
NEAT-Python Documentation
Release 0.1

CodeReclaimers, LLC

February 27, 2016

Contents

1 NEAT Overview 3

2 Installation 5
2.1 From PyPI using pip . 5
2.2 From source using setup.py . 5

3 Configuration file format 7
3.1 [phenotype] section . 7
3.2 [genetic] section . 7
3.3 [genotype compatibility] section . 8
3.4 [species] section . 8

4 Overview of the basic XOR example (xor2.py) 9
4.1 Fitness function . 9
4.2 Running NEAT . 9
4.3 Getting the results . 10
4.4 Visualizations . 10
4.5 Example Source . 10

5 Customizing Behavior 13
5.1 Adding new activation functions . 13
5.2 Reproduction scheme . 13
5.3 Speciation . 13
5.4 Species stagnation . 13
5.5 Diversity . 14
5.6 Using different gene types . 14
5.7 Using a different genome type . 14
5.8 Reporting . 14
5.9 Logging . 14

6 Indices and tables 15

i

ii

NEAT-Python Documentation, Release 0.1

NEAT (NeuroEvolution of Augmenting Topologies) is a method developed by Kenneth O. Stanley for evolving arbi-
trary neural networks. NEAT-Python is a Python implementation of NEAT.

The core NEAT implementation is currently pure Python with no dependencies other than the Python standard library.
The visualize module requires graphviz, NumPy, and matplotlib, but it is not necessary to install these packages unless
you want to make use of these visualization utilities. Some of the examples also make use of other libraries.

If you need an easy performance boost, JIT-enabled PyPy does a fantastic job, and may give you a ~10x speedup over
CPython. Built-in C and OpenCL network implementations will be added later to speed up applications for which
network evaluation is the primary bottleneck.

Support for HyperNEAT and other extensions to NEAT will also be added once the fundamental NEAT implementation
is more complete and stable.

Please note: the package and its usage may change significantly while it is still in alpha status. Updating to the most
recent version is almost certainly going to break your code until the version number approaches 1.0.

For further information regarding general concepts and theory, please see Selected Publications on Stanley’s website,
or his recent AMA on Reddit.

If you encounter any confusing or incorrect information in this documentation, please open an issue in the GitHub
project.

Contents:

Contents 1

http://pypy.org
http://www.cs.ucf.edu/~kstanley/#publications
https://www.reddit.com/r/IAmA/comments/3xqcrk/im_ken_stanley_artificial_intelligence_professor
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python

NEAT-Python Documentation, Release 0.1

2 Contents

CHAPTER 1

NEAT Overview

NEAT (NeuroEvolution of Augmenting Topologies) is an evolutionary algorithm that creates artificial networks. For
a detailed description of the algorithm, you should probably go read some of Stanley’s papers on his website.

Even if you just want to get the gist of the algorithm, reading at least a couple of the early NEAT papers is a good idea.
Most of them are pretty short (8 pages or fewer), and do a good job of explaining concepts (or at least pointing you to
other references that will).

In the current implementation of NEAT-Python, a population of individual genomes is maintained. Each genome
contains two sets of genes that describe how to build an artificial neural network:

1. Node genes, each of which specifies a single neuron.

2. Connection genes, each of which specifies a single connection between neurons.

To evolve a solution to a problem, the user must provide a fitness function which computes a single real number
indicating the quality of an individual genome: better ability to solve the problem means a higher score. The algorithm
progresses through a user-specified number of generations, with each generation being produced by reproduction
(either sexual or asexual) and mutation of the most fit individuals of the previous generation.

The reproduction and mutation operations may add nodes and/or connections to genomes, so as the algorithm proceeds
genomes (and the neural networks they produce) may become more and more complex. When the preset number of
generations is reached, or when at least one individual exceeds the user-specified fitness threshold, the algorithm
terminates.

3

http://www.cs.ucf.edu/~kstanley/#publications

NEAT-Python Documentation, Release 0.1

4 Chapter 1. NEAT Overview

CHAPTER 2

Installation

Because the library is still changing fairly rapidly, attempting to run examples with a significantly newer or older
version of the library will result in errors. It is best to install and get the examples using one of the two methods
outlined below.

2.1 From PyPI using pip

To install the most recent release (version 0.6) from PyPI, you should run the command (as root or using sudo as
necessary):

pip install neat-python

Note that the examples are not included with the package installed from PyPI, so you should download the source
archive for release 0.6 and use the example code contained in it.

You may also just download the 0.6 release source, and install it directly using setup.py (as shown below) instead of
pip.

2.2 From source using setup.py

Obtain the source code by either cloning the source repository:

git clone https://github.com/CodeReclaimers/neat-python.git

or downloading the source archive for release 0.6.

Note that the most current code in the repository may not always be in the most polished state, but I do make sure the
tests pass and that most of the examples run. If you encounter any problems, please open an issue on GitHub.

To install from source, simply run:

python setup.py install

from the directory containing setup.py.

5

https://github.com/CodeReclaimers/neat-python/releases/tag/v0.6
https://github.com/CodeReclaimers/neat-python/releases/tag/v0.6
https://github.com/CodeReclaimers/neat-python/releases/tag/v0.6
https://github.com/CodeReclaimers/neat-python/issues

NEAT-Python Documentation, Release 0.1

6 Chapter 2. Installation

CHAPTER 3

Configuration file format

The configuration file is in the format described in the Python ConfigParser documentation. Currently, all values must
be explicitly enumerated in the configuration file. This makes it less likely that code changes will result in your project
silently using different NEAT settings.

3.1 [phenotype] section

• input_nodes The number of nodes through which the network receives input.

• hidden_nodes The number of hidden nodes to add to each genome in the initial population.

• output_nodes The number of nodes to which the network delivers output.

• initial_connection Specifies the initial connectivity of newly-created genomes. There are three allowed values:

– unconnected - No connection genes are initially present.

– fs_neat - One connection gene from one input to all hidden and output genes. (This is the FS-NEAT
scheme.)

– fully_connected - Each input gene is connected to all hidden and output genes, and each hidden gene
is connected to all output genes.

• max_weight, min_weight Connection weights (as well as node bias and response) will be limited to this range.

• feedforward If this evaluates to True, generated networks will not be allowed to have recurrent connections.
Otherwise they may be (but are not forced to be) recurrent.

• activation_functions A space-separated list of the activation functions that may be used in constructing net-
works. Allowable values are: abs, clamped, exp, gauss, hat, identity, inv, log, relu, sigmoid, sin, and tanh.
The implementation of these functions can be found in the nn module.

• weight_stdev The standard deviation of the zero-centered normal distribution used to generate initial and re-
placement weights.

3.2 [genetic] section

• pop_size The number of individuals in each generation.

• max_fitness_threshold When at least one individual’s measured fitness exceeds this threshold, the evolution
process will terminate.

7

https://docs.python.org/2/library/configparser.html
https://github.com/CodeReclaimers/neat-python/blob/master/neat/nn/__init__.py

NEAT-Python Documentation, Release 0.1

• prob_add_conn The probability that mutation will add a connection between existing nodes. Valid values are
on [0.0, 1.0].

• prob_add_node The probability that mutation will add a new hidden node into an existing connection. Valid
values are on [0.0, 1.0].

• prob_delete_conn The probability that mutation will delete an existing connection. Valid values are on [0.0,
1.0].

• prob_delete_node The probability that mutation will delete an existing hidden node and any connections to it.
Valid values are on [0.0, 1.0].

• prob_mutate_bias The probability that mutation will change the bias of a node by adding a random value.

• bias_mutation_power The standard deviation of the zero-centered normal distribution from which a bias change
is drawn.

• prob_mutate_response The probability that mutation will change the response of a node by adding a random
value.

• response_mutation_power The standard deviation of the zero-centered normal distribution from which a re-
sponse change is drawn.

• prob_mutate_weight The probability that mutation will change the weight of a connection by adding a random
value.

• prob_mutate_activation The probability that mutation will change the activation function of a hidden or output
node.

• prob_replace_weight The probability that mutation will replace the weight of a connection with a new random
value.

• weight_mutation_power The standard deviation of the zero-centered normal distribution from which a weight
change is drawn.

• prob_toggle_link The probability that the enabled status of a connection will be toggled.

• elitism The number of most fit individuals in each species that will be preserved as-is from one generation to
the next.

• reset_on_extinction If this evalutes to True, when all species simultaneously become extinct due to stagnation,
a new random population will be created. If False, a CompleteExtinctionException will be thrown.

3.3 [genotype compatibility] section

• compatibility_threshold Individuals whose genomic distance is less than this threshold are considered to be in
the same species.

• excess_coefficient The coefficient for the excess gene count’s contribution to the genomic distance.

• disjoint_coefficient The coefficient for the disjoint gene count’s contribution to the genomic distance.

• weight_coefficient The coefficient for the average weight difference’s contribution to the genomic distance.

3.4 [species] section

• survival_threshold The fraction for each species allowed to reproduce on each generation.

• max_stagnation Species that have not shown improvement in more than this number of generations will be
considered stagnant and removed.

8 Chapter 3. Configuration file format

CHAPTER 4

Overview of the basic XOR example (xor2.py)

The xor2.py example, shown in its entirety at the bottom of this page, evolves a network that implements the two-input
XOR function:

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

4.1 Fitness function

The key thing you need to figure out for a given problem is how to measure the fitness of the genomes that are produced
by NEAT. Fitness is expected to be a Python float value. If genome A solves your problem more successfully than
genome B, then the fitness value of A should be greater than the value of B. The absolute magnitude and signs of these
fitnesses are not important, only their relative values.

In this example, we create a feed-forward neural network based on the genome, and then for each case in the table
above, we provide that network with the inputs, and compute the network’s output. The error for each genome is
1 minus the root mean square difference between the expected and actual outputs, so that if the network produces
exactly the expected output, its fitness is 1, otherwise it is a value less than 1, with the fitness value decreasing the
more incorrect the network responses are.

This fitness computation is implemented in the eval_fitness function. The single argument to this function is
a list of genomes in the current population. neat-python expects the fitness function to calculate a fitness for each
genome and assign this value to the genome’s fitness member.

4.2 Running NEAT

Once you have implemented a fitness function, you mostly just need some additional boilerplate code that carries out
the following steps:

• Create a neat.config.Config object from the configuration file (described in Configuration file format).

• Create a neat.population.Population object using the Config object created above.

• Call the epoch method on the Population object, giving it your fitness function and the maximum number
of generations you want NEAT to run.

After these three things are completed, NEAT will run until either you reach the specified number of generations, or
at least one genome achieves the max_fitness_threshold value you specified in your config file.

9

NEAT-Python Documentation, Release 0.1

4.3 Getting the results

Once the call to the population object’s epoch method has returned, a list of the most fit genome for each generation
is available as the most_fit_genomes member of the population. We take the ‘winner’ genome as the last genome
in this list.

A list of the average fitness for each generation is also available as avg_fitness_scores.

4.4 Visualizations

Functions are available in the neat.visualize module to plot the best and average fitness vs. generation, plot the
change in species vs. generation, and to show the structure of a network described by a genome.

4.5 Example Source

NOTE: This page shows the source and configuration file for the current version of neat-python available on GitHub.
If you are using the version 0.6 installed from PyPI, make sure you get the script and config file from the archived
source for that release.

Here’s the entire example:

""" 2-input XOR example """
from __future__ import print_function

from neat import nn, population, statistics, visualize

Network inputs and expected outputs.
xor_inputs = [[0, 0], [0, 1], [1, 0], [1, 1]]
xor_outputs = [0, 1, 1, 0]

def eval_fitness(genomes):
for g in genomes:

net = nn.create_feed_forward_phenotype(g)

sum_square_error = 0.0
for inputs, expected in zip(xor_inputs, xor_outputs):

Serial activation propagates the inputs through the entire network.
output = net.serial_activate(inputs)
sum_square_error += (output[0] - expected) ** 2

When the output matches expected for all inputs, fitness will reach
its maximum value of 1.0.
g.fitness = 1 - sum_square_error

pop = population.Population('xor2_config')
pop.run(eval_fitness, 300)

print('Number of evaluations: {0}'.format(pop.total_evaluations))

Display the most fit genome.
winner = pop.statistics.best_genome()
print('\nBest genome:\n{!s}'.format(winner))

10 Chapter 4. Overview of the basic XOR example (xor2.py)

https://github.com/CodeReclaimers/neat-python/releases/tag/v0.6
https://github.com/CodeReclaimers/neat-python/releases/tag/v0.6

NEAT-Python Documentation, Release 0.1

Verify network output against training data.
print('\nOutput:')
winner_net = nn.create_feed_forward_phenotype(winner)
for inputs, expected in zip(xor_inputs, xor_outputs):

output = winner_net.serial_activate(inputs)
print("expected {0:1.5f} got {1:1.5f}".format(expected, output[0]))

Visualize the winner network and plot/log statistics.
visualize.plot_stats(pop.statistics)
visualize.plot_species(pop.statistics)
visualize.draw_net(winner, view=True, filename="xor2-all.gv")
visualize.draw_net(winner, view=True, filename="xor2-enabled.gv", show_disabled=False)
visualize.draw_net(winner, view=True, filename="xor2-enabled-pruned.gv", show_disabled=False, prune_unused=True)
statistics.save_stats(pop.statistics)
statistics.save_species_count(pop.statistics)
statistics.save_species_fitness(pop.statistics)

and here is the associated config file:

#--- parameters for the XOR-2 experiment ---#

The `Types` section specifies which classes should be used for various
tasks in the NEAT algorithm. If you use a non-default class here, you
must register it with your Config instance before loading the config file.
[Types]
stagnation_type = DefaultStagnation
reproduction_type = DefaultReproduction

[phenotype]
input_nodes = 2
hidden_nodes = 0
output_nodes = 1
initial_connection = unconnected
max_weight = 30
min_weight = -30
feedforward = 1
activation_functions = sigmoid
weight_stdev = 1.0

[genetic]
pop_size = 150
max_fitness_threshold = 0.95
prob_add_conn = 0.988
prob_add_node = 0.085
prob_delete_conn = 0.146
prob_delete_node = 0.0352
prob_mutate_bias = 0.0509
bias_mutation_power = 2.093
prob_mutate_response = 0.1
response_mutation_power = 0.1
prob_mutate_weight = 0.460
prob_replace_weight = 0.0245
weight_mutation_power = 0.825
prob_mutate_activation = 0.0
prob_toggle_link = 0.0138
reset_on_extinction = 1

4.5. Example Source 11

NEAT-Python Documentation, Release 0.1

[genotype compatibility]
compatibility_threshold = 3.0
excess_coefficient = 1.0
disjoint_coefficient = 1.0
weight_coefficient = 0.4

[DefaultStagnation]
species_fitness_func = mean
max_stagnation = 15

[DefaultReproduction]
elitism = 1
survival_threshold = 0.2

12 Chapter 4. Overview of the basic XOR example (xor2.py)

CHAPTER 5

Customizing Behavior

NEAT-Python allows the user to provide drop-in replacements for some parts of the NEAT algorithm, and attempts to
allow easily implementing common variations of the algorithm mentioned in the literature. If you find that you’d like
to be able to customize something not shown here, please submit an issue on GitHub.

5.1 Adding new activation functions

To register a new activation function, you simply need to call neat.activation_functions.add with your new function
and the name by which you want to refer to it in the configuration file:

def sinc(x):
return 1.0 if x == 0 else sin(x) / x

neat.activation_functions.add('my_sinc_function', sinc)

This is demonstrated in the memory example.

5.2 Reproduction scheme

The default reproduction scheme uses explicit fitness sharing and a fixed species stagnation limit. This behavior is
encapsulated in the DefaultReproduction class.

TODO: document, include example

5.3 Speciation

If you need to change the speciation scheme, you should subclass Population and override the _speciate method.

5.4 Species stagnation

To use a different species stagnation scheme, you can create a custom class whose interface matches that of Fixed-
Stagnation and set the stagnation_type of your Config instance to this class.

TODO: document, include example

13

NEAT-Python Documentation, Release 0.1

5.5 Diversity

To use a different diversity scheme, you can create a custom class whose interface matches that of ExplicitFitnessShar-
ing and set the diversity_type of your Config instance to this class.

TODO: document, include example

5.6 Using different gene types

To use a different gene type, you can create a custom class whose interface matches that of Genome, and set the
node_gene_type or conn_gene_type member, respectively, of your Config instance to this class.

TODO: document, include example

5.7 Using a different genome type

To use a different gene type, you can create a custom class whose interface matches that of NodeGene or Connection-
Gene, and set the genotype member of your Config instance to this class.

TODO: document, include example

5.8 Reporting

The Population class makes calls to a collection of zero or more reporters at fixed points during the evolution process.
The user can add a custom reporter to this collection by calling Population.add_reporter and providing it with an object
which implements the same interface as StdOutReporter.

TODO: document, include example

5.9 Logging

If you need to change the logging scheme, you should subclass Population and override the _log_stats method.

14 Chapter 5. Customizing Behavior

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

	NEAT Overview
	Installation
	From PyPI using pip
	From source using setup.py

	Configuration file format
	[phenotype] section
	[genetic] section
	[genotype compatibility] section
	[species] section

	Overview of the basic XOR example (xor2.py)
	Fitness function
	Running NEAT
	Getting the results
	Visualizations
	Example Source

	Customizing Behavior
	Adding new activation functions
	Reproduction scheme
	Speciation
	Species stagnation
	Diversity
	Using different gene types
	Using a different genome type
	Reporting
	Logging

	Indices and tables

