

neo4django - User Documentation

neo4django is an Object Graph Mapper that let’s you use familiar Django model definitions and queries against the Neo4j graph database.

You can install the latest stable release from PyPi

> pip install neo4django

or get the bleeding-edge from GitHub.

> pip install -e git+https://github.com/scholrly/neo4django/#egg=neo4django-dev

Details

Getting Started

Configure your project to connect to Neo4j.

Writing Models

Define models to interact with the database.

Querying

Query against models in Neo4j.

Authentication

Store and interact with users in Neo4j.

The Admin Interface

Use Django’s admin interface with Neo4j.

Writing Django Tests

Migrations

Debugging & Optimization

Multiple Databases & Concurrency

Running the Test Suite

Contributing

We love contributions, large or small. The source is available on GitHub [https://github.com/scholrly/neo4django]- fork the project and submit a pull request with your changes.

Uncomfortable / unwilling to code? If you’d like, you can give a small donation on Gittip [https://www.gittip.com/mhluongo/] to support the project.

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Once you’ve installed neo4django, you can configure your Django project to connect to Neo4j.

Database Setup

An example settings.py:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db', 'test_database.sqlite3')
 }
}

NEO4J_DATABASES = {
 'default' : {
 'HOST':'localhost',
 'PORT':7474,
 'ENDPOINT':'/db/data'
 }
}

If you’d like to use other Django apps built on the regular ORM in conjunction with neo4django, you’ll still need to configure DATABASES with a supported database. You should also install a database router in your settings.py so the databases will play nice:

DATABASE_ROUTERS = ['neo4django.utils.Neo4djangoIntegrationRouter']

Once your project is configured, you’re ready to start Writing Models !

Writing Models

Models look similar to typical Django models. A neo4django model definition
might look like this:

from neo4django.db import models

class Person(models.NodeModel):
 name = models.StringProperty()
 age = models.IntegerProperty()

 friends = models.Relationship('self',rel_type='friends_with')

Properties

As you can see, some basic properties are provided:

class OnlinePerson(Person):
 email = models.EmailProperty()
 homepage = models.URLProperty()

Some property types can also be indexed by neo4django. This will speed up
subsequent queries based on those properties:

class EmployedPerson(Person):
 job_title = models.StringProperty(indexed=True)

All instances of EmployedPerson will have their job_title properties indexed.

For a list of included property types, check out neo4django.db.models.__init__.

Relationships

Relationships are simple. Instead of ForeignKey,
ManyToManyField, or OneToOneField,
just use Relationship. In addition to the
relationship target, you can specify a relationship type and direction,
cardinality, and the name of the relationship on the target model:

class Pet(models.NodeModel):
 owner = models.Relationship(Person,
 rel_type='owns',
 single=True,
 related_name='pets'
)

Note that specifying cardinality with single or related_single is optional-
Neo4j doesn’t enforce any relational cardinality. Instead, these options are
provided as a modeling convenience.

You can also target a model that has yet to be defined with a string:

class Pet(models.NodeModel):
 owner = models.Relationship('Person',
 rel_type='owns',
 single=True,
 related_name='pets'
)

And then in the interpreter:

>>> pete = Person.objects.create(name='Pete', age=30)
>>> garfield = Pet.objects.create()
>>> pete.pets.add(garfield)
>>> pete.save()
>>> list(pete.pets.all())
[<Pet: Pet object>]

If you care about the order of a relationship, add the
preserve_ordering=True option. Related objects will be retrieved in the
order they were saved.

Got a few models written? To learn about retrieving data, see Querying.

Querying

Querying should be easy for anyone familiar with Django. Model managers return
a subclass of QuerySet that converts queries
into the Cypher [http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html]
graph query language, which yield NodeModel
instances on execution.

Most of the Django QuerySet API [https://docs.djangoproject.com/en/1.4/ref/models/querysets/]
is implemented, with exceptions noted in the project issues [https://github.com/scholrly/neo4django/issues]. We’ve added two field lookups- member and member_in- to make searching over array properties easier. For an
OnlinePerson instance with an emails property, query against the field
like:

OnlinePerson.objects.filter(emails__member="wicked_cool_email@example.com")

Loading a Subgraph

It’s important to remember that, since we’re using a graph database, “JOIN-like”
operations are much less expensive. Consider a more connected model:

class FamilyPerson(Person):
 parents = Relationship('self', rel_type='child_of')
 stepdad = Relationship('self', rel_type='step_child_of', single=True)
 siblings = Relationship('self', rel_type='sibling_of')
 # hopefully this is one-to-one...
 spouse = Relationship('self', rel_type='married_to', single=True, rel_single=True)

Finding a child with parents named Tom and Meagan and a stepdad named Jack is simple:

FamilyPerson.objects.filter(parents__name__in=['Tom','Meagan']).filter(stepdad__name='Jack')

If we’d like to pre-load a subgraph around a particular FamilyPerson, we can
use select_related():

jack = Person.objects.filter(name='Jack').select_related(depth=5)
#OR
Person.objects.get(name='Jack').select_related('spouse__mother__sister__son__stepdad')

...either of which will pre-load Jack’s extended family so he can go about
recalling names without hitting the database a million times.

Authentication

By using a custom authentication backend, you can make use of Django’s
authentication framework while storing users in Neo4j.

First, make sure the django.contrib.auth and
django.contrib.sessions middleware and the django.contrib.auth
template context processor are installed. Also make sure you have a proper
SESSION_ENGINE set. django.contrib.sessions.backends.file will
work fine for development.

Next, add neo4django.graph_auth to your INSTALLED_APPS, and add:

AUTHENTICATION_BACKENDS = ('neo4django.graph_auth.backends.NodeModelBackend',)

in your settings.py. If you’re running Django 1.5+, set the AUTH_USER_MODEL:

AUTH_USER_MODEL = 'graph_auth.User'

To create a new user, use something like:

user = User.objects.create_user('john', 'lennon@thebeatles.com', 'johnpassword')

Login, reset password, and other included auth views should work as expected.
In your views, user will contain an instance of
neo4django.graph_auth.models.User for authenticated users.

Referencing Users

Other models are free to reference users. Consider:

from django.contrib.auth import authenticate

from neo4django.db import models
from neo4django.graph_auth.models import User

class Post(models.NodeModel):
 title = models.StringProperty()
 author = models.Relationship(User, rel_type='written_by', single=True,
 related_name='posts')

user = authenticate(username='john', password='johnpassword')

post = Post()
post.title = 'Cool Music Post'
post.author = user
post.save

assert list(user.posts.all())[0] == post

Customizing Users

Swappable user models are supported for Django 1.5+. You can subclass the
included NodeModel user, remember to set also the default manager as follows:

from neo4django.db import models
from neo4django.graph_auth.models import User, UserManager

class TwitterUser(User):
 objects = UserManager()
 follows = models.Relationship('self', rel_type='follows',
 related_name='followed_by')

jack = TwitterUser()
jack.username = 'jack'
jack.email = 'jack@example.com'
jack.set_password("jackpassword')
jack.save()

jim = TwitterUser()
jim.username = 'jim'
jim.email = 'jim@example.com'
jim.set_password('jimpassword')
jim.follows.add(jack)
jim.save()

And in your settings.py, add:

AUTH_USER_MODEL = 'my_app.TwitterUser'

If you’re still using 1.4, you can use the subclassing approach, with caveats.
First, that User manager shortcuts, like create_user(), aren’t
available, and that authenticate() and other included functions to work
with users will return the wrong model type. This is fairly straightforward to
handle, though, using the included convenience method
from_model():

from django.contrib.auth import authenticate

user = authenticate(username='jim', password='jimpassword')
twitter_user = TwitterUser.from_model(user)

Permissions

Because neo4django doesn’t support django.contrib.contenttypes or an
equivalent, user permissions are not supported. Object-specific or
contenttypes-style permissions would be a great place to contribute [https://github.com/scholrly/neo4django].

Writing Django Tests

There is a custom test case included which you can use to write Django tests
that need access to NodeModel instances. If
properly configured, it will wipe out the Neo4j database in between each test.
To configure it, you must set up a Neo4j instance with the cleandb [https://github.com/jexp/neo4j-clean-remote-db-addon] extension
installed. If your neo4j instance were configured at port 7475, and your
cleandb install were pointing to /cleandb/secret-key, then you would put
the following into your settings.py:

NEO4J_TEST_DATABASES = {
 'default': {
 'HOST': 'localhost',
 'PORT': 7475,
 'ENDPOINT': '/db/data',
 'OPTIONS': {
 'CLEANDB_URI': '/cleandb/secret-key',
 'username': 'lorem',
 'password': 'ipsum',
 }
 }
}

With that set up, you can start writing test cases that inherit from
neo4django.testcases.NodeModelTestCase and run them as you normally would
through your Django test suite.

Debugging & Optimization

A django-debug-toolbar [https://github.com/django-debug-toolbar/django-debug-toolbar] panel [https://github.com/robinedwards/django-debug-toolbar-neo4j-panel/] has been written to make debugging Neo4j REST
calls easier. It should also help debugging and optimizing neo4django.

neo4django.testcases.NodeModelTestCase.assertNumRequests() can also help
by ensuring round trips in a piece of test code don’t grow unexpectedly.

Multiple Databases & Concurrency

Multiple Databases

neo4django was written to support multiple databases- but that support is
untested. In the future, we’d like to fully support multiple databases and
routing similar to that already in Django. Because most of the infrastucture
is complete, robust support would be a great place to
contribute [https://github.com/scholrly/neo4django].

Concurrency

Because of the difficulty of transactionality over the REST API, using
neo4django from multiple threads, or connecting to the same Neo4j instance from
multiple servers, is not recommended without serious testing.

That said, a number of users do this in production. Hotspots like type hierarchy
management are transactional, so as long as you can separate the entities being
manipulated in the graph, concurrent use of neo4django is possible.

Running the Test Suite

virtualenv

It is recommended that you develop and run tests from within the confines of a
virtualenv. If you have virtualenv installed, create the new environment by
executing:

$> virtualenv neo4django

Once created, clone a local copy of the neo4django source:

$> cd neo4django
$> git clone https://github.com/scholrly/neo4django src/neo4django

After you have a virtualenv created, you must activate it:

$> source <venv_path>/bin/activate

Neo4j Test Instance

The test suite requires that Neo4j be running, and that you have the cleandb [https://github.com/jexp/neo4j-clean-remote-db-addon]
extension installed at localhost:7474/cleandb. You must download the
appropriate cleandb [https://github.com/jexp/neo4j-clean-remote-db-addon] version that matches the version of Neo4j you have running.
Place the plugin jar in <NEO4J_PATH>/plugins and edit <NEO4J_PATH>/conf/neo4j-server.properties
to include the following:

org.neo4j.server.thirdparty_jaxrs_classes=org.neo4j.server.extension.test.delete=/cleandb
org.neo4j.server.thirdparty.delete.key=supersecretdebugkey!

The first line represents the URL endpoint for invoking cleandb, and the second line
is the password to use the cleandb extension. You can change these values to whatever
makes most sense to you, but keep in mind that the test suite currently expects
/cleandb and supersecretdebugkey! for both the URL and password respectively.
If you choose to use different values, you will need to edit neo4django/tests/test_settings.py
to reflect your local changes.

If you are testing on a linux platform, you may also easily spin up a local test
Neo4j instance by using the packaged install_local_neo4j.bash script. This script
will retrieve a specified version of the community package of Neo4j and install it
into a lib folder in your current working directory. The script will also retrieve
and install the cleandb [https://github.com/jexp/neo4j-clean-remote-db-addon] extension and install it as well.

By default, running install_local_neo4j.bash with no arguments will install version
1.8.2, as this is the oldest version run for Travis CI builds and supported by neo4django.
If you would like to test another version, install_local_neo4j.bash accepts a version
number as an argument. Currently, Travis CI builds are run against 1.8.2 and 1.9.RC1
versions of Neo4j; tests against 1.7.2 are run, but expected to fail. Once installed,
start the local Neo4j instance via lib/neo4j-community-<VERSION>/bin/neo4j start.
Similarly, you can stop the local instance via lib/neo4j-community-<VERSION>bin/neo4j stop.

Running Tests

If you are working withing an virtualenv (and you should be), activate your venv
(see above) and use pip to install both the core requirements and the requirements
for running tests:

$> pip install -r requirements.txt -r test_requirements.txt

Since testing involves working with django, you will need to export an environment
variable for the included test django settings:

$> export DJANGO_SETTINGS_MODULE=neo4django.tests.test_settings

Now you can run the test suite. All tests in the neo4django test suite are expected
to be run with nose [http://readthedocs.org/docs/nose/en/latest/] and use a plugin [https://github.com/scholrly/nose-regression] for ensuring that regression tests pass (both
are installed for you if you pip install the test requirements). To run the test suite,
simply issue the following:

$> cd <path_to>/neo4django
$> nosetests --with-regression

This may give you some output about failing tests, but you should be most interesting in
the final output in which a report is given about tests passing or failing regression
tests. Note, that ANY changeset that fails regression tests will be denied a pull.

Index

The Admin Interface

After a few settings tweaks, you can use the admin interface.

You’ll need neo4django’s Authentication working properly, as well as its
prerequisites like django.contrib.sessions.

Add neo4django.admin and neo4django.contenttypes to your
INSTALLED_APPS. Also include django.contrib.admin and
django.contrib.contenttypes, but make sure they come after the neo4django
versions.

In your urls.py, instead of importing django.contrib.admin, import
neo4django.admin:

from neo4django import admin

admin.autodiscover()

urlpatterns = patterns('',
 ...
 (r'^admin/', include(admin.site.urls)),
)

And in your app’s admin.py, do the same:

from neo4django import admin
from my_app.models import MyModel

class MyModelAdmin(admin.ModelAdmin):
 ...

admin.site.register(MyModel, MyModelAdmin)

Since we don’t use syncdb, you probably won’t have created a neo4django
superuser. Run manage.py shell and create a superuser with:

from neo4django.graph_auth.models import User
User.objects.create_superuser('matt', 'matt@emailprovider.com', 'password')

Run manage.py runserver, and visit http://localhost:8000/admin. Voila. Sign
in and enjoy.

Usage with Relational Databases

The integration hasn’t been tested using both Neo4j and a relational database.
The two databases certainly wouldn’t be able to share an admin site, but it
might be possible to run them as separate admin sites with their own URLs.

As example routing might look like:

from django.contrib import admin
admin.autodiscover()

from neo4django import admin as neo_admin
neo_admin.autodiscover()

urlpatterns = patterns('',
 (r'^admin/', include(admin.site.urls)),
 (r'^neo_admin/', include(neo_admin.site.urls))
)

If you give this a try, please let us know how it goes!

Limitations

The integration is new, and only basic features have been tested. Known
limitations include broken “View on Site” and “History” buttons, but more will
surely be found. If you have any trouble, please raise an issue [https://github.com/scholrly/neo4django/issues/]!

Migrations

neo4django doesn’t come with a migration tool. If you flip a property to
indexed=True or change a relationship, make sure you update the graph
manually to reflect the change. In the case of newly index properties,
re-index your models by resetting the property (per affected model instance)
and saving.

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		neo4django - User Documentation

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

