

    
      
          
            
  
Neet: Simulating and analyzing network models

Neet is a python package designed to provide an easy-to-use API for creating and evaluating network
models. In its current state, Neet supports simulating synchronous Boolean network models, though
the API is designed to be model generic. Future work will implement asynchronous update mechanisms
and more general network types.

[image: Build Status (Travis CI)]
 [https://travis-ci.org/ELIFE-ASU/Neet][image: Build Status (Appveyor)]
 [https://ci.appveyor.com/project/dglmoore/neet-awnxe/branch/master][image: Code Coverage (Codecov)]
 [https://codecov.io/gh/elife-asu/neet]
Getting Help

Neet is developed to help people interested in using and analyzing network models to get things done
quickly and painlessly. Your feedback is indispensable. Please create an issue if you find a bug, an
error in the documentation, or have a feature you’d like to request. Your contribution will make
Neet a better tool for everyone.

If you are interested in contributing to Neet, please contact the developers. We’ll get you up and
running!


	Neet Source Repository

	https://github.com/elife-asu/neet



	Neet Issue Tracker

	https://github.com/elife-asu/neet/issues








Relevant Publications

Daniels, B.C., Kim, H., Moore, D.G., Zhou, S., Smith, H.B., Karas, B., Kauffman,
S.A., and Walker, S.I. (2018) “Criticality Distinguishes the Ensemble of
Biological Regulatory Networks” Phys. Rev.  Lett. 121 (13), 138102,
doi:10.1103/PhysRevLett.121.138102 [https://doi.org/10.1103/PhysRevLett.121.138102].




Copyright and Licensing

Copyright © 2017-2019 Bryan C. Daniels, Bradley Karas, Hyunju Kim, Douglas G.
Moore, Harrison Smith, Sara I. Walker, and Siyu Zhou. Free use of this software
is granted under the terms of the MIT License.

See the LICENSE [https://github.com/elife-asu/neet/blob/master/LICENSE] for
details.
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Introduction

Neet is a library for simulating and analyzing dynamical network models. It is written entirely in
Python, with minimal external dependencies. It provides a heirarchy of network
classes and facilities for analyzing the attractor landscapes, informational
structure and sensitivity of those network models.


Examples

Neet provides a network classes with methods designed to make common tasks as painless as possible.
For example, you can read in a collection of boolean logic equations and immediately probe the
dynamics of the network, and compute values such as the LandscapeMixin.attractors and the
boolean.SensitivityMixin.average_sensitivity() of the network

>>> from neet.boolean import LogicNetwork
>>> from neet.boolean.examples import MYELOID_LOGIC_EXPRESSIONS
>>> net = LogicNetwork.read_logic(MYELOID_LOGIC_EXPRESSIONS)
>>> net.names
['GATA-2', 'GATA-1', 'FOG-1', 'EKLF', 'Fli-1', 'SCL', 'C/EBPa', 'PU.1', 'cJun', 'EgrNab', 'Gfi-1']
>>> net.attractors
array([array([0]), array([62, 38]), array([46]), array([54]),
       array([1216]), array([1116, 1218]), array([896]), array([960])],
      dtype=object)
>>> net.average_sensitivity()
1.0227272727272727
>>> net.network_graph()
<networkx.classes.digraph.DiGraph object at 0x...>





See the examples [https://github.com/ELIFE-ASU/Neet/blob/master/examples]
directory of the GitHub repository [https://github.com/ELIFE-ASU/Neet] for
Jupyter notebooks which demonstrate some of the Neet’s features.




Getting Started


Installation


Dependencies

Neet depends on several packages which will be installed by default when Neet is installed via
pip:


	six [https://pypi.org/project/six/]


	numpy [https://pypi.org/project/numpy/]


	networkx [https://pypi.org/project/networkx/]


	pyinform [https://pypi.org/project/pyinform/]


	deprecated [https://pypi.org/project/Deprecated/]




However, network visualization is notoriously problematic, and so we have two optional dependencies
which are only required if you wish to visualize networks using Neet’s builtin capabilities:


	Graphviz [https://graphviz.org/]


	pygraphviz [https://pypi.org/project/pygraphviz/]




True to form, these dependencies are a pain. Graphviz, unfortunately, cannot be installed via pip
(see: https://graphviz.gitlab.io/download/ for installation instructions). Once Graphviz has been
installed, you can install pygraphviz via pip.




Via Pip

To install via pip, you can run the following

$ pip install neet





Note that on some systems this will require administrative privileges. If you don’t have admin
privileges or would prefer to install Neet for your user only, you do so via the --user flag:

$ pip install --user neet








From Source

$ git clone https://github.com/elife-asu/neet
$ cd neet
$ python setup.py test
$ pip install .










System Support

So far the python wrapper has been tested under python2.7, python3.4 and python3.5, and
on the following platforms:


Note

We will continue supporting Python 2.7 until January 1, 2020 when PEP 373 [https://www.python.org/dev/peps/pep-0373/#maintenance-releases] states
that official support for Python 2.7 will end.




	Debian 8


	Mac OS X 10.11 (El Capitan)


	Windows 10












          

      

      

    

  

    
      
          
            
  
Network Classes

Neet provides a collect of pre-defined network types which are common models of complex systems,
including







	boolean.ECA

	ECA represents an elementary cellular automaton rule.



	boolean.RewiredECA

	RewiredECA represents elementary cellular automaton rule with a rewired topology.



	boolean.WTNetwork

	WTNetwork represents weight-threshold boolean network.



	boolean.LogicNetwork

	LogicNetwork represents a network of logic functions.






These concrete network types are leaves in a hierarchy:

[image: Inheritance diagram of boolean.ECA, boolean.RewiredECA, boolean.WTNetwork, boolean.LogicNetwork]

All networks in Neet ultimately derive from the Network class which provides a uniform
interface for all network models. This class provides a basic interface in and of itself, but
derives from StateSpace and LandscapeMixin to provide a wealth of additional
features. See State Spaces and Attractor Landscapes for more information.


Basic Network Attributes

As an example, consider the boolean network boolean.examples.s_pombe, which is a gene
regulatory network model of the cell cycle of S. pombe (fission yeast) [Davidich2008]. All
networks have a “shape”, namely an array of the number of states each node can take — it’s base.

>>> s_pombe.shape
[2, 2, 2, 2, 2, 2, 2, 2, 2]





Along with this, comes the ability to ask how many nodes the network has:

>>> s_pombe.size
9





In general, Neet’s networks need not be uniform; each state can have a different base. However, all
of the networks currently implemented are Boolean, meaning that every node in the network has a
binary.

In addition to specifying the base of the nodes of the network, each node can be given a name.

>>> s_pombe.names
['SK', 'Cdc2_Cdc13', 'Ste9', 'Rum1', 'Slp1', 'Cdc2_Cdc13_active', 'Wee1_Mik1', 'Cdc25', 'PP']





Further, on the whole you can associate an arbitrary dictionary of metadata data, for example
citation information.

>>> s_pombe.metadata['citation']
'M. I. Davidich and S. Bornholdt, "Boolean network model predicts cell cycle sequence of fission yeast," PLoS One, vol. 3, no. 2, p. e1672, Feb. 2008.doi:10.1371/journal.pone.0001672'








Dynamic State Update

Beyond data such as these, concrete classes specify information necessary for describing the
dynamics of the network’s state. Unlike most dynamical network packages, Neet’s networks do not
store the state of the network internally. Instead, the API provides methods for operating on state
external to the network. In particular, Network.update() which updates a state of the list or
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] in place.

>>> state = [0, 1, 1, 0, 1, 0, 0, 1, 0]
>>> s_pombe.update(state)
[0, 0, 0, 0, 0, 0, 0, 1, 1]
>>> state
[0, 0, 0, 0, 0, 0, 0, 1, 1]





This single function allows Neet to implement a number of common analyses such as landscape, information and sensitivity analyses.




Graph Structure

As dynamical networks, all Network instances have a directed graph [https://en.wikipedia.org/wiki/Directed_graph] structure. Neet provides a minimal interface for
exploring this structure. At it’s basic, you can probe which nodes are connected by an edge:

# source nodes of edges incoming to node 6
>>> s_pombe.neighbors(6, direction='in') == {1, 6, 8}
True

# target nodes of edges outgoing from 6
>>> s_pombe.neighbors(6, direction='out') == {5, 6}
True

# all nodes connected to node 6
>>> s_pombe.neighbors(6, direction='both') == {1, 5, 6, 8}
True

# all nodes connected to node 6
>>> s_pombe.neighbors(6, direction='both') == {1, 5, 6, 8}
True





Of course, this will only get you so far. Luckily, the NetworkX [https://networkx.github.io/]
package provides a whole host of graph-theoretic analyses. To take advantage of that fact, and not
avoid Neet reinventing the wheel, you can export your Neet network as a networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph].

>>> import networkx as nx
>>> g = s_pombe.network_graph()
>>> nx.shortest_path(g, 1, 5)
[1, 2, 5]
>>> g = s_pombe.network_graph(labels='names')  # default labels='indices'
>>> nx.shortest_path(g, 'Cdc2_Cdc13', 'Cdc2_Cdc13_active')
['Cdc2_Cdc13', 'Ste9', 'Cdc2_Cdc13_active']





You can draw the graphs, with the nodes labeled by either the node index

>>> s_pombe.draw_network_graph({'labels': 'indices'}, {
...    'path': 'source/static/s_pombe_indices.png',
...    'display_image': False
... })





[image: _images/s_pombe_indices.png]
or labeled by the node name:

>>> s_pombe.draw_network_graph({'labels': 'names'}, {
...    'path': 'source/static/s_pombe_names.png',
...    'display_image': False
... })





[image: _images/s_pombe_names.png]

Note

For the drawing functionality, you will need to install the optional dependencies: Graphviz [https://graphviz.org/] and pygraphviz [https://pypi.org/project/pygraphviz/]. See
Getting Started.









          

      

      

    

  

    
      
          
            
  
State Spaces

Network derives from StateSpace which endows it with structural information about
the state space of the network, and provides a number of vital methods.


Attributes

First and foremost, StateSpace provides (readonly) attributes for assessing gross
properties of the state space, namely StateSpace.size, StateSpace.shape and
StateSpace.volume.

>>> s_pombe.size  # number of dimension (nodes)
9
>>> s_pombe.shape  # the number of states by dimension (states per node)
[2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> s_pombe.volume  # total number of states of the network
512








States in the Space

As a StateSpace, you can determining whether or not an array represents a valid state of
the network. This is accomplished using the in keyword.

>>> 0 in s_pombe
False
>>> [0]*9 in s_pombe
True
>>> numpy.zeros(9, dtype=int) in s_pombe
True
>>> [2, 0, 0, 0, 0, 0, 0, 0, 0] in s_pombe  # the nodes are binary
False





Of course, after asking whether a state is valid, the next thing you might want to do is iterate
over the states.

>>> for state in s_pombe:
...     print(state)
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 0, 0, 0, 0]
...
[0, 1, 1, 1, 1, 1, 1, 1, 1]
[1, 1, 1, 1, 1, 1, 1, 1, 1]





Since the networks are iterable, you can treat them like any other kind of sequence.

>>> list(s_pombe)
[[0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], ...]
>>> list(map(lambda s: s[0], s_pombe))
[0, 1, 0, 1, ...]
>>> list(filter(lambda s: s[0] ^ s[1] == 1, s_pombe))
[[1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], ...]








State Encoding and Decoding

For particularly large networks, storing a list of states it’s states can use a lot of memory.
What’s more, it is often useful to be able to index an array or key a dictionary based by a state of
the network, e.g. when efficiently computing the attractors of the network. A simple solution to
this problem is to encode the state as an integer. StateSpace provides this functionality
via the StateSpace.encode() and StateSpace.decode() methods.

Encoding States

>>> s_pombe.encode([0, 1, 0, 1, 0, 1, 0, 1, 0])
170
>>> s_pombe.encode(numpy.ones(9)) == s_pombe.volume - 1
True
>>> s_pombe.encode('apples')
Traceback (most recent call last):
...
ValueError: state is not in state space





Decoding States

>>> s_pombe.decode(170)
[0, 1, 0, 1, 0, 1, 0, 1, 0]
>>> s_pombe.decode(511)
[1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> s_pombe.decode(512)
[0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> s_pombe.decode(-1)
[1, 1, 1, 1, 1, 1, 1, 1, 1]





Notice that decoding states does not raise an error when the state encoding is invalid. Instead, the
codes wrap around so that any integer can be decoded. This was a decision made more for the sake of
performance than anything. Just be mindful of it.

By and large, the StateSpace.encode() and StateSpace.decode() methods are inverses:

>>> s_pombe.encode(s_pombe.decode(170))
170
>>> s_pombe.decode(s_pombe.encode([0, 0, 1, 0, 0, 1, 0, 0, 1]))
[0, 0, 1, 0, 0, 1, 0, 0, 1]








Encoding Scheme

There are a number of ways of encoding a sequence of integers as an integer. We’ve chosen the one we
did so that the encoded value of the state is consistent with the order the states are produced upon
iteration.

>>> states = list(s_pombe)
>>> states[5] == s_pombe.decode(5)
True
>>> numpy.all([i == s_pombe.encode(s) for i, s in enumerate(s_pombe)])
True
>>> numpy.all([s_pombe.decode(i) == s for i, s in enumerate(s_pombe)])
True





This makes implementing the algorithms associated with landscape dynamics and
sensitivity analyses much simpler and as light on memory as possible.







          

      

      

    

  

    
      
          
            
  
Attractor Landscapes

The most common use of dynamical network models is the analysis of their attractor landscape. In
many cases, the attractors are associated with some form of functionally important network state,
e.g. a cell type in a gene regulatory network. Neet provides standard landscape analysis methods via
the LandscapeMixin from which Network derives.


State Transitions

The starting point for all of these analyses are the state transitions: where does each state of the network go
upon update?

>>> s_pombe.transitions
array([  2,   2, 130, 130,   4,   0, 128, 128,   8,   0, 128, 128,  12,
         0, 128, 128, 256, 256, 384, 384, 260, 256, 384, 384, 264, 256,
       ...
       208, 208, 336, 336, 464, 464, 340, 336, 464, 464, 344, 336, 464,
       464, 348, 336, 464, 464])





Each element of the resulting array is the state to which the index transitions, e.g.  \(0
\mapsto 2\), \(2 \mapsto 130\), etc. The indices and values are, of course, encoded states. You can always decode them:

>>> for x, y in enumerate(s_pombe.transitions):
...     print(s_pombe.decode(x), '→', s_pombe.decode(y))
[0, 0, 0, 0, 0, 0, 0, 0, 0] → [0, 1, 0, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0, 0, 0] → [0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0, 0, 0] → [0, 1, 0, 0, 0, 0, 0, 1, 0]
...
[1, 1, 1, 1, 1, 1, 1, 1, 1] → [0, 0, 0, 0, 1, 0, 1, 1, 1]





Given state transitions, the next question you might ask is how to compute sequences of state
transtions — a trajectory — by applying the
network update scheme recursively?

>>> s_pombe.trajectory([0, 0, 0, 0, 0, 0, 0, 0, 0], timesteps=2)
[[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1, 0]]
>>> s_pombe.trajectory([0, 0, 0, 0, 0, 0, 0, 0, 0], timesteps=2, encode=True)
[0, 2, 130]





Notice that if you request a trajectory with \(t\) time steps, the resulting trajectory will
have \(t+1\) elements in it; the first element is the initial state. If you want the trajectory
for every state of the network, you can use the timeseries method.

>>> series = s_pombe.timeseries(2)
>>> series
array([[[0, 0, 0],
        [1, 0, 0],
        [0, 0, 0],
        ...,
        [1, 0, 0],
        [0, 0, 0],
        [1, 0, 0]],

       ...

       [[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        ...,
        [1, 1, 1],
        [1, 1, 1],
        [1, 1, 1]]])
>>> series.shape
(9, 512, 3)
>>> series[:, 0, :].transpose()
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0, 0, 0, 0],
       [0, 1, 0, 0, 0, 0, 0, 1, 0]])





The resulting \(3\)-D array is indexed by the nodes, state and timestep; in that order. For a
more wholistic description of the state transitions, you can construct a landscape graph.

>>> import networkx as nx
>>> g = s_pombe.landscape_graph()
>>> len(g)
512
>>> nx.shortest_path(g, 0, 130)
[0, 2, 130]





The landscape graph, much like the network topology, can be drawn if you’ve installed pygraphviz [https://pypi.org/project/pygraphviz/]. See Getting Started.




Attractors and Basins

With the state transitions under our belt, we can start computing landscape features such as the
attractors.

>>> s_pombe.attractors
array([array([76]), array([4]), array([8]), array([12]),
       array([144, 110, 384]), array([68]), array([72]), array([132]),
       array([136]), array([140]), array([196]), array([200]),
       array([204])], dtype=object)





Each element of the resulting array is an array of states in a fixed-point attractor or limit cycle.
Beyond this, you can determine which of the attractor’s basin each state is in.

>>> s_pombe.basins
array([ 0,  0,  0,  0,  1,  0,  0,  0,  2,  0,  0,  0,  3,  0,  0,  0,  0,
        0,  4,  4,  0,  0,  4,  4,  0,  0,  4,  4,  0,  0,  4,  4,  4,  4,
        ...
        0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
        0,  0])
>>> s_pombe.basins[18]
4





That is, state \(18\) is in basin \(4\), and so is fated to land in the cycle \(\{144,
110, 384\}\).

The LandscapeMixin provides a whole host of other properties, so check out the API
Reference for the full list.




Landscape Data

A key feature of the LandscapeMixin is that it tries to compute as much as it can, as
efficiently as it can. For example, when the attractors are computed, the basins of all of the
states, the recurrence time, etc… can
all be computed at the same time. These values are



	Computed lazily, but preemptively when you first request any of the associated property.


	Cached in a LandscapeData object stored in the LandscapeMixin.







This means, that the attractors are computed when you request them. A second request will simply
use the cached values. Similarly, you get a cached value for the basins once you’ve accessed the
attractors. The following only computes the attractors once, and the basins are computed at that
call:

>>> s_pombe.attractors  # may take a moment
array([...], dtype=object)
>>> s_pombe.attractors  # almost instantaneous
array([...], dtype=object)
>>> s_pombe.basins  # almost instantaneous; computed on first call to attractors.
array([...])





The order you access the properties in does not matter, so don’t worry about that.

There may be cases when you want to



	Compute some landscape features of a network


	Modify the network in some way


	Compute landscape features on the new network


	Compare the results







Because you’ve modifed the network, you will need to reset the cached landscape data. Since you are
going to be comparing features before and after, you need to extract the data before you do that.
This is where LandscapeMixin.landscape(), LandscapeMixin.expound() and
LandscapeMixin.landscape_data come into play.

import numpy
from neet.boolean.examples import s_pombe

# Compute all of the landscape properties
s_pombe.expound()
# Get the data out
before = s_pombe.landscape_data

# Modify the network
s_pombe.thresholds = numpy.zeros(s_pombe.size)
# Reset the landscape (notice the method chaining...)
s_pombe.landscape().expound()
# Get the new data
after = s_pombe.landscape_data

# Compare `before` and `after` as you so choose





The result of LandscapeMixin.landscape_data is a LandscapeData object which has all
of the landscape features cached (provided they’ve been computed):

>>> s_pombe.attractors
array([...], dtype=object)
>>> s_pombe.landscape_data
<neet.landscape.LandscapeData object at 0x...>
>>> s_pombe.landscape_data.attractors
array([...], dtype=object)











          

      

      

    

  

    
      
          
            
  
Information Analysis

Out of the box, Neet provides facilities for computing a few common information-theoretic quantities
from networks. All of these methods rely on constructing time series, from which a collection of
probabilities distributions are built. The Information class provides a simple mechanism
for automating this process, and caching results for relatively efficient computation.


Initialization

Constructing an instance of Information, you simply provide a network, a history length
(used to compute measures such as active information or transfer entropy), and the length of time series to
compute.

>>> Information(s_pombe, k=5, timesteps=20)
<neet.information.Information object at 0x...>





At initialization, a time series is computed
based on the parameters provided. This is cached and used whenever you request an information
measure.

Of course, you can override the parameters after initialization, and the time series will be
recomputed.

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.net = s_cerevisiae
>>> arch.k = 2
>>> arch.timesteps = 100








Information Measures

Once you have an Information instance, you can request an informormation measure. This will
compute and cache the value.

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.active_information()  # computed and cached
array([0.        , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,
       0.40046165, 0.67019615, 0.67019615, 0.39189127])
>>> arch.active_information()  # cached value is returned
array([0.        , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,
       0.40046165, 0.67019615, 0.67019615, 0.39189127])





Each information measure is only computed and cached when you request it. In the event that you
change some aspect of the information architecture, e.g. the network, the cache of information
measures is also cleared.

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.active_information()
array([0.        , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,
       0.40046165, 0.67019615, 0.67019615, 0.39189127])
>>> arch.net = s_cerevisiae
>>> arch.active_information()
array([0.        , 0.35677758, 0.410884  , 0.44191249, 0.54392362,
       0.42523414, 0.35820287, 0.13355861, 0.42823889, 0.22613507,
       0.28059538])











          

      

      

    

  

    
      
          
            
  
Sensitivity Analysis

Neet provides an API for computing various measures of sensitivity on Networks via the
SensitivityMixin. Sensitivity, in its simplest form, is a measure of how small
perturbations of the network’s state change under the dynamics. In the sensitivity parlance, a
network is called, sub-critical, critical, or chaotic if the perturbation tends to shrink,
stay the same, or grow over time.


Note

As of the v1.0.0 release, only the neet.boolean module provides implementations of the
sensitivity interface. A subsequent release will generalize this mixin to support a wider range
of network models.




Boolean Sensitivity

The standard definition of sensitivity at a given state of a
Boolean network is defined in terms of the Hamming distance:


\[D_H(x,y) = \sum_{i} x_i \oplus y_i.\]

That is, the number of bits differing between two binary states, \(x\) and \(y\). A Hamming
neighbor of a state \(x\) is a state that differs from it by exactly \(1\) bit. We can write
\(x \oplus e_i\) to represent the Hamming neighbor of \(x\) which differs in the
\(i\)-th bit. The sensitivity of the state \(x\) is then defined as


\[s_f(x) = \frac{1}{N} \sum_{i = 1}^N D_H(f(x), f(x \oplus e_i))\]

where \(f\) is the network’s update function, and \(N\) is the number of nodes in the
network.

Neet makes computing sensitivity at a given network state as straightforward as possible:

>>> s_pombe.sensitivity([0, 0, 0, 0, 0, 0, 0, 0 ,0])
1.5555555555555556





More often than not, though, you’ll want to compute the average of the sensitivity over all of the
states of the network. That is


\[s_f = \frac{1}{2^N} \sum_{x} s_f(x).\]

In Neet, just ask for it

>>> s_pombe.average_sensitivity()
0.9513888888888888





For a full range of sensitivity-related features offered by Neet, see the API References.







          

      

      

    

  

    
      
          
            
  
Network Randomization

The previous release of Neet v0.1.0 [https://neet.readthedocs.io/en/v0.1.0/] included the
neet.boolean.randomnet module which provided mechanisms for randomizing network models (Boolean
networks, more specificially). However, the maintainers are not quite satisified with the quality
and scope of that module. Rather than postpone the v1.0 release any longer, we have decided to
withhold that module for the time begin.

The current plans [https://github.com/ELIFE-ASU/Neet/issues/139] are to release a totally
redesigned module in the future, possibly with v2.0.

If this is a feature that you desperately need, please feel free to email the developers at
emergence@asu.edu or comment on the relevant issue [https://github.com/ELIFE-ASU/Neet/issues/139]
on GitHub.
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	Network Classes
	Network

	UniformNetwork
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Network Classes

The neet module provides the following abstract network classes from
which all concrete Neet networks inherit:







	Network

	The Network class is the core base class for all Neet networks.



	UniformNetwork

	The UnformNetwork class represents a network in which every node has the same number of discrete states.






[image: Inheritance diagram of neet.Network, neet.UniformNetwork]

These classes provide an abstract interface which algorithms can leverage for
generic implementation of various network-theoretic analyses.


Network


	
class neet.Network(shape, names=None, metadata=None)

	The Network class is the core base class for all Neet networks. It provides
an interface for describing network state updating and simple
graph-theoretic analyses.







	names

	Get or set the names of the nodes of the network.



	metadata

	Any metadata associated with the network.



	_unsafe_update

	Unsafely update the state of a network in place.



	update

	Update the state of a network in place.



	neighbors_in

	Get a set of all incoming neighbors of the node at index.



	neighbors_out

	Get a set of all outgoing neighbors of the node at index.



	neighbors

	Get a set of the neighbors of the node at index.



	network_graph

	The graph of the network as a networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph].



	draw_network_graph

	Draw network’s networkx graph using PyGraphviz.






Network is an abstract class, meaning it cannot be instantiated, and
inherits from neet.LandscapeMixin and neet.StateSpace.
Initialization of the Network requires, at a minimum, a specification of
the shape of the network’s state space, and optionally allows the user to
specify a list of names for the nodes of the network and a metadata
dictionary for the network as a whole (e.g. citation information).

Any concrete deriving class must overload the following methods:


	_unsafe_update()


	neighbors_in()


	neighbors_out()





	Parameters

	
	shape (list [https://docs.python.org/3/library/stdtypes.html#list]) – the base of each node of the network


	names (seq) – an iterable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network









	
metadata

	Any metadata associated with the network.






	
names

	Get or set the names of the nodes of the network.


	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the assigned value is not convertable to a list


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the length fo the assigned values does not match the networks’s size













	
_unsafe_update(state, index, pin, values, *args, **kwargs)

	Unsafely update the state of a network in place.

This function accepts three optional arguments by default:


	index  - update only the specified node (by index)


	pin    - do not update the state of any node in a list


	values - set the state of some subset of nodes to specified values





Note

As an abstract method, every concrete class derving from Network
must overload this method. The overload should not perform no
ensurance checks on the arguments to maximize performance, as those
check are performed in the update() method. Further, it is
assumed that this method modifies the state argument in-place
and no others.




	Parameters

	
	state (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – the state of the network to update


	index (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the index to update


	pin (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or None [https://docs.python.org/3/library/constants.html#None]) – which nodes to pin to their current state


	values (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – a dictionary mapping nodes to a state to which to reset the node to






	Returns

	the updated state










	
neighbors_in(index, *args, **kwargs)

	Get a set of all incoming neighbors of the node at index.

All concrete network classes must overload this method.


	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – the index of the node target node



	Returns

	a set of incoming neighbor indices










	
neighbors_out(index, *args, **kwargs)

	Get a set of all outgoing neighbors of the node at index.

All concrete network classes must overload this method.


	Parameters

	index (int [https://docs.python.org/3/library/functions.html#int]) – the index of the node source node



	Returns

	a set of outgoing neighbor indices










	
update(state, index=None, pin=None, values=None, *args, **kwargs)

	Update the state of a network in place.

This function accepts three optional arguments by default:


	index  - update only the specified node (by index)


	pin    - do not update the state of any node in a list


	values - set the state of some subset of nodes to specified values




Examples

Updates States In-Place:

>>> rule = ECA(30, size=5)
>>> state = [0, 0, 1, 0, 0]
>>> rule.update(state)
[0, 1, 1, 1, 0]
>>> state
[0, 1, 1, 1, 0]





Updating A Single Node:

>>> rule = ECA(30, size=5)
>>> rule.update([0, 0, 1, 0, 0])
[0, 1, 1, 1, 0]
>>> rule.update([0, 0, 1, 0, 0], index=1)
[0, 1, 1, 0, 0]





Pinning States:

>>> rule = ECA(30, size=5)
>>> rule.update([0, 0, 1, 0, 0])
[0, 1, 1, 1, 0]
>>> rule.update([0, 0, 1, 0, 0], pin=[1])
[0, 0, 1, 1, 0]





Overriding States:

>>> rule = ECA(30, size=5)
>>> rule.update([0, 0, 1, 0, 0])
[0, 1, 1, 1, 0]
>>> rule.update([0, 0, 1, 0, 0], values={0: 1, 2: 0})
[1, 1, 0, 1, 0]





This function ensures that:


	If index is provided, then neither pin nor values is
provided.


	If pin and values are both provided, then they do not affect
the same nodes.


	If values is provided, then the overriding states specified in
it are consistent with the state space of the network.





Note

Typically, this method should not be overloaded unless the
particular deriving class makes use of the args or kwargs
arguments. In that case, it should first ensure that those
arguments are well-behaved, and and the delegate subsequent checks
and the call to _unsafe_update() to a call to this
neet.Network.update().




	Parameters

	
	state (list [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – the state of the network to update


	index (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the index to update


	pin (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] or None [https://docs.python.org/3/library/constants.html#None]) – which nodes to pin to their current state


	values (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – a dictionary mapping nodes to a state to which to reset the node to






	Returns

	the updated state










	
neighbors(index, direction='both', *args, **kwargs)

	Get a set of the neighbors of the node at index. Optionally,
specify the directionality of the neighboring edges, e.g. 'in',
'out' or 'both'.

Examples

All Neighbors:

>>> s_pombe.neighbors(7)
{1, 5, 7, 8}





Incoming Neighbors:

>>> s_pombe.neighbors(7, direction='in')
{8, 1, 7}





Outgoing Neighbors:

>>> s_pombe.neighbors(7, direction='out')
{5, 7}






	Parameters

	
	index (int [https://docs.python.org/3/library/functions.html#int]) – the index of the node


	direction (str [https://docs.python.org/3/library/stdtypes.html#str]) – the directionality of the neighboring edges






	Returns

	a set of neighboring node indices, respecting direction.










	
network_graph(labels='indices', **kwargs)

	The graph of the network as a networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph].

This method should only be overloaded by derived classes if additional
metadata is to be added to the graph by default.

Examples

>>> s_pombe.network_graph()
<networkx.classes.digraph.DiGraph object at 0x...>






	Parameters

	
	labels – label to be applied to graph nodes (either 'indices' or 'names')


	kwargs – kwargs to pass to the networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph] constructor






	Returns

	a networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph] object










	
draw_network_graph(graphkwargs={}, pygraphkwargs={})

	Draw network’s networkx graph using PyGraphviz.


Note

This method requires Graphviz [https://graphviz.org/] and
pygraphviz [https://pypi.org/project/pygraphviz/]. The former
requires manual installation (see
https://graphviz.gitlab.io/download/), while the latter can be
installed via pip.




	Parameters

	
	graphkwargs – kwargs to pass to network_graph()


	pygraphkwargs – kwargs to pass to neet.draw.view_pygraphviz()



















UniformNetwork


	
class neet.UniformNetwork(size, base, names=None, metadata=None)

	The UnformNetwork class represents a network in which every node has the
same number of discrete states. This allows for more efficient default
implementations of several methods. If your particular concrete network
type meets this condition, then you should derive from UniformNetwork
rather than Network.

[image: Inheritance diagram of neet.UniformNetwork]

In addition to the methods provided by Network, UniformNetwork
also provides the following attribute:







	base

	Get the number of states each node can take.






UniformNetwork derives from Network, but is still abstract,
meaning it cannot be instantiated. Initialization of the
UniformNetwork requires, at a minimum, the number of nodes in the
network (size) and the number of states the nodes can take (base).
As with Network, the user can optionally specify a list of names
for the nodes of the network and a metadata dictionary for the network as a
whole (e.g. citation information).

Any concrete deriving class must overload the following methods:


	_unsafe_update()


	neighbors_in()


	neighbors_out()





	Parameters

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – the number of nodes in the network


	base (int [https://docs.python.org/3/library/functions.html#int]) – the number of states each node can take


	names (seq) – an interable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network









	
base

	Get the number of states each node can take.

Examples

>>> ECA(30, size=5).base
2






	Returns

	the base of nodes of the network



















          

      

      

    

  

    
      
          
            
  
Boolean Networks







	BooleanNetwork

	The BooleanNetwork class is a base class for all of Neet’s Boolean networks.



	ECA

	ECA represents an elementary cellular automaton rule.



	RewiredECA

	RewiredECA represents elementary cellular automaton rule with a rewired topology.



	WTNetwork

	WTNetwork represents weight-threshold boolean network.



	LogicNetwork

	LogicNetwork represents a network of logic functions.






[image: Inheritance diagram of neet.boolean.BooleanNetwork, neet.boolean.ECA, neet.boolean.RewiredECA, neet.boolean.WTNetwork, neet.boolean.LogicNetwork]
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BooleanNetwork


	
class neet.boolean.BooleanNetwork(size, names=None, metadata=None)

	The BooleanNetwork class is a base class for all of Neet’s Boolean
networks. The BooleanNetwork class inherits from both
neet.UniformNetwork and neet.boolean.SensitivityMixin,
and specializes the inherited neet.StateSpace methods to exploit
the Boolean structure.

[image: Inheritance diagram of neet.boolean.BooleanNetwork]

In addition to all of its inherited methods, BooleanNetwork also exposes the following methods:







	subspace

	Generate all states in a given subspace.



	distance

	Compute the Hamming distance between two states.



	hamming_neighbors

	Get all states that one unit of Hamming distance from a given state.






BooleanNetwork is an abstract class, meaning it cannot be instantiated.
Initialization of a BooleaNetwork requires, at a minimum, the number of
nodes in the network. As with all classes that derive from
neet.Network, the user may optionally provide a list of names for
the nodes of the network and a metadata dictionary for the network as a
whole (e.g. citation information).


	Parameters

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – number of nodes in the network


	names (seq) – an iterable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network









	
subspace(indices, state=None)

	Generate all states in a given subspace. This method varies each node
specified by the indicies array independently. The optional
state parameter specifies the state of the non-varying states of
the network. If state is not provided, all nodes not in
indicies will have state 0.

Examples

>>> s_pombe.subspace([0])
<generator object BooleanNetwork.subspace at 0x...>
>>> list(s_pombe.subspace([0]))
[[0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0]]
>>> list(s_pombe.subspace([0, 3]))
[[0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 0, 0]]





>>> s_pombe.subspace([0], state=[0, 1, 0, 1, 0, 1, 0, 1, 0])
<generator object BooleanNetwork.subspace at 0x...>
>>> list(s_pombe.subspace([0], state=[0, 1, 0, 1, 0, 1, 0, 1, 0]))
[[0, 1, 0, 1, 0, 1, 0, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0]]
>>> list(s_pombe.subspace([0, 3], state=[0, 1, 0, 1, 0, 1, 0, 1, 0]))
[[0, 1, 0, 1, 0, 1, 0, 1, 0], [1, 1, 0, 1, 0, 1, 0, 1, 0], [0, 1, 0, 0, 0, 1, 0, 1, 0], [1, 1, 0, 0, 0, 1, 0, 1, 0]]






	Parameters

	
	indicies (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], iterable) – the indicies to vary in the subspace


	state (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a state which specifes the state of the non-varying nodes






	Yield

	the states of the subspace










	
distance(a, b)

	Compute the Hamming distance between two states.

Examples

>>> s_pombe.distance([0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 1, 1, 0, 1, 0, 0])
4
>>> s_pombe.distance([0, 1, 0, 1, 1, 0, 1, 0, 0], [0, 1, 0, 1, 1, 0, 1, 0, 0])
0






	Parameters

	
	a (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – the first state


	b (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – the second state






	Returns

	the Hamming distance between the states



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if either state is not in the network’s state space










	
hamming_neighbors(state)

	Get all states that one unit of Hamming distance from a given state.

Examples

>>> s_pombe.hamming_neighbors([0, 0, 0, 0, 0, 0, 0, 0, 0])
[[1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1]]
>>> s_pombe.hamming_neighbors([0, 1, 1, 0, 1, 0, 1, 0, 0])
[[1, 1, 1, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 1, 0, 1, 0, 0], [0, 1, 1, 1, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 0, 1, 0, 0], [0, 1, 1, 0, 1, 1, 1, 0, 0], [0, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 0, 1, 0, 1, 1, 0], [0, 1, 1, 0, 1, 0, 1, 0, 1]]






	Parameters

	state (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – the state whose neighbors are desired



	Returns

	a list of neighbors of the given state



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if the state is not in the network’s state space

















          

      

      

    

  

    
      
          
            
  
Elementary Cellular Automata

The neet.boolean.ECA class describes an Elementary Cellular Automaton [https://en.wikipedia.org/wiki/Elementary_cellular_automaton] with an
arbitrary rule.


	
class neet.boolean.ECA(code, size, boundary=None, names=None, metadata=None)

	ECA represents an elementary cellular automaton rule. Each ECA contains an
8-bit integral member variable code representing the Wolfram code for
the ECA rule and a set of boundary conditions which is either None,
signifying periodic boundary conditions, or a pair of cell states
signifying fixed, open boundary conditions.  As with all
neet.Network classes, the names of the nodes and network-wide
metadata can be provided.

[image: Inheritance diagram of ECA]

In addition to all inherited methods, ECA exposes the following properites:







	code

	The Wolfram code of the elementary cellular automaton.



	boundary

	The boundary conditions of the elemenary cellular automaton.







	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – the Wolfram code for the ECA


	size (int [https://docs.python.org/3/library/functions.html#int]) – the size of the ECA’s lattice


	boundary (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] or None [https://docs.python.org/3/library/constants.html#None]) – the boundary conditions for the CA


	names (seq) – an iterable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network






	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if code is not in \(\{0,1,\ldots,255\}\)


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if boundary is a neither None nor a pair of binary states









	
code

	The Wolfram code of the elementary cellular automaton.

Examples

>>> eca = ECA(30, size=5)
>>> eca.code
30
>>> eca.code = 45
>>> eca.code
45
>>> eca.code = 256
Traceback (most recent call last):
    ...
ValueError: invalid ECA code






	Type

	int [https://docs.python.org/3/library/functions.html#int]



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if code is not in \(\{0,1,\ldots,255\}\)










	
boundary

	The boundary conditions of the elemenary cellular automaton.

Examples

>>> eca = ECA(30, size=5)
>>> eca.boundary
>>> eca.boundary = (0, 1)
>>> eca.boundary
(0, 1)
>>> eca.boundary = None
>>> eca.boundary
>>> eca.boundary = [0, 1]
Traceback (most recent call last):
    ...
TypeError: ECA boundary are neither None nor a tuple






	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple], None [https://docs.python.org/3/library/constants.html#None]



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if boundary is a neither None nor a pair of binary states

















          

      

      

    

  

    
      
          
            
  
Rewired Elementary Cellular Automata


	
class neet.boolean.RewiredECA(code, boundary=None, size=None, wiring=None, names=None, metadata=None)

	RewiredECA represents elementary cellular automaton rule with a rewired
topology. That is, RewiredECA is a variant of an neet.boolean.ECA
wherein the neighbors of a given cell can be specified by the user. This
allows one to study, for example, the role of topology in the dynamics of a
network. Every neet.boolean.ECA can be represented as a RewiredECA
with standard wiring, but all RewiredECA are fixed sized networks. For
this reason, RewiredECA does not derive from neet.boolean.ECA.

[image: Inheritance diagram of RewiredECA]

RewiredECA instances can be instantiated by providing an ECA rule code,
and either the number of nodes in the network (size) or a wiring
matrix which specifies how the nodes are wired.  Optionally, the user can
specify boundary conditions as in neet.boolean.ECA. As with all
neet.Network classes, the names of the nodes and network-wide
metadata can be provided.

In addition to all inherited methods, RewiredECA exposes the following properites







	code

	The Wolfram code of the elementary cellular automaton



	boundary

	The boundary conditions of the elemenary cellular automaton



	wiring

	The wiring matrix for the rule.






Examples

If wiring is not provided, the network is wired as a standard
neet.boolean.ECA.

>>> reca = RewiredECA(30, size=5)
>>> reca.code
30
>>> reca.size
5
>>> reca.wiring
array([[-1,  0,  1,  2,  3],
       [ 0,  1,  2,  3,  4],
       [ 1,  2,  3,  4,  5]])





Wiring matrices are \(3        imes N\) matrices where each column is a node
of the network, and the rows represent the left-, middle- and right-input
for the nodes. The number of nodes will be inferred from the width of the
matrix. For example:

>>> reca = RewiredECA(30, wiring=[[0,1,2],[-1,0,0],[2,3,1]])
>>> reca.code
30
>>> reca.size
3
>>> reca.wiring
array([[ 0,  1,  2],
       [-1,  0,  0],
       [ 2,  3,  1]])





Here the \(0\), \(-1\) and
\(2\) as left, middle and right input. Note that -1 represents the
left-boundary condition of the RewiredECA. If instance has periodic
boundary conditions then -1 is effectively N-1. Similarly N is
the right boundary condition.

To see how the wiring affects the result:

>>> ca = RewiredECA(30, size=3)
>>> ca.update([0, 1, 0])
[1, 1, 1]
>>> ca = RewiredECA(30, wiring=[[0,1,3], [1,1,1], [2,1,2]])
>>> ca.update([0, 1, 0])
[1, 0, 1]






	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – the 8-bit Wolfram code for the rule


	boundary (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], None [https://docs.python.org/3/library/constants.html#None]) – the boundary conditions for the CA


	size (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the number of cells in the lattice


	wiring (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a wiring matrix


	names (seq) – an iterable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network






	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if both size and wiring are provided


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if neither size nor wiring are provided


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if size is less than \(1\) (when provided)


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if wiring is not a \(3 \times N\) matrix (when
provided)


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if any element of wiring is outside the range
\([-1, \)]` (when provided)









	
code

	The Wolfram code of the elementary cellular automaton

Examples

>>> reca = RewiredECA(30, size=55)
>>> reca.code
30
>>> reca.code = 45
>>> reca.code
45
>>> reca.code = 256
Traceback (most recent call last):
    ...
ValueError: invalid ECA code






	Type

	int [https://docs.python.org/3/library/functions.html#int]



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if code is not in \(\{0,1,\ldots,255\}\)










	
boundary

	The boundary conditions of the elemenary cellular automaton

Examples

>>> reca = RewiredECA(30, size=5)
>>> reca.boundary
>>> reca.boundary = (0,1)
>>> reca.boundary
(0, 1)
>>> reca.boundary = None
>>> reca.boundary
>>> reca.boundary = [0,1]
Traceback (most recent call last):
    ...
TypeError: ECA boundary are neither None nor a tuple






	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple], None [https://docs.python.org/3/library/constants.html#None]



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if boundary is neither None nor a pair of binary states










	
wiring

	The wiring matrix for the rule.

Examples

>>> reca = RewiredECA(30, size=4)
>>> reca.wiring
array([[-1,  0,  1,  2],
       [ 0,  1,  2,  3],
       [ 1,  2,  3,  4]])
>>> eca = RewiredECA(30, wiring=[[0,1],[1,1],[-1,-1]])
>>> eca.wiring
array([[ 0,  1],
       [ 1,  1],
       [-1, -1]])






	Type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

















          

      

      

    

  

    
      
          
            
  
Weight-Threshold Networks


	
class neet.boolean.WTNetwork(weights, thresholds=None, theta=None, names=None, metadata=None)

	WTNetwork represents weight-threshold boolean network. This type of Boolean
network model is common in biology as it represents activating/inhibiting
interactions between subcomponents.

[image: Inheritance diagram of WTNetwork]

In addition to methods inherited from neet.boolean.BooleanNetwork,
WTNetwork exposes the following attributes







	weights

	The network’s square weight matrix.



	thresholds

	The network’s threshold vector.



	theta

	The network’s activation function.






and static methods:







	read

	Read a network from a pair of node/edge files.



	positive_threshold

	Activate if the stimulus is 0 or greater.



	negative_threshold

	Activate if the stimulus exceeds 0.



	split_threshold

	Activates if the stimulus exceeds 0, maintaining state if it is exactly 0.






At a minimum, WTNetworks accept either a weight matrix or a size. The
weight matrix must be square, with the \((i,j)\) element representing
the weight on the edge from \(j\)-th node to the \(i\)-th. If a
size is provided, all weights are assumed to be \(0.0\).

>>> WTNetwork(3)
<neet.boolean.wtnetwork.WTNetwork object at 0x...>
>>> WTNetwork([[0, 1, 0], [-1, 0, -1], [-1, 1, 1]])
<neet.boolean.wtnetwork.WTNetwork object at 0x...>





Each node has associated with it a threshold value. These thresholds can be
provided at initialization. If none are provided, all thresholds are
assumed to be \(0.0\).

>>> net = WTNetwork(3, [0.5, 0.0, -0.5])
>>> net.thresholds
array([ 0.5,  0. , -0.5])
>>> WTNetwork([[0, 1, 0], [-1, 0, -1], [-1, 1, 1]], thresholds=[0.5, 0.0, -0.5])
<neet.boolean.wtnetwork.WTNetwork object at 0x...>





Finally, every node of the network is assumed to use the same activation
function, theta. This function, if not provided, is assumed to be
split_threshold().

>>> net = WTNetwork(3)
>>> net.theta
<function WTNetwork.split_threshold at 0x...>
>>> net = WTNetwork(3, theta=WTNetwork.negative_threshold)
>>> net.theta
<function WTNetwork.negative_threshold at 0x...>





This activation function must accept two arguments: the activation stimulus
and the current state of the node or network. It should handle two types of
arguments:



	stimulus and state are scalar


	stimulus and state are vectors (list or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])







In case 2, the result should modify the state in-place and return the vector.

def theta(stimulus, state):
    if isinstance(stimulus, (list, numpy.ndarray)):
        for i, x in enumerate(stimulus):
            state[i] = theta(x, state[i])
        return state
    elif stimulus < 0:
        return 0
    else:
        return state
net = WTNetwork(3, theta=theta)
print(net.theta)





<function theta at 0x...>





As with all neet.Network classes, the names of the nodes and
network-wide metadata can be provided.


	Parameters

	
	weights (int [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a weights matrix (rows → targets, columns → sources) or a size


	thresholds (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – activation thresholds for the nodes


	theta (callable) – the activation function for all nodes


	names (seq) – an iterable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network






	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if weights is not a integer or a square matrix


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if thresholds and weights have inconsistent dimensions


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if theta is not callable









	
weights

	The network’s square weight matrix. The rows and columns are target and
source nodes, respectively. That is, the \((i,j)\) element is the
weight of the edge from the \(j\)-th node to the \(i\)-th.

Examples

>>> net = WTNetwork(3)
>>> net.weights
array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]])

>>> net = WTNetwork([[1, 0, 1], [-1, 1, 0], [0, 0, 1]])
>>> net.weights
array([[ 1.,  0.,  1.],
       [-1.,  1.,  0.],
       [ 0.,  0.,  1.]])






	Type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
thresholds

	The network’s threshold vector. The \(i\)-th element is the threshold
for the \(i\)-th node.

Examples

>>> net = WTNetwork(3)
>>> net.thresholds
array([0., 0., 0.])

>>> net = WTNetwork(3, thresholds=[0, 0.5, -0.5])
>>> net.thresholds
array([ 0. ,  0.5, -0.5])






	Type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
theta

	The network’s activation function. Every node in the network uses this
function to determine its next state, based on the simulus it recieves.

>>> WTNetwork(3).theta
<function WTNetwork.split_threshold at 0x...>
>>> WTNetwork(3, theta=WTNetwork.negative_threshold).theta
<function WTNetwork.negative_threshold at 0x...>





This activation function must accept two arguments: the activation stimulus
and the current state of the node or network. It should handle two types of
arguments:



	stimulus and state are scalar


	stimulus and state are vectors (list or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray])







In case 2, the result should modify the state in-place and return the vector.

def theta(stimulus, state):
    if isinstance(stimulus, (list, numpy.ndarray)):
        for i, x in enumerate(stimulus):
            state[i] = theta(x, state[i])
        return state
    elif stimulus < 0:
        return 0
    else:
        return state
net = WTNetwork(3, theta=theta)
print(net.theta)





<function theta at 0x...>





As with all neet.Network classes, the names of the nodes and
network-wide metadata can be provided.


	Type

	callable










	
static read(nodes_path, edges_path, theta=None, metadata=None)

	Read a network from a pair of node/edge files.

>>> nodes_path = '../neet/boolean/data/s_pombe-nodes.txt'
>>> edges_path = '../neet/boolean/data/s_pombe-edges.txt'
>>> net = WTNetwork.read(nodes_path, edges_path)
>>> net.size
9
>>> net.names
['SK', 'Cdc2_Cdc13', 'Ste9', 'Rum1', 'Slp1', 'Cdc2_Cdc13_active', 'Wee1_Mik1', 'Cdc25', 'PP']






	Parameters

	
	nodes_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the nodes file


	edges_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to the edges file


	theta (callable) – the activation function


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network






	Returns

	a WTNetwork










	
static positive_threshold(values, states)

	Activate if the stimulus is 0 or greater. That is, it “leans positive”
if the simulus is 0:


\[\begin{split}\theta_p(x) = \begin{cases}
    0 & x < 0 \\
    1 & x \geq 0.
\end{cases}\end{split}\]

If values and states are iterable, then apply the above
function to each pair (x,y) in zip(values, states) and stores
the result in states.

If values and states are scalar values, then simply apply
the above threshold function to the pair (values, states) and
return the result.

Examples

>>> ys = [0,0,0]
>>> WTNetwork.positive_threshold([1, -1, 0], ys)
[1, 0, 1]
>>> ys
[1, 0, 1]
>>> ys = [1,1,1]
>>> WTNetwork.positive_threshold([1, -1, 0], ys)
[1, 0, 1]
>>> ys
[1, 0, 1]
>>> WTNetwork.positive_threshold(0,0)
1
>>> WTNetwork.positive_threshold(0,1)
1
>>> WTNetwork.positive_threshold(1,0)
1
>>> WTNetwork.positive_threshold(-1,0)
0






	Parameters

	
	values – the threshold-shifted values of each node


	states – the pre-updated states of the nodes






	Returns

	the updated states










	
static negative_threshold(values, states)

	Activate if the stimulus exceeds 0. That is, it “leans negative” if the
simulus is 0:


\[\begin{split}\theta_n(x) = \begin{cases}
    0 & x \leq 0 \\
    1 & x > 0.
\end{cases}\end{split}\]

If values and states are iterable, then apply the above
function to each pair (x,y) in zip(values, states) and stores
the result in states.

If values and states are scalar values, then simply apply
the above threshold function to the pair (values, states) and
return the result.

Examples

>>> ys = [0,0,0]
>>> WTNetwork.negative_threshold([1, -1, 0], ys)
[1, 0, 0]
>>> ys
[1, 0, 0]
>>> ys = [1,1,1]
>>> WTNetwork.negative_threshold([1, -1, 0], ys)
[1, 0, 0]
>>> ys
[1, 0, 0]
>>> WTNetwork.negative_threshold(0,0)
0
>>> WTNetwork.negative_threshold(0,1)
0
>>> WTNetwork.negative_threshold(1,0)
1
>>> WTNetwork.negative_threshold(1,1)
1






	Parameters

	
	values – the threshold-shifted values of each node


	states – the pre-updated states of the nodes






	Returns

	the updated states










	
static split_threshold(values, states)

	Activates if the stimulus exceeds 0, maintaining state if it is exactly
0. That is, it is a middle ground between negative_threshold()
and positive_threshold():


\[\begin{split}\theta_s(x,y) = \begin{cases}
    0 & x < 0 \\
    y & x = 0 \\
    1 & x > 0.
\end{cases}\end{split}\]

If values and states are iterable, then apply the above
function to each pair (x,y) in zip(values, states) and stores
the result in states.

If values and states are scalar values, then simply apply
the above threshold function to the pair (values, states) and
return the result.

Examples

>>> ys = [0,0,0]
>>> WTNetwork.split_threshold([1, -1, 0], ys)
[1, 0, 0]
>>> ys
[1, 0, 0]
>>> ys = [1,1,1]
>>> WTNetwork.split_threshold([1, -1, 0], ys)
[1, 0, 1]
>>> ys
[1, 0, 1]
>>> WTNetwork.split_threshold(0,0)
0
>>> WTNetwork.split_threshold(0,1)
1
>>> WTNetwork.split_threshold(1,0)
1
>>> WTNetwork.split_threshold(1,1)
1






	Parameters

	
	values – the threshold-shifted values of each node


	states – the pre-updated states of the nodes






	Returns

	the updated states

















          

      

      

    

  

    
      
          
            
  
Logical Networks


	
class neet.boolean.LogicNetwork(table, reduced=False, names=None, metadata=None)

	LogicNetwork represents a network of logic functions. This type of Boolean
network model is common in biological modeling.

[image: Inheritance diagram of LogicNetwork]

In addition to methods inherited from neet.boolean.BooleanNetwork,
LogicNetwork exposes the following attributes







	table

	The network’s truth table.






and methods:







	is_dependent

	Is the target node dependent on the state of source?



	reduce_table

	Reduce truth table by removing input nodes which have no logic influence from the truth table of each node.



	read_table

	Read a network from a truth table file.



	read_logic

	Read a network from a file of logic equations.






At a minimum, LogicNetworks accept a truth table at initialization.  A
truth table stores a list of tuples, one for each node in order. A tuple of
the form (A, {C1, C2, ...}) at index i provides the activation
conditions for the node of index i. A is a tuple marking the
indices of the nodes which influence the state of node i via logic
relations. {C1, C2, ...} is a set, each element of which is the
collection of binary states of these influencing nodes that would activate
node i, setting it to 1. Any other collection of states of nodes in
A are assumed to deactivate node i, setting it to 0.

C1, C2, etc. are sequences (tuple or str) of binary digits,
each being the binary state of corresponding node in A.

The following network has a single node, which is only activates when it is
in the 0 state. That is, it alternates between 0 and 1.

>>> net = LogicNetwork([((0,), {'0'})])
>>> net.size
1
>>> net.table
[((0,), {'0'})]





A more complicated network, with three nodes. Here, node 0 activates in
the next state whenever node 1 is deactivated; node 1 activates
based on the state of nodes 1 and 2; and node 2 activates based
on its own state.

>>> net = LogicNetwork([((1,), {'0'}), ((1,2), {'10', '11'}), ((2,), {'1'})])
>>> net.size
3
>>> net.table == [((1,), {'0'}), ((1, 2), {'10', '11'}), ((2,), {'1'})]
True





Notice that node 1 will fall into the activated state regardless of
what node 2 is doing. In other words, the edge \(2 \rightarrow
1\) is not a real edge. The table can be reduced to remove such an “fake”
edge using the reduced argument:

>>> net = LogicNetwork([((1,), {'0'}), ((1,2), {'10', '11'}), ((2,), {'1'})])
>>> net.table == [((1,), {'0'}), ((1, 2), {'10', '11'}), ((2,), {'1'})]
True
>>> net = LogicNetwork([((1,), {'0'}), ((1,2), {'10', '11'}), ((2,), {'1'})], reduced=True)
>>> net.table == [((1,), {'0'}), ((1,), {'1'}), ((2,), {'1'})]
True






	Parameters

	
	table (list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – the logic table


	reduced (bool [https://docs.python.org/3/library/functions.html#bool]) – reduce the table


	names (seq) – an iterable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network






	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the rows of the table are neither list nor tuple


	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError] – if a node depends another which doesn’t have a row in the table


	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the truth conditions are neither list, tuple nor set.









	
table

	The network’s truth table.

A truth table is a list of tuples, one for each node in order. A tuple of
the form (A, {C1, C2, ...}) at index i provides the activation
conditions for the node of index i. A is a tuple marking the
indices of the nodes which influence the state of node i via logic
relations. {C1, C2, ...} is a set, each element of which is the
collection of binary states of these influencing nodes that would
activate node i, setting it to 1. Any other collection of states
of nodes in A are assumed to deactivate node i, setting it to
0.

C1, C2, etc. are sequences (tuple or str) of binary
digits, each being the binary state of corresponding node in A.

>>> from neet.boolean.examples import myeloid
>>> myeloid.table == [((0, 1, 2, 7), {'1000', '1100', '1010'}),
... ((1, 0, 4, 7), {'0010', '1100', '1010', '1110', '0110', '0100', '1000'}),
... ((1,), {'1'}),
... ((1, 4), {'10'}),
... ((1, 3), {'10'}),
... ((1, 7), {'10'}),
... ((6, 1, 2, 5), {'1011', '1100', '1010', '1110', '1101', '1000', '1001'}),
... ((6, 7, 1, 0), {'1000', '1100', '0100'}),
... ((7, 10), {'10'}),
... ((7, 8, 10), {'110'}),
... ((6, 9), {'10'})]
True






	Type

	list of tuples of type (list [https://docs.python.org/3/library/stdtypes.html#list], set [https://docs.python.org/3/library/stdtypes.html#set])










	
is_dependent(target, source)

	Is the target node dependent on the state of source?

>>> net = LogicNetwork([((1, 2), {'01', '10'}),
... ((0, 2), {'01', '10', '11'}),
... ((0, 1), {'11'})])
>>> net.is_dependent(0, 0)
False
>>> net.is_dependent(0, 2)
True






	Parameters

	
	target (int [https://docs.python.org/3/library/functions.html#int]) – index of the target node


	source (int [https://docs.python.org/3/library/functions.html#int]) – index of the source node






	Returns

	whether the target node is dependent on the source










	
reduce_table()

	Reduce truth table by removing input nodes which have no logic
influence from the truth table of each node.


Note

This function introduces the identity function for all nodes which
have no inputs. This ensure that every node has a well-defined
logical function. The example below demonstrates this with node
1.



>>> net = LogicNetwork([((0,1), {'00', '10'}), ((0,), {'0', '1'})])
>>> net.table == [((0,1), {'00', '10'}), ((0,), {'0', '1'})]
True
>>> net.reduce_table()
>>> net.table == [((1,), {'0'}), ((1,), {'0', '1'})]
True










	
classmethod read_table(table_path, reduced=False, metadata=None)

	Read a network from a truth table file.

A logic table file starts with a table title which contains names of
all nodes. It is a line marked by ## at the begining with node
names seperated by commas or spaces. This line is required. For
artificial network without node names, arbitrary names must be put in
place, e.g.:

## A B C D





Following are the sub-tables of logic conditions for every node. Each
sub-table nominates a node and its logically connected nodes in par-
enthesis as a comment line:

# A (B C)





The rest of the sub-table are states of those nodes in parenthesis
(B, C) that would activate the state of A. States that would
deactivate A should not be included in the sub-table.

A complete logic table with 3 nodes A, B, C would look like this:

## A B C
# A (B C)
1 0
1 1
# B (A)
1
# C (B C A)
1 0 1
0 1 0
0 1 1





Custom comments can be added above or below the table title (as long as
they are preceeded with more or less than two # (e.g. # or
### but not ##)).

Examples:

print(open(MYELOID_TRUTH_TABLE, 'r').read())





## GATA-2, GATA-1, FOG-1, EKLF, Fli-1, SCL, C/EBPa, PU.1, cJun, EgrNab, Gfi-1
# GATA-2 (GATA-2, GATA-1, FOG-1, PU.1)
1 1 0 0
1 0 1 0
1 0 0 0
# GATA-1 (GATA-1, GATA-2, Fli-1, PU.1)
1 0 0 0
0 1 0 0
0 0 1 0
1 1 0 0
1 0 1 0
0 1 1 0
1 1 1 0
# FOG-1 (GATA-1)
1
...





>>> net = LogicNetwork.read_table(MYELOID_TRUTH_TABLE)
>>> net.size
11
>>> net.names
['GATA-2', 'GATA-1', 'FOG-1', 'EKLF', 'Fli-1', 'SCL', 'C/EBPa', 'PU.1', 'cJun', 'EgrNab', 'Gfi-1']
>>> net.table ==  [((0, 1, 2, 7), {'1000', '1010', '1100'}),
... ((1, 0, 4, 7), {'0010', '0100', '0110', '1000', '1010', '1100', '1110'}),
... ((1,), {'1'}),
... ((1, 4), {'10'}),
... ((1, 3), {'10'}),
... ((1, 7), {'10'}),
... ((6, 1, 2, 5), {'1000', '1001', '1010', '1011', '1100', '1101', '1110'}),
... ((6, 7, 1, 0), {'0100', '1000', '1100'}),
... ((7, 10), {'10'}),
... ((7, 8, 10), {'110'}),
... ((6, 9), {'10'})]
True






	Parameters

	
	table_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – a path to a table table file


	reduced (bool [https://docs.python.org/3/library/functions.html#bool]) – reduce the table


	names (seq) – an iterable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network






	Returns

	a LogicNetwork










	
classmethod read_logic(logic_path, external_nodes_path=None, reduced=False, metadata=None)

	Read a network from a file of logic equations.

A logic equations has the form of A = B AND ( C OR D ), each term
being separated from parantheses and logic operators with at least a
space. The optional external_nodes_path takes a file that contains
nodes in a column whose states do not depend on any nodes. These are
considered “external” nodes. Equivalently, such a node would have a
logic equation A = A, for its state stays on or off unless being
set externally.

Examples

print(open(MYELOID_LOGIC_EXPRESSIONS, 'r').read())





GATA-2 = GATA-2 AND NOT ( GATA-1 AND FOG-1 ) AND NOT PU.1
GATA-1 = ( GATA-1 OR GATA-2 OR Fli-1 ) AND NOT PU.1
FOG-1 = GATA-1
EKLF = GATA-1 AND NOT Fli-1
Fli-1 = GATA-1 AND NOT EKLF
SCL = GATA-1 AND NOT PU.1
C/EBPa = C/EBPa AND NOT ( GATA-1 AND FOG-1 AND SCL )
PU.1 = ( C/EBPa OR PU.1 ) AND NOT ( GATA-1 OR GATA-2 )
cJun = PU.1 AND NOT Gfi-1
EgrNab = ( PU.1 AND cJun ) AND NOT Gfi-1
Gfi-1 = C/EBPa AND NOT EgrNab





>>> net = LogicNetwork.read_logic(MYELOID_LOGIC_EXPRESSIONS)
>>> net.size
11
>>> net.names
['GATA-2', 'GATA-1', 'FOG-1', 'EKLF', 'Fli-1', 'SCL', 'C/EBPa', 'PU.1', 'cJun', 'EgrNab', 'Gfi-1']
>>> net.table ==  [((0, 1, 2, 7), {'1000', '1010', '1100'}),
... ((1, 0, 4, 7), {'0010', '0100', '0110', '1000', '1010', '1100', '1110'}),
... ((1,), {'1'}),
... ((1, 4), {'10'}),
... ((1, 3), {'10'}),
... ((1, 7), {'10'}),
... ((6, 1, 2, 5), {'1000', '1001', '1010', '1011', '1100', '1101', '1110'}),
... ((6, 7, 1, 0), {'0100', '1000', '1100'}),
... ((7, 10), {'10'}),
... ((7, 8, 10), {'110'}),
... ((6, 9), {'10'})]
True






	Parameters

	
	logic_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to a file of logial expressions


	external_nodes_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – a path to a file of external nodes


	reduced (bool [https://docs.python.org/3/library/functions.html#bool]) – reduce the table


	names (seq) – an iterable object of the names of the nodes in the network


	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – metadata dictionary for the network






	Returns

	a LogicNetwork

















          

      

      

    

  

    
      
          
            
  
Sensitivity Analysis


	
class neet.boolean.SensitivityMixin

	SensitivityMixin provides methods for sensitivity analysis. That is,
methods to quantify the degree to which perturbations of a network’s state
propagate and spread. As part of this, we also provide methods for
identifying “canalizing edges”: edges for which a state of the source node
uniquely determines the state of the target regardless of other sources.







	sensitivity

	Compute the Boolean sensitivity at a given network state.



	average_sensitivity

	Calculate average Boolean network sensitivity, as defined in [Shmulevich2004].



	lambdaQ

	Compute the sensitivity eigenvalue, \(\lambda_Q\).



	difference_matrix

	Compute the difference matrix at a given state.



	average_difference_matrix

	Compute the difference matrix, averaged over some states.



	is_canalizing

	Determine whether a given network edge is canalizing.



	canalizing_edges

	Get the set of all canalizing edges in the network.



	canalizing_nodes

	Get a set of all nodes with at least one incoming canalizing edge.






The neet.boolean.BooleanNetwork class derives from
SensitivityMixin to provide sensitivity analysis to all of Neet’s Boolean
network models.


	
sensitivity(state, transitions=None)

	Compute the Boolean sensitivity at a given network state.

The sensitivity of a Boolean function \(f\) on state vector
\(x\) is the number of Hamming neighbors of \(x\) on which the
function value is different than on \(x\), as defined in
[Shmulevich2004].

This method calculates the average sensitivity over all \(N\)
boolean functions, where \(N\) is the number of nodes in the
network.

Examples

>>> s_pombe.sensitivity([0, 0, 0, 0, 0, 1, 1, 0, 0])
1.0
>>> s_pombe.sensitivity([0, 1, 1, 0, 1, 0, 0, 1, 0])
0.4444444444444444
>>> c_elegans.sensitivity([0, 0, 0, 0, 0, 0, 0, 0])
1.75
>>> c_elegans.sensitivity([1, 1, 1, 1, 1, 1, 1, 1])
1.25





Optionally, the user can provide a pre-computed array of state
transitions to improve performance when this function is repeatedly
called.

>>> trans = list(map(s_pombe.decode, s_pombe.transitions))
>>> s_pombe.sensitivity([0, 0, 0, 0, 0, 1, 1, 0, 0], transitions=trans)
1.0
>>> s_pombe.sensitivity([0, 1, 1, 0, 1, 0, 0, 1, 0], transitions=trans)
0.4444444444444444






	Parameters

	
	state (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a single network state


	transitions (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], None [https://docs.python.org/3/library/constants.html#None]) – precomputed state transitions (optional)






	Returns

	the sensitivity at the provided state






See also

average_sensitivity()








	
average_sensitivity(states=None, weights=None, calc_trans=True)

	Calculate average Boolean network sensitivity, as defined in
[Shmulevich2004].

The sensitivity of a Boolean function \(f\) on state vector \(x\)
is the number of Hamming neighbors of \(x\) on which the function
value is different than on \(x\).

The average sensitivity is an average taken over initial states.

Examples

>>> c_elegans.average_sensitivity()
1.265625
>>> c_elegans.average_sensitivity(states=[[0, 0, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 1, 1, 1, 1]])
...
1.5
>>> c_elegans.average_sensitivity(states=[[0, 0, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 1, 1, 1, 1]], weights=[0.9, 0.1])
...
1.7
>>> c_elegans.average_sensitivity(states=[[0, 0, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 1, 1, 1, 1]], weights=[9, 1])
...
1.7






	Parameters

	
	states (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], None [https://docs.python.org/3/library/constants.html#None]) – The states to average over; all states if None


	weights (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], None [https://docs.python.org/3/library/constants.html#None]) – weights for a weighted average over states; all
\(1\).


	calc_trans – pre-compute all state transitions; ignored if
states or weights is None.






	Returns

	the average sensitivity of net






See also

sensitivity()








	
lambdaQ(**kwargs)

	Compute the sensitivity eigenvalue, \(\lambda_Q\). That is, the
largest eigenvalue of the sensitivity matrix
average_difference_matrix().

This is analogous to the eigenvalue calculated in [Pomerance2009].

Examples

>>> s_pombe.lambdaQ()
0.8265021276831896
>>> c_elegans.lambdaQ()
1.263099227661824






	Returns

	the sensitivity eigenvalue (\(\lambda_Q\)) of net






See also

average_difference_matrix()








	
difference_matrix(state, transitions=None)

	Compute the difference matrix at a given state.

For a network with \(N\) nodes, with Boolean functions \(f_i\),
the difference matrix is a \(N \times N\) matrix


\[A_{ij} = f_i(x) \oplus f_i(x \oplus e_j)\]

where \(e_j\) is the network state with the \(j\)-th node in
the \(1\) state while all others are \(0\). In other words, the
element \(A_{ij}\) signifies whether or not flipping the
\(j\)-th node’s state changes the subsequent state of the
\(i\)-th node.

Examples

>>> s_pombe.difference_matrix([0, 0, 0, 0, 0, 0, 0, 0, 0])
array([[0., 0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 1., 1., 1., 0., 0., 0., 0.],
       [0., 0., 1., 0., 0., 0., 0., 0., 1.],
       [0., 0., 0., 1., 0., 0., 0., 0., 1.],
       [0., 0., 0., 0., 0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 0., 0., 1., 0., 1.],
       [0., 1., 0., 0., 0., 0., 0., 1., 0.],
       [0., 0., 0., 0., 1., 0., 0., 0., 0.]])
>>> c_elegans.difference_matrix([0, 0, 0, 0, 0, 0, 0, 0])
array([[1., 0., 0., 0., 0., 0., 0., 1.],
       [0., 0., 1., 1., 0., 0., 0., 0.],
       [0., 0., 1., 0., 1., 0., 0., 0.],
       [0., 0., 1., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1., 1., 0., 1.],
       [0., 0., 0., 0., 0., 1., 1., 0.],
       [1., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 1.]])






	Parameters

	
	state (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – the starting state


	transitions (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], None [https://docs.python.org/3/library/constants.html#None]) – precomputed state transitions (optional)






	Returns

	the difference matrix






See also

average_difference_matrix()








	
average_difference_matrix(states=None, weights=None, calc_trans=True)

	Compute the difference matrix, averaged over some states.

Examples

>>> s_pombe.average_difference_matrix()
array([[0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    ,
        0.    ],
       [0.    , 0.    , 0.25  , 0.25  , 0.25  , 0.    , 0.    , 0.    ,
        0.    ],
       [0.25  , 0.25  , 0.25  , 0.    , 0.    , 0.25  , 0.    , 0.    ,
        0.25  ],
       [0.25  , 0.25  , 0.    , 0.25  , 0.    , 0.25  , 0.    , 0.    ,
        0.25  ],
       [0.    , 0.    , 0.    , 0.    , 0.    , 1.    , 0.    , 0.    ,
        0.    ],
       [0.    , 0.    , 0.0625, 0.0625, 0.0625, 0.    , 0.0625, 0.0625,
        0.    ],
       [0.    , 0.5   , 0.    , 0.    , 0.    , 0.    , 0.5   , 0.    ,
        0.5   ],
       [0.    , 0.5   , 0.    , 0.    , 0.    , 0.    , 0.    , 0.5   ,
        0.5   ],
       [0.    , 0.    , 0.    , 0.    , 1.    , 0.    , 0.    , 0.    ,
        0.    ]])
>>> c_elegans.average_difference_matrix()
array([[0.25  , 0.25  , 0.    , 0.    , 0.    , 0.25  , 0.25  , 0.25  ],
       [0.    , 0.    , 0.5   , 0.5   , 0.    , 0.    , 0.    , 0.    ],
       [0.5   , 0.    , 0.5   , 0.    , 0.5   , 0.    , 0.    , 0.    ],
       [0.    , 0.    , 1.    , 0.    , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.3125, 0.3125, 0.3125, 0.3125, 0.3125, 0.    , 0.3125],
       [0.5   , 0.    , 0.    , 0.    , 0.    , 0.5   , 0.5   , 0.    ],
       [1.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.    ],
       [0.    , 0.    , 0.    , 0.    , 0.    , 0.    , 0.5   , 0.5   ]])






	Parameters

	
	states (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], None [https://docs.python.org/3/library/constants.html#None]) – the states to average over; all states if None


	weights (list [https://docs.python.org/3/library/stdtypes.html#list], numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], None [https://docs.python.org/3/library/constants.html#None]) – weights for a weighted average over states; uniform
weighting if None


	calc_trans (bool [https://docs.python.org/3/library/functions.html#bool]) – pre-compute all state transitions; ignored if
states or weights is None






	Returns

	the difference matrix as a numpy.ndarray().






See also

difference_matrix()








	
is_canalizing(x, y)

	Determine whether a given network edge is canalizing.

An edge \((y,x)\) is canalyzing if \(x\)’s value at \(t+1\)
is fully determined when \(y\)’s value has a particular value at
\(t\), regardless of the values of other nodes.

According to (Stauffer 1987):

"A rule [...] is called forcing, or canalizing, if at least one of
its :math:`K` arguments has the property that the result of the
function is already fixed if this argument has one particular
value, regardless of the values for the :math:`K-1` other
arguments."  Note that this is a definition for whether a node's
rule is canalizing, whereas this function calculates whether a
specific edge is canalizing.  Under this definition, if a node has
any incoming canalizing edges, then its rule is canalizing.





Examples

>>> s_pombe.is_canalizing(1, 2)
True
>>> s_pombe.is_canalizing(2, 1)
False
>>> c_elegans.is_canalizing(7, 7)
True
>>> c_elegans.is_canalizing(1, 3)
True
>>> c_elegans.is_canalizing(4, 3)
False






	Parameters

	
	x (int [https://docs.python.org/3/library/functions.html#int]) – target node’s index


	y (int [https://docs.python.org/3/library/functions.html#int]) – source node’s index






	Returns

	whether or not the edge (y,x) is canalizing; None if
the edge does not exist






See also

canalizing_edges(), canalizing_nodes()








	
canalizing_edges()

	Get the set of all canalizing edges in the network.

Examples

>>> s_pombe.canalizing_edges()
{(1, 2), (5, 4), (0, 0), (1, 3), (4, 5), (5, 6), (5, 7), (1, 4), (8, 4), (5, 2), (5, 3)}
>>> c_elegans.canalizing_edges()
{(1, 2), (3, 2), (1, 3), (7, 6), (6, 0), (7, 7)}






	Returns

	the set of canalizing edges as in the form (target, source)






See also

is_canalizing(), canalizing_nodes()








	
canalizing_nodes()

	Get a set of all nodes with at least one incoming canalizing edge.

Examples

>>> s_pombe.canalizing_nodes()
{0, 1, 4, 5, 8}
>>> c_elegans.canalizing_nodes()
{1, 3, 6, 7}






	Returns

	the set indices of nodes with at least one canalizing input edge






See also

is_canalizing(), canalizing_edges()















          

      

      

    

  

    
      
          
            
  
Network Conversions


	
neet.boolean.conv.wt_to_logic(net)

	Convert a neet.boolean.WTNetwork to a
neet.boolean.LogicNetwork.

Examples

>>> net = wt_to_logic(s_pombe)
>>> isinstance(net, LogicNetwork)
True
>>> numpy.array_equal(net.transitions, s_pombe.transitions)
True






	Parameters

	net (neet.boolean.WTNetwork) – a network to convert



	Returns

	an equivalent neet.boolean.LogicNetwork













          

      

      

    

  

    
      
          
            
  
Example Networks


	
neet.boolean.examples.c_elegans = <neet.boolean.wtnetwork.WTNetwork object>

	A gene regulatory network model of the S. elegans cell cycle, as described
in [Huang2013].






	
neet.boolean.examples.hgf_signaling_in_keratinocytes = <neet.boolean.logicnetwork.LogicNetwork object>

	A gene regulatory network model of hepatocyte growth-factor induced
migration of primary human keratinocytes, as described in [Singh2012].






	
neet.boolean.examples.il_6_signaling = <neet.boolean.logicnetwork.LogicNetwork object>

	A gene regulatory model of interleukin 6 signaling, as described in
[Ryll2011].






	
neet.boolean.examples.mouse_cortical_7B = <neet.boolean.logicnetwork.LogicNetwork object>

	A gene regulatory network model for cortical area development in mice, as
described in fig. 7B of [Giacomantonio2010].






	
neet.boolean.examples.mouse_cortical_7C = <neet.boolean.logicnetwork.LogicNetwork object>

	A gene regulatory network model for cortical area development in mice, as
described in fig. 7C of [Giacomantonio2010].






	
neet.boolean.examples.myeloid = <neet.boolean.logicnetwork.LogicNetwork object>

	A gene regulatory network for the differentiation of myeloid progenitors, as
described in [Krumsiek2011].






	
neet.boolean.examples.p53_dmg = <neet.boolean.wtnetwork.WTNetwork object>

	A simplified gene regulatory network model of p53 signaling with
damage, as described in [Choi2012].






	
neet.boolean.examples.p53_no_dmg = <neet.boolean.wtnetwork.WTNetwork object>

	A simplified gene regulatory network model of p53 signaling without
damage, as described in [Choi2012].






	
neet.boolean.examples.s_cerevisiae = <neet.boolean.wtnetwork.WTNetwork object>

	A gene regulatory network model of the S. cerevisiae (budding yeast) cell
cycle, as described in [Li2004].






	
neet.boolean.examples.s_pombe = <neet.boolean.wtnetwork.WTNetwork object>

	A gene regulatory network model of the S. pombe (fission yeast) cell
cycle, as described in [Davidich2008].









          

      

      

    

  

    
      
          
            
  
State Spaces

The neet module provides the following classes from which all Neet
network classes inherit:







	StateSpace

	StateSpace represents a (potentially in-homogeneous) discrete state space.



	UniformSpace

	A StateSpace with the same number of states in each dimension.






[image: Inheritance diagram of neet.StateSpace, neet.UniformSpace]

This endows networks with methods for iterating over the states of the network,
determining if a state exists in the network, and the ability to encode and
decode states as integer values. In other words, these classes provide an
interface for accessing the unstructured set of states of the network, with
no dynamical information.


StateSpace


	
class neet.StateSpace(shape)

	StateSpace represents a (potentially in-homogeneous) discrete state space.
It implements iteration, inclusion testing and methods for encoding and
decoding states as integers sutable for array indexing:







	size

	Get the size of the state space.



	shape

	Get the shape of the state space.



	volume

	Get the volume of the state space.



	__iter__

	Iterate over the states of the state space.



	__contains__

	Determine if a state is in the state space.



	_unsafe_encode

	Unsafely encode a state as an integer value.



	encode

	Encode a state as an integer.



	decode

	Decode an integer-encoded state into a coordinate list.






StateSpace instances are created from a shape array of integer
representing the number of discrete states for each dimension of the state
space.

Examples

>>> StateSpace([2])      # 1-D state space
<neet.statespace.StateSpace object at 0x...>
>>> StateSpace([2,2])    # 2-D uniform state space
<neet.statespace.StateSpace object at 0x...>
>>> StateSpace([2,3,5])  # 3-D inhomogeneous space
<neet.statespace.StateSpace object at 0x...>





From the network perspective, each dimension of the state space corresponds
to a node of the network. The number of discrete states of that node is the
base of the corresponding dimension.

The algorithms implemented by this class are intended to be as generic as
possible. This comes at the cost of performance in some cases. This can be
dealt with by deriving and overloading the appropriate methods, in
particular _unsafe_encode(). In fact, the following methods are
recommended for overloading:



	__iter__()


	__contains__()


	_unsafe_encode()


	decode()







The encode() method uses __contains__() and
_unsafe_encode() internally and rarely needs to be overloaded.


	Parameters

	shape (list [https://docs.python.org/3/library/stdtypes.html#list]) – the base of each dimension of the state space



	See

	UniformSpace






	
size

	Get the size of the state space. That is the number of dimensions.

Examples

>>> StateSpace([2]).size
1
>>> StateSpace([2,3,4]).size
3






	Returns

	the number of dimensions of the state space










	
shape

	Get the shape of the state space. That is the base of each dimension.

Examples

>>> StateSpace([2]).shape
[2]
>>> StateSpace([2,3,4]).shape
[2, 3, 4]






	Returns

	the shape of the state space










	
volume

	Get the volume of the state space. That is the number of states in the space.

Examples

>>> StateSpace([2]).volume
2
>>> StateSpace([2,3,4]).volume
24






	Returns

	the number of states in the space










	
__iter__()

	Iterate over the states of the state space.

Examples

>>> list(StateSpace([2]))
[[0], [1]]
>>> list(StateSpace([2,2]))
[[0, 0], [1, 0], [0, 1], [1, 1]]
>>> list(StateSpace([3,2]))
[[0, 0], [1, 0], [2, 0], [0, 1], [1, 1], [2, 1]]










	
__contains__(states)

	Determine if a state is in the state space.

Examples

>>> space = StateSpace([2])
>>> [0] in space
True
>>> 0 in space
False





>>> space = StateSpace([3,2])
>>> [2,0] in space
True
>>> [0,2] in space
False
>>> [2,0,0] in space
False










	
_unsafe_encode(state)

	Unsafely encode a state as an integer value.

Examples

>>> space = StateSpace([2,3])
>>> space._unsafe_encode([1,1])
3





The resulting numeric encodings must be consistent with the ordering of
the states produced by __iter__(). This allows necessary for
memory-efficient implementations of many algorithms.

>>> space = StateSpace([2,3])
>>> list(space)
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2]]
>>> list(map(space._unsafe_encode, space))
[0, 1, 2, 3, 4, 5]






Note

This method is not safe. It does not ensure that state is
in fact in the space; if that’s not the case then there are not
guaruntees on the output. As such it should only be used in
situations where the state is already known to be in the space,
e.g. it is a state that was generated by __iter__(). This is
designed to allow algorithms to utilize state encoding without
incurring the cost of consistency checking.




	Parameters

	state (int [https://docs.python.org/3/library/functions.html#int]) – the state as a list of coordinates



	Returns

	the state encoded as an integer



	See

	encode(), decode()










	
encode(state)

	Encode a state as an integer.

Examples

>>> space = StateSpace([2,3])
>>> space.encode([1,1])
3





The resulting numeric encodings are consistent with the ordering of the
states produced by __iter__().

>>> space = StateSpace([2,3])
>>> list(space)
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2]]
>>> list(map(space.encode, space))
[0, 1, 2, 3, 4, 5]





This method is the inverse of the decode() method:

>>> space = StateSpace([3,2])
>>> space.decode(space.encode([1,1]))
[1, 1]
>>> space.encode(space.decode(3))
3






	Parameters

	state (int [https://docs.python.org/3/library/functions.html#int]) – the state as a list of coordinates



	Returns

	the state encoded as an integer



	See

	encode(), decode()










	
decode(encoded)

	Decode an integer-encoded state into a coordinate list.

Examples

>>> space = StateSpace([2,3])
>>> space.decode(3)
[1, 1]





The resulting decoded states are consistent with the ordering of the
states produced by __iter__().

>>> space = StateSpace([2,3])
>>> list(space)
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2]]
>>> list(map(space.decode, range(0,6)))
[[0, 0], [1, 0], [0, 1], [1, 1], [0, 2], [1, 2]]





This method is the inverse of the encode() method:

>>> space = StateSpace([3,2])
>>> space.decode(space.encode([1,1]))
[1, 1]
>>> space.encode(space.decode(3))
3






	Parameters

	encoded (int [https://docs.python.org/3/library/functions.html#int]) – an integer-encoded state



	Returns

	the coordinate list of the decoded state



	See

	encode(), decode()
















UniformSpace


	
class neet.UniformSpace(size, base)

	A StateSpace with the same number of states in each dimension.
This allows for more efficient implementations of several methods.

UniformSpace instances are created from their size and base; the
number of dimensions and the number of states in each dimension,
respectively.

In addition to the methods and attributes exposed by StateSpace,
the UniformSpace also provides:







	base

	Get the base of the dimensions.






Examples

>>> UniformSpace(1, 2) # 1-D unform space with base-2 dimensions
<neet.statespace.UniformSpace object at 0x...>
>>> UniformSpace(2, 2) # 2-D uniform space with base-2 dimensions
<neet.statespace.UniformSpace object at 0x...>
>>> UniformSpace(2, 4) # 2-D uniform space with base-4 dimension
<neet.statespace.UniformSpace object at 0x...>






	Parameters

	
	size (int [https://docs.python.org/3/library/functions.html#int]) – the number of dimensions in the space


	base (int [https://docs.python.org/3/library/functions.html#int]) – the number of states in each dimension






	See

	StateSpace






	
base

	Get the base of the dimensions.

Examples

>>> UniformSpace(2, 3).base
3






	Returns

	the base of the space’s dimensions



















          

      

      

    

  

    
      
          
            
  
Landscape Analysis

The neet module provides the LandscapeMixin class from which
the neet.Network class inherits. This endows all networks with the
various methods for computing the various landscape-related properties of the
networks, such as LandscapeMixin.attractors. These properties are often
associated with the state space of the network; however, we have opted to
provide them via a separate mixin because the neet.StateSpace class
represents an unstructured set of states, with no dynamical information

A key feature of the LandscapeMixin is that it is lazy and caches
results as they are computed. For example, the attractors of the landscape are
computed the first the user requests the LandscapeMixin.attractors
property, but the result is cached in the LandscapeMixin.landscape_data
attribute. Subsequent calls simply return the cached data. What’s more, many of
the properties of the landscape can be determined using almost the exact same
algorithm, so whenever one is requested, they are all simultaneously computed.
See LandscapeMixin.expound for a list of such properties.


LandscapeData


	
class neet.LandscapeData

	The LandscapeData class stores the various landscape properties computed in
the LandscapeMixin. This is used rather an individual properties
within LandscapeMixin to make it simple for users to extract all
of the landscape properties before modifying a network and observing the
effects of that change on the landscape.

The following properties are stored in LandscapeData:







	LandscapeMixin.transitions

	Get the state transitions as an array.



	LandscapeMixin.attractors

	Get the attractors of the landscape as an array.



	LandscapeMixin.attractor_lengths

	Get the length of the attractors as an array.



	LandscapeMixin.basins

	Get the basins of the states as an array.



	LandscapeMixin.basin_sizes

	Get the sizes of the attractor basins as an array.



	LandscapeMixin.basin_entropy

	Compute the basin entropy of the landscape [Krawitz2007].



	LandscapeMixin.heights

	Get the heights of each state in the landscape.



	LandscapeMixin.recurrence_times

	Get the recurrence time of each state in the landscape.



	LandscapeMixin.in_degrees

	Get the in-degree of each state in the landscape.






Basic Usage

>>> s_pombe.attractors
array([array([76]), array([4]), array([8]), array([12]),
       array([144, 110, 384]), array([68]), array([72]), array([132]),
       array([136]), array([140]), array([196]), array([200]),
       array([204])], dtype=object)
>>> default_landscape = s_pombe.landscape_data

>>> s_pombe.landscape(pin=[0,1]).attractors
array([array([0]), array([1]), array([386, 402, 178, 162]),
       array([387, 403, 179, 163]), array([4]), array([8]), array([12]),
       array([76]), array([65]), array([64]), array([68]), array([72]),
       array([132]), array([136]), array([140]), array([192]),
       array([193]), array([196]), array([200]), array([204])],
      dtype=object)

>>> default_landscape.attractors
array([array([76]), array([4]), array([8]), array([12]),
       array([144, 110, 384]), array([68]), array([72]), array([132]),
       array([136]), array([140]), array([196]), array([200]),
       array([204])], dtype=object)

>>> s_pombe.clear_landscape()












LandscapeMixin


	
class neet.LandscapeMixin

	The LandscapeMixin class represents the structure and topology of the
“landscape” of state transitions. That is, it is the state space together
with information about state transitions and the topology of the state
transition graph.

The LandscapeMixin class exposes the following methods:







	landscape

	Setup the landscape.



	clear_landscape

	Clear the landscape’s data and graph from memory.



	landscape_data

	Get the LandscapeData object.



	transitions

	Get the state transitions as an array.



	attractors

	Get the attractors of the landscape as an array.



	attractor_lengths

	Get the length of the attractors as an array.



	basins

	Get the basins of the states as an array.



	basin_sizes

	Get the sizes of the attractor basins as an array.



	basin_entropy

	Compute the basin entropy of the landscape [Krawitz2007].



	heights

	Get the heights of each state in the landscape.



	recurrence_times

	Get the recurrence time of each state in the landscape.



	in_degrees

	Get the in-degree of each state in the landscape.



	trajectory

	Compute the trajectory from a given state.



	timeseries

	Compute a time series from all states.



	landscape_graph

	Construct a networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph] of the state transitions.



	draw_landscape_graph

	Draw the state transition graph.



	expound

	Compute all cached data.







	
landscape(index=None, pin=None, values=None)

	Setup the landscape.

Prepares the landscape for computation of the various properties,
specifying which nodes will be updated (index), pinned (pin) or
set to a particular state (values). In particular, it computes the
state transitions of the network and prepares private variables for a
subsequent call to expound(), landscape_graph(), etc…

This function is implicitly called with no arguments by the various
landscape accessors if it has not already been called. This is intended
as a convenience since most of the time the user would do this anyway.

This function implicitly calls clear_landscape, so make sure to
create a reference to landscape_data if landscape information
has previously been compute and you wish to keep it around.

Basic Usage

>>> s_pombe.landscape_data.transitions
>>> s_pombe.landscape()
<neet.boolean.wtnetwork.WTNetwork object at 0x...>
>>> len(s_pombe.landscape_data.transitions)
512





Pinning States

# Prevents all states from transitioning
>>> s_pombe.landscape(pin = range(s_pombe.size))
<neet.boolean.wtnetwork.WTNetwork object at 0x...>
>>> np.array_equal(s_pombe.landscape_data.transitions, range(s_pombe.volume))
True
>>> s_pombe.clear_landscape()





Overriding Node States

# Forces all states to transition to 0
>>> s_pombe.landscape(values={i: 0 for i in range(s_pombe.size)})
<neet.boolean.wtnetwork.WTNetwork object at 0x...>
>>> np.all(s_pombe.landscape_data.transitions == 0)
True
>>> s_pombe.clear_landscape()






	Parameters

	
	index – the index to update (or None)


	pin – the indices to pin during update (or None)


	values – a dictionary of index-value pairs to set after update






	Returns

	self










	
clear_landscape()

	Clear the landscape’s data and graph from memory.






	
landscape_data

	Get the LandscapeData object.

The LandscapeData object contains any cached attractor
landscape information generated by a call to expound().






	
transitions

	Get the state transitions as an array. Each element of the array is
the next (encoded) state of the system starting from the initial state
equal to the index. For example, if

>>> net.transitions
array([ 0, 3, 1, 2 ])





then state 0 will transition to 0, 1 to 3, etc… Be
aware that if landscape() has not been called, this method will
call it.

Basic Usage

>>> s_pombe.transitions
array([  2,   2, 130, 130,   4,   0, 128, 128,   8,   0, 128, 128,  12,
         0, 128, 128, 256, 256, 384, 384, 260, 256, 384, 384, 264, 256,
       ...
       208, 208, 336, 336, 464, 464, 340, 336, 464, 464, 344, 336, 464,
       464, 348, 336, 464, 464])





Pinned States

A preceding call to landscape() can, for example, pin specific
nodes to their current state, thus affecting the state transitions.

>>> s_pombe.landscape(pin = [0]).transitions
array([  2,   3, 130, 131,   4,   1, 128, 129,   8,   1, 128, 129,  12,
         1, 128, 129, 256, 257, 384, 385, 260, 257, 384, 385, 264, 257,
       ...
       208, 209, 336, 337, 464, 465, 340, 337, 464, 465, 344, 337, 464,
       465, 348, 337, 464, 465])
>>> s_pombe.clear_landscape()






	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of state transitions










	
attractors

	Get the attractors of the landscape as an array. Each element of the
array is an attractor cycle, each of which is an array of states in
the cycle. If landscape() has not been called, this method will
implicitly call it.

Basic Usage

>>> s_pombe.attractors
array([array([76]), array([4]), array([8]), array([12]),
       array([144, 110, 384]), array([68]), array([72]), array([132]),
       array([136]), array([140]), array([196]), array([200]),
       array([204])], dtype=object)





Update Only a Single Node

A preceding call to landscape() can, for example, specify which
nodes will be updated in the process of computing the attractors. For
example, we can allow only the first node of the state to be updated.

>>> s_pombe.landscape(index=0).attractors
array([[  0],
       [  2],
       [  4],
      ...
       [506],
       [508],
       [510]])
>>> s_pombe.clear_landscape()






	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of attractor cycles, each of which is
an array of encoded states










	
attractor_lengths

	Get the length of the attractors as an array. The array is indexed by
the basin number. The order of the attractor lengths is the same as in
attractors. For example,

>>> net.attractors
array([ array([0,1]), array([1]) ]
>>> net.attractor_lengths
array([2, 1])





If landscape() has not been called, this method will implicitly
call it.

Basic Usage

>>> s_pombe.attractor_lengths
array([1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1])





Pinned States

A preceding call to landscape() can pin specific nodes to their
current state, thus affecting the attractor lengths.

>>> s_pombe.landscape(pin = [0]).attractor_lengths
array([1, 6, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1])
>>> s_pombe.clear_landscape()






	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of the lengths of the attractors










	
basins

	Get the basins of the states as an array. Each index of the array is
an encoded state and the corresponding value is the attractor basin in
which it resides. The attractor basins are integers which can be used
to index the attractors array, providing the attractor cycle
for the base. For example, if

>>> net.basins
array([ 0, 1, 2, 1 ])
>>> net.attractors
array([ array([0]), array([1]), array([2]) ])





then the states 1 and 3 are both in the attractor basin which
attracts to the fixed-point 1. If landscape() has not been
called, this method will implicitly call it.

Basic Usage

>>> s_pombe.basins
array([ 0,  0,  0,  0,  1,  0,  0,  0,  2,  0,  0,  0,  3,  0,  0,  0,  0,
        0,  4,  4,  0,  0,  4,  4,  0,  0,  4,  4,  0,  0,  4,  4,  4,  4,
        ...
        0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
        0,  0])





Resetting Node States

A preceding call to landscape() can, for example, specify that
specific nodes are reset to a particular value after the updating
the. For example, we can force the first and second nodes to 0,
thus affecting the basins.

>>> s_pombe.landscape(values={0: 0, 1: 0}).basins
array([ 0,  0,  1,  1,  2,  0,  1,  1,  3,  0,  1,  1,  4,  0,  1,  1,  1,
        1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
      ...
        1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,
        1,  1])
>>> s_pombe.clear_landscape()






	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of each state’s attractor basin










	
basin_sizes

	Get the sizes of the attractor basins as an array. The array is indexed
by the basin number. The order of the basin sizes is the same as in
attractors. For example, if

>>> net.attractors
array([ array([0,1]), array([3,6]) ]
>>> net.basin_sizes
array([ 5, 3 ])





then the attractor [0, 1] has a basin size of \(5\) with the
remaining states in the other attractor’s basin. If landscape()
has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.basin_sizes
array([378,   2,   2,   2, 104,   6,   6,   2,   2,   2,   2,   2,   2])





Pinning States

A preceding call to landscape() can specify that some of the
nodes are not updated, say the first two.

>>> s_pombe.landscape(pin=[0,1]).basin_sizes
array([  1,   4, 128, 128,   1,   1,   1, 114, 120,   1,   1,   1,   1,
         1,   1,   1,   4,   1,   1,   1])
>>> s_pombe.clear_landscape()






	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of each attractor’s basin size










	
basin_entropy

	Compute the basin entropy of the landscape [Krawitz2007]. That is
the Shannon entropy (in bits) of the distribution of basin sizes. For
example,

>>> net.basin_sizes
array([6, 2])
>>> net.basin_entropy
0.8112781244591328





which is \(-\frac{6}{8}\log_2{\frac{6}{8}) -
\frac{2}{8}\log_2{\frac{2}{8})\). If landscape() has not
been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.basin_entropy
1.2218888...





Pinning States

A preceding call to landscape() can specify that some of the
nodes are not updated, say the first two.

>>> s_pombe.landscape(pin=[0,1]).basin_entropy
2.328561849437885
>>> s_pombe.clear_landscape()






	Returns

	basin entropy in bits










	
heights

	Get the heights of each state in the landscape. That is the fewest
number of time steps from that state to a state in it’s attractor
cycle, as an array. Each index of the array is an encoded state, and
the corresponding value is the height. For example, if

>>> net.heights
array([ 3, 0, 1, ... ])





then it will take \(3\) time steps for the state 0 to reach
an attractor state while state 1 is an attractor state`. If
landscape() has not been called, this method will implicitly
call it.

Basic Usage

>>> s_pombe.heights
array([7, 7, 6, 6, 0, 8, 6, 6, 0, 8, 6, 6, 0, 8, 6, 6, 8, 8, 1, 1, 2, 8,
       1, 1, 2, 8, 1, 1, 2, 8, 1, 1, 2, 2, 2, 2, 9, 9, 1, 1, 9, 9, 1, 1,
       ...
       3, 9, 9, 9, 3, 9, 9, 9, 3, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
       3, 3, 3, 3, 3, 3])





Resetting Node States

A preceding call to landscape() can specify that
specific nodes are reset to a particular value after the updating
the. For example, we can force the first and second nodes to 0,
thus affecting the basins.

>>> s_pombe.landscape(values={0: 0, 1: 0}).heights
array([0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 6, 6, 0, 1, 6, 6, 2, 2, 5, 5, 2, 2,
       5, 5, 2, 2, 5, 5, 2, 2, 5, 5, 3, 3, 6, 6, 3, 3, 6, 6, 3, 3, 6, 6,
      ...
       3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
       3, 3, 3, 3, 3, 3])
>>> s_pombe.clear_landscape()






	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], each value of which is the height of the
indexing state










	
recurrence_times

	Get the recurrence time of each state in the landscape. That is the
number of time steps from that state after which some state is
repeated, as an array. Each index of the array is an encoded state,
and the corresponding value is the recurrence time of that state. For
example, if

>>> net.recurrent_times
array([ 3, 10, 0, ... ])





then a state will be seen at least twice if the 0 state is updated
more than \(3\) times. The 2 state is a fixed-point attractor
state as updating even once will repeat a state. If landscape()
has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.recurrence_times
array([7, 7, 6, 6, 0, 8, 6, 6, 0, 8, 6, 6, 0, 8, 6, 6, 8, 8, 3, 3, 2, 8,
       3, 3, 2, 8, 3, 3, 2, 8, 3, 3, 4, 4, 4, 4, 9, 9, 3, 3, 9, 9, 3, 3,
       ...
       3, 9, 9, 9, 3, 9, 9, 9, 3, 9, 9, 9, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
       3, 3, 3, 3, 3, 3])





Resetting Node States

A preceding call to landscape() can specify that
specific nodes are reset to a particular value after the updating
the. For example, we can force the first and second nodes to 0,
thus affecting the basins.

>>> s_pombe.landscape(pin=[0,1]).recurrence_times
array([0, 0, 5, 5, 0, 1, 5, 5, 0, 1, 5, 5, 0, 1, 5, 5, 2, 2, 4, 4, 2, 2,
       4, 4, 2, 2, 4, 4, 2, 2, 4, 4, 3, 3, 5, 5, 3, 3, 5, 5, 3, 3, 5, 5,
       ...
       3, 3, 5, 5, 3, 3, 5, 5, 3, 3, 5, 5, 3, 3, 8, 8, 3, 3, 8, 8, 3, 3,
       8, 8, 3, 3, 8, 8])
>>> s_pombe.clear_landscape()






	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of recurrence times, one for each state










	
in_degrees

	Get the in-degree of each state in the landscape. That is the number
of states which transition to that state in a single time step,
as a array. Each index of the array is an encoded state, and the
corresponding value is the number of preceding states. For example, if

>>> net.in_degrees
array([ 5, 2, 0, 0, ... ]





then \(5\) states transition to the 0 state in a single
time step, while states 2 and 3 are in the Garden of Eden [https://wikipedia.org/wiki/Garden_of_Eden_(cellular_automaton)]. If
landscape() has not been called, this method will implicitly
call it.

Basic Usage

>>> s_pombe.in_degrees
array([ 6,  0,  4,  0,  2,  0,  0,  0,  2,  0,  0,  0,  2,  0,  0,  0, 12,
        0,  4,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
        ...
        0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
        0,  0])





Pinning States

A preceding call to landscape() can specify that some of the
nodes are not updated, say nodes 7 and 8.

>>> s_pombe.landscape(pin=[7,8]).in_degrees
array([36,  0,  6,  0,  2,  0,  0,  0,  2,  0,  0,  0,  2,  0,  0,  0, 42,
        0,  6,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
      ...
        0,  1,  0,  0,  0,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
        0,  0])
>>> s_pombe.clear_landscape()






	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of the in-degree of each state










	
trajectory(init, timesteps=None, encode=None)

	Compute the trajectory from a given state.

This method computes a trajectory from init to the last before
the trajectory begins to repeat. If timesteps is provided, then
the trajectory will have a length of timesteps + 1 regardless of
repeated states. The encode argument forces the states in the
trajectory to be either encoded or not.  When encode is None,
whether or not the states of the trajectory are encoded is determined
by whether or not the initial state (init) is provided in encoded
form.

Note that when timesteps is None, the length of the resulting
trajectory should be one greater than the recurrence time of the state.

If landscape() has not been called, this method will implicitly
call it. Otherwise, it respects any settings provided by such a call.

Basic Usage

>>> s_pombe.trajectory([1,0,0,1,0,1,1,0,1])
[[1, 0, 0, 1, 0, 1, 1, 0, 1], ... [0, 0, 1, 1, 0, 0, 1, 0, 0]]

>>> s_pombe.trajectory([1,0,0,1,0,1,1,0,1], encode=True)
[361, 80, 320, 78, 128, 162, 178, 400, 332, 76]

>>> s_pombe.trajectory(361)
[361, 80, 320, 78, 128, 162, 178, 400, 332, 76]

>>> s_pombe.trajectory(361, encode=False)
[[1, 0, 0, 1, 0, 1, 1, 0, 1], ... [0, 0, 1, 1, 0, 0, 1, 0, 0]]

>>> s_pombe.trajectory(361, timesteps=5)
[361, 80, 320, 78, 128, 162]

>>> s_pombe.trajectory(361, timesteps=10)
[361, 80, 320, 78, 128, 162, 178, 400, 332, 76, 76]






	Parameters

	
	init (int [https://docs.python.org/3/library/functions.html#int] or seq) – the initial state


	timesteps (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – the number of time steps to include in the trajectory


	encode (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – whether to encode the states in the trajectory






	Returns

	a list whose elements are subsequent states of the trajectory



	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if init an empty array


	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if timesteps is less than \(1\)













	
timeseries(timesteps)

	Compute a time series from all states.

This method computes a 3-dimensional array elements are the states of
each node in the network. The dimensions of the array are indexed by,
in order, the node, the initial state and the time step.

If landscape() has not been called, this method will implicitly
call it. Otherwise, it respects any settings provided by such a call.

Basic Usage

>>> s_pombe.timeseries(5)
array([[[0, 0, 0, 0, 0, 0],
        [1, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0],
        ...,
        [1, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0],
        [1, 0, 0, 0, 0, 0]],

       [[0, 1, 1, 1, 1, 0],
        [0, 1, 1, 1, 1, 0],
        [1, 1, 1, 1, 0, 0],
        ...,
        [0, 0, 0, 0, 0, 0],
        [1, 0, 0, 0, 0, 0],
        [1, 0, 0, 0, 0, 0]],

       ...

       [[0, 0, 1, 1, 1, 1],
        [0, 0, 1, 1, 1, 1],
        [0, 1, 1, 1, 1, 0],
        ...,
        [1, 0, 0, 0, 0, 0],
        [1, 1, 0, 0, 0, 0],
        [1, 1, 0, 0, 0, 0]],

       [[0, 0, 0, 0, 0, 1],
        [0, 0, 0, 0, 0, 1],
        [0, 0, 0, 0, 1, 1],
        ...,
        [1, 1, 1, 0, 0, 0],
        [1, 1, 1, 0, 0, 0],
        [1, 1, 1, 0, 0, 0]]])






	Parameters

	timesteps (int [https://docs.python.org/3/library/functions.html#int]) – the number of timesteps to evolve the system



	Returns

	a 3-D array of node states



	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if timesteps is less than \(1\)










	
landscape_graph(**kwargs)

	Construct a networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph] of the state transitions.

If landscape() has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.landscape_graph()
<networkx.classes.digraph.DiGraph object at 0x...>






	Parameters

	kwargs – kwargs to pass to networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph]



	Returns

	a networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph] representing the state transition
graph of the landscape










	
draw_landscape_graph(graphkwargs={}, pygraphkwargs={})

	Draw the state transition graph.

This method requires the optional dependency pygraphviz [https://pygraphviz.github.io], which can be installed via
pip. Be aware that pygraphviz requires native binaries of
Graphviz [https://graphviz.org] which cannot be installed via
pip.

If landscape() has not been called, this method will implicitly call it.

Basic Usage

>>> s_pombe.draw_landscape_graph()






	Parameters

	
	graphkwargs – kwargs to pass to landscape_graph


	pygraphkwargs – kwargs to pass to view_pygraphviz













	
expound()

	Compute all cached data.

This function performs the bulk of the calculations that the
LandscapeMixin is concerned with. Most of the properties in this class
are computed by this function whenever any one of them is requested
and the results are cached. The advantage of this is that it saves
computation time; why traverse the state space for every property call
when you can do it all at once? The downside is that the cached results
may use a good bit more memory. This is a trade-off that we are willing
to make for now.

The properties that are computed by this function include:







	attractors

	Get the attractors of the landscape as an array.



	attractor_lengths

	Get the length of the attractors as an array.



	basins

	Get the basins of the states as an array.



	basin_sizes

	Get the sizes of the attractor basins as an array.



	basin_entropy

	Compute the basin entropy of the landscape [Krawitz2007].



	heights

	Get the heights of each state in the landscape.



	recurrence_times

	Get the recurrence time of each state in the landscape.



	in_degrees

	Get the in-degree of each state in the landscape.




















          

      

      

    

  

    
      
          
            
  
Information Analysis

The neet provides the Information class to compute various information measures over
the dynamics of discrete-state network models.

The core information-theoretic computations are supported by the PyInform [https://elife-asu.github.io/PyInform] package.


	
class neet.Information(net, k, timesteps)

	A class to represent the \(k\)-history informational architecture of a network.

An Information is initialized with a network, a history length, and time series length. A time
series of the desired length is computed from each initial state of the network, and used
populate probability distributions over the state transitions of each node. From there any
number of information or entropy measures may be applied.

The Information class provides three public attributes:







	net

	The network over which to compute the various information measures



	k

	The history length to use to compute the various information measures



	timesteps

	The time series length to use to compute the various information measures






During following measures can be computed and cached:







	active_information

	Get the local or average active information.



	entropy_rate

	Get the local or average entropy rate.



	mutual_information

	Get the local or average mutual information.



	transfer_entropy

	Get the local or average transfer entropy.






Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.active_information()
array([0.        , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,
       0.40046165, 0.67019615, 0.67019615, 0.39189127])






	Parameters

	
	net (neet.Network) – the network to analyze


	k (int [https://docs.python.org/3/library/functions.html#int]) – the history length


	timesteps (int [https://docs.python.org/3/library/functions.html#int]) – the number of timesteps to evaluate the network









	
net

	The network over which to compute the various information measures


Note

The cached internal state of the Information instances, namely any pre-computed
time series and information measures, is cleared when the network is changed.




	Type

	neet.Network










	
k

	The history length to use to compute the various information measures


Note

The cached internal state of the Information instances, namely any pre-computed
time series and information measures, is cleared when the history length is changed.




	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
timesteps

	The time series length to use to compute the various information measures


Note

The cached internal state of the Information instances, namely any pre-computed
time series and information measures, is cleared when the number of time steps is
changed.




	Type

	int [https://docs.python.org/3/library/functions.html#int]










	
active_information(local=False)

	Get the local or average active information.

Active information (AI) was introduced in [Lizier2012] to quantify information storage in
distributed computation. AI is defined in terms of a temporally local variant


\[a_{X,i}(k) = \log_2 \frac{p(x^{(k)}_i, x_{i+1})}{p(x^{(k)}_i)p(x_{i+1})}\]

where the probabilites are constructed emperically from an entire time series. From this
local variant, the temporally global active information is defined as


\[A_X(k) = \langle a_{X,i}(k) \rangle_{i}
       = \sum_{x^{(k)}_i,\, x_{i+1}} p(x^{(k)}_i, x_{i+1}) \log_2
            \frac{p(x^{(k)}_i, x_{i+1})}{p(x^{(k)}_i)p(x_{i+1})}.\]

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.active_information()
array([0.        , 0.4083436 , 0.62956679, 0.62956679, 0.37915718,
       0.40046165, 0.67019615, 0.67019615, 0.39189127])
>>> lais = arch.active_information(local=True)
>>> lais[1]
array([[0.13079175, 0.13079175, 0.13079175, ..., 0.13079175, 0.13079175,
        0.13079175],
       [0.13079175, 0.13079175, 0.13079175, ..., 0.13079175, 0.13079175,
        0.13079175],
       ...,
       [0.13079175, 0.13079175, 0.13079175, ..., 0.13079175, 0.13079175,
        0.13079175],
       [0.13079175, 0.13079175, 0.13079175, ..., 0.13079175, 0.13079175,
        0.13079175]])
>>> np.mean(lais[1])
0.4083435...






	Parameters

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to return local (True) or global active information



	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] containing the (local) active information for every node
in the network










	
entropy_rate(local=False)

	Get the local or average entropy rate.

Entropy rate quantifies the amount of information need to describe a random variable — the
state of a node in this case — given observations of its \(k\)-history. In other words,
it is the entropy of the time series of a node’s state conditioned on its
\(k\)-history. The time-local entropy rate


\[h_{X,i}(k) = \log_2 \frac{p(x^{(k)}_i, x_{i+1})}{p(x^{(k)}_i)}\]

can be averaged to obtain the global entropy rate


\[H_X(k) = \langle h_{X,i}(k) \rangle_{i}
       = \sum_{x^{(k)}_i,\, x_{i+1}} p(x^{(k)}_i, x_{i+1}) \log_2
         \frac{p(x^{(k)}_i, x_{i+1})}{p(x^{(k)}_i)}.\]

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.entropy_rate()
array([0.        , 0.01691208, 0.07280268, 0.07280268, 0.05841994,
       0.02479402, 0.03217332, 0.03217332, 0.08966941])
>>> ler = arch.entropy_rate(local=True)
>>> ler[4]
array([[0.        , 0.        , 0.        , ..., 0.00507099, 0.00507099,
        0.00507099],
       [0.        , 0.        , 0.        , ..., 0.00507099, 0.00507099,
        0.00507099],
       ...,
       [0.        , 0.29604946, 0.00507099, ..., 0.00507099, 0.00507099,
        0.00507099],
       [0.        , 0.29604946, 0.00507099, ..., 0.00507099, 0.00507099,
        0.00507099]])






	Parameters

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to return local (True) or global entropy rate



	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] containing the (local) entropy rate for every node in the
network










	
transfer_entropy(local=False)

	Get the local or average transfer entropy.

Transfer entropy (TE) was introduced by [Schreiber2000] to quantify information transfer
between an information source and destination, in this case a pair of nodes, condition out
their shared history effects. TE is defined in terms of a time-local variant


\[t_{X \rightarrow Y, i}(k) = \log_2 \frac{p(y_{i+1}, x_i~|~y^{(k)}_i)}
    {p(y_{i+1}~|~y^{(k)}_i)p(x_i~|~y^{(k)}_i)}\]

Time averaging defines the global transfer entropy


\[T_{Y \rightarrow X}(k) = \langle t_{X \rightarrow Y, i}(k) \rangle_i\]

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.transfer_entropy()
array([[0.        , 0.        , 0.        , 0.        , 0.        ,
        0.        , 0.        , 0.        , 0.        ],
       [0.        , 0.        , 0.05137046, 0.05137046, 0.05841994,
        0.        , 0.01668983, 0.01668983, 0.0603037 ],
       ...,
       [0.        , 0.        , 0.00603879, 0.00603879, 0.04760206,
        0.02479402, 0.00298277, 0.        , 0.04892709],
       [0.        , 0.        , 0.07280268, 0.07280268, 0.        ,
        0.        , 0.03217332, 0.03217332, 0.        ]])

>>> lte = arch.transfer_entropy(local=True)
>>> lte[4,3]
array([[-1.03562391,  1.77173101,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       [-1.03562391,  1.77173101,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       [ 1.77173101,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       ...,
       [ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        , ...,  0.        ,
         0.        ,  0.        ]])





The first and second indices of the resulting arrays are the source and target nodes,
respectively.


	Parameters

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to return local (True) or global transfer entropy



	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] containing the (local) transfer entropy for every pair of
nodes in the network










	
mutual_information(local=False)

	Get the local or average mutual information.

Mutual information is a measure of the amount of mutual dependence (correlation) between two
random variables — nodes in this case. The time-local mutual information


\[i_{i}(X,Y) = -\log_2 \frac{p(x_i, y_i)}{p(x_i)p(y_i)}\]

can be time-averaged to define the standard mutual information


\[I(X,Y) = -\sum_{x_i, y_i} p(x_i, y_i) \log_2 \frac{p(x_i, y_i)}{p(x_i)p(y_i)}.\]

Examples

>>> arch = Information(s_pombe, k=5, timesteps=20)
>>> arch.mutual_information()
array([[0.16232618, 0.01374672, 0.00428548, 0.00428548, 0.01340937,
        0.01586238, 0.00516987, 0.00516987, 0.01102766],
       [0.01374672, 0.56660996, 0.00745714, 0.00745714, 0.00639113,
        0.32790848, 0.0067609 , 0.0067609 , 0.00468342],
       ...,
       [0.00516987, 0.0067609 , 0.4590254 , 0.4590254 , 0.17560769,
        0.00621124, 0.49349527, 0.80831657, 0.10390475],
       [0.01102766, 0.00468342, 0.12755745, 0.12755745, 0.01233356,
        0.00260667, 0.10390475, 0.10390475, 0.63423835]])
>>> lmi = arch.mutual_information(local=True)
>>> lmi[4,3]
array([[-0.67489772, -0.67489772, -0.67489772, ...,  0.18484073,
         0.18484073,  0.18484073],
       [-0.67489772, -0.67489772, -0.67489772, ...,  0.18484073,
         0.18484073,  0.18484073],
       ...,
       [-2.89794147,  1.7513014 ,  0.18484073, ...,  0.18484073,
         0.18484073,  0.18484073],
       [-2.89794147,  1.7513014 ,  0.18484073, ...,  0.18484073,
         0.18484073,  0.18484073]])






	Parameters

	local (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to return local (True) or global mutual information



	Returns

	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] containing the (local) mutual information for every pair
of nodes in the network

















          

      

      

    

  

    
      
          
            
  
Drawing Utilities

Utilities for drawing Neet objects and graph representations.


	
neet.draw.view_pygraphviz(G, edgelabel=None, prog='dot', args='', suffix='', path=None, display_image=True)

	Views the graph G using the specified layout algorithm.

This is a modified version of view_pyagraphviz from
networkx.drawing.nx_agraph [https://networkx.github.io/documentation/networkx-2.3/reference/drawing.html#module-networkx.drawing.nx_agraph] to allow display toggle.

Original copyright:

Copyright (C) 2004-2019 by
    Aric Hagberg <hagberg@lanl.gov>
    Dan Schult <dschult@colgate.edu>
    Pieter Swart <swart@lanl.gov>
All rights reserved. BSD license.
Author: Aric Hagberg (hagberg@lanl.gov)






	Parameters

	
	G (networkx.Graph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/graph.html#networkx.Graph] or networkx.DiGraph [https://networkx.github.io/documentation/networkx-2.3/reference/classes/digraph.html#networkx.DiGraph]) – the graph to draw


	edgelabel (str [https://docs.python.org/3/library/stdtypes.html#str], callable or None [https://docs.python.org/3/library/constants.html#None]) – If a string, then it specifes the edge attribute to be
displayed on the edge labels. If a callable, then it is
called for each edge and it should return the string to
be displayed on the edges.  The function signature of
edgelabel should be edgelabel(data), where data is
the edge attribute dictionary.


	prog (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of Graphviz layout program.


	args (str [https://docs.python.org/3/library/stdtypes.html#str]) – Additional arguments to pass to the Graphviz layout program.


	suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – If filename is None, we save to a temporary file.  The
value of suffix will appear at the tail end of the
temporary filename.


	path (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The filename used to save the image. If None, save to a
temporary file. File formats are the same as those from
pygraphviz.agraph.draw.






	Returns

	the filename of the generated image, and a PyGraphviz graph instance






Note

If this function is called in succession too quickly, sometimes the
image is not displayed. So you might consider time.sleep(.5) between
calls if you experience problems.











          

      

      

    

  

    
      
          
            
  
Custom Exceptions

Exceptions are the key mechanism for handling undesirable program state.
Whenever Neet encounters a problem, it raises an exception of some variety.
Whenever possible, we have preferred to use builtin exception classes, e.g.
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], IndexError [https://docs.python.org/3/library/exceptions.html#IndexError], etc… For cases that aren’t really
covered by a builtin exception class, we’ve created subclasses of the standard
library’s Exception [https://docs.python.org/3/library/exceptions.html#Exception] to report those errors.

[image: Inheritance diagram of neet.exceptions]




FormatError


	
class neet.exceptions.FormatError

	An error class to report when a configuration or data file is improperly
formatted.
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