
NEAT-Python Documentation
Release 0.92

CodeReclaimers, LLC

Aug 01, 2017

Contents

1 NEAT Overview 3

2 Installation 5
2.1 About The Examples . 5
2.2 Install neat-python from PyPI using pip . 5
2.3 Install neat-python from source using setup.py . 5

3 Configuration file description 7
3.1 [NEAT] section . 7
3.2 [DefaultStagnation] section . 8
3.3 [DefaultReproduction] section . 8
3.4 [DefaultGenome] section . 8

4 Overview of the basic XOR example (xor2.py) 13
4.1 Fitness function . 13
4.2 Running NEAT . 13
4.3 Getting the results . 14
4.4 Visualizations . 14
4.5 Example Source . 14

5 Customizing Behavior 19
5.1 New activation functions . 19
5.2 Reporting/logging . 19
5.3 New genome types . 20
5.4 Speciation scheme . 20
5.5 Species stagnation scheme . 20
5.6 Reproduction scheme . 20

6 Overview of builtin activation functions 23
6.1 abs . 23
6.2 clamped . 25
6.3 cube . 25
6.4 exp . 25
6.5 gauss . 25
6.6 hat . 25
6.7 identity . 27
6.8 inv . 27

i

6.9 log . 27
6.10 relu . 27
6.11 sigmoid . 27
6.12 sin . 27
6.13 softplus . 27
6.14 square . 27
6.15 tanh . 27

7 Continuous-time recurrent neural network implementation 29

8 Module summaries 31
8.1 activations . 31
8.2 aggregations . 32
8.3 attributes . 34
8.4 checkpoint . 37
8.5 config . 38
8.6 ctrnn . 40
8.7 distributed . 41
8.8 genes . 46
8.9 genome . 48
8.10 graphs . 53
8.11 iznn . 54
8.12 math_util . 57
8.13 nn.feed_forward . 58
8.14 nn.recurrent . 58
8.15 parallel . 59
8.16 population . 60
8.17 reporting . 60
8.18 reproduction . 63
8.19 six_util . 65
8.20 species . 65
8.21 stagnation . 67
8.22 statistics . 68
8.23 threaded . 70

9 Genome Interface 73
9.1 Class Methods . 73
9.2 Initialization/Reproduction . 73
9.3 Crossover/Mutation . 74
9.4 Speciation/Misc . 74

10 Reproduction Interface 75
10.1 Class Methods . 75
10.2 Initialization . 75
10.3 Other methods . 75

11 Glossary 77

12 Indices and tables 81

Python Module Index 83

ii

NEAT-Python Documentation, Release 0.92

NEAT (NeuroEvolution of Augmenting Topologies) is a method developed by Kenneth O. Stanley for evolving arbi-
trary neural networks. NEAT-Python is a pure Python implementation of NEAT, with no dependencies other than the
Python standard library.

Note: Some of the example code has other dependencies; please see each example’s README.md file for additional
details and installation/setup instructions for the main code for each. In addition to dependencies varying with different
examples, visualization of the results (via visualize.py modules) frequently requires graphviz and/or matplotlib.
TODO: Improve README.md file information for the examples.

Support for HyperNEAT and other extensions to NEAT is planned once the fundamental NEAT implementation is
more complete and stable.

For further information regarding general concepts and theory, please see Selected Publications on Stanley’s website,
or his recent AMA on Reddit.

If you encounter any confusing or incorrect information in this documentation, please open an issue in the GitHub
project. Contents:

Contents 1

https://pypi.python.org/pypi/graphviz
https://matplotlib.org/users/installing.html
http://www.cs.ucf.edu/~kstanley/#publications
https://www.reddit.com/r/IAmA/comments/3xqcrk/im_ken_stanley_artificial_intelligence_professor
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python

NEAT-Python Documentation, Release 0.92

2 Contents

CHAPTER 1

NEAT Overview

NEAT (NeuroEvolution of Augmenting Topologies) is an evolutionary algorithm that creates artificial neural networks.
For a detailed description of the algorithm, you should probably go read some of Stanley’s papers on his website.

Even if you just want to get the gist of the algorithm, reading at least a couple of the early NEAT papers is a good idea.
Most of them are pretty short, and do a good job of explaining concepts (or at least pointing you to other references
that will). The initial NEAT paper is only 6 pages long, and Section II should be enough if you just want a high-level
overview.

In the current implementation of NEAT-Python, a population of individual genomes is maintained. Each genome
contains two sets of genes that describe how to build an artificial neural network:

1. Node genes, each of which specifies a single neuron.

2. Connection genes, each of which specifies a single connection between neurons.

To evolve a solution to a problem, the user must provide a fitness function which computes a single real number
indicating the quality of an individual genome: better ability to solve the problem means a higher score. The algorithm
progresses through a user-specified number of generations, with each generation being produced by reproduction
(either sexual or asexual) and mutation of the most fit individuals of the previous generation.

The reproduction and mutation operations may add nodes and/or connections to genomes, so as the algorithm proceeds
genomes (and the neural networks they produce) may become more and more complex. When the preset number of
generations is reached, or when at least one individual (for a fitness criterion function of max; others are configurable)
exceeds the user-specified fitness threshold, the algorithm terminates.

One difficulty in this setup is with the implementation of crossover - how does one do a crossover between two
networks of differing structure? NEAT handles this by keeping track of the origins of the nodes, with an identifying
number (new, higher numbers are generated for each additional node). Those derived from a common ancestor (that
are homologous) are matched up for crossover, and connections are matched if the nodes they connect have common
ancestry. (There are variations in exactly how this is done depending on the implementation of NEAT; this paragraph
describes how it is done in this implementation.)

Another potential difficulty is that a structural mutation - as opposed to mutations in, for instance, the weights of the
connections - such as the addition of a node or connection can, while being promising for the future, be disruptive in
the short-term (until it has been fine-tuned by less-disruptive mutations). How NEAT deals with this is by dividing
genomes into species, which have a close genomic distance due to similarity, then having competition most intense

3

http://www.cs.ucf.edu/~kstanley/#publications
http://nn.cs.utexas.edu/downloads/papers/stanley.cec02.pdf

NEAT-Python Documentation, Release 0.92

within species, not between species (fitness sharing). How is genomic distance measured? It uses a combination of the
number of non-homologous nodes and connections with measures of how much homologous nodes and connections
have diverged since their common origin. (Non-homologous nodes and connections are termed disjoint or excess,
depending on whether the numbers are from the same range or beyond that range; like most NEAT implementations,
this one makes no distinction between the two.)

4 Chapter 1. NEAT Overview

CHAPTER 2

Installation

About The Examples

Because neat-python is still changing fairly rapidly, attempting to run examples with a significantly newer or older
version of the library will result in errors. It is best to obtain matching example/library code by using one of the two
methods outlined below:

Install neat-python from PyPI using pip

To install the most recent release (version 0.92) from PyPI, you should run the command (as root or using sudo as
necessary):

pip install neat-python

Note that the examples are not included with the package installed from PyPI, so you should download the source
archive for release 0.92 and use the example code contained in it.

You may also just get the 0.92 release source, and install it directly using setup.py (as shown below) instead of pip.

Install neat-python from source using setup.py

Obtain the source code by either cloning the source repository:

git clone https://github.com/CodeReclaimers/neat-python.git

or downloading the source archive for release 0.92.

Note that the most current code in the repository may not always be in the most polished state, but I do make sure the
tests pass and that most of the examples run. If you encounter any problems, please open an issue on GitHub.

To install from source, simply run:

5

https://github.com/CodeReclaimers/neat-python/releases/tag/v0.92
https://github.com/CodeReclaimers/neat-python/releases/tag/v0.92
https://github.com/CodeReclaimers/neat-python/releases/tag/v0.92
https://github.com/CodeReclaimers/neat-python/issues

NEAT-Python Documentation, Release 0.92

python setup.py install

from the directory containing setup.py.

6 Chapter 2. Installation

CHAPTER 3

Configuration file description

The configuration file is in the format described in the Python configparser documentation as “a basic config-
uration file parser language which provides a structure similar to what you would find on Microsoft Windows INI
files.”

Most settings must be explicitly enumerated in the configuration file. (This makes it less likely that library code
changes will result in your project silently using different NEAT settings. There are some defaults, as noted below,
and insofar as possible new configuration parameters will default to the existing behavior.)

Note that the Config constructor also requires you to explicitly specify the types that will be used for the NEAT
simulation. This, again, is to help avoid silent changes in behavior. The configuration file is in several sections, of
which at least one is required. However, there are no requirements for ordering within these sections, or for ordering
of the sections themselves.

[NEAT] section

The NEAT section specifies parameters particular to the generic NEAT algorithm or the experiment itself. This section
is always required, and is handled by the Config class itself.

• fitness_criterion The function used to compute the termination criterion from the set of genome fitnesses. Al-
lowable values are: min, max, and mean

• fitness_threshold When the fitness computed by fitness_criterion meets or exceeds this threshold, the
evolution process will terminate, with a call to any registered reporting class’ found_solutionmethod.

Note: The found_solution method is not called if the maximum number of generations is reached with-
out the above threshold being passed (if attention is being paid to fitness for termination in the first place - see
no_fitness_termination below).

• no_fitness_termination If this evaluates to True, then the fitness_criterion and
fitness_threshold are ignored for termination; only valid if termination by a maximum number of
generations passed to population.Population.run() is enabled, and the found_solution

7

https://docs.python.org/3.5/library/configparser.html#module-configparser

NEAT-Python Documentation, Release 0.92

method is called upon generation number termination. If it evaluates to False, then fitness is used to
determine termination. This defaults to “False”.

New in version 0.92.

• pop_size The number of individuals in each generation.

• reset_on_extinction If this evaluates to True, when all species simultaneously become extinct due to stagna-
tion, a new random population will be created. If False, a CompleteExtinctionException will
be thrown.

[DefaultStagnation] section

The DefaultStagnation section specifies parameters for the builtin DefaultStagnation class. This section
is only necessary if you specify this class as the stagnation implementation when creating the Config instance;
otherwise you need to include whatever configuration (if any) is required for your particular implementation.

• species_fitness_func The function used to compute species fitness. This defaults to ‘‘mean‘‘. Allowed values
are: max, min, mean, and median

Note: This is not used for calculating species fitness for apportioning reproduction (which always uses mean).

• max_stagnation Species that have not shown improvement in more than this number of generations will be
considered stagnant and removed. This defaults to 15.

• species_elitism The number of species that will be protected from stagnation; mainly intended to prevent
total extinctions caused by all species becoming stagnant before new species arise. For example, a
species_elitism setting of 3 will prevent the 3 species with the highest species fitness from be-
ing removed for stagnation regardless of the amount of time they have not shown improvement. This
defaults to 0.

[DefaultReproduction] section

The DefaultReproduction section specifies parameters for the builtin DefaultReproduction class. This
section is only necessary if you specify this class as the reproduction implementation when creating the Config
instance; otherwise you need to include whatever configuration (if any) is required for your particular implementation.

• elitism The number of most-fit individuals in each species that will be preserved as-is from one generation to
the next. This defaults to 0.

• survival_threshold The fraction for each species allowed to reproduce each generation. This defaults to 0.2.

• min_species_size The minimum number of genomes per species after reproduction. This defaults to 2.

[DefaultGenome] section

The DefaultGenome section specifies parameters for the builtin DefaultGenome class. This section is only
necessary if you specify this class as the genome implementation when creating the Config instance; otherwise you
need to include whatever configuration (if any) is required for your particular implementation.

• activation_default The default activation function attribute assigned to new nodes. If none is given, or
“random” is specified, one of the activation_options will be chosen at random.

8 Chapter 3. Configuration file description

NEAT-Python Documentation, Release 0.92

• activation_mutate_rate The probability that mutation will replace the node’s activation function with a
randomly-determined member of the activation_options. Valid values are in [0.0, 1.0].

• activation_options A space-separated list of the activation functions that may be used by nodes. This defaults
to sigmoid. The built-in available functions can be found in Overview of builtin activation functions; more
can be added as described in Customizing Behavior.

• aggregation_default The default aggregation function attribute assigned to new nodes. If none is given, or
“random” is specified, one of the aggregation_options will be chosen at random.

• aggregation_mutate_rate The probability that mutation will replace the node’s aggregation function with a
randomly-determined member of the aggregation_options. Valid values are in [0.0, 1.0].

• aggregation_options A space-separated list of the aggregation functions that may be used by nodes. This
defaults to “sum”. The available functions (defined in aggregations) are: sum, product, min,
max, mean, median, and maxabs (which returns the input value with the greatest absolute value; the
returned value may be positive or negative). New aggregation functions can be defined similarly to new
activation functions. (Note that the function needs to take a list or other iterable; the reduce
function, as in aggregations, may be of use in this.)

Changed in version 0.92: Moved out of genome into aggregations; maxabs, mean, and median
added; method for defining new aggregation functions added.

• bias_init_mean The mean of the normal/gaussian distribution, if it is used to select bias attribute values for
new nodes.

• bias_init_stdev The standard deviation of the normal/gaussian distribution, if it is used to select bias values for
new nodes.

• bias_init_type If set to gaussian or normal, then the initialization is to a normal/gaussian distribution. If set
to uniform, a uniform distribution from max(𝑏𝑖𝑎𝑠_𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒, (𝑏𝑖𝑎𝑠_𝑖𝑛𝑖𝑡_𝑚𝑒𝑎𝑛−(𝑏𝑖𝑎𝑠_𝑖𝑛𝑖𝑡_𝑠𝑡𝑑𝑒𝑣*
2))) to min(𝑏𝑖𝑎𝑠_𝑚𝑎𝑥_𝑣𝑎𝑙𝑢𝑒, (𝑏𝑖𝑎𝑠_𝑖𝑛𝑖𝑡_𝑚𝑒𝑎𝑛 + (𝑏𝑖𝑎𝑠_𝑖𝑛𝑖𝑡_𝑠𝑡𝑑𝑒𝑣 * 2))). (Note that the standard de-
viation of a uniform distribution is not range/0.25, as implied by this, but the range divided by a bit over
0.288 (the square root of 12); however, this approximation makes setting the range much easier.) This
defaults to “gaussian”.

New in version 0.92.

• bias_max_value The maximum allowed bias value. Biases above this value will be clamped to this value.

• bias_min_value The minimum allowed bias value. Biases below this value will be clamped to this value.

• bias_mutate_power The standard deviation of the zero-centered normal/gaussian distribution from which a bias
value mutation is drawn.

• bias_mutate_rate The probability that mutation will change the bias of a node by adding a random value.

• bias_replace_rate The probability that mutation will replace the bias of a node with a newly chosen random
value (as if it were a new node).

• compatibility_threshold Individuals whose genomic distance is less than this threshold are considered to be in
the same species.

• compatibility_disjoint_coefficient The coefficient for the disjoint and excess gene counts’ contribution to the
genomic distance.

• compatibility_weight_coefficient The coefficient for each weight, bias, or response multiplier difference’s con-
tribution to the genomic distance (for homologous nodes or connections). This is also used as the value to
add for differences in activation functions, aggregation functions, or enabled/disabled status.

Note: It is currently possible for two homologous nodes or connections to have a higher contribution to the genomic
distance than a disjoint or excess node or connection, depending on their attributes and the settings of the above

3.4. [DefaultGenome] section 9

https://docs.python.org/3.5/glossary.html#term-list
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/functools.html#functools.reduce

NEAT-Python Documentation, Release 0.92

parameters.

• conn_add_prob The probability that mutation will add a connection between existing nodes. Valid values are
in [0.0, 1.0].

• conn_delete_prob The probability that mutation will delete an existing connection. Valid values are in [0.0,
1.0].

• enabled_default The default enabled attribute of newly created connections. Valid values are True and
False.

Note: “Newly created connections” include ones in newly-created genomes, if those have initial connections (from
the setting of the initial_connection variable).

• enabled_mutate_rate The probability that mutation will replace (50/50 chance of True or False) the
enabled status of a connection. Valid values are in [0.0, 1.0].

• enabled_rate_to_false_add Adds to the enabled_mutate_rate if the connection is currently enabled.

• enabled_rate_to_true_add Adds to the enabled_mutate_rate if the connection is currently not enabled.

New in version 0.92: enabled_rate_to_false_add and enabled_rate_to_true_add

• feed_forward If this evaluates to True, generated networks will not be allowed to have recurrent connections
(they will be feedforward). Otherwise they may be (but are not forced to be) recurrent.

• initial_connection Specifies the initial connectivity of newly-created genomes. (Note the effects on settings
other than unconnected of the enabled_default parameter.) There are seven allowed values:

– unconnected - No connections are initially present. This is the default.

– fs_neat_nohidden - One randomly-chosen input node has one connection to each output node.
(This is one version of the FS-NEAT scheme; “FS” stands for “Feature Selection”.)

– fs_neat_hidden - One randomly-chosen input node has one connection to each hidden and output
node. (This is another version of the FS-NEAT scheme. If there are no hidden nodes, it is the same as
fs_neat_nohidden.)

– full_nodirect - Each input node is connected to all hidden nodes, if there are any, and each
hidden node is connected to all output nodes; otherwise, each input node is connected to all output
nodes. Genomes with feed_forward set to False will also have recurrent (loopback, in this case)
connections from each hidden or output node to itself.

– full_direct - Each input node is connected to all hidden and output nodes, and each hidden node
is connected to all output nodes. Genomes with feed_forward set to False will also have recurrent
(loopback, in this case) connections from each hidden or output node to itself.

– partial_nodirect # - As for full_nodirect, but each connection has a probability of be-
ing present determined by the number (valid values are in [0.0, 1.0]).

– partial_direct # - as for full_direct, but each connection has a probability of being
present determined by the number (valid values are in [0.0, 1.0]).

Changed in version 0.92: fs_neat split into fs_neat_nohidden and fs_neat_hidden; full, partial split into full_nodirect,
full_direct, partial_nodirect, partial_direct

• node_add_prob The probability that mutation will add a new node (essentially replacing an existing connection,
the enabled status of which will be set to False). Valid values are in [0.0, 1.0].

• node_delete_prob The probability that mutation will delete an existing node (and all connections to it). Valid
values are in [0.0, 1.0].

10 Chapter 3. Configuration file description

NEAT-Python Documentation, Release 0.92

• num_hidden The number of hidden nodes to add to each genome in the initial population.

• num_inputs The number of input nodes, through which the network receives inputs.

• num_outputs The number of output nodes, to which the network delivers outputs.

• response_init_mean The mean of the normal/gaussian distribution, if it is used to select response multiplier
attribute values for new nodes.

• response_init_stdev The standard deviation of the normal/gaussian distribution, if it is used to select response
multipliers for new nodes.

• response_init_type If set to gaussian or normal, then the initialization is to a normal/gaussian distribution.
If set to uniform, a uniform distribution from max(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒, (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑖𝑛𝑖𝑡_𝑚𝑒𝑎𝑛 −
(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑖𝑛𝑖𝑡_𝑠𝑡𝑑𝑒𝑣 * 2))) to min(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑚𝑎𝑥_𝑣𝑎𝑙𝑢𝑒, (𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑖𝑛𝑖𝑡_𝑚𝑒𝑎𝑛 +
(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑖𝑛𝑖𝑡_𝑠𝑡𝑑𝑒𝑣 * 2))). (Note that the standard deviation of a uniform distribution is not
range/0.25, as implied by this, but the range divided by a bit over 0.288 (the square root of 12); however,
this approximation makes setting the range much easier.) This defaults to “gaussian”.

New in version 0.92.

• response_max_value The maximum allowed response multiplier. Response multipliers above this value will
be clamped to this value.

• response_min_value The minimum allowed response multiplier. Response multipliers below this value will be
clamped to this value.

• response_mutate_power The standard deviation of the zero-centered normal/gaussian distribution from which
a response multiplier mutation is drawn.

• response_mutate_rate The probability that mutation will change the response multiplier of a node by adding a
random value.

• response_replace_rate The probability that mutation will replace the response multiplier of a node with a newly
chosen random value (as if it were a new node).

• single_structural_mutation If this evaluates to True, only one structural mutation (the addition or removal of
a node or connection) will be allowed per genome per generation. (If the probabilities for conn_add_prob,
conn_delete_prob, node_add_prob, and node_delete_prob add up to over 1, the chances of each are pro-
portional to the appropriate configuration value.) This defaults to “False”.

New in version 0.92.

• structural_mutation_surer If this evaluates to True, then an attempt to add a node to a genome lacking con-
nections will result in adding a connection instead; furthermore, if an attempt to add a connection tries to
add a connection that already exists, that connection will be enabled. If this is set to default, then it acts
as if it had the same value as single_structural_mutation (above). This defaults to “default”.

New in version 0.92.

• weight_init_mean The mean of the normal/gaussian distribution used to select weight attribute values for
new connections.

• weight_init_stdev The standard deviation of the normal/gaussian distribution used to select weight values for
new connections.

• weight_init_type If set to gaussian or normal, then the initialization is to a normal/gaussian distribu-
tion. If set to uniform, a uniform distribution from max(𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑖𝑛_𝑣𝑎𝑙𝑢𝑒, (𝑤𝑒𝑖𝑔ℎ𝑡_𝑖𝑛𝑖𝑡_𝑚𝑒𝑎𝑛 −
(𝑤𝑒𝑖𝑔ℎ𝑡_𝑖𝑛𝑖𝑡_𝑠𝑡𝑑𝑒𝑣 * 2))) to min(𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑎𝑥_𝑣𝑎𝑙𝑢𝑒, (𝑤𝑒𝑖𝑔ℎ𝑡_𝑖𝑛𝑖𝑡_𝑚𝑒𝑎𝑛 + (𝑤𝑒𝑖𝑔ℎ𝑡_𝑖𝑛𝑖𝑡_𝑠𝑡𝑑𝑒𝑣 *
2))). (Note that the standard deviation of a uniform distribution is not range/0.25, as implied by this, but
the range divided by a bit over 0.288 (the square root of 12); however, this approximation makes setting
the range much easier.) This defaults to “gaussian”.

3.4. [DefaultGenome] section 11

NEAT-Python Documentation, Release 0.92

New in version 0.92.

• weight_max_value The maximum allowed weight value. Weights above this value will be clamped to this
value.

• weight_min_value The minimum allowed weight value. Weights below this value will be clamped to this
value.

• weight_mutate_power The standard deviation of the zero-centered normal/gaussian distribution from which a
weight value mutation is drawn.

• weight_mutate_rate The probability that mutation will change the weight of a connection by adding a random
value.

• weight_replace_rate The probability that mutation will replace the weight of a connection with a newly
chosen random value (as if it were a new connection).

Table of Contents

12 Chapter 3. Configuration file description

CHAPTER 4

Overview of the basic XOR example (xor2.py)

The xor2.py example, shown in its entirety at the bottom of this page, evolves a network that implements the two-input
XOR function:

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

Fitness function

The key thing you need to figure out for a given problem is how to measure the fitness of the genomes that are produced
by NEAT. Fitness is expected to be a Python float value. If genome A solves your problem more successfully than
genome B, then the fitness value of A should be greater than the value of B. The absolute magnitude and signs of these
fitnesses are not important, only their relative values.

In this example, we create a feed-forward neural network based on the genome, and then for each case in the table
above, we provide that network with the inputs, and compute the network’s output. The error for each genome is
1 −

∑︀
𝑖(𝑒𝑖 − 𝑎𝑖)

2 between the expected (𝑒𝑖) and actual (𝑎𝑖) outputs, so that if the network produces exactly the
expected output, its fitness is 1, otherwise it is a value less than 1, with the fitness value decreasing the more incorrect
the network responses are.

This fitness computation is implemented in the eval_genomes function. This function takes two arguments: a list
of genomes (the current population) and the active configuration. neat-python expects the fitness function to calculate
a fitness for each genome and assign this value to the genome’s fitness member.

Running NEAT

Once you have implemented a fitness function, you mostly just need some additional boilerplate code that carries out
the following steps:

13

https://docs.python.org/3.5/library/functions.html#float

NEAT-Python Documentation, Release 0.92

• Create a neat.config.Config object from the configuration file (described in the Configuration file de-
scription).

• Create a neat.population.Population object using the Config object created above.

• Call the run method on the Population object, giving it your fitness function and (optionally) the maximum
number of generations you want NEAT to run.

After these three things are completed, NEAT will run until either you reach the specified number of generations, or
at least one genome achieves the fitness_threshold value you specified in your config file.

Getting the results

Once the call to the population object’s run method has returned, you can query the statistics member of the
population (a neat.statistics.StatisticsReporter object) to get the best genome(s) seen during the run.
In this example, we take the ‘winner’ genome to be that returned by pop.statistics.best_genome().

Other information available from the default statistics object includes per-generation mean fitness, per-generation
standard deviation of fitness, and the best N genomes (with or without duplicates).

Visualizations

Functions are available in the visualize module to plot the best and average fitness vs. generation, plot the change in
species vs. generation, and to show the structure of a network described by a genome.

Example Source

NOTE: This page shows the source and configuration file for the current version of neat-python available on GitHub.
If you are using the version 0.92 installed from PyPI, make sure you get the script and config file from the archived
source for that release.

Here’s the entire example:

"""
2-input XOR example -- this is most likely the simplest possible example.
"""

from __future__ import print_function
import os
import neat
import visualize

2-input XOR inputs and expected outputs.
xor_inputs = [(0.0, 0.0), (0.0, 1.0), (1.0, 0.0), (1.0, 1.0)]
xor_outputs = [(0.0,), (1.0,), (1.0,), (0.0,)]

def eval_genomes(genomes, config):
for genome_id, genome in genomes:

genome.fitness = 4.0
net = neat.nn.FeedForwardNetwork.create(genome, config)
for xi, xo in zip(xor_inputs, xor_outputs):

output = net.activate(xi)

14 Chapter 4. Overview of the basic XOR example (xor2.py)

https://github.com/CodeReclaimers/neat-python/blob/master/examples/xor/visualize.py
https://github.com/CodeReclaimers/neat-python/releases/tag/v0.92
https://github.com/CodeReclaimers/neat-python/releases/tag/v0.92

NEAT-Python Documentation, Release 0.92

genome.fitness -= (output[0] - xo[0]) ** 2

def run(config_file):
Load configuration.
config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,

neat.DefaultSpeciesSet, neat.DefaultStagnation,
config_file)

Create the population, which is the top-level object for a NEAT run.
p = neat.Population(config)

Add a stdout reporter to show progress in the terminal.
p.add_reporter(neat.StdOutReporter(True))
stats = neat.StatisticsReporter()
p.add_reporter(stats)
p.add_reporter(neat.Checkpointer(5))

Run for up to 300 generations.
winner = p.run(eval_genomes, 300)

Display the winning genome.
print('\nBest genome:\n{!s}'.format(winner))

Show output of the most fit genome against training data.
print('\nOutput:')
winner_net = neat.nn.FeedForwardNetwork.create(winner, config)
for xi, xo in zip(xor_inputs, xor_outputs):

output = winner_net.activate(xi)
print("input {!r}, expected output {!r}, got {!r}".format(xi, xo, output))

node_names = {-1:'A', -2: 'B', 0:'A XOR B'}
visualize.draw_net(config, winner, True, node_names=node_names)
visualize.plot_stats(stats, ylog=False, view=True)
visualize.plot_species(stats, view=True)

p = neat.Checkpointer.restore_checkpoint('neat-checkpoint-4')
p.run(eval_genomes, 10)

if __name__ == '__main__':
Determine path to configuration file. This path manipulation is
here so that the script will run successfully regardless of the
current working directory.
local_dir = os.path.dirname(__file__)
config_path = os.path.join(local_dir, 'config-feedforward')
run(config_path)

and here is the associated config file:

#--- parameters for the XOR-2 experiment ---#

[NEAT]
fitness_criterion = max
fitness_threshold = 3.9
pop_size = 150
reset_on_extinction = False

4.5. Example Source 15

NEAT-Python Documentation, Release 0.92

[DefaultGenome]
node activation options
activation_default = sigmoid
activation_mutate_rate = 0.0
activation_options = sigmoid

node aggregation options
aggregation_default = sum
aggregation_mutate_rate = 0.0
aggregation_options = sum

node bias options
bias_init_mean = 0.0
bias_init_stdev = 1.0
bias_max_value = 30.0
bias_min_value = -30.0
bias_mutate_power = 0.5
bias_mutate_rate = 0.7
bias_replace_rate = 0.1

genome compatibility options
compatibility_disjoint_coefficient = 1.0
compatibility_weight_coefficient = 0.5

connection add/remove rates
conn_add_prob = 0.5
conn_delete_prob = 0.5

connection enable options
enabled_default = True
enabled_mutate_rate = 0.01

feed_forward = True
initial_connection = full

node add/remove rates
node_add_prob = 0.2
node_delete_prob = 0.2

network parameters
num_hidden = 0
num_inputs = 2
num_outputs = 1

node response options
response_init_mean = 1.0
response_init_stdev = 0.0
response_max_value = 30.0
response_min_value = -30.0
response_mutate_power = 0.0
response_mutate_rate = 0.0
response_replace_rate = 0.0

connection weight options
weight_init_mean = 0.0
weight_init_stdev = 1.0
weight_max_value = 30
weight_min_value = -30

16 Chapter 4. Overview of the basic XOR example (xor2.py)

NEAT-Python Documentation, Release 0.92

weight_mutate_power = 0.5
weight_mutate_rate = 0.8
weight_replace_rate = 0.1

[DefaultSpeciesSet]
compatibility_threshold = 3.0

[DefaultStagnation]
species_fitness_func = max
max_stagnation = 20
species_elitism = 2

[DefaultReproduction]
elitism = 2
survival_threshold = 0.2

4.5. Example Source 17

NEAT-Python Documentation, Release 0.92

18 Chapter 4. Overview of the basic XOR example (xor2.py)

CHAPTER 5

Customizing Behavior

NEAT-Python allows the user to provide drop-in replacements for some parts of the NEAT algorithm, which hopefully
makes it easier to implement common variations of the algorithm as mentioned in the literature. If you find that you’d
like to be able to customize something not shown here, please submit an issue on GitHub.

New activation functions

New activation functions are registered with your Config instance, prior to creation of the Population instance,
as follows:

def sinc(x):
return 1.0 if x == 0 else sin(x) / x

config.genome_config.add_activation('my_sinc_function', sinc)

The first argument to add_activation is the name by which this activation function will be referred to in the
configuration settings file.

This is demonstrated in the memory-fixed example.

Note: This method is only valid when using the DefaultGenome implementation, with the method being found in
the DefaultGenomeConfig implementation; different genome implementations may require a different method
of registration.

Reporting/logging

The Population class makes calls to a collection of zero or more reporters at fixed points during the evolution process.
The user can add a custom reporter to this collection by calling Population.add_reporter and providing it with an object

19

https://github.com/CodeReclaimers/neat-python/tree/master/examples/memory-fixed

NEAT-Python Documentation, Release 0.92

which implements the same interface as BaseReporter (in reporting.py), probably partially by subclassing
it.

StdOutReporter, StatisticsReporter, and Checkpointer may be useful as examples of the behavior
you can add using a reporter.

New genome types

To use a different genome type, you can create a custom class whose interface matches that of DefaultGenome
and pass this as the genome_type argument to the Config constructor. The minimum genome type interface is
documented here: Genome Interface.

This is demonstrated in the circuit evolution example.

Alternatively, you can subclass DefaultGenome in cases where you need to just add some extra behavior. This is
done in the OpenAI lander example to add an evolvable per-genome reward discount value. It is also done in the iznn
setup, with IZGenome.

Speciation scheme

To use a different speciation scheme, you can create a custom class whose interface matches that of
DefaultSpeciesSet and pass this as the species_set_type argument to the Config constructor.

Note: TODO: Further document species set interface (some done in module_summaries)

Note: TODO: Include example

Species stagnation scheme

The default species stagnation scheme is a simple fixed stagnation limit–when a species exhibits no improvement for
a fixed number of generations, all its members are removed from the simulation. This behavior is encapsulated in the
DefaultStagnation class.

To use a different species stagnation scheme, you must create a custom class whose interface matches that of
DefaultStagnation, and provide it as the stagnation_type argument to the Config constructor.

This is demonstrated in the interactive 2D image example.

Reproduction scheme

The default reproduction scheme uses explicit fitness sharing. This behavior is encapsulated in the
DefaultReproduction class. The minimum reproduction type interface is documented here: Reproduction In-
terface

To use a different reproduction scheme, you must create a custom class whose interface matches that of
DefaultReproduction, and provide it as the reproduction_type argument to the Config constructor.

20 Chapter 5. Customizing Behavior

https://github.com/CodeReclaimers/neat-python/blob/master/examples/circuits/evolve.py
https://github.com/CodeReclaimers/neat-python/blob/master/examples/openai-lander/evolve.py
https://github.com/CodeReclaimers/neat-python/blob/master/examples/picture2d/evolve_interactive.py

NEAT-Python Documentation, Release 0.92

Note: TODO: Include example

5.6. Reproduction scheme 21

NEAT-Python Documentation, Release 0.92

22 Chapter 5. Customizing Behavior

CHAPTER 6

Overview of builtin activation functions

Note that some of these functions are scaled differently from the canonical versions you may be familiar with. The
intention of the scaling is to place more of the functions’ “interesting” behavior in the region [−1, 1] × [−1, 1].

The implementation of these functions can be found in the activations module.

abs

23

NEAT-Python Documentation, Release 0.92

24 Chapter 6. Overview of builtin activation functions

NEAT-Python Documentation, Release 0.92

clamped

cube

exp

gauss

hat

6.2. clamped 25

NEAT-Python Documentation, Release 0.92

26 Chapter 6. Overview of builtin activation functions

NEAT-Python Documentation, Release 0.92

identity

inv

log

relu

sigmoid

sin

softplus

square

tanh

6.7. identity 27

NEAT-Python Documentation, Release 0.92

28 Chapter 6. Overview of builtin activation functions

CHAPTER 7

Continuous-time recurrent neural network implementation

The default continuous-time recurrent neural network (CTRNN) implementation in neat-python is modeled as a
system of ordinary differential equations, with neuron potentials as the dependent variables.

𝜏𝑖
𝑑𝑦𝑖

𝑑𝑡 = −𝑦𝑖 + 𝑓𝑖

(︃
𝛽𝑖 +

∑︀
𝑗∈𝐴𝑖

𝑤𝑖𝑗𝑦𝑗

)︃
Where:

• 𝜏𝑖 is the time constant of neuron 𝑖.

• 𝑦𝑖 is the potential of neuron 𝑖.

• 𝑓𝑖 is the activation function of neuron 𝑖.

• 𝛽𝑖 is the bias of neuron 𝑖.

• 𝐴𝑖 is the set of indices of neurons that provide input to neuron 𝑖.

• 𝑤𝑖𝑗 is the weight of the connection from neuron 𝑗 to neuron 𝑖.

The time evolution of the network is computed using the forward Euler method:

𝑦𝑖(𝑡 + ∆𝑡) = 𝑦𝑖(𝑡) + ∆𝑡𝑑𝑦𝑖

𝑑𝑡

29

NEAT-Python Documentation, Release 0.92

30 Chapter 7. Continuous-time recurrent neural network implementation

CHAPTER 8

Module summaries

activations

Has the built-in activation functions, code for using them, and code for adding new user-defined ones.

exception activations.InvalidActivationFunction(TypeError)
Exception called if an activation function being added is invalid according to the
validate_activation function, or if an unknown activation function is requested by name
via get.

Changed in version 0.92: Base of exception changed to more-precise TypeError.

activations.validate_activation(function)
Checks to make sure its parameter is a function that takes a single argument.

Parameters function (object) – Object to be checked.

Raises InvalidActivationFunction – If the object does not pass the tests.

class activations.ActivationFunctionSet
Contains the list of current valid activation functions, including methods for adding and getting
them.

add(name, function)
After validating the function (via validate_activation), adds it to the avail-
able activation functions under the given name. Used by DefaultGenomeConfig.
add_activation.

Parameters
• name (str) – The name by which the function is to be known in the configuration

file.
• function (function) – The function to be added.

get(name)
Returns the named function, or raises an exception if it is not a known activation function.

Parameters name (str) – The name of the function.
Returns The function of interest

31

https://docs.python.org/3.5/reference/datamodel.html#objects-values-and-types
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#str

NEAT-Python Documentation, Release 0.92

Return type function
Raises InvalidActivationFunction – If the function is not known.

is_valid(name)
Checks whether the named function is a known activation function.

Parameters name (str) – The name of the function.
Returns Whether or not the function is known.
Return type bool

aggregations

Has the built-in aggregation functions, code for using them, and code for adding new user-defined ones.

Note: Non-enabled connections will, by all methods currently included in NEAT-Python, not be included
among the numbers input to these functions, even as 0s.

aggregations.product_aggregation(x)
An adaptation of the multiplication function to take an iterable.

Parameters x (list(float) or tuple(float) or set(float)) – The numbers to be multiplied to-
gether; takes any iterable.

Returns
∏︀

(𝑥)

Return type float

aggregations.sum_aggregation(x)
Probably the most commonly-used aggregation function.

Parameters x (list(float) or tuple(float) or set(float)) – The numbers to find the sum of;
takes any iterable.

Returns
∑︀

(𝑥)

Return type float

aggregations.max_aggregation(x)
Returns the maximum of the inputs.

Parameters x (list(float) or tuple(float) or set(float)) – The numbers to find the greatest
of; takes any iterable.

Returns max(𝑥)

Return type float

aggregations.min_aggregation(x)
Returns the minimum of the inputs.

Parameters x (list(float) or tuple(float) or set(float)) – The numbers to find the least of;
takes any iterable.

Returns min(𝑥)

Return type float

aggregations.maxabs_aggregation(x)
Returns the maximum by absolute value, which may be positive or negative. Envisioned as suitable
for neural network pooling operations.

32 Chapter 8. Module summaries

https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric

NEAT-Python Documentation, Release 0.92

Parameters x (list(float) or tuple(float) or set(float)) – The numbers to find the absolute-
value maximum of; takes any iterable.

Returns 𝑥𝑖, 𝑖 = argmax|x|

Return type float

New in version 0.92.

aggregations.median_aggregation(x)
Returns the median of the inputs.

Parameters x (list(float) or tuple(float) or set(float)) – The numbers to find the median of;
takes any iterable.

Returns The median; if there are an even number of inputs, takes the mean of the middle
two.

Return type float

New in version 0.92.

aggregations.mean_aggregation(x)
Returns the arithmetic mean. Potentially maintains a more stable result than sum for changing
numbers of enabled connections, which may be good or bad depending on the circumstances; having
both available to the algorithm is advised.

Parameters x (list(float) or tuple(float) or set(float)) – The numbers to find the mean of;
takes any iterable.

Returns The arithmetic mean.

Return type float

New in version 0.92.

exception aggregations.InvalidAggregationFunction(TypeError)
Exception called if an aggregation function being added is invalid according to the
validate_aggregation function, or if an unknown aggregation function is requested by name
via get.

New in version 0.92.

aggregations.validate_aggregation(function)
Checks to make sure its parameter is a function that takes at least one argument.

Parameters function (object) – Object to be checked.

Raises InvalidAggregationFunction – If the object does not pass the tests.

New in version 0.92.

class aggregations.AggregationFunctionSet
Contains the list of current valid aggregation functions, including methods for adding and getting
them.

add(name, function)
After validating the function (via validate_aggregation), adds it to the avail-
able activation functions under the given name. Used by DefaultGenomeConfig.
add_activation. TODO: Check for whether the function needs reduce, or at least offer
a form of this function (or extra argument for it, defaulting to false) and/or its interface in
genome, that will appropriately “wrap” the input function.

Parameters

8.2. aggregations 33

https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#objects-values-and-types
https://docs.python.org/3.5/library/functools.html#functools.reduce

NEAT-Python Documentation, Release 0.92

• name (str) – The name by which the function is to be known in the configuration
file.

• function (function) – The function to be added.
New in version 0.92.

get(name)
Returns the named function, or raises an exception if it is not a known aggregation function.

Parameters name (str) – The name of the function.
Returns The function of interest
Return type function
Raises InvalidAggregationFunction – If the function is not known.

New in version 0.92.

__getitem__(index)
Present for compatibility with older programs that expect the aggregation functions to be in a
dict. A wrapper for get(index).

Parameters index (str) – The name of the function.
Returns The function of interest.
Return type function
Raises

• InvalidAggregationFunction – If the function is not known.
• DeprecationWarning – Always.

Changed in version 0.92: Originally a dictionary in genome.

Deprecated since version 0.92: Use get(index) instead.

is_valid(name)
Checks whether the named function is a known aggregation function.

Parameters name (str) – The name of the function.
Returns Whether or not the function is known.
Return type bool

New in version 0.92.

Changed in version 0.92: Moved from genome and expanded to match activations (plus the
maxabs, median, and mean functions added).

attributes

Deals with attributes used by genes.

attributes.BaseAttribute

attributes.BoolAttribute

attributes.FloatAttribute

attributes.StringAttribute

34 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/glossary.html#term-dictionary
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric

NEAT-Python Documentation, Release 0.92

class attributes.BaseAttribute(name, **default_dict)
Superclass for the type-specialized attribute subclasses, used by genes (such as via the genes.
BaseGene implementation). Updates _config_items with any defaults supplied, then uses
config_item_name to set up a listing of the names of configuration items using setattr.

Parameters

• name (str) – The name of the attribute, held in the instance’s name attribute.

• default_dict (dict(str, str)) – An optional dictionary of defaults for
the configuration items.

Changed in version 0.92: Default_dict capability added.

config_item_name(config_item_base_name)
Formats a configuration item’s name by combining the attribute’s name with the base item
name.

Parameters config_item_base_name (str) – The base name of the configura-
tion item, to be combined with the attribute’s name.

Returns The configuration item’s full name.
Return type str

Changed in version 0.92: Originally (as config_item_names) did not take any input and
returned a list based on the _config_items subclass attribute.

get_config_params()
Uses config_item_name for each configuration item to get the name, then gets the appro-
priate type of config.ConfigParameter instance for each (with any appropriate defaults
being set from _config_items, including as modified by BaseAttribute) and returns
it.

Returns A list of ConfigParameter instances.
Return type list(instance)

Changed in version 0.92: Was originally specific for the attribute subclass, since it did not pick
up the appropriate type from the _config_items list; default capability also added.

class attributes.FloatAttribute(BaseAttribute)
Class for numeric attributes such as the response of a node; includes code for configuration, creation,
and mutation.

clamp(value, config)
Gets the minimum and maximum values desired from config, then ensures that the value is
between them.

Parameters
• value (float) – The value to be clamped.
• config (instance) – The configuration object from which the minimum and max-

imum desired values are to be retrieved.
Returns The value, if it is within the desired range, or the appropriate end of the range,

if it is not.
Return type float

init_value(config)
Initializes the attribute’s value, using either a gaussian distribution with the configured mean
and standard deviation, followed by clamp to keep the result within the desired range, or a
uniform distribution, depending on the configuration setting of init_type.

Parameters config (instance) – The configuration object from which the mean,
standard deviation, and initialization distribution type values are to be retrieved.

Returns The new value.
Return type float

Changed in version 0.92: Uniform distribution initialization option added.

8.3. attributes 35

https://docs.python.org/3.5/library/functions.html#setattr
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric

NEAT-Python Documentation, Release 0.92

mutate_value(value, config)
May replace (as if reinitializing, using init_value), mutate (using a 0-mean gaussian dis-
tribution with a configured standard deviation from mutate_power), or leave alone the input
value, depending on the configuration settings (of replace_rate and mutate_rate).

Parameters
• value (float) – The current value of the attribute.
• config (instance) – The configuration object from which the parameters are to

be extracted.
Returns Either the original value, if unchanged, or the new value.
Return type float

class attributes.BoolAttribute(BaseAttribute)
Class for boolean attributes such as whether a connection is enabled or not; includes code for con-
figuration, creation, and mutation.

init_value(config)
Initializes the attribute’s value, either using a configured default, or (if the default is “ran-
dom”) with a 50/50 chance of True or False.

Deprecated since version 0.92: While it is possible to use “None” as an equivalent to “random”,
this is too easily confusable with an actual None.

Changed in version 0.92: Ability to use “random” for a 50/50 chance of True or False added.
Parameters config (instance) – The configuration object from which the default

parameter is to be retrieved.
Returns The new value.
Return type bool
Raises RuntimeError – If the default value is not recognized as standing for any

of True, False, “random”, or “none”.

mutate_value(value, config)
With a frequency determined by the mutate_rate and rate_to_false_add or
rate_to_true_add configuration parameters, replaces the value with a 50/50 chance of
True or False; note that this has a 50% chance of leaving the value unchanged.

Parameters
• value (bool) – The current value of the attribute.
• config (instance) – The configuration object from which the mutate_rate

and other parameters are to be extracted.
Returns Either the original value, if unchanged, or the new value.
Return type bool

Changed in version 0.92: Added the rate_to_false_add and rate_to_true_add pa-
rameters.

class attributes.StringAttribute(BaseAttribute)
Class for string attributes such as the aggregation function of a node, which are selected from a list
of options; includes code for configuration, creation, and mutation.

init_value(config)
Initializes the attribute’s value, either using a configured default or (if the default is “ran-
dom”) with a randomly-chosen member of the options (each having an equal chance). Note:
It is possible for the default value, if specifically configured, to not be one of the options.

Deprecated since version 0.92: While it is possible to use “None” as an equivalent to “random”,
this is too easily confusable with an actual None.

Parameters config (instance) – The configuration object from which the default
and, if necessary, options parameters are to be retrieved.

Returns The new value.
Return type str

36 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/constants.html#True
https://docs.python.org/3.5/library/constants.html#False
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/constants.html#True
https://docs.python.org/3.5/library/constants.html#False
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/constants.html#True
https://docs.python.org/3.5/library/constants.html#False
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#str

NEAT-Python Documentation, Release 0.92

mutate_value(value, config)
With a frequency determined by the mutate_rate configuration parameter, replaces the
value with one of the options, with each having an equal chance; note that this can be the
same value as before. (It is possible to crudely alter the chances of what is chosen by listing a
given option more than once, although this is inefficient given the use of the random.choice
function.) TODO: Add configurable probabilities of which option is used. Longer-term, as with
the improved version of RBF-NEAT, separate genes for the likelihoods of each (but always do-
ing some change, to prevent overly-conservative evolution due to its inherent short-sightedness),
allowing the genomes to control the distribution of options, will be desirable.

Parameters
• value (str) – The current value of the attribute.
• config (instance) – The configuration object from which the options and

other parameters are to be extracted.
Returns The new value.
Return type str

Changed in version 0.92: __config_items__ changed to _config_items, since it is not a Python
internal variable.

checkpoint

Uses pickle to save and restore populations (and other aspects of the simulation state).

Note: The speed of this module can vary widely between python implementations (and perhaps versions).

class checkpoint.Checkpointer(generation_interval=100, time_interval_seconds=300,
filename_prefix=’neat-checkpoint-‘)

A reporter class that performs checkpointing, saving and restoring the simulation state (in-
cluding population, randomization, and other aspects). It saves the current state every
generation_interval generations or time_interval_seconds seconds, whichever
happens first. Subclasses reporting.BaseReporter. (The potential save point is at the end
of a generation.) The start of the filename will be equal to filename_prefix, followed by the
generation number. If there is a need to check the last generation for which a checkpoint was saved,
such as to determine which file to load, access last_generation_checkpoint; if -1, none
have been saved.

Parameters

• generation_interval (int or None) – If not None, maximum number of gen-
erations between checkpoints.

• time_interval_seconds (float or None) – If not None, maximum number of
seconds between checkpoints.

• filename_prefix (str) – The prefix for the checkpoint file names.

save_checkpoint(config, population, species, generation)
Saves the current simulation (including randomization) state to (if using the default
neat-checkpoint- for filename_prefix) neat-checkpoint-generation,
with generation being the generation number.

Parameters
• config (instance) – The config.Config configuration instance to be used.
• population (dict(int, object)) – A population as created by reproduction.
DefaultReproduction.create_new() or a compatible implementation.

8.4. checkpoint 37

https://docs.python.org/3.5/library/random.html#random.choice
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/pickle.html#module-pickle
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#objects-values-and-types

NEAT-Python Documentation, Release 0.92

• species (instance) – A species.DefaultSpeciesSet (or compatible
implementation) instance.

• generation (int) – The generation number.

static restore_checkpoint(filename)
Resumes the simulation from a previous saved point. Loads the specified file, sets the ran-
domization state, and returns a population.Population object set up with the rest of the
previous state.

Parameters filename (str) – The file to be restored from.
Returns Population instance that can be used with Population.run to restart

the simulation.
Return type instance

config

Does general configuration parsing; used by other classes for their configuration.

class config.ConfigParameter(name, value_type, default=None)
Does initial handling of a particular configuration parameter.

Parameters

• name (str) – The name of the configuration parameter.

• value_type – The type that the configuration parameter should be; must be one
of str, int, bool, float, or list.

• default (str or None) – If given, the default to use for the configuration
parameter.

Changed in version 0.92: Default capability added.

__repr__()
Returns a representation of the class suitable for use in code for initialization.

Returns Representation as for repr.
Return type str

parse(section, config_parser)
Uses the supplied configuration parser (either from the configparser.ConfigParser
class, or - for 2.7 - the ConfigParser.SafeConfigParser class) to gather the configuration param-
eter from the appropriate configuration file section. Parsing varies depending on the type.

Parameters
• section (str) – The section name, taken from the __name__ attribute of the

class to be configured (or NEAT for those parameters).
• config_parser (instance) – The configuration parser to be used.

Returns The configuration parameter value, in stringified form unless a list.
Return type str or list(str)

interpret(config_dict)
Takes a dictionary of configuration parameters, as output by the configuration parser called
in parse(), and interprets them into the proper type, with some error-checking.

Parameters config_dict (dict(str, str)) – Configuration parameters as
output by the configuration parser.

Returns The configuration parameter value
Return type str or int or bool or float or list(str)
Raises

• RuntimeError – If there is a problem with the configuration parameter.

38 Chapter 8. Module summaries

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-list
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/library/functions.html#repr
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/configparser.html#configparser.ConfigParser
https://docs.python.org/2.7/library/configparser.html#ConfigParser.SafeConfigParser
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/import.html#__name__
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/expressions.html#dict
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/exceptions.html#RuntimeError

NEAT-Python Documentation, Release 0.92

• DeprecationWarning – If a default is used.
Changed in version 0.92: Default capability added.

format(value)
Depending on the type of configuration parameter, returns either a space-separated list version,
for list parameters, or the stringified version (using str), of value.

Parameters value (str or int or bool or float or list) – Configuration parameter value
to be formatted.

Returns String version.
Return type str

config.write_pretty_params(f, config, params)
Prints configuration parameters, with justification based on the longest configuration parameter
name.

Parameters

• f (file) – File object to be written to.

• config (instance) – Configuration object from which parameter values are to be
fetched (using getattr).

• params (list(instance)) – List of ConfigParameter instances giving the names
of interest and the types of parameters.

exception config.UnknownConfigItemError(NameError)
Error for unknown configuration option(s) - partially to catch typos. TODO: genome.
DefaultGenomeConfig does not currently check for these.

New in version 0.92.

class config.DefaultClassConfig(param_dict, param_list)
Replaces at least some boilerplate configuration code for reproduction, species_set, and stagnation
classes.

Parameters

• param_dict (dict(str, str)) – Dictionary of configuration parameters
from config file.

• param_list (list(instance)) – List of ConfigParameter instances; used to
know what parameters are of interest to the calling class.

Raises UnknownConfigItemError – If a key in param_dict is not among the
names in param_list.

classmethod write_config(f, config)
Required method (inherited by calling classes). Uses write_pretty_params() to output
parameters of interest to the calling class.

Parameters
• f (file) – File object to be written to.
• config (instance) – DefaultClassConfig instance.

New in version 0.92.

class config.Config(genome_type, reproduction_type, species_set_type, stagnation_type, file-
name)

A simple container for user-configurable parameters of NEAT. The four parameters ending in
_type may be the built-in ones or user-provided objects, which must make available the meth-
ods parse_config and write_config, plus others depending on which object it is. (For
more information on the objects, see below and Customizing Behavior.) Config itself takes care

8.5. config 39

https://docs.python.org/3.5/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/glossary.html#term-file-object
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#getattr
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/glossary.html#term-file-object
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

of the NEAT parameters, which are found as some of its attributes. For a description of the config-
uration file, see Configuration file description. The __name__ attributes of the _type parameters
are used for the titles of the configuration file sections. A Config instance’s genome_config,
species_set_config, stagnation_config, and reproduction_config attributes
hold the configuration objects for the respective classes.

Parameters

• genome_type (class) – Specifies the genome class used, such as genome.
DefaultGenome or iznn.IZGenome. See Genome Interface for the needed
interface.

• reproduction_type (class) – Specifies the reproduction class used, such as
reproduction.DefaultReproduction. See Reproduction Interface for
the needed interface.

• species_set_type (class) – Specifies the species set class used, such as
species.DefaultSpeciesSet.

• stagnation_type (class) – Specifies the stagnation class used, such as
stagnation.DefaultStagnation.

• filename (str) – Pathname for configuration file to be opened, read, processed
by a parser from the configparser.ConfigParser class (or, for 2.7, the
ConfigParser.SafeConfigParser class), the NEAT section handled by Config, and
then other sections passed to the parse_config methods of the appropriate
classes.

Raises

• AssertionError – If any of the _type classes lack a parse_config
method.

• UnknownConfigItemError – If an option in the NEAT section of the configu-
ration file is not recognized.

• DeprecationWarning – If a default is used for one of the NEAT section options.

Changed in version 0.92: Added default capabilities, UnknownConfigItemError,
no_fitness_termination.

save(filename)
Opens the specified file for writing (not appending) and outputs a configuration file from the
current configuration. Uses write_pretty_params() for the NEAT parameters and the
appropriate class write_config methods for the other sections. (A comparison of it and the
input configuration file can be used to determine any default parameters of interest.)

Parameters filename (str) – The configuration file to be written.

ctrnn

class ctrnn.CTRNNNodeEval(time_constant, activation, aggregation, bias, response, links)
Sets up the basic ctrnn (continuous-time recurrent neural network) nodes.

Parameters

• time_constant (float) – Controls how fast the node responds; 𝜏𝑖 from
Continuous-time recurrent neural network implementation.

• activation (function) – Activation function for the node.

40 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#definition.__name__
https://docs.python.org/3.5/glossary.html#term-class
https://docs.python.org/3.5/glossary.html#term-class
https://docs.python.org/3.5/glossary.html#term-class
https://docs.python.org/3.5/glossary.html#term-class
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/configparser.html#configparser.ConfigParser
https://docs.python.org/2.7/library/configparser.html#ConfigParser.SafeConfigParser
https://docs.python.org/3.5/library/exceptions.html#AssertionError
https://docs.python.org/3.5/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/glossary.html#term-function

NEAT-Python Documentation, Release 0.92

• aggregation (function) – Aggregation function for the node.

• bias (float) – Bias for the node.

• response (float) – Response multiplier for the node.

• links (list(tuple(int,float))) – List of other nodes providing input, as
tuples of (input key, weight)

class ctrnn.CTRNN(inputs, outputs, node_evals)
Sets up the ctrnn network itself.

reset()
Resets the time and all node activations to 0 (necessary due to otherwise retaining state via
recurrent connections).

advance(inputs, advance_time, time_step=None)
Advance the simulation by the given amount of time, assuming that inputs are constant at the
given values during the simulated time.

Parameters
• inputs (list(float)) – The values for the input nodes.
• advance_time (float) – How much time to advance the network before return-

ing the resulting outputs.
• time_step (float or None) – How much time per step to advance the network;

the default of None will currently result in an error, but it is planned to determine
it automatically.

Returns The values for the output nodes.
Return type list(float)
Raises

• NotImplementedError – If a time_step is not given.
• RuntimeError – If the number of inputs does not match the number of input

nodes
Changed in version 0.92: Exception changed to more-specific RuntimeError.

static create(genome, config, time_constant)
Receives a genome and returns its phenotype (a CTRNN with CTRNNNodeEval nodes).

Parameters
• genome (instance) – A genome.DefaultGenome instance.
• config (instance) – A config.Config instance.
• time_constant (float) – Used for the CTRNNNodeEval initializations.

distributed

Distributed evaluation of genomes.

Note: This module is in a beta state, and still unstable even in single-machine testing. Reliability is likely
to vary, including depending on the Python version and implementation (e.g., cpython vs pypy) in use and
the likelihoods of timeouts (due to machine and/or network slowness). In particular, while the code can try
to reconnect between between primary and secondary nodes, as noted in the multiprocessing docu-
mentation this may not work due to data loss/corruption. Note also that this module is not responsible for
starting the script copies on the different compute nodes, since this is very site/configuration-dependent.

8.7. distributed 41

https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#NotImplementedError
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/multiprocessing.html#module-multiprocessing

NEAT-Python Documentation, Release 0.92

About compute nodes:

The primary compute node (the node which creates and mutates genomes) and the secondary com-
pute nodes (the nodes which evaluate genomes) can execute the same script. The role of a compute
node is determined using the mode argument of the DistributedEvaluator. If the mode is MODE_AUTO,
the host_is_local() function is used to check if the addr argument points to the localhost. If
it does, the compute node starts as a primary node, and otherwise as a secondary node. If mode is
MODE_PRIMARY , the compute node always starts as a primary node. If mode is MODE_SECONDARY ,
the compute node will always start as a secondary node.

There can only be one primary node per NEAT, but any number of secondary nodes. The primary node
will not evaluate any genomes, which means you will always need at least two compute nodes (one
primary and at least one secondary).

You can run any number of compute nodes on the same physical machine (or VM). However, if a ma-
chine has both a primary node and one or more secondary nodes, MODE_AUTO cannot be used for those
secondary nodes - MODE_SECONDARY will need to be specified.

Usage:

1. Import modules and define the evaluation logic (the eval_genome function). (After this, check for
if __name__ == '__main__', and put the rest of the code inside the body of the statement,
or in subroutines called from it.)

2. Load config and create a population - here, the variable p.

3. If required, create and add reporters.

4. Create a DistributedEvaluator(addr_of_primary_node, b'some_password',
eval_function, mode=MODE_AUTO) - here, the variable de.

5. Call de.start(exit_on_stop=True). The start() call will block on the secondary nodes
and call sys.exit(0) when the NEAT evolution finishes. This means that the following code will only
be executed on the primary node.

6. Start the evaluation using p.run(de.evaluate, number_of_generations).

7. Stop the secondary nodes using de.stop().

8. You are done. You may want to save the winning genome(s) or show some statistics.

See examples/xor/evolve-feedforward-distributed.py for a complete example.

Note: The below contains some (but not complete) information about private functions, classes, and
similar (starting with _); this documentation is meant to help with maintaining and improving the code,
not for enabling external use, and the interface may change rapidly with no warning.

distributed.MODE_AUTO

distributed.MODE_PRIMARY

distributed.MODE_SECONDARY
Values - which should be treated as constants - that are used for the mode argu-
ment of DistributedEvaluator. If MODE_AUTO, _determine_mode() uses
host_is_local() and the specified addr of the primary node to decide the mode; the other
two specify it.

distributed._STATE_RUNNING

42 Chapter 8. Module summaries

https://docs.python.org/3.5/library/sys.html#sys.exit

NEAT-Python Documentation, Release 0.92

distributed._STATE_SHUTDOWN

distributed._STATE_FORCED_SHUTDOWN
Values - which should be treated as constants - that are used to determine the current state (whether
the secondaries should be continuing the run or not).

exception distributed.ModeError(RuntimeError)
An exception raised when a mode-specific method is being called without being in the mode - either
a primary-specific method called by a secondary node or a secondary-specific method called by a
primary node.

distributed.host_is_local(hostname, port=22)
Returns True if the hostname points to the localhost (including shares addresses), otherwise False.

Parameters

• hostname (str) – The hostname to be checked; will be put through socket.
getfqdn.

• port (int) – The optional port for socket functions requiring one. Defaults to 22,
the ssh port.

Returns Whether the hostname appears to be equivalent to that of the localhost.

Return type bool

distributed._determine_mode(addr, mode)
Returns the mode that should be used. If mode is MODE_AUTO, this is determined by checking (via
host_is_local()) if addr points to the localhost; if it does, it returns MODE_PRIMARY , else
it returns MODE_SECONDARY . If mode is either MODE_PRIMARY or MODE_SECONDARY, it
returns the mode argument. Otherwise, a ValueError is raised.

Parameters

• addr (tuple(str, int) or bytes) – Either a tuple of (hostname, port)
pointing to the machine that has the primary node, or the hostname (as bytes if on
3.X).

• mode (int) – Specifies the mode to run in - must be one of MODE_AUTO,
MODE_PRIMARY , or MODE_SECONDARY .

Raises ValueError – If the mode is not one of the above.

distributed.chunked(data, chunksize)

Splits up data and returns it as a list of chunks containing at most chunksize elements
of data.

Parameters

• data (list(object) or tuple(object) or set(object)) – The
data to split up; takes any iterable.

• chunksize (int) – The maximum number of elements per chunk.

Returns A list of chunks containing (as a list) at most chunksize elements of data.

Return type list(list(object))

Raises ValueError – If chunksize is not 1+ or is not an integer

class distributed._ExtendedManager(addr, authkey, mode, start=False)
Manages the multiprocessing.managers.SyncManager instance. Initializes self.
_secondary_state to _STATE_RUNNING.

8.7. distributed 43

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/socket.html#socket.getfqdn
https://docs.python.org/3.5/library/socket.html#socket.getfqdn
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/socket.html#module-socket
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bytes
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#object
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#object
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#object
https://docs.python.org/3.5/glossary.html#term-iterable
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#object
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.SyncManager

NEAT-Python Documentation, Release 0.92

Parameters

• addr (tuple(str, int)) – Should be a tuple of (hostname, port) pointing
to the machine running the DistributedEvaluator in primary mode. If mode is
MODE_AUTO, the mode is determined by checking whether the hostname points
to this host or not (via _determine_mode() and host_is_local()).

• authkey (bytes) – The password used to restrict access to the manager. All Dis-
tributedEvaluators need to use the same authkey. Note that this needs to be a bytes
object for Python 3.X, and should be in 2.7 for compatibility (identical in 2.7 to a
str object). For more information, see under DistributedEvaluator.

• mode (int) – Specifies the mode to run in - must be one of
MODE_AUTO, MODE_PRIMARY , or MODE_SECONDARY . Processed by
_determine_mode().

• start (bool) – Whether to call the start() method after initialization.

__reduce__()
Used by pickle to serialize instances of this class. TODO: Appears to assume that start
(for initialization) should be true; perhaps self.manager should be checked? (This may
require :py:meth::stop() to set self.manager to None, incidentally.)

Returns Information about the class instance; a tuple of (class name, tuple(addr, au-
thkey, mode, True)).

Return type tuple(str, tuple(tuple(str, int), bytes, int, bool))

start()
Starts (if in MODE_PRIMARY) or connects to (if in MODE_SECONDARY) the manager.

stop()
Stops the manager using shutdown . TODO: Should this set self.manager to None?

set_secondary_state(value)
Sets the value for the secondary_state, shared between the nodes via multiprocess-
ing.managers.Value.

Parameters value (int) – The desired secondary state; must be one of
_STATE_RUNNING, _STATE_SHUTDOWN , or _STATE_FORCED_SHUTDOWN .

Raises
• ValueError – If the value is not one of the above.
• RuntimeError – If the manager has not been started.

secondary_state
The property secondary_state - whether the secondary nodes should still be processing
elements.

get_inqueue()
Returns the inqueue.

Returns The incoming queue.
Return type instance
Raises RuntimeError – If the manager has not been started.

get_outqueue()
Returns the outqueue.

Returns The outgoing queue.
Return type instance
Raises RuntimeError – If the manager has not been started.

get_namespace()
Returns the manager’s namespace instance.

Returns The namespace.

44 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#bytes
https://docs.python.org/3.5/library/stdtypes.html#bytes
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/pickle.html#module-pickle
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bytes
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.BaseManager.shutdown
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.SyncManager.Value
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.SyncManager.Value
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/functions.html#property
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.Queue
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/argparse.html#argparse.Namespace

NEAT-Python Documentation, Release 0.92

Return type instance
Raises RuntimeError – If the manager has not been started.

class distributed.DistributedEvaluator(addr, authkey, eval_function,
secondary_chunksize=1,
num_workers=None, worker_timeout=60,
mode=MODE_AUTO)

An evaluator working across multiple machines (compute nodes).

Warning: See Authentication Keys for more on the authkey parameter, used to restrict access
to the manager.

Parameters

• addr (tuple(str, int)) – Should be a tuple of (hostname, port) pointing
to the machine running the DistributedEvaluator in primary mode. If mode is
MODE_AUTO, the mode is determined by checking whether the hostname points
to this host or not (via host_is_local()).

• authkey (bytes) – The password used to restrict access to the manager. All Dis-
tributedEvaluators need to use the same authkey. Note that this needs to be a bytes
object for Python 3.X, and should be in 2.7 for compatibility (identical in 2.7 to a
str object).

• eval_function (function) – The eval_function should take two arguments -
a genome object and a config object - and return a single float (the genome’s fitness)
Note that this is not the same as how a fitness function is called by Population.
run, nor by ParallelEvaluator (although it is more similar to the latter).

• secondary_chunksize (int) – The number of genomes that will be sent to a
secondary node at any one time.

• num_workers (int or None) – The number of worker processes per secondary
node, used for evaluating genomes. If None, will use multiprocessing.cpu_count()
to determine the number of processes (see further below regarding this de-
fault). If 1 (for a secondary node), including if there is no usable result from
multiprocessing.cpu_count(), then the process creating the Distribut-
edEvaluator instance will also do the evaluations.

• worker_timeout (float or None) – specifies the timeout (in seconds) for a sec-
ondary node getting the results from a worker subprocess; if None, there is no time-
out.

• mode (int) – Specifies the mode to run in - must be one of MODE_AUTO (the
default), MODE_PRIMARY , or MODE_SECONDARY .

Raises ValueError – If the mode is not one of the above.

Note: Whether the default for num_workers is appropriate can vary depending on the evalua-
tion function (e.g., whether cpu-bound, memory-bound, i/o-bound...), python implementation, and
other factors; if unsure and maximal per-machine performance is critical, experimentation will be
required.

is_primary()
Returns True if the caller is the primary node; otherwise False.

Returns True if primary, False if secondary

8.7. distributed 45

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/multiprocessing.html#authentication-keys
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#bytes
https://docs.python.org/3.5/library/stdtypes.html#bytes
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.cpu_count
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/constants.html#True
https://docs.python.org/3.5/library/constants.html#False

NEAT-Python Documentation, Release 0.92

Return type bool

is_master()
A backward-compatibility wrapper for is_primary().

Returns True if primary, False if secondary
Return type bool
Raises DeprecationWarning – Always.

Deprecated since version 0.92.

start(exit_on_stop=True, secondary_wait=0, reconnect=False)
If the DistributedEvaluator is in primary mode, starts the manager process and returns. If the
DistributedEvaluator is in secondary mode, it connects to the manager and waits for tasks.

Parameters
• exit_on_stop (bool) – If a secondary node, whether to exit if (unless
reconnect is True) the connection is lost, the primary calls for a shutdown
(via stop()), or - even if reconnect is True - the primary calls for a forced
shutdown (via calling stop() with force_secondary_shutdown set to
True).

• secondary_wait (float) – Specifies the time (in seconds) to sleep before actu-
ally starting, if a secondary node.

• reconnect (bool) – If a secondary node, whether it should try to reconnect if
the connection is lost.

Raises
• RuntimeError – If already started.
• ValueError – If the mode is invalid.

stop(wait=1, shutdown=True, force_secondary_shutdown=False)
Stops all secondaries.

Parameters
• wait (float) – Time (in seconds) to wait after telling the secondaries to stop.
• shutdown (bool) – Whether to shutdown the multiprocess-

ing.managers.SyncManager also (after the wait, if any).
• force_secondary_shutdown (bool) – Causes secondaries to shutdown

even if started with reconnect true (via setting the secondary_state to
_STATE_FORCED_SHUTDOWN instead of _STATE_SHUTDOWN).

Raises
• ModeError – If not the primary node (not in MODE_PRIMARY).
• RuntimeError – If not yet started.

evaluate(genomes, config)
Evaluates the genomes. Distributes the genomes to the secondary nodes, then gathers the fit-
nesses from the secondary nodes and assigns them to the genomes. Must not be called by
secondary nodes. TODO: Improved handling of errors from broken connections with the sec-
ondary nodes may be needed.

Parameters
• genomes (dict(int, instance)) – Dictionary of (genome_id, genome)
• config (instance) – Configuration object.

Raises ModeError – If not the primary node (not in MODE_PRIMARY).

New in version 0.92.

genes

Handles node and connection genes.

46 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/constants.html#True
https://docs.python.org/3.5/library/constants.html#False
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/exceptions.html#ValueError
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.BaseManager.shutdown
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.SyncManager
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.managers.SyncManager
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

genes.BaseGene

genes.DefaultConnectionGene

genes.DefaultNodeGene

iznn.IZNodeGeneneat.genes.BaseGene

class genes.BaseGene(key)
Handles functions shared by multiple types of genes (both node and connection), including crossover
and calling mutation methods.

Parameters key (int or tuple(int, int)) – The gene identifier. Note: For connection genes,
determining whether they are homologous (for genomic distance and crossover deter-
mination) uses the (ordered) identifiers of the connected nodes.

__str__()
Converts gene attributes into a printable format.

Returns Stringified gene instance.
Return type str

__lt__(other)
Allows sorting genes by keys.

Parameters other (instance) – The other BaseGene instance.
Returns Whether the calling instance’s key is less than that of the other instance.
Return type bool

classmethod parse_config(config, param_dict)
Placeholder; parameters are entirely in gene attributes.

classmethod get_config_params()
Fetches configuration parameters from each gene class’ _gene_attributes
list (using BaseAttribute.get_config_params). Used by genome.
DefaultGenomeConfig to include gene parameters in its configuration parameters.

Returns List of configuration parameters (as config.ConfigParameter in-
stances) for the gene attributes.

Return type list(instance)
Raises DeprecationWarning – If the gene class uses
__gene_attributes__ instead of _gene_attributes

init_attributes(config)
Initializes its gene attributes using the supplied configuration object and FloatAttribute.
init_value, BoolAttribute.init_value, or StringAttribute.
init_value as appropriate.

Parameters config (instance) – Configuration object to be used by the appropriate
attributes class.

mutate(config)
Mutates (possibly) its gene attributes using the supplied configuration object
and FloatAttribute.init_value, BoolAttribute.init_value, or

8.8. genes 47

https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/exceptions.html#DeprecationWarning
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

StringAttribute.init_value as appropriate.
Parameters config (instance) – Configuration object to be used by the appropriate
attributes class.

copy()
Makes a copy of itself, including its subclass, key, and all gene attributes.

Returns A copied gene
Return type instance

crossover(gene2)
Creates a new gene via crossover - randomly inheriting attributes from its parents. The two
genes must be homologous, having the same key/id.

Parameters gene2 (instance) – The other gene.
Returns A new gene, with the same key/id, with other attributes being copied ran-

domly (50/50 chance) from each parent gene.
Return type instance

class genes.DefaultNodeGene(BaseGene)
Groups attributes specific to node genes - such as bias - and calculates genetic distances be-
tween two homologous (not disjoint or excess) node genes.

distance(other, config)
Determines the degree of differences between node genes using their 4 attributes; the final result
is multiplied by the configured compatibility_weight_coefficient.

Parameters
• other (instance) – The other DefaultNodeGene.
• config (instance) – The genome configuration object.

Returns The contribution of this pair to the genomic distance between the source
genomes.

Return type float

class genes.DefaultConnectionGene(BaseGene)
Groups attributes specific to connection genes - such as weight - and calculates genetic dis-
tances between two homologous (not disjoint or excess) connection genes.

distance(other, config)
Determines the degree of differences between connection genes using their 2 attributes; the
final result is multiplied by the configured compatibility_weight_coefficient.

Parameters
• other (instance) – The other DefaultConnectionGene.
• config (instance) – The genome configuration object.

Returns The contribution of this pair to the genomic distance between the source
genomes.

Return type float

Changed in version 0.92: __gene_attributes__ changed to _gene_attributes, since
it is not a Python internal variable. Updates also made due to addition of default capabilities to
attributes.

genome

Handles genomes (individuals in the population).

48 Chapter 8. Module summaries

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric

NEAT-Python Documentation, Release 0.92

genome.DefaultGenome

genome.DefaultGenomeConfig

iznn.IZGenomeneat.genome.DefaultGenome

class genome.DefaultGenomeConfig(params)
Does the configuration for the DefaultGenome class. Has the list allowed_connectivity,
which defines the available values for initial_connection. Includes parameters taken
from the configured gene classes, such as genes.DefaultNodeGene, genes.
DefaultConnectionGene, or iznn.IZNodeGene. The activations.
ActivationFunctionSet instance is available via its activation_defs attribute,
and the aggregations.AggregationFunctionSet instance is available via its
aggregation_defs - or, for compatibility, aggregation_function_defs - attributes.
TODO: Check for unused configuration parameters from the config file.

Parameters params (dict(str, str)) – Parameters from configuration file and
DefaultGenome initialization (by parse_config).

Raises RuntimeError – If initial_connection or structural_mutation_surer is
invalid.

Changed in version 0.92: Aggregation functions moved to aggregations; additional configura-
tion parameters added.

add_activation(name, func)
Adds a new activation function, as described in Customizing Behavior. Uses
ActivationFunctionSet.add.

Parameters
• name (str) – The name by which the function is to be known in the configuration

file.
• func (function) – A function meeting the requirements of activations.
validate_activation().

add_aggregation(name, func)
Adds a new aggregation function. Uses AggregationFunctionSet.add.

Parameters
• name (str) – The name by which the function is to be known in the configuration

file.
• func (function) – A function meeting the requirements of aggregations.
validate_aggregation().

New in version 0.92.

save(f)
Saves the initial_connection configuration and uses config.write_pretty_params()
to write out the other parameters.

Parameters f (file) – The file object to be written to.

8.9. genome 49

https://docs.python.org/3.5/glossary.html#term-list
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/glossary.html#term-file-object

NEAT-Python Documentation, Release 0.92

Raises RuntimeError – If the value for a partial-connectivity configuration is not
in [0.0,1.0].

get_new_node_key(node_dict)
Finds the next unused node key. TODO: Explore using the same node key if a particular con-
nection is replaced in more than one genome in the same generation (use a reporting.
BaseReporter.end_generation() method to wipe a dictionary of connection tuples
versus node keys).

Parameters node_dict (dict(int, instance)) – A dictionary of node keys vs nodes
Returns A currently-unused node key.
Return type int
Raises AssertionError – If a newly-created id is already in the node_dict.

Changed in version 0.92: Moved from DefaultGenome so no longer only single-genome-
instance unique.

check_structural_mutation_surer()
Checks vs structural_mutation_surer and, if necessary, single_structural_mutation
to decide if changes from the former should happen.

Returns If should have a structural mutation under a wider set of circumstances.
Return type bool

New in version 0.92.

class genome.DefaultGenome(key)
A genome for generalized neural networks. For class requirements, see Genome Interface. Termi-
nology: pin - Point at which the network is conceptually connected to the external world; pins are
either input or output. node - Analog of a physical neuron. connection - Connection between a
pin/node output and a node’s input, or between a node’s output and a pin/node input. key - Identifier
for an object, unique within the set of similar objects. Design assumptions and conventions. 1. Each
output pin is connected only to the output of its own unique neuron by an implicit connection with
weight one. This connection is permanently enabled. 2. The output pin’s key is always the same as
the key for its associated neuron. 3. Output neurons can be modified but not deleted. 4. The input
values are applied to the input pins unmodified.

Parameters key (int) – Identifier for this individual/genome.

classmethod parse_config(param_dict)
Required interface method. Provides default node and connection gene specifications (from
genes) and uses DefaultGenomeConfig to do the rest of the configuration.

Parameters param_dict (dict(str, str)) – Dictionary of parameters from
configuration file.

Returns Configuration object; considered opaque by rest of code, so type may vary
by implementation (here, a DefaultGenomeConfig instance).

Return type instance

classmethod write_config(f, config)
Required interface method. Saves configuration using DefaultGenomeConfig.save().

Parameters
• f (file) – File object to write to.
• config (instance) – Configuration object (here, a DefaultGenomeConfig

instance).

configure_new(config)
Required interface method. Configures a new genome (itself) based on the given configuration
object, including genes for connectivity (based on initial_connection) and starting nodes (as
defined by num_hidden, num_inputs, and num_outputs in the configuration file.

Parameters config (instance) – Genome configuration object.

configure_crossover(genome1, genome2, config)

50 Chapter 8. Module summaries

https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/exceptions.html#AssertionError
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/glossary.html#term-file-object
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

Required interface method. Configures a new genome (itself) by crossover from two par-
ent genomes. disjoint or excess genes are inherited from the fitter of the two parents,
while homologous genes use the gene class’ crossover function (e.g., genes.BaseGene.
crossover()).

Parameters
• genome1 (instance) – The first parent genome.
• genome2 (instance) – The second parent genome.
• config (instance) – Genome configuration object; currently ignored.

mutate(config)
Required interface method. Mutates this genome. What mutations take place are determined
by configuration file settings, such as node_add_prob and node_delete_prob for the like-
lihood of adding or removing a node and conn_add_prob and conn_delete_prob for the
likelihood of adding or removing a connection. Checks single_structural_mutation for whether
more than one structural mutation should be permitted per call. Non-structural mutations (to
gene attributes) are performed by calling the appropriate mutate method(s) for connection
and node genes (generally genes.BaseGene.mutate()).

Parameters config (instance) – Genome configuration object.
Changed in version 0.92: single_structural_mutation config parameter added.

mutate_add_node(config)
Takes a randomly-selected existing connection, turns its enabled attribute to False, and
makes two new (enabled) connections with a new node between them, which join the now-
disabled connection’s nodes. The connection weights are chosen so as to potentially have
roughly the same behavior as the original connection, although this will depend on the acti-
vation function, bias, and response multiplier of the new node. If there are no connections
available, may call mutate_add_connection() instead, depending on the result from
check_structural_mutation_surer.

Parameters config (instance) – Genome configuration object.
Changed in version 0.92: Potential addition of connection instead added.

add_connection(config, input_key, output_key, weight, enabled)
Adds a specified new connection; its key is the tuple of (input_key, output_key).
TODO: Add further validation of this connection addition?

Parameters
• config (instance) – Genome configuration object.
• input_key (int) – Key of the connection’s input-side node.
• output_key (int) – Key of the connection’s output-side node.
• weight (float) – The weight the new connection should have.
• enabled (bool) – The enabled attribute the new connection should have.

mutate_add_connection(config)
Attempts to add a randomly-selected new connection, with some filtering: 1. input
nodes cannot be at the output end. 2. Existing connections cannot be duplicated.
(If an existing connection is selected, it may be enabled depending on the result from
check_structural_mutation_surer.) 3. Two output nodes cannot be connected to-
gether. 4. If feed_forward is set to True in the configuration file, connections cannot create
cycles.

Parameters config (instance) – Genome configuration object
Changed in version 0.92: Output nodes not allowed to be connected together. Possibility of
enabling existing connection added.

mutate_delete_node(config)
Deletes a randomly-chosen (non-output/input) node along with its connections.

Parameters config (instance) – Genome configuration object

mutate_delete_connection()

8.9. genome 51

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

Deletes a randomly-chosen connection. TODO: If the connection is enabled, have an option to
- possibly with a weight-dependent chance - turn its enabled attribute to False instead.

distance(other, config)
Required interface method. Returns the genomic distance between this genome
and the other. This distance value is used to compute genome compatibility for
speciation. Uses (by default) the genes.DefaultNodeGene.distance() and
genes.DefaultConnectionGene.distance() methods for homologous pairs, and
the configured compatibility_disjoint_coefficient for disjoint/excess genes. (Note that this is
one of the most time-consuming portions of the library; optimization - such as using cython -
may be needed if using an unusually fast fitness function and/or an unusually large population.)

Parameters
• other (instance) – The other DefaultGenome instance (genome) to be compared

to.
• config (instance) – The genome configuration object.

Returns The genomic distance.
Return type float

size()
Required interface method. Returns genome complexity, taken to be (number of nodes,
number of enabled connections); currently only used for reporters - some retrieve this informa-
tion for the highest-fitness genome at the end of each generation.

Returns Genome complexity
Return type tuple(int, int)

__str__()
Gives a listing of the genome’s nodes and connections.

Returns Node and connection information.
Return type str

static create_node(config, node_id)
Creates a new node with the specified id (including for its gene), using the specified configura-
tion object to retrieve the proper node gene type and how to initialize its attributes.

Parameters
• config (instance) – The genome configuration object.
• node_id (int) – The key for the new node.

Returns The new node instance.
Return type instance

static create_connection(config, input_id, output_id)
Creates a new connection with the specified id pair as its key (including for its gene, as a
tuple), using the specified configuration object to retrieve the proper connection gene type
and how to initialize its attributes.

Parameters
• config (instance) – The genome configuration object.
• input_id (int) – The input end node’s key.
• output_id (int) – The output end node’s key.

Returns The new connection instance.
Return type instance

connect_fs_neat_nohidden(config)
Connect one randomly-chosen input to all output nodes (FS-NEAT without connections
to hidden nodes, if any). Previously called connect_fs_neat. Implements the
fs_neat_nohidden setting for initial_connection.

Parameters config (instance) – The genome configuration object.
Changed in version 0.92: Connect_fs_neat, connect_full, connect_partial split up - documenta-
tion vs program conflict.

52 Chapter 8. Module summaries

http://cython.org
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

connect_fs_neat_hidden(config)
Connect one randomly-chosen input to all hidden nodes and output nodes (FS-NEAT with
connections to hidden nodes, if any). Implements the fs_neat_hidden setting for ini-
tial_connection.

Parameters config (instance) – The genome configuration object.
Changed in version 0.92: Connect_fs_neat, connect_full, connect_partial split up - documenta-
tion vs program conflict.

compute_full_connections(config, direct)
Compute connections for a fully-connected feed-forward genome–each input connected to all
hidden nodes (and output nodes if direct is set or there are no hidden nodes), each hid-
den node connected to all output nodes. (Recurrent genomes will also include node self-
connections.)

Parameters
• config (instance) – The genome configuration object.
• direct (bool) – Whether or not, if there are hidden nodes, to include links

directly from input to output.
Returns The list of connections, as (input key, output key) tuples
Return type list(tuple(int,int))

Changed in version 0.92: “Direct” added to help with documentation vs program conflict for
initial_connection of full or partial.

connect_full_nodirect(config)
Create a fully-connected genome (except no direct input to output connections unless there are
no hidden nodes).

Parameters config (instance) – The genome configuration object.
Changed in version 0.92: Connect_fs_neat, connect_full, connect_partial split up - documenta-
tion vs program conflict.

connect_full_direct(config)
Create a fully-connected genome, including direct input-output connections even if there are
hidden nodes.

Parameters config (instance) – The genome configuration object.
Changed in version 0.92: Connect_fs_neat, connect_full, connect_partial split up - documenta-
tion vs program conflict.

connect_partial_nodirect(config)
Create a partially-connected genome, with (unless there are no hidden nodes) no direct input-
output connections.

Parameters config (instance) – The genome configuration object.
Changed in version 0.92: Connect_fs_neat, connect_full, connect_partial split up - documenta-
tion vs program conflict.

connect_partial_direct(config)
Create a partially-connected genome, possibly including direct input-output connections even
if there are hidden nodes.

Parameters config (instance) – The genome configuration object.
Changed in version 0.92: Connect_fs_neat, connect_full, connect_partial split up - documenta-
tion vs program conflict.

graphs

Directed graph algorithm implementations.

graphs.creates_cycle(connections, test)

8.10. graphs 53

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

Returns true if the addition of the test connection would create a cycle, assuming that no cycle
already exists in the graph represented by connections. Used to avoid recurrent networks when
a purely feed-forward network is desired (e.g., as determined by the feed_forward setting in the
configuration file.

Parameters

• connections (list(tuple(int, int))) – The current network, as a list
of (input, output) connection identifiers.

• test (tuple(int, int)) – Possible connection to be checked for causing a
cycle.

Returns True if a cycle would be created; false if not.

Return type bool

graphs.required_for_output(inputs, outputs, connections)
Collect the nodes whose state is required to compute the final network output(s).

Parameters

• inputs (list(int)) – the input node identifiers; it is assumed that the input
identifier set and the node identifier set are disjoint.

• outputs (list(int)) – the output node identifiers; by convention, the output
node ids are always the same as the output index.

• connections (list(tuple(int, int))) – list of (input, output) connec-
tions in the network; should only include enabled ones.

Returns A set of node identifiers.

Return type set(int)

graphs.feed_forward_layers(inputs, outputs, connections)
Collect the layers whose members can be evaluated in parallel in a feed-forward network.

Parameters

• inputs (list(int)) – the network input node identifiers.

• outputs (list(int)) – the output node identifiers.

• connections (list(tuple(int, int))) – list of (input, output) connec-
tions in the network; should only include enabled ones.

Returns A list of layers, with each layer consisting of a set of identifiers; only includes
nodes returned by required_for_output.

Return type list(set(int))

iznn

This module implements a spiking neural network. Neurons are based on the model described by:

Izhikevich, E. M.
Simple Model of Spiking Neurons
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 6, NOVEMBER 2003

See http://www.izhikevich.org/publications/spikes.pdf.

54 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#int
http://www.izhikevich.org/publications/spikes.pdf

NEAT-Python Documentation, Release 0.92

iznn.IZGenomeneat.genome.DefaultGenome

iznn.IZNN

iznn.IZNeuron

iznn.IZNodeGeneneat.genes.BaseGene

iznn.REGULAR_SPIKING_PARAMS

iznn.INTRINSICALLY_BURSTING_PARAMS

iznn.CHATTERING_PARAMS

iznn.FAST_SPIKING_PARAMS

iznn.THALAMO_CORTICAL_PARAMS

iznn.RESONATOR_PARAMS

iznn.LOW_THRESHOLD_SPIKING_PARAMS
Parameter sets (for a, b, c, and d, described below) producing known types of spiking behaviors.

class iznn.IZNodeGene(BaseGene)
Contains attributes for the iznn node genes and determines genomic distances. TODO: Genomic
distance currently does not take into account the node’s bias.

distance(other, config)
Determines the genomic distance between this node gene and the other node gene.

Parameters
• other (instance) – The other IZNodeGene instance.
• config (instance) – Configuration object, in this case a genome.
DefaultGenomeConfig instance.

class iznn.IZGenome(DefaultGenome)
Contains the parse_config class method for iznn genome configuration, which returns a genome.
DefaultGenomeConfig instance.

class iznn.IZNeuron(bias, a, b, c, d, inputs)
Sets up and simulates the iznn nodes (neurons).

Parameters

• bias (float) – The bias of the neuron.

• a (float) – The time scale of the recovery variable.

• b (float) – The sensitivity of the recovery variable.

• c (float) – The after-spike reset value of the membrane potential.

• d (float) – The after-spike reset of the recovery variable.

8.11. iznn 55

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/functions.html#float

NEAT-Python Documentation, Release 0.92

• inputs (list(tuple(int, float))) – A list of (input key, weight) pairs
for incoming connections.

Raises RuntimeError – If the number of inputs does not match the number of input
nodes.

advance(dt_msec)
Advances simulation time for the neuron by the given time step in milliseconds. TODO: Cur-
rently has some numerical stability problems.

Parameters dt_msec (float) – Time step in milliseconds.

reset()
Resets all state variables.

class iznn.IZNN(neurons, inputs, outputs)
Sets up the network itself and simulates it using the connections and neurons.

Parameters

• neurons (list(instance)) – The IZNeuron instances needed.

• inputs (list(int)) – The input node keys.

• outputs (list(int)) – The output node keys.

set_inputs(inputs)
Assigns input voltages.

Parameters inputs (list(float)) – The input voltages for the input nodes.

reset()
Resets all neurons to their default state.

get_time_step_msec()
Returns a suggested time step; currently hardwired to 0.05. TODO: Investigate this (particularly
effects on numerical stability issues).

Returns Suggested time step in milliseconds.
Return type float

advance(dt_msec)
Advances simulation time for all neurons in the network by the input number of milliseconds.

Parameters dt_msec (float) – How many milliseconds to advance the network.
Returns The values for the output nodes.
Return type list(float)

static create(genome, config)
Receives a genome and returns its phenotype (a neural network).

Parameters
• genome (instance) – An IZGenome instance.
• config (instance) – Configuration object, in this implementation a config.
Config instance.

Returns An IZNN instance.
Return type instance

Changed in version 0.92: __gene_attributes__ changed to _gene_attributes, since it
is not a Python internal variable.

56 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

math_util

Contains some mathematical/statistical functions not found in the Python2 standard library, plus a mechanism for
looking up some commonly used functions (such as for the species_fitness_func) by name.

math_util.stat_functions
Lookup table for commonly used {value} -> value functions, namely max, min,
mean, median, and median2. The species_fitness_func (used for stagnation.
DefaultStagnation) is required to be one of these.

Changed in version 0.92: median2 added.

math_util.mean(values)
Returns the arithmetic mean.

Parameters values (list(float) or set(float) or tuple(float)) –
Numbers to take the mean of.

Returns The arithmetic mean.

Return type float

math_util.median(values)
Returns the median for odd numbers of values; returns the higher of the middle two values for even
numbers of values.

Parameters values (list(float) or set(float) or tuple(float)) –
Numbers to take the median of.

Returns The median.

Return type float

math_util.median2(values)
Returns the median for odd numbers of values; returns the mean of the middle two values for even
numbers of values.

Parameters values (list(float) or set(float) or tuple(float)) –
Numbers to take the median of.

Returns The median.

Return type float

New in version 0.92.

math_util.variance(values)
Returns the (population) variance.

Parameters values (list(float) or set(float) or tuple(float)) –
Numbers to get the variance of.

Returns The variance.

Return type float

math_util.stdev(values)
Returns the (population) standard deviation. Note spelling.

Parameters values (list(float) or set(float) or tuple(float)) –
Numbers to get the standard deviation of.

Returns The standard deviation.

Return type float

8.12. math_util 57

https://docs.python.org/3.5/library/functions.html#max
https://docs.python.org/3.5/library/functions.html#min
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric

NEAT-Python Documentation, Release 0.92

math_util.softmax(values)
Compute the softmax (a differentiable/smooth approximization of the maximum function) of the
given value set. (See the Wikipedia entry for more on softmax. Envisioned as useful for postpro-
cessing of network output.)

Parameters values (list(float) or set(float) or tuple(float)) –
Numbers to get the softmax of.

Returns 𝑣𝑖 = exp(𝑣𝑖)/𝑠, where 𝑠 =
∑︀

(exp(𝑣0), exp(𝑣1), . . .)(8.1)

Return typelist(float)

Changed in version 0.92: Previously not functional on Python 3.X due to changes to map.

nn.feed_forward

class nn.feed_forward.FeedForwardNetwork(inputs, outputs, node_evals)
A straightforward (no pun intended) feed-forward neural network NEAT implementation.

Parameters

• inputs (list(int)) – The input keys (IDs).

• outputs (list(int)) – The output keys.

• node_evals (list(list(object))) – A list of node descriptions, with each
node represented by a list.

activate(inputs)
Feeds the inputs into the network and returns the resulting outputs.

Parameters inputs (list(float)) – The values for the input nodes.
Returns The values for the output nodes.
Return type list(float)
Raises RuntimeError – If the number of inputs is not the same as the number of

input nodes.

static create(genome, config)
Receives a genome and returns its phenotype.

Parameters
• genome (instance) – Genome to return phenotype for.
• config (instance) – Configuration object.

Returns A FeedForwardNetwork instance.
Return type instance

nn.recurrent

class nn.recurrent.RecurrentNetwork(inputs, outputs, node_evals)
A recurrent (but otherwise straightforward) neural network NEAT implementation.

Parameters

• inputs (list(int)) – The input keys (IDs).

• outputs (list(int)) – The output keys.

• node_evals (list(list(object))) – A list of node descriptions, with each
node represented by a list.

58 Chapter 8. Module summaries

https://en.wikipedia.org/wiki/Softmax_function
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#object
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#object

NEAT-Python Documentation, Release 0.92

reset()
Resets all node activations to 0 (necessary due to otherwise retaining state via recurrent con-
nections).

activate(inputs)
Feeds the inputs into the network and returns the resulting outputs.

Parameters inputs (list(float)) – The values for the input nodes.
Returns The values for the output nodes.
Return type list(float)
Raises RuntimeError – If the number of inputs is not the same as the number of

input nodes.

static create(genome, config)
Receives a genome and returns its phenotype.

Parameters
• genome (instance) – Genome to return phenotype for.
• config (instance) – Configuration object.

Returns A RecurrentNetwork instance.
Return type instance

parallel

Runs evaluation functions in parallel subprocesses in order to evaluate multiple genomes at once.

class parallel.ParallelEvaluator(num_workers, eval_function, timeout=None)
Runs evaluation functions in parallel subprocesses in order to evaluate multiple genomes at once.
The analogous threaded is probably preferable for python implementations without a GIL
(Global Interpreter Lock); note that neat-python is not currently tested vs any such implementa-
tions.

Parameters

• num_workers (int) – How many workers to have in the Pool.

• eval_function (function) – The eval_function should take one argument
- a tuple of (genome object, config object) - and return a single float (the
genome’s fitness) Note that this is not the same as how a fitness function is called by
Population.run, nor by ThreadedEvaluator (although it is more similar
to the latter).

• timeout (int or None) – How long (in seconds) each subprocess will be given
before an exception is raised (unlimited if None).

__del__()
Takes care of removing the subprocesses.

evaluate(genomes, config)
Distributes the evaluation jobs among the subprocesses, then assigns each fitness back to the
appropriate genome.

Parameters
• genomes (list(tuple(int, instance))) – A list of tuples of genome_id (not used),

genome.
• config (instance) – A config.Config instance.

8.15. parallel 59

https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/glossary.html#term-GIL
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/multiprocessing.html#multiprocessing.pool.Pool
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

population

Implements the core evolution algorithm.

exception population.CompleteExtinctionException
Raised on complete extinction (all species removed due to stagnation) unless reset_on_extinction is
set.

class population.Population(config, initial_state=None)
This class implements the core evolution algorithm: 1. Evaluate fitness of all genomes. 2. Check
to see if the termination criterion is satisfied; exit if it is. 3. Generate the next generation from the
current population. 4. Partition the new generation into species based on genetic similarity. 5. Go
to 1.

Parameters

• config (instance) – The Config configuration object.

• initial_state (None or tuple(instance, instance, int)) – If supplied (such as
by a method of the Checkpointer class), a tuple of (Population, Species,
generation number)

Raises RuntimeError – If the fitness_criterion function is invalid.

run(fitness_function, n=None)
Runs NEAT’s genetic algorithm for at most n generations. If n is None, run until a solution is
found or total extinction occurs.

The user-provided fitness_function must take only two arguments: 1. The population as a list
of (genome id, genome) tuples. 2. The current configuration object.

The return value of the fitness function is ignored, but it must assign a Python float to the
fitness member of each genome.

The fitness function is free to maintain external state, perform evaluations in parallel, etc.

It is assumed that the fitness function does not modify the list of genomes, the genomes them-
selves (apart from updating the fitness member), or the configuration object.

Parameters
• fitness_function (function) – The fitness function to use, with argu-

ments specified above.
• n (int or None) – The maximum number of generations to run (unlimited if
None).

Returns The best genome seen.
Return type instance
Raises

• RuntimeError – If None for n but no_fitness_termination is True.
• CompleteExtinctionException – If all species go extinct due to
stagnation but reset_on_extinction is False.

Changed in version 0.92: no_fitness_termination capability added.

reporting

Makes possible reporter classes, which are triggered on particular events and may provide information to the user, may
do something else such as checkpointing, or may do both.

60 Chapter 8. Module summaries

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/exceptions.html#RuntimeError
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/constants.html#None
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/exceptions.html#RuntimeError

NEAT-Python Documentation, Release 0.92

checkpoint.Checkpointer

neat.reporting.BaseReporter

statistics.StatisticsReporter

reporting.BaseReporter reporting.StdOutReporter

reporting.ReporterSet

class reporting.ReporterSet
Keeps track of the set of reporters and gives methods to dispatch them at appropriate points.

add(reporter)
Adds a reporter to those to be called via ReporterSet methods.

Parameters reporter (instance) – A reporter instance.

remove(reporter)
Removes a reporter from those to be called via ReporterSet methods.

Parameters reporter (instance) – A reporter instance.

start_generation(gen)
Calls start_generation on each reporter in the set.

Parameters gen (int) – The generation number.

end_generation(config, population, species)
Calls end_generation on each reporter in the set.

Parameters
• config (instance) – Config configuration instance.
• population (dict(int, instance)) – Current population, as a dict of unique

genome ID/key vs genome.
• species (instance) – Current species set object, such as a
DefaultSpeciesSet instance.

post_evaluate(config, population, species)
Calls post_evaluate on each reporter in the set.

Parameters
• config (instance) – Config configuration instance.
• population (dict(int, instance)) – Current population, as a dict of unique

genome ID/key vs genome.
• species (instance) – Current species set object, such as a
DefaultSpeciesSet instance.

• best_genome (instance) – The currently highest-fitness genome. (Ties are re-
solved pseudorandomly, by dictionary ordering.)

post_reproduction(config, population, species)
Not currently called. Would call post_reproduction on each reporter in the set.

complete_extinction()

8.17. reporting 61

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/expressions.html#dict

NEAT-Python Documentation, Release 0.92

Calls complete_extinction on each reporter in the set.

found_solution(config, generation, best)
Calls found_solution on each reporter in the set.

Parameters
• config (instance) – Config configuration instance.
• generation (int) – Generation number.
• best (instance) – The currently highest-fitness genome. (Ties are resolved pseu-

dorandomly by dictionary ordering.)

species_stagnant(sid, species)
Calls species_stagnant on each reporter in the set.

Parameters
• sid (int) – The species id/key.
• species (instance) – The Species instance.

info(msg)
Calls info on each reporter in the set.

Parameters msg (str) – Message to be handled.

class reporting.BaseReporter
Abstract class defining the reporter interface expected by ReporterSet. Inheriting from it will provide
a set of dummy methods to be overridden as desired, as follows:

start_generation(generation)
Called via ReporterSet (by population.Population.run()) at the start of each
generation, prior to the invocation of the fitness function.

Parameters generation (int) – The generation number.

end_generation(config, population, species)
Called via ReporterSet (by population.Population.run()) at the end of each
generation, after reproduction and speciation.

Parameters
• config (instance) – Config configuration instance.
• population (dict(int, instance)) – Current population, as a dict of unique

genome ID/key vs genome.
• species (instance) – Current species set object, such as a
DefaultSpeciesSet instance.

post_evaluate(config, population, species, best_genome)
Called via ReporterSet (by population.Population.run()) after the fitness func-
tion is finished.

Parameters
• config (instance) – Config configuration instance.
• population (dict(int, instance)) – Current population, as a dict of unique

genome ID/key vs genome.
• species (instance) – Current species set object, such as a
DefaultSpeciesSet instance.

• best_genome (instance) – The currently highest-fitness genome. (Ties are re-
solved pseudorandomly, by dictionary ordering.)

post_reproduction(config, population, species)
Not currently called (indirectly or directly), including by either population.
Population.run() or reproduction.DefaultReproduction. Note: New mem-
bers of the population likely will not have a set species.

complete_extinction()
Called via ReporterSet (by population.Population.run()) if complete extinction

62 Chapter 8. Module summaries

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/expressions.html#dict
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/expressions.html#dict

NEAT-Python Documentation, Release 0.92

(due to stagnation) occurs, prior to (depending on the reset_on_extinction configuration setting)
a new population being created or a population.CompleteExtinctionException
being raised.

found_solution(config, generation, best)
Called via ReporterSet (by population.Population.run()) prior to exiting if the
configured fitness threshold is met, unless no_fitness_termination is set; if it is set, then called
upon reaching the generation maximum - set when calling population.Population.
run() - and exiting for this reason.)

Parameters
• config (instance) – Config configuration instance.
• generation (int) – Generation number.
• best (instance) – The currently highest-fitness genome. (Ties are resolved pseu-

dorandomly by dictionary ordering.)
Changed in version 0.92: no_fitness_termination capability added.

species_stagnant(sid, species)
Called via ReporterSet (by reproduction.DefaultReproduction.
reproduce()) for each species considered stagnant by the stagnation class (such as
stagnation.DefaultStagnation).

Parameters
• sid (int) – The species id/key.
• species (instance) – The Species instance.

info(msg)
Miscellaneous informational messages, from multiple parts of the library, called via
ReporterSet.

Parameters msg (str) – Message to be handled.

class reporting.StdOutReporter(show_species_detail)
Uses print to output information about the run; an example reporter class.

Parameters show_species_detail (bool) – Whether or not to show additional de-
tails about each species in the population.

reproduction

Handles creation of genomes, either from scratch or by sexual or asexual reproduction from parents. For class re-
quirements, see Reproduction Interface. Implements the default NEAT-python reproduction scheme: explicit fitness
sharing with fixed-time species stagnation.

class reproduction.DefaultReproduction(config, reporters, stagnation)
Implements the default NEAT-python reproduction scheme: explicit fitness sharing with fixed-time
species stagnation. Inherits from config.DefaultClassConfig the required class method
write_config. TODO: Provide some sort of optional cross-species performance criteria, which
are then used to control stagnation and possibly the mutation rate configuration. This scheme should
be adaptive so that species do not evolve to become “cautious” and only make very slow progress.

Parameters

• config (instance) – Configuration object, in this implementation a config.
DefaultClassConfig instance.

• reporters (instance) – A ReporterSet instance.

• stagnation (instance) – A DefaultStagnation instance - the current code
partially depends on internals of this class (a TODO is noted to correct this).

8.18. reproduction 63

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/expressions.html#dict
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#print
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

Changed in version 0.92: Configuration changed to use DefaultClassConfig, instead of a dictionary,
and inherit write_config.

classmethod parse_config(param_dict)
Required interface method. Provides defaults for elitism, survival_threshold, and
min_species_size parameters and updates them from the configuration file, in this implementa-
tion using config.DefaultClassConfig.

Parameters param_dict (dict(str, str)) – Dictionary of parameters from
configuration file.

Returns Reproduction configuration object; considered opaque by rest of code, so
current type returned is not required for interface.

Return type DefaultClassConfig instance
Changed in version 0.92: Configuration changed to use DefaultClassConfig instead of a dictio-
nary.

create_new(genome_type, genome_config, num_genomes)
Required interface method. Creates num_genomes new genomes of the given type using the
given configuration. Also initializes ancestry information (as an empty tuple).

Parameters
• genome_type (class) – Genome class (such as DefaultGenome or iznn.
IZGenome) of which to create instances.

• genome_config (instance) – Opaque genome configuration object.
• num_genomes (int) – How many new genomes to create.

Returns A dictionary (with the unique genome identifier as the key) of the genomes
created.

Return type dict(int, instance)

static compute_spawn(adjusted_fitness, previous_sizes, pop_size, min_species_size)
Apportions desired number of members per species according to fitness (adjusted by
reproduce() to a 0-1 scale) from out of the desired population size.

Parameters
• adjusted_fitness (list(float)) – Mean fitness for species members, adjusted

to 0-1 scale (see below).
• previous_sizes (list(int)) – Number of members of species in popula-

tion prior to reproduction.
• pop_size (int) – Desired population size, as input to reproduce() and set

in the configuration file.
• min_species_size (int) – Minimum number of members per species, set

via the min_species_size configuration parameter (or the elitism configuration pa-
rameter, if higher); can result in population size being above pop_size.

reproduce(config, species, pop_size, generation)
Required interface method. Creates the population to be used in the next generation from the
given configuration instance, SpeciesSet instance, desired size of the population, and current
generation number. This method is called after all genomes have been evaluated and their
fitness member assigned. This method should use the stagnation instance given to the
initializer to remove species deemed to have stagnated. Note: Determines relative fitnesses
by transforming into (ideally) a 0-1 scale; however, if the top and bottom fitnesses are not at
least 1 apart, the range may be less than 0-1, as a check against dividing by a too-small number.
TODO: Make minimum difference configurable (defaulting to 1 to preserve compatibility).

Parameters
• config (instance) – A Config instance.
• species (instance) – A DefaultSpeciesSet instance. As well as depend-

ing on some of the DefaultStagnation internals, this method also depends
on some of those of the DefaultSpeciesSet and its referenced species ob-
jects.

64 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/glossary.html#term-class
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

• pop_size (int) – Population size desired, such as set in the configuration file.
• generation (int) – Generation count.

Returns New population, as a dict of unique genome ID/key vs genome.
Return type dict(int, instance)

Changed in version 0.92: Previously, the minimum and maximum relative fitnesses were deter-
mined (contrary to the comments in the code) including members of species being removed due
to stagnation; it is now determined using only the non-stagnant species. The minimum size of
species was (and is) the greater of the min_species_size and elitism configuration parameters;
previously, this was not taken into account for compute_spawn(); this made it more likely
to have a population size above the configured population size.

six_util

This Python 2/3 portability code was copied from the six module to avoid adding it as a dependency.

six_util.iterkeys(d, **kw)
This function returns an iterator over the keys of dict d.

Parameters

• d (dict) – Dictionary to iterate over

• kw – The function of this parameter is unclear.

six_util.iteritems(d, **kw)
This function returns an iterator over the (key, value) pairs of dict d.

Parameters

• d (dict) – Dictionary to iterate over

• kw – The function of this parameter is unclear.

six_util.itervalues(d, **kw)
This function returns an iterator over the values of dict d.

Parameters

• d (dict) – Dictionary to iterate over

• kw – The function of this parameter is unclear.

species

Divides the population into species based on genomic distances.

class species.Species(key, generation)
Represents a species and contains data about it such as members, fitness, and time stagnating. Note:
stagnation.DefaultStagnation manipulates many of these.

Parameters

• key (int) – Identifier/key

• generation (int) – Initial generation of appearance

update(representative, members)
Required interface method. Updates a species instance with the current members and most-
representative member (from which genomic distances are measured).

8.19. six_util 65

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://pythonhosted.org/six/
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int

NEAT-Python Documentation, Release 0.92

Parameters
• representative (instance) – A genome instance.
• members (dict(int, instance)) – A dictionary of genome id vs genome in-

stance.

get_fitnesses()
Required interface method (used by stagnation.DefaultStagnation, for instance).
Retrieves the fitnesses of each member genome.

Returns List of fitnesses of member genomes.
Return type list(float)

class species.GenomeDistanceCache(config)
Caches (indexing by genome key/id) genomic distance information to avoid repeated lookups. (The
distance function, memoized by this class, is among the most time-consuming parts of the
library, although many fitness functions are likely to far outweigh this for moderate-size popula-
tions.)

Parameters config (instance) – A genome configuration instance; later used by the
genome distance function.

__call__(genome0, genome1)
GenomeDistanceCache is called as a method with a pair of genomes to retrieve the distance.

Parameters
• genome0 (instance) – The first genome instance.
• genome1 (instance) – The second genome instance.

Returns The genomic distance.
Return type float

class species.DefaultSpeciesSet(config, reporters)
Encapsulates the default speciation scheme by configuring it and performing the speci-
ation function (placing genomes into species by genetic similarity). reproduction.
DefaultReproduction currently depends on this having a species attribute consisting of
a dictionary of species keys to species. Inherits from config.DefaultClassConfig the re-
quired class method write_config.

Parameters

• config (instance) – A configuration object, in this implementation a config.
Config instance.

• reporters (instance) – A ReporterSet instance giving reporters to be notified
about genomic distance statistics.

Changed in version 0.92: Configuration changed to use DefaultClassConfig, instead of a dictionary,
and inherit write_config.

classmethod parse_config(param_dict)
Required interface method. Currently, the only configuration parameter is the compatibil-
ity_threshold; this method provides a default for it and updates it from the configuration file, in
this implementation using config.DefaultClassConfig.

Parameters param_dict (dict(str, str)) – Dictionary of parameters from
configuration file.

Returns SpeciesSet configuration object; considered opaque by rest of code, so cur-
rent type returned is not required for interface.

Return type DefaultClassConfig instance
Changed in version 0.92: Configuration changed to use DefaultClassConfig instead of a dictio-
nary.

speciate(config, population, generation)

66 Chapter 8. Module summaries

https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/expressions.html#dict
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

Required interface method. Place genomes into species by genetic similarity (genomic dis-
tance). TODO: The current code has a docstring stating that there may be a problem if
all old species representatives are not dropped for each generation; it is not clear how this is
consistent with the code in reproduction.DefaultReproduction.reproduce(),
such as for elitism. TODO: Check if sorting the unspeciated genomes by fitness will improve
speciation (by making the highest-fitness member of a species its representative).

Parameters
• config (instance) – Config instance.
• population (dict(int, instance)) – Population as per the output of
DefaultReproduction.reproduce.

• generation (int) – Current generation number.

get_species_id(individual_id)
Required interface method (used by reporting.StdOutReporter). Retrieves species
id/key for a given genome id/key.

Parameters individual_id (int) – Genome id/key.
Returns Species id/key.
Return type int

get_species(individual_id)
Retrieves species object for a given genome id/key. May become a required interface method,
and useful for some fitness functions already.

Parameters individual_id (int) – Genome id/key.
Returns Species containing the genome corresponding to the id/key.
Return type instance

stagnation

Keeps track of whether species are making progress and helps remove ones that are not.

Note: TODO: Currently, depending on the settings for species_fitness_func and fitness_criterion, it is
possible for a species with members above the fitness_threshold level of fitness to be considered “stag-
nant” (including, most problematically, because they are at the limit of fitness improvement).

class stagnation.DefaultStagnation(config, reporters)
Keeps track of whether species are making progress and helps remove ones that, for a configurable
number of generations, are not. Inherits from config.DefaultClassConfig the required
class method write_config.

Parameters

• config (instance) – Configuration object; in this implementation, a config.
DefaultClassConfig instance, but should be treated as opaque outside this
class.

• reporters (instance) – A ReporterSet instance with reporters that may need
activating; not currently used.

Changed in version 0.92: Configuration changed to use DefaultClassConfig, instead of a dictionary,
and inherit write_config.

classmethod parse_config(param_dict)
Required interface method. Provides defaults for species_fitness_func, max_stagnation, and
species_elitism parameters and updates them from the configuration file, in this implementation
using config.DefaultClassConfig.

8.21. stagnation 67

https://docs.python.org/3.5/glossary.html#term-docstring
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

Parameters param_dict (dict(str, str)) – Dictionary of parameters from
configuration file.

Returns Stagnation configuration object; considered opaque by rest of code, so cur-
rent type returned is not required for interface.

Return type DefaultClassConfig instance
Changed in version 0.92: Configuration changed to use DefaultClassConfig instead of a dictio-
nary.

update(species_set, generation)
Required interface method. Updates species fitness history information, checking for ones that
have not improved in max_stagnation generations, and - unless it would result in the number
of species dropping below the configured species_elitism if they were removed, in which case
the highest-fitness species are spared - returns a list with stagnant species marked for removal.
TODO: Currently interacts directly with the internals of the species.Species object. Also,
currently both checks for num_non_stagnant to stop marking stagnant and does not allow the
top species_elitism species to be marked stagnant. While the latter could admittedly help
with the problem mentioned above, the ordering of species fitness is using the fitness gotten
from the species_fitness_func (and thus may miss high-fitness members of overall
low-fitness species, depending on the function in use).

Parameters
• species_set (instance) – A species.DefaultSpeciesSet or compat-

ible object.
• generation (int) – The current generation.

Returns A list of tuples of (species id/key, Species instance, is_stagnant).
Return type list(tuple(int, instance, bool))

Changed in version 0.92: Species sorted (by the species fitness according to the
species_fitness_func) to avoid marking best-performing as stagnant even with
species_elitism.

statistics

Note: There are two design decisions to be aware of:

• The most-fit genomes are based on the highest-fitness member of each generation; other genomes
are not saved by this module (if they were, it would far worsen existing potential memory problems -
see below), and it is assumed that fitnesses (as given by the fitness function) are not relative to others
in the generation (also assumed by the use of the fitness threshold as a signal for exiting). Code
violating this assumption (e.g., with competitive coevolution) will need to use different statistical
gathering methods.

• Generally reports or records a per-generation list of values; the numeric position in the list may
not correspond to the generation number if there has been a restart, such as via the checkpoint
module.

There is also a TODO item: Currently keeps accumulating information in memory, which may be a
problem in long runs.

class statistics.StatisticsReporter(BaseReporter)
Gathers (via the reporting interface) and provides (to callers and/or to a file) the most-fit genomes
and information on genome and species fitness and species sizes.

post_evaluate(config, population, species, best_genome)
Called as part of the reporting.BaseReporter interface after the evaluation at the start

68 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

of each generation; see BaseReporter.post_evaluate. Information gathered includes
a copy of the best genome in each generation and the fitnesses of each member of each species.

get_fitness_stat(f)
Calls the given function on the genome fitness data from each recorded generation and returns
the resulting list.

Parameters f (function) – A function that takes a list of scores and returns a sum-
mary statistic (or, by returning a list or tuple, multiple statistics) such as mean or
stdev.

Returns A list of the results from function f for each generation.
Return type list

get_fitness_mean()
Gets the per-generation mean fitness. A wrapper for get_fitness_stat() with the func-
tion being mean.

Returns List of mean genome fitnesses for each generation.
Return type list(float)

get_fitness_median()
Gets the per-generation median fitness. A wrapper for get_fitness_stat() with the
function being median2. Not currently used internally.

New in version 0.92.

get_fitness_stdev()
Gets the per-generation standard deviation of the fitness. A wrapper for
get_fitness_stat() with the function being stdev.

Returns List of standard deviations of genome fitnesses for each generation.
Return type list(float)

best_unique_genomes(n)
Returns the n most-fit genomes, with no duplication (from the most-fit genome passing unal-
tered to the next generation), sorted in decreasing fitness order.

Parameters n (int) – Number of most-fit genomes to return.
Returns List of n most-fit genomes (as genome instances).
Return type list(instance)

best_genomes(n)
Returns the n most-fit genomes, possibly with duplicates, sorted in decreasing fitness order.

Parameters n (int) – Number of most-fit genomes to return.
Returns List of n most-fit genomes (as genome instances).
Return type list(instance)

best_genome()
Returns the most-fit genome ever seen. A wrapper around best_genomes().

Returns The most-fit genome.
Return type instance

get_species_sizes()
Returns a by-generation list of lists of species sizes. Note that some values may be 0, if a
species has either not yet been seen or has been removed due to stagnation; species without
generational overlap may be more similar in genomic distance than the configured compatibil-
ity_threshold would otherwise allow.

Returns List of lists of species sizes, ordered by species id/key.
Return type list(list(int))

get_species_fitness(null_value=’‘)
Returns a by-generation list of lists of species fitnesses; the fitness of a species is deter-
mined by the mean fitness of the genomes in the species, as with the reproduction distribution

8.22. statistics 69

https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#int

NEAT-Python Documentation, Release 0.92

by reproduction.DefaultReproduction. The null_value parameter is used for
species not present in a particular generation (see above).

Parameters null_value (str) – What to put in the list if the species is not present
in a particular generation.

Returns List of lists of species fitnesses, ordered by species id/key.
Return type list(list(float or str))

save_genome_fitness(delimiter=’ ‘, filename=’fitness_history.csv’,
with_cross_validation=False)

Saves the population’s best and mean fitness (using the csv package). At some point in the
future, cross-validation fitness may be usable (via, for instance, the fitness function using alter-
native test situations/opponents and recording this in a cross_fitness attribute; this can be
used for, e.g., preventing overfitting); currently, with_cross_validation should always
be left at its False default.

Parameters
• delimiter (str) – Delimiter between columns in the file; note that the default

is not ‘,’ as may be otherwise implied by the csv file extension (which refers to
the package used).

• filename (str) – The filename to open (for writing, not appending) and write
to.

• with_cross_validation (bool) – For future use; currently, leave at its
False default.

save_species_count(delimiter=’ ‘, filename=’speciation.csv’)
Logs speciation throughout evolution, by tracking the number of genomes in each species. Uses
get_species_sizes(); see that method for more information.

Parameters
• delimiter (str) – Delimiter between columns in the file; note that the default

is not ‘,’ as may be otherwise implied by the csv file extension (which refers to
the csv package used).

• filename (str) – The filename to open (for writing, not appending) and write
to.

save_species_fitness(delimiter=’ ‘, null_value=’NA’, file-
name=’species_fitness.csv’)

Logs species’ mean fitness throughout evolution. Uses get_species_fitness(); see that
method for more information on, for instance, null_value.

Parameters
• delimiter (str) – Delimiter between columns in the file; note that the default

is not ‘,’ as may be otherwise implied by the csv file extension (which refers to
the csv package used).

• null_value (str) – See get_species_fitness().
• filename (str) – The filename to open (for writing, not appending) and write

to.

save()
A wrapper for save_genome_fitness(), save_species_count(), and
save_species_fitness(); uses the default values for all three.

threaded

Runs evaluation functions in parallel threads (using the python library module threading) in order to evaluate multiple
genomes at once. Probably preferable to parallel for python implementations without a GIL (Global Interpreter
Lock); note, however, that neat-python is not currently tested on any such implementation.

70 Chapter 8. Module summaries

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/functions.html#float
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/csv.html#module-csv
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#bool
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/csv.html#module-csv
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/csv.html#module-csv
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/threading.html
https://docs.python.org/3.5/glossary.html#term-GIL

NEAT-Python Documentation, Release 0.92

class threaded.ThreadedEvaluator(num_workers, eval_function)
Runs evaluation functions in parallel threads in order to evaluate multiple genomes at once.

Parameters

• num_workers (int) – How many worker threads to use.

• eval_function (function) – The eval_function should take two arguments -
a genome object and a config object - and return a single float (the genome’s fitness)
Note that this is not the same as how a fitness function is called by Population.
run, nor by ParallelEvaluator (although it is more similar to the latter).

__del__()
Attempts to take care of removing each worker thread, but deliberately calling self.stop()
in the threads may be needed. TODO: Avoid reference cycles to ensure this method is called.
(Perhaps use weakref, depending on what the cycles are? Note that weakref is not compatible
with saving via pickle, so all of them will need to be removed prior to any save.)

start()
Starts the worker threads, if in the primary thread.

stop()
Stops the worker threads and waits for them to finish.

_worker():
The worker function.

evaluate(genomes, config)
Starts the worker threads if need be, queues the evaluation jobs for the worker threads, then
assigns each fitness back to the appropriate genome.

Parameters
• genomes (list(tuple(int, instance))) – A list of tuples of genome_id, genome in-

stances.
• config (instance) – A config.Config instance.

New in version 0.92.

Table of Contents

8.23. threaded 71

https://docs.python.org/3.5/library/functions.html#int
https://docs.python.org/3.5/glossary.html#term-function
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/weakref.html#module-weakref
https://docs.python.org/3.5/library/pickle.html#module-pickle
https://docs.python.org/3.5/reference/datamodel.html#index-48
https://docs.python.org/3.5/reference/datamodel.html#index-48

NEAT-Python Documentation, Release 0.92

72 Chapter 8. Module summaries

CHAPTER 9

Genome Interface

This is an outline of the minimal interface that is expected to be present on genome objects; example genome objects
can be seen in DefaultGenome and iznn.IZGenome.

Class Methods

parse_config(cls, param_dict)

Takes a dictionary of configuration items, returns an object that will later be passed to the write_config
method. This configuration object is considered to be opaque by the rest of the library.

write_config(cls, f, config)

Takes a file-like object and the configuration object created by parse_config. This method should write
the configuration item definitions to the given file.

Initialization/Reproduction

__init__(self, key)

Takes a unique genome instance identifier. The initializer should create the following members:

• key

• connections - (gene_key, gene) pairs for the connection gene set.

• nodes - (gene_key, gene) pairs for the node gene set.

• fitness

configure_new(self, config)

Configure the genome as a new random genome based on the given configuration from the top-level
Config object.

73

NEAT-Python Documentation, Release 0.92

Crossover/Mutation

configure_crossover(self, genome1, genome2, config)

Configure the genome as a child of the given parent genomes.

mutate(self, config)

Apply mutation operations to the genome, using the given configuration.

Speciation/Misc

distance(self, other, config)

Returns the genomic distance between this genome and the other. This distance value is used to compute
genome compatibility for speciation.

size(self)

Returns a measure of genome complexity. This object is currently only given to reporters at the end of
a generation to indicate the complexity of the highest-fitness genome. In the DefaultGenome class, this
method currently returns (number of nodes, number of enabled connections).

74 Chapter 9. Genome Interface

CHAPTER 10

Reproduction Interface

This is an outline of the minimal interface that is expected to be present on reproduction objects. Each Population
instance will create exactly one instance of the reproduction class in Population.__init__ regardless of the configuration
or arguments provided to Population.__init__.

Class Methods

parse_config(cls, param_dict) - Takes a dictionary of configuration items, returns an object that will later be passed to
the write_config method. This configuration object is considered to be opaque by the rest of the library.

write_config(cls, f, config) - Takes a file-like object and the configuration object created by parse_config. This method
should write the configuration item definitions to the given file.

Initialization

__init__(self, config, reporters, stagnation) - Takes the top-level Config object, a ReporterSet instance, and a stagnation
object instance.

Other methods

create_new(self, genome_type, genome_config, num_genomes): - Create num_genomes new genomes of the given
type using the given configuration.

reproduce(self, config, species, pop_size, generation): - Creates the population to be used in the next generation from
the given configuration instance, SpeciesSet instance, desired size of the population, and current generation number.
This method is called after all genomes have been evaluated and their fitness member assigned. This method should
use the stagnation instance given to the initializer to remove species it deems to have stagnated.

75

NEAT-Python Documentation, Release 0.92

76 Chapter 10. Reproduction Interface

CHAPTER 11

Glossary

activation function

aggregation function

bias

response These are the attributes of a node. They determine the output of a node as follows: activation(𝑏𝑖𝑎𝑠+(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒*
aggregation(𝑖𝑛𝑝𝑢𝑡𝑠)))(11.1) For available activation functions, see Overview of builtin activation functions; for
adding new ones, see Customizing Behavior. For the available aggregation functions, see the aggregations
module.

These are the properties of a node (such as its activation function) or connection (such as whether it is enabled or not)
determined by its associated gene (in the default implementation, in the attributes module in combination with
the gene class).

Using the distributed module, genomes can be evaluated on multiple machines (including virtual machines) at
once. Each such machine/host is called a compute node. These are of two types, primary nodes and secondary
nodes.

These connect between nodes, and give rise to the network in the term neural network. For non-loopback
(directly recurrent) connections, they are equivalent to biological synapses. Connections have two attributes, their
weight and whether or not they are enabled; both are determined by their gene. An example gene class for connections
can be seen in genes.DefaultConnectionGene.

A discrete-time neural network (which should be assumed unless specified otherwise) proceeds in time steps, with
processing at one node followed by going through connections to other nodes followed by processing at those other
nodes, eventually giving the output. A continuous-time neural network, such as the ctrnn (continuous-time recurrent
neural network) implemented in NEAT-Python, simulates a continuous process via differential equations (or other
methods).

The process in sexual reproduction in which two genomes are combined. This involves the combination of homologous
genes and the copying (from the highest-fitness genome) of disjoint/excess genes. Along with mutation, one of the
two sources of innovation in (classical) evolution.

77

NEAT-Python Documentation, Release 0.92

These are genes in NEAT not descended from a common ancestor - i.e., not homologous. This implementation
of NEAT, like most, does not distinguish between disjoint and excess genes. For further discussion, see the NEAT
Overview.

A neural network that is not recurrent is feedforward - it has no loops. (Note that this means that it has no memory -
no ability to take into account past events.) It can thus be described as a DAG (Directed Acyclic Graph).

The information coding (in the current implementation) for a particular aspect (node or connection) of a neural
network phenotype. Contains several attributes, varying depending on the type of gene. Example gene classes include
genes.DefaultNodeGene, genes.DefaultConnectionGene, and iznn.IZNodeGene; all of these are
subclasses of genes.BaseGene.

This implementation of NEAT uses, like most, multiple semi-separated generations (some genomes may survive
multiple generations via elitism). In terms of generations, the steps are as follows: generate the next generation from
the current population; partition the new generation into species based on genetic similarity; evaluate fitness of all
genomes; check if a/the termination criterion is satisfied; if not, repeat. (The ordering in the population module is
somewhat different.) Generations are numbered, and a limit on the number of generations is one type of termination
criterion.

The distance between two homologous genes, added up as part of the genomic distance. Also sometimes used as a
synonym for genomic distance.

The set of genes that together code for a (neural network) phenotype. Example genome objects can be seen in
genome.DefaultGenome and iznn.IZGenome, and the object interface is described in Genome Interface.

An approximate measure of the difference between genomes, used in dividing the population into species. For further
discussion, see the NEAT Overview.

These are the nodes other than input nodes and output nodes. In the original NEAT (NeuroEvolution of Augment-
ing Topologies) algorithm, networks start with no hidden nodes, and evolve more complexity as necessary - thus
“Augmenting Topologies”.

Descended from a common ancestor; two genes in NEAT from different genomes are either homologous or dis-
joint/excess. In NEAT, two genes that are homologous will have the same key/id. For node genes, the key is an int
incremented with each newly-created node; for connection genes, the key is a tuple of the keys of the nodes being
connected. For further discussion, see the NEAT Overview.

Various of the objects used by the library are indexed by an key (id); for most, this is an int, which is either unique in
the library as a whole (as with species and genomes), or within a genome (as with node genes). For connection genes,
this is a tuple of two ints, the keys of the connected nodes. For input nodes (or input pins), it is the input’s (list or
tuple) index plus one, then multiplied by negative one; for output nodes, it is equal to the output’s (list or tuple) index.

These are the nodes through which the network receives inputs. They cannot be deleted (although connections from
them can be), cannot be the output end of a connection, and have: no aggregation function; a fixed bias of 0; a fixed
response multiplier of 1; and a fixed activation function of identity. Note: In the genome module, they are not in
many respects treated as actual nodes, but simply as keys for input ends of connections. Sometimes known as an input
pin.

The process in which the attributes of a gene (or the genes in a genome) are (randomly, with likelihoods determined by
configuration parameters) altered. Along with crossover, one of the two sources of innovation in (classical) evolution.

Also known as a neuron (as in a neural network). They are of three types: input, hidden, and output. Nodes have
one or more attributes, such as an activation function; all are determined by their gene. Classes of node genes include
genes.DefaultNodeGene and iznn.IZNodeGene. (They should not be confused with compute nodes, host
machines on which distributed evaluations of genomes are performed.)

78 Chapter 11. Glossary

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#typesnumeric

NEAT-Python Documentation, Release 0.92

These are the nodes to which the network delivers outputs. They cannot be deleted (although connections to them can
be) but can otherwise be mutated normally. The output of this node is connected to the corresponding output pin with
an implicit weight-1, enabled connection.

Point at which the network is effectively connected to the external world. Pins are either input (aka input nodes) or
output (connected to an output node with the same key as the output pin).

If using the distributed module, you will need one primary compute node and at least one secondary node. The
primary node creates and mutates genomes, then distributes them to the secondary nodes for evaluation. (It does not
do any evaluations itself; thus, at least one secondary node is required.)

A recurrent neural network has cycles in its topography. These may be a node having a connection back to itself, with
(for a discrete-time neural network) the prior time period’s output being provided to the node as one of its inputs. They
may also have longer cycles, such as with output from node A going into node B (via a connection) and an output
from node B going (via another connection) into node A. (This gives it a possibly-useful memory - an ability to take
into account past events - unlike a feedforward neural network; however, it also makes it harder to work with in some
respects.)

If using the distributed module, you will need at least one secondary compute node, as well as a primary node.
The secondary nodes evaluate genomes, distributed to them by the primary node.

Subdivisions of the population into groups of similar (by the genomic distance measure) individuals (genomes),
which compete among themselves but share fitness relative to the rest of the population. This is, among other things, a
mechanism to try to avoid the quick elimination of high-potential topological mutants that have an initial poor fitness
prior to smaller “tuning” changes. For further discussion, see the NEAT Overview.

These are the attributes of a connection. If a connection is enabled, then the input to it (from a node) is multiplied by
the weight then sent to the output (to a node - possibly the same node, for a recurrent neural network). If a connection
is not enabled, then the output is 0; genes for such connections are the equivalent of pseudogenes that, as in in vivo
evolution, can be reactivated at a later time. TODO: Some versions of NEAT give a chance, such as 25%, that a
disabled connection will be enabled during crossover; in the future, this should be an option.

Table of Contents

79

http://pseudogene.org/background.php
https://en.wikipedia.org/wiki/In_vivo

NEAT-Python Documentation, Release 0.92

80 Chapter 11. Glossary

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

81

NEAT-Python Documentation, Release 0.92

82 Chapter 12. Indices and tables

Python Module Index

a
activations, 31
aggregations, 32
attributes, 34

c
checkpoint, 37
config, 38
ctrnn, 40

d
distributed, 41

g
genes, 46
genome, 48
graphs, 53

i
iznn, 54

m
math_util, 56

n
nn.feed_forward, 58
nn.recurrent, 58

p
parallel, 59
population, 59

r
reporting, 60
reproduction, 63

s
six_util, 65
species, 65

stagnation, 67
statistics, 68

t
threaded, 70

83

NEAT-Python Documentation, Release 0.92

84 Python Module Index

Index

Symbols
_ExtendedManager (class in distributed), 43
_STATE_FORCED_SHUTDOWN (in module dis-

tributed), 43
_STATE_RUNNING (in module distributed), 42
_STATE_SHUTDOWN (in module distributed), 42
__call__() (species.GenomeDistanceCache method), 66
__del__() (parallel.ParallelEvaluator method), 59
__del__() (threaded.ThreadedEvaluator method), 71
__getitem__() (aggregations.AggregationFunctionSet

method), 34
__lt__() (genes.BaseGene method), 47
__reduce__() (distributed._ExtendedManager method),

44
__repr__() (config.ConfigParameter method), 38
__str__() (genes.BaseGene method), 47
__str__() (genome.DefaultGenome method), 52
_determine_mode() (in module distributed), 43

A
activate() (nn.feed_forward.FeedForwardNetwork

method), 58
activate() (nn.recurrent.RecurrentNetwork method), 59
activation function, 8, 19, 23, 31, 49, 77
ActivationFunctionSet (class in activations), 31
activations (module), 31
add() (activations.ActivationFunctionSet method), 31
add() (aggregations.AggregationFunctionSet method), 33
add() (reporting.ReporterSet method), 61
add_activation() (genome.DefaultGenomeConfig

method), 49
add_aggregation() (genome.DefaultGenomeConfig

method), 49
add_connection() (genome.DefaultGenome method), 51
advance() (ctrnn.CTRNN method), 41
advance() (iznn.IZNeuron method), 56
advance() (iznn.IZNN method), 56
aggregation function, 9, 32, 49, 77
AggregationFunctionSet (class in aggregations), 33

aggregations (module), 32
attributes, 8–11
attributes (module), 34

B
BaseAttribute (class in attributes), 34
BaseGene (class in genes), 47
BaseReporter (class in reporting), 62
best_genome() (statistics.StatisticsReporter method), 69
best_genomes() (statistics.StatisticsReporter method), 69
best_unique_genomes() (statistics.StatisticsReporter

method), 69
bias, 9, 77
BoolAttribute (class in attributes), 36

C
CHATTERING_PARAMS (in module iznn), 55
check_structural_mutation_surer(), 51
check_structural_mutation_surer()

(genome.DefaultGenomeConfig method),
50

checkpoint (module), 37
Checkpointer (class in checkpoint), 37
chunked() (in module distributed), 43
clamp() (attributes.FloatAttribute method), 35
compatibility_disjoint_coefficient, 9, 49, 52
compatibility_threshold, 9, 66
compatibility_weight_coefficient, 9, 48, 49
complete_extinction(), 60
complete_extinction() (reporting.BaseReporter method),

62
complete_extinction() (reporting.ReporterSet method),

61
CompleteExtinctionException, 60
compute node, 41
compute_full_connections() (genome.DefaultGenome

method), 53
compute_spawn() (reproduction.DefaultReproduction

static method), 64

85

NEAT-Python Documentation, Release 0.92

Config (class in config), 39
config (module), 38
config_item_name() (attributes.BaseAttribute method),

35
ConfigParameter (class in config), 38
configure_crossover() (genome.DefaultGenome method),

50
configure_new() (genome.DefaultGenome method), 50
conn_add_prob, 10, 49, 51
conn_delete_prob, 10, 49, 51
connect_fs_neat_hidden() (genome.DefaultGenome

method), 52
connect_fs_neat_nohidden() (genome.DefaultGenome

method), 52
connect_full_direct() (genome.DefaultGenome method),

53
connect_full_nodirect() (genome.DefaultGenome

method), 53
connect_partial_direct() (genome.DefaultGenome

method), 53
connect_partial_nodirect() (genome.DefaultGenome

method), 53
connection, 10, 11, 48, 51, 51, 52
continuous-time, 29, 41
copy() (genes.BaseGene method), 48
create() (ctrnn.CTRNN static method), 41
create() (iznn.IZNN static method), 56
create() (nn.feed_forward.FeedForwardNetwork static

method), 58
create() (nn.recurrent.RecurrentNetwork static method),

59
create_connection() (genome.DefaultGenome static

method), 52
create_new() (reproduction.DefaultReproduction

method), 64
create_node() (genome.DefaultGenome static method),

52
creates_cycle() (in module graphs), 53
crossover, 3, 48, 50
crossover() (genes.BaseGene method), 48
ctrnn, 29
CTRNN (class in ctrnn), 41
ctrnn (module), 40
CTRNNNodeEval (class in ctrnn), 40

D
default, see X_default
DefaultClassConfig (class in config), 39
DefaultConnectionGene (class in genes), 48
DefaultGenome, 8, 20, 73
DefaultGenome (class in genome), 50
DefaultGenomeConfig (class in genome), 49
DefaultNodeGene (class in genes), 48
DefaultReproduction, 8, 20

DefaultReproduction (class in reproduction), 63
DefaultSpeciesSet (class in species), 66
DefaultStagnation, 8
DefaultStagnation (class in stagnation), 67
disjoint, 3, 9
distance() (genes.DefaultConnectionGene method), 48
distance() (genes.DefaultNodeGene method), 48
distance() (genome.DefaultGenome method), 52
distance() (iznn.IZNodeGene method), 55
distributed (module), 41
DistributedEvaluator (class in distributed), 45

E
elitism, 8, 64, 64
enabled, 10
enabled_default, 10, 10
end_generation(), 60
end_generation() (reporting.BaseReporter method), 62
end_generation() (reporting.ReporterSet method), 61
evaluate() (distributed.DistributedEvaluator method), 46
evaluate() (parallel.ParallelEvaluator method), 59
evaluate() (threaded.ThreadedEvaluator method), 71
excess, 3

F
FAST_SPIKING_PARAMS (in module iznn), 55
feed-forward, see feedforward
feed_forward, 10, 49, 51, 53
feed_forward_layers() (in module graphs), 54
feedforward, 10, 53
FeedForwardNetwork (class in nn.feed_forward), 58
fitness, 45, 59, 60, 64, 67, 68, 71
fitness criterion, 39
fitness function, 3, 13, 45, 59, 60, 60, 62, 64, 68, 71
fitness_criterion, 7, 38, 60, 67
fitness_threshold, 7, 38, 39, 60, 63, 67
FloatAttribute (class in attributes), 35
format() (config.ConfigParameter method), 39
found_solution(), 7, 60, 63
found_solution() (reporting.BaseReporter method), 63
found_solution() (reporting.ReporterSet method), 62

G
gene, 47, 55
generation, 38, 60, 60–62
genes (module), 46
genetic distance, 48, 52
genome, 8, 20, 55, 64, 73
genome (module), 48
GenomeDistanceCache (class in species), 66
genomic distance, 3, 9, 48, 52, 65, 66, 74
get() (activations.ActivationFunctionSet method), 31
get() (aggregations.AggregationFunctionSet method), 34

86 Index

NEAT-Python Documentation, Release 0.92

get_config_params() (attributes.BaseAttribute method),
35

get_config_params() (genes.BaseGene class method), 47
get_fitness_mean() (statistics.StatisticsReporter method),

69
get_fitness_median() (statistics.StatisticsReporter

method), 69
get_fitness_stat() (statistics.StatisticsReporter method),

69
get_fitness_stdev() (statistics.StatisticsReporter method),

69
get_fitnesses() (species.Species method), 66
get_inqueue() (distributed._ExtendedManager method),

44
get_namespace() (distributed._ExtendedManager

method), 44
get_new_node_key() (genome.DefaultGenomeConfig

method), 50
get_outqueue() (distributed._ExtendedManager method),

44
get_species() (species.DefaultSpeciesSet method), 67
get_species_fitness() (statistics.StatisticsReporter

method), 69
get_species_id() (species.DefaultSpeciesSet method), 67
get_species_sizes() (statistics.StatisticsReporter method),

69
get_time_step_msec() (iznn.IZNN method), 56
graphs (module), 53

H
hidden node, 10, 50
homologous, 3, 9
host_is_local() (in module distributed), 43

I
info(), 64, 66
info() (reporting.BaseReporter method), 63
info() (reporting.ReporterSet method), 62
init_attributes() (genes.BaseGene method), 47
init_mean, 9, 11, 35
init_stdev, 9, 11, 35
init_type, 9, 11, 11, 35
init_value() (attributes.BoolAttribute method), 36
init_value() (attributes.FloatAttribute method), 35
init_value() (attributes.StringAttribute method), 36
initial_connection, 10, 10, 49, 50, 52
input node, 11, 50
interpret() (config.ConfigParameter method), 38
INTRINSICALLY_BURSTING_PARAMS (in module

iznn), 55
InvalidActivationFunction, 31
InvalidAggregationFunction, 33
is_master() (distributed.DistributedEvaluator method), 46

is_primary() (distributed.DistributedEvaluator method),
45

is_valid() (activations.ActivationFunctionSet method), 32
is_valid() (aggregations.AggregationFunctionSet

method), 34
iteritems() (in module six_util), 65
iterkeys() (in module six_util), 65
itervalues() (in module six_util), 65
IZGenome (class in iznn), 55
IZNeuron (class in iznn), 55
IZNN (class in iznn), 56
iznn (module), 54
IZNodeGene (class in iznn), 55

K
key, 3, 47, 50, 50, 62, 64, 65

L
LOW_THRESHOLD_SPIKING_PARAMS (in module

iznn), 55

M
math_util (module), 56
max_aggregation() (in module aggregations), 32
max_stagnation, 8, 67
max_value, 9, 11, 12, 35
maxabs_aggregation() (in module aggregations), 32
mean() (in module math_util), 57
mean_aggregation() (in module aggregations), 33
median() (in module math_util), 57
median2() (in module math_util), 57
median_aggregation() (in module aggregations), 33
min_aggregation() (in module aggregations), 32
min_species_size, 8, 64
min_value, 9, 11, 12, 35
MODE_AUTO (in module distributed), 42
MODE_PRIMARY (in module distributed), 42
MODE_SECONDARY (in module distributed), 42
ModeError, 43
mutate, see mutation
mutate() (genes.BaseGene method), 47
mutate() (genome.DefaultGenome method), 51
mutate_add_connection() (genome.DefaultGenome

method), 51
mutate_add_node() (genome.DefaultGenome method),

51
mutate_delete_connection() (genome.DefaultGenome

method), 51
mutate_delete_node() (genome.DefaultGenome method),

51
mutate_power, 9, 11, 12, 35
mutate_rate, 8–12, 35, 36
mutate_value() (attributes.BoolAttribute method), 36
mutate_value() (attributes.FloatAttribute method), 35

Index 87

NEAT-Python Documentation, Release 0.92

mutate_value() (attributes.StringAttribute method), 36
mutation, 8–11, 35, 36, 47, 51

N
nn.feed_forward (module), 58
nn.recurrent (module), 58
no_fitness_termination, 7, 38, 39, 60, 63
node, 8–11, 48, 51, 52, 55
node_add_prob, 10, 49, 51
node_delete_prob, 10, 49, 51
num_hidden, 10, 49
num_inputs, 11, 49
num_outputs, 11, 49

O
options, see X_options
output node, 11, 50

P
parallel (module), 59
ParallelEvaluator (class in parallel), 59
parse() (config.ConfigParameter method), 38
parse_config() (genes.BaseGene class method), 47
parse_config() (genome.DefaultGenome class method),

50
parse_config() (reproduction.DefaultReproduction class

method), 64
parse_config() (species.DefaultSpeciesSet class method),

66
parse_config() (stagnation.DefaultStagnation class

method), 67
pin, 50
pop_size, 8, 38, 39, 64, 64
Population (class in population), 60
population (module), 59
post_evaluate(), 60
post_evaluate() (reporting.BaseReporter method), 62
post_evaluate() (reporting.ReporterSet method), 61
post_evaluate() (statistics.StatisticsReporter method), 68
post_reproduction() (reporting.BaseReporter method), 62
post_reproduction() (reporting.ReporterSet method), 61
primary compute node, see primary node
primary node, 41
product_aggregation() (in module aggregations), 32

R
rate_to_false_add, 10, 36
rate_to_true_add, 10, 36
recurrent, 29, 41, 53
RecurrentNetwork (class in nn.recurrent), 58
REGULAR_SPIKING_PARAMS (in module iznn), 55
remove() (reporting.ReporterSet method), 61
replace_rate, 9, 11, 12, 35

ReporterSet (class in reporting), 61
reporting, 19
reporting (module), 60
reproduce() (reproduction.DefaultReproduction method),

64
reproduction, 8, 20
reproduction (module), 63
required_for_output() (in module graphs), 54
reset() (ctrnn.CTRNN method), 41
reset() (iznn.IZNeuron method), 56
reset() (iznn.IZNN method), 56
reset() (nn.recurrent.RecurrentNetwork method), 58
reset_on_extinction, 8, 38, 39, 60, 60, 62
RESONATOR_PARAMS (in module iznn), 55
response, 11, 77
restore_checkpoint() (checkpoint.Checkpointer static

method), 38
run() (population.Population method), 60

S
save() (config.Config method), 40
save() (genome.DefaultGenomeConfig method), 49
save() (statistics.StatisticsReporter method), 70
save_checkpoint() (checkpoint.Checkpointer method), 37
save_genome_fitness() (statistics.StatisticsReporter

method), 70
save_species_count() (statistics.StatisticsReporter

method), 70
save_species_fitness() (statistics.StatisticsReporter

method), 70
secondary compute node, see secondary node
secondary node, 41
secondary_state (distributed._ExtendedManager at-

tribute), 44
set_inputs() (iznn.IZNN method), 56
set_secondary_state() (distributed._ExtendedManager

method), 44
single_structural_mutation, 11, 49, 50, 51
six_util (module), 65
size() (genome.DefaultGenome method), 52
softmax() (in module math_util), 57
speciate() (species.DefaultSpeciesSet method), 66
species, 9, 20
Species (class in species), 65
species (module), 65
species_elitism, 8, 67, 68
species_fitness_func, 8, 57, 67
species_stagnant(), 64
species_stagnant() (reporting.BaseReporter method), 63
species_stagnant() (reporting.ReporterSet method), 62
stagnation, 8, 20, 57, 64
stagnation (module), 67
start() (distributed._ExtendedManager method), 44
start() (distributed.DistributedEvaluator method), 46

88 Index

NEAT-Python Documentation, Release 0.92

start() (threaded.ThreadedEvaluator method), 71
start_generation(), 60
start_generation() (reporting.BaseReporter method), 62
start_generation() (reporting.ReporterSet method), 61
stat_functions (in module math_util), 57
statistics (module), 68
StatisticsReporter (class in statistics), 68
stdev() (in module math_util), 57
StdOutReporter (class in reporting), 63
stop() (distributed._ExtendedManager method), 44
stop() (distributed.DistributedEvaluator method), 46
stop() (threaded.ThreadedEvaluator method), 71
StringAttribute (class in attributes), 36
structural_mutation_surer, 11, 49–51
sum_aggregation() (in module aggregations), 32
survival_threshold, 8, 64, 64

T
THALAMO_CORTICAL_PARAMS (in module iznn),

55
threaded (module), 70
ThreadedEvaluator (class in threaded), 71

U
UnknownConfigItemError, 39
update() (species.Species method), 65
update() (stagnation.DefaultStagnation method), 68

V
validate_activation() (in module activations), 31
validate_aggregation() (in module aggregations), 33
variance() (in module math_util), 57

W
weight, 11
write_config() (config.DefaultClassConfig class method),

39
write_config() (genome.DefaultGenome class method),

50
write_pretty_params() (in module config), 39

X
X_default, 8–10, 36
X_options, 9, 36, 36

Index 89

	NEAT Overview
	Installation
	About The Examples
	Install neat-python from PyPI using pip
	Install neat-python from source using setup.py

	Configuration file description
	[NEAT] section
	[DefaultStagnation] section
	[DefaultReproduction] section
	[DefaultGenome] section

	Overview of the basic XOR example (xor2.py)
	Fitness function
	Running NEAT
	Getting the results
	Visualizations
	Example Source

	Customizing Behavior
	New activation functions
	Reporting/logging
	New genome types
	Speciation scheme
	Species stagnation scheme
	Reproduction scheme

	Overview of builtin activation functions
	abs
	clamped
	cube
	exp
	gauss
	hat
	identity
	inv
	log
	relu
	sigmoid
	sin
	softplus
	square
	tanh

	Continuous-time recurrent neural network implementation
	Module summaries
	activations
	aggregations
	attributes
	checkpoint
	config
	ctrnn
	distributed
	genes
	genome
	graphs
	iznn
	math_util
	nn.feed_forward
	nn.recurrent
	parallel
	population
	reporting
	reproduction
	six_util
	species
	stagnation
	statistics
	threaded

	Genome Interface
	Class Methods
	Initialization/Reproduction
	Crossover/Mutation
	Speciation/Misc

	Reproduction Interface
	Class Methods
	Initialization
	Other methods

	Glossary
	Indices and tables
	Python Module Index

