
Neet Documentation
Release 1.0.0

ELIFE

Oct 14, 2019

Contents

1 Getting Help 3

2 Relevant Publications 5

3 Copyright and Licensing 7

4 Contents 9
4.1 Introduction . 9
4.2 Network Classes . 11
4.3 State Spaces . 14
4.4 Attractor Landscapes . 16
4.5 Information Analysis . 20
4.6 Sensitivity Analysis . 21
4.7 Network Randomization . 21
4.8 API Reference . 22
4.9 References . 74

5 Indices and tables 75

Bibliography 77

Python Module Index 79

Index 81

i

ii

Neet Documentation, Release 1.0.0

Neet is a python package designed to provide an easy-to-use API for creating and evaluating network models. In its
current state, Neet supports simulating synchronous Boolean network models, though the API is designed to be model
generic. Future work will implement asynchronous update mechanisms and more general network types.

Contents 1

https://travis-ci.org/ELIFE-ASU/Neet
https://ci.appveyor.com/project/dglmoore/neet-awnxe/branch/master
https://codecov.io/gh/elife-asu/neet

Neet Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Getting Help

Neet is developed to help people interested in using and analyzing network models to get things done quickly and
painlessly. Your feedback is indispensable. Please create an issue if you find a bug, an error in the documentation, or
have a feature you’d like to request. Your contribution will make Neet a better tool for everyone.

If you are interested in contributing to Neet, please contact the developers. We’ll get you up and running!

Neet Source Repository https://github.com/elife-asu/neet

Neet Issue Tracker https://github.com/elife-asu/neet/issues

3

https://github.com/elife-asu/neet
https://github.com/elife-asu/neet/issues

Neet Documentation, Release 1.0.0

4 Chapter 1. Getting Help

CHAPTER 2

Relevant Publications

Daniels, B.C., Kim, H., Moore, D.G., Zhou, S., Smith, H.B., Karas, B., Kauffman, S.A., and Walker, S.I. (2018)
“Criticality Distinguishes the Ensemble of Biological Regulatory Networks” Phys. Rev. Lett. 121 (13), 138102,
doi:10.1103/PhysRevLett.121.138102.

5

https://doi.org/10.1103/PhysRevLett.121.138102

Neet Documentation, Release 1.0.0

6 Chapter 2. Relevant Publications

CHAPTER 3

Copyright and Licensing

Copyright © 2017-2019 Bryan C. Daniels, Bradley Karas, Hyunju Kim, Douglas G. Moore, Harrison Smith, Sara I.
Walker, and Siyu Zhou. Free use of this software is granted under the terms of the MIT License.

See the LICENSE for details.

7

https://github.com/elife-asu/neet/blob/master/LICENSE

Neet Documentation, Release 1.0.0

8 Chapter 3. Copyright and Licensing

CHAPTER 4

Contents

4.1 Introduction

Neet is a library for simulating and analyzing dynamical network models. It is written entirely in Python, with minimal
external dependencies. It provides a heirarchy of network classes and facilities for analyzing the attractor landscapes,
informational structure and sensitivity of those network models.

4.1.1 Examples

Neet provides a network classes with methods designed to make common tasks as painless as possible. For exam-
ple, you can read in a collection of boolean logic equations and immediately probe the dynamics of the network,
and compute values such as the LandscapeMixin.attractors and the boolean.SensitivityMixin.
average_sensitivity() of the network

>>> from neet.boolean import LogicNetwork
>>> from neet.boolean.examples import MYELOID_LOGIC_EXPRESSIONS
>>> net = LogicNetwork.read_logic(MYELOID_LOGIC_EXPRESSIONS)
>>> net.names
['GATA-2', 'GATA-1', 'FOG-1', 'EKLF', 'Fli-1', 'SCL', 'C/EBPa', 'PU.1', 'cJun',
→˓'EgrNab', 'Gfi-1']
>>> net.attractors
array([array([0]), array([62, 38]), array([46]), array([54]),

array([1216]), array([1116, 1218]), array([896]), array([960])],
dtype=object)

>>> net.average_sensitivity()
1.0227272727272727
>>> net.network_graph()
<networkx.classes.digraph.DiGraph object at 0x...>

See the examples directory of the GitHub repository for Jupyter notebooks which demonstrate some of the Neet’s
features.

9

networks.html
landscapes.html
information.html
https://github.com/ELIFE-ASU/Neet/blob/master/examples
https://github.com/ELIFE-ASU/Neet

Neet Documentation, Release 1.0.0

4.1.2 Getting Started

Installation

Dependencies

Neet depends on several packages which will be installed by default when Neet is installed via pip:

• six

• numpy

• networkx

• pyinform

• deprecated

However, network visualization is notoriously problematic, and so we have two optional dependencies which are only
required if you wish to visualize networks using Neet’s builtin capabilities:

• Graphviz

• pygraphviz

True to form, these dependencies are a pain. Graphviz, unfortunately, cannot be installed via pip (see: https://graphviz.
gitlab.io/download/ for installation instructions). Once Graphviz has been installed, you can install pygraphviz via pip.

Via Pip

To install via pip, you can run the following

$ pip install neet

Note that on some systems this will require administrative privileges. If you don’t have admin privileges or would
prefer to install Neet for your user only, you do so via the --user flag:

$ pip install --user neet

From Source

$ git clone https://github.com/elife-asu/neet
$ cd neet
$ python setup.py test
$ pip install .

System Support

So far the python wrapper has been tested under python2.7, python3.4 and python3.5, and on the following
platforms:

Note: We will continue supporting Python 2.7 until January 1, 2020 when PEP 373 states that official support for
Python 2.7 will end.

10 Chapter 4. Contents

https://pypi.org/project/six/
https://pypi.org/project/numpy/
https://pypi.org/project/networkx/
https://pypi.org/project/pyinform/
https://pypi.org/project/Deprecated/
https://graphviz.org/
https://pypi.org/project/pygraphviz/
https://graphviz.gitlab.io/download/
https://graphviz.gitlab.io/download/
https://www.python.org/dev/peps/pep-0373/#maintenance-releases

Neet Documentation, Release 1.0.0

• Debian 8

• Mac OS X 10.11 (El Capitan)

• Windows 10

4.2 Network Classes

Neet provides a collect of pre-defined network types which are common models of complex systems, including

boolean.ECA ECA represents an elementary cellular automaton rule.
boolean.RewiredECA RewiredECA represents elementary cellular automaton

rule with a rewired topology.
boolean.WTNetwork WTNetwork represents weight-threshold boolean net-

work.
boolean.LogicNetwork LogicNetwork represents a network of logic functions.

These concrete network types are leaves in a hierarchy:

BooleanNetwork

ECA

LogicNetwork

RewiredECA

WTNetwork

SensitivityMixin

UniformNetwork

LandscapeMixin

Network

StateSpace

All networks in Neet ultimately derive from the Network class which provides a uniform interface for all network
models. This class provides a basic interface in and of itself, but derives from StateSpace and LandscapeMixin
to provide a wealth of additional features. See State Spaces and Attractor Landscapes for more information.

4.2.1 Basic Network Attributes

As an example, consider the boolean network boolean.examples.s_pombe, which is a gene regulatory network
model of the cell cycle of S. pombe (fission yeast) [Davidich2008]. All networks have a “shape”, namely an array of
the number of states each node can take — it’s base.

>>> s_pombe.shape
[2, 2, 2, 2, 2, 2, 2, 2, 2]

Along with this, comes the ability to ask how many nodes the network has:

>>> s_pombe.size
9

In general, Neet’s networks need not be uniform; each state can have a different base. However, all of the networks
currently implemented are Boolean, meaning that every node in the network has a binary.

4.2. Network Classes 11

Neet Documentation, Release 1.0.0

In addition to specifying the base of the nodes of the network, each node can be given a name.

>>> s_pombe.names
['SK', 'Cdc2_Cdc13', 'Ste9', 'Rum1', 'Slp1', 'Cdc2_Cdc13_active', 'Wee1_Mik1', 'Cdc25
→˓', 'PP']

Further, on the whole you can associate an arbitrary dictionary of metadata data, for example citation information.

>>> s_pombe.metadata['citation']
'M. I. Davidich and S. Bornholdt, "Boolean network model predicts cell cycle sequence
→˓of fission yeast," PLoS One, vol. 3, no. 2, p. e1672, Feb. 2008.doi:10.1371/journal.
→˓pone.0001672'

4.2.2 Dynamic State Update

Beyond data such as these, concrete classes specify information necessary for describing the dynamics of the network’s
state. Unlike most dynamical network packages, Neet’s networks do not store the state of the network internally.
Instead, the API provides methods for operating on state external to the network. In particular, Network.update()
which updates a state of the list or numpy.ndarray in place.

>>> state = [0, 1, 1, 0, 1, 0, 0, 1, 0]
>>> s_pombe.update(state)
[0, 0, 0, 0, 0, 0, 0, 1, 1]
>>> state
[0, 0, 0, 0, 0, 0, 0, 1, 1]

This single function allows Neet to implement a number of common analyses such as landscape, information and
sensitivity analyses.

4.2.3 Graph Structure

As dynamical networks, all Network instances have a directed graph structure. Neet provides a minimal interface
for exploring this structure. At it’s basic, you can probe which nodes are connected by an edge:

source nodes of edges incoming to node 6
>>> s_pombe.neighbors(6, direction='in') == {1, 6, 8}
True

target nodes of edges outgoing from 6
>>> s_pombe.neighbors(6, direction='out') == {5, 6}
True

all nodes connected to node 6
>>> s_pombe.neighbors(6, direction='both') == {1, 5, 6, 8}
True

all nodes connected to node 6
>>> s_pombe.neighbors(6, direction='both') == {1, 5, 6, 8}
True

Of course, this will only get you so far. Luckily, the NetworkX package provides a whole host of graph-theoretic
analyses. To take advantage of that fact, and not avoid Neet reinventing the wheel, you can export your Neet network
as a networkx.DiGraph.

12 Chapter 4. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://en.wikipedia.org/wiki/Directed_graph
https://networkx.github.io/
https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph

Neet Documentation, Release 1.0.0

>>> import networkx as nx
>>> g = s_pombe.network_graph()
>>> nx.shortest_path(g, 1, 5)
[1, 2, 5]
>>> g = s_pombe.network_graph(labels='names') # default labels='indices'
>>> nx.shortest_path(g, 'Cdc2_Cdc13', 'Cdc2_Cdc13_active')
['Cdc2_Cdc13', 'Ste9', 'Cdc2_Cdc13_active']

You can draw the graphs, with the nodes labeled by either the node index

>>> s_pombe.draw_network_graph({'labels': 'indices'}, {
... 'path': 'source/static/s_pombe_indices.png',
... 'display_image': False
... })

or labeled by the node name:

4.2. Network Classes 13

Neet Documentation, Release 1.0.0

>>> s_pombe.draw_network_graph({'labels': 'names'}, {
... 'path': 'source/static/s_pombe_names.png',
... 'display_image': False
... })

Note: For the drawing functionality, you will need to install the optional dependencies: Graphviz and pygraphviz.
See Getting Started.

4.3 State Spaces

Network derives from StateSpace which endows it with structural information about the state space of the net-
work, and provides a number of vital methods.

14 Chapter 4. Contents

https://graphviz.org/
https://pypi.org/project/pygraphviz/
getting-started.html#dependencies

Neet Documentation, Release 1.0.0

4.3.1 Attributes

First and foremost, StateSpace provides (readonly) attributes for assessing gross properties of the state space,
namely StateSpace.size, StateSpace.shape and StateSpace.volume.

>>> s_pombe.size # number of dimension (nodes)
9
>>> s_pombe.shape # the number of states by dimension (states per node)
[2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> s_pombe.volume # total number of states of the network
512

4.3.2 States in the Space

As a StateSpace, you can determining whether or not an array represents a valid state of the network. This is
accomplished using the in keyword.

>>> 0 in s_pombe
False
>>> [0]*9 in s_pombe
True
>>> numpy.zeros(9, dtype=int) in s_pombe
True
>>> [2, 0, 0, 0, 0, 0, 0, 0, 0] in s_pombe # the nodes are binary
False

Of course, after asking whether a state is valid, the next thing you might want to do is iterate over the states.

>>> for state in s_pombe:
... print(state)
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 0, 0, 0]
...
[0, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1]

Since the networks are iterable, you can treat them like any other kind of sequence.

>>> list(s_pombe)
[[0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], ...]
>>> list(map(lambda s: s[0], s_pombe))
[0, 1, 0, 1, ...]
>>> list(filter(lambda s: s[0] ^ s[1] == 1, s_pombe))
[[1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], ...]

4.3.3 State Encoding and Decoding

For particularly large networks, storing a list of states it’s states can use a lot of memory. What’s more, it is often
useful to be able to index an array or key a dictionary based by a state of the network, e.g. when efficiently computing
the attractors of the network. A simple solution to this problem is to encode the state as an integer. StateSpace
provides this functionality via the StateSpace.encode() and StateSpace.decode() methods.

4.3. State Spaces 15

Neet Documentation, Release 1.0.0

Encoding States

>>> s_pombe.encode([0, 1, 0, 1, 0, 1, 0, 1, 0])
170
>>> s_pombe.encode(numpy.ones(9)) == s_pombe.volume - 1
True
>>> s_pombe.encode('apples')
Traceback (most recent call last):
...
ValueError: state is not in state space

Decoding States

>>> s_pombe.decode(170)
[0, 1, 0, 1, 0, 1, 0, 1, 0]
>>> s_pombe.decode(511)
[1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> s_pombe.decode(512)
[0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> s_pombe.decode(-1)
[1, 1, 1, 1, 1, 1, 1, 1, 1]

Notice that decoding states does not raise an error when the state encoding is invalid. Instead, the codes wrap around
so that any integer can be decoded. This was a decision made more for the sake of performance than anything. Just be
mindful of it.

By and large, the StateSpace.encode() and StateSpace.decode() methods are inverses:

>>> s_pombe.encode(s_pombe.decode(170))
170
>>> s_pombe.decode(s_pombe.encode([0, 0, 1, 0, 0, 1, 0, 0, 1]))
[0, 0, 1, 0, 0, 1, 0, 0, 1]

4.3.4 Encoding Scheme

There are a number of ways of encoding a sequence of integers as an integer. We’ve chosen the one we did so that the
encoded value of the state is consistent with the order the states are produced upon iteration.

>>> states = list(s_pombe)
>>> states[5] == s_pombe.decode(5)
True
>>> numpy.all([i == s_pombe.encode(s) for i, s in enumerate(s_pombe)])
True
>>> numpy.all([s_pombe.decode(i) == s for i, s in enumerate(s_pombe)])
True

This makes implementing the algorithms associated with landscape dynamics and sensitivity analyses much simpler
and as light on memory as possible.

4.4 Attractor Landscapes

The most common use of dynamical network models is the analysis of their attractor landscape. In many cases, the
attractors are associated with some form of functionally important network state, e.g. a cell type in a gene regulatory

16 Chapter 4. Contents

Neet Documentation, Release 1.0.0

network. Neet provides standard landscape analysis methods via the LandscapeMixin from which Network
derives.

4.4.1 State Transitions

The starting point for all of these analyses are the state transitions: where does each state of the network go upon
update?

>>> s_pombe.transitions
array([2, 2, 130, 130, 4, 0, 128, 128, 8, 0, 128, 128, 12,

0, 128, 128, 256, 256, 384, 384, 260, 256, 384, 384, 264, 256,
...
208, 208, 336, 336, 464, 464, 340, 336, 464, 464, 344, 336, 464,
464, 348, 336, 464, 464])

Each element of the resulting array is the state to which the index transitions, e.g. 0 ↦→ 2, 2 ↦→ 130, etc. The indices
and values are, of course, encoded states. You can always decode them:

>>> for x, y in enumerate(s_pombe.transitions):
... print(s_pombe.decode(x), '→', s_pombe.decode(y))
[0, 0, 0, 0, 0, 0, 0, 0, 0] → [0, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0] → [0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0] → [0, 1, 0, 0, 0, 0, 0, 1, 0]
...
[1, 1, 1, 1, 1, 1, 1, 1, 1] → [0, 0, 0, 0, 1, 0, 1, 1, 1]

Given state transitions, the next question you might ask is how to compute sequences of state transtions — a trajectory
— by applying the network update scheme recursively?

>>> s_pombe.trajectory([0, 0, 0, 0, 0, 0, 0, 0, 0], timesteps=2)
[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1,
→˓0]]
>>> s_pombe.trajectory([0, 0, 0, 0, 0, 0, 0, 0, 0], timesteps=2, encode=True)
[0, 2, 130]

Notice that if you request a trajectory with 𝑡 time steps, the resulting trajectory will have 𝑡+ 1 elements in it; the first
element is the initial state. If you want the trajectory for every state of the network, you can use the timeseries method.

>>> series = s_pombe.timeseries(2)
>>> series
array([[[0, 0, 0],

[1, 0, 0],
[0, 0, 0],
...,
[1, 0, 0],
[0, 0, 0],
[1, 0, 0]],

...

[[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
...,
[1, 1, 1],
[1, 1, 1],

(continues on next page)

4.4. Attractor Landscapes 17

api/landscape.html#neet.LandscapeMixin.transitions
api/landscape.html#neet.LandscapeMixin.trajectory
api/landscape.html#neet.LandscapeMixin.timeseries

Neet Documentation, Release 1.0.0

(continued from previous page)

[1, 1, 1]]])
>>> series.shape
(9, 512, 3)
>>> series[:, 0, :].transpose()
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 1, 0]])

The resulting 3-D array is indexed by the nodes, state and timestep; in that order. For a more wholistic description of
the state transitions, you can construct a landscape graph.

>>> import networkx as nx
>>> g = s_pombe.landscape_graph()
>>> len(g)
512
>>> nx.shortest_path(g, 0, 130)
[0, 2, 130]

The landscape graph, much like the network topology, can be drawn if you’ve installed pygraphviz. See Getting
Started.

4.4.2 Attractors and Basins

With the state transitions under our belt, we can start computing landscape features such as the attractors.

>>> s_pombe.attractors
array([array([76]), array([4]), array([8]), array([12]),

array([144, 110, 384]), array([68]), array([72]), array([132]),
array([136]), array([140]), array([196]), array([200]),
array([204])], dtype=object)

Each element of the resulting array is an array of states in a fixed-point attractor or limit cycle. Beyond this, you can
determine which of the attractor’s basin each state is in.

>>> s_pombe.basins
array([0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0,

0, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, 4, 4,
...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0])

>>> s_pombe.basins[18]
4

That is, state 18 is in basin 4, and so is fated to land in the cycle {144, 110, 384}.

The LandscapeMixin provides a whole host of other properties, so check out the API Reference for the full list.

4.4.3 Landscape Data

A key feature of the LandscapeMixin is that it tries to compute as much as it can, as efficiently as it can. For
example, when the attractors are computed, the basins of all of the states, the recurrence time, etc. . . can all be
computed at the same time. These values are

1. Computed lazily, but preemptively when you first request any of the associated property.

18 Chapter 4. Contents

api/landscape.html#neet.LandscapeMixin.landscape_graph
https://pypi.org/project/pygraphviz/
getting-started.html#dependencies
getting-started.html#dependencies
api/landscape.html#neet.LandscapeMixin.attractors
api/landscape.html#neet.LandscapeMixin.basins
api/landscape.html
api/landscape.html#neet.LandscapeMixin.recurrent_times

Neet Documentation, Release 1.0.0

2. Cached in a LandscapeData object stored in the LandscapeMixin.

This means, that the attractors are computed when you request them. A second request will simply use the cached
values. Similarly, you get a cached value for the basins once you’ve accessed the attractors. The following only
computes the attractors once, and the basins are computed at that call:

>>> s_pombe.attractors # may take a moment
array([...], dtype=object)
>>> s_pombe.attractors # almost instantaneous
array([...], dtype=object)
>>> s_pombe.basins # almost instantaneous; computed on first call to attractors.
array([...])

The order you access the properties in does not matter, so don’t worry about that.

There may be cases when you want to

1. Compute some landscape features of a network

2. Modify the network in some way

3. Compute landscape features on the new network

4. Compare the results

Because you’ve modifed the network, you will need to reset the cached landscape data. Since you are going to be com-
paring features before and after, you need to extract the data before you do that. This is where LandscapeMixin.
landscape(), LandscapeMixin.expound() and LandscapeMixin.landscape_data come into play.

import numpy
from neet.boolean.examples import s_pombe

Compute all of the landscape properties
s_pombe.expound()
Get the data out
before = s_pombe.landscape_data

Modify the network
s_pombe.thresholds = numpy.zeros(s_pombe.size)
Reset the landscape (notice the method chaining...)
s_pombe.landscape().expound()
Get the new data
after = s_pombe.landscape_data

Compare `before` and `after` as you so choose

The result of LandscapeMixin.landscape_data is a LandscapeData object which has all of the landscape
features cached (provided they’ve been computed):

>>> s_pombe.attractors
array([...], dtype=object)
>>> s_pombe.landscape_data
<neet.landscape.LandscapeData object at 0x...>
>>> s_pombe.landscape_data.attractors
array([...], dtype=object)

4.4. Attractor Landscapes 19

Neet Documentation, Release 1.0.0

4.5 Information Analysis

Out of the box, Neet provides facilities for computing a few common information-theoretic quantities from networks.
All of these methods rely on constructing time series, from which a collection of probabilities distributions are built.
The Information class provides a simple mechanism for automating this process, and caching results for relatively
efficient computation.

4.5.1 Initialization

Constructing an instance of Information, you simply provide a network, a history length (used to compute mea-
sures such as active information or transfer entropy), and the length of time series to compute.

>>> Information(s_pombe, k=5, timesteps=20)
<neet.information.Information object at 0x...>

At initialization, a time series is computed based on the parameters provided. This is cached and used whenever you
request an information measure.

Of course, you can override the parameters after initialization, and the time series will be recomputed.

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.net = s_cerevisiae
>>> arch.k = 2
>>> arch.timesteps = 100

4.5.2 Information Measures

Once you have an Information instance, you can request an informormation measure. This will compute and
cache the value.

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.active_information() # computed and cached
array([0. , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,

0.40046165, 0.67019615, 0.67019615, 0.39189127])
>>> arch.active_information() # cached value is returned
array([0. , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,

0.40046165, 0.67019615, 0.67019615, 0.39189127])

Each information measure is only computed and cached when you request it. In the event that you change some aspect
of the information architecture, e.g. the network, the cache of information measures is also cleared.

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.active_information()
array([0. , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,

0.40046165, 0.67019615, 0.67019615, 0.39189127])
>>> arch.net = s_cerevisiae
>>> arch.active_information()
array([0. , 0.35677758, 0.410884 , 0.44191249, 0.54392362,

0.42523414, 0.35820287, 0.13355861, 0.42823889, 0.22613507,
0.28059538])

20 Chapter 4. Contents

api/information.html#neet.Information.active_information
api/information.html#neet.Information.transfer_entropy
api/landscape.html#neet.Landscape.timeseries

Neet Documentation, Release 1.0.0

4.6 Sensitivity Analysis

Neet provides an API for computing various measures of sensitivity on Networks via the SensitivityMixin.
Sensitivity, in its simplest form, is a measure of how small perturbations of the network’s state change under the
dynamics. In the sensitivity parlance, a network is called, sub-critical, critical, or chaotic if the perturbation tends to
shrink, stay the same, or grow over time.

Note: As of the v1.0.0 release, only the neet.boolean module provides implementations of the sensitivity inter-
face. A subsequent release will generalize this mixin to support a wider range of network models.

4.6.1 Boolean Sensitivity

The standard definition of sensitivity at a given state of a Boolean network is defined in terms of the Hamming distance:

𝐷𝐻(𝑥, 𝑦) =
∑︁
𝑖

𝑥𝑖 ⊕ 𝑦𝑖.

That is, the number of bits differing between two binary states, 𝑥 and 𝑦. A Hamming neighbor of a state 𝑥 is a state
that differs from it by exactly 1 bit. We can write 𝑥⊕ 𝑒𝑖 to represent the Hamming neighbor of 𝑥 which differs in the
𝑖-th bit. The sensitivity of the state 𝑥 is then defined as

𝑠𝑓 (𝑥) =
1

𝑁

𝑁∑︁
𝑖=1

𝐷𝐻(𝑓(𝑥), 𝑓(𝑥⊕ 𝑒𝑖))

where 𝑓 is the network’s update function, and 𝑁 is the number of nodes in the network.

Neet makes computing sensitivity at a given network state as straightforward as possible:

>>> s_pombe.sensitivity([0, 0, 0, 0, 0, 0, 0, 0 ,0])
1.5555555555555556

More often than not, though, you’ll want to compute the average of the sensitivity over all of the states of the network.
That is

𝑠𝑓 =
1

2𝑁

∑︁
𝑥

𝑠𝑓 (𝑥).

In Neet, just ask for it

>>> s_pombe.average_sensitivity()
0.9513888888888888

For a full range of sensitivity-related features offered by Neet, see the API References.

4.7 Network Randomization

The previous release of Neet v0.1.0 included the neet.boolean.randomnet module which provided mecha-
nisms for randomizing network models (Boolean networks, more specificially). However, the maintainers are not
quite satisified with the quality and scope of that module. Rather than postpone the v1.0 release any longer, we have
decided to withhold that module for the time begin.

The current plans are to release a totally redesigned module in the future, possibly with v2.0.

If this is a feature that you desperately need, please feel free to email the developers at emergence@asu.edu or comment
on the relevant issue on GitHub.

4.6. Sensitivity Analysis 21

api/boolean/sensitivity.html#neet.boolean.SensitivityMixin.sensitivity
api/boolean/sensitivity.html
https://neet.readthedocs.io/en/v0.1.0/
https://github.com/ELIFE-ASU/Neet/issues/139
mailto:emergence@asu.edu
https://github.com/ELIFE-ASU/Neet/issues/139

Neet Documentation, Release 1.0.0

4.8 API Reference

4.8.1 Network Classes

The neet module provides the following abstract network classes from which all concrete Neet networks inherit:

Network The Network class is the core base class for all Neet
networks.

UniformNetwork The UnformNetwork class represents a network in
which every node has the same number of discrete
states.

LandscapeMixin

Network UniformNetwork

StateSpace

These classes provide an abstract interface which algorithms can leverage for generic implementation of various
network-theoretic analyses.

Network

class neet.Network(shape, names=None, metadata=None)
The Network class is the core base class for all Neet networks. It provides an interface for describing network
state updating and simple graph-theoretic analyses.

names Get or set the names of the nodes of the network.
metadata Any metadata associated with the network.
_unsafe_update Unsafely update the state of a network in place.
update Update the state of a network in place.
neighbors_in Get a set of all incoming neighbors of the node at

index.
neighbors_out Get a set of all outgoing neighbors of the node at

index.
neighbors Get a set of the neighbors of the node at index.
network_graph The graph of the network as a networkx.

DiGraph.
draw_network_graph Draw network’s networkx graph using PyGraphviz.

Network is an abstract class, meaning it cannot be instantiated, and inherits from neet.LandscapeMixin
and neet.StateSpace. Initialization of the Network requires, at a minimum, a specification of the shape of
the network’s state space, and optionally allows the user to specify a list of names for the nodes of the network
and a metadata dictionary for the network as a whole (e.g. citation information).

22 Chapter 4. Contents

https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph
https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph

Neet Documentation, Release 1.0.0

Any concrete deriving class must overload the following methods:

• _unsafe_update()

• neighbors_in()

• neighbors_out()

Parameters

• shape (list) – the base of each node of the network

• names (seq) – an iterable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

metadata
Any metadata associated with the network.

names
Get or set the names of the nodes of the network.

Raises

• TypeError – if the assigned value is not convertable to a list

• ValueError – if the length fo the assigned values does not match the networks’s size

_unsafe_update(state, index, pin, values, *args, **kwargs)
Unsafely update the state of a network in place.

This function accepts three optional arguments by default:

• index - update only the specified node (by index)

• pin - do not update the state of any node in a list

• values - set the state of some subset of nodes to specified values

Note: As an abstract method, every concrete class derving from Network must overload this method.
The overload should not perform no ensurance checks on the arguments to maximize performance, as
those check are performed in the update() method. Further, it is assumed that this method modifies the
state argument in-place and no others.

Parameters

• state (list, numpy.ndarray) – the state of the network to update

• index (int or None) – the index to update

• pin (list, numpy.ndarray or None) – which nodes to pin to their current state

• values (dict or None) – a dictionary mapping nodes to a state to which to reset the
node to

Returns the updated state

neighbors_in(index, *args, **kwargs)
Get a set of all incoming neighbors of the node at index.

All concrete network classes must overload this method.

Parameters index (int) – the index of the node target node

4.8. API Reference 23

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

Neet Documentation, Release 1.0.0

Returns a set of incoming neighbor indices

neighbors_out(index, *args, **kwargs)
Get a set of all outgoing neighbors of the node at index.

All concrete network classes must overload this method.

Parameters index (int) – the index of the node source node

Returns a set of outgoing neighbor indices

update(state, index=None, pin=None, values=None, *args, **kwargs)
Update the state of a network in place.

This function accepts three optional arguments by default:

• index - update only the specified node (by index)

• pin - do not update the state of any node in a list

• values - set the state of some subset of nodes to specified values

Examples

Updates States In-Place:

>>> rule = ECA(30, size=5)
>>> state = [0, 0, 1, 0, 0]
>>> rule.update(state)
[0, 1, 1, 1, 0]
>>> state
[0, 1, 1, 1, 0]

Updating A Single Node:

>>> rule = ECA(30, size=5)
>>> rule.update([0, 0, 1, 0, 0])
[0, 1, 1, 1, 0]
>>> rule.update([0, 0, 1, 0, 0], index=1)
[0, 1, 1, 0, 0]

Pinning States:

>>> rule = ECA(30, size=5)
>>> rule.update([0, 0, 1, 0, 0])
[0, 1, 1, 1, 0]
>>> rule.update([0, 0, 1, 0, 0], pin=[1])
[0, 0, 1, 1, 0]

Overriding States:

>>> rule = ECA(30, size=5)
>>> rule.update([0, 0, 1, 0, 0])
[0, 1, 1, 1, 0]
>>> rule.update([0, 0, 1, 0, 0], values={0: 1, 2: 0})
[1, 1, 0, 1, 0]

This function ensures that:

1. If index is provided, then neither pin nor values is provided.

24 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int

Neet Documentation, Release 1.0.0

2. If pin and values are both provided, then they do not affect the same nodes.

3. If values is provided, then the overriding states specified in it are consistent with the state space of
the network.

Note: Typically, this method should not be overloaded unless the particular deriving class makes use
of the args or kwargs arguments. In that case, it should first ensure that those arguments are well-
behaved, and and the delegate subsequent checks and the call to _unsafe_update() to a call to this
neet.Network.update().

Parameters

• state (list or numpy.ndarray) – the state of the network to update

• index (int or None) – the index to update

• pin (list, numpy.ndarray or None) – which nodes to pin to their current state

• values (dict or None) – a dictionary mapping nodes to a state to which to reset the
node to

Returns the updated state

neighbors(index, direction=’both’, *args, **kwargs)
Get a set of the neighbors of the node at index. Optionally, specify the directionality of the neighboring
edges, e.g. 'in', 'out' or 'both'.

Examples

All Neighbors:

>>> s_pombe.neighbors(7)
{1, 5, 7, 8}

Incoming Neighbors:

>>> s_pombe.neighbors(7, direction='in')
{8, 1, 7}

Outgoing Neighbors:

>>> s_pombe.neighbors(7, direction='out')
{5, 7}

Parameters

• index (int) – the index of the node

• direction (str) – the directionality of the neighboring edges

Returns a set of neighboring node indices, respecting direction.

network_graph(labels=’indices’, **kwargs)
The graph of the network as a networkx.DiGraph.

This method should only be overloaded by derived classes if additional metadata is to be added to the
graph by default.

4.8. API Reference 25

https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph

Neet Documentation, Release 1.0.0

Examples

>>> s_pombe.network_graph()
<networkx.classes.digraph.DiGraph object at 0x...>

Parameters

• labels – label to be applied to graph nodes (either 'indices' or 'names')

• kwargs – kwargs to pass to the networkx.DiGraph constructor

Returns a networkx.DiGraph object

draw_network_graph(graphkwargs={}, pygraphkwargs={})
Draw network’s networkx graph using PyGraphviz.

Note: This method requires Graphviz and pygraphviz. The former requires manual installation (see
https://graphviz.gitlab.io/download/), while the latter can be installed via pip.

Parameters

• graphkwargs – kwargs to pass to network_graph()

• pygraphkwargs – kwargs to pass to neet.draw.view_pygraphviz()

UniformNetwork

class neet.UniformNetwork(size, base, names=None, metadata=None)
The UnformNetwork class represents a network in which every node has the same number of discrete states.
This allows for more efficient default implementations of several methods. If your particular concrete network
type meets this condition, then you should derive from UniformNetwork rather than Network.

LandscapeMixin

Network UniformNetwork

StateSpace

In addition to the methods provided by Network, UniformNetwork also provides the following attribute:

base Get the number of states each node can take.

UniformNetwork derives from Network, but is still abstract, meaning it cannot be instantiated. Initialization
of the UniformNetwork requires, at a minimum, the number of nodes in the network (size) and the number
of states the nodes can take (base). As with Network, the user can optionally specify a list of names for the
nodes of the network and a metadata dictionary for the network as a whole (e.g. citation information).

Any concrete deriving class must overload the following methods:

26 Chapter 4. Contents

https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph
https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph
https://graphviz.org/
https://pypi.org/project/pygraphviz/
https://graphviz.gitlab.io/download/

Neet Documentation, Release 1.0.0

• _unsafe_update()

• neighbors_in()

• neighbors_out()

Parameters

• size (int) – the number of nodes in the network

• base (int) – the number of states each node can take

• names (seq) – an interable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

base
Get the number of states each node can take.

Examples

>>> ECA(30, size=5).base
2

Returns the base of nodes of the network

4.8.2 Boolean Networks

BooleanNetwork The BooleanNetwork class is a base class for all of
Neet’s Boolean networks.

ECA ECA represents an elementary cellular automaton rule.
RewiredECA RewiredECA represents elementary cellular automaton

rule with a rewired topology.
WTNetwork WTNetwork represents weight-threshold boolean net-

work.
LogicNetwork LogicNetwork represents a network of logic functions.

BooleanNetwork

ECA

LogicNetwork

RewiredECA

WTNetwork

SensitivityMixin

UniformNetwork

LandscapeMixin

Network

StateSpace

4.8. API Reference 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Neet Documentation, Release 1.0.0

BooleanNetwork

class neet.boolean.BooleanNetwork(size, names=None, metadata=None)
The BooleanNetwork class is a base class for all of Neet’s Boolean networks. The BooleanNetwork class
inherits from both neet.UniformNetwork and neet.boolean.SensitivityMixin, and specializes
the inherited neet.StateSpace methods to exploit the Boolean structure.

BooleanNetwork

SensitivityMixin

UniformNetwork

LandscapeMixin

Network

StateSpace

In addition to all of its inherited methods, BooleanNetwork also exposes the following methods:

subspace Generate all states in a given subspace.
distance Compute the Hamming distance between two states.
hamming_neighbors Get all states that one unit of Hamming distance from

a given state.

BooleanNetwork is an abstract class, meaning it cannot be instantiated. Initialization of a BooleaNetwork
requires, at a minimum, the number of nodes in the network. As with all classes that derive from neet.
Network, the user may optionally provide a list of names for the nodes of the network and a metadata dictionary
for the network as a whole (e.g. citation information).

Parameters

• size (int) – number of nodes in the network

• names (seq) – an iterable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

subspace(indices, state=None)
Generate all states in a given subspace. This method varies each node specified by the indicies array
independently. The optional state parameter specifies the state of the non-varying states of the network.
If state is not provided, all nodes not in indicies will have state 0.

Examples

>>> s_pombe.subspace([0])
<generator object BooleanNetwork.subspace at 0x...>
>>> list(s_pombe.subspace([0]))
[[0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0]]
>>> list(s_pombe.subspace([0, 3]))
[[0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0,
→˓0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0, 0]]

28 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict

Neet Documentation, Release 1.0.0

>>> s_pombe.subspace([0], state=[0, 1, 0, 1, 0, 1, 0, 1, 0])
<generator object BooleanNetwork.subspace at 0x...>
>>> list(s_pombe.subspace([0], state=[0, 1, 0, 1, 0, 1, 0, 1, 0]))
[[0, 1, 0, 1, 0, 1, 0, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0]]
>>> list(s_pombe.subspace([0, 3], state=[0, 1, 0, 1, 0, 1, 0, 1, 0]))
[[0, 1, 0, 1, 0, 1, 0, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1,
→˓0, 1, 0], [1, 1, 0, 0, 0, 1, 0, 1, 0]]

Parameters

• indicies (list, numpy.ndarray, iterable) – the indicies to vary in the sub-
space

• state (list, numpy.ndarray) – a state which specifes the state of the non-varying
nodes

Yield the states of the subspace

distance(a, b)
Compute the Hamming distance between two states.

Examples

>>> s_pombe.distance([0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 1, 1, 0, 1, 0, 0])
4
>>> s_pombe.distance([0, 1, 0, 1, 1, 0, 1, 0, 0], [0, 1, 0, 1, 1, 0, 1, 0, 0])
0

Parameters

• a (list, numpy.ndarray) – the first state

• b (list, numpy.ndarray) – the second state

Returns the Hamming distance between the states

Raises ValueError – if either state is not in the network’s state space

hamming_neighbors(state)
Get all states that one unit of Hamming distance from a given state.

Examples

>>> s_pombe.hamming_neighbors([0, 0, 0, 0, 0, 0, 0, 0, 0])
[[1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0,
→˓0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0,
→˓0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1,
→˓0], [0, 0, 0, 0, 0, 0, 0, 0, 1]]
>>> s_pombe.hamming_neighbors([0, 1, 1, 0, 1, 0, 1, 0, 0])
[[1, 1, 1, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0,
→˓1, 0, 0], [0, 1, 1, 1, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 0, 0], [0, 1,
→˓1, 0, 1, 1, 1, 0, 0], [0, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 0, 1, 0, 1, 1,
→˓0], [0, 1, 1, 0, 1, 0, 1, 0, 1]]

Parameters state (list, numpy.ndarray) – the state whose neighbors are desired

4.8. API Reference 29

https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

Returns a list of neighbors of the given state

Raises ValueError – if the state is not in the network’s state space

Elementary Cellular Automata

The neet.boolean.ECA class describes an Elementary Cellular Automaton with an arbitrary rule.

class neet.boolean.ECA(code, size, boundary=None, names=None, metadata=None)
ECA represents an elementary cellular automaton rule. Each ECA contains an 8-bit integral member variable
code representing the Wolfram code for the ECA rule and a set of boundary conditions which is either None,
signifying periodic boundary conditions, or a pair of cell states signifying fixed, open boundary conditions. As
with all neet.Network classes, the names of the nodes and network-wide metadata can be provided.

BooleanNetwork ECA

SensitivityMixin

UniformNetwork

LandscapeMixin

Network

StateSpace

In addition to all inherited methods, ECA exposes the following properites:

code The Wolfram code of the elementary cellular au-
tomaton.

boundary The boundary conditions of the elemenary cellular
automaton.

Parameters

• code (int) – the Wolfram code for the ECA

• size (int) – the size of the ECA’s lattice

• boundary (tuple or None) – the boundary conditions for the CA

• names (seq) – an iterable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

Raises

• ValueError – if code is not in {0, 1, . . . , 255}

• ValueError – if boundary is a neither None nor a pair of binary states

code
The Wolfram code of the elementary cellular automaton.

Examples

30 Chapter 4. Contents

https://docs.python.org/3/library/exceptions.html#ValueError
https://en.wikipedia.org/wiki/Elementary_cellular_automaton
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Neet Documentation, Release 1.0.0

>>> eca = ECA(30, size=5)
>>> eca.code
30
>>> eca.code = 45
>>> eca.code
45
>>> eca.code = 256
Traceback (most recent call last):

...
ValueError: invalid ECA code

Type int

Raises ValueError – if code is not in {0, 1, . . . , 255}

boundary
The boundary conditions of the elemenary cellular automaton.

Examples

>>> eca = ECA(30, size=5)
>>> eca.boundary
>>> eca.boundary = (0, 1)
>>> eca.boundary
(0, 1)
>>> eca.boundary = None
>>> eca.boundary
>>> eca.boundary = [0, 1]
Traceback (most recent call last):

...
TypeError: ECA boundary are neither None nor a tuple

Type tuple, None

Raises ValueError – if boundary is a neither None nor a pair of binary states

Rewired Elementary Cellular Automata

class neet.boolean.RewiredECA(code, boundary=None, size=None, wiring=None, names=None,
metadata=None)

RewiredECA represents elementary cellular automaton rule with a rewired topology. That is, RewiredECA is a
variant of an neet.boolean.ECA wherein the neighbors of a given cell can be specified by the user. This
allows one to study, for example, the role of topology in the dynamics of a network. Every neet.boolean.
ECA can be represented as a RewiredECA with standard wiring, but all RewiredECA are fixed sized networks.
For this reason, RewiredECA does not derive from neet.boolean.ECA.

4.8. API Reference 31

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError

Neet Documentation, Release 1.0.0

BooleanNetwork RewiredECA

SensitivityMixin

UniformNetwork

LandscapeMixin

Network

StateSpace

RewiredECA instances can be instantiated by providing an ECA rule code, and either the number of nodes in
the network (size) or a wiring matrix which specifies how the nodes are wired. Optionally, the user can
specify boundary conditions as in neet.boolean.ECA. As with all neet.Network classes, the names of
the nodes and network-wide metadata can be provided.

In addition to all inherited methods, RewiredECA exposes the following properites

code The Wolfram code of the elementary cellular au-
tomaton

boundary The boundary conditions of the elemenary cellular
automaton

wiring The wiring matrix for the rule.

Examples

If wiring is not provided, the network is wired as a standard neet.boolean.ECA.

>>> reca = RewiredECA(30, size=5)
>>> reca.code
30
>>> reca.size
5
>>> reca.wiring
array([[-1, 0, 1, 2, 3],

[0, 1, 2, 3, 4],
[1, 2, 3, 4, 5]])

Wiring matrices are 3𝑖𝑚𝑒𝑠𝑁 matrices where each column is a node of the network, and the rows represent the
left-, middle- and right-input for the nodes. The number of nodes will be inferred from the width of the matrix.
For example:

>>> reca = RewiredECA(30, wiring=[[0,1,2],[-1,0,0],[2,3,1]])
>>> reca.code
30
>>> reca.size
3
>>> reca.wiring
array([[0, 1, 2],

[-1, 0, 0],
[2, 3, 1]])

Here the 0, −1 and 2 as left, middle and right input. Note that -1 represents the left-boundary condition of the
RewiredECA. If instance has periodic boundary conditions then -1 is effectively N-1. Similarly N is the right
boundary condition.

32 Chapter 4. Contents

Neet Documentation, Release 1.0.0

To see how the wiring affects the result:

>>> ca = RewiredECA(30, size=3)
>>> ca.update([0, 1, 0])
[1, 1, 1]
>>> ca = RewiredECA(30, wiring=[[0,1,3], [1,1,1], [2,1,2]])
>>> ca.update([0, 1, 0])
[1, 0, 1]

Parameters

• code (int) – the 8-bit Wolfram code for the rule

• boundary (tuple, None) – the boundary conditions for the CA

• size (int or None) – the number of cells in the lattice

• wiring (list, numpy.ndarray) – a wiring matrix

• names (seq) – an iterable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

Raises

• ValueError – if both size and wiring are provided

• ValueError – if neither size nor wiring are provided

• ValueError – if size is less than 1 (when provided)

• ValueError – if wiring is not a 3×𝑁 matrix (when provided)

• ValueError – if any element of wiring is outside the range [−1,]‘ (when provided)

code
The Wolfram code of the elementary cellular automaton

Examples

>>> reca = RewiredECA(30, size=55)
>>> reca.code
30
>>> reca.code = 45
>>> reca.code
45
>>> reca.code = 256
Traceback (most recent call last):

...
ValueError: invalid ECA code

Type int

Raises ValueError – if code is not in {0, 1, . . . , 255}

boundary
The boundary conditions of the elemenary cellular automaton

4.8. API Reference 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

Neet Documentation, Release 1.0.0

Examples

>>> reca = RewiredECA(30, size=5)
>>> reca.boundary
>>> reca.boundary = (0,1)
>>> reca.boundary
(0, 1)
>>> reca.boundary = None
>>> reca.boundary
>>> reca.boundary = [0,1]
Traceback (most recent call last):

...
TypeError: ECA boundary are neither None nor a tuple

Type tuple, None

Raises ValueError – if boundary is neither None nor a pair of binary states

wiring
The wiring matrix for the rule.

Examples

>>> reca = RewiredECA(30, size=4)
>>> reca.wiring
array([[-1, 0, 1, 2],

[0, 1, 2, 3],
[1, 2, 3, 4]])

>>> eca = RewiredECA(30, wiring=[[0,1],[1,1],[-1,-1]])
>>> eca.wiring
array([[0, 1],

[1, 1],
[-1, -1]])

Type numpy.ndarray

Weight-Threshold Networks

class neet.boolean.WTNetwork(weights, thresholds=None, theta=None, names=None, meta-
data=None)

WTNetwork represents weight-threshold boolean network. This type of Boolean network model is common in
biology as it represents activating/inhibiting interactions between subcomponents.

BooleanNetwork WTNetwork

SensitivityMixin

UniformNetwork

LandscapeMixin

Network

StateSpace

34 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

In addition to methods inherited from neet.boolean.BooleanNetwork, WTNetwork exposes the fol-
lowing attributes

weights The network’s square weight matrix.
thresholds The network’s threshold vector.
theta The network’s activation function.

and static methods:

read Read a network from a pair of node/edge files.
positive_threshold Activate if the stimulus is 0 or greater.
negative_threshold Activate if the stimulus exceeds 0.
split_threshold Activates if the stimulus exceeds 0, maintaining state

if it is exactly 0.

At a minimum, WTNetworks accept either a weight matrix or a size. The weight matrix must be square, with
the (𝑖, 𝑗) element representing the weight on the edge from 𝑗-th node to the 𝑖-th. If a size is provided, all weights
are assumed to be 0.0.

>>> WTNetwork(3)
<neet.boolean.wtnetwork.WTNetwork object at 0x...>
>>> WTNetwork([[0, 1, 0], [-1, 0, -1], [-1, 1, 1]])
<neet.boolean.wtnetwork.WTNetwork object at 0x...>

Each node has associated with it a threshold value. These thresholds can be provided at initialization. If none
are provided, all thresholds are assumed to be 0.0.

>>> net = WTNetwork(3, [0.5, 0.0, -0.5])
>>> net.thresholds
array([0.5, 0. , -0.5])
>>> WTNetwork([[0, 1, 0], [-1, 0, -1], [-1, 1, 1]], thresholds=[0.5, 0.0, -0.5])
<neet.boolean.wtnetwork.WTNetwork object at 0x...>

Finally, every node of the network is assumed to use the same activation function, theta. This function, if not
provided, is assumed to be split_threshold().

>>> net = WTNetwork(3)
>>> net.theta
<function WTNetwork.split_threshold at 0x...>
>>> net = WTNetwork(3, theta=WTNetwork.negative_threshold)
>>> net.theta
<function WTNetwork.negative_threshold at 0x...>

This activation function must accept two arguments: the activation stimulus and the current state of the node or
network. It should handle two types of arguments:

1. stimulus and state are scalar

2. stimulus and state are vectors (list or numpy.ndarray)

In case 2, the result should modify the state in-place and return the vector.

def theta(stimulus, state):
if isinstance(stimulus, (list, numpy.ndarray)):

for i, x in enumerate(stimulus):
state[i] = theta(x, state[i])

(continues on next page)

4.8. API Reference 35

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

(continued from previous page)

return state
elif stimulus < 0:

return 0
else:

return state
net = WTNetwork(3, theta=theta)
print(net.theta)

<function theta at 0x...>

As with all neet.Network classes, the names of the nodes and network-wide metadata can be provided.

Parameters

• weights (int, list, numpy.ndarray) – a weights matrix (rows → targets,
columns → sources) or a size

• thresholds (list, numpy.ndarray) – activation thresholds for the nodes

• theta (callable) – the activation function for all nodes

• names (seq) – an iterable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

Raises

• ValueError – if weights is not a integer or a square matrix

• ValueError – if thresholds and weights have inconsistent dimensions

• ValueError – if theta is not callable

weights
The network’s square weight matrix. The rows and columns are target and source nodes, respectively. That
is, the (𝑖, 𝑗) element is the weight of the edge from the 𝑗-th node to the 𝑖-th.

Examples

>>> net = WTNetwork(3)
>>> net.weights
array([[0., 0., 0.],

[0., 0., 0.],
[0., 0., 0.]])

>>> net = WTNetwork([[1, 0, 1], [-1, 1, 0], [0, 0, 1]])
>>> net.weights
array([[1., 0., 1.],

[-1., 1., 0.],
[0., 0., 1.]])

Type numpy.ndarray

thresholds
The network’s threshold vector. The 𝑖-th element is the threshold for the 𝑖-th node.

36 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

Examples

>>> net = WTNetwork(3)
>>> net.thresholds
array([0., 0., 0.])

>>> net = WTNetwork(3, thresholds=[0, 0.5, -0.5])
>>> net.thresholds
array([0. , 0.5, -0.5])

Type numpy.ndarray

theta
The network’s activation function. Every node in the network uses this function to determine its next state,
based on the simulus it recieves.

>>> WTNetwork(3).theta
<function WTNetwork.split_threshold at 0x...>
>>> WTNetwork(3, theta=WTNetwork.negative_threshold).theta
<function WTNetwork.negative_threshold at 0x...>

This activation function must accept two arguments: the activation stimulus and the current state of the
node or network. It should handle two types of arguments:

1. stimulus and state are scalar

2. stimulus and state are vectors (list or numpy.ndarray)

In case 2, the result should modify the state in-place and return the vector.

def theta(stimulus, state):
if isinstance(stimulus, (list, numpy.ndarray)):

for i, x in enumerate(stimulus):
state[i] = theta(x, state[i])

return state
elif stimulus < 0:

return 0
else:

return state
net = WTNetwork(3, theta=theta)
print(net.theta)

<function theta at 0x...>

As with all neet.Network classes, the names of the nodes and network-wide metadata can be provided.

Type callable

static read(nodes_path, edges_path, theta=None, metadata=None)
Read a network from a pair of node/edge files.

>>> nodes_path = '../neet/boolean/data/s_pombe-nodes.txt'
>>> edges_path = '../neet/boolean/data/s_pombe-edges.txt'
>>> net = WTNetwork.read(nodes_path, edges_path)
>>> net.size
9
>>> net.names
['SK', 'Cdc2_Cdc13', 'Ste9', 'Rum1', 'Slp1', 'Cdc2_Cdc13_active', 'Wee1_Mik1',
→˓ 'Cdc25', 'PP'] (continues on next page)

4.8. API Reference 37

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

(continued from previous page)

Parameters

• nodes_path (str) – path to the nodes file

• edges_path (str) – path to the edges file

• theta (callable) – the activation function

• metadata (dict) – metadata dictionary for the network

Returns a WTNetwork

static positive_threshold(values, states)
Activate if the stimulus is 0 or greater. That is, it “leans positive” if the simulus is 0:

𝜃𝑝(𝑥) =

{︃
0 𝑥 < 0

1 𝑥 ≥ 0.

If values and states are iterable, then apply the above function to each pair (x,y) in zip(values,
states) and stores the result in states.

If values and states are scalar values, then simply apply the above threshold function to the pair
(values, states) and return the result.

Examples

>>> ys = [0,0,0]
>>> WTNetwork.positive_threshold([1, -1, 0], ys)
[1, 0, 1]
>>> ys
[1, 0, 1]
>>> ys = [1,1,1]
>>> WTNetwork.positive_threshold([1, -1, 0], ys)
[1, 0, 1]
>>> ys
[1, 0, 1]
>>> WTNetwork.positive_threshold(0,0)
1
>>> WTNetwork.positive_threshold(0,1)
1
>>> WTNetwork.positive_threshold(1,0)
1
>>> WTNetwork.positive_threshold(-1,0)
0

Parameters

• values – the threshold-shifted values of each node

• states – the pre-updated states of the nodes

Returns the updated states

38 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Neet Documentation, Release 1.0.0

static negative_threshold(values, states)
Activate if the stimulus exceeds 0. That is, it “leans negative” if the simulus is 0:

𝜃𝑛(𝑥) =

{︃
0 𝑥 ≤ 0

1 𝑥 > 0.

If values and states are iterable, then apply the above function to each pair (x,y) in zip(values,
states) and stores the result in states.

If values and states are scalar values, then simply apply the above threshold function to the pair
(values, states) and return the result.

Examples

>>> ys = [0,0,0]
>>> WTNetwork.negative_threshold([1, -1, 0], ys)
[1, 0, 0]
>>> ys
[1, 0, 0]
>>> ys = [1,1,1]
>>> WTNetwork.negative_threshold([1, -1, 0], ys)
[1, 0, 0]
>>> ys
[1, 0, 0]
>>> WTNetwork.negative_threshold(0,0)
0
>>> WTNetwork.negative_threshold(0,1)
0
>>> WTNetwork.negative_threshold(1,0)
1
>>> WTNetwork.negative_threshold(1,1)
1

Parameters

• values – the threshold-shifted values of each node

• states – the pre-updated states of the nodes

Returns the updated states

static split_threshold(values, states)
Activates if the stimulus exceeds 0, maintaining state if it is exactly 0. That is, it is a middle ground
between negative_threshold() and positive_threshold():

𝜃𝑠(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
0 𝑥 < 0

𝑦 𝑥 = 0

1 𝑥 > 0.

If values and states are iterable, then apply the above function to each pair (x,y) in zip(values,
states) and stores the result in states.

If values and states are scalar values, then simply apply the above threshold function to the pair
(values, states) and return the result.

4.8. API Reference 39

Neet Documentation, Release 1.0.0

Examples

>>> ys = [0,0,0]
>>> WTNetwork.split_threshold([1, -1, 0], ys)
[1, 0, 0]
>>> ys
[1, 0, 0]
>>> ys = [1,1,1]
>>> WTNetwork.split_threshold([1, -1, 0], ys)
[1, 0, 1]
>>> ys
[1, 0, 1]
>>> WTNetwork.split_threshold(0,0)
0
>>> WTNetwork.split_threshold(0,1)
1
>>> WTNetwork.split_threshold(1,0)
1
>>> WTNetwork.split_threshold(1,1)
1

Parameters

• values – the threshold-shifted values of each node

• states – the pre-updated states of the nodes

Returns the updated states

Logical Networks

class neet.boolean.LogicNetwork(table, reduced=False, names=None, metadata=None)
LogicNetwork represents a network of logic functions. This type of Boolean network model is common in
biological modeling.

BooleanNetwork LogicNetwork

SensitivityMixin

UniformNetwork

LandscapeMixin

Network

StateSpace

In addition to methods inherited from neet.boolean.BooleanNetwork, LogicNetwork exposes the fol-
lowing attributes

table The network’s truth table.

and methods:

40 Chapter 4. Contents

Neet Documentation, Release 1.0.0

is_dependent Is the target node dependent on the state of
source?

reduce_table Reduce truth table by removing input nodes which
have no logic influence from the truth table of each
node.

read_table Read a network from a truth table file.
read_logic Read a network from a file of logic equations.

At a minimum, LogicNetworks accept a truth table at initialization. A truth table stores a list of tuples, one for
each node in order. A tuple of the form (A, {C1, C2, ...}) at index i provides the activation conditions
for the node of index i. A is a tuple marking the indices of the nodes which influence the state of node i via
logic relations. {C1, C2, ...} is a set, each element of which is the collection of binary states of these
influencing nodes that would activate node i, setting it to 1. Any other collection of states of nodes in A are
assumed to deactivate node i, setting it to 0.

C1, C2, etc. are sequences (tuple or str) of binary digits, each being the binary state of corresponding node
in A.

The following network has a single node, which is only activates when it is in the 0 state. That is, it alternates
between 0 and 1.

>>> net = LogicNetwork([((0,), {'0'})])
>>> net.size
1
>>> net.table
[((0,), {'0'})]

A more complicated network, with three nodes. Here, node 0 activates in the next state whenever node 1 is
deactivated; node 1 activates based on the state of nodes 1 and 2; and node 2 activates based on its own state.

>>> net = LogicNetwork([((1,), {'0'}), ((1,2), {'10', '11'}), ((2,), {'1'})])
>>> net.size
3
>>> net.table == [((1,), {'0'}), ((1, 2), {'10', '11'}), ((2,), {'1'})]
True

Notice that node 1 will fall into the activated state regardless of what node 2 is doing. In other words, the edge
2 → 1 is not a real edge. The table can be reduced to remove such an “fake” edge using the reduced argument:

>>> net = LogicNetwork([((1,), {'0'}), ((1,2), {'10', '11'}), ((2,), {'1'})])
>>> net.table == [((1,), {'0'}), ((1, 2), {'10', '11'}), ((2,), {'1'})]
True
>>> net = LogicNetwork([((1,), {'0'}), ((1,2), {'10', '11'}), ((2,), {'1'})],
→˓reduced=True)
>>> net.table == [((1,), {'0'}), ((1,), {'1'}), ((2,), {'1'})]
True

Parameters

• table (list, tuple) – the logic table

• reduced (bool) – reduce the table

• names (seq) – an iterable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

Raises

4.8. API Reference 41

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Neet Documentation, Release 1.0.0

• TypeError – if the rows of the table are neither list nor tuple

• IndexError – if a node depends another which doesn’t have a row in the table

• TypeError – if the truth conditions are neither list, tuple nor set.

table
The network’s truth table.

A truth table is a list of tuples, one for each node in order. A tuple of the form (A, {C1, C2, ...})
at index i provides the activation conditions for the node of index i. A is a tuple marking the indices of
the nodes which influence the state of node i via logic relations. {C1, C2, ...} is a set, each element
of which is the collection of binary states of these influencing nodes that would activate node i, setting it
to 1. Any other collection of states of nodes in A are assumed to deactivate node i, setting it to 0.

C1, C2, etc. are sequences (tuple or str) of binary digits, each being the binary state of corresponding
node in A.

>>> from neet.boolean.examples import myeloid
>>> myeloid.table == [((0, 1, 2, 7), {'1000', '1100', '1010'}),
... ((1, 0, 4, 7), {'0010', '1100', '1010', '1110', '0110', '0100', '1000'}),
... ((1,), {'1'}),
... ((1, 4), {'10'}),
... ((1, 3), {'10'}),
... ((1, 7), {'10'}),
... ((6, 1, 2, 5), {'1011', '1100', '1010', '1110', '1101', '1000', '1001'}),
... ((6, 7, 1, 0), {'1000', '1100', '0100'}),
... ((7, 10), {'10'}),
... ((7, 8, 10), {'110'}),
... ((6, 9), {'10'})]
True

Type list of tuples of type (list, set)

is_dependent(target, source)
Is the target node dependent on the state of source?

>>> net = LogicNetwork([((1, 2), {'01', '10'}),
... ((0, 2), {'01', '10', '11'}),
... ((0, 1), {'11'})])
>>> net.is_dependent(0, 0)
False
>>> net.is_dependent(0, 2)
True

Parameters

• target (int) – index of the target node

• source (int) – index of the source node

Returns whether the target node is dependent on the source

reduce_table()
Reduce truth table by removing input nodes which have no logic influence from the truth table of each
node.

42 Chapter 4. Contents

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Neet Documentation, Release 1.0.0

Note: This function introduces the identity function for all nodes which have no inputs. This ensure that
every node has a well-defined logical function. The example below demonstrates this with node 1.

>>> net = LogicNetwork([((0,1), {'00', '10'}), ((0,), {'0', '1'})])
>>> net.table == [((0,1), {'00', '10'}), ((0,), {'0', '1'})]
True
>>> net.reduce_table()
>>> net.table == [((1,), {'0'}), ((1,), {'0', '1'})]
True

classmethod read_table(table_path, reduced=False, metadata=None)
Read a network from a truth table file.

A logic table file starts with a table title which contains names of all nodes. It is a line marked by ## at
the begining with node names seperated by commas or spaces. This line is required. For artificial network
without node names, arbitrary names must be put in place, e.g.:

A B C D

Following are the sub-tables of logic conditions for every node. Each sub-table nominates a node and its
logically connected nodes in par- enthesis as a comment line:

A (B C)

The rest of the sub-table are states of those nodes in parenthesis (B, C) that would activate the state of
A. States that would deactivate A should not be included in the sub-table.

A complete logic table with 3 nodes A, B, C would look like this:

A B C
A (B C)
1 0
1 1
B (A)
1
C (B C A)
1 0 1
0 1 0
0 1 1

Custom comments can be added above or below the table title (as long as they are preceeded with more or
less than two # (e.g. # or ### but not ##)).

Examples:

print(open(MYELOID_TRUTH_TABLE, 'r').read())

GATA-2, GATA-1, FOG-1, EKLF, Fli-1, SCL, C/EBPa, PU.1, cJun, EgrNab, Gfi-1
GATA-2 (GATA-2, GATA-1, FOG-1, PU.1)
1 1 0 0
1 0 1 0
1 0 0 0
GATA-1 (GATA-1, GATA-2, Fli-1, PU.1)
1 0 0 0

(continues on next page)

4.8. API Reference 43

Neet Documentation, Release 1.0.0

(continued from previous page)

0 1 0 0
0 0 1 0
1 1 0 0
1 0 1 0
0 1 1 0
1 1 1 0
FOG-1 (GATA-1)
1
...

>>> net = LogicNetwork.read_table(MYELOID_TRUTH_TABLE)
>>> net.size
11
>>> net.names
['GATA-2', 'GATA-1', 'FOG-1', 'EKLF', 'Fli-1', 'SCL', 'C/EBPa', 'PU.1', 'cJun
→˓', 'EgrNab', 'Gfi-1']
>>> net.table == [((0, 1, 2, 7), {'1000', '1010', '1100'}),
... ((1, 0, 4, 7), {'0010', '0100', '0110', '1000', '1010', '1100', '1110'}),
... ((1,), {'1'}),
... ((1, 4), {'10'}),
... ((1, 3), {'10'}),
... ((1, 7), {'10'}),
... ((6, 1, 2, 5), {'1000', '1001', '1010', '1011', '1100', '1101', '1110'}),
... ((6, 7, 1, 0), {'0100', '1000', '1100'}),
... ((7, 10), {'10'}),
... ((7, 8, 10), {'110'}),
... ((6, 9), {'10'})]
True

Parameters

• table_path (str) – a path to a table table file

• reduced (bool) – reduce the table

• names (seq) – an iterable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

Returns a LogicNetwork

classmethod read_logic(logic_path, external_nodes_path=None, reduced=False, meta-
data=None)

Read a network from a file of logic equations.

A logic equations has the form of A = B AND (C OR D), each term being separated from paran-
theses and logic operators with at least a space. The optional external_nodes_path takes a file that
contains nodes in a column whose states do not depend on any nodes. These are considered “external”
nodes. Equivalently, such a node would have a logic equation A = A, for its state stays on or off unless
being set externally.

Examples

print(open(MYELOID_LOGIC_EXPRESSIONS, 'r').read())

44 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Neet Documentation, Release 1.0.0

GATA-2 = GATA-2 AND NOT (GATA-1 AND FOG-1) AND NOT PU.1
GATA-1 = (GATA-1 OR GATA-2 OR Fli-1) AND NOT PU.1
FOG-1 = GATA-1
EKLF = GATA-1 AND NOT Fli-1
Fli-1 = GATA-1 AND NOT EKLF
SCL = GATA-1 AND NOT PU.1
C/EBPa = C/EBPa AND NOT (GATA-1 AND FOG-1 AND SCL)
PU.1 = (C/EBPa OR PU.1) AND NOT (GATA-1 OR GATA-2)
cJun = PU.1 AND NOT Gfi-1
EgrNab = (PU.1 AND cJun) AND NOT Gfi-1
Gfi-1 = C/EBPa AND NOT EgrNab

>>> net = LogicNetwork.read_logic(MYELOID_LOGIC_EXPRESSIONS)
>>> net.size
11
>>> net.names
['GATA-2', 'GATA-1', 'FOG-1', 'EKLF', 'Fli-1', 'SCL', 'C/EBPa', 'PU.1', 'cJun
→˓', 'EgrNab', 'Gfi-1']
>>> net.table == [((0, 1, 2, 7), {'1000', '1010', '1100'}),
... ((1, 0, 4, 7), {'0010', '0100', '0110', '1000', '1010', '1100', '1110'}),
... ((1,), {'1'}),
... ((1, 4), {'10'}),
... ((1, 3), {'10'}),
... ((1, 7), {'10'}),
... ((6, 1, 2, 5), {'1000', '1001', '1010', '1011', '1100', '1101', '1110'}),
... ((6, 7, 1, 0), {'0100', '1000', '1100'}),
... ((7, 10), {'10'}),
... ((7, 8, 10), {'110'}),
... ((6, 9), {'10'})]
True

Parameters

• logic_path (str) – path to a file of logial expressions

• external_nodes_path (str) – a path to a file of external nodes

• reduced (bool) – reduce the table

• names (seq) – an iterable object of the names of the nodes in the network

• metadata (dict) – metadata dictionary for the network

Returns a LogicNetwork

Sensitivity Analysis

class neet.boolean.SensitivityMixin
SensitivityMixin provides methods for sensitivity analysis. That is, methods to quantify the degree to which
perturbations of a network’s state propagate and spread. As part of this, we also provide methods for identifying
“canalizing edges”: edges for which a state of the source node uniquely determines the state of the target
regardless of other sources.

sensitivity Compute the Boolean sensitivity at a given network
state.

Continued on next page

4.8. API Reference 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

Neet Documentation, Release 1.0.0

Table 11 – continued from previous page
average_sensitivity Calculate average Boolean network sensitivity, as

defined in [Shmulevich2004].
lambdaQ Compute the sensitivity eigenvalue, 𝜆𝑄.
difference_matrix Compute the difference matrix at a given state.
average_difference_matrix Compute the difference matrix, averaged over some

states.
is_canalizing Determine whether a given network edge is canaliz-

ing.
canalizing_edges Get the set of all canalizing edges in the network.
canalizing_nodes Get a set of all nodes with at least one incoming

canalizing edge.

The neet.boolean.BooleanNetwork class derives from SensitivityMixin to provide sensitivity analysis
to all of Neet’s Boolean network models.

sensitivity(state, transitions=None)
Compute the Boolean sensitivity at a given network state.

The sensitivity of a Boolean function 𝑓 on state vector 𝑥 is the number of Hamming neighbors of 𝑥 on
which the function value is different than on 𝑥, as defined in [Shmulevich2004].

This method calculates the average sensitivity over all 𝑁 boolean functions, where 𝑁 is the number of
nodes in the network.

Examples

>>> s_pombe.sensitivity([0, 0, 0, 0, 0, 1, 1, 0, 0])
1.0
>>> s_pombe.sensitivity([0, 1, 1, 0, 1, 0, 0, 1, 0])
0.4444444444444444
>>> c_elegans.sensitivity([0, 0, 0, 0, 0, 0, 0, 0])
1.75
>>> c_elegans.sensitivity([1, 1, 1, 1, 1, 1, 1, 1])
1.25

Optionally, the user can provide a pre-computed array of state transitions to improve performance when
this function is repeatedly called.

>>> trans = list(map(s_pombe.decode, s_pombe.transitions))
>>> s_pombe.sensitivity([0, 0, 0, 0, 0, 1, 1, 0, 0], transitions=trans)
1.0
>>> s_pombe.sensitivity([0, 1, 1, 0, 1, 0, 0, 1, 0], transitions=trans)
0.4444444444444444

Parameters

• state (list, numpy.ndarray) – a single network state

• transitions (list, numpy.ndarray, None) – precomputed state transitions
(optional)

Returns the sensitivity at the provided state

See also:

average_sensitivity()

46 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None

Neet Documentation, Release 1.0.0

average_sensitivity(states=None, weights=None, calc_trans=True)
Calculate average Boolean network sensitivity, as defined in [Shmulevich2004].

The sensitivity of a Boolean function 𝑓 on state vector 𝑥 is the number of Hamming neighbors of 𝑥 on
which the function value is different than on 𝑥.

The average sensitivity is an average taken over initial states.

Examples

>>> c_elegans.average_sensitivity()
1.265625
>>> c_elegans.average_sensitivity(states=[[0, 0, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 1, 1, 1, 1]])
...
1.5
>>> c_elegans.average_sensitivity(states=[[0, 0, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 1, 1, 1, 1]], weights=[0.9, 0.1])
...
1.7
>>> c_elegans.average_sensitivity(states=[[0, 0, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 1, 1, 1, 1]], weights=[9, 1])
...
1.7

Parameters

• states (list, numpy.ndarray, None) – The states to average over; all states if
None

• weights (list, numpy.ndarray, None) – weights for a weighted average over
states; all 1.

• calc_trans – pre-compute all state transitions; ignored if states or weights is
None.

Returns the average sensitivity of net

See also:

sensitivity()

lambdaQ(**kwargs)
Compute the sensitivity eigenvalue, 𝜆𝑄. That is, the largest eigenvalue of the sensitivity matrix
average_difference_matrix().

This is analogous to the eigenvalue calculated in [Pomerance2009].

Examples

>>> s_pombe.lambdaQ()
0.8265021276831896
>>> c_elegans.lambdaQ()
1.263099227661824

Returns the sensitivity eigenvalue (𝜆𝑄) of net

4.8. API Reference 47

https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None

Neet Documentation, Release 1.0.0

See also:

average_difference_matrix()

difference_matrix(state, transitions=None)
Compute the difference matrix at a given state.

For a network with 𝑁 nodes, with Boolean functions 𝑓𝑖, the difference matrix is a 𝑁 ×𝑁 matrix

𝐴𝑖𝑗 = 𝑓𝑖(𝑥)⊕ 𝑓𝑖(𝑥⊕ 𝑒𝑗)

where 𝑒𝑗 is the network state with the 𝑗-th node in the 1 state while all others are 0. In other words, the
element 𝐴𝑖𝑗 signifies whether or not flipping the 𝑗-th node’s state changes the subsequent state of the 𝑖-th
node.

Examples

>>> s_pombe.difference_matrix([0, 0, 0, 0, 0, 0, 0, 0, 0])
array([[0., 0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 1., 1., 1., 0., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0., 1.],
[0., 0., 0., 1., 0., 0., 0., 0., 1.],
[0., 0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 1.],
[0., 1., 0., 0., 0., 0., 0., 1., 0.],
[0., 0., 0., 0., 1., 0., 0., 0., 0.]])

>>> c_elegans.difference_matrix([0, 0, 0, 0, 0, 0, 0, 0])
array([[1., 0., 0., 0., 0., 0., 0., 1.],

[0., 0., 1., 1., 0., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 1., 0., 1.],
[0., 0., 0., 0., 0., 1., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1.]])

Parameters

• state (list, numpy.ndarray) – the starting state

• transitions (list, numpy.ndarray, None) – precomputed state transitions
(optional)

Returns the difference matrix

See also:

average_difference_matrix()

average_difference_matrix(states=None, weights=None, calc_trans=True)
Compute the difference matrix, averaged over some states.

Examples

48 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None

Neet Documentation, Release 1.0.0

>>> s_pombe.average_difference_matrix()
array([[0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,

0.],
[0. , 0. , 0.25 , 0.25 , 0.25 , 0. , 0. , 0. ,
0.],

[0.25 , 0.25 , 0.25 , 0. , 0. , 0.25 , 0. , 0. ,
0.25],

[0.25 , 0.25 , 0. , 0.25 , 0. , 0.25 , 0. , 0. ,
0.25],

[0. , 0. , 0. , 0. , 0. , 1. , 0. , 0. ,
0.],

[0. , 0. , 0.0625, 0.0625, 0.0625, 0. , 0.0625, 0.0625,
0.],

[0. , 0.5 , 0. , 0. , 0. , 0. , 0.5 , 0. ,
0.5],

[0. , 0.5 , 0. , 0. , 0. , 0. , 0. , 0.5 ,
0.5],

[0. , 0. , 0. , 0. , 1. , 0. , 0. , 0. ,
0.]])

>>> c_elegans.average_difference_matrix()
array([[0.25 , 0.25 , 0. , 0. , 0. , 0.25 , 0.25 , 0.25],

[0. , 0. , 0.5 , 0.5 , 0. , 0. , 0. , 0.],
[0.5 , 0. , 0.5 , 0. , 0.5 , 0. , 0. , 0.],
[0. , 0. , 1. , 0. , 0. , 0. , 0. , 0.],
[0. , 0.3125, 0.3125, 0.3125, 0.3125, 0.3125, 0. , 0.3125],
[0.5 , 0. , 0. , 0. , 0. , 0.5 , 0.5 , 0.],
[1. , 0. , 0. , 0. , 0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0. , 0. , 0. , 0.5 , 0.5]])

Parameters

• states (list, numpy.ndarray, None) – the states to average over; all states if
None

• weights (list, numpy.ndarray, None) – weights for a weighted average over
states; uniform weighting if None

• calc_trans (bool) – pre-compute all state transitions; ignored if states or
weights is None

Returns the difference matrix as a numpy.ndarray().

See also:

difference_matrix()

is_canalizing(x, y)
Determine whether a given network edge is canalizing.

An edge (𝑦, 𝑥) is canalyzing if 𝑥’s value at 𝑡+ 1 is fully determined when 𝑦’s value has a particular value
at 𝑡, regardless of the values of other nodes.

According to (Stauffer 1987):

"A rule [...] is called forcing, or canalizing, if at least one of
its :math:`K` arguments has the property that the result of the
function is already fixed if this argument has one particular
value, regardless of the values for the :math:`K-1` other
arguments." Note that this is a definition for whether a node's

(continues on next page)

4.8. API Reference 49

https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Neet Documentation, Release 1.0.0

(continued from previous page)

rule is canalizing, whereas this function calculates whether a
specific edge is canalizing. Under this definition, if a node has
any incoming canalizing edges, then its rule is canalizing.

Examples

>>> s_pombe.is_canalizing(1, 2)
True
>>> s_pombe.is_canalizing(2, 1)
False
>>> c_elegans.is_canalizing(7, 7)
True
>>> c_elegans.is_canalizing(1, 3)
True
>>> c_elegans.is_canalizing(4, 3)
False

Parameters

• x (int) – target node’s index

• y (int) – source node’s index

Returns whether or not the edge (y,x) is canalizing; None if the edge does not exist

See also:

canalizing_edges(), canalizing_nodes()

canalizing_edges()
Get the set of all canalizing edges in the network.

Examples

>>> s_pombe.canalizing_edges()
{(1, 2), (5, 4), (0, 0), (1, 3), (4, 5), (5, 6), (5, 7), (1, 4), (8, 4), (5,
→˓2), (5, 3)}
>>> c_elegans.canalizing_edges()
{(1, 2), (3, 2), (1, 3), (7, 6), (6, 0), (7, 7)}

Returns the set of canalizing edges as in the form (target, source)

See also:

is_canalizing(), canalizing_nodes()

canalizing_nodes()
Get a set of all nodes with at least one incoming canalizing edge.

Examples

50 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Neet Documentation, Release 1.0.0

>>> s_pombe.canalizing_nodes()
{0, 1, 4, 5, 8}
>>> c_elegans.canalizing_nodes()
{1, 3, 6, 7}

Returns the set indices of nodes with at least one canalizing input edge

See also:

is_canalizing(), canalizing_edges()

Network Conversions

neet.boolean.conv.wt_to_logic(net)
Convert a neet.boolean.WTNetwork to a neet.boolean.LogicNetwork.

Examples

>>> net = wt_to_logic(s_pombe)
>>> isinstance(net, LogicNetwork)
True
>>> numpy.array_equal(net.transitions, s_pombe.transitions)
True

Parameters net (neet.boolean.WTNetwork) – a network to convert

Returns an equivalent neet.boolean.LogicNetwork

Example Networks

neet.boolean.examples.c_elegans = <neet.boolean.wtnetwork.WTNetwork object>
A gene regulatory network model of the S. elegans cell cycle, as described in [Huang2013].

neet.boolean.examples.hgf_signaling_in_keratinocytes = <neet.boolean.logicnetwork.LogicNetwork object>
A gene regulatory network model of hepatocyte growth-factor induced migration of primary human ker-
atinocytes, as described in [Singh2012].

neet.boolean.examples.il_6_signaling = <neet.boolean.logicnetwork.LogicNetwork object>
A gene regulatory model of interleukin 6 signaling, as described in [Ryll2011].

neet.boolean.examples.mouse_cortical_7B = <neet.boolean.logicnetwork.LogicNetwork object>
A gene regulatory network model for cortical area development in mice, as described in fig. 7B of
[Giacomantonio2010].

neet.boolean.examples.mouse_cortical_7C = <neet.boolean.logicnetwork.LogicNetwork object>
A gene regulatory network model for cortical area development in mice, as described in fig. 7C of
[Giacomantonio2010].

neet.boolean.examples.myeloid = <neet.boolean.logicnetwork.LogicNetwork object>
A gene regulatory network for the differentiation of myeloid progenitors, as described in [Krumsiek2011].

neet.boolean.examples.p53_dmg = <neet.boolean.wtnetwork.WTNetwork object>
A simplified gene regulatory network model of p53 signaling with damage, as described in [Choi2012].

4.8. API Reference 51

Neet Documentation, Release 1.0.0

neet.boolean.examples.p53_no_dmg = <neet.boolean.wtnetwork.WTNetwork object>
A simplified gene regulatory network model of p53 signaling without damage, as described in [Choi2012].

neet.boolean.examples.s_cerevisiae = <neet.boolean.wtnetwork.WTNetwork object>
A gene regulatory network model of the S. cerevisiae (budding yeast) cell cycle, as described in [Li2004].

neet.boolean.examples.s_pombe = <neet.boolean.wtnetwork.WTNetwork object>
A gene regulatory network model of the S. pombe (fission yeast) cell cycle, as described in [Davidich2008].

4.8.3 State Spaces

The neet module provides the following classes from which all Neet network classes inherit:

StateSpace StateSpace represents a (potentially in-homogeneous)
discrete state space.

UniformSpace A StateSpacewith the same number of states in each
dimension.

StateSpace UniformSpace

This endows networks with methods for iterating over the states of the network, determining if a state exists in the
network, and the ability to encode and decode states as integer values. In other words, these classes provide an interface
for accessing the unstructured set of states of the network, with no dynamical information.

StateSpace

class neet.StateSpace(shape)
StateSpace represents a (potentially in-homogeneous) discrete state space. It implements iteration, inclusion
testing and methods for encoding and decoding states as integers sutable for array indexing:

size Get the size of the state space.
shape Get the shape of the state space.
volume Get the volume of the state space.
__iter__ Iterate over the states of the state space.
__contains__ Determine if a state is in the state space.
_unsafe_encode Unsafely encode a state as an integer value.
encode Encode a state as an integer.
decode Decode an integer-encoded state into a coordinate

list.

StateSpace instances are created from a shape array of integer representing the number of discrete states for
each dimension of the state space.

52 Chapter 4. Contents

Neet Documentation, Release 1.0.0

Examples

>>> StateSpace([2]) # 1-D state space
<neet.statespace.StateSpace object at 0x...>
>>> StateSpace([2,2]) # 2-D uniform state space
<neet.statespace.StateSpace object at 0x...>
>>> StateSpace([2,3,5]) # 3-D inhomogeneous space
<neet.statespace.StateSpace object at 0x...>

From the network perspective, each dimension of the state space corresponds to a node of the network. The
number of discrete states of that node is the base of the corresponding dimension.

The algorithms implemented by this class are intended to be as generic as possible. This comes at the cost of
performance in some cases. This can be dealt with by deriving and overloading the appropriate methods, in
particular _unsafe_encode(). In fact, the following methods are recommended for overloading:

• __iter__()

• __contains__()

• _unsafe_encode()

• decode()

The encode() method uses __contains__() and _unsafe_encode() internally and rarely needs to
be overloaded.

Parameters shape (list) – the base of each dimension of the state space

See UniformSpace

size
Get the size of the state space. That is the number of dimensions.

Examples

>>> StateSpace([2]).size
1
>>> StateSpace([2,3,4]).size
3

Returns the number of dimensions of the state space

shape
Get the shape of the state space. That is the base of each dimension.

Examples

>>> StateSpace([2]).shape
[2]
>>> StateSpace([2,3,4]).shape
[2, 3, 4]

Returns the shape of the state space

volume
Get the volume of the state space. That is the number of states in the space.

4.8. API Reference 53

https://docs.python.org/3/library/stdtypes.html#list

Neet Documentation, Release 1.0.0

Examples

>>> StateSpace([2]).volume
2
>>> StateSpace([2,3,4]).volume
24

Returns the number of states in the space

__iter__()
Iterate over the states of the state space.

Examples

>>> list(StateSpace([2]))
[[0], [1]]
>>> list(StateSpace([2,2]))
[[0, 0], [1, 0], [0, 1], [1, 1]]
>>> list(StateSpace([3,2]))
[[0, 0], [1, 0], [2, 0], [0, 1], [1, 1], [2, 1]]

__contains__(states)
Determine if a state is in the state space.

Examples

>>> space = StateSpace([2])
>>> [0] in space
True
>>> 0 in space
False

>>> space = StateSpace([3,2])
>>> [2,0] in space
True
>>> [0,2] in space
False
>>> [2,0,0] in space
False

_unsafe_encode(state)
Unsafely encode a state as an integer value.

Examples

>>> space = StateSpace([2,3])
>>> space._unsafe_encode([1,1])
3

The resulting numeric encodings must be consistent with the ordering of the states produced by
__iter__(). This allows necessary for memory-efficient implementations of many algorithms.

54 Chapter 4. Contents

Neet Documentation, Release 1.0.0

>>> space = StateSpace([2,3])
>>> list(space)
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2]]
>>> list(map(space._unsafe_encode, space))
[0, 1, 2, 3, 4, 5]

Note: This method is not safe. It does not ensure that state is in fact in the space; if that’s not the case
then there are not guaruntees on the output. As such it should only be used in situations where the state is
already known to be in the space, e.g. it is a state that was generated by __iter__(). This is designed
to allow algorithms to utilize state encoding without incurring the cost of consistency checking.

Parameters state (int) – the state as a list of coordinates

Returns the state encoded as an integer

See encode(), decode()

encode(state)
Encode a state as an integer.

Examples

>>> space = StateSpace([2,3])
>>> space.encode([1,1])
3

The resulting numeric encodings are consistent with the ordering of the states produced by __iter__().

>>> space = StateSpace([2,3])
>>> list(space)
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2]]
>>> list(map(space.encode, space))
[0, 1, 2, 3, 4, 5]

This method is the inverse of the decode() method:

>>> space = StateSpace([3,2])
>>> space.decode(space.encode([1,1]))
[1, 1]
>>> space.encode(space.decode(3))
3

Parameters state (int) – the state as a list of coordinates

Returns the state encoded as an integer

See encode(), decode()

decode(encoded)
Decode an integer-encoded state into a coordinate list.

4.8. API Reference 55

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Neet Documentation, Release 1.0.0

Examples

>>> space = StateSpace([2,3])
>>> space.decode(3)
[1, 1]

The resulting decoded states are consistent with the ordering of the states produced by __iter__().

>>> space = StateSpace([2,3])
>>> list(space)
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2]]
>>> list(map(space.decode, range(0,6)))
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2]]

This method is the inverse of the encode() method:

>>> space = StateSpace([3,2])
>>> space.decode(space.encode([1,1]))
[1, 1]
>>> space.encode(space.decode(3))
3

Parameters encoded (int) – an integer-encoded state

Returns the coordinate list of the decoded state

See encode(), decode()

UniformSpace

class neet.UniformSpace(size, base)
A StateSpace with the same number of states in each dimension. This allows for more efficient implemen-
tations of several methods.

UniformSpace instances are created from their size and base; the number of dimensions and the number of
states in each dimension, respectively.

In addition to the methods and attributes exposed by StateSpace, the UniformSpace also provides:

base Get the base of the dimensions.

Examples

>>> UniformSpace(1, 2) # 1-D unform space with base-2 dimensions
<neet.statespace.UniformSpace object at 0x...>
>>> UniformSpace(2, 2) # 2-D uniform space with base-2 dimensions
<neet.statespace.UniformSpace object at 0x...>
>>> UniformSpace(2, 4) # 2-D uniform space with base-4 dimension
<neet.statespace.UniformSpace object at 0x...>

Parameters

• size (int) – the number of dimensions in the space

• base (int) – the number of states in each dimension

56 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Neet Documentation, Release 1.0.0

See StateSpace

base
Get the base of the dimensions.

Examples

>>> UniformSpace(2, 3).base
3

Returns the base of the space’s dimensions

4.8.4 Landscape Analysis

The neet module provides the LandscapeMixin class from which the neet.Network class inherits. This en-
dows all networks with the various methods for computing the various landscape-related properties of the networks,
such as LandscapeMixin.attractors. These properties are often associated with the state space of the net-
work; however, we have opted to provide them via a separate mixin because the neet.StateSpace class represents
an unstructured set of states, with no dynamical information

A key feature of the LandscapeMixin is that it is lazy and caches results as they are computed. For example, the
attractors of the landscape are computed the first the user requests the LandscapeMixin.attractors property,
but the result is cached in the LandscapeMixin.landscape_data attribute. Subsequent calls simply return the
cached data. What’s more, many of the properties of the landscape can be determined using almost the exact same
algorithm, so whenever one is requested, they are all simultaneously computed. See LandscapeMixin.expound
for a list of such properties.

LandscapeData

class neet.LandscapeData
The LandscapeData class stores the various landscape properties computed in the LandscapeMixin. This is
used rather an individual properties within LandscapeMixin to make it simple for users to extract all of the
landscape properties before modifying a network and observing the effects of that change on the landscape.

The following properties are stored in LandscapeData:

LandscapeMixin.transitions Get the state transitions as an array.
LandscapeMixin.attractors Get the attractors of the landscape as an array.
LandscapeMixin.attractor_lengths Get the length of the attractors as an array.
LandscapeMixin.basins Get the basins of the states as an array.
LandscapeMixin.basin_sizes Get the sizes of the attractor basins as an array.
LandscapeMixin.basin_entropy Compute the basin entropy of the landscape

[Krawitz2007].
LandscapeMixin.heights Get the heights of each state in the landscape.
LandscapeMixin.recurrence_times Get the recurrence time of each state in the land-

scape.
LandscapeMixin.in_degrees Get the in-degree of each state in the landscape.

4.8. API Reference 57

Neet Documentation, Release 1.0.0

Basic Usage

>>> s_pombe.attractors
array([array([76]), array([4]), array([8]), array([12]),

array([144, 110, 384]), array([68]), array([72]), array([132]),
array([136]), array([140]), array([196]), array([200]),
array([204])], dtype=object)

>>> default_landscape = s_pombe.landscape_data

>>> s_pombe.landscape(pin=[0,1]).attractors
array([array([0]), array([1]), array([386, 402, 178, 162]),

array([387, 403, 179, 163]), array([4]), array([8]), array([12]),
array([76]), array([65]), array([64]), array([68]), array([72]),
array([132]), array([136]), array([140]), array([192]),
array([193]), array([196]), array([200]), array([204])],
dtype=object)

>>> default_landscape.attractors
array([array([76]), array([4]), array([8]), array([12]),

array([144, 110, 384]), array([68]), array([72]), array([132]),
array([136]), array([140]), array([196]), array([200]),
array([204])], dtype=object)

>>> s_pombe.clear_landscape()

LandscapeMixin

class neet.LandscapeMixin
The LandscapeMixin class represents the structure and topology of the “landscape” of state transitions. That
is, it is the state space together with information about state transitions and the topology of the state transition
graph.

The LandscapeMixin class exposes the following methods:

landscape Setup the landscape.
clear_landscape Clear the landscape’s data and graph from memory.
landscape_data Get the LandscapeData object.
transitions Get the state transitions as an array.
attractors Get the attractors of the landscape as an array.
attractor_lengths Get the length of the attractors as an array.
basins Get the basins of the states as an array.
basin_sizes Get the sizes of the attractor basins as an array.
basin_entropy Compute the basin entropy of the landscape

[Krawitz2007].
heights Get the heights of each state in the landscape.
recurrence_times Get the recurrence time of each state in the land-

scape.
in_degrees Get the in-degree of each state in the landscape.
trajectory Compute the trajectory from a given state.
timeseries Compute a time series from all states.
landscape_graph Construct a networkx.DiGraph of the state tran-

sitions.
draw_landscape_graph Draw the state transition graph.

Continued on next page

58 Chapter 4. Contents

https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph

Neet Documentation, Release 1.0.0

Table 16 – continued from previous page
expound Compute all cached data.

landscape(index=None, pin=None, values=None)
Setup the landscape.

Prepares the landscape for computation of the various properties, specifying which nodes will be up-
dated (index), pinned (pin) or set to a particular state (values). In particular, it computes the
state transitions of the network and prepares private variables for a subsequent call to expound(),
landscape_graph(), etc. . .

This function is implicitly called with no arguments by the various landscape accessors if it has not already
been called. This is intended as a convenience since most of the time the user would do this anyway.

This function implicitly calls clear_landscape, so make sure to create a reference to
landscape_data if landscape information has previously been compute and you wish to keep it around.

Basic Usage

>>> s_pombe.landscape_data.transitions
>>> s_pombe.landscape()
<neet.boolean.wtnetwork.WTNetwork object at 0x...>
>>> len(s_pombe.landscape_data.transitions)
512

Pinning States

Prevents all states from transitioning
>>> s_pombe.landscape(pin = range(s_pombe.size))
<neet.boolean.wtnetwork.WTNetwork object at 0x...>
>>> np.array_equal(s_pombe.landscape_data.transitions, range(s_pombe.volume))
True
>>> s_pombe.clear_landscape()

Overriding Node States

Forces all states to transition to 0
>>> s_pombe.landscape(values={i: 0 for i in range(s_pombe.size)})
<neet.boolean.wtnetwork.WTNetwork object at 0x...>
>>> np.all(s_pombe.landscape_data.transitions == 0)
True
>>> s_pombe.clear_landscape()

Parameters

• index – the index to update (or None)

• pin – the indices to pin during update (or None)

• values – a dictionary of index-value pairs to set after update

Returns self

4.8. API Reference 59

Neet Documentation, Release 1.0.0

clear_landscape()
Clear the landscape’s data and graph from memory.

landscape_data
Get the LandscapeData object.

The LandscapeData object contains any cached attractor landscape information generated by a call to
expound().

transitions
Get the state transitions as an array. Each element of the array is the next (encoded) state of the system
starting from the initial state equal to the index. For example, if

>>> net.transitions
array([0, 3, 1, 2])

then state 0 will transition to 0, 1 to 3, etc. . . Be aware that if landscape() has not been called, this
method will call it.

Basic Usage

>>> s_pombe.transitions
array([2, 2, 130, 130, 4, 0, 128, 128, 8, 0, 128, 128, 12,

0, 128, 128, 256, 256, 384, 384, 260, 256, 384, 384, 264, 256,
...
208, 208, 336, 336, 464, 464, 340, 336, 464, 464, 344, 336, 464,
464, 348, 336, 464, 464])

Pinned States

A preceding call to landscape() can, for example, pin specific nodes to their current state, thus affect-
ing the state transitions.

>>> s_pombe.landscape(pin = [0]).transitions
array([2, 3, 130, 131, 4, 1, 128, 129, 8, 1, 128, 129, 12,

1, 128, 129, 256, 257, 384, 385, 260, 257, 384, 385, 264, 257,
...
208, 209, 336, 337, 464, 465, 340, 337, 464, 465, 344, 337, 464,
465, 348, 337, 464, 465])

>>> s_pombe.clear_landscape()

Returns a numpy.ndarray of state transitions

attractors
Get the attractors of the landscape as an array. Each element of the array is an attractor cycle, each of
which is an array of states in the cycle. If landscape() has not been called, this method will implicitly
call it.

Basic Usage

>>> s_pombe.attractors
array([array([76]), array([4]), array([8]), array([12]),

array([144, 110, 384]), array([68]), array([72]), array([132]),

(continues on next page)

60 Chapter 4. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

(continued from previous page)

array([136]), array([140]), array([196]), array([200]),
array([204])], dtype=object)

Update Only a Single Node

A preceding call to landscape() can, for example, specify which nodes will be updated in the process
of computing the attractors. For example, we can allow only the first node of the state to be updated.

>>> s_pombe.landscape(index=0).attractors
array([[0],

[2],
[4],

...
[506],
[508],
[510]])

>>> s_pombe.clear_landscape()

Returns a numpy.ndarray of attractor cycles, each of which is an array of encoded states

attractor_lengths
Get the length of the attractors as an array. The array is indexed by the basin number. The order of the
attractor lengths is the same as in attractors. For example,

>>> net.attractors
array([array([0,1]), array([1])]
>>> net.attractor_lengths
array([2, 1])

If landscape() has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.attractor_lengths
array([1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1])

Pinned States

A preceding call to landscape() can pin specific nodes to their current state, thus affecting the attractor
lengths.

>>> s_pombe.landscape(pin = [0]).attractor_lengths
array([1, 6, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1])
>>> s_pombe.clear_landscape()

Returns a numpy.ndarray of the lengths of the attractors

basins
Get the basins of the states as an array. Each index of the array is an encoded state and the corresponding
value is the attractor basin in which it resides. The attractor basins are integers which can be used to index
the attractors array, providing the attractor cycle for the base. For example, if

4.8. API Reference 61

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

>>> net.basins
array([0, 1, 2, 1])
>>> net.attractors
array([array([0]), array([1]), array([2])])

then the states 1 and 3 are both in the attractor basin which attracts to the fixed-point 1. If landscape()
has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.basins
array([0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0,

0, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, 0, 0, 4, 4, 4, 4,
...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0])

Resetting Node States

A preceding call to landscape() can, for example, specify that specific nodes are reset to a particular
value after the updating the. For example, we can force the first and second nodes to 0, thus affecting the
basins.

>>> s_pombe.landscape(values={0: 0, 1: 0}).basins
array([0, 0, 1, 1, 2, 0, 1, 1, 3, 0, 1, 1, 4, 0, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1])

>>> s_pombe.clear_landscape()

Returns a numpy.ndarray of each state’s attractor basin

basin_sizes
Get the sizes of the attractor basins as an array. The array is indexed by the basin number. The order of the
basin sizes is the same as in attractors. For example, if

>>> net.attractors
array([array([0,1]), array([3,6])]
>>> net.basin_sizes
array([5, 3])

then the attractor [0, 1] has a basin size of 5 with the remaining states in the other attractor’s basin. If
landscape() has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.basin_sizes
array([378, 2, 2, 2, 104, 6, 6, 2, 2, 2, 2, 2, 2])

62 Chapter 4. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

Pinning States

A preceding call to landscape() can specify that some of the nodes are not updated, say the first two.

>>> s_pombe.landscape(pin=[0,1]).basin_sizes
array([1, 4, 128, 128, 1, 1, 1, 114, 120, 1, 1, 1, 1,

1, 1, 1, 4, 1, 1, 1])
>>> s_pombe.clear_landscape()

Returns a numpy.ndarray of each attractor’s basin size

basin_entropy
Compute the basin entropy of the landscape [Krawitz2007]. That is the Shannon entropy (in bits) of the
distribution of basin sizes. For example,

>>> net.basin_sizes
array([6, 2])
>>> net.basin_entropy
0.8112781244591328

which is − 6
8 log2

6
8)−

2
8 log2

2
8). If landscape() has not been called, this method will implicitly call

it.

Basic Usage

>>> s_pombe.basin_entropy
1.2218888...

Pinning States

A preceding call to landscape() can specify that some of the nodes are not updated, say the first two.

>>> s_pombe.landscape(pin=[0,1]).basin_entropy
2.328561849437885
>>> s_pombe.clear_landscape()

Returns basin entropy in bits

heights
Get the heights of each state in the landscape. That is the fewest number of time steps from that state to a
state in it’s attractor cycle, as an array. Each index of the array is an encoded state, and the corresponding
value is the height. For example, if

>>> net.heights
array([3, 0, 1, ...])

then it will take 3 time steps for the state 0 to reach an attractor state while state 1 is an attractor state‘. If
landscape() has not been called, this method will implicitly call it.

4.8. API Reference 63

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

Basic Usage

>>> s_pombe.heights
array([7, 7, 6, 6, 0, 8, 6, 6, 0, 8, 6, 6, 0, 8, 6, 6, 8, 8, 1, 1, 2, 8,

1, 1, 2, 8, 1, 1, 2, 8, 1, 1, 2, 2, 2, 2, 9, 9, 1, 1, 9, 9, 1, 1,
...
3, 9, 9, 9, 3, 9, 9, 9, 3, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3])

Resetting Node States

A preceding call to landscape() can specify that specific nodes are reset to a particular value after the
updating the. For example, we can force the first and second nodes to 0, thus affecting the basins.

>>> s_pombe.landscape(values={0: 0, 1: 0}).heights
array([0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 6, 6, 2, 2, 5, 5, 2, 2,

5, 5, 2, 2, 5, 5, 2, 2, 5, 5, 3, 3, 6, 6, 3, 3, 6, 6, 3, 3, 6, 6,
...
3, 3,
3, 3, 3, 3, 3, 3])

>>> s_pombe.clear_landscape()

Returns a numpy.ndarray, each value of which is the height of the indexing state

recurrence_times
Get the recurrence time of each state in the landscape. That is the number of time steps from that state after
which some state is repeated, as an array. Each index of the array is an encoded state, and the corresponding
value is the recurrence time of that state. For example, if

>>> net.recurrent_times
array([3, 10, 0, ...])

then a state will be seen at least twice if the 0 state is updated more than 3 times. The 2 state is a fixed-
point attractor state as updating even once will repeat a state. If landscape() has not been called, this
method will implicitly call it.

Basic Usage

>>> s_pombe.recurrence_times
array([7, 7, 6, 6, 0, 8, 6, 6, 0, 8, 6, 6, 0, 8, 6, 6, 8, 8, 3, 3, 2, 8,

3, 3, 2, 8, 3, 3, 2, 8, 3, 3, 4, 4, 4, 4, 9, 9, 3, 3, 9, 9, 3, 3,
...
3, 9, 9, 9, 3, 9, 9, 9, 3, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3])

Resetting Node States

A preceding call to landscape() can specify that specific nodes are reset to a particular value after the
updating the. For example, we can force the first and second nodes to 0, thus affecting the basins.

64 Chapter 4. Contents

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

>>> s_pombe.landscape(pin=[0,1]).recurrence_times
array([0, 0, 5, 5, 0, 1, 5, 5, 0, 1, 5, 5, 0, 1, 5, 5, 2, 2, 4, 4, 2, 2,

4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 3, 3, 5, 5, 3, 3, 5, 5, 3, 3, 5, 5,
...
3, 3, 5, 5, 3, 3, 5, 5, 3, 3, 5, 5, 3, 3, 8, 8, 3, 3, 8, 8, 3, 3,
8, 8, 3, 3, 8, 8])

>>> s_pombe.clear_landscape()

Returns a numpy.ndarray of recurrence times, one for each state

in_degrees
Get the in-degree of each state in the landscape. That is the number of states which transition to that state
in a single time step, as a array. Each index of the array is an encoded state, and the corresponding value
is the number of preceding states. For example, if

>>> net.in_degrees
array([5, 2, 0, 0, ...]

then 5 states transition to the 0 state in a single time step, while states 2 and 3 are in the Garden of Eden.
If landscape() has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.in_degrees
array([6, 0, 4, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 12,

0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0])

Pinning States

A preceding call to landscape() can specify that some of the nodes are not updated, say nodes 7 and
8.

>>> s_pombe.landscape(pin=[7,8]).in_degrees
array([36, 0, 6, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 42,

0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
...
0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0])

>>> s_pombe.clear_landscape()

Returns a numpy.ndarray of the in-degree of each state

trajectory(init, timesteps=None, encode=None)
Compute the trajectory from a given state.

This method computes a trajectory from init to the last before the trajectory begins to repeat. If
timesteps is provided, then the trajectory will have a length of timesteps + 1 regardless of re-
peated states. The encode argument forces the states in the trajectory to be either encoded or not. When
encode is None, whether or not the states of the trajectory are encoded is determined by whether or
not the initial state (init) is provided in encoded form.

4.8. API Reference 65

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://wikipedia.org/wiki/Garden_of_Eden_(cellular_automaton)
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

Note that when timesteps is None, the length of the resulting trajectory should be one greater than
the recurrence time of the state.

If landscape() has not been called, this method will implicitly call it. Otherwise, it respects any
settings provided by such a call.

Basic Usage

>>> s_pombe.trajectory([1,0,0,1,0,1,1,0,1])
[[1, 0, 0, 1, 0, 1, 1, 0, 1], ... [0, 0, 1, 1, 0, 0, 1, 0, 0]]

>>> s_pombe.trajectory([1,0,0,1,0,1,1,0,1], encode=True)
[361, 80, 320, 78, 128, 162, 178, 400, 332, 76]

>>> s_pombe.trajectory(361)
[361, 80, 320, 78, 128, 162, 178, 400, 332, 76]

>>> s_pombe.trajectory(361, encode=False)
[[1, 0, 0, 1, 0, 1, 1, 0, 1], ... [0, 0, 1, 1, 0, 0, 1, 0, 0]]

>>> s_pombe.trajectory(361, timesteps=5)
[361, 80, 320, 78, 128, 162]

>>> s_pombe.trajectory(361, timesteps=10)
[361, 80, 320, 78, 128, 162, 178, 400, 332, 76, 76]

Parameters

• init (int or seq) – the initial state

• timesteps (int or None) – the number of time steps to include in the trajectory

• encode (bool or None) – whether to encode the states in the trajectory

Returns a list whose elements are subsequent states of the trajectory

Raises

• ValueError – if init an empty array

• ValueError – if timesteps is less than 1

timeseries(timesteps)
Compute a time series from all states.

This method computes a 3-dimensional array elements are the states of each node in the network. The
dimensions of the array are indexed by, in order, the node, the initial state and the time step.

If landscape() has not been called, this method will implicitly call it. Otherwise, it respects any
settings provided by such a call.

Basic Usage

>>> s_pombe.timeseries(5)
array([[[0, 0, 0, 0, 0, 0],

[1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],

(continues on next page)

66 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

Neet Documentation, Release 1.0.0

(continued from previous page)

...,
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0]],

[[0, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 0, 0],
...,
[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0]],

...

[[0, 0, 1, 1, 1, 1],
[0, 0, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 0],
...,
[1, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0]],

[[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 1],
...,
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0],
[1, 1, 1, 0, 0, 0]]])

Parameters timesteps (int) – the number of timesteps to evolve the system

Returns a 3-D array of node states

Raises ValueError – if timesteps is less than 1

landscape_graph(**kwargs)
Construct a networkx.DiGraph of the state transitions.

If landscape() has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.landscape_graph()
<networkx.classes.digraph.DiGraph object at 0x...>

Parameters kwargs – kwargs to pass to networkx.DiGraph

Returns a networkx.DiGraph representing the state transition graph of the landscape

draw_landscape_graph(graphkwargs={}, pygraphkwargs={})
Draw the state transition graph.

This method requires the optional dependency pygraphviz, which can be installed via pip. Be aware that
pygraphviz requires native binaries of Graphviz which cannot be installed via pip.

4.8. API Reference 67

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph
https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph
https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph
https://pygraphviz.github.io
https://graphviz.org

Neet Documentation, Release 1.0.0

If landscape() has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.draw_landscape_graph()

Parameters

• graphkwargs – kwargs to pass to landscape_graph

• pygraphkwargs – kwargs to pass to view_pygraphviz

expound()
Compute all cached data.

This function performs the bulk of the calculations that the LandscapeMixin is concerned with. Most of
the properties in this class are computed by this function whenever any one of them is requested and the
results are cached. The advantage of this is that it saves computation time; why traverse the state space for
every property call when you can do it all at once? The downside is that the cached results may use a good
bit more memory. This is a trade-off that we are willing to make for now.

The properties that are computed by this function include:

attractors Get the attractors of the landscape as an array.
attractor_lengths Get the length of the attractors as an array.
basins Get the basins of the states as an array.
basin_sizes Get the sizes of the attractor basins as an array.
basin_entropy Compute the basin entropy of the landscape

[Krawitz2007].
heights Get the heights of each state in the landscape.
recurrence_times Get the recurrence time of each state in the land-

scape.
in_degrees Get the in-degree of each state in the landscape.

4.8.5 Information Analysis

The neet provides the Information class to compute various information measures over the dynamics of discrete-
state network models.

The core information-theoretic computations are supported by the PyInform package.

class neet.Information(net, k, timesteps)
A class to represent the 𝑘-history informational architecture of a network.

An Information is initialized with a network, a history length, and time series length. A time series of the desired
length is computed from each initial state of the network, and used populate probability distributions over the
state transitions of each node. From there any number of information or entropy measures may be applied.

The Information class provides three public attributes:

net The network over which to compute the various in-
formation measures

Continued on next page

68 Chapter 4. Contents

https://elife-asu.github.io/PyInform

Neet Documentation, Release 1.0.0

Table 18 – continued from previous page
k The history length to use to compute the various in-

formation measures
timesteps The time series length to use to compute the various

information measures

During following measures can be computed and cached:

active_information Get the local or average active information.
entropy_rate Get the local or average entropy rate.
mutual_information Get the local or average mutual information.
transfer_entropy Get the local or average transfer entropy.

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.active_information()
array([0. , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,

0.40046165, 0.67019615, 0.67019615, 0.39189127])

Parameters

• net (neet.Network) – the network to analyze

• k (int) – the history length

• timesteps (int) – the number of timesteps to evaluate the network

net
The network over which to compute the various information measures

Note: The cached internal state of the Information instances, namely any pre-computed time series
and information measures, is cleared when the network is changed.

Type neet.Network

k
The history length to use to compute the various information measures

Note: The cached internal state of the Information instances, namely any pre-computed time series
and information measures, is cleared when the history length is changed.

Type int

timesteps
The time series length to use to compute the various information measures

Note: The cached internal state of the Information instances, namely any pre-computed time series
and information measures, is cleared when the number of time steps is changed.

4.8. API Reference 69

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Neet Documentation, Release 1.0.0

Type int

active_information(local=False)
Get the local or average active information.

Active information (AI) was introduced in [Lizier2012] to quantify information storage in distributed
computation. AI is defined in terms of a temporally local variant

𝑎𝑋,𝑖(𝑘) = log2
𝑝(𝑥

(𝑘)
𝑖 , 𝑥𝑖+1)

𝑝(𝑥
(𝑘)
𝑖)𝑝(𝑥𝑖+1)

where the probabilites are constructed emperically from an entire time series. From this local variant, the
temporally global active information is defined as

𝐴𝑋(𝑘) = ⟨𝑎𝑋,𝑖(𝑘)⟩𝑖 =
∑︁

𝑥
(𝑘)
𝑖 , 𝑥𝑖+1

𝑝(𝑥
(𝑘)
𝑖 , 𝑥𝑖+1) log2

𝑝(𝑥
(𝑘)
𝑖 , 𝑥𝑖+1)

𝑝(𝑥
(𝑘)
𝑖)𝑝(𝑥𝑖+1)

.

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.active_information()
array([0. , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,

0.40046165, 0.67019615, 0.67019615, 0.39189127])
>>> lais = arch.active_information(local=True)
>>> lais[1]
array([[0.13079175, 0.13079175, 0.13079175, ..., 0.13079175, 0.13079175,

0.13079175],
[0.13079175, 0.13079175, 0.13079175, ..., 0.13079175, 0.13079175,
0.13079175],

...,
[0.13079175, 0.13079175, 0.13079175, ..., 0.13079175, 0.13079175,
0.13079175],

[0.13079175, 0.13079175, 0.13079175, ..., 0.13079175, 0.13079175,
0.13079175]])

>>> np.mean(lais[1])
0.4083435...

Parameters local (bool) – whether to return local (True) or global active information

Returns a numpy.ndarray containing the (local) active information for every node in the
network

entropy_rate(local=False)
Get the local or average entropy rate.

Entropy rate quantifies the amount of information need to describe a random variable — the state of a node
in this case — given observations of its 𝑘-history. In other words, it is the entropy of the time series of a
node’s state conditioned on its 𝑘-history. The time-local entropy rate

ℎ𝑋,𝑖(𝑘) = log2
𝑝(𝑥

(𝑘)
𝑖 , 𝑥𝑖+1)

𝑝(𝑥
(𝑘)
𝑖)

can be averaged to obtain the global entropy rate

𝐻𝑋(𝑘) = ⟨ℎ𝑋,𝑖(𝑘)⟩𝑖 =
∑︁

𝑥
(𝑘)
𝑖 , 𝑥𝑖+1

𝑝(𝑥
(𝑘)
𝑖 , 𝑥𝑖+1) log2

𝑝(𝑥
(𝑘)
𝑖 , 𝑥𝑖+1)

𝑝(𝑥
(𝑘)
𝑖)

.

70 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.entropy_rate()
array([0. , 0.01691208, 0.07280268, 0.07280268, 0.05841994,

0.02479402, 0.03217332, 0.03217332, 0.08966941])
>>> ler = arch.entropy_rate(local=True)
>>> ler[4]
array([[0. , 0. , 0. , ..., 0.00507099, 0.00507099,

0.00507099],
[0. , 0. , 0. , ..., 0.00507099, 0.00507099,
0.00507099],

...,
[0. , 0.29604946, 0.00507099, ..., 0.00507099, 0.00507099,
0.00507099],

[0. , 0.29604946, 0.00507099, ..., 0.00507099, 0.00507099,
0.00507099]])

Parameters local (bool) – whether to return local (True) or global entropy rate

Returns a numpy.ndarray containing the (local) entropy rate for every node in the network

transfer_entropy(local=False)
Get the local or average transfer entropy.

Transfer entropy (TE) was introduced by [Schreiber2000] to quantify information transfer between an
information source and destination, in this case a pair of nodes, condition out their shared history effects.
TE is defined in terms of a time-local variant

𝑡𝑋→𝑌,𝑖(𝑘) = log2
𝑝(𝑦𝑖+1, 𝑥𝑖 | 𝑦(𝑘)𝑖)

𝑝(𝑦𝑖+1 | 𝑦(𝑘)𝑖)𝑝(𝑥𝑖 | 𝑦(𝑘)𝑖)

Time averaging defines the global transfer entropy

𝑇𝑌→𝑋(𝑘) = ⟨𝑡𝑋→𝑌,𝑖(𝑘)⟩𝑖

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.transfer_entropy()
array([[0. , 0. , 0. , 0. , 0. ,

0. , 0. , 0. , 0.],
[0. , 0. , 0.05137046, 0.05137046, 0.05841994,
0. , 0.01668983, 0.01668983, 0.0603037],

...,
[0. , 0. , 0.00603879, 0.00603879, 0.04760206,
0.02479402, 0.00298277, 0. , 0.04892709],

[0. , 0. , 0.07280268, 0.07280268, 0. ,
0. , 0.03217332, 0.03217332, 0.]])

>>> lte = arch.transfer_entropy(local=True)
>>> lte[4,3]
array([[-1.03562391, 1.77173101, 0. , ..., 0. ,

0. , 0.],
[-1.03562391, 1.77173101, 0. , ..., 0. ,

(continues on next page)

4.8. API Reference 71

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

(continued from previous page)

0. , 0.],
[1.77173101, 0. , 0. , ..., 0. ,
0. , 0.],

...,
[0. , 0. , 0. , ..., 0. ,
0. , 0.],

[0. , 0. , 0. , ..., 0. ,
0. , 0.],

[0. , 0. , 0. , ..., 0. ,
0. , 0.]])

The first and second indices of the resulting arrays are the source and target nodes, respectively.

Parameters local (bool) – whether to return local (True) or global transfer entropy

Returns a numpy.ndarray containing the (local) transfer entropy for every pair of nodes in
the network

mutual_information(local=False)
Get the local or average mutual information.

Mutual information is a measure of the amount of mutual dependence (correlation) between two random
variables — nodes in this case. The time-local mutual information

𝑖𝑖(𝑋,𝑌) = − log2
𝑝(𝑥𝑖, 𝑦𝑖)

𝑝(𝑥𝑖)𝑝(𝑦𝑖)

can be time-averaged to define the standard mutual information

𝐼(𝑋,𝑌) = −
∑︁
𝑥𝑖,𝑦𝑖

𝑝(𝑥𝑖, 𝑦𝑖) log2
𝑝(𝑥𝑖, 𝑦𝑖)

𝑝(𝑥𝑖)𝑝(𝑦𝑖)
.

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.mutual_information()
array([[0.16232618, 0.01374672, 0.00428548, 0.00428548, 0.01340937,

0.01586238, 0.00516987, 0.00516987, 0.01102766],
[0.01374672, 0.56660996, 0.00745714, 0.00745714, 0.00639113,
0.32790848, 0.0067609 , 0.0067609 , 0.00468342],

...,
[0.00516987, 0.0067609 , 0.4590254 , 0.4590254 , 0.17560769,
0.00621124, 0.49349527, 0.80831657, 0.10390475],

[0.01102766, 0.00468342, 0.12755745, 0.12755745, 0.01233356,
0.00260667, 0.10390475, 0.10390475, 0.63423835]])

>>> lmi = arch.mutual_information(local=True)
>>> lmi[4,3]
array([[-0.67489772, -0.67489772, -0.67489772, ..., 0.18484073,

0.18484073, 0.18484073],
[-0.67489772, -0.67489772, -0.67489772, ..., 0.18484073,
0.18484073, 0.18484073],

...,
[-2.89794147, 1.7513014 , 0.18484073, ..., 0.18484073,
0.18484073, 0.18484073],

[-2.89794147, 1.7513014 , 0.18484073, ..., 0.18484073,
0.18484073, 0.18484073]])

72 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

Neet Documentation, Release 1.0.0

Parameters local (bool) – whether to return local (True) or global mutual information

Returns a numpy.ndarray containing the (local) mutual information for every pair of nodes
in the network

4.8.6 Drawing Utilities

Utilities for drawing Neet objects and graph representations.

neet.draw.view_pygraphviz(G, edgelabel=None, prog=’dot’, args=”, suffix=”, path=None, dis-
play_image=True)

Views the graph G using the specified layout algorithm.

This is a modified version of view_pyagraphviz from networkx.drawing.nx_agraph to allow dis-
play toggle.

Original copyright:

Copyright (C) 2004-2019 by
Aric Hagberg <hagberg@lanl.gov>
Dan Schult <dschult@colgate.edu>
Pieter Swart <swart@lanl.gov>

All rights reserved. BSD license.
Author: Aric Hagberg (hagberg@lanl.gov)

Parameters

• G (networkx.Graph or networkx.DiGraph) – the graph to draw

• edgelabel (str, callable or None) – If a string, then it specifes the edge at-
tribute to be displayed on the edge labels. If a callable, then it is called for each edge and
it should return the string to be displayed on the edges. The function signature of edgelabel
should be edgelabel(data), where data is the edge attribute dictionary.

• prog (str) – Name of Graphviz layout program.

• args (str) – Additional arguments to pass to the Graphviz layout program.

• suffix (str) – If filename is None, we save to a temporary file. The value of suffix will
appear at the tail end of the temporary filename.

• path (str or None) – The filename used to save the image. If None, save to a tempo-
rary file. File formats are the same as those from pygraphviz.agraph.draw.

Returns the filename of the generated image, and a PyGraphviz graph instance

Note: If this function is called in succession too quickly, sometimes the image is not displayed. So you might
consider time.sleep(.5) between calls if you experience problems.

4.8.7 Custom Exceptions

Exceptions are the key mechanism for handling undesirable program state. Whenever Neet encounters a problem,
it raises an exception of some variety. Whenever possible, we have preferred to use builtin exception classes, e.g.
ValueError, IndexError, etc. . . For cases that aren’t really covered by a builtin exception class, we’ve created
subclasses of the standard library’s Exception to report those errors.

4.8. API Reference 73

https://docs.python.org/3/library/functions.html#bool
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://networkx.github.io/documentation/networkx-2.3/reference/drawing.html#module-networkx.drawing.nx_agraph
https://networkx.github.io/documentation/networkx-2.3/reference/classes/graph.html#networkx.Graph
https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#Exception

Neet Documentation, Release 1.0.0

FormatError

FormatError

class neet.exceptions.FormatError
An error class to report when a configuration or data file is improperly formatted.

4.9 References

74 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

75

Neet Documentation, Release 1.0.0

76 Chapter 5. Indices and tables

Bibliography

[Choi2012] Choi, M., Shi, J., Jung, S. H., Chen, X., and Cho, K. H. Cho “Attractor landscape analysis reveals
feedback loops in the p53 network that control the cellular response to DNA damage,” Sci. Signal., vol.
5, no. 251, p. ra83 (2012) doi:10.1126/scisignal.2003363.

[Davidich2008] Davidich, M. I., and Bornholdt, S. “Boolean network model predicts cell cycle sequence of fission
yeast,” PLoS One 3, vol. 3, no. 2, p. e1672 (2008) doi:10.1371/journal.pone.0001672.

[Giacomantonio2010] Giacomantonio, C. E., and Goodhill, G. J. “A Boolean model of the gene regulatory net-
work underlying Mammalian cortical area development,” PLoS Comput. Biol. vol. 6, no. 9 (2010)
doi:10.1371/journal.pcbi.1000936.

[Huang2013] Huang, X., Chen, L., Chim, H., Chan, L. L. H., Zhao, Z., and Yan, H. “Boolean genetic network model
for the control of C. elegans early embryonic cell cycles,” Biomed. Eng. Online, vol. 12 Suppl 1, p. S1,
(2013) doi:10.1186/1475-925X-12-S1-S1.

[Krawitz2007] Krawitz, P. and Shmulevich, I. “Basin Entropy in Boolean Network Ensembles” Phys. Rev. Lett., vol.
98, 158701 (2007) doi:10.1103/PhysRevLett.98.158701.

[Krumsiek2011] Krumsiek, J., Marr, C., Schroeder, T., and Theis, F. J. “Hierarchical differentiation of myeloid pro-
genitors is encoded in the transcription factor network,” PLoS One, vol. 6, no. 8, p. e22649, (2011)
doi:10.1371/journal.pone.0022649.

[Li2004] Li, F., Long, T., Lu, Y., Ouyang, Q., and Tang, C. “The yeast cell-cycle network is robustly designed,”
Proc. Natl. Acad. Sci. U. S. A., vol. 101, no. 14, pp. 4781-4786 (2004) doi:10.1073/pnas.0305937101.

[Lizier2012] Lizier, J. T., Prokopenko, M., and Zomaya, A. Y., “Local measures of information stor-
age in complex distributed computation” Information Sciences, vol. 208, pp. 39-54 (2012)
doi:10.1016/j.ins.2012.04.016.

[Schreiber2000] T. Schreiber, “Measuring information transfer”, Phys. Rev. Lett vol. 85, no. 2, pp.461-464 (2000).
doi:10.1103/PhysRevLett.85.461.

[Pomerance2009] Pomerance, A., Ott, E., Girvan E., and Losert, W. “The Effect of Network Topology on the Sta-
bility of Discrete State Models of Genetic Control.” Proc. Natl. Acad. Sci. USA 106 (2009): 8209-14.
doi:10.1073/pnas.0900142106.

[Ryll2011] Ryll, A., Samaga, R., Schaper, F., Alexopoulos, L. G., Klamt, S. “Large-scale network models of IL-1
and IL-6 signalling and their hepatocellular specification,” Mol. Biosyst., vol. 7, no. 12, pp. 3253-3270,
(2011) doi:10.1039/c1mb05261f.

77

https://dx.doi.org/10.1126/scisignal.2003363
https://dx.doi.org/10.1371/journal.pone.0001672
https://dx.doi.org/10.1371/journal.pcbi.1000936
https://dx.doi.org/10.1186/1475-925X-12-S1-S1
https://dx.doi.org/10.1103/PhysRevLett.98.158701
https://dx.doi.org/10.1371/journal.pone.0022649
https://dx.doi.org/10.1073/pnas.0305937101
http://dx.doi.org/10.1016/j.ins.2012.04.016
http://dx.doi.org/10.1103/PhysRevLett.85.461
https://dx.doi.org/10.1073/pnas.0900142106
https://dx.doi.org/10.1039/c1mb05261f

Neet Documentation, Release 1.0.0

[Shmulevich2004] Shmulevich, I., and Kauffman, S. A. “Activities and sensitivities in Boolean network models.”
Phys. Rev. Lett. 93, 48701 (2004) doi:10.1103/PhysRevLett.93.048701.

[Singh2012] Singh, A., Nascimento, J. M., Kowar, S., Busch, H., and Boerries, M. “Boolean approach to signalling
pathway modelling in HGF-induced keratinocyte migration,” Bioinformatics, vol. 28, no. 18, pp. i495-
i501, (2012) doi:10.1093/bioinformatics/bts410.

78 Bibliography

https://dx.doi.org/10.1103/PhysRevLett.93.048701
https://dx.doi.org/10.1093/bioinformatics/bts410

Python Module Index

n
neet, 22
neet.boolean, 27
neet.boolean.conv, 51
neet.boolean.eca, 30
neet.boolean.examples, 51
neet.boolean.logicnetwork, 40
neet.boolean.network, 28
neet.boolean.reca, 31
neet.boolean.sensitivity, 45
neet.boolean.wtnetwork, 34
neet.draw, 73
neet.exceptions, 73
neet.information, 68
neet.landscape, 57
neet.network, 22
neet.statespace, 52

79

Neet Documentation, Release 1.0.0

80 Python Module Index

Index

Symbols
__contains__() (neet.StateSpace method), 54
__iter__() (neet.StateSpace method), 54
_unsafe_encode() (neet.StateSpace method), 54
_unsafe_update() (neet.Network method), 23

A
active_information() (neet.Information method),

70
attractor_lengths (neet.LandscapeMixin at-

tribute), 61
attractors (neet.LandscapeMixin attribute), 60
average_difference_matrix()

(neet.boolean.SensitivityMixin method),
48

average_sensitivity()
(neet.boolean.SensitivityMixin method),
46

B
base (neet.UniformNetwork attribute), 27
base (neet.UniformSpace attribute), 57
basin_entropy (neet.LandscapeMixin attribute), 63
basin_sizes (neet.LandscapeMixin attribute), 62
basins (neet.LandscapeMixin attribute), 61
BooleanNetwork (class in neet.boolean), 28
boundary (neet.boolean.ECA attribute), 31
boundary (neet.boolean.RewiredECA attribute), 33

C
c_elegans (in module neet.boolean.examples), 51
canalizing_edges()

(neet.boolean.SensitivityMixin method),
50

canalizing_nodes()
(neet.boolean.SensitivityMixin method),
50

clear_landscape() (neet.LandscapeMixin
method), 59

code (neet.boolean.ECA attribute), 30
code (neet.boolean.RewiredECA attribute), 33

D
decode() (neet.StateSpace method), 55
difference_matrix()

(neet.boolean.SensitivityMixin method),
48

distance() (neet.boolean.BooleanNetwork method),
29

draw_landscape_graph() (neet.LandscapeMixin
method), 67

draw_network_graph() (neet.Network method), 26

E
ECA (class in neet.boolean), 30
encode() (neet.StateSpace method), 55
entropy_rate() (neet.Information method), 70
expound() (neet.LandscapeMixin method), 68

F
FormatError (class in neet.exceptions), 74

H
hamming_neighbors()

(neet.boolean.BooleanNetwork method),
29

heights (neet.LandscapeMixin attribute), 63
hgf_signaling_in_keratinocytes (in module

neet.boolean.examples), 51

I
il_6_signaling (in module neet.boolean.examples),

51
in_degrees (neet.LandscapeMixin attribute), 65
Information (class in neet), 68
is_canalizing() (neet.boolean.SensitivityMixin

method), 49

81

Neet Documentation, Release 1.0.0

is_dependent() (neet.boolean.LogicNetwork
method), 42

K
k (neet.Information attribute), 69

L
lambdaQ() (neet.boolean.SensitivityMixin method), 47
landscape() (neet.LandscapeMixin method), 59
landscape_data (neet.LandscapeMixin attribute), 60
landscape_graph() (neet.LandscapeMixin

method), 67
LandscapeData (class in neet), 57
LandscapeMixin (class in neet), 58
LogicNetwork (class in neet.boolean), 40

M
metadata (neet.Network attribute), 23
mouse_cortical_7B (in module

neet.boolean.examples), 51
mouse_cortical_7C (in module

neet.boolean.examples), 51
mutual_information() (neet.Information method),

72
myeloid (in module neet.boolean.examples), 51

N
names (neet.Network attribute), 23
neet (module), 22
neet.boolean (module), 27
neet.boolean.conv (module), 51
neet.boolean.eca (module), 30
neet.boolean.examples (module), 51
neet.boolean.logicnetwork (module), 40
neet.boolean.network (module), 28
neet.boolean.reca (module), 31
neet.boolean.sensitivity (module), 45
neet.boolean.wtnetwork (module), 34
neet.draw (module), 73
neet.exceptions (module), 73
neet.information (module), 68
neet.landscape (module), 57
neet.network (module), 22
neet.statespace (module), 52
negative_threshold() (neet.boolean.WTNetwork

static method), 38
neighbors() (neet.Network method), 25
neighbors_in() (neet.Network method), 23
neighbors_out() (neet.Network method), 24
net (neet.Information attribute), 69
Network (class in neet), 22
network_graph() (neet.Network method), 25

P
p53_dmg (in module neet.boolean.examples), 51
p53_no_dmg (in module neet.boolean.examples), 51
positive_threshold() (neet.boolean.WTNetwork

static method), 38

R
read() (neet.boolean.WTNetwork static method), 37
read_logic() (neet.boolean.LogicNetwork class

method), 44
read_table() (neet.boolean.LogicNetwork class

method), 43
recurrence_times (neet.LandscapeMixin attribute),

64
reduce_table() (neet.boolean.LogicNetwork

method), 42
RewiredECA (class in neet.boolean), 31

S
s_cerevisiae (in module neet.boolean.examples), 52
s_pombe (in module neet.boolean.examples), 52
sensitivity() (neet.boolean.SensitivityMixin

method), 46
SensitivityMixin (class in neet.boolean), 45
shape (neet.StateSpace attribute), 53
size (neet.StateSpace attribute), 53
split_threshold() (neet.boolean.WTNetwork

static method), 39
StateSpace (class in neet), 52
subspace() (neet.boolean.BooleanNetwork method),

28

T
table (neet.boolean.LogicNetwork attribute), 42
theta (neet.boolean.WTNetwork attribute), 37
thresholds (neet.boolean.WTNetwork attribute), 36
timeseries() (neet.LandscapeMixin method), 66
timesteps (neet.Information attribute), 69
trajectory() (neet.LandscapeMixin method), 65
transfer_entropy() (neet.Information method), 71
transitions (neet.LandscapeMixin attribute), 60

U
UniformNetwork (class in neet), 26
UniformSpace (class in neet), 56
update() (neet.Network method), 24

V
view_pygraphviz() (in module neet.draw), 73
volume (neet.StateSpace attribute), 53

W
weights (neet.boolean.WTNetwork attribute), 36

82 Index

Neet Documentation, Release 1.0.0

wiring (neet.boolean.RewiredECA attribute), 34
wt_to_logic() (in module neet.boolean.conv), 51
WTNetwork (class in neet.boolean), 34

Index 83

	Getting Help
	Relevant Publications
	Copyright and Licensing
	Contents
	Introduction
	Network Classes
	State Spaces
	Attractor Landscapes
	Information Analysis
	Sensitivity Analysis
	Network Randomization
	API Reference
	References

	Indices and tables
	Bibliography
	Python Module Index
	Index

