

 Navigation

 	
 index

 	
 next |

 	neo4j-rest-client 2.0.0 documentation

neo4j-rest-client’s documentation

	synopsis:	Object-oriented Python library to interact with Neo4j standalone REST server.

The main goal of neo4j-rest-client was to enable Python programmers
already using Neo4j locally through python-embedded [http://docs.neo4j.org/chunked/snapshot/python-embedded.html], to use the Neo4j REST
server. So the syntax of neo4j-rest-client’s API is fully compatible with
python-embedded. However, a new syntax is introduced in order to reach a more
pythonic style and to enrich the API with the new features the Neo4j team
introduces.

Getting started

The main class is GraphDatabase, exactly how in python-embedded [http://docs.neo4j.org/chunked/snapshot/python-embedded.html]:

>>> from neo4jrestclient.client import GraphDatabase

>>> gdb = GraphDatabase("http://localhost:7474/db/data/")

If /db/data/ is not added, neo4j-rest-client will do an extra request in
order to know the endpoint for data.

And now we are ready to create nodes and relationhips:

>>> alice = gdb.nodes.create(name="Alice", age=30)

>>> bob = gdb.nodes.create(name="Bob", age=30)

>>> alice.relationships.create("Knows", bob, since=1980)

Although using labels is usually easier:

>>> people = gdb.labels.create("Person")

>>> people.add(alice, bob)

>>> carl = people.create(name="Carl", age=25)

Now we can list and filter nodes according to the labels they are associated
to:

>>> people.filter(Q("age", "gte", 30))

Installation

Available through Python Package Index:

$ pip install neo4jrestclient

Contents:

	neo4j-rest-client’s documentation
	Installation

	Getting started

	Elements
	Nodes

	Relationships

	Labels
	Add and remove labels to/from a node

	List, get and filter

	Indices

	Queries
	Returned types

	Query statistics

	Graph and row data contents

	Filters
	Lookups

	Ordering

	Indices

	Slicing

	Traversals

	Extensions

	Transactions and Batch
	Transactions in Cypher

	Batch-based Transactions

	Options
	CACHE

	DEBUG

	SMART_DATES

	SMART_ERRORS

	TX_NAME

	URI_REWRITES

	VERIFY_SSL

	Changes
	2.1.1 (2015-11-20)

	2.1.0 (2014-11-09)

	2.0.4 (2014-06-20)

	2.0.3 (2014-05-16)

	2.0.2 (2014-04-04)

	2.0.1 (2014-03-23)

	2.0.0 (2013-12-30)

	1.9.0 (2013-05-27)

	1.8.0 (2012-12-09)

	1.7.0 (2012-05-17)

	1.6.2 (2012-03-26)

	1.6.1 (2012-02-27)

	1.6.0 (2012-02-27)

	1.5.0 (2011-10-31)

	1.4.5 (2011-09-15)

	1.4.4 (2011-08-17)

	1.4.3 (2011-07-28)

	1.4.2 (2011-07-18)

	1.4.1 (2011-07-12)

	1.4.0 (2011-07-11)

	1.3.4 (2011-06-22)

	1.3.3 (2011-06-14)

	1.3.2 (2011-05-30)

	1.3.1 (2011-04-16)

	1.3.0 (2011-04-15)

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

neo4j-rest-client’s documentation

	synopsis:	Object-oriented Python library to interact with Neo4j standalone REST server.

The main goal of neo4j-rest-client was to enable Python programmers
already using Neo4j locally through python-embedded_, to use the Neo4j REST
server. So the syntax of neo4j-rest-client’s API is fully compatible with
python-embedded. However, a new syntax is introduced in order to reach a more
pythonic style and to enrich the API with the new features the Neo4j team
introduces.

Installation

Available through Python Package Index:

$ pip install neo4jrestclient

Or the old way:

$ easy_install neo4jrestclient

You can also install the development branch:

$ pip install git+https://github.com/versae/neo4j-rest-client.git

Getting started

The main class is GraphDatabase, exactly how in python-embedded_:

>>> from neo4jrestclient.client import GraphDatabase

>>> gdb = GraphDatabase("http://localhost:7474/db/data/")

If /db/data/ is not added, neo4j-rest-client will do an extra request in
order to know the endpoint for data.

And now we are ready to create nodes and relationhips:

>>> alice = gdb.nodes.create(name="Alice", age=30)

>>> bob = gdb.nodes.create(name="Bob", age=30)

>>> alice.relationships.create("Knows", bob, since=1980)

Although using labels is usually easier:

>>> people = gdb.labels.create("Person")

>>> people.add(alice, bob)

>>> carl = people.create(name="Carl", age=25)

Now we can list and filter nodes according to the labels they are associated
to:

>>> people.filter(Q("age", "gte", 30))

Authentication

Authentication-based services like Heroku_ are also supported by passing extra
parameters:

>>> url = "http://<instance>.hosted.neo4j.org:7000/db/data/"

>>> gdb = GraphDatabase(url, username="username", password="password")

And when using certificates (both files must be in PEM_ format):

>>> gdb = GraphDatabase(url, username="username", password="password",
 cert_file='path/to/file.cert',
 key_file='path/to/file.key')

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Elements

Nodes

Due to the syntax is fully compatible with neo4j.py [http://components.neo4j.org/neo4j.py/], the next lines only show
the commands added and its differences.

Creating a node:

>>> n = gdb.nodes.create()

Equivalent to
>>> n = gdb.node()

Specify properties for new node:

>>> n = gdb.nodes.create(color="Red", width=16, height=32)

Or
>>> n = gdb.node(color="Red", width=16, height=32)

Accessing node by id:

>>> n = gdb.node[14]

Using the identifier or the URL is possible too
>>> n = gdb.nodes.get(14)

Accessing properties:

>>> value = n['key'] # Get property value

>>> n['key'] = value # Set property value

>>> del n['key'] # Remove property value

Or the other way
>>> value = n.get('key', 'default') # Support 'default' values

>>> n.set('key', value)

>>> n.delete('key')

Besides, a Node object has other attributes:

>>> n.properties
{}

>>> n.properties = {'name': 'John'}
{'name': 'John'}

The URL and the identifier assigned by Neo4j are added too
>>> n.id
14

>>> n.url
'http://localhost:7474/db/data/node/14'

Relationships

Create relationship:

>>> n1.Knows(n2)

Or
>>> n1.relationships.create("Knows", n2) # Usefull when the name of
 # relationship is stored in a variable

Specify properties for new relationships:

>>> n1.Knows(n2, since=123456789, introduced_at="Christmas party")

It's the same to
>>> n1.relationships.create("Knows", n2, since=123456789,
 introduced_at="Christmas party")

The creation returns a Relationship object, which has properties, setter and
getters like a node:

>>> rel = n1.relationships.create("Knows", n2, since=123456789)

>>> rel.start
<Neo4j Node: http://localhost:7474/db/data/node/14>

>>> rel.end
<Neo4j Node: http://localhost:7474/db/data/node/32>

>>> rel.type
'Knows'

>>> rel.properties
{'since': 123456789}

Or you can create the relationship using directly from GraphDatabse object:

>>> rel = gdb.relationships.create(n1, "Hates", n2)

>>> rel
<Neo4j Relationship: http://localhost:7474/db/data/relationship/66>

>>> rel.start
<Neo4j Node: http://localhost:7474/db/data/node/14>

>>> rel.end
<Neo4j Node: http://localhost:7474/db/data/node/32>

Others functions over ‘relationships’ attribute are possible. Like get all,
incoming or outgoing relationships (typed or not):

>>> rels = n1.relationships.all()
<Neo4j Iterable: Relationship>

In order improve the performance of the ‘neo4jrestclient’, minimizing the
number of HTTP requests that are made, all the functions that should return
list of objects like Nodes, Relationships, Paths or Positions, they actually
return an Iterable object that extends the Python ‘list’ type:

>>> rels = n1.relationships.all()[:]
[<Neo4j Relationship: http://localhost:7474/db/data/relationship/35843>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35840>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35841>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35842>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35847>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35846>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35845>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35844>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/11>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/10>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/9>]

>>> rels = n1.relationships.incoming(types=["Knows"])[:]
[<Neo4j Relationship: http://localhost:7474/db/data/relationship/35843>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35840>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/11>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/10>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/9>]

>>> rels = n1.relationships.outgoing(["Knows", "Loves"])[:]
[<Neo4j Relationship: http://localhost:7474/db/data/relationship/35842>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/35847>]

There’s a shortcut to access to the list of all relationships:

>>> rels = n1.relationships.all()[2]
<Neo4j Relationship: http://localhost:7474/db/data/relationship/47>

It’s the same to:

>>> rels = n1.relationships[2]
<Neo4j Relationship: http://localhost:7474/db/data/relationship/47>

And:

>>> rels = n1.relationships.get(2)
<Neo4j Relationship: http://localhost:7474/db/data/relationship/47>

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Labels

Labels are tags that you can associate a node to. A node can have more than one
label and a label can have more than one node.

Add and remove labels to/from a node

For example, we can create a couple of nodes:

>>> alice = gdb.nodes.create(name="Alice", age=30)

>>> bob = gdb.nodes.create(name="Bob", age=30)

And then put the label Person to both of them:

>>> alice.labels.add("Person")
>>> bob.labels.add("Person")

You can also add more than one label at the time, or replace all the labels of
a node:

>>> alice.labels.add(["Person", "Woman"])
>>> bob.labels = ["Person", "Man", "Woman"]

And remove labels in the same way:

>>> bob.labels.remove("Woman")

Although using labels from a GraphDatabase is usually easier:

>>> people = gdb.labels.create("Person")

>>> people.add(alice, bob)

The call for gdb.labels.create does not actually create the label until
the first node is added.

We can also check if a node already has a specific label:

>>> "Animal" in bob.labels
False

List, get and filter

One common use case for labels is to list all the nodes that are under the same
label. The most basic way to do it is by using the .all() method once we
assign a label to a variable:

>>> person = gdb.labels.get("Person")
>>> person.all()

Or get those nodes that has a certain pair property name and value:

>>> person.get(age=25)

Can list and filter nodes according to the labels they are associated
to by using the Q objects provided by neo4j-rest-client:

>>> from neo4jrestclient.query import Q
>>> people.filter(gdb.Q("age", "gte", 30))

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Indices

The original neo4j.py [http://components.neo4j.org/neo4j.py/] currently did not provide support for the new
index component. However, the current syntax for indexing is now compliant
with the python-embedded [http://docs.neo4j.org/chunked/snapshot/python-embedded.html] API, and hopefully more intuitive:

>>> i1 = gdb.nodes.indexes.create("index1")

>>> i2 = gdb.nodes.indexes.create("index2", type="fulltext", provider="lucene")

>>> gdb.nodes.indexes
{u'index2': <Neo4j Index: http://localhost:7474/db/data/index/node/index2>,
 u'index1': <Neo4j Index: http://localhost:7474/db/data/index/node/index1>}

>>> gdb.nodes.indexes.get("index1")
<Neo4j Index: http://localhost:7474/db/data/index/node/index1>

You can query and add elements to the index like a 3-dimensional array or
using the convenience methods:

>>> i1["key"]["value"]
[]

>>> i1.get("key")["value"]
[]

>>> i1.get("key", "value")
[]

>>> i1["key"]["value"] = n1

>>> i1.add("key", "value", n2)

>>> i1["key"]["value"][:]
[<Neo4j Node: http://localhost:7474/db/data/node/1>,
 <Neo4j Node: http://localhost:7474/db/data/node/2>]

Advanced queries are also supported if the index is created with the type
fulltext (lucene is the default provider) by entering a Lucene query:

>>> n1 = gdb.nodes.create(name="John Doe", place="Texas")

>>> n2 = gdb.nodes.create(name="Michael Donald", place="Tijuana")

>>> i1 = gdb.nodes.indexes.create(name="do", type="fulltext")

>>> i1["surnames"]["doe"] = n1

>>> i1["places"]["Texas"] = n1

>>> i1["surnames"]["donald"] = n2

>>> i1["places"]["Tijuana"] = n2

>>> i1.query("surnames", "do*")[:]
[<Neo4j Node: http://localhost:7474/db/data/node/295>,
 <Neo4j Node: http://localhost:7474/db/data/node/296>]

...or by using the DSL described by lucene-querybuilder [http://github.com/scholrly/lucene-querybuilder] to support boolean
operations and nested queries:

>>> i1.query(Q('surnames','do*') & Q('places','Tijuana'))[:]
[<Neo4j Node: http://localhost:7474/db/data/node/295>]

Deleting nodes from an index:

>>> i1.delete("key", "values", n1)

>>> i1.delete("key", None, n2)

And in order to work with indexes of relationships the instructions are the
same:

>>> i3 = gdb.relationships.indexes.create("index3")

For deleting an index just call ‘delete’ with no arguments:

>>> i3.delete()

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Queries

Since the Cypher plugin is not a plugin anymore, neo4j-rest-client [http://pypi.python.org/pypi/neo4jrestclient/] is able to
run queries and returns the results properly formatted:

>>> q = """start n=node(*) return n"""

>>> result = gdb.query(q=q)

Returned types

This way to run a query will return the results as RAW, i.e., in the same way
the REST interface get them. However, you can always use a returns parameter
in order to perform custom castings:

>>> from neo4jrestclient import client

>>> q = """start n=node(*) match n-[r]-() return n, n.name, r"""

>>> results = gdb.query(q, returns=(client.Node, unicode, client.Relationship))

>>> results[0]
[<Neo4j Node: http://localhost:7474/db/data/node/14>,
u'John Doe',
<Neo4j Relationship: http://localhost:7474/db/data/relationship/47>]

Or pass a custom function:

>>> is_john_doe = lambda x: x == "John Doe"

>>> results = gdb.query(q, returns=(client.Node, is_john_doe, client.Relationship))
>>> results[0]
[<Neo4j Node: http://localhost:7474/db/data/node/14>,
True,
<Neo4j Relationship: http://localhost:7474/db/data/relationship/47>]

If the length of the elements is greater than the casting functions passed through
the returns parameter, the RAW will be used instead of raising an exception.

Sometimes query results include lists, as it happens when using COLLECT or other
collection functions [http://docs.neo4j.org/chunked/stable/query-functions-collection.html], neo4j-rest-client is able to handle these cases by passing
lists or tuples in the results list. Usually these lists contain items of the
same type, so passing only one casting function is enough, as all the items are
treated the same way.

>>> a = gdb.nodes.create()
>>> [a.relationships.create("rels", gdb.nodes.create()) for x in range(3)]
[<Neo4j Relationship: http://localhost:7474/db/data/relationship/43>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/44>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/45>]
>>> q = """match (a)--(b) with a, collect(b) as bs return a, bs limit 1"""

>>> gdb.query(q, returns=(client.Node, [client.Node,]))[0]
[<Neo4j Node: http://localhost:7474/db/data/node/31>,
 [<Neo4j Node: http://localhost:7474/db/data/node/29>,
 <Neo4j Node: http://localhost:7474/db/data/node/28>,
 <Neo4j Node: http://localhost:7474/db/data/node/30>]]

>>> gdb.query(q, returns=(client.Node, (client.Node,)))[0]
[<Neo4j Node: http://localhost:7474/db/data/node/31>,
 (<Neo4j Node: http://localhost:7474/db/data/node/29>,
 <Neo4j Node: http://localhost:7474/db/data/node/28>,
 <Neo4j Node: http://localhost:7474/db/data/node/30>)]

>>> gdb.query(query, returns=[client.Node, client.Iterable(client.Node)])[0]
[<Neo4j Node: http://localhost:7474/db/data/node/3672>,
 <listiterator at 0x7f6958c6ff50>]

However, if you know in advance how many elements are going to be returned as
the result of a collection function [http://docs.neo4j.org/chunked/stable/query-functions-collection.html], you can always customize the casting functions:

>>> gdb.query(q, returns=(client.Node, (client.Node, lambda x: x["data"], client.Node)))[0]
[<Neo4j Node: http://localhost:7474/db/data/node/31>,
 (<Neo4j Node: http://localhost:7474/db/data/node/29>,
 {u'tag': u'tag1'},
 <Neo4j Node: http://localhost:7474/db/data/node/30>)]

Query statistics

Extra information about the execution of a each query is stored in the
property stats.

>>> query = "MATCH (n)--() RETURN n LIMIT 5"
>>> results = gdb.query(query, data_contents=True)
>>> results.stats
{u'constraints_added': 0,
 u'constraints_removed': 0,
 u'contains_updates': False,
 u'indexes_added': 0,
 u'indexes_removed': 0,
 u'labels_added': 0,
 u'labels_removed': 0,
 u'nodes_created': 0,
 u'nodes_deleted': 0,
 u'properties_set': 0,
 u'relationship_deleted': 0,
 u'relationships_created': 0}

Graph and row data contents

The Neo4j REST API is able to provide the results of a query in other two
formats that might be useful when redering. To enable this option (which is the
default only when running inside a IPython Notebook), you might pass an extra
parameter to the query, data_contents. If set to True, it will populate the
properties .rows as a list of rows, and .graph as a graph representation of
the result.

>>> query = "MATCH (n)--() RETURN n LIMIT 5"
>>> results = gdb.query(query, data_contents=True)
>>> results.rows
[[{u'name': u'M\xedchael Doe', u'place': u'T\xedjuana'}],
 [{u'name': u'J\xf3hn Doe', u'place': u'Texa\u015b'}],
 [{u'name': u'Rose 0'}],
 [{u'name': u'William 0'}],
 [{u'name': u'Rose 1'}]]
>>> results.graph
 [{u'nodes': [{u'id': u'3',
 u'labels': [],
 u'properties': {u'name': u'M\xedchael Doe', u'place': u'T\xedjuana'}}],
 u'relationships': []},
 {u'nodes': [{u'id': u'2',
 u'labels': [],
 u'properties': {u'name': u'J\xf3hn Doe', u'place': u'Texa\u015b'}}],
 u'relationships': []},
 {u'nodes': [{u'id': u'45',
 u'labels': [],
 u'properties': {u'name': u'Rose 0'}}],
 u'relationships': []},
 {u'nodes': [{u'id': u'44',
 u'labels': [],
 u'properties': {u'name': u'William 0'}}],
 u'relationships': []},
 {u'nodes': [{u'id': u'47',
 u'labels': [],
 u'properties': {u'name': u'Rose 1'}}],
 u'relationships': []}]

If only one of the represenations is needed, data_contents can be either
constants.DATA_ROWS or constants.DATA_GRAPH.

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Filters

On top of Queries feature, there are some filtering helpers for nodes,
relationships and both indices. First thing you need is to define Q objects:

>>> from neo4jrestclient.query import Q

>>> Q("name", istartswith="william")

Once a lookup is defined, you may call the filter method over all
the nodes or the relationships:

>>> gdb.nodes.filter(lookup)
[<Neo4j Node: http://localhost:7474/db/data/node/14>]

Or just a list of elements identifiers, Node‘s or Relationship‘s:

>>> nodes = []

>>> for i in range(2):
 ...: nodes.append(gdb.nodes.create(name="William %s" % i))

>>> lookup = Q("name", istartswith="william")

>>> williams = gdb.nodes.filter(lookup, start=nodes)

Lookups

The syntax for lookups is very similar to the one used in Django [https://docs.djangoproject.com/en/dev/topics/db/queries/#complex-lookups-with-q-objects], but does
include other options:

Q(property_name, lookup=match)

The next list shows all the current lookups supported:

	exact, performs exact string comparation.

	iexact, performs exact string comparation, case insesitive.

	contains, checks if the property is contained in the string passed.

	icontains, as contains but case insesitive.

	startswith, checks if the property starts with the string passed.

	istartswith, as startswith but case insesitive.

	endswith, checks if the property ends with the string passed.

	iendswith, as endswith but case insesitive.

	regex, performs regular expression matching agains the string passed.

	iregex, as regex but case insesitive.

	gt, check if the property is greater than the value passed.

	gte, check if the property is greater than or equal to the value passed.

	lt, check if the property is lower than the value passed.

	lte, check if the property is lower than or equal to the value passed.

	in, , check if the property is in a list of elements passed.

	inrange,`an alias for in.

	isnull, checks if the property is null, passing True, or not, passing False.

	eq, performs equal comparations.

	equals, an alias eq.

	neq, performs not equal comparations.

	notequals, an alias neq.

Also, in order to be compliant with Cypher syntax prior to Neo4j 2.0, you can
add a nullable parameter to set if the lookup must be don using ! or ?.
By default, all lookups are nullable. After Neo4j 2.0, nullable options is no
longer supported since the operators ! and ? are not longer in Neo4j.

>>> lookup = Q("name", istartswith="william", nullable=True)

>>> lookup
n.`name`! =~ (?i)william.*

>>> lookup = Q("name", istartswith="william", nullable=False)

>>> lookup
n.`name`? =~ (?i)william.*

>>> lookup = Q("name", istartswith="william", nullable=None)

>>> lookup
n.`name` =~ (?i)william.*

There is support for complex lookups as well:

>>> lookups = (Q("name", exact="James")
 ...: & (Q("surname", startswith="Smith") & ~Q("surname", endswith="e")))
(n.`name`! = James AND (n.`surname`! =~ Smith.* AND NOT (n.`surname`! =~ .*1)))

Ordering

There is an feature to set the order by which the elements will be returned,
using the Cypher option order by. The syntax is a tuple: the first element is
the property name to order by, the second one the type of ordering, constants.ASC
for ascending, and constants.DESC for descending. A set of orderings can be used:

>>> gdb.nodes.filter(lookup).order_by("code", constants.DESC)

Indices

Indices also implement the filter method, so you can use an index as a start,
or just invoke the method to filter the elements:

>>> old_loves = gdb.relationships.filter(lookup, start=index)

>>> old_loves = gdb.relationships.filter(lookup, start=index["since"])

So, the next would be the same:

>>> old_loves = index.filter(lookup)

>>> old_loves = index.filter(lookup, key="since")

>>> old_loves = index["since"].filter(lookup)

However, it is not possible yet to pass a value for the index using the common
dictionary syntax. Instead, you may use the value parameter:

>>> old_loves = index.filter(lookup, key="since", value=1990)

Slicing

In addition, all filters implement lazy slicing, so the query is not run until
the results are going to be retrieved. However, there is not still support for
transactions:

>>> lookup = Q("name", istartswith="william")

>>> results = gdb.nodes.filter(lookup) # Not query executed yet

>>> len(restuls) # Here the query is executed
12

If the elements of the filter have been already retrieved from the server, the
slicing is then run against the local version. If not, the slice is transformed
into limit and skip options before doing the request.

>>> results = gdb.nodes.filter(lookup) # Not query executed yet

>>> restuls[1:2] # The Cypher query is limited using limit and skip
[<Neo4j Node: http://localhost:7474/db/data/node/14>]

>>> len(results) # The Cypher query is sent again to the server
12

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Traversals

The traversals framework is supported too with the same syntax of neo4j.py [http://components.neo4j.org/neo4j.py/],
but with some added issues.

Regular way:

>>> n1.relationships.create("Knows", n2, since=1970)
<Neo4j Relationship: http://localhost:7474/db/data/relationship/36009>

>>> class TraversalClass(gdb.Traversal):
 ...: types = [
 ...: client.All.Knows,
 ...:]
 ...:

>>> [traversal for traversal in TraversalClass(n1)]
[<Neo4j Node: http://localhost:7474/db/data/node/15880>]

Added way (the types of relationships are ‘All’, ‘Incoming’, ‘Outgoing’):

>>> n1.relationships.create("Knows", n2, since=1970)
<Neo4j Relationship: http://localhost:7474/db/data/relationship/36009>

>>> n1.traverse(types=[client.All.Knows])[:]
[<Neo4j Node: http://localhost:7474/db/data/node/15880>]

For getting a paginated traversal is only needed one of the next parameters:
‘paginated’ to enable the pagination, ‘page_size’ to set the size of returned
page, and ‘time_out’ to establish the lease time that the server will wait for.
After set any of this parameters, the traversal call will return an iterable
object of traversals called ‘PaginatedTraversal’:

>>> pages = n1.traverse(types=[client.All.Knows], stop=stop, page_size=5)

>>> pages
<PaginatedTraversal object at 0x25a5150>

>>> [n for n in [traversal for traversal in pages]]
[<Neo4j Node: http://localhost:7474/db/data/node/15880>]

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Extensions

The server plugins are supported as extensions of GraphDatabase, Node or
Relationship objects:

>>> gdb.extensions
{u'GetAll': <Neo4j ExtensionModule: [u'get_all_nodes',
 u'getAllRelationships']>}
>>> gdb.extensions.GetAll
<Neo4j ExtensionModule: [u'get_all_nodes', u'getAllRelationships']>

>>> gdb.extensions.GetAll.getAllRelationships()[:]

[<Neo4j Relationship: http://localhost:7474/db/data/relationship/0>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/1>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/2>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/3>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/4>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/5>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/6>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/7>,
 <Neo4j Relationship: http://localhost:7474/db/data/relationship/8>]

An example using extensions over nodes:

>>> n1 = gdb.nodes.get(0)

>>> n1.extensions
{u'DepthTwo': <Neo4j ExtensionModule: [u'nodesOnDepthTwo',
 u'relationshipsOnDepthTwo',
 u'pathsOnDepthTwo']>,
 u'ShortestPath': <Neo4j ExtensionModule: [u'shortestPath']>}

>>> n2 = gdb.nodes.get(1)

>>> n1.relationships.create("Knows", n2)
<Neo4j Relationship: http://localhost:7474/db/data/relationship/36>

>>> n1.extensions.ShortestPath
<Neo4j ExtensionModule: [u'shortestPath']>

>>> n1.extensions.ShortestPath.shortestPath.parameters

[{u'description': u'The node to find the shortest path to.',
 u'name': u'target',
 u'optional': False,
 u'type': u'node'},
 {u'description': u'The relationship types to follow when searching for ...',
 u'name': u'types',
 u'optional': True,
 u'type': u'strings'},
 {u'description': u'The maximum path length to search for, ...',
 u'name': u'depth',
 u'optional': True,
 u'type': u'integer'}]

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Transactions and Batch

Transactions in Cypher

Neo4j provides, since its version 2.0.0, a transactional endpoint for Cypher
queries. That feature is wrapped in ‘neo4jrestclient’ in the gdb.transaction()
method. But for backwards compatibility issues (there were transactions before),
you need to add an extra parameter for_query=True in order to enable it.

Object-based

The easiest way to use a transaction is by creating a tx object:

>>> tx = gdb.transaction(for_query=True)

While the transaction is alive, a property finished is set to False. The
property expires has a string with the date sent by the server.

>>> tx.finished
False
>>> tx.expires
"Sun, 08 Dec 2013 15:05:52 +0000"

Now, regular Cypher queries can be added to the transaction and executed or
in server:

>>> tx.append("CREATE (a) RETURN a", returns=client.Node)
>>> tx.append("CREATE (b) RETURN b", params={})
>>> results = tx.execute()
>>> len(results) == 2
True

Both methods, execute() and commit(), return a QuerySequence with
the results of the queries sent to the server. You can now perform any check
on the returned objects, and if there is something wrong, rollback the
transaction and restore the previous state of the database.

>>> tx.rollback()
>>> len(results)
0

Or you can commit and get the remaining results returned by server:

>>> tx.append("MERGE (c:Person {name:'Carol'})")
>>> tx.append("MERGE (d:Person {name:'Dave'})")
>>> results = tx.commit()
>>> len(results) == 2
True

After commit() or rollback(), the transaction is destroyed and no queries
can be appended.

Inside a with statement

For your convinience and wider control of the logic of your application,
transactions can be written inside a with statement. This way, you don’t need
a tx object and can use the regular syntax for queries. Each independent
query is executed in the transaction, so you have the returned values and can
operate with them:

>>> q = "start n=node(*) match n-[r:`{rel}`]-() return n, n.name, r, r.since"
>>> params = {"rel": "Knows"}
>>> returns = (client.Node, str, client.Relationship)
>>> with self.gdb.transaction(for_query=True) as tx:
... self.gdb.query("MERGE (c:Person {name:'Carol'})")
... results = self.gdb.query(q, params=params, returns=returns)
... node = results[0][0]
... if node["name"] == "Carol":
... tx.rollback()

Batch-based Transactions

The transaction support for regular opertations, like CRUD and indexing on
nodes and relationships, is based on the REST endpoint
for batch operations, therefore there is some limitations because it is not
a real transaction. When a batch of operations is sent to the server, Neo4j
executes it in a transaction, but there is no option to rollback and recover
a previous status of the database. In this sense, batch-emulated transactions
for operations on creation, edition and deletion of elements are useful, but
you won’t be able to perform checks on the elements modified until the batch
is sent to the server and the transaction is commited.

Deletion

Basic usage for deletion:

>>> n = gdb.nodes.create()
>>> n["age"] = 25
>>> n["place"] = "Houston"
>>> n.properties
{'age': 25, 'place': 'Houston'}
>>> with gdb.transaction():
... n.delete("age")
...
>>> n.properties
{u'place': u'Houston'}

Creation

Apart from update or deletion of properties, there is also creation. In this
case, the object just created is returned through a TransactionOperationProxy
object, which is automatically converted in the proper object when the
transaction ends. This is the second part of the commit process and a parameter
in the transaction, commit can be added to avoid the commit:

>>> n1 = gdb.nodes.create()
>>> n2 = gdb.nodes.create()
>>> with gdb.transaction() as tx:
 : for i in range(1, 11):
 : n1.relationships.create("relation_%s" % i, n2)
 :
>>> len(n1.relationships) != 0
True

Auto-update and auto-commit

When a transaction is performed, the values of the properties of the objects
are updated automatically. However, this can be controled by hand adding a
parameter in the transaction:

>>> n = gdb.nodes.create()
>>> n["age"] = 25
>>> with gdb.transaction(update=False):
 : n.delete("age")
 :
>>> n.properties
{'age': 25}
>>> n.update()
>>> n.properties
{}

You can also set commit=False and commit manually after the with block
is over:

>>> with gdb.transaction(commit=False) as tx:
 : n.delete("age")
 :
>>> n.properties
{'age': 25}
>>> tx.commit()
>>> n.properties
{}

The commit method of the transaction object returns True if there’s no any
fail. Otherwise, it returns ‘None’:

>>> tx.commit()
True
>>> len(n1.relationships)
10

Globals and nesting

In order to avoid the need of setting the transaction variable, ‘neo4jrestclient’
uses a global variable to handle all the transactions. The name of the variable
can be changed using de options:

>>> client.options.TX_NAME = "_tx" # Default value

And this behaviour can be disabled adding the right param in the transaction:
using_globals. Even is possible (although not very recommendable) to handle
different transactions in the same time and control when they are commited.
There are many ways to set the transaction of a intruction (operation):

>>> n = gdb.nodes.create()
>>> n["age"] = 25
>>> n["name"] = "John"
>>> n["place"] = "Houston"
>>> with gdb.transaction(commit=False, using_globals=False) as tx1, \
 : gdb.transaction(commit=False, using_globals=False) as tx2:
 : n.delete("age", tx=tx1)
 : n["name"] = tx2("Jonathan")
 : n["place", tx2] = "Toronto"
 :

>>> "age" in n.properties
True

>>> tx1.commit()
True
>>> "age" in n.properties
False
>>> n["name"] == "John"
True
>>> n["place"] == "Houston"
True

>>> tx2.commit()
True
>>> n["name"] == "John"
False
>>> n["place"] == "Houston"
False

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Options

There some global options available in neo4j-rest-client that change
internal behaviours.

CACHE

If CACHE is True, a .cache directory is created and the future
requests to the same URL will be taken from cache:

>>> neo4jrestclient.options.CACHE = False # Default

The location and name of the .cache can be changed by modifying the option
CACHE_STORE.

>>> neo4jrestclient.options.CACHE_STORE = "/path/to/cache"

The neo4j-rest-client’s cache is implemented using CacheControl [http://cachecontrol.readthedocs.org/en/latest/] for
requests [http://docs.python-requests.org/en/latest/], so you shouldn’t have any problem using your own custom cache
(e.g LocMemCache from Django):

>>> neo4jrestclient.options.CACHE_STORE = LocMemCache()

DEBUG

If DEBUG is True, httplib.HTTPConnection.debuglevel is set to 1,
and requests [http://docs.python-requests.org/en/latest/] enables its logger:

>>> neo4jrestclient.options.DEBUG = False # Default

SMART_DATES

There is experimental support for date, time, and datetime objects
since Neo4j does not support natively (yet) those data types. What
neo4j-rest-client does is to use a specific format to store them as strings,
and convert them from Python objects to string (and viceversa) when needed.

To enable this feature you can set SMART_DATES to True:

>>> neo4jrestclient.options.SMART_DATES = False # Default

The format in which date, time, and datetime objects are stored can
be changed by modifying the next values:

>>> neo4jrestclient.options.DATE_FORMAT = "%Y-%m-%d"
>>> neo4jrestclient.options.TIME_FORMAT = "%H:%M:%S.%f"
>>> neo4jrestclient.options.DATETIME_FORMAT = "%Y-%m-%dT%H:%M:%S.%f"

SMART_ERRORS

And SMART_ERRORS, set to False by default. In case of True, the standard
HTTP errors will be replaced by more pythonic errors (i.e. KeyError instead
of NotFoundError in some cases):

>>> neo4jrestclient.options.SMART_ERRORS = False # Default

TX_NAME

It is extremely weird to have the need to change this option, but in case that
you need a different name for the memory variable that will store in progress
transactions (aka batch operations), you can do that with TX_NAME:

>>> neo4jrestclient.options.TX_NAME = "_tx" # Default

URI_REWRITES

When using transactional Cypher endpoint behind SSL, Neo4j fails to returns the
right URI, (mistakenly produces http instead of https, and localhost:0
instead of the actual URI). By using this option neo4jrestclient can rewrite
those URIs to the right one. It is disabled by default (set to None)

For example, to replace “http://localhost:0/” with
“https://db.host.com:8000/”, you will need a dictionary like:

>>> neo4jrestclient.options.URI_REWRITES = {
 {"http://localhost:0/": "https://db.host.com:8000/",
}

If the order of the replace operation is important, a SortedDict can be used.

VERIFY_SSL

This option is used to set to True the verification of SSL certificates. By
default is set to False

>>> neo4jrestclient.options.VERIFY_SSL = False # Default

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	neo4j-rest-client 2.0.0 documentation

Changes

2.1.1 (2015-11-20)

	Add dockerized travis

	Fix #119. Allow labels create nodes directly

	Fix #122. Problem clearing labels of a node. Fix also a cache issue. Update travis to run python 3.4 and Neo4j verions

	Add more serialization support for extensions

2.1.0 (2014-11-09)

	Fix pip install error

	Remove lucene-querybuilder as dependency

	Add stats for query execution

	Add support for resultDataContents param in the transactional Cypher endpoint

	Fix #116. Although the old reference is still kept, the object does not exist
in server and will fail

	Add Neo4j 2.1.5 to travis

	Fixes issues #109 and #114, related to a memory leak in query transactions

	Fix #113. Add a way to cast query results from collection functions in Cypher

	Change .iteritems to items for Python 3 compatibility

	Change to enterprise for testing

	Fix URI_REWRITES option. Remove testing for 1.7.2, and add 2.1.4.

	Fix the download script for Neo4j, neo4j-clean-remote-db-addon no longer used.

	Add uri rewrites as a work around neo4j issue #2985

	Some pruning bugs

	Labels url is stored in node_labels settings key

	Fixed bug in prune function: it didn’t return the self object

	Fixed bug for prunning with JS code: added the case in traverse method for
prunning based on an arbitrary Javascript code.

2.0.4 (2014-06-20)

	Typos

	Bugfixes

	Drop support for 1.6 branch

2.0.3 (2014-05-16)

	Update travis to test Neo4j versions 1.9.7 and 2.0.3

	Fix #104. Keep backwards compatibility for ‘nullable’ prior 2.0
It will be deprecated for Neo4j>=2.0.0

	Update Q class for nullable=True

	Fix un/pickling extenions

	Refactorize get auth information from the connection URL

	Update queries.rst (typo)

	Fix the lazy loading of extensions

2.0.2 (2014-04-04)

	Add Pickle support for GraphDatabase objects

	Add small control to change display property in IPython

	Add a new parameter to auto_execute transactions in one single request

	Fix auto transaction in Cypher queries for Neo4j versions prior 2.0

	The non transactional Cypher will be removed eventually, so we create now
a transaction per query automatically

	Experimental support for IPython Notebook rendering

	Fix #101. Fix a problem when accessing node properties inside transaction
for queries

2.0.1 (2014-03-23)

	Fix coveralls for Travis

	Fix #100. Fixes rollback problem when outside a with statement

	Update Neo4j versions for testing

	Remove inrange test for version 1.7.2 of Neo4j

	Add specific test for inrange lookups

	Fixes #98. Bug due to an incorrect treatment of numbers in eq, equals,
neq, notequals lookups

	Add downloads

	Split exceptions from request.py file to a exceptions.py file

	Update requirements.txt

	Fix #96, fix dependency versions

	Fix #95. Support for creating spatial indexes

2.0.0 (2013-12-30)

	Add support for Neo4j 2.0

	Add Python3 support

	Remove Python 2.6 support

	Add support for Cypher transactional endpoint

	Add documentation for Cypher transactions

	Add support for Labels

	Add documentation for Labels

	Add support to pass Neo4j URL as the host, and neo4j-rest-client will request
for the ‘/db/data’ part in an extra request

	Add option for enabling verification of SSL certificates

	Fix #94. Disable lazy loading from Cypher queries but keep if for filters

	Update documentation

	Add the option to ‘create’ labels and add nodes to them

	Add filtering support for Labels

	Add tests for Labels

	Better structure to organize tests

	Add UnitTest.skipIf instead of my own decorator @versions

	Add development requirements and PyPy to Travis

	Add flake8

	Add support for tox

	Skip some test that depend on newer versions of other dependencies

	Update README with Coveralls.io image

	Add coverage

	Add extra requires for tests

	Enable syntax highlighting, fix spelling errors

	Fix #92. Allow nodes to be deleted from index without key or value

	Fix an error on traversals time_out when decimal values are passed

	Update Neo4j versions for Travis

	PEP8 review

	Add .all method to get all the elements. Underneath, it invokes .filter
with no arguments

	Merge pull request #85 from carlsonp/patch-1

1.9.0 (2013-05-27)

	Add Neo4j 1.9 and 2.0.0-M02 to tests and Travis.

	Fix Python 2.6 compatibility. Last Python 2.6 issue fixed.

	Fix test_filter_nodes_complex_lookups test for empty databases

	Fix get_or_create and create_or_fail tests and add SMART_ERRORS for those functions

	Add support for Neo4j versions when testing in Travis

	Add support for get_or_create and create_or_fail index operations

	Adding integration tests with Travis-CI

	Updated requirements.txt with Shrubbery proposals

	Add experimental support for smart dates

1.8.0 (2012-12-09)

	Updated lucene-querybuilder requirement.

	Add support for using Indexes as start points when filtering

	Add support for using filters in indices.

	Fixes an error when using cert and key files.

	Adding order by and filtering for relationships.

	First implementation of complex filtering and slicing for nodes based on
Cypher.

	Improving stability of tests.

	Fixes #74. Added the new .query() method and casting for returns. Also a very
initial .filter method with an special Q object for composing complex filters.

	Fixes #64, added a small unicode check.

	Feature cache store and cache extension requests. Every time extension is used
a get request is made before post this only needs to happen once per extension.

	Allow user to configure own cache engine, (e.g djangos cache).

	Read test db url from environ.

	Fixes #71. Pass correct url to get. Get with missing ‘/’ was causing an
additional 302.

	Support keep-alive / pipelining: httplib now instantiated on module load not
per quest this also fixes caching, when the CACHE option was set a no-cache
header was added that by passed the cache system.

	Fixes #68. Gremlin query trips on “simple” list, but not an error no
neo4j-rest-client side.

	Fixes #69. Incorrect node references when splitting transactions.

	Adding support for retrieving index elements in a transaction.

	Fixes #66. Ditch exception catch on root fetch at GraphDatabase.__init__().
As per #65, current behaviour when auth fails is that a 401 StatusException
is raised, and caught by this try/except block and a misleading NotFoundError
is raised in its place - lets just let the StatusException through. Unsure
about what other Exceptions may be raised but cannot reproduce.

	Fixed issue #69. Transaction split.

	Adding support for retrieving index elements in a transaction.

1.7.0 (2012-05-17)

	Fixing an error when reating relationships with nodes created previously in
a transactions.

	Fixing typo (self._aith vs self_auth).

	Fixing #60. Adding support when no port is specified.

	Fixing an error with unicode property names and indexing.

1.6.2 (2012-03-26)

	Fixing an error indexing with numeric values.

	Fixing an error indexing with boolean values.

	Adding initial unicode suppport for indices.
Adding better debug messages to 400 response codes.

1.6.1 (2012-02-27)

	Fixes #29. Adding support for authentication.

1.6.0 (2012-02-27)

	Adding documentation site.

	Finishing the experimental support for indexing and transactions.

	Adding preliminar indexing support in trasnsactions.

	Adding a new way to traverse the graph based on python-embedded.

	Removing __credits__ in favor of AUTHORS file. Updating version number.

	Fixes #33. Deprecating the requirement of a reference node.

	Added methods to bring it in line with the embedded driver.

	Added .single to Iterable and .items() to Node to bring it into alignment
with the embedded driver.

	Adding non-functional realtionshos creation inside transactions.

	New returnable type “RAW”, added in constants. Very useful for Gremlin and
Cypher queries.

	Extensions can now return raw results. Fixes #52.

	Added a test for issue #52, returns=RAW.

	Adding relationships support to transactions.

	Fixes #49. Usage in extensions.

	Improving transaction support. Related #49.

	Fixing some PEP08 warnings.

	Fixes #43. Unable to reproduce the error.

	Fixes #49. Improving the batch efficiency in get requests.

	Fixes #47. Improving Paths management in traversals.

	Adding ‘content-location’ as possible header in responses instead of
just ‘location’.

	Fixing an error wwhen the value of a set property operation is None.

	Merge branch ‘master’ of github.com:versae/neo4j-rest-client into devel.

	Fix for paginated traversals under Neo4j 1.5.

	Added check for ‘content-location’ header in PaginatedTraversal, ensuring
traversals don’t stop early with Neo4j 1.5.

1.5.0 (2011-10-31)

	Removing the smart_quote function from indexing. It’s not needed anymore with
the new way to add elements to indices.

	Fixes #37.

	Using JSON object to set index key and value.

1.4.5 (2011-09-15)

	Adding more testing to returns parameter in the extensions.

	Fixes 32. It needs some more testing, maybe.

	Updated to using lucene-querybuilder 0.1.5 (bugfixes and better wildcard
support).

	Fixed the test issue found in #34, and updated the REST client to using
lucene-querybuilder 0.1.5.

	Fixes #34. Fixing dependency of lucene-querybuilder version

	Fixes #30. Fixing an issue deleting all index entries for a node.

	Fixing an issue with parameters in extensions.

	Ensure that self.result is always present on the object, even if it’s None.

	Fixing naming glitch in exception message

	Ensure that self.result is always present on the object, even if it’s None

	Fixing an error retrieving relationships in paths.

	Fixing an error in extensions, Path and Position.

1.4.4 (2011-08-17)

	Merge pull request #28 from mhluongo/master

	Made the DeprecationWarnings a bit more specific.

	Nodes can now be used in set and as dict keys, differentiated by id.

	Added a test for node hashing on id.

	Removed the ‘Undirected’ reference from tests to avoid a DepreactionWarning.

	Moved the relationship creation DeprecationWarning so creating a relationship
the preferred way won’t raise it.

	Got rid of the DeprecationWarning on import- moved in to whenever using
Undirected.*.

	Fixed traversal return filters.

	Enabled return filters, including those with custom javascript bodies.
Eventually a more elegant (Python instead of string based) solution for
return filter bodies is in order.

	Fixed a mispelling in the test_traversal_return_filter case.

	Added a test for builtin and custom traversal return filters.

	Small bug fix for traversal

	Fixed bug in traverse method for POSITION and PATH return types.

1.4.3 (2011-07-28)

	Added some deprecation warnings.

	Added support for pickling ans some tests.

	Fixed an error deleting nodes and relationships on transactions.

	Finishied and refactored the full unicode support.

1.4.2 (2011-07-18)

	Updated the documentation and version.

	Added support for indices deletion.

	Improved Unicode support in properties keys and values and relationships
types. Adding some tests.

1.4.1 (2011-07-12)

	Fixed an error retrieving relationships by id.

	Added control to handle exceptions raised by Request objects.

	Updated changes, manifest and readme files.

1.4.0 (2011-07-11)

	Updated version number for the new release.

	Updated documentation.

	Updated develpment requirements.

	Added support for paginated traversals.

	Passed pyflakes and PEP8 on tests.

	Added weight to Path class.

	Index values now quoted_plus.

	Changed quote to quote_plus for index values.

	Added two tests for unicode and url chars in index values.

	Added initial documentacion for transactions.

	Added the transaction support and several tests.

	Fixed the implementation of __contains__ in Iterable class for evaluation
of ‘in’ and ‘not in’ expressions.

	Added documentation for Iterable objects.

	Added more transactions features.

	Added requirements file for virtual environments in development.

	Improved number of queries slicing the returned objects in a Iterable
wrapper class.

	Added Q syntax for more complicated queries.

	Added support for the Q query syntax for indexes using the DSL
at http://github.com/scholrly/lucene-querybuilder

	Fixed an error in the test_query_index case (forgot to include an ‘or’.
between queries).

	Added lucene-querybuilder to the test requirements in setup.py.

	Added a test case for Q-based queries.

1.3.4 (2011-06-22)

	Fixed the setup.py and httplib2 import error during installing.

	Reordered the options variables in an options.py file.
Allows index.query() to be called with or without a key

	Fixed issue #15 regarding dependency to httplib2

	Patched index.query() so it can take a query without a key (to support, say,
mutli-field Lucene queries). Ultimately, query so probably be refactored to
Index (instead of IndexKey) because IndexKey doesn’t actually help with
full-text queries.

	Fixed for issue #19 (missed that urllib.quote).

	Altered the test_query_index case to reflect how I think indexing should
work.

	Using assertTrue instead of failUnless in tests.py, failUnless is deprecated
in 2.7 and up, so I figured we might as well switch.

	Added SMART_ERRORS (aka “Django mode”). If you set SMART_ERROR to True it
will make the client throw KeyError instead of NotFoundError when a key is
missing.

1.3.3 (2011-06-14)

	Fixed an introspection when the results list of a traverse is empty.

	Merge pull request #17 from mhluongo/master

	Resolved the STOP_AT_END_OF_GRAPH traversal test case.
Calling .traverse(stop=STOP_AT_END_OF_GRAPH) will now traverse the graph
without a max depth (and without 500 errors).

	Added a failing test case for traverse(stop=STOP_AT_END_OF_GRAPH).

1.3.2 (2011-05-30)

	Added a test for deleting relationships.

	Fixing an Index compatibility issue with Python 2.6.1.

	Fixing an error in extensions support with named params.

1.3.1 (2011-04-16)

	Fixing setup.py.

1.3.0 (2011-04-15)

	First Python Index Package release with full support for Neo4j 1.3.

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	neo4j-rest-client 2.0.0 documentation

Index

 Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

search.html

 Navigation

 		
 index

 		neo4j-rest-client 2.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Javier de la Rosa.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

