!)

This tutorial discusses the usage of the Nestor Dashboard.
The Dashboard is intended to provide simple, yet insightful views into
the data contained in Maintenance Work Orders (MWOs). It is a set of visualizations
that are pivoted around various maintenance aspects, such as by machine, technician,
problem, and so on.
It derives its information from the raw MWOs themselves, as well as the tagged
knowledge that is output from the NIST Nestor Tagging Tool.
The Nestor Dashboard is visualised on a browser for ease of navigation and to
remove dependencies on operating systems or other installed software.


Starting the Dashboard Server


	Open a terminal window





	Linux

	Ctrl + Alt + T



	Windows

	Windows + R -> Type ‘cmd’



	Mac

	⌘ + Space -> Type ‘Terminal’






	Launch the Dashboard Server by typing in nestor-dash




[image: imageopenterminal]


	This starts up a server for the visualization. Note that
the address of the server is output on the terminal window.
In this case, it is seen on the last line as``http://127.0.0.1:5000/``.
Copy this address.




[image: imagestartdash]


	Open a web browser, and Paste the address from the previous step.
The application called Nestor Visual Dashboard should start up
and you will see the initial welcome screen.




[image: imagedashwelcome]




Uploading Data Files

Note: For the current version of the dashboard, visualization is limited to datasets containing “Machine Name” and “Maintenance Technician” entries. Ensure these have been labeled for export in the tagging tool!


	To immediately start visualizing your data, you need to upload a
.csv or .h5 file that was output from the NIST Nestor Tagging Tool.
To do so, click on the Upload File button. This brings up the
page to upload a .csv or .h5 file. Click on Choose File and select a file.
In this case, the file MWOs_anon.h5 is selected.




[image: imageuploadpage]

After the upload is complete, the Dashboard shows the list of currently uploaded files.

[image: imageuploadedfiles]




Viewing Visualizations on Nestor Dashboard


	Now click on Nestor Dashboard at the top left corner. It brings up the
overview page for all visualizations. Currently, there are 3 types incorporated.
These are,
- Bar Graph
- Node-Link Diagram
- Flow Diagram




[image: imagenestordash]


	Bar Chart: This helps to quickly visualize the relative counts of various factors.
For example, in this dataset, the various Solutions (S), Problems (P) and Items (I)
can be seen for Machines. It is seen here that for the machine B2, replaced is
the most frequent solution and alarm is the most frequent problem. Similarly,
turret is the major item of concern.




[image: imagebarmachine]

To derive insights about other machines, click on the drop-down on the right side.

[image: imagebarmachinedropdown]

Also, you can vary the amount of data being displayed by changing the n_thres slider.

[image: imagebarmachinethresh]

Instead of viewing all Solutions, Problems and Items in a sorted manner, it is also possible to group them individually.

[image: imagebarmachinegrouped]

It is also possible to view the bar chart for various technicians instead of machines by using the dropdown.

[image: imagebartechs]

The raw data that these visualizations derive from, are also available.

[image: imagebardataframe]


	Node-Link Diagram: The second type of visualization is the Node-Link diagram. It helps show the connections and the strength of the connections between various items, problems and solutions, as a Graph.




[image: imagenodelink]

As with the other visualizations, it is easy to switch between Technicians, Machines, and control the thresholds for visualization. There are values that can be controlled for both the nodes themselves and the strengths of the links between them.

[image: imagenodelinkthresholds]


	Flow Diagram: The Sankey Flow Diagram is another kind of visualization that helps to see the category-wise connections. Simultaneously, it is also possible to see the severity of the category itself, such as a solution action or the item involved. The strength of the relations are proportional to the width of the line connecting the entities at either end.




[image: imageflowdiagrammachine]

The weighting methods for the flow diagram can be varied between cosine and count based weights.

[image: imageflowdiagramweights]







          

      

      

    

  

    
      
          
            
  


Examples


Showcase

Key features of the nestor toolkit, illustrated.

in progress




Case Studies

Longer-form, more complete examples of analysis completed for specific datasets.



	Manufacturing Maintenance Case Study

	Survival Analysis

	HVAC Maintenance Case Study











          

      

      

    

  

    
      
          
            
  


Manufacturing Maintenance Case Study

Say we have a large amount of historical maintenance work-order (MWO) data stored up, but we don’t quite know what to do with it yet. This case study will walk through the initial parsing of the MWO natural-language data from the technicians, to some preliminary analysis of machines, and finally visualization of potential failure modes maintenance request types. Hopefully it will give you a good idea of how Nestor can assist you in analyzing the rich, existing data in your MWO’s, and how easy it
can be to correlate it to other fields you might be recording.

The primary workflow for Nestor in this case study (when used as a python library) is:


	Import data, determining


	what columns contain useful (well-defined) categories


	what columns contain natural language to be tagged with the Nestor UI


	what columns could be used for date-stamping/time-series analysis






	Perform any cleaning necessary on categorical and time-series data.


	This is not necessarily within the scope of Nestor, but:


	Python+Pandas makes it fairly straight forward


	and compatible with the Nestor output tags!






	Tag natural language data using Nestor/NestorUI


	Nestor can give you initial statistics about your data, immediately, but:


	Nestor is built as a human-in-the-loop tool, meaning that


	you will be a crucial part of the process, and Nestor makes implementing your annotation lightning-fast.






	Import the tags created by Nestor, and perform analyses


	Nestor UI is designed to create a vocabulary file, quickly mapping discovered concepts to clean tags.


	we’ve also built several tools to help you perform initial analyses on the tags (with more to come!)








We’ll start by loading up some common packages and setting our plotting style (for consistency):


[1]:






from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline













/home/tbsexton/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)
/home/tbsexton/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)







[2]:






def set_style():
    # This sets reasonable defaults for font size for a figure that will go in a paper
    sns.set_context("paper")
    # Set the font to be serif, rather than sans
    sns.set(font='serif')
    # Make the background white, and specify the specific font family
    sns.set_style("white", {
        "font.family": "serif",
        "font.serif": ["Times", "Palatino", "serif"]
    })
set_style()







For the interactive plots we’ll need Holoviews, with the Bokeh backend:


Data Preparation


Import Data

Nestor will be parsing through the NLP data soon, but first we need to determine what else might be useful for us. In this case study, we’ll be using the recorded machine number, the date the MWO was recieved, technician names, and of course, the written descriptions left by our technicians.

In this particular case, we’ll be focusing primarily on the (anonymized) machine types A and B.


[3]:






data_dir = Path('../..')/'data'/'sme_data'
df = pd.read_csv(data_dir/'MWOs_anon.csv')

df.date_received = pd.to_datetime(df.date_received)
print(f'There are {df.shape[0]} MWO\'s in this dataset')













There are 3438 MWO's in this dataset







[4]:






# example data:
df.loc[df.mach.str.contains('A\d|B\d', na=False),
       ['mach', 'date_received', 'issue', 'info', 'tech']].head(10)








[4]:








  
    
    Survival Analysis
    

    
 
  

    
      
          
            
  


Survival Analysis

Mining Excavator dataset case study


[1]:






from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

import nestor
from nestor import keyword as kex
import nestor.datasets as dat
def set_style():
    # This sets reasonable defaults for font size for a figure that will go in a paper
    sns.set_context("paper")

    # Set the font to be serif, rather than sans
    sns.set(font='serif')

    # Make the background white, and specify the specific font family
    sns.set_style("white", {
        "font.family": "serif",
        "font.serif": ["Times", "Palatino", "serif"]
    })
set_style()













/home/tbsexton/anaconda3/envs/nestor-dev/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)
/home/tbsexton/anaconda3/envs/nestor-dev/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
  return f(*args, **kwds)




















[2]:






df = dat.load_excavators()
df.head().style








[2]:








    
        	
        	BscStartDate
        	Asset
        	OriginalShorttext
        	PMType
        	Cost
    

    
        	0
        	2004-07-01 00:00:00
        	A
        	BUCKET WON'T OPEN
        	PM01
        	183.05
    
    
        	1
        	2005-03-20 00:00:00
        	A
        	L/H BUCKET CYL LEAKING.
        	PM01
        	407.4
    
    
        	2
        	2006-05-05 00:00:00
        	A
        	SWAP BUCKET
        	PM01
        	0
    
    
        	3
        	2006-07-11 00:00:00
        	A
        	FIT BUCKET TOOTH
        	PM01
        	0
    
    
        	4
        	2006-11-10 00:00:00
        	A
        	REFIT BUCKET TOOTH
        	PM01
        	1157.27
    







Knowledge Extraction


Import vocabulary from tagging tool


[3]:






# merge and cleanse NLP-containing columns of the data
nlp_select = kex.NLPSelect(columns = ['OriginalShorttext'])
raw_text = nlp_select.transform(df)








[4]:






tex = kex.TokenExtractor()
toks = tex.fit_transform(raw_text)

#Import vocabulary
vocab_path = Path('.')/'support'/'mine_vocab_1g.csv'
vocab = kex.generate_vocabulary_df(tex, init=vocab_path)
tag_df = kex.tag_extractor(tex, raw_text, vocab_df=vocab)

relation_df = tag_df.loc[:, ['P I', 'S I']]
tags_read = kex._get_readable_tag_df(tag_df)
tag_df = tag_df.loc[:, ['I', 'P', 'S', 'U', 'X', 'NA']]













intialized successfully!
intialized successfully!




























































































Quality of Extracted Keywords


[5]:






nbins = int(np.percentile(tag_df.sum(axis=1), 90))
print(f'Docs have at most {nbins} tokens (90th percentile)')














Docs have at most 5 tokens (90th percentile)







[6]:






tags_read.join(df[['OriginalShorttext']]).sample(10)








[6]:








  
    
    HVAC Maintenance Case Study
    

    
 
  

    
      
          
            
  


[1]:






from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline








[2]:






def set_style():
    # This sets reasonable defaults for font size for a figure that will go in a paper
    sns.set_context("paper")
    # Set the font to be serif, rather than sans
    sns.set(font='serif')
    # Make the background white, and specify the specific font family
    sns.set_style("white", {
        "font.family": "serif",
        "font.serif": ["Times", "Palatino", "serif"]
    })
set_style()








HVAC Maintenance Case Study


Import Data


[3]:






import nestor.keyword as kex
data_dir = Path('../..')/'data'/'hvac_data'
df = pd.read_csv(data_dir/'hvac_data.csv')
# really important things we know, a priori
special_replace={'action taken': '',
                 ' -': '; ',
                 '- ': '; ',
                 'too hot': 'too_hot',
                 'to hot': 'too_hot',
                 'too cold': 'too_cold',
                 'to cold': 'too_cold'}

nlp_select = kex.NLPSelect(columns = ['DESCRIPTION', 'LONG_DESCRIPTION'], special_replace=special_replace)
raw_text = nlp_select.transform(df)


























/home/tbsexton/anaconda3/envs/nestor-dev/lib/python3.6/site-packages/IPython/core/interactiveshell.py:3020: DtypeWarning: Columns (29,30,40,106,172,196,217,227) have mixed types. Specify dtype option on import or set low_memory=False.
  interactivity=interactivity, compiler=compiler, result=result)







Build Vocab


[4]:







tex = kex.TokenExtractor()
toks = tex.fit_transform(raw_text)
print(tex.vocab_)













['room' 'poc' 'stat' ... 'llines' 'pictures' 'logged']







[5]:






vocab_fname = data_dir/'vocab.csv'
# vocab_fname = data_dir/'mine_vocab_app.csv'

# vocab = tex.annotation_assistant(filename = vocab_fname)
vocab = kex.generate_vocabulary_df(tex, init = vocab_fname)













intialized successfully!









Extract Keywords


[6]:






tag_df = kex.tag_extractor(tex, raw_text, vocab_df=vocab)
tags_read = kex._get_readable_tag_df(tag_df)













intialized successfully!


























































































[7]:






tags_read.head(5)








[7]:








  
    
    Advanced Use
    

    
 
  

    
      
          
            
  


Advanced Use

These features/applications are intended for contributors or collaborators, comfortable dealing with bugs/incomplete projects.


Research Mode


Setup


	If you have not already done so, install the Nestor app according to the instructions [http://nestor.readthedocs.io/en/latest/how_to_guide/installation.html].


	If you have not used Nestor before, read these instructions [http://nestor.readthedocs.io/en/latest/how_to_guide/tutorial.html] and get familiar with the tool.







Study Task


	Launch Nestor. Select “Research Mode -> New Project” in the top menu bar.




#. Check each of the four checkboxes in the “How do you want the tool to save your changes?” section.  In the author field, enter your name or a nickname to differentiate your data from the other study participants. Click “OK.”
#.


Use the “Single Word Analysis” tab to tag for approximately 30 minutes:


	Select the word


	Select similar words




#. Create an alias
#.


Choose a classification


At this stage you may take a break if desired before proceeding to the next step.











	Select “Auto-populate” in the top menu and select “Multi-Word from Single Word Vocabulary”


	Select the “Multi word analysis” tab and tag for approximately 30 minutes:


	Check the auto populated words (they will have classifications already selected in the classification column)


	Check if the classification is correct


	Check if the alias is correct


	If yes, hit next word. If no, modify as necessary.






	Once auto populated words are checked, move on to other words and create classification and aliases






	Go to “Report” tab and hit “Update Tag Extraction”


	Select “Create new csv” and save




TODO Share file









          

      

      

    

  

  
    
    nestor package
    

    
 
  

    
      
          
            
  


nestor package

Quantifying tacit knowledge investigatory analysis

Nestor is a toolkit for using Natural Language Processing (NLP) with efficient
user-interaction to perform structured data extraction with minimal annotation time-cost.


Subpackages



	nestor.datasets package








Submodules



	nestor.keyword module

	nestor.tagplots module

	nestor.tagtrees module











          

      

      

    

  

  
    
    nestor.datasets package
    

    
 
  

    
      
          
            
  


nestor.datasets package


	
load_excavators(cleaned=False)

	Helper function to load excavator toy dataset.

Hodkiewicz, M., and Ho, M. (2016)
“Cleaning historical maintenance work order data for reliability analysis”
in Journal of Quality in Maintenance Engineering, Vol 22 (2), pp. 146-163.


	Parameters

	cleaned (bool (default=False)) – whether to return the original dataset (False) or the dataset with
keyword extraction rules applied (True), as described in Hodkiewicz and Ho (2016)



	Returns

	pandas.DataFrame –


	BscStartDate :
	initialization of MWO



	Asset :
	which excavator this MWO concerns (A, B, C, D, E)



	OriginalShorttext :
	natural language description of the MWO



	PMType :
	repair (PM01) or replacement (PM02)



	Cost :
	MWO expense (AUD)



















          

      

      

    

  

  
    
    nestor.keyword module
    

    
 
  

    
      
          
            
  


nestor.keyword module

author: Thurston Sexton


	
class NLPSelect(columns=0, special_replace=None)

	Bases: nestor.keyword.Transformer

Extract specified natural language columns from
a pd.DataFrame, and combine into a single series.


	Parameters

	columns (int, or list of int or str.) – corresponding columns in X to extract, clean, and merge






	
get_params(self, deep=True)

	




	
transform(self, X, y=None)

	








	
class TokenExtractor(**tfidf_kwargs)

	Bases: sklearn.base.TransformerMixin

A wrapper for the sklearn TfidfVectorizer class, with utilities for ranking by
total tf-idf score, and getting a list of vocabulary.


	Parameters

	
	tfidf_kwargs (arguments to pass to sklearn’s TfidfVectorizer)


	Valid options modified here (see sklearn docs for more options) are –


	inputstring {‘filename’, ‘file’, ‘content’}, default=’content’
	If ‘filename’, the sequence passed as an argument to fit is
expected to be a list of filenames that need reading to fetch
the raw content to analyze.

If ‘file’, the sequence items must have a ‘read’ method (file-like
object) that is called to fetch the bytes in memory.

Otherwise the input is expected to be the sequence strings or
bytes items are expected to be analyzed directly.



	ngram_rangetuple (min_n, max_n), default=(1,1)
	The lower and upper boundary of the range of n-values for different
n-grams to be extracted. All values of n such that min_n <= n <= max_n
will be used.



	stop_wordsstring {‘english’} (default), list, or None
	If a string, it is passed to _check_stop_list and the appropriate stop
list is returned. ‘english’ is currently the only supported string
value.

If a list, that list is assumed to contain stop words, all of which
will be removed from the resulting tokens.
Only applies if analyzer == 'word'.

If None, no stop words will be used. max_df can be set to a value
in the range [0.7, 1.0) to automatically detect and filter stop
words based on intra corpus document frequency of terms.



	max_featuresint or None, default=5000
	If not None, build a vocabulary that only consider the top
max_features ordered by term frequency across the corpus.

This parameter is ignored if vocabulary is not None.



	smooth_idfboolean, default=False
	Smooth idf weights by adding one to document frequencies, as if an
extra document was seen containing every term in the collection
exactly once. Prevents zero divisions.



	sublinear_tfboolean, default=True
	Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf).














	
fit(self, X, y=None)

	




	
fit_transform(self, X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	X (numpy array of shape [n_samples, n_features]) – Training set.


	y (numpy array of shape [n_samples]) – Target values.






	Returns

	X_new (numpy array of shape [n_samples, n_features_new]) – Transformed array.










	
ranks_

	Retrieve the rank of each token, for sorting. Uses summed scoring over the
TF-IDF for each token, so that: \(S_t = \Sum_{\text{MWO}}\text{TF-IDF}_t\)


	Returns

	ranks (numpy.array)










	
scores_

	Returns actual scores of tokens, for progress-tracking (unit-normalized)


	Returns

	numpy.array










	
transform(self, dask_documents, copy=True)

	




	
vocab_

	ordered list of tokens, rank-ordered by summed-tf-idf
(see ranks_())


	Returns

	extracted_toks (numpy.array)














	
generate_vocabulary_df(transformer, filename=None, init=None)

	Helper method to create a formatted pandas.DataFrame and/or a .csv containing
the token–tag/alias–classification relationship. Formatted as jargon/slang tokens,
the Named Entity classifications, preferred labels, notes, and tf-idf summed scores:

tokens | NE | alias | notes | scores

This is intended to be filled out in excel or using the Tagging Tool.


	Parameters

	
	transformer (object TokenExtractor) – the (TRAINED) token extractor used to generate the ranked list of vocab.


	filename (str, optional) – the file location to read/write a csv containing a formatted vocabulary list


	init (str or pd.Dataframe, optional) – file location of csv or dataframe of existing vocab list to read and update
token classification values from






	Returns

	vocab (pd.Dataframe) – the correctly formatted vocabulary list for token:NE, alias matching










	
get_tag_completeness(tag_df)

	
	Parameters

	tag_df (pd.DataFrame) – heirarchical-column df containing










	
tag_extractor(transformer, raw_text, vocab_df=None, readable=False)

	Wrapper for the TokenExtractor to streamline the generation of tags from text.
Determines the documents in <raw_text> that contain each of the tags in <vocab>,
using a TokenExtractor transformer object (i.e. the tfidf vocabulary).

As implemented, this function expects an existing transformer object, though in
the future this will be changed to a class-like functionality (e.g. sklearn’s
AdaBoostClassifier, etc) which wraps a transformer into a new one.


	Parameters

	
	transformer (object KeywordExtractor) – instantiated, can be pre-trained


	raw_text (pd.Series) – contains jargon/slang-filled raw text to be tagged


	vocab_df (pd.DataFrame, optional) – An existing vocabulary dataframe or .csv filename, expected in the format of
kex.generate_vocabulary_df().


	readable (bool, default False) – whether to return readable, categorized, comma-sep str format (takes longer)






	Returns

	
	pd.DataFrame, extracted tags for each document, whether binary indicator (default)


	or in readable, categorized, comma-sep str format (readable=True, takes longer)















	
token_to_alias(raw_text, vocab)

	Replaces known tokens with their “tag” form, i.e. the alias’ in some
known vocabulary list


	Parameters

	
	raw_text (pd.Series) – contains text with known jargon, slang, etc


	vocab (pd.DataFrame) – contains alias’ keyed on known slang, jargon, etc.






	Returns

	pd.Series – new text, with all slang/jargon replaced with unified representations










	
ngram_automatch(voc1, voc2, NE_types=None, NE_map_rules=None)

	Experimental method to auto-match tag combinations into higher-level
concepts, for user-suggestion. Used in nestor.ui









          

      

      

    

  

  
    
    nestor.tagplots module
    

    
 
  

    
      
          
            
  


nestor.tagplots module

author: Thurston Sexton


	
class TagPlot(data_file, cat_specifier='name', topn=10)

	Bases: object

Central holder for holoviews dynamic-maps, to be served as a Bokeh App.


	
filter_tags(self, obj_type, obj_name, n_thres=20)

	apply filter to binary tag matrix (tag_df)
:Parameters: * obj_type (passed to filter_type_name)



	obj_name (passed to filter_type_name)


	n_thres (only return nodes in the top n_thres percentile)








	Returns

	pd.DataFrame, filtered binary tax matrix










	
filter_type_name(self, obj_type, obj_name)

	build a mask to filter data on
:Parameters: * obj_type (class of object to filter on)



	obj_name (sub-class/instance to filter on)








	Returns

	pd.Series, mask for filtering df, tag_df.










	
hv_bars(self, obj_type)

	Generates a hv.DynamicMap with a bars/frequency representation of
filtered tags.
:Parameters: obj_type (class of object to show)


	Returns

	hv.DynamicMap










	
hv_flow(self, obj_type)

	Generates a hv.DynamicMap with a Sankey/flow representation of
filtered tags.
:Parameters: obj_type (class of object to show)


	Returns

	hv.DynamicMap










	
hv_nodelink(self, obj_type)

	Generates a hv.DynamicMap with a nodelink representation of
filtered tags.
:Parameters: obj_type (class of object to show)


	Returns

	hv.DynamicMap














	
tag_relation_net(tag_df, name=None, kind='coocc', layout=<function fruchterman_reingold_layout at 0x7fe119fa6268>, layout_kws=None, padding=None, **node_adj_kws)

	Explore tag relationships by create a Holoviews Graph Element. Nodes are tags
(colored by classification), and edges occur only when those tags happen together.


	Parameters

	
	tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with top-level containing
tag classifications (named-entity NE) and 2nd level containing tags. Each row
corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does not).


	name (str) – what to name this tag relation element. Creates a Holoviews group “name”.


	kind (str) –


	coocc :
	co-occurrence graph, where tags are connected if they occur in the same MWO,
above the value calculated for pct_thres. Connects all types together.



	sankey :
	Directed “flow” graph, currently implemented with a (P) -> (I) -> (S) structure.
Will require dag=True. Alters default to similarity=count







	layout (object (function), optional) – must take a graph object as input and output 2D coordinates for node locations
(e.g. all networkx.layout functions). Defaults to networkx.spring_layout


	layout_kws (dict, optional) – options to pass to networkx layout functions


	padding (dict, optional) –


	contains “x” and “y” specifications for boundaries. Defaults:
	{'x':(-0.05, 1.05), 'y':(-0.05, 1.05)}





Only valid if kind is ‘coocc’.



	node_adj_kws –


	keyword arguments for nestor.tagtrees.tag_df_network. Valid options are
	similarity : ‘cosine’ (default) or ‘count’
dag : bool, default=’False’, (True if kind='sankey')
pct_thres : : int or None


If int, between [0,100]. The lower percentile at which to
threshold edges/adjacency.














	Returns

	graph (holoviews.Holomap or holoviews.Graph element, pending sankey or cooccurrence input.)










	
tagcalendarplot(tag_df, how='sum', yearlabels=True, yearascending=True, yearlabel_kws=None, subplot_kws=None, gridspec_kws=None, fig_kws=None, **kwargs)

	Plot a timeseries of (binary) tag occurrences as a calendar heatmap over weeks in the year.
any columns passed will be explicitly plotted as rows, with each week in the year as a column.
By default, occurences are summed, not averaged, but this aggregation over weeks may be any
valid option for the pandas.Dataframe.agg() method.

This function  will separate out multiple years within the data as multiple calendars. The
plotting has been heavily modified/altered/normalized, but the original version appeared here:


	adapted from:
	‘Martijn Vermaat’ 14 Feb 2016
‘martijn@vermaat.name’
‘https://github.com/martijnvermaat/calmap’






	Parameters

	
	tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with top-level containing
tag classifications (named-entity NE) and 2nd level containing tags. Each row
corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does not).


	how (string) – Method for resampling data by day. If None, assume data is already
sampled by day and don’t resample. Otherwise, this is passed to Pandas
Series.resample.


	yearlabels (bool) – Whether or not to draw the year for each subplot.


	yearascending (bool) – Sort the calendar in ascending or descending order.


	yearlabel_kws (dict) – Keyword arguments passed to the matplotlib set_ylabel call which is
used to draw the year for each subplot.


	subplot_kws (dict) – Keyword arguments passed to the matplotlib add_subplot call used to
create each subplot.


	gridspec_kws (dict) – Keyword arguments passed to the matplotlib GridSpec constructor used
to create the grid the subplots are placed on.


	fig_kws (dict) – Keyword arguments passed to the matplotlib figure call.


	kwargs (other keyword arguments) – All other keyword arguments are passed to yearplot.






	Returns

	fig, axes (matplotlib Figure and Axes) – Tuple where fig is the matplotlib Figure object axes is an array
of matplotlib Axes objects with the calendar heatmaps, one per year.










	
tagyearplot(tag_df, year=None, how='sum', vmin=None, vmax=None, cmap='Reds', linewidth=1, linecolor=None, monthlabels=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'], monthticks=True, ax=None, **kwargs)

	Plot a timeseries of (binary) tag occurrences as a calendar heatmap over weeks in the year.
any columns passed will be explicitly plotted as rows, with each week in the year as a column.
By default, occurences are summed, not averaged, but this aggregation over weeks may be any
valid option for the pandas.Dataframe.agg() method.

adapted from:
‘Martijn Vermaat’ 14 Feb 2016
‘martijn@vermaat.name’
‘https://github.com/martijnvermaat/calmap’


	Parameters

	
	tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with top-level containing
tag classifications (named-entity NE) and 2nd level containing tags. Each row
corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does not).


	year (integer) – Only data indexed by this year will be plotted. If None, the first
year for which there is data will be plotted.


	how (string) – Method for resampling data by day. If None, assume data is already
sampled by day and don’t resample. Otherwise, this is passed to Pandas
Series.resample.


	vmin, vmax (floats) – Values to anchor the colormap. If None, min and max are used after
resampling data by day.


	cmap (matplotlib colormap name or object) – The mapping from data values to color space.


	linewidth (float) – Width of the lines that will divide each day.


	linecolor (color) – Color of the lines that will divide each day. If None, the axes
background color is used, or ‘white’ if it is transparent.


	monthlabels (list) – Strings to use as labels for months, must be of length 12.


	monthticks (list or int or bool) – If True, label all months. If False, don’t label months. If a
list, only label months with these indices. If an integer, label every
n month.


	ax (matplotlib Axes) – Axes in which to draw the plot, otherwise use the currently-active
Axes.


	kwargs (other keyword arguments) – All other keyword arguments are passed to matplotlib ax.pcolormesh.






	Returns

	ax (matplotlib Axes) – Axes object with the calendar heatmap.













          

      

      

    

  

  
    
    nestor.tagtrees module
    

    
 
  

    
      
          
            
  


nestor.tagtrees module

__author__ = “Thurston Sexton”


	
get_onehot(df, col, topn=700)

	DEPRECATED!






	
get_relevant(df, col, topn=20)

	DEPRECATED!


	Parameters

	
	df (a dataframe containing columns of tag assignments (comma-sep, str))


	col (which column to extract)


	topn (how many of the top most frequent tags to return)






	Returns

	list of (tag,count,numpy.array) tuples










	
heymann_taxonomy(dist_mat, cent_prog='pr', tau=0.0005, dynamic=False, dotfile=None, verbose=False)

	
	Parameters

	
	dist_mat (pandas.DataFrame) – contains similarity matrix, indexed and named by tags


	cent_prog (str) – algorithm to use in calculating node centrality

pr: PageRank
eig: eigencentrality
btw: betweenness
cls: closeness



	tau (float) – similarity threshold for retaining a node


	dynamic (bool) – whether to re-calculate centrality after popping every tag


	write_dot (str or None) – file location, where to save a .dot, if any.


	verbose (bool) – print some stuff













	
node_adj_mat(tag_df, similarity='cosine', dag=False, pct_thres=None)

	Calculate the similarity of tags, in the form of a similarity kernel.
Used as input to graph/network methods.


	Parameters

	
	tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with top-level containing
tag classifications (named-entity NE) and 2nd level containing tags. Each row
corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does not).


	similarity (str) – cosine: cosine similarity (from sklearn.metrix.pairwise)
count: count (the number of co-occurrences of each tag-tag pair)


	dag (bool) – default adj_mat will be accross all nodes. This option will return a
directed, acyclic graph (DAG), useful for things like Sankey Diagrams.
Current implementation returns (P) -> (I) -> (S) structure (deletes others).


	pct_thres (int or None) – If int, between [0,100]. The lower percentile at which to threshold edges/adjacency.






	Returns

	pandas.DataFrame, containing adjacency measures for each tag-tag (row-column) occurrence










	
tag_df_network(tag_df, **node_adj_kws)

	Starting from a multi-column binary tag-occurrence pandas.Dataframe (such as
output by the Nestor UI and the nestor.keyword.tag_extractor() method, create
a networkx graph, along with a node_info and edge_info dataframe for plotting
convenience (e.g. in nestor.tagplots)


	Parameters

	
	tag_df (pandas.DataFrame) – standard Nestor tag occurrence matrix. Multi-column with top-level containing
tag classifications (named-entity NE) and 2nd level containing tags. Each row
corresponds to a single event (MWO), with binary indicators (1-occurs, 0-does not).


	node_adj_kws













	
tag_network(adj_mat, column_lvl=0)

	Takes in an adjacency matrix (pandas.DataFrame, assumes multi-col/row)
and returns a networkx Graph object with those nodes/edge weights.









          

      

      

    

  

  
    
    Python Module Index
    

    

 


  

    
      
          
            

   Python Module Index


   
   n
   


   
     		 	

     		
       n	

     
       	[image: -]
       	
       nestor	
       

     
       	[image: -]
       	
       nestor	
       

     
       	
       	   
       nestor.datasets	
       

     
       	
       	   
       nestor.datasets.base	
       

     
       	
       	   
       nestor.keyword	
       

     
       	
       	   
       nestor.settings	
       

     
       	
       	   
       nestor.tagplots	
       

     
       	
       	   
       nestor.tagtrees	
       

   



          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 A
 | D
 | F
 | G
 | H
 | L
 | N
 | R
 | S
 | T
 | V
 


A


  	
      	apply_rules() (NestorParams method)


  





D


  	
      	datatype_search() (NestorParams method)


  





F


  	
      	filter_tags() (TagPlot method)


      	filter_type_name() (TagPlot method)


  

  	
      	fit() (TokenExtractor method)


      	fit_transform() (TokenExtractor method)


  





G


  	
      	generate_vocabulary_df() (in module nestor.keyword)


      	get_onehot() (in module nestor.tagtrees)


  

  	
      	get_params() (NLPSelect method)


      	get_relevant() (in module nestor.tagtrees)


      	get_tag_completeness() (in module nestor.keyword)


  





H


  	
      	heymann_taxonomy() (in module nestor.tagtrees)


      	hv_bars() (TagPlot method)


  

  	
      	hv_flow() (TagPlot method)


      	hv_nodelink() (TagPlot method)


  





L


  	
      	load_excavators() (in module nestor.datasets)

      
        	(in module nestor.datasets.base)


      


  





N


  	
      	nestor (module)


      	nestor.datasets (module)


      	nestor.datasets.base (module)


      	nestor.keyword (module)


      	nestor.settings (module)


      	nestor.tagplots (module)


  

  	
      	nestor.tagtrees (module)


      	nestor_params() (in module nestor.settings)


      	NestorParams (class in nestor.settings)


      	ngram_automatch() (in module nestor.keyword)


      	NLPSelect (class in nestor.keyword)


      	node_adj_mat() (in module nestor.tagtrees)


  





R


  	
      	ranks_ (TokenExtractor attribute)


  





S


  	
      	scores_ (TokenExtractor attribute)


  





T


  	
      	tag_df_network() (in module nestor.tagtrees)


      	tag_extractor() (in module nestor.keyword)


      	tag_network() (in module nestor.tagtrees)


      	tag_relation_net() (in module nestor.tagplots)


      	tagcalendarplot() (in module nestor.tagplots)


  

  	
      	TagPlot (class in nestor.tagplots)


      	tagyearplot() (in module nestor.tagplots)


      	token_to_alias() (in module nestor.keyword)


      	TokenExtractor (class in nestor.keyword)


      	transform() (NLPSelect method)

      
        	(TokenExtractor method)


      


  





V


  	
      	vocab_ (TokenExtractor attribute)


  







          

      

      

    

  

  
    
    Installation
    

    
 
  

    
      
          
            
  


Installation

This guide helps you to install Nestor onto your computer. There are two modes for installation. They are as follows.


Install from PyPI (Recommended)

This will do a cloud install to your python installation directory.


	Open a command line terminal





	Linux

	Ctrl + Alt + T



	Windows

	Windows + R -> Type ‘cmd’



	Mac

	⌘ + Space -> Type ‘Terminal’






	Type in pip install nist-nestor and wait for the install to complete. This installs the Graphical User Interface (GUI) for the Nestor Tagging Tool.


	(Optional Step) Type in pip install nist-nestor[dash] to also install the Nestor Dashboard (Under Development!).







Install using local archive

This is necessary only if you did not install using the above method (using PyPI).

This will be a local install downloaded from a recent source code release on GitHub [https://github.com/usnistgov/nestor/releases]


	Download the .zip file [https://github.com/usnistgov/nestor/releases] of the entire nestor installation from the Github repository


	Extract the files to a directory, preferably with write access.


	Open a terminal window





	Linux

	Ctrl + Alt + T



	Windows

	Windows + R -> Type ‘cmd’



	Mac

	⌘ + Space -> Type ‘Terminal’






	Navigate to the folder where the files have been extracted to (the folder will have the file setup.py in it).


	Install nestor using the command pip install . (please note the “.” is part of the command)


	(Optional Step) Type in pip install .[dash] to install the Nestor Dashboard (Under Development!).







How to automatically build documentation (Optional)

This section is useful for developers of Nestor.

A version of the documentation for Nestor is hosted at Readthedocs [http://nestor.readthedocs.io/en/latest/].
However you may build a local version if required.


	If Nestor is not installed and you want to build a local version of the documentation, you can run pip install .[docs]. If Nestor is already installed, navigate to the installation directory and install the Sphinx [http://www.sphinx-doc.org/en/master/] dependancies by typing in pip install -r requirements/doc.txt


	To build HTML documentation navigate into the docs subdirectory of Nestor and run make html. The HTML source code will be created in nestor/_build/html and can be opened with the index.html file in a browser.


	To build PDF documentation LaTeX [https://www.latex-project.org/get/] must be installed. As above, run make latex and navigate into the nestor/_build/latex directory. Run pdflatex nestor.tex.










          

      

      

    

  

  
    
    Using the Tagging Tool
    

    
 
  

    
      
          
            
  


Using the Tagging Tool

This section will walk through the steps for using the tagging tool
application.


Start the Application


	Open a terminal window





	Linux

	Ctrl + Alt + T



	Windows

	Windows + R -> Type ‘cmd’



	Mac

	⌘ + Space -> Type ‘Terminal’






	Launch the app by typing in nestor-gui


	The application should open as seen below:




[image: image6]


	Open your .csv file with your MWOs. Please note, the file must be UTF-8 encoding. Included in the application, is a
publicly available dataset. We will use this file as the example. The file, excavators.csv, is located in <python path>\site-packages\nestor\datasets.




[image: image7]

[image: image8]


	If you are using the application for the first time, hit “Next”




[image: image9]

If you are continuing from a previous session of tagging using Nestor,
load up the 1-gram and the N-gram files. Usually, they are automatically
loaded up using the same file-path as the .csv file. If the file-path has
changed, ensure that the correct 1-gram and N-gram files are selected using
the Open button.

[image: image91]


	Select the column(s) that you would like to “tag.” Check the check box. In this example,
the column is “OriginalShorttext.”




[image: image10]


	There is also a drop-down to say what the column likely represents -
this is for later analyses and future storage in a graph database. These categories
in the drop-down come from prior studies [https://www.nist.gov/publications/developing-maintenance-key-performance-indicators-maintenance-work-order-data] on Maintenance Key Performance Indicators (KPIs).
These categories are used as the headers in the .h5 binary files used to store the tagged data (See the Section: Report tab).
A subset of these categories, Machine Name and Maintenance Technician, are used for the Nestor Dashboard. Please note, the columns that are selected as headers do not need to be “checked” if these columns are not going to be tagged.

These categories will be used for constructing a graph database (COMING SOON!)

The “OriginalShorttext” in this example matches “Description of Problem”. Hit “Next”.





[image: image101]


	The application window will open as seen below:




[image: image11]




1 Gram Token tab

This subsection will describe the features of the application and goes
into detail on the “1 Gram Token” tab.

[image: image12]


	This window contains the following information:


	tokens: The token as seen in the corpus and ranked by TF-IDF weighting [http://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting].


	NE: This is a “Named Entity.” This column will track the
classifications of the tokens, which will be explained in more
detail later in the Classification Section.


	alias: This column tracks any aliases for tokens as made by the
tool. These represent your new “tags.”


	notes: This column tracks your notes for any tokens you have
mapped to an alias.






	Next, select a token to “tag.” In this example, we use “replace.”




[image: image13]


	The “similar pattern” field will display words similar to the token
using an “edit-distance”-based metric, via fuzzywuzzy [https://github.com/seatgeek/fuzzywuzzy]. Any term
that is selected here will be given the same alias and classification
as the original token. So in this example, if “replaced” is selected,
it will be given the same alias, notes, and classification as
“replace”




[image: image14]


	The “alias” field will allow a user to enter any alias they would
like for a token. The field will auto suggest the “token” as-is as
the initial alias, but the user has the ability to change it to any
alias they desire.




[image: image15]


	This field is where the user can classify the “token.” The
classifications provided are:


	Item: The objects directly relevant to the issue such as
machine, resources, parts, etc. An example is a “pump” is always
an item, however, “pumping” would not be an item.


	Problem: The problem that is occurring at an item. An example is
“leak” is always a problem.


	Solution: The solution action taken on an item. An example is
“replace” is always a solution.


	Ambiguous (Unknown): Words that are unknown without more
context. An example is “oil” as this can be an item or a solution.
This is further described in the Section: N Gram Token tab


	Stop-word: A word that does not matter for analysis. For
example, “see” or “according” are stop-words.








[image: image16]


	The “Notes” field allows users to enter notes about the
token/classifications.




[image: image17]


	For each new session, regardless of whether using earlier tagged 1-gram and
N-gram files, each new word that is classified will be highlighted in a
different color.




[image: image171]


	The “Update” button will update the interface with the user’s selections.


	The “Save” button will save the vocab files to a .csv file




[image: image172]


	The “Slider” will update the amount of similar terms that are displayed. As the slider moves right, more terms will display in “Similar Pattern”.




[image: image173]


	For our example using “replace” from above, select all words that are similar, select “Solution”, and then hit “Update”.







N Gram Token tab

This subsection will describe the features of the application and goes
into detail on the “N Gram Token” tab.


	The N Gram token tab will provide detail on common 2 grams tokens,
ordered in TF-IDF ranking, for the corpus (e.g., “hydraulic leak” is
a common 2 gram in some data sets). The 2 grams can also provide more
context for the “Unknown” classifications from the above section. For
example, “oil” is unknown until the user is provided more context.




[image: image18]


	When a user selects the N Gram Token tab, the window below is
presented. Initially all the n-gram Named Entity classes are empty.




[image: image19]


	If the menu option for “Auto-populate” -> “From 1gram Vocab” is chosen,
the user is then presented with the “Composition” of the 2 gram, which are
composed of two 1 gram tokens. The other options are currently under development (COMING SOON!).




[image: image191]
[image: image192]


	Each 1 gram is presented, with the classification (“type”) and the
synonyms (the other words that were linked with the Similar Pattern
subwindow in the Section: 1 Gram Token tab).
In this example, “oil” is an “unknown (U)” classification and has no
other synonyms at this point; “leak” is a “problem (P)” and has synonyms: leak, leaking, leaks, leaky.




[image: image20]


	There are a number of classifications that a user can select for a 2
grams. The user will have to classify any 2 grams that contain an “U”
classification. Please note that some 2 grams will be pre-classified
based on a ruleset as seen below:




[image: image21]


	Problem Item: This is a problem-item (or item-problem) pair. For example, “hydraulic” is an item and “leak” is a problem so “hydraulic leak” is a problem-item pair. The tool will pre-populate some problem-item pairs using the 1 grams that are classified as problems and items. The user will need to confirm these pairs are correct.


	Solution Item: This is a solution-item (or item-solution) pair. For example, “hydraulic” is an item and “replace” is a solution so “replace hydraulic” is a solution-item pair. The tool will pre-populate some solution-item pairs using the 1 grams that are classified as solutions and items. The user will need to confirm these pairs are correct.


	Item: This is for pairs of items that are de facto 1-grams. For example “grease” is an item, line is an “item”, but a “grease_line” is most likely its own “item”. The tool will pre-populate some items based on 1 grams that are both items. The user will need to confirm these pairs are correct. Please note that 2 gram items, since they are really being treated as 1-grams, must have an underscore (_) in their alias, between the 2 individual items as seen below:




[image: image22]


	Problem: This is a problem that is a 2 gram. This will be left up to the user to classify as these will not be pre-populated using 1 gram classifications. Please note that 2 gram problems, since they are  being treated as 1-grams, must have an underscore (_) in their alias, between the 2 individual problems.


	Solution: This is a solution that is a 2 gram. This will be left up to the user to classify as these will not be pre-populated using 1 gram classifications. Please note that 2 gram solutions, since they are really being treated as 1-grams, must have an underscore (_) in their alias, between the 2 individual solutions.


	Ambigious (Unknown): This is an unknown 2 gram that needs more context. This will be left up to the user to classify as these will not be pre-populated using 1 gram classifications.


	Stop-word: This is 2 gram stop-word. This will be pre-populated when a “solution” 1 gram is paired with a “problem” ‘ gram. The user can decide if any other 2 grams are not useful.







Report tab

Once the user is done tagging their desired amount of tokens, they can
begin using the report tab.


	Please make sure to hit the “update tag extraction” button before
proceeding. This may take some time to compute. Please note on Windows computers, the application may state “Not Responding”, however, the application is often still running.




[image: image23]


	The bottom graph will update. It explains the amount of tagging that
has been completed. The distribution of documents (shown as a
histogram) is calculated over the precision for each document (i.e.
of the tokens found in a document, what fraction have a valid
classification defined).




[image: image24]


	Summary statistics are also shown:


	Tag PPV: This is the Tag Positive Predictive Value (PPV) [https://en.wikipedia.org/wiki/Positive_and_negative_predictive_values].


	Complete Docs: This is the number of MWOs that have all of the tokens completely tagged. In this example, 178 MWOs are completely tagged out of a possible 5485, which is 3.25%.


	Empty Docs: This is the number of MWOs that have zero tokens tagged. In this example, 1738 MWOs have no tokens tagged out of a possible 5485, which is 31.69%.








[image: image25]


	The “create new CSV” button will open a save window. A .csv file will be created with the original
dataset and 7 new columns (“I”,“P”,”PI”, “S”,“SI”,“U”, and “X”) ,
which contain the new tags from each category. Please note that “X”
contains any stop words.




[image: image26]


	The “create a HDFS (binary)” button will open a save window and create a .h5 file. This file
will be utilized later on to visualise the data on the Nestor Dashboard.
It stores the tagged data with three keys - the original data (only columns with
updated headers - as discussed in the step: Dropdown Categories.), an occurrence matrix for tags versus documents, and an
occurrence matrix for Problem-Items - Solution-Items versus documents.




[image: image27]







          

      

      

    

  

  
    
    Manufacturing Maintenance Case Study
    

    
 
  

    
      
          
            
  


Manufacturing Maintenance Case Study

Say we have a large amount of historical maintenance work-order (MWO) data stored up, but we don’t quite know what to do with it yet. This case study will walk through the initial parsing of the MWO natural-language data from the technicians, to some preliminary analysis of machines, and finally visualization of potential failure modes maintenance request types. Hopefully it will give you a good idea of how Nestor can assist you in analyzing the rich, existing data in your MWO’s, and how easy it
can be to correlate it to other fields you might be recording.

The primary workflow for Nestor in this case study (when used as a python library) is:


	Import data, determining


	what columns contain useful (well-defined) categories


	what columns contain natural language to be tagged with the Nestor UI


	what columns could be used for date-stamping/time-series analysis






	Perform any cleaning necessary on categorical and time-series data.


	This is not necessarily within the scope of Nestor, but:


	Python+Pandas makes it fairly straight forward


	and compatible with the Nestor output tags!






	Tag natural language data using Nestor/NestorUI


	Nestor can give you initial statistics about your data, immediately, but:


	Nestor is built as a human-in-the-loop tool, meaning that


	you will be a crucial part of the process, and Nestor makes implementing your annotation lightning-fast.






	Import the tags created by Nestor, and perform analyses


	Nestor UI is designed to create a vocabulary file, quickly mapping discovered concepts to clean tags.


	we’ve also built several tools to help you perform initial analyses on the tags (with more to come!)








We’ll start by loading up some common packages and setting our plotting style (for consistency):


[1]:






from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline








[2]:






def set_style():
    # This sets reasonable defaults for font size for a figure that will go in a paper
    sns.set_context("paper")
    # Set the font to be serif, rather than sans
    sns.set(font='serif')
    # Make the background white, and specify the specific font family
    sns.set_style("white", {
        "font.family": "serif",
        "font.serif": ["Times", "Palatino", "serif"]
    })
set_style()







For the interactive plots we’ll need Holoviews, with the Bokeh backend:


Data Preparation


Import Data

Nestor will be parsing through the NLP data soon, but first we need to determine what else might be useful for us. In this case study, we’ll be using the recorded machine number, the date the MWO was recieved, technician names, and of course, the written descriptions left by our technicians.

In this particular case, we’ll be focusing primarily on the (anonymized) machine types A and B.


[4]:






data_dir = Path('../..')/'data'/'sme_data'
df = pd.read_csv(data_dir/'MWOs_anon.csv')

df.date_received = pd.to_datetime(df.date_received)
print(f'There are {df.shape[0]} MWO\'s in this dataset')













There are 3438 MWO's in this dataset







[5]:






# example data:
df.loc[df.mach.str.contains('A\d|B\d', na=False),
       ['mach', 'date_received', 'issue', 'info', 'tech']].head(10)








[5]:








  
    
    User Input
    

    
 
  

    
      
          
            
  


[3]:






%load_ext autoreload
%autoreload 2

import sys
import os
import inspect
import getpass
import json

import pandas as pd

project_path = os.path.abspath( os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) + "/../../" )
sys.path.insert(0, project_path)

from nestor.store_data import helper

from nestor.store_data.database import DatabaseNeo4J
from nestor.store_data import integration













The autoreload extension is already loaded. To reload it, use:
  %reload_ext autoreload







User Input


[4]:






server = input('server:')
portBolt = input('portBolt:')
portUi = input('portUi:')
user = input('user:')
password = getpass.getpass("Password:")













server:
portBolt:
portUi:
user:
Password:········







[3]:






nestor_file = None
nestor_vocab1g = None
nestor_vocab1g = None
allTag = False
csvSchemas_file = None
csvHeaderMapping_file = None
tree_path = None








[4]:

















Load Files


[5]:






dataframe = pd.read_hdf(nestor_file, key="df")
dataframe.fillna("", inplace=True)
dataframe_tag = pd.read_hdf(nestor_file, key="tags")
dataframe_rel = pd.read_hdf(nestor_file, key="rels")

if nestor_vocab1g_file:
    dataframe_vocab1g = pd.read_csv(nestor_vocab1g_file)

if nestor_vocabNg_file:
    dataframe_vocabNg = pd.read_csv(nestor_vocabNg_file)

if csvHeaderMapping_file:
    csvHeaderMapping_dict = helper.openYAMLFile(csvHeaderMapping_file)

if tree_file:
    with open(tree_file) as file:
        tree_dict = json.load(file)













yaml file open









Connect to database


[6]:






databaseSchema_file = os.path.join(project_path ,'nestor', 'store_data', 'DatabaseSchema.yaml')
databaseSchema_dict = helper.openYAMLFile(databaseSchema_file)

database = DatabaseNeo4J(server = server,
                         portBolt = portBolt,
                         portUi = portUi,
                         user = user,
                         password = password,
                         schema = databaseSchema_dict)













yaml file open







[7]:






database.deleteData()

database.dropConstraints()
database.dropIndexes()

database.createIndexes()
database.createConstraints()








[7]:






1










Create Cypher Queries


[8]:






database.runQueries(integration.cypherCreate_historicalMaintenanceWorkOrder (database.schema, dataframe, csvHeaderMapping_dict))













100%|██████████| 3438/3438 [00:02<00:00, 1320.68it/s]
100%|██████████| 3438/3438 [00:53<00:00, 64.21it/s]







[8]:






1








[9]:






database.runQueries(integration.cypherCreate_tag(database.schema, dataframe_tag, dataframe_vocab1g, dataframe_vocabNg, allTag))













100%|██████████| 787/787 [00:06<00:00, 116.01it/s]
100%|██████████| 787/787 [00:08<00:00, 91.59it/s]







[9]:






1








[10]:






database.runQueries(integration.cypherCreate_tag(database.schema, dataframe_rel, dataframe_vocab1g, dataframe_vocabNg, allTag))













100%|██████████| 978/978 [00:03<00:00, 278.77it/s]
100%|██████████| 978/978 [00:06<00:00, 151.65it/s]







[10]:






1








[11]:






database.runQueries(integration.cypherLink_Ngram1gram(database.schema))













100%|██████████| 6/6 [00:00<00:00, 27.67it/s]







[11]:






1








[12]:






database.runQueries(integration.cypherLink_itemIssue(database.schema))













100%|██████████| 2/2 [00:00<00:00,  5.84it/s]







[12]:






1








[ ]:






database.runQueries(integration.cypherCreate_itemsTree(database.schema,tree_dict ))











          

      

      

    

  

  
    
    Hierarchical Relationships
    

    
 
  

    
      
          
            
  


Hierarchical Relationships


Import Data


[1]:






from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline








[3]:






data_dir = Path('../..')/'data'/'sme_data'
df = pd.read_csv(data_dir/'MWOs_anon.csv')

df.date_received = pd.to_datetime(df.date_received)
print(f'There are {df.shape[0]} MWO\'s in this dataset')
# example data:
df.loc[df.mach.str.contains('A\d|B\d', na=False),
       ['mach', 'date_received', 'issue', 'info', 'tech']].head(5)













There are 3438 MWO's in this dataset







[3]:








  
    
    Survival Analysis
    

    
 
  

    
      
          
            
  


Survival Analysis

Mining Excavator dataset case study


[1]:






import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

from nestor import keyword as kex
# from mlp.tree import node_adj_mat, tag_network, tag_df_network
# from mlp.plot import hv_net
# from bokeh.palettes import Viridis10, Category10_6
# import networkx as nx





















[ ]:






import re
from tqdm import tqdm_notebook, tqdm









[ ]:






def set_style():
    # This sets reasonable defaults for font size for
    # a figure that will go in a paper
    sns.set_context("paper")

    # Set the font to be serif, rather than sans
    sns.set(font='serif')

    # Make the background white, and specify the
    # specific font family
    sns.set_style("white", {
        "font.family": "serif",
        "font.serif": ["Times", "Palatino", "serif"]
    })

set_style()








[ ]:






import holoviews as hv
hv.extension('bokeh')

%opts Graph [width=600 height=400]








[16]:






from pathlib import Path
data_dir = Path('data')/'mine_data'

# merge and cleanse NLP-containing columns of the data
nlp_select = kex.NLPSelect(columns = ['OriginalShorttext'])
raw_text = nlp_select.transform(df)













---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-16-24c51f632f66> in <module>()
      4 data_dir = Path('data')/'mine_data'
      5
----> 6 df = pd.read_csv(data_dir/'mine_raw.csv')
      7 df['BscStartDate'] = pd.to_datetime(df.BscStartDate)
      8 df.head()

~/anaconda3/envs/nestorDev/lib/python3.6/site-packages/pandas/io/parsers.py in parser_f(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, doublequote, delim_whitespace, low_memory, memory_map, float_precision)
    676                     skip_blank_lines=skip_blank_lines)
    677
--> 678         return _read(filepath_or_buffer, kwds)
    679
    680     parser_f.__name__ = name

~/anaconda3/envs/nestorDev/lib/python3.6/site-packages/pandas/io/parsers.py in _read(filepath_or_buffer, kwds)
    438
    439     # Create the parser.
--> 440     parser = TextFileReader(filepath_or_buffer, **kwds)
    441
    442     if chunksize or iterator:

~/anaconda3/envs/nestorDev/lib/python3.6/site-packages/pandas/io/parsers.py in __init__(self, f, engine, **kwds)
    785             self.options['has_index_names'] = kwds['has_index_names']
    786
--> 787         self._make_engine(self.engine)
    788
    789     def close(self):

~/anaconda3/envs/nestorDev/lib/python3.6/site-packages/pandas/io/parsers.py in _make_engine(self, engine)
   1012     def _make_engine(self, engine='c'):
   1013         if engine == 'c':
-> 1014             self._engine = CParserWrapper(self.f, **self.options)
   1015         else:
   1016             if engine == 'python':

~/anaconda3/envs/nestorDev/lib/python3.6/site-packages/pandas/io/parsers.py in __init__(self, src, **kwds)
   1706         kwds['usecols'] = self.usecols
   1707
-> 1708         self._reader = parsers.TextReader(src, **kwds)
   1709
   1710         passed_names = self.names is None

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader.__cinit__()

pandas/_libs/parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source()

FileNotFoundError: File b'data/mine_data/mine_raw.csv' does not exist







[18]:






# merge and cleanse NLP-containing columns of the data
gs_nlp_select = kex.NLPSelect(columns = ['OriginalShorttext'])
raw_text = gs_nlp_select.transform(df)













---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-18-37dbcdde41d4> in <module>()
      1 # merge and cleanse NLP-containing columns of the data
----> 2 gs_nlp_select = kex.NLPSelect(columns = ['OriginalShorttext'])
      3 raw_text = gs_nlp_select.transform(df)

NameError: name 'kex' is not defined







Build Vocab


[17]:






study_fname = data_dir/'vocab_study'/'vocab_study_results.csv'

tex = kex.TokenExtractor()
toks = tex.fit_transform(raw_text)

tex2 = kex.TokenExtractor(ngram_range=(2, 2))  # new extractor (note 2-gram)
# define rules
NE_map = {'I I': 'I',  # two items makes one new item
          'I P': 'P I', 'I S': 'S I', 'P I': 'P I', 'S I': 'S I',  # order-free
          'P P': 'X', 'P S': 'X', 'S P': 'X', 'S S': 'X'}  # redundancies
NE_types = 'IPSUX'
names=[f'{i}min' for i in range(10,70,10)]
files = sorted((data_dir/'vocab_study').glob('mine_public_raw_1Gram_[1-6]0mins.csv'))
if not study_fname.is_file():
    study_df = pd.DataFrame(index=df.index)
    for n,file in enumerate(files):
        print(str(file))
        vocab = kex.generate_vocabulary_df(tex, init=file)
        # do 1-grams
        tags_df = kex.tag_extractor(tex, raw_text, vocab_df=vocab)

#         ######

#         ########

        # do statistics
        tag_pct, tag_comp, tag_empt = kex._get_tag_completeness(tags_df)
        study_df[names[n]] = tag_pct
    study_df.to_csv(study_fname)
else:
    study_df = pd.read_csv(study_fname, index_col=0)

study_df.head()















---------------------------------------------------------------------------
FileNotFoundError                         Traceback (most recent call last)
<ipython-input-17-74a0f805b4c8> in <module>()
     27         tag_pct, tag_comp, tag_empt = kex._get_tag_completeness(tags_df)
     28         study_df[names[n]] = tag_pct
---> 29     study_df.to_csv(study_fname)
     30 else:
     31     study_df = pd.read_csv(study_fname, index_col=0)

~/anaconda3/envs/nestorDev/lib/python3.6/site-packages/pandas/core/frame.py in to_csv(self, path_or_buf, sep, na_rep, float_format, columns, header, index, index_label, mode, encoding, compression, quoting, quotechar, line_terminator, chunksize, tupleize_cols, date_format, doublequote, escapechar, decimal)
   1743                                  doublequote=doublequote,
   1744                                  escapechar=escapechar, decimal=decimal)
-> 1745         formatter.save()
   1746
   1747         if path_or_buf is None:

~/anaconda3/envs/nestorDev/lib/python3.6/site-packages/pandas/io/formats/csvs.py in save(self)
    134             f, handles = _get_handle(self.path_or_buf, self.mode,
    135                                      encoding=encoding,
--> 136                                      compression=None)
    137             close = True if self.compression is None else False
    138

~/anaconda3/envs/nestorDev/lib/python3.6/site-packages/pandas/io/common.py in _get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text)
    398         elif encoding:
    399             # Python 3 and encoding
--> 400             f = open(path_or_buf, mode, encoding=encoding)
    401         elif is_text:
    402             # Python 3 and no explicit encoding

FileNotFoundError: [Errno 2] No such file or directory: 'data/mine_data/vocab_study/vocab_study_results.csv'







[10]:






study_long = pd.melt(study_df, var_name="time", value_name='PPV').dropna()
study_long['time_val'] = study_long.time.str.replace('min','').astype(float)
fig = plt.figure(figsize=(15,10))
ax = fig.add_subplot(211)
ax.set_title('PPV over time')
sns.boxplot("time", y="PPV", data=study_long, ax=ax)
ax2 = fig.add_subplot(212)
ax2.set_title('Incomplete Documents')
sns.boxplot("time", y="PPV", data=study_long[study_long.PPV!=1], ax=ax2)

# sns.violinplot()








[10]:






<matplotlib.axes._subplots.AxesSubplot at 0x7fd79caaef60>












[image: ../_images/notebooks_mine_case_study_9_1.png]





[11]:






#now the good stuff
vocab_fname = data_dir/'vocab_study'/'mine_public_raw_1Gram_1grams-60mins-2grams-20mins.csv'
vocab = kex.generate_vocabulary_df(tex, init=vocab_fname)
tags_df = kex.tag_extractor(tex, raw_text, vocab_df=vocab)













intialized successfully!
intialized successfully!


























































































[12]:






replaced_text = kex.token_to_alias(raw_text, vocab)  # raw_text, with token-->alias replacement
toks2 = tex2.fit_transform(replaced_text)

#make 2-gram dictionary
vocab2_fname = data_dir/'vocab_study'/'mine_public_raw_nGram_1grams-60mins-2grams-20mins.csv'
vocab2 = kex.generate_vocabulary_df(tex2, init=vocab2_fname)

# extract 2-gram tags from cleaned text
tags2_df = kex.tag_extractor(tex2, replaced_text, vocab_df=vocab2)

## experimental: we need [item_item action] 2-grams, so let's use 2-gram Items for a 3rd pass...
# tex3 = kex.TokenExtractor(ngram_range(2,2))
# replaced_text2 = kex.token_to_alias(raw_text, vocab.join(vocab2))













intialized successfully!
intialized successfully!




































































































[13]:






## experimental: we need [item_item action] 2-grams, so let's use 2-gram Items for a 3rd pass...
tex3 = kex.TokenExtractor(ngram_range=(1,2))
# mask = (vocab2.NE=='I') & (vocab2.alias!='')
mask = (np.isin(vocab2.NE, ['I', 'P', 'S'])) & (vocab2.alias!='')
vocab_combo = pd.concat([vocab, vocab2[mask]])
vocab_combo['score'] = 0

# keep just in case of duplicates
vocab_combo = vocab_combo.reset_index().drop_duplicates(subset=['tokens']).set_index('tokens')

replaced_text2 = kex.token_to_alias(replaced_text, vocab_combo)
# print(replaced_text2)
toks3 = tex3.fit_transform(replaced_text2)
# print(toks3)
# define rules
NE_map = {'I I': 'I',  # two items makes one new item
          'I P': 'P I', 'I S': 'S I', 'P I': 'P I', 'S I': 'S I',  # order-free
          'P P': 'X', 'P S': 'X', 'S P': 'X', 'S S': 'X'}  # redundancies
NE_types = 'IPSUX'

#make 2-gram dictionary
vocab3 = kex.generate_vocabulary_df(tex3)
vocab3 = kex.ngram_automatch(vocab_combo, vocab3, NE_types, NE_map)

# extract 2-gram tags from cleaned text
tags3_df = kex.tag_extractor(tex3, replaced_text2, vocab_df=vocab3)













intialized successfully!














































































































[14]:






# merge 1 and 2-grams?
# tag_df = tags_df.join(tags3_df.drop(axis='columns', labels=tags_df.columns.levels[1].tolist(), level=1))
# relation_df = tag_df.loc[:, ['P I', 'S I']]

tag_df = tags_df.copy()

tags_read = kex._get_readable_tag_df(tag_df)
tag_df = tag_df.loc[:, ['I', 'P', 'S', 'U', 'X', 'NA']]










Extracted Keywords


[15]:






import matplotlib.cm as cm
nbins = int(np.percentile(tag_df.sum(axis=1), 95))
print(f'Docs have at most {nbins} tokens (95th percentile)')
H, x_edge, y_edge = np.histogram2d(study_long.time_val, study_long.PPV, bins=[6,nbins], normed=False)
H = H/len(df)
X, Y = np.meshgrid(x_edge, y_edge)
# city.plot(ax=ax, color='xkcd:slate')
# pcm = ax.pcolormesh(X, Y, H)
import matplotlib.colors as colors
fig, ax = plt.subplots(1, 1, figsize=(4,4), sharey=True)
# plt.figure()

# pcm = ax[0].pcolor(X, Y, H.T ,cmap=cm.gray_r,
#                 norm=colors.LogNorm(vmin=H.min(),
#                                     vmax=H.max()),
#                edgecolors='white', linewidths=.2,)
ppv_labels = np.linspace(0,1,nbins+1)
# ax[0].set_yticks(ppv_labels, [f'{i:.2f}' for i in ppv_labels])
# ax[0].set_xticks(x_edge+50/12.)
# ax[0].set_xticklabels( names, rotation=40)
# # plt.Axes.set_xticklabels()
# ax[0].set_xlim(10,60)
# ax[0].set_xlabel('Annotation time')
ax.set_ylabel('Precision (PPV)')
# plt.title('Mean Calls/Day')
# fig.colorbar(pcm, ax=ax)

pcm = ax.pcolor(X, Y, H.T ,cmap=cm.gray_r,
#                 norm=colors.LogNorm(vmin=H.min(),
#                                     vmax=H.max()),
               edgecolors='white', linewidths=.2,)
ppv_labels = np.linspace(0,1,nbins+1)
plt.yticks(ppv_labels, [f'{i:.2f}' for i in ppv_labels])
plt.xticks(x_edge+50/12., names, rotation=40)
ax.set_xlim(10,60)
ax.set_xlabel('Annotation time')
# ax[1].set_ylabel('Precision (PPV)')
# plt.title('Mean Calls/Day')
fig.colorbar(pcm, ax=ax, label='Frac. of Documents')
plt.tight_layout()













Docs have at most 6 tokens (95th percentile)











[image: ../_images/notebooks_mine_case_study_15_1.png]





[16]:






tags_read.join(df[['OriginalShorttext']]).sample(10)








[16]:








  
    
    nestor.datasets.base module
    

    
 
  

    
      
          
            
  


nestor.datasets.base module


	
load_excavators(cleaned=False)

	Helper function to load excavator toy dataset.

Hodkiewicz, M., and Ho, M. (2016)
“Cleaning historical maintenance work order data for reliability analysis”
in Journal of Quality in Maintenance Engineering, Vol 22 (2), pp. 146-163.


	Parameters

	cleaned (bool (default=False)) – whether to return the original dataset (False) or the dataset with
keyword extraction rules applied (True), as described in Hodkiewicz and Ho (2016)



	Returns

	pandas.DataFrame –


	BscStartDate :
	initialization of MWO



	Asset :
	which excavator this MWO concerns (A, B, C, D, E)



	OriginalShorttext :
	natural language description of the MWO



	PMType :
	repair (PM01) or replacement (PM02)



	Cost :
	MWO expense (AUD)



















          

      

      

    

  

  
    
    nestor.settings module
    

    
 
  

    
      
          
            
  


nestor.settings module


	
nestor_params()

	function to instantiate a nestor.NestorParams instance from
the default nestor config/type .yaml files






	
class NestorParams() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list.  For example:  dict(one=1, two=2)

	Bases: dict


	
apply_rules(self, pair)

	




	
datatype_search(self, property_name)

	











          

      

      

    

  
_images/dash_08.png
[ Nestor Visual Dashboard X (2] - X

< C 0 | ® 127.0.0.1:5000/upload ¥ o *

=5 Apps [ Welcome

Nestor Dashboard Home  Dashboard  AboutUs  Help

Bar Graph

Upload a .csv or a .h5 file

Choose File No file chosen
Flow Diagram Upload

Node-Link Diagram

Currently uploaded files:

¢ MWOs_anon.h5






_images/dash_09.png
[ Nestor Visual Dashboard X

& C 0 ® 127.0.0.1:5000/bar e

=5 Apps [ Welcome I

Nestor Dashboard Home Dashboard

About Us

Bar Chart

Machines v | Submit

O obj_name
B2

n_thres: 0.1

order

sorted

count
T T T W T T T A A T A A O 0 A A A A A

2 £ s 5 < a £
< & 2 > [
s g 5
= o
tag name
# | Machine Name Description of Problem Maintenance Technician Description of Solution
0| B2 Hydraulic leak gina_moore, dylan_miller Replaced ruptured hydraulic line Sid...






_images/dash_04.png
[ Nestor Visual Dashboard X
S C 0 ® 127.0.0.1:5000/upload e o *
=5 Apps [ Welcome

Home Dashboard About Us Help

Nestor Dashboard

Upload a .csv or a .h5 file

Choose File |No file chosen @ Oopen X
Upload
p <« v 4 > ThisPC » Desktop > nestordashdata v O  Search nestordashdata P
Currently uploaded files: | o= Meviee . - e
« Google Drive File Strei# * Name Date modified Type Size
B auto_data | MWOs_anon.h5 8/23/2018 3:05 PM HS5 File 108,265 KB
| data
‘Desktop
' sexton_180705
i1 National Institute of Stand:
= This PC
‘Desktop
& Documents
. NS >
File name: [IMWOs_anon.h5 ~ | All Files ~
Open v Cancel






_images/dash_05.png
Currently uploaded files:

¢ MWOs_anon.hb






_images/dash_13.png
grouped

order

dems
30
JIEETE)

[ K
B NA
WP
Ms

ubije
jesal
ysnlpe
ueso
pautedal
EINITTEY]
pooe|dai
ainjie)
9500
a|qesadoul
onss|
Jney
es|

wel
ueyoiq
wiele

osip

tag name

Jloust
pajoho
Buiyoo| ya11ny
paues|o wel
ogol

JENECEN]

puey
pauajybny
palesjo
Josues
10AaAuoo diyo
ainssaid
ollnelpAy
a|puids

yed

Jue|000

diyo
10AeAu0d

jouny

o =} o o o o
[t} < @ 39 -

| jJunoo






_images/dash_16.png
Bar Chart

Technicians ¥ || Submit

O obj_name

nathan_maldonado v

nathan_maldonado
michele_williams

angie_henderson

dylan_miller
ethan_adams
2T 5§ @ 3% 5 5§ 5§ E B ¥ S £t 5 5 2 & ¢ E ¥ ¢ T 8 E F ¥ & BT § B ina_moore
8 £ 8228252383 E¢§gE2 s 8 ;8¢ sF° g 3§ 8 8 gne
%ngagﬁ A ggégem g s - - - noah_rhodes
2 e - § o s g -
© 5
patty_perez
tag name

cristian_santos

margaret_hawkins_dds






_images/dash_11.png
obj_name

Q

B2 v

B1

A14

A27

B17

A10

A8

B18

A25

A5






_images/dash_12.png
U

1.5264

(]
[
=
<
=
c

ainjiey
dems
pajoho

Jloust

osip

30
pauajybny
puey
JENECEN]
ogol
paues|o wel
Buiyoo| ya11ny
ubije

9500

JIEETE)
a|qesadoul
jesal

1snipe
pautedal
ueso

onss|
Josues
ainssaid
10AaAuoo diyo
palesjo
Hnej

Jes|
ollnelpAy
EINITTEY]
a|puids

yed

Jue|000

wel

diyo

ueyoiq
10AeAu0d
jouny

wiele

pooe|dai






_images/dash_17.png
" B .

# | Machine Name Description of Problem Maintenance Technician Description of Solution
0| A18 Check / Charge Accumulators nathan_maldonado Where OK
1(B3 Turrets leaking A & B nathan_maldonado Turrets removed and cleaned of chh...

2| A20 Accumulator check nathan_maldonado Checked and charged






_images/dash_20.png
LAl ] .

Node Diagram

Machines v | Submit

O obj_name
| A14 v

n_thres: 0.65513

Qlamp
Qetector . ‘
@ & Q. | e_thres: 41
olse

.)pera(or chew .
Qet .oose Qpindle .'lead weig
Qensor Qtanon cosine .

. .}roken‘ Q |
noperable emo
.‘notor X
.ault

‘Jrush unit .ss.
.am \ eplaced ‘epa\red
.)rush .a anit
R ‘oader

Gevec
‘nverte!’erson /\ <

/ ,equest
‘eset ‘/alve ;/ \
.@accum.&vipressur’eak .:E

@ik Qressure .UP‘UI’E

\
_ I " Qharie





_images/dash_21.png
Node Diagram

Technicians ¥ || Submit

@oiant O obj_name
dylan_miller v
n_thres: 0.19307
.emove
e_thres: 31
Qlarm weight
e cosine v
otor
'eak
Q:roken
.splaced
.epam
.1ydrau|ic % .
pindle
Qab\e
‘emca





nav.xhtml

    
      Table of Contents


      
        		
          Nestor Tagging Toolkit
        


        		
          Introduction
          
            		
              Purpose
              
                		
                  Why?
                


                		
                  Features
                


                		
                  What’s Inside?
                


                		
                  Pre-requisites
                


              


            


            		
              Who are we?
              
                		
                  Points of Contact
                


                		
                  Contributors:
                


                		
                  Why KEA?
                


              


            


          


        


        		
          Getting Started
          
            		
              License/Terms-of-Use
              
                		
                  Software Disclaimer / Release
                


                		
                  3rd-Party Endorsement Disclaimer
                


              


            


            		
              Installation
              
                		
                  Standalone Executable
                


                		
                  Python-based Install
                


              


            


            		
              Loading/Saving Data
              
                		
                  New Project
                


                		
                  Persistence
                


              


            


            		
              Using the Nestor GUI
              
                		
                  Settings
                


                		
                  Single Word Tagging
                


                		
                  Multi Word Tagging
                


                		
                  Reporting and Data Transfer
                


              


            


            		
              Using the Nestor Dashboard (Under Development!)
              
                		
                  Starting the Dashboard Server
                


                		
                  Uploading Data Files
                


                		
                  Viewing Visualizations on Nestor Dashboard
                


              


            


          


        


        		
          Examples
          
            		
              Showcase
            


            		
              Case Studies
              
                		
                  Manufacturing Maintenance Case Study
                


                		
                  Survival Analysis
                


                		
                  HVAC Maintenance Case Study
                


              


            


          


        


        		
          Advanced Use
          
            		
              Research Mode
              
                		
                  Setup
                


                		
                  Study Task
                


              


            


          


        


        		
          nestor package
          
            		
              Subpackages
              
                		
                  nestor.datasets package
                


              


            


            		
              Submodules
              
                		
                  nestor.keyword module
                


                		
                  nestor.tagplots module
                


                		
                  nestor.tagtrees module
                


              


            


          


        


      


    
  

_images/industryforum_presentation_21_2.png
30 4
25 4
20 4
15 4
10 4
05 4

00

01 02 03 04 05 06 07 08 09 10
precision (PPV)





_images/industryforum_presentation_27_1.png
‘mach

‘Time Between Failure ("broken")

Kaplan-Meier Survival Function

o 10 — Machino k31
——— D
o 08
[ e
. _os
e @
— T ot
—_—
——— ‘ o
[ e——
e —
10 — By
— Atrn
— T
— 08
—r— . .
o5
f e P, 5
—_—— ”
o m
—_——r——
—_— 02 p
[ e e
—_——r
00
5 % 00 e 00 50 00 e 00 50





_images/dash_23.png
Flow Diagram

Machines v || Submit

loose - 12

source: inoperable
target: station
weight: 5

inoperable - 25

broken - 20

issue-9

fault - 12

Wieak -4

Wrupture - 5

Worush unit - 8

adjust - 21
Worusn -5
Wscrow=6 Iremuve -14
Mtool-5
M spindie -5 [ repaired -6
Msensor-5
Wclamp -5
Is\annn -10
replaced - 73
Woperator - 8
W motor -6
Wsaw-8 ‘
4
Wioader -8 /”’
Winverter -7 /,/,r check - 23
lcharge -10
72 Irequest -14

Wvaive -8

Wpressure -6

Ilow)ressure -7

O obj_name

A14 v

n_thres: 0.40949

weight

count v






_images/dash_26.png
Flow Diagram

Technicians v || Submit

I“" ot obj_name

I"““ e gina_moore

n_thres: 0.44984

roiocoa-3 1478

[weom weight
| :
cosine
oo 1370
-
o 12072
Flow Diagram
Technicans v | Submit
[ : fon - OPLPAme
gina_moore

n_thres: 0.44984

weight

count






_images/industryforum_presentation_38_0.png
‘margaret_hawkins_dds ‘nathan_maldonado
P
—

angie_henderson

00

150

200





_images/nestor_thresholds.png
ias | notes

Similar Pattern

~ replace
~ replaced
" Irepplace

Similar Pattern

ias notes = [ replace
_ replaced
repplace
rplace
replce
repace
replacement
repl
rep
repla

as  notes

Similar Pattern

replace
replaced
repplace
rplace
replce
repace
replacement
repl

rep

repla
repalced
replacing
rplc
receptacle
reel

relay
repaired
relocate
repair





_images/industryforum_presentation_30_0.png
(5. reptace) I
o, unie)
. staton) I
@, broken) NN
. brush_unit) I
ooty I
¢ motor) [N
. var)
. teaic [
oy |
I

(. ropain)

(5. roplace) I
(. tomce) IN———

B9

. brokor) I
—

@ spinate)
@ atarm)
(s, repain)
@ cale)
@ sensor)
@ cootant)
. 10a)
. bar)
. swite)
@ prox)

@, hyarautic)

B

)

I

. unit)
(. broken)
@ station)

0. brast)
@, brusiy unit)

. accumulator)
U, var)

(s, check)

@, valve)

(5. romove)

@, inoperable)
. aul)

(5. adjust)
wortor)

0. senson)
0. operator)
. saw)

. motor)

. loak)

(5, request)

(. chock roquest)
U, Torward)

1. loador)

U, 300ar)

0

&
=

B

B

5





_images/industryforum_presentation_36_0.png
Margaret

(5. cloan)
. base)
(5. complote)

(5. request)

(5. nood)

-
rp——

]





_images/notebooks_hierarchical_relationships_5_1.png
sation
wit
motor
spindle.
hydraulic

accumulator
ant

bearing

yor






_images/notebooks_hierarchical_relationships_7_2.png
1600 -

1400 -

1200 -

1000 -

0 -

0

00 -

20-

ndex

peed ter
e

Mk\»;:eel

odule

ea -r/hﬂe
0 eylinder
k 'ngd\“"m:xtmn
ing

thread pi pendant
o 20 0 o0 0
rd d 3
1802 20
101- w00
o
1800 machi operator E ad
@
1799 -
®
198 -
20- ley
@ o 180 10 10 160 o £ 180 150 20 %0 300 50
102 1802 -
101- 1801 -
100~  loa chai eder 1800 o safety
1799 - 1799 -
198 - 198 -
160 150 200 20 @ @ o 160 10





_images/notebooks_hvac_case_study_12_2.png
20

10

00

01

02

03

01

05 06
precision (PPV)

07

08

09

10





_images/notebooks_mine_case_study_18_3.png
4000

2000

1000

o1

0z

03

o1

05 os
precision (PPV)

07

o8

oa

10





_images/notebooks_mine_case_study_19_1.png
No. tags/tokens

B

3

100

‘One- and Tuwo-gram Token Fraqencios
27 Tag Froqencios

100 10
No. tag/token occurences





_images/notebooks_hvac_case_study_14_1.png
Tag Occurence

Ieak
tno_cold
oo hot
fn

{ | valve
EEETECTEEEY . air_conditioning unit

|
Jn Feb Jul Aug Sep  Oct

fn
valve
air_conditioning unit

a0
valve
air_conditioning unit






_images/notebooks_mine_case_study_15_1.png
suawmooq jo 9t

I )

Add) worstoazg

100

000

Annotation time





_images/notebooks_mine_case_study_31_1.png
S(t) of Bucket

10
— rules-based kaplan-meier
-+ multitag kaplan-meier
o8 — single-tag kaplan-meier
o ) o o o 100
timetine
o S(t) of Hydraulic System
— rules-based kaplan-meier
-+ multitag kaplan-meier
o8 — single-tag kaplan-meier
o5
04
0z
ol —
o ) o w© o 100
timetine
o S(t) of Engine
— rules-based kaplan-meier
-+ multitag kaplan-meier
o8 — single-tag kaplan-meier
o5
04
0z
00

o ) ) w® o 100





_images/notebooks_mine_case_study_32_0.png
log(—log(S(t) of Bucket

2
g
g,
E -1
.
10 100 107
og(timeline)
) log(~log(s(t)) of Hydraulic System
!
g,
£
g
10 100 107
Iog(timeline)
log(~log(s(t)) of Engine
2
-
L)
.
H — rulos based kaplan meier
- single-ag kaplanmoier
H — multi g kaplan meier
N a api
10 10t 107

Iog(timeline)





_images/notebooks_mine_case_study_24_2.png
008

007

006

oos

004

003

weibull hazard function

— Rule-Basad Weibull

o Y ) w© w 100





_images/notebooks_mine_case_study_24_3.png
08

04

02

00

weibull survival function

— Rule-Basad Weibull

Y ) w© w 100





_images/notebooks_mine_case_study_35_2.png
10

o8

06

04

02

00

— Rule-Rased Weibull
— Rule-Based KM

timeline

e 100






_images/notebooks_mine_case_study_39_1.png
oass

oas0

o0is

000

o035

o0

025

o020

weibull hazard function

— Tag-Based Weibull

o Y ) w© w 100





_images/notebooks_mine_case_study_34_1.png
10

08

04

02

00

— Rule-Basad KM

2 ) w e 100
timeline






_images/notebooks_mine_case_study_41_2.png
10

o8

06

04

02

00

— Tag-Based Weibull
— Tag-Based KN

e 100





_images/notebooks_mine_case_study_44_1.png
Bucket Subsystem Cumulative Hazard

— TagBased Weibull
— Rule-Rased Weibull

Y ) w© w 100





_images/notebooks_mine_case_study_39_2.png
08

04

02

00

weibull survival function

— Tag-Based Weibull

Y ) w© w 100





_images/notebooks_mine_case_study_40_1.png
10

08

04

02

00

— Tag-Basod Kt

2 ) w e 100
timeline






_images/notebooks_mine_case_study_53_2.png
1000
@
o o,
valy
wo
!
s
. erlfpna
20 -
. oo @fns st
o
o 00 w00 wo w0 1000 1200
1004
100
1002
1o
102
20
101
100
wo| Q0o o @ .
w
1790
©
1798
1797
»
1790
Fa— w  m w @ m o T ExY m7
1004 1004
1002 1002
102 102
101 101
woo| @Q——— @ | wo
1790 1790
1798 1798
1797 1797
1790 1790
n w  w  m m . m » o w w0 o
1004 1004
1002 1002
102 102
101 101
1500 | on—— @ | 50| vi—— @
1790 1790
1798 1798
1797 1797
1790 1790

w0 1o 120

30






_images/notebooks_mine_case_study_45_1.png
» Lifespans of Bucket Subsystem

— Tag-Based Kt
— Rule-Basad KM

o 2 ) w e 100





_images/notebooks_mine_case_study_51_2.png
o
2o
5 25
2 we .
2 CEc -2.,5E_.E 29 3
$0555 2288o5E_BEL_B
22528325 3 82Es:-856%5=8
5523658 FfvaZEaG=Ec5E2203E

ssoy
1o

puey el
puey by
ey

”
Jopuilfo
1oy

pus

wooq
Joj0w
san|

duind
mers

Ay

ooy
subue
1eong

auy
aseald






_images/notebooks_mine_case_study_56_2.png
012

o1

010

009

008

007

006

weibull hazard function

—— GraphBased Weibull






_images/notebooks_mine_case_study_56_3.png
weibull survival function

— Tog-Based Weibul






_images/notebooks_mine_case_study_54_1.png
00

0

20

grease |

150

100

13 E] 150 150 %0 20 ES)





_images/notebooks_mine_case_study_55_2.png
16
12

bucket
grease

line

grease_line bucket
tooth

cylinder

pin

tank

fitting

adaptor

fuel

header

line
pin
tank

tooth

©
<
]
3
3

grease
cylinder
fitting
adaptor
fuel
header

grease_line bucket





_images/notebooks_mine_case_study_57_2.png
10 Lifespans of Bucket Subsystem

—— Tag-Based KM
0.8 —— Rule-Based kKM
—— Graph-Based kKM

0 20 40 60 80 100
timeline





_images/notebooks_mine_case_study_9_1.png
PPV

PPV

10

o8

06

04

02

00

o8

06

04

02

00

PPV over time.

. ‘
f} i ‘
H H ‘
—— ‘ ‘ ‘ . .
Tomin 20min 0min omin Somin omin
time
Incomplete Documents
— ‘ ‘
i ‘ ‘
i ' i
' i i
—— ‘ ‘ ‘ . .
Tomin 20min 0min omin Somin omin

time






_images/notebooks_mine_case_study_56_4.png
— Graph-Based Weibul
— Graph-Based KM

1] B @ @ o 150
timeline





_images/notebooks_mine_case_study_57_1.png
6Bucket Subsystem Cumulative Hazard

&)

Now s

Tag-Based Weibull
—— Rule-Based Weibull
—— Graph-Based Weibull

0 20 40 60 80 100





_images/notebooks_sme_case_study_21_3.png
20

10

00

01

02

03

01

05 06
precision (PPV)

07

08

09

10





_images/notebooks_sme_case_study_28_1.png
‘mach

27

Bl

‘Time Between Failure ("broken")

Kaplan-Meier Survival Function

5 ——— ‘mach_type 10 — Machine K-M
- o
B e = A
—m—— ‘o o8
e
o =06
e ”
——_— 04
——
02

—— .
P —

— T

[
———
—— . .

—— -
— v @

—_———
—_——

[ e

——T

00
o E 100 150 20 250 E 100 150 20 250
days. days.





_images/dash_0.png
cmd

C:\Users\mpbl
(pip-test) A nestor—dasM






_images/dash_00.png
INFO:werkzeug: * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)





_images/dash_01.png
[ Nestor Visual Dashboard X (2] - X

& C 1 ® 127.0.0.1:5000 e o *

=5 Apps [ Welcome

Nestor Dashboard Home  Dashboard  AboutUs  Help

Welcome to the Nestor Dashboard

Here you will be able to visualize the data that you extracted

from your maintenance logs using our Nestor Tagging App .

Upload File






_images/notebooks_survival-analysis_12_0.png
108

# Instances

10!

Token Freqenci
Tag Freqencies

100

10! 10
Tag/Token Frequencies

108





_images/notebooks_survival-analysis_13_2.png
4000

3000

1000

0
01 02 03 04 05 06 07 03 09 L0

precision (PPV)





_images/notebooks_sme_case_study_37_0.png
Margaret

(5. cloan)
. base)
(5. complote)

(5. request)

(5. nood)

-
rp——

]





_images/notebooks_sme_case_study_39_0.png
‘margaret_hawkins_dds ‘nathan_maldonado
P
—

angie_henderson

00

150

200





_images/notebooks_survival-analysis_21_3.png
08

06

01

02

00

weibull survival function

— Rule-Based Weibull

zn 40 & & 100





_images/notebooks_survival-analysis_29_1.png
S(t) of Bucket

— rules-based kaplan-meier.
-+ multi-tag kaplan-meier
— single-tag kaplan-meior

10

o8

o ) o o o 100
timeline
o S(t) of Hydraulic System
— rules-based kaplan-meier
o - multi-tag kaplan-meier

— single-tag kaplan-meior

o ) o o o 100
timeline
o S(t) of Engine
— rules-based kaplan-meier
-+ multitag kaplan-meier
o8 — single-tag kaplan-meier
o5
04
0z
00

o 2 ) w© 0 100





_images/notebooks_survival-analysis_15_0.png
PV

PV

o
o
o
02

o

o

o

o

02

o

rrr
rr





_images/notebooks_survival-analysis_21_2.png
008

007

006

005

001

003

weibull hazard function

— Rule-Based Weibull

zn 40 & & 100





_images/notebooks_survival-analysis_31_0.png
5.
E\o
e
H
.
5.
E\o
i
H

log(—log(S(£) of Bucket

100 100 100
Iog(timeline)

log(—log(S(t) of Hydraulic System

100 100 100
Iog(timeline)

log(—log(s(t)) of Engine

— rules-based kaplan-meier.

single-taq kaplan-meier
— multi-tag kaplan-meier

100 100 100
Iog(timeline)





_images/notebooks_sme_case_study_31_0.png
