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nengo_mpi is a C++/MPI backend for nengo, a python library for building and simulating biologically
realistic neural networks. nengo_mpi makes it possible to run nengo simulations in parallel on thousands of
processors, and existing nengo scripts can be adapted to make use of nengo_mpi with minimal effort.

With an MPI implementation installed on the system, nengo_mpi can be used to run neural simulations in
parallel using just a few lines of code:

import nengo
import nengo_mpi
import numpy as np
import matplotlib.pyplot as plt

with nengo.Network() as net:
sin_input = nengo.Node(output=np.sin)

# A population of 100 neurons representing a sine wave
sin_ens = nengo.Ensemble(n_neurons=100, dimensions=1)
nengo.Connection(sin_input, sin_ens)

# A population of 100 neurons representing the square of the sine wave
sin_squared = nengo.Ensemble(n_neurons=100, dimensions=1)
nengo.Connection(sin_ens, sin_squared, function=np.square)

# View the decoded output of sin_squared
squared_probe = nengo.Probe(sin_squared, synapse=0.01)

partitioner = nengo_mpi.Partitioner(2)
sim = nengo_mpi.Simulator(net, partitioner=partitioner)
sim.run(5.0)

plt.plot(sim.trange(), sim.data[squared_probe])
plt.show()

There are 3 differences between this script and a script using the reference implementation of nengo. First,
we need to import nengo_mpi. Then we need to create a Partitioner object, which specifies how
many components the nengo network should be split up into (this corresponds to the maximum number of
distinct processors that can be used to run the simulation). Finally, when creating the simulator we need to
use nengo_mpi’s Simulator class, and we need to pass in the Partitioner instance.

The script can then be run in parallel using:

mpirun -np 2 python -m nengo_mpi <script_name>

sin_ens and sin_squaredwill be simulated on separate processors, with the output of sin_ens being
passed to the input of sin_squared every time-step using MPI. After the simulation has completed, the
probed results from all processors are passed back to the main processor, so all probed data can be accessed
in the usual way (e.g. sim.data[squared_probe]).

nengo_mpi is fully featured, supporting all aspects of Nengo Release 2.0.2.
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CHAPTER 1

Getting Started

Installation

At the present time, nengo_mpi is only known to be usable on Linux. Obtaining all nengo_mpi functionality
requires a working installation of MPI, and the most recent version of nengo and all associated dependencies.

Basic installation

To install nengo_mpi, we use git:

git clone https://github.com/nengo/nengo_mpi.git
cd nengo_mpi
python setup.py develop --user

If you’re using a virtualenv (recommended!) then you can omit the --user flag. The last step
is compile the mpi_sim C++ library, which contains most of the functionality. To do this, cd into
nengo_mpi/mpi_sim and type make. If an MPI implementation is present on the system, then this
process be relatively straightforward.

Coming soon: More info on trouble-shooting the compilation process.

Adapting Existing Nengo Scripts

Existing nengo scripts can be adapted to make use of nengo_mpi by making just a few small modifications.
The most basic change that needs to be made is importing nengo_mpi in addition to nengo, and then using
the nengo_mpi.Simulator class in place of the Simulator class provided by nengo

import nengo_mpi
import nengo

... Code to build network ...

sim = nengo_mpi.Simulator(network)
sim.run(1.0)

3
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plt.plot(sim.trange(), sim.data[probe])

This will run a simulation using the nengo_mpi backend, but does not yet take advantage of parallelization.
However, even without parallelization, the nengo_mpi backend can often be quite a bit faster than the refer-
ence implementation (see our Benchmarks) since it is a C++ library wrapped by a thin python layer, whereas
the reference implementation is pure python.

Partitioning

In order to have simulations run in parallel, we need a way of specifying which nengo objects are going
to be simulated on which processors. A Partitioner is the abstraction we use to do this specification.
The most basic information that a partitioner requires is the number of components to split the network into.
We can supply this information when creating the partitioner, and then pass the partitioner to the Simulator
object:

partitioner = nengo_mpi.Partitioner(n_components=8)
sim = nengo_mpi.Simulator(network, partitioner=partitioner)
sim.run(1.0)

The number of components we specify here acts as an upper bound on the effective number of processors
that can be used to run the simulation.

We can also specify a partitioning function, which accepts a graph (corresponding to a nengo network) and a
number of components, and returns a python dictionary which gives, for each nengo object, the component
it has been assigned to. If no partitioning function is supplied, then a default is used which simply assigns
each component a roughly equal number of neurons. A more sophisticated partitioning function (which has
additional dependencies) uses the metis package to assign objects to components in a way that minimizes
the number of nengo Connections that straddle component boundaries. For example:

partitioner = nengo_mpi.Partitioner(n_components=8, func=nengo_mpi.metis_partitioner)
sim = nengo_mpi.Simulator(network, partitioner=partitioner)
sim.run(1.0)

For small networks, we can also supply a dict mapping from nengo objects to component indices:

model = nengo.Network()
with model:

A = nengo.Ensemble(n_neurons=50, dimensions=1)
B = nengo.Ensemble(n_neurons=50, dimensions=1)
nengo.Connection(A, B)

assignments = {A: 0, B: 1}
sim = nengo_mpi.Simulator(model, assignments=assignments)
sim.run(1.0)

Note, though, that this does not scale well and should be reserved for toy networks/demos.
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Running scripts

To use the nengo_mpi backend without parallelization, scripts modified as above can be run in the usual
way

python nengo_script.py

This will run serially, even if we have used a partitioner to specify that the network be split up into multiple
components. When a script is run, nengo_mpi automatically detects how many MPI processes are active,
and assigns components to each process. In this case only one process (the master process) is active, and all
components will be assigned to it.

In order to get parallelization we need a slightly more complex invocation:

mpirun -np NP python -m nengo_mpi nengo_script.py

where NP is the number of MPI processes to launch. Its fine if NP is not equal to the number of components
that the network is split into; if NP is larger, then some MPI processes will not be assigned any component
to simulate, and if NP is smaller, some MPI processes will be assigned multiple components to simulate.

1.3. Running scripts 5
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CHAPTER 2

User Guide

How It Works

Here we attempt to give a rough idea of how nengo_mpi works under the hood, and, in particular, how
it achieves parallelization. nengo_mpi is based heavily on the reference implementation of nengo. The
reference implementation works by converting a high-level neural model specification into a low-level com-
putation graph. The computation graph is a collection of operators and signals. In short, signals
store data, and operators perform computation on signals and store the results in other signals. To run the
simulation, nengo simply executes each operator in the computation graph once per time step. For a concrete
example of how this works, consider the following simple nengo script:

import nengo

model = nengo.Network()
with model:

A = nengo.Ensemble(n_neurons=50, dimensions=1)
B = nengo.Ensemble(n_neurons=50, dimensions=1)
conn = nengo.Connection(A, B)

sim = nengo.Simulator(model)
sim.run(time_in_seconds=1.0)

The conversion from the high-level specification (e.g. the nengo Network stored in the vari-
able model) to computation graph is called the build step, and takes place in the line sim =
nengo.Simulator(model). The generated computation graph looks something like this:

A few signals and operators whose purposes are somewhat opaque have been omitted here for clarity. Now
suppose that we’re impatient and find that the call to sim.run is too slow. We can easily parallelize the
simulation step by making use of nengo_mpi. Making the few necessary changes, we end up with the
following script:

import nengo
import nengo_mpi

model = nengo.Network()
with model:

A = nengo.Ensemble(n_neurons=50, dimensions=1)
B = nengo.Ensemble(n_neurons=50, dimensions=1)

7
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nengo.Connection(A, B)

# assign the ensembles to different processors
assignments = {A: 0, B: 1}
sim = nengo_mpi.Simulator(model, assignments=assignments)

sim.run(time_in_seconds=1.0)

Now ensembles A and B will be simulated on different processors, and we should get a factor of 2 speedup
in running the simulation (though it will hardly be perceptible given how tiny our network is). nengo_mpi
will produce a computation graph quite similar to the one produced by vanilla nengo, except it will use
operators that are implemented in C++ rather than python, and will add a few new operators to achieve the
inter-process communication:

The MPISend operator stores the index of the processor to send its data to, and likewise the MPIRecv
operator stores the index of the processor to receive data from. Moreover, they both share a “tag”, a unique
identifier which bonds the two operators together and ensures that the data from the MPISend operator gets
sent to the correct MPIRecv operator. This basic pattern can be scaled up to simulate very large networks
on thousands of processors.

Some readers may have noticed something odd by now: it may seem like it would be impossible to achieve
accelerated performance from the set-up depicted in the above diagrams. In particular, it seems as if the
operators on processor 1 will need to wait for the results from processor 0, so the computation is still
ultimately a serial one, just that now we have added inter-process communication in the pipeline to slow
things down.

This turns out not to be the case, because the Synapse operator is special in that it is what we call an
“update” operator. Update operators break the computation graph up into independently-simulatable com-
ponents. In the first diagram, the DotInc operator in ensemble B performs computation on the value of the
Input signal from the previous time-step 1. Thus, the operators in ensemble B do not need to wait for the
operators in ensemble A and the connection, since the values from the previous time-step should already be
available. Likewise, in the second diagram, the MPIRecv operator actually receives data from the previous
time-step. Thanks to this mechanism, we are in fact able to achieve large-scale parallelization, demonstrated
empirically by our Benchmarks.

Modules

nengo_mpi is composed of several fairly separable modules.

python

The python code consists primarily of alternate implementations of both nengo.Simulator and
nengo.Model. nengo_mpi.Simulator is a wrapper around the C++/MPI code which provides an
interface nearly identical to nengo.Simulator (see Getting Started). The nengo_mpi.Model class
is primarily responsible for adapting the output of the reference implementation’s build step (converting

1 “Delays” like this are necessary from a biological-plausibility standpoint as well. Otherwise, neural activity elicited by a
stimulus could be propogated throughout the entire network in a single time step, regardless of the network’s size.
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from a high-level model specificationto a concrete computation graph; see How It Works) to work with
nengo_mpi.Simulator.

The final major chunk of python code handles the complex task of partitioning a nengo Network into a
desired number of components that can be simulated independently.

C++

The directory mpi_sim contains the C++ code. This code implements a back-end for nengo which can use
MPI to run simulations in parallel. The C++ code only implements simulation capabilities; the build step is
still done in python, and nengo_mpi largely uses the builder provided by the reference implementation. The
C++ code can be used in at least three different ways.

mpi_sim.so

A shared library that allows the python layer to access the core C++ simulator. The python code creates an
HDF5 file encoding the built network (the operators and signals that need to be simulated), and then makes
a call out to mpi_sim.so with the name of the file. mpi_sim.so then opens the file (in parallel if there
are multiple processors active) and runs the simulation.

nengo_mpi executable

This is an executable that allows the C++ simulator to be used directly, instead of having to go through
python. The executable accepts as arguments the name of a file specifying the operators and signals in a
network, as well as the length of time to run the simulation for, in seconds. Removing the requirement that
the C++ code be accessed through python has a number of advantages. In particular, it can make attaching a
debugger much easier. Also, some high-performance clusters (e.g. BlueGene) provide only minimal support
for python. The nengo_mpi exectuable has no python dependencies, and so it can be used on these machines.
A typical workflow is to use the python code to create the HDF5 file on a machine with full python support,
and then transfer that file over to the high-performance cluster where the network encoded by that file can
be simulated using the nengo_mpi executable. See Workflows for further details.

nengo_cpp executable

This is just a version of the nengo_mpi executable which does not have MPI dependencies 1 (which, of
course, means that there is no parallelization). It is possible that some users may find this useful in some
situations where the MPI dependency cannot be met, as the C++ simulator is often significantly faster then
the reference implementation simulator even without parallelization (see our Benchmarks).

Workflows

There are two distinct ways to use nengo_mpi.
1 This is currently a lie, but it will be true soon.

2.3. Workflows 9
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1. Build With Python, Simulate From Python

This is the most straightforward way to run simulations. Existing nengo scripts can quickly be adapted to
use nengo_mpi with this method. This workflow is described in Getting Started.

2. Build With Python, Simulate Using Stand-Alone Executable

Using this workflow, the process of building networks is similar to the first workflow, while the process
of running the simulations is quite different. This approach offers more flexibility, allowing simulations
to be built on one computer (which we’ll call the “build” machine) with full python support but no MPI
installation, and then simulated on another computer (which we’ll call the “sim” machine) with a full MPI
installation but no python support (e.g. a cluster).

One point to be aware of with this method is that it has some limitations. In particular, it cannot deal
with networks containing non-trivial nengo Nodes. The reason is that at simulation time, python will be
completely out of the picture, so there is no way to execute the python code that Nodes contain. It is
possible that this could be fixed in the future by spinning up a python interpreter at simulation time, though
this would involve at significant amount of work. At the present time, the only nengo Nodes are allowed are
passthrough nodes, nodes that output a constant signal, and SpaunStimulus nodes. The first two are trivial
to implement, and the third we have made special accommodations for.

Building

The first step is to build a network and save it to a file. To do this, we need to make a change to how we call
nengo_mpi.Simulator. In particular, we supply the save_file argument:

sim = nengo_mpi.Simulator(model, partitioner=partitioner, save_file="model.net")

This call will create a file called model.net in the current directory, which stores the operators and signals
required to simulate the nengo Network specified by model. This file will actually be an HDF5 file, but we
typically give it the .net extension to indicate that it stores a built network. The script can then be executed
(on the “build” machine) using a simple invocation:

python nengo_script.py

Simulating

Now we can make use of the network file we’ve created using the nengo_mpi executable (see Modules for
more info on the executable). Assuming that we are now on the “sim” machine, and that the nengo_mpi
executable has been compiled, we can run:

mpirun -np NP nengo_mpi model.net 1.0

where NP is the number of MPI processors to use. This will simulate the network stored in model.net
for 1 second of simulation time.

The result of the simulation (the data collected by the probes) will be stored in an HDF5 file called
model.h5. We can specify a different name for the output file as follows:

10 Chapter 2. User Guide
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mpirun -np NP nengo_mpi --log results.h5 model.net 1.0

Finally, if MPI is not available on the “sim” machine, we can instead use:

nengo_cpp --log results.h5 model.net 1.0

but this will run serially.

Benchmarks

Benchmarks testing the simulation speed of nengo_mpi were performed with 3 different machines and 3
different large-scale spiking neural networks. The machines used were a home PC with a Quad-Core 3.6GHz
Intel i7-4790 and 16 GB of RAM, Scinet’s General Purpose Cluster, and Scinet’s 4 rack Blue Gene/Q. We
tested nengo_mpi using different numbers of processors, and also tested the reference implementation of
nengo (on the home PC only) for comparison.

Stream Network

The stream network exhibits a simple connectivity structure, and is intended to be close to the optimal
configuration for executing a simulation quickly In parallel using nengo_mpi. In particular, the ratio of the
amount of communication vs computation per step is relatively low. The network takes a single parameter 𝑛
giving the total number of neural ensembles. The network contains

√
𝑛 different “streams”, where a stream

is a collection of
√
𝑛 ensembles connected in a circular fashion (so each ensemble has 1 incoming and 1

outgoing connection). Each ensemble is 4-dimensional and contains 200 LIF neurons, and we vary 𝑛 as
the independent variable in the graphs below. The largest network contains 212 = 4096 ensembles, for a
total of 200 * 4096 = 819, 200 neurons. In every case, the ensembles are distributed evenly amongst the
processors. Each execution consists of 5 seconds of simulated time, and each data point is the result of 5
separate executions.

Random Graph Network

The random graph network is constructed by choosing a fixed number of ensembles, and then randomly
choosing ensemble-to-ensemble connections to insantiate until a desired proportion of the total number of
possible connections is reached. In all cases, we use 1024 ensembles, and we vary the proportion of connec-
tions. This network is intended to show how the performance of nengo_mpi scales as the ratio of commu-
nication to computation increases, and investigate whether it is always a good idea to add more processors.
Adding more processors typically increases the amount of inter-processor communication, since it increases
the likelihood that any two ensembles are simulated on different processors. Therefore, if communication is
the bottleneck, then adding more processors will tend to decrease performance.

Each ensemble is 2-dimensional and contains 100 LIF neurons, and each connection computes the identity
function. With 𝑛 ensembles, there are 𝑛2 possible connections (since we allow self-connections and the
connections are directed). Therefore in the most extreme case we have have 0.2 × 10242 ≈ 209, 715
connections, each relaying a 2-dimensional value. The number of such connections that need to engage in
inter-processor communication is a function of the number of processors used in the simulation, and the
particular random connectivity structure that arose. Each execution consists of 5 seconds of simulated time,

2.4. Benchmarks 11
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and each data point is the average of executions on 5 separate networks with different randomly chosen
connectivity structure.

SPAUN

SPAUN (Semantic Pointer Architecture Unified Network) is a large-scale, functional model of the human
brain developed at the CNRG. It is composed entirely of spiking neurons, and can perform eight sepa-
rate cognitive tasks without modification. The original paper can be found here. SPAUN is an extremely
large-scale spiking neural network (currently approaching 4 million neurons when using 512-dimensional
semantic pointers) with very complex connectivity, and represents a somewhat more realistic test than the
more contrived examples used above. In the plots below we vary the dimensionality of the semantic pointers,
the internal representations used by SPAUN.

Clearly the larger clusters are providing less of a benefit here. The hypothesized reason is that thus far we
have been unable to split SPAUN up into sufficiently small components than can be simulated independently.
There are some components with many thousands of neurons on them. Thus the limiting factor for the speed
of simulation is how quickly an individual processor is able to simulate one of these large components. We
can likely remedy this by playing around with the connectivity of SPAUN and finding ways to reduce the
maximum component size.

FAQ

Is there any build step parallelization?

No, nengo_mpi only provides parallelization for the simulation step. The build step is where all the really
difficult stuff happens, which, for instance, makes an Ensemble act like an Ensemble. Therefore, nengo_mpi
simply uses vanilla nengo’s builder, which runs serially in python.

During an invocation such as:

mpirun -np 8 python -m nengo_mpi nengo_script.py

the build step is performed entirely by the process with index 0.

It is definitely possible to create a parallelized version of the builder. However, that should probably use
a more python-friendly, platform-agnostic technology than MPI (something like ZeroMQ). In other words,
thats another project.

What is the difference between a cluster a component, a partition, a chunk, a process, a processor,
and a node? I’ve seen all these words used in the code with apparently similar meanings.

All these terms do in fact have precise meanings in the context of nengo_mpi. They can nicely be divided
up into terms that apply at build time and terms that apply at simulation time.

• Build Time

– A cluster (distinct from a cluster of machines in high-performance computing) is a group
of nengo objects that must be simulated together, for any of a number of reasons (see the class
NengoObjectCluster in partition/base.py). The most prominent reason is that there is an path

12 Chapter 2. User Guide
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of Connections between the two objects that does not have a synapse (since synapses are the
main source of “update” operators; see How It Works). Another common reason is that the two
objects are connected by a Connection which has a learning rule. The partitioning step applies a
partitioning function to a graph whose nodes are clusters.

– A component (as in a component of a partition) is a group of clusters that will be simulated
together. Components are computed by the partitioning step. When creating an instance of
nengo_mpi.Simulator, we typically specify the number of components that we want
the network to be divided into. When nengo_mpi saves a network to file for communication
with the C++ code, each component is stored separately.

– A partition is a collection of components. The goal of the partitioning step is to create a
partition of the set of clusters, in the sense used here. High-quality partitions are those which do
not assign drastically different amounts of work to different components, and which minimize
the amount of communication between components.

• Simulation Time

– A process is, of course, an OS abstraction for a line of computation. A processor is
a physical computation device. Processes run on processors. It is generally possible
to run a nengo_mpi simulation using more processes than there are processors avail-
able on the machine, however the amount of parallelization we can obtain is determined by the
number of physical processors (though hyperthreading can increase the effective number of
processors). The number of processes used to run a simulation is specified by the -np
<NP> command-line argument when calling mpi_run.

– A chunk (see chunk.hpp) is the C++ code’s abstraction for a collection of nengo objects
(actually, signals and operators corresponding to those objects) that are being simulated by a
single process. There is a one-to-one relationship between chunks and processes. One
of the first things that each process does is create a chunk.

– The relationship between chunks/processes and components is as follows. At build
time the network is divided into some specified number of components by partition-
ing. At simulation time, some specified number of chunks/processes will be active.
Components are assigned to chunks/processes in a round-robin fashion. For exam-
ple, if there are 4 chunks/processes active and the network to simulate has 7 components,
then process 0 simulates components 0 and 4, process 1 simulates 1 and 5, etc. If the
network instead had only 3 components, then process 3 would be left without anything
to simulate, which is perfectly OK.

– In the world of High-Performance Computing, a node (distinct from a nengo Node) is a phys-
ical computer consisting of some number of processors. On the General Purpose Cluster
there are 8 processors per node and on Bluegene/Q there are 16 (that becomes 16 for GPC and
64 for BGQ once hyperthreading is taken into account). When running on one of these high-
performance clusters, jobs are assigned computational resources in units of nodes rather than
processors.
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CHAPTER 3

Developer Guide

Developer installation

If you want to change parts of Nengo, you should do a developer installation.

git clone https://github.com/nengo/nengo.git
cd nengo
python setup.py develop --user

If you use a virtualenv (recommended!) you can omit the --user flag.

How to build the documentation

We use the same process as nengo to build the documentation.

Development workflow

Development happens on Github. Feel free to fork any of our repositories and send a pull request! However,
note that we ask contributors to sign a copyright assignment agreement.

Code style

For python code, we use the same conventions as nengo: PEP8, flake8 for checking, and numpydoc For
docstrings. See the nengo code style guide.

For C++ code, we roughly adhere to Google’s style guide.

Unit testing

We use PyTest to run our unit tests on Travis-CI. To ensure Python 2/3 compatibility, we test with Tox.
We run nengo’s full test-suite using nengo_mpi as a back-end. We also have a number of tests to explicitly
ensure that results obtained using nengo_mpi are the same as nengo to a very high-degree of accuracy.
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http://pytest.org/latest/
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For more information on running tests, see the README.
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