

 Navigation

 	
 index

 	
 next |

 	nengo_mpi 0.1.0-dev docs

nengo_mpi

nengo_mpi [https://github.com/e2crawfo/nengo_mpi] is a C++/MPI backend for
nengo [https://pythonhosted.org/nengo/index.html], a python library
for building and simulating biologically realistic neural networks.
nengo_mpi makes it possible to run nengo simulations in parallel on
thousands of processors, and existing nengo scripts can be adapted to
make use of nengo_mpi with minimal effort.

With an MPI implementation installed on the system, nengo_mpi can be used
to run neural simulations in parallel using just a few lines of code:

import nengo
import nengo_mpi
import numpy as np
import matplotlib.pyplot as plt

with nengo.Network() as net:
 sin_input = nengo.Node(output=np.sin)

 # A population of 100 neurons representing a sine wave
 sin_ens = nengo.Ensemble(n_neurons=100, dimensions=1)
 nengo.Connection(sin_input, sin_ens)

 # A population of 100 neurons representing the square of the sine wave
 sin_squared = nengo.Ensemble(n_neurons=100, dimensions=1)
 nengo.Connection(sin_ens, sin_squared, function=np.square)

 # View the decoded output of sin_squared
 squared_probe = nengo.Probe(sin_squared, synapse=0.01)

partitioner = nengo_mpi.Partitioner(2)
sim = nengo_mpi.Simulator(net, partitioner=partitioner)
sim.run(5.0)

plt.plot(sim.trange(), sim.data[squared_probe])
plt.show()

There are 3 differences between this script and a script using the
reference implementation of nengo. First, we need to import nengo_mpi.
Then we need to create a Partitioner object, which specifies how many
components the nengo network should be split up into (this corresponds
to the maximum number of distinct processors that can be used to run
the simulation). Finally, when creating the simulator we need to use
nengo_mpi’s Simulator class, and we need to pass in the Partitioner instance.

The script can then be run in parallel using:

mpirun -np 2 python -m nengo_mpi <script_name>

sin_ens and sin_squared will be simulated on separate processors, with the
output of sin_ens being passed to the input of sin_squared every
time-step using MPI. After the simulation has completed, the probed results
from all processors are passed back to the main processor, so all probed data
can be accessed in the usual way (e.g. sim.data[squared_probe]).

nengo_mpi is fully featured, supporting all aspects of Nengo Release 2.0.2.

	Getting Started
	Installation

	Adapting Existing Nengo Scripts

	Running scripts

	User Guide
	How It Works

	Modules

	Workflows

	Benchmarks

	FAQ

	Developer Guide
	Developer installation

	How to build the documentation

	Development workflow

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nengo_mpi 0.1.0-dev docs

Getting Started

Installation

At the present time, nengo_mpi is only known to be usable on Linux.
Obtaining all nengo_mpi functionality requires a working
installation of MPI, and the most recent version of nengo
and all associated dependencies.

Basic installation

To install nengo_mpi, we use git:

git clone https://github.com/nengo/nengo_mpi.git
cd nengo_mpi
python setup.py develop --user

If you’re using a virtualenv (recommended!) then you can omit the --user flag.
The last step is compile the mpi_sim C++ library, which contains most of the functionality.
To do this, cd into nengo_mpi/mpi_sim and type make. If an MPI implementation
is present on the system, then this process be relatively straightforward.

Coming soon: More info on trouble-shooting the compilation process.

Adapting Existing Nengo Scripts

Existing nengo scripts can be adapted to make use of nengo_mpi by making
just a few small modifications. The most basic change that needs to be made
is importing nengo_mpi in addition to nengo, and then using the
nengo_mpi.Simulator class in place of the Simulator class provided by nengo

import nengo_mpi
import nengo

... Code to build network ...

sim = nengo_mpi.Simulator(network)
sim.run(1.0)

plt.plot(sim.trange(), sim.data[probe])

This will run a simulation using the nengo_mpi backend, but does not yet take
advantage of parallelization. However, even without parallelization, the
nengo_mpi backend can often be quite a bit faster than the reference
implementation (see our Benchmarks) since it is a C++ library
wrapped by a thin python layer, whereas the reference implementation is pure
python.

Partitioning

In order to have simulations run in parallel, we need a way of specifying
which nengo objects are going to be simulated on which processors. A
Partitioner is the abstraction we use to do this specification.
The most basic information that a partitioner requires is the
number of components to split the network into. We can supply this
information when creating the partitioner, and then pass the partitioner to the
Simulator object:

partitioner = nengo_mpi.Partitioner(n_components=8)
sim = nengo_mpi.Simulator(network, partitioner=partitioner)
sim.run(1.0)

The number of components we specify here acts as an upper bound on the effective
number of processors that can be used to run the simulation.

We can also specify a partitioning function, which accepts a graph
(corresponding to a nengo network) and a number of components, and returns
a python dictionary which gives, for each nengo object, the component it has been
assigned to. If no partitioning function is supplied, then a default
is used which simply assigns each component a roughly equal number of neurons.
A more sophisticated partitioning function (which has additional dependencies)
uses the metis [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview]
package to assign objects to components in a way that minimizes
the number of nengo Connections that straddle component boundaries. For example:

partitioner = nengo_mpi.Partitioner(n_components=8, func=nengo_mpi.metis_partitioner)
sim = nengo_mpi.Simulator(network, partitioner=partitioner)
sim.run(1.0)

For small networks, we can also supply a dict mapping from nengo objects to component indices:

model = nengo.Network()
with model:
 A = nengo.Ensemble(n_neurons=50, dimensions=1)
 B = nengo.Ensemble(n_neurons=50, dimensions=1)
 nengo.Connection(A, B)

assignments = {A: 0, B: 1}
sim = nengo_mpi.Simulator(model, assignments=assignments)
sim.run(1.0)

Note, though, that this does not scale well and should be reserved for toy networks/demos.

Running scripts

To use the nengo_mpi backend without parallelization, scripts modified
as above can be run in the usual way

python nengo_script.py

This will run serially, even if we have used a partitioner to specify that the
network be split up into multiple components. When a script is run, nengo_mpi
automatically detects how many MPI processes are active, and assigns
components to each process. In this case only one process (the master
process) is active, and all components will be assigned to it.

In order to get parallelization we need a slightly more complex invocation:

mpirun -np NP python -m nengo_mpi nengo_script.py

where NP is the number of MPI processes to launch. Its fine if NP is not
equal to the number of components that the network is split into; if NP is
larger, then some MPI processes will not be assigned any component to
simulate, and if NP is smaller, some MPI processes will be assigned multiple
components to simulate.

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nengo_mpi 0.1.0-dev docs

User Guide

	How It Works

	Modules
	python

	C++

	Workflows
	1. Build With Python, Simulate From Python

	2. Build With Python, Simulate Using Stand-Alone Executable

	Benchmarks
	Stream Network

	Random Graph Network

	SPAUN

	FAQ

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nengo_mpi 0.1.0-dev docs

 	User Guide

How It Works

Here we attempt to give a rough idea of how nengo_mpi works under the hood, and, in particular, how it achieves parallelization. nengo_mpi is based heavily on the reference implementation of nengo. The reference implementation works by converting a high-level neural model specification into a low-level computation graph. The computation graph is a collection of operators and signals. In short, signals store data, and operators perform computation on signals and store the results in other signals. To run the simulation, nengo simply executes each operator in the computation graph once per time step. For a concrete example of how this works, consider the following simple nengo script:

import nengo

model = nengo.Network()
with model:
 A = nengo.Ensemble(n_neurons=50, dimensions=1)
 B = nengo.Ensemble(n_neurons=50, dimensions=1)
 conn = nengo.Connection(A, B)

sim = nengo.Simulator(model)
sim.run(time_in_seconds=1.0)

The conversion from the high-level specification (e.g. the nengo Network stored in the variable model) to computation graph is called the build step, and takes place in the line sim = nengo.Simulator(model). The generated computation graph looks something like this:

A few signals and operators whose purposes are somewhat opaque have been omitted here for clarity. Now suppose that we’re impatient and find that the call to sim.run is too slow. We can easily parallelize the simulation step by making use of nengo_mpi. Making the few necessary changes, we end up with the following script:

import nengo
import nengo_mpi

model = nengo.Network()
with model:
 A = nengo.Ensemble(n_neurons=50, dimensions=1)
 B = nengo.Ensemble(n_neurons=50, dimensions=1)
 nengo.Connection(A, B)

assign the ensembles to different processors
assignments = {A: 0, B: 1}
sim = nengo_mpi.Simulator(model, assignments=assignments)

sim.run(time_in_seconds=1.0)

Now ensembles A and B will be simulated on different processors, and we should get a factor of 2 speedup in running the simulation (though it will hardly be perceptible given how tiny our network is). nengo_mpi will produce a computation graph quite similar to the one produced by vanilla nengo, except it will use operators that are implemented in C++ rather than python, and will add a few new operators to achieve the inter-process communication:

The MPISend operator stores the index of the processor to send its data to,
and likewise the MPIRecv operator stores the index of the processor to receive data from.
Moreover, they both share a “tag”, a unique identifier which bonds the two
operators together and ensures that the data from the MPISend operator gets
sent to the correct MPIRecv operator. This basic pattern can be scaled up to
simulate very large networks on thousands of processors.

Some readers may have noticed something odd by now: it may seem like it would
be impossible to achieve accelerated performance from the set-up depicted in
the above diagrams. In particular, it seems as if the operators on processor
1 will need to wait for the results from processor 0, so the computation is
still ultimately a serial one, just that now we have added inter-process
communication in the pipeline to slow things down.

This turns out not to be the case, because the Synapse operator is special
in that it is what we call an “update” operator. Update operators break the computation
graph up into independently-simulatable components. In the first diagram, the
DotInc operator in ensemble B performs computation on the value of the Input
signal from the previous time-step [1]. Thus, the operators in ensemble B do not need to
wait for the operators in ensemble A and the connection, since the values from the
previous time-step should already be available. Likewise, in the second diagram,
the MPIRecv operator actually receives data from the previous time-step.
Thanks to this mechanism, we are in fact able to achieve large-scale parallelization,
demonstrated empirically by our Benchmarks.

	[1]	“Delays” like this are necessary from a biological-plausibility standpoint as well. Otherwise, neural activity elicited by a stimulus could be propogated throughout the entire network in a single time step, regardless of the network’s size.

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nengo_mpi 0.1.0-dev docs

 	User Guide

Modules

nengo_mpi is composed of several fairly separable modules.

python

The python code consists primarily of alternate implementations of both nengo.Simulator and nengo.Model. nengo_mpi.Simulator is a wrapper around the C++/MPI code which provides an interface nearly identical to nengo.Simulator (see Getting Started). The nengo_mpi.Model class is primarily responsible for adapting the output of the reference implementation’s build step (converting from a high-level model specificationto a concrete computation graph; see How It Works) to work with nengo_mpi.Simulator.

The final major chunk of python code handles the complex task of partitioning a nengo Network into a desired number of components that can be simulated independently.

C++

The directory mpi_sim contains the C++ code. This code implements a back-end for nengo which can use MPI to run simulations in parallel. The C++ code only implements simulation capabilities; the build step is still done in python, and nengo_mpi largely uses the builder provided by the reference implementation. The C++ code can be used in at least three different ways.

mpi_sim.so

A shared library that allows the python layer to access the core C++ simulator. The python code creates an HDF5 file encoding the built network (the operators and signals that need to be simulated), and then makes a call out to mpi_sim.so with the name of the file. mpi_sim.so then opens the file (in parallel if there are multiple processors active) and runs the simulation.

nengo_mpi executable

This is an executable that allows the C++ simulator to be used directly, instead of having to go through python. The executable accepts as arguments the name of a file specifying the operators and signals in a network, as well as the length of time to run the simulation for, in seconds. Removing the requirement that the C++ code be accessed through python has a number of advantages. In particular, it can make attaching a debugger much easier. Also, some high-performance clusters (e.g. BlueGene) provide only minimal support for python. The nengo_mpi exectuable has no python dependencies, and so it can be used on these machines. A typical workflow is to use the python code to create the HDF5 file on a machine with full python support, and then transfer that file over to the high-performance cluster where the network encoded by that file can be simulated using the nengo_mpi executable. See Workflows for further details.

nengo_cpp executable

This is just a version of the nengo_mpi executable which does not have MPI dependencies [1] (which, of course, means that there is no parallelization). It is possible that some users may find this useful in some situations where the MPI dependency cannot be met, as the C++ simulator is often significantly faster then the reference implementation simulator even without parallelization (see our Benchmarks).

	[1]	This is currently a lie, but it will be true soon.

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nengo_mpi 0.1.0-dev docs

 	User Guide

Workflows

There are two distinct ways to use nengo_mpi.

1. Build With Python, Simulate From Python

This is the most straightforward way to run simulations. Existing nengo
scripts can quickly be adapted to use nengo_mpi with this method. This
workflow is described in Getting Started.

2. Build With Python, Simulate Using Stand-Alone Executable

Using this workflow, the process of building networks is similar to the first
workflow, while the process of running the simulations is quite different. This
approach offers more flexibility, allowing simulations to be built on one
computer (which we’ll call the “build” machine) with full python support
but no MPI installation, and then simulated on another computer (which we’ll
call the “sim” machine) with a full MPI installation but no python support
(e.g. a cluster).

One point to be aware of with this method is that it has some limitations. In
particular, it cannot deal with networks containing non-trivial nengo Nodes. The
reason is that at simulation time, python will be completely out of the
picture, so there is no way to execute the python code that Nodes
contain. It is possible that this could be fixed in the future by spinning up
a python interpreter at simulation time, though this would involve at
significant amount of work. At the present time, the only nengo Nodes are
allowed are passthrough nodes, nodes that output a constant signal, and
SpaunStimulus nodes. The first two are trivial to implement, and the third we have
made special accommodations for.

Building

The first step is to build a network and save it to a file. To do this, we need
to make a change to how we call nengo_mpi.Simulator. In particular, we supply
the save_file argument:

sim = nengo_mpi.Simulator(model, partitioner=partitioner, save_file="model.net")

This call will create a file called model.net in the current directory,
which stores the operators and signals required to simulate the nengo Network
specified by model. This file will actually be an HDF5 file, but we
typically give it the .net extension to indicate that it stores a built
network. The script can then be executed (on the “build” machine) using a simple
invocation:

python nengo_script.py

Simulating

Now we can make use of the network file we’ve created using the nengo_mpi
executable (see Modules for more info on the executable). Assuming that
we are now on the “sim” machine, and that the nengo_mpi executable has been
compiled, we can run:

mpirun -np NP nengo_mpi model.net 1.0

where NP is the number of MPI processors to use. This will simulate the
network stored in model.net for 1 second of simulation time.

The result of the simulation (the data collected by the probes) will be stored
in an HDF5 file called model.h5. We can specify a different name for the
output file as follows:

mpirun -np NP nengo_mpi --log results.h5 model.net 1.0

Finally, if MPI is not available on the “sim” machine, we can instead use:

nengo_cpp --log results.h5 model.net 1.0

but this will run serially.

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nengo_mpi 0.1.0-dev docs

 	User Guide

Benchmarks

Benchmarks testing the simulation speed of nengo_mpi were performed with 3
different machines and 3 different large-scale spiking neural networks. The
machines used were a home PC with a Quad-Core 3.6GHz Intel i7-4790 and 16 GB
of RAM, Scinet’s General Purpose Cluster [https://wiki.scinet.utoronto.ca/wiki/index.php/GPC_Quickstart#Specifications],
and Scinet’s 4 rack
Blue Gene/Q [https://wiki.scinet.utoronto.ca/wiki/index.php/BGQ#Specifications].
We tested nengo_mpi using different numbers of processors, and also tested the
reference implementation [https://github.com/nengo/nengo/tree/master/nengo]
of nengo (on the home PC only) for comparison.

Stream Network

The stream network exhibits a simple connectivity structure, and is intended
to be close to the optimal configuration for executing a simulation quickly In
parallel using nengo_mpi. In particular, the ratio of the amount of
communication vs computation per step is relatively low. The network takes a
single parameter \(n\) giving the total number of neural ensembles. The
network contains \(\sqrt{n}\) different “streams”, where a stream is a
collection of \(\sqrt{n}\) ensembles connected in a circular fashion (so
each ensemble has 1 incoming and 1 outgoing connection). Each ensemble is
\(4\)-dimensional and contains \(200\) LIF neurons, and we vary
\(n\) as the independent variable in the graphs below. The largest network
contains \(2^{12} = 4096\) ensembles, for a total of
\(200 * 4096 = 819,200\) neurons. In every case, the ensembles are
distributed evenly amongst the processors. Each execution consists of 5
seconds of simulated time, and each data point is the result of 5 separate
executions.

Random Graph Network

The random graph network is constructed by choosing a fixed number of
ensembles, and then randomly choosing ensemble-to-ensemble connections to
insantiate until a desired proportion of the total number of possible
connections is reached. In all cases, we use \(1024\) ensembles, and we
vary the proportion of connections. This network is intended to show how the
performance of nengo_mpi scales as the ratio of communication to computation
increases, and investigate whether it is always a good idea to add more
processors. Adding more processors typically increases the amount of
inter-processor communication, since it increases the likelihood that any two
ensembles are simulated on different processors. Therefore, if communication
is the bottleneck, then adding more processors will tend to decrease performance.

Each ensemble is 2-dimensional and contains 100 LIF neurons, and each
connection computes the identity function. With \(n\) ensembles, there are
\(n^2\) possible connections (since we allow self-connections and the
connections are directed). Therefore in the most extreme case we have have
\(0.2 \times 1024^2 \approx 209,715\) connections, each relaying a
2-dimensional value. The number of such connections that need to engage in
inter-processor communication is a function of the number of processors used
in the simulation, and the particular random connectivity structure that
arose. Each execution consists of 5 seconds of simulated time, and each data
point is the average of executions on 5 separate networks with different
randomly chosen connectivity structure.

SPAUN

SPAUN (Semantic Pointer Architecture Unified Network) is a large-scale,
functional model of the human brain developed at the CNRG. It is composed
entirely of spiking neurons, and can perform eight separate cognitive tasks
without modification. The original paper can be found here [http://compneuro.uwaterloo.ca/files/publications/eliasmith.2012.pdf]. SPAUN
is an extremely large-scale spiking neural network (currently approaching 4 million neurons
when using 512-dimensional semantic pointers) with very complex connectivity,
and represents a somewhat more realistic test than the more contrived examples used above.
In the plots below we vary the dimensionality of the semantic pointers, the internal
representations used by SPAUN.

Clearly the larger clusters are providing less of a benefit here. The hypothesized reason
is that thus far we have been unable to split SPAUN up into sufficiently small
components than can be simulated independently. There are some components with many thousands
of neurons on them. Thus the limiting factor for the speed of simulation is how
quickly an individual processor is able to simulate one of these large components.
We can likely remedy this by playing around with the connectivity of SPAUN and finding
ways to reduce the maximum component size.

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nengo_mpi 0.1.0-dev docs

 	User Guide

FAQ

Is there any build step parallelization?

No, nengo_mpi only provides parallelization for the simulation step. The build step
is where all the really difficult stuff happens, which, for instance, makes an Ensemble
act like an Ensemble. Therefore, nengo_mpi simply uses vanilla nengo’s
builder, which runs serially in python.

During an invocation such as:

mpirun -np 8 python -m nengo_mpi nengo_script.py

the build step is performed entirely by the process with index 0.

It is definitely possible to create a parallelized version of the builder.
However, that should probably use a more python-friendly,
platform-agnostic technology than MPI (something like ZeroMQ). In other words,
thats another project.

What is the difference between
a cluster a component, a partition, a chunk, a process, a processor, and a node?
I’ve seen all these words used in the code with apparently similar meanings.

All these terms do in fact have precise meanings in the context of nengo_mpi. They
can nicely be divided up into terms that apply at build time
and terms that apply at simulation time.

	Build Time

	A cluster (distinct from a cluster of machines in high-performance computing)
is a group of nengo objects that must be simulated together, for
any of a number of reasons (see the class NengoObjectCluster in partition/base.py).
The most prominent reason is that there is an
path of Connections between the two objects that does not have a
synapse (since synapses are the main source of “update” operators; see How It Works).
Another common reason is that the two objects are connected by a Connection
which has a learning rule. The partitioning step applies a partitioning function
to a graph whose nodes are clusters.

	A component (as in a component of a partition) is a group of clusters that
will be simulated together. Components are computed by the partitioning step.
When creating an instance of nengo_mpi.Simulator, we typically specify the number
of components that we want the network to be divided into. When nengo_mpi saves
a network to file for communication with the C++ code, each component is
stored separately.

	A partition is a collection of components. The goal of the partitioning step
is to create a partition of the set of clusters, in the sense used
here [https://en.wikipedia.org/wiki/Partition_of_a_set]. High-quality partitions
are those which do not assign drastically different amounts of work to different
components, and which minimize the amount of communication between components.

	Simulation Time

	A process is, of course, an OS abstraction for a line of computation. A processor
is a physical computation device. Processes run on processors. It is generally
possible to run a nengo_mpi simulation using more processes than there are processors
available on the machine, however the amount of
parallelization we can obtain is determined by the number of physical
processors (though hyperthreading can increase the effective number of processors).
The number of processes used to run a simulation is specified by the
-np <NP> command-line argument when calling mpi_run.

	A chunk (see chunk.hpp) is the C++ code’s abstraction for a collection of nengo
objects (actually, signals and operators corresponding to those objects) that are being
simulated by a single process. There is a one-to-one relationship between chunks
and processes. One of the first things that each process does is create a chunk.

	The relationship between chunks/processes and components is as follows. At build time
the network is divided into some specified number of components by partitioning. At simulation
time, some specified number of chunks/processes will be active. Components are assigned to
chunks/processes in a round-robin fashion. For example, if there are 4 chunks/processes
active and the network to simulate has 7 components, then process 0 simulates components
0 and 4, process 1 simulates 1 and 5, etc. If the network instead had only 3 components,
then process 3 would be left without anything to simulate, which is perfectly OK.

	In the world of High-Performance Computing, a node (distinct from a nengo Node) is a physical
computer consisting of some number of processors. On the General Purpose Cluster there are 8
processors per node and on Bluegene/Q there are 16 (that becomes 16 for GPC and 64 for BGQ once
hyperthreading is taken into account). When running on one of these high-performance clusters,
jobs are assigned computational resources in units of nodes rather than processors.

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	
 previous |

 	nengo_mpi 0.1.0-dev docs

Developer Guide

Developer installation

If you want to change parts of Nengo,
you should do a developer installation.

git clone https://github.com/nengo/nengo.git
cd nengo
python setup.py develop --user

If you use a virtualenv (recommended!)
you can omit the --user flag.

How to build the documentation

We use the same process as nengo [https://pythonhosted.org/nengo/workflow.html] to build the documentation.

Development workflow

Development happens on Github [https://github.com/nengo/nengo_mpi].
Feel free to fork any of our repositories and send a pull request!
However, note that we ask contributors to sign
a copyright assignment agreement [https://github.com/nengo/nengo/blob/master/LICENSE.rst].

Code style

For python code, we use the same conventions as nengo: PEP8, flake8 for checking, and numpydoc For
docstrings. See the nengo code style [https://pythonhosted.org/nengo/workflow.html] guide.

For C++ code, we roughly adhere to Google’s style guide [https://google-styleguide.googlecode.com/svn/trunk/cppguide.html].

Unit testing

We use PyTest [http://pytest.org/latest/] to run our unit tests
on Travis-CI [https://travis-ci.com/].
To ensure Python 2/3 compatibility, we test with
Tox [https://tox.readthedocs.org/en/latest/].
We run nengo’s full test-suite using nengo_mpi as a back-end.
We also have a number of tests to explicitly ensure that results
obtained using nengo_mpi are the same as nengo to a very high-degree of accuracy.

For more information on running tests, see the README.

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 Navigation

 	
 index

 	nengo_mpi 0.1.0-dev docs

Index

 Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

 _static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		nengo_mpi 0.1.0-dev docs »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, Applied Brain Research.
 Last updated on Feb 21, 2017.

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

