
Neolib2 Documentation
Release 0.1.1

Joshua Gilman

December 17, 2014

Contents

1 NeolibBase 3

2 Page 5

3 HTMLForm 7

4 Inventory 9

5 MSInventory 11

6 USBackInventory 13

7 UserInventory 15

8 USFrontInventory 17

9 InventoryItem 19

10 InventoryItemList 21

11 Item 23

12 ItemList 25

13 MSItem 27

14 MSItemList 29

15 USBackItem 31

16 USBackItemList 33

17 USFrontItem 35

18 USFrontItemList 37

19 WizardItem 39

20 WizardItemList 41

21 RegisterUser 43

i

22 History 45

23 MainShop 47

24 Transaction 49

25 UserBackShop 51

26 UserFrontShop 53

27 Wizard 55

28 Bank 57

29 Neopet 59

30 Profile 61

31 User 63

32 Hook 65

33 UserDetails 67

34 For developers 69
34.1 Neolib 2 Development Primer . 69

35 Indices and tables 73

ii

Neolib2 Documentation, Release 0.1.1

Base:

Contents 1

Neolib2 Documentation, Release 0.1.1

2 Contents

CHAPTER 1

NeolibBase

HTTP:

3

Neolib2 Documentation, Release 0.1.1

4 Chapter 1. NeolibBase

CHAPTER 2

Page

5

Neolib2 Documentation, Release 0.1.1

6 Chapter 2. Page

CHAPTER 3

HTMLForm

Inventory:

7

Neolib2 Documentation, Release 0.1.1

8 Chapter 3. HTMLForm

CHAPTER 4

Inventory

9

Neolib2 Documentation, Release 0.1.1

10 Chapter 4. Inventory

CHAPTER 5

MSInventory

11

Neolib2 Documentation, Release 0.1.1

12 Chapter 5. MSInventory

CHAPTER 6

USBackInventory

13

Neolib2 Documentation, Release 0.1.1

14 Chapter 6. USBackInventory

CHAPTER 7

UserInventory

15

Neolib2 Documentation, Release 0.1.1

16 Chapter 7. UserInventory

CHAPTER 8

USFrontInventory

Item:

17

Neolib2 Documentation, Release 0.1.1

18 Chapter 8. USFrontInventory

CHAPTER 9

InventoryItem

19

Neolib2 Documentation, Release 0.1.1

20 Chapter 9. InventoryItem

CHAPTER 10

InventoryItemList

21

Neolib2 Documentation, Release 0.1.1

22 Chapter 10. InventoryItemList

CHAPTER 11

Item

23

Neolib2 Documentation, Release 0.1.1

24 Chapter 11. Item

CHAPTER 12

ItemList

25

Neolib2 Documentation, Release 0.1.1

26 Chapter 12. ItemList

CHAPTER 13

MSItem

27

Neolib2 Documentation, Release 0.1.1

28 Chapter 13. MSItem

CHAPTER 14

MSItemList

29

Neolib2 Documentation, Release 0.1.1

30 Chapter 14. MSItemList

CHAPTER 15

USBackItem

31

Neolib2 Documentation, Release 0.1.1

32 Chapter 15. USBackItem

CHAPTER 16

USBackItemList

33

Neolib2 Documentation, Release 0.1.1

34 Chapter 16. USBackItemList

CHAPTER 17

USFrontItem

35

Neolib2 Documentation, Release 0.1.1

36 Chapter 17. USFrontItem

CHAPTER 18

USFrontItemList

37

Neolib2 Documentation, Release 0.1.1

38 Chapter 18. USFrontItemList

CHAPTER 19

WizardItem

39

Neolib2 Documentation, Release 0.1.1

40 Chapter 19. WizardItem

CHAPTER 20

WizardItemList

Registration:

41

Neolib2 Documentation, Release 0.1.1

42 Chapter 20. WizardItemList

CHAPTER 21

RegisterUser

Shop:

43

Neolib2 Documentation, Release 0.1.1

44 Chapter 21. RegisterUser

CHAPTER 22

History

45

Neolib2 Documentation, Release 0.1.1

46 Chapter 22. History

CHAPTER 23

MainShop

47

Neolib2 Documentation, Release 0.1.1

48 Chapter 23. MainShop

CHAPTER 24

Transaction

class neolib.shop.Transaction.Transaction
Represents a transaction that occurred in a user’s sales history

Attributes: date: The date the transactions occurred item: The item that was purchased buyer: The user who
bought the item price: The price the item was sold at (integer)

49

Neolib2 Documentation, Release 0.1.1

50 Chapter 24. Transaction

CHAPTER 25

UserBackShop

51

Neolib2 Documentation, Release 0.1.1

52 Chapter 25. UserBackShop

CHAPTER 26

UserFrontShop

53

Neolib2 Documentation, Release 0.1.1

54 Chapter 26. UserFrontShop

CHAPTER 27

Wizard

User:

55

Neolib2 Documentation, Release 0.1.1

56 Chapter 27. Wizard

CHAPTER 28

Bank

57

Neolib2 Documentation, Release 0.1.1

58 Chapter 28. Bank

CHAPTER 29

Neopet

class neolib.user.Neopet.Neopet
Represents a Neopet

Attributes:

name: The neopet’s name
gender: The neopet’s gender
species: The neopet’s species
age: The neopet’s age
level: The neopet’s level

health: The neopet’s current health
mood: The neopet’s current mood
hunger: The neopet’s current hunger level

59

Neolib2 Documentation, Release 0.1.1

60 Chapter 29. Neopet

CHAPTER 30

Profile

61

Neolib2 Documentation, Release 0.1.1

62 Chapter 30. Profile

CHAPTER 31

User

Hooks:

63

Neolib2 Documentation, Release 0.1.1

64 Chapter 31. User

CHAPTER 32

Hook

65

Neolib2 Documentation, Release 0.1.1

66 Chapter 32. Hook

CHAPTER 33

UserDetails

67

Neolib2 Documentation, Release 0.1.1

68 Chapter 33. UserDetails

CHAPTER 34

For developers

34.1 Neolib 2 Development Primer

This primer is intended on giving an introductory overview on how to assist development of Neolib 2. This primer will
cover the basic principles being used in Neolib 2 as well as general recommendations when making additions and/or
modifications.

34.1.1 1. The NeolibBase class

The NeolibBase class is the base class that any class doing work on a user’s account should inherit. To better
explain: Any class that will be using a User instance to access Neopets and/or perform an action on Neopets on a
user’s behalf.

The base class provides developers access to a group of functions that solve common problems which arise when
automating Neopets. It also sets a common pattern from which the rest of the library expands upon. There are key
things to note:

1. All xpath queries should be stored in the _paths attribute. Each path should have an easily identified name attached
to it in a dictionary format. It is possible to have several layers of nested dictionaries in this attribute, however this
should only be done if it improves readability.

Example:

_paths = {
’inventory’: {

’item’: ’query’
}

}

2. When querying a page with an xpath query, the internal _xpath() function should be used. This function takes the
name or path to an xpath string query and applies it to the HTMLElement or Page object passed to it. It returns the
results just as the standard HTMLElement.xpath() function would.

Example:

result = self._xpath(’inventory/item’, pg)

3. Note #1 applies to regular expression queries as well. They should be stored in the _regex attribute and can be
formatted just like xpaths.

4. Note #2 applies to querying with regular expressions as well. The internal _search() function should be used for
querying a string, HTMLElement, or Page. The results are returned in a list as if re.findall() had been used.

69

Neolib2 Documentation, Release 0.1.1

5. Note #1 applies to urls as well. All urls should be stored in the _urls attribute and can be formatted just like xpaths.

6. Note #2 applies to requesting urls as well. The internal _get_page method should be used for requesting configured
urls with the configured User instance.

7. The internal User instance supplied in the initialization of the base class and copied to the _usr attribute should be
used for all transactions that require a User instance.

8. All child classes of the base class should override the _log_name attribute to something unique and meaningful to
that particular class. This attribute is appended to log entries and helps in identifying where the entry originated from.

34.1.2 2. Parsing Tips

Neolib 2 uses a combination of xpath and regular expressions to parse content from Neopets HTML pages. The xpath
and regular expression queries are stored and use as described in section 1 of this primer. When writing a class that
needs to parse content take the following guidelines into consideration:

1. As far as Neolib 2 is concerned, xpath is preferred over regular expressions. If all content can be parsed with xpath,
this would be the preferred method rather than combining the two.

2. It is not uncommon to come across such poorly formatted HTML on Neopets that using xpath purely is simply not
ideal. In this case xpath should be used to reach as far into the document as feasible and the remaining information
should be extracted from the resulting HTMLElement using regular expressions.

3. Numbers are not expected to be completely uniform across the library, however the following should be taken
into consideration when determining if a value should be stored as an integer or string: If the label of the attribute
is overwhelmingly clear that it will contain an integer (I.E neopoints) then store it as an integer, otherwise defer to a
string.

34.1.3 3. Accessibility

Neolib 2 strives to have a consistent interface for an end user trying to create an automation script. The library prefers
a natural and uniform way for accessing underlying API’s. The main method Neolib 2 does this is by objectifying
everything and creating intelligent methods and attributes that a person would intuitively expect to be in place (for
instance, accessing a user’s inventory by simply typing usr.inventory). That being said, when making new additions to
the library, take the following into account:

1. When available, always use a base class for inheriting common methods and attributes. For instance, if you’re
creating an interface for a type of inventory, ensure it inherits the Inventory class properly.

2. If the interface you’re creating is directly related to a user, then ensure to create an accessible attribute inside the
User class for accessing your interface. For instance, it would be ideal to place an attribute to access a Bank interface
inside of the User class because every user has a bank.

3. Prefer properties over attributes if the value being accessed needs to be loaded into memory before becoming useful.
For instance, when first initializing a User instance all of the attributes default to none. This can be confusing to the
end-user if they don’t know to call individual load() functions to propogate the attributes with data. Therefore, it has
been determined the best way to approach this scenario is to pre-load the data in a property definition if it hasn’t
already been loaded.

4. Always make an attempt to document your code prior to making a commit to the master branch. Remember that
document strings are for the end user and hashtag comments inside of the code are for helping developers understand
your logic.

70 Chapter 34. For developers

Neolib2 Documentation, Release 0.1.1

34.1.4 4. Conclusion

The most important thing to do before contributing to Neolib 2 is to thoroughly review the existing code. While doing
so it’s important to mentally note the structure being used and the common approaches being taken to retrieving and
storing data. If you have questions or concerns please feel free to open up an issue and an appropriate developer will
assist in answering it. Now go forth and conquer Neopets!

34.1. Neolib 2 Development Primer 71

Neolib2 Documentation, Release 0.1.1

72 Chapter 34. For developers

CHAPTER 35

Indices and tables

• genindex

• modindex

• search

73

Neolib2 Documentation, Release 0.1.1

74 Chapter 35. Indices and tables

Index

N
Neopet (class in neolib.user.Neopet), 59

T
Transaction (class in neolib.shop.Transaction), 49

75

	NeolibBase
	Page
	HTMLForm
	Inventory
	MSInventory
	USBackInventory
	UserInventory
	USFrontInventory
	InventoryItem
	InventoryItemList
	Item
	ItemList
	MSItem
	MSItemList
	USBackItem
	USBackItemList
	USFrontItem
	USFrontItemList
	WizardItem
	WizardItemList
	RegisterUser
	History
	MainShop
	Transaction
	UserBackShop
	UserFrontShop
	Wizard
	Bank
	Neopet
	Profile
	User
	Hook
	UserDetails
	For developers
	Neolib 2 Development Primer

	Indices and tables

