

    
      
          
            
  
ncdjango

Ncdjango turns Django projects into map servers backed by NetCDF datasets. It can be added Django project to provide
various web interfaces to NetCDF data and geoprocessing tools written in Python which operate on NetCDF data.



	Getting Started
	Requirements

	Installation

	Setup

	Publishing Services





	Interfaces
	ArcGIS REST Interface

	Data Interface

	Adding your own interface





	Geoprocessing
	Getting Started

	Tasks

	Workflows

	REST API





	Reference
	Models

	Settings













          

      

      

    

  

    
      
          
            
  
Getting Started


Requirements


	Python 2.7, Python 3.5+

	Django 1.8 - 1.11

	clover 0.2.0 (https://github.com/consbio/clover)

	numpy (http://www.numpy.org)

	django-tastypie 0.13.x (https://django-tastypie.readthedocs.io)

	djangorestframework (http://www.django-rest-framework.org)

	netCDF4-python (http://unidata.github.io/netcdf4-python)

	pyproj (https://github.com/jswhit/pyproj)

	fiona (http://toblerity.org/fiona/README.html)

	shapely (https://pypi.python.org/pypi/Shapely)

	ply (https://pypi.python.org/pypi/ply)

	celery (http://www.celeryproject.org)

	Pillow (https://pypi.python.org/pypi/Pillow)

	six






Installation

Once the dependencies are installed, you can install ncdjango with:

$ pip install ncdjango






Note

The clover dependency is not the same as the pip package of the same name. clover must be installed from
https://github.com/consbio/clover. The correct package should be installed by ncdjango, but in case of problems,
it’s good to check that you have the correct one.






Setup



	Create a new Django project if you don’t already have one.

	Add ncdjango, tastypie, and rest_framework to your INSTALLED_APPS setting.

	Modify your settings.py to specify the root location of your datasets:



NC_SERVICE_DATA_ROOT = '/var/ncdjango/services/'






	Modify your settings.py to specify the location to store temporary files (uploads):



NC_TEMPORARY_FILE_LOCATION = '/tmp'






	See Settings for additional options.

	Add the following to your project’s urlpatterns:



url(r'^', include('ncdjango.urls'))






Note

You can modify this URL pattern if you want all the ncdjango and web interface URLs grouped under a common path.









Publishing Services

Todo







          

      

      

    

  

    
      
          
            
  
Interfaces

Ncdjango has two built-in interfaces. The first is a partial implementation of the
ArcGIS Server Rest API (http://resources.arcgis.com/en/help/rest/apiref/index.html?mapserver.html).
The second is a simple data API for querying things like value range, classifications of data, and data
through time (for time-enabled datasets) at a single point.

You can also add your own interface, which is explained in Adding your own interface.



	ArcGIS REST Interface
	ArcGIS REST Extended Interface





	Data Interface

	Adding your own interface









          

      

      

    

  

    
      
          
            
  
ArcGIS REST Interface

Todo.


ArcGIS REST Extended Interface

Todo.







          

      

      

    

  

    
      
          
            
  
Data Interface

Todo.





          

      

      

    

  

    
      
          
            
  
Adding your own interface

Todo.





          

      

      

    

  

    
      
          
            
  
Geoprocessing

The geoprocessing module provides a framework for providing a web interface to geoprocessing jobs which operate on
NetCDF data. The core components are: tasks, which have defined inputs and outputs and perform some
function; workflows, which are pipelines of tasks; and a web API to allow clients to
submit a job with inputs for processing, monitor the job status, and retrieve outputs upon completion.



	Getting Started
	Creating a task

	Running the task from Python

	Registering the task with the web API

	Running the task from the web





	Tasks
	Basic Task

	Default Inputs

	Multiple Return Values





	Workflows

	REST API
	Registering Jobs

	Using the API

	Loading Service Data with RasterParameter













          

      

      

    

  

    
      
          
            
  
Getting Started

This tutorial covers the basics of creating a task, making it available through the REST API, and running it through
that API.


Creating a task

First, let’s create a task:

from ncdjango.geoprocessing.params import IntParameter
from ncdjango.geoprocessing.workflow import Task

class SumInts(Task):
    name = 'sum_numbers'

    inputs = [
        IntParameter('int1', required=True),
        IntParameter('int2', required=True)
    ]

    outputs = [
        IntParameter('sum')
    ]

    def execute(self, int1, int2):
        return int1 + int2






Note

The name property is not strictly required except when serializing workflows to JSON or looking up tasks by
name.



This task take two integers, adds them together and returns the result. When this task is called, it will automatically
check for required inputs and validate the types of incoming parameters.




Running the task from Python

We can run our task from Python, by calling an instance of it:

>>> t = SumInts()
>>> result = t(int1=3, int2=5)
>>> result
<ncdjango.geoprocessing.params.ParameterCollection object at 0x11fa830b8>
>>> result['sum']
8






Note

Tasks must be called with keyword arguments. Positional arguments are not allowed.




Note

Tasks always return a ParameterCollection object, which can be used like a dictionary to retrieve actual result
values.



We can also get our task class by name:

>>> Task.by_name('sum_numbers')
<class 'SumInts'>





This is useful when using tasks as plugins, in which case their locations may be unknown.




Registering the task with the web API

Now that we have a working task, let’s make it accessible over the web. To do this, we’ll need to add an entry to the
project settings.py file:

NC_REGISTERED_JOBS = {
    'sum_numbers': {
        'type': 'task',
        'task': 'myapp.ncdjango_tasks.SumNumbersTask'
    }
}





This tells ncdjango to add our task to the web API as a job called sum_numbers.




Running the task from the web

Once the task is registered as a job, we can run it through the REST API. Open
http://127.0.0.1:8001/geoprocessing/rest/jobs/ in your browser to interact with the API. Submitting a job requires two
fields: the job name (sum_numbers in our case) and the job inputs, as a JSON object. For example:

{
    "int1": 3,
    "int3": 5
}





You will receive a response like this:

{
    "uuid": "aa346c90-68e5-4d19-a7f3-a54f6b87ec34",
    "job":"generate_scores",
    "created": "2016-09-02T23:36:10.768937Z",
    "status": "pending",
    "inputs": "{\"int1\": 3, \"int2\": 5}",
    "outputs": "{}"
}





Now we can use the uuid value to query the job stats as it runs. The status will move from pending (the job
has been queued) to started (the job is running) and finally to success (the job is done).

http://127.0.0.1:8001/geoprocessing/rest/jobs/<uuid>/





{
    "uuid": "aa346c90-68e5-4d19-a7f3-a54f6b87ec34",
    "job": "generate_scores",
    "created": "2016-09-02T23:36:10.768937Z",
    "status": "success",
    "inputs": "{\"int1\": 3, \"int2\": 5}",
    "outputs":"{\"sum\": 8}"
}





By parsing the returned JSON object once the job has completed, we can access the output value from the task.


Note

Geoprocessing jobs will not run unless celery has been configured for the project and a celery worker is running
and consuming tasks. http://docs.celeryproject.org/en/latest/django/first-steps-with-django.html









          

      

      

    

  

    
      
          
            
  
Tasks

Tasks represent a unit of work in the geoprocessing framework. These can be built-in, or user-defined.


Basic Task

A basic task has a name, input and output parameters, and an execute method.

class MultiplyArray(Task):
    """ Multiply the values in an array by a given factor """

    name = 'multiply_array'

    inputs = [
        NdArrayParameter('array_in', required=True),
        NumberParameter('factor', required=True)
    ]

    outputs = [
        NdArrayParameter('array_out')
    ]

    def execute(array_in, factor):
        return array_in * factor





Normally, the execute method will never be called directly. Instead, the __call__ method of the base Task
class is called; it validates and cleans the parameters (e.g., converting the string "3" into the number 3 for
a NumberParameter input), then calls execute with the cleaned values.




Default Inputs

To specify a default value for a task input, set required=False on the parameter, and provide a default value for
it in the execute method.

class MultiplyArray(Task):
    """ Multiply the values in an array by a given factor """

    name = 'multiply_array'

    inputs = [
        NdArrayParameter('array_in', required=True),
        NumberParameter('factor', required=False)
    ]

    outputs = [
        NdArrayParameter('array_out')
    ]

    def execute(array_in, factor=5):
        return array_in * factor








Multiple Return Values

If your task has multiple return values, return a ParameterCollection object. ParameterCollection behaves like
a dictionary; you can set your return values like you would a dict object.

class Divide(Task)
    """ Perform a divide operation an return value and remainder """

    name = 'divide'

    inputs = [
        IntParameter('numerator', required=True),
        IntParameter('denominator', required=True)
    ]

    outputs = [
        IntParameter('result'),
        IntParameter('remainder')
    ]

    def execute(numerator, denominator):
        output = ParameterCollection(self.outputs)

        output['result'] = numerator // denominator # Integer division
        output['remainder'] = numerator % denominator

        return output











          

      

      

    

  

    
      
          
            
  
Workflows

Todo.





          

      

      

    

  

    
      
          
            
  
REST API

The REST API allows clients to run tasks and workflows as jobs, query job status as they run, and retrieve results
once jobs are finished.


Registering Jobs

A job is simply a task or workflow that has been made available through the REST API. Tasks and workflows are made
available as jobs with the NC_REGISTERED_JOBS setting. The NC_REGISTERED_JOBS is a dictionary of
registered jobs:

NC_REGISTERED_JOBS = {
    'task_job': {
        'type': 'task,
        'task': 'myapp.ncdjango_tasks.SomeTask'
    },
    'workflow_job': {
        'type': 'workflow',
        'path': os.path.join(BASE_DIR, 'myapp/workflows/some_workflow.json')
    }
}





A basic job registration requires three things:



	The job name (this is the dictionary key). This is the name that client will use when running the job.

	The job type. This is either task or workflow.

	The task, or path to the workflow file. For tasks, this is a module path. For workflows, it’s the absolute path
to the workflow’s JSON file.







Automatically Publishing Results

Jobs can be optionally configured to publish raster results as map services by adding an extra key to the job
configuration:

NC_REGISTERED_JOBS = {
    'some_job': {
        'type': 'task',
        'task': 'myapp.ncdjango_tasks.SomeTask',
        'publish_raster_results': True
    }
}





If the job returns raster results, ncdjango will automatically write the results to NetCDF datasets and publish them as
temporary services. It will then return the newly created service name as the value of those output field.

By default, a black-to-white gradient will be used as the default renderer for the service. You can also specify
a renderer to use for published results:

from clover.render.renderers.stretched import StretchedRenderer
from clover.utilities.color import Color

NC_REGISTERED_JOBS = {
    'some_job': {
        'type': 'task',
        'task': 'myapp.ncdjango_tasks.SomeTask',
        'publish_raster_results': True,
        'results_renderer': StretchedRenderer([
            (0, Color(255, 0, 0)),
            (100, Color(0, 0, 255))
        ])
    }
}






Note

See https://github.com/consbio/clover/tree/master/clover/render/renderers for more information on available
renderers.



results_renderer can also be a function which returns a renderer. The function will be called with the output
raster.

NC_REGISTERED_JOBS = {
    'some_job': {
        'type': 'task',
        'task': 'myapp.ncdjango_tasks.SomeTask',
        'publish_raster_results': True,
        'results_renderer': lambda raster: StretchedRenderer([
            (raster.min(), Color(255, 0, 0)),
            (raster.max(), Color(0, 0, 255))
        ])
    }
}








Cleaning up Temporary Services

To clean up temporary services. Run the celery task ncdjango.geoprocessing.celery_tasks.cleanup_temporary_services.
You can run this directly as a function, in the background as a celery task, or set it up to run periodically using
celery beat [http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html]. The function will delete any
temporary services older than NC_MAX_TEMPORARY_SERVICE_AGE.






Using the API

The API allows clients to do two things: execute jobs, and query job status, including outputs once the job has
completed.


Execute a Job

To execute a job, make a POST request to /geoprocessing/rest/jobs/` with two fields: the
registered job name, and JSON-encoded inputs:

{
    "job": "some_job",
    "inputs": "{\"in\": 5}"
}






Note

The inputs field must be a string containing an encoded JSON object, rather than part of the JSON object used
for the request.




Note

If you have CSRF protection [https://docs.djangoproject.com/en/1.8/ref/csrf/] enabled, you will also need to
send a valid CSRF token using the X-CSRFToken header, or sending a csrfmiddlewaretoken form parameter.



The API will return information about the newly created job, including the UUID which can be used to query job status:

{
    "uuid": "aa346c90-68e5-4d19-a7f3-a54f6b87ec34",
    "job":"some_job",
    "created": "2016-09-02T23:36:10.768937Z",
    "status": "pending",
    "inputs": "{\"in\": 5}",
    "outputs": "{}"
}








Query Job Status

To query job status, make a GET request to /geoprocessing/rest/jobs/<uuid>/` using the uuid value returned
from the initial request to execute the job. The response will be identical, but the status will change as the job
executes and finishes, and after it’s succeeded, outputs will be provided.

GET /geoprocessing/rest/jobs/aa346c90-68e5-4d19-a7f3-a54f6b87ec34/





{
    "uuid": "aa346c90-68e5-4d19-a7f3-a54f6b87ec34",
    "job":"some_job",
    "created": "2016-09-02T23:36:10.768937Z",
    "status": "started",
    "inputs": "{\"in\": 5}",
    "outputs": "{}"
}








A jQuery Example

var data = {
    job: 'some_job',
    inputs: JSON.stringify({'in': 5})
};

$.post('/geoprocessing/rest/jobs/', data).success(function(data) {
    pollJobStatus(data.uuid);
});

function pollJobStatus(uuid) {
    $.get('/geoprocessing/rest/jobs/' + uuid + '/').success(function(data) {
        if (data.status === 'success') {
            var outputs = JSON.parse(data.outputs);
            // Do something with job outputs
        }
        else if (data.status === 'pending' || data.status === 'started') {
            setTimeout(function() { pollJobStatus(uuid) }, 1000);
        }
        else {
            // Handle error
        }
    });
}










Loading Service Data with RasterParameter

For tasks with a RasterParameter or NdArrayParameter input, the client can pass a reference to a published
service which will be automatically loaded into memory as a Raster object and passed to the task as an input. To
do this, the client should pass, as the input, a string with the following format:
service://<service name>:<variable name>@<timestamp (optional)>. The timestamp is a Unix-style timestamp
representing the seconds since January 1, 1970.


Note

The Unix-style timestamp is represented in seconds, unlike the Java/JavaScript timestamp, which is represented in
milliseconds. Therefore timestamps from Java or JavaScript need to be divided by 1000.



In this example, a job is created where an input called data accepts a raster parameter, which will be filled
with data from the tmax variable of a service called climate-service with the timestamp 1501895290.

{
    "job": "some_job",
    "inputs": "{\"data\": \"service://climate-service:tmax@1501895290\"}"
}











          

      

      

    

  

    
      
          
            
  
Reference



	Models

	Settings
	NC_ALLOW_BEST_FIT_TIME_INDEX

	NC_ARCGIS_BASE_URL

	NC_ENABLE_STRIDING

	NC_FORCE_WEBP

	NC_INSTALLED_INTERFACES

	NC_MAX_TEMPORARY_SERVICE_AGE

	NC_MAX_UNIQUE_VALUES

	NC_REGISTERED_JOBS

	NC_SERVICE_DATA_ROOT

	NC_TEMPORARY_FILE_LOCATION

	NC_WARP_MAX_DEPTH

	NC_WARP_PROJECTION_THRESHOLD













          

      

      

    

  

    
      
          
            
  
Models


	
class ncdjango.models.Service

	A service maps to a single NetCDF dataset. Services contain general metadata (name, description), and information
about the data extend, projection, and support for time.


	
name

	The service name to be presented via web interfaces.






	
description

	A description of the service, to be presented via web interfaces.






	
data_path

	The path to the NetCDF dataset, relative to NC_SERVICE_DATA_ROOT.






	
projection

	The data projection, as a PROJ4 string.






	
full_extent

	A bounding box representing the full extent of the service data.






	
initial_extent

	A bounding box representing the initial extent of the service.






	
supports_time

	Does this service support time?






	
time_start

	The first time step available for this service.






	
time_end

	The last time step available for this service.






	
time_interval

	The number of time_interval_units between each step.






	
time_interval_units

	
	The units used for time_interval. Can be one of:

	
	milliseconds

	seconds

	minutes

	hours

	days

	weeks

	months

	years

	decades

	centuries












	
calendar

	
	The calendar to use for time calculations. Can be one of:

	
	standard (Standard, gregorian calendar)

	noleap (Like the standard calendar, but without leap days)

	360 (Consistent calendar with 30-day months, 360-day years)












	
render_top_layer_only

	If True for multi-variable services, only the top layer will be rendered by default. Defaults to True.










	
class ncdjango.models.Variable

	A variable in a map service. This is usually presented as a layer in a web interface. Each service may have one
or more variables. Each variable maps to a variable in the NetCDF dataset.


	
time_stops

	Valid time steps for this service as a list of datetime objects. (read-only)






	
service

	Foreign key to the Service model.






	
index

	Order of this variable in a list.






	
variable

	Name of the variable in the NetCDF dataset.






	
projection

	The data projection, as a PROJ4 string.






	
x_dimension

	The name of the x dimension of this variable in the NetCDF dataset.






	
y_dimension

	The name of the y dimension of this variable in the NetCDF dataset.






	
name

	The variable name to be presented via web interfaces.






	
description

	A description of the variable, to be presented via web interfaces.






	
renderer

	The default renderer to use for this variable. See
https://github.com/consbio/clover/tree/master/clover/render/renderers for available renderers.






	
full_extent

	A bounding box representing the full extent of the variable data.






	
supports_time

	Does this variable support time?






	
time_dimension

	The name of the time dimension of this variable in the NetCDF dataset.






	
time_start

	The first time step available for this variable.






	
time_end

	The last time step available for this variable.






	
time_steps

	The number of time steps available for this variable.










	
class ncdjango.models.ProcessingJob

	An active, completed, or failed geoprocessing job.


	
status

	The status of the celery task for this job. (read only)






	
uuid

	A unique ID for this job. Usually provided to the client to query the job status.






	
job

	The registered name of the job. See NC_REGISTERED_JOBS.






	
user

	A foreign key to the User model, or None if the user is not logged in.






	
user_ip

	The IP address of the user who initiated the job.






	
created

	When the job was created.






	
celery_id

	The celery task ID.






	
inputs

	A JSON representation of the job inputs.






	
outputs

	A JSON representation of the job outputs.










	
class ncdjango.models.ProcessingResultService

	A result service is created from the raster output of a geoprocessing job. This model tracks which services are
automatically generated from job results.


	
job

	A foreign key to the ProcessingJob model.






	
service

	A foreign key to the Service model.






	
is_temporary

	Temporary services will be cleaned up when the
ncdjango.geoprocessing.celery_tasks.cleanup_temporary_services celery task is run if they are older than
NC_MAX_TEMPORARY_SERVICE_AGE.






	
created

	The date the result service was created.













          

      

      

    

  

    
      
          
            
  
Settings


NC_ALLOW_BEST_FIT_TIME_INDEX

If True (default), find the closest valid time step to the timestamp given. If False, exact timestamps are
required, and a timestamp which doesn’t match any time step in the dataset will be considered invalid.

NC_ALLOW_BEST_FIT_TIME_INDEX = True








NC_ARCGIS_BASE_URL

The base URL for the ArcGIS REST API interface. Defaults to arcgis/rest/

NC_ARCGIS_BASE_URL = 'arcgis/rest/'








NC_ENABLE_STRIDING

Stride data if the data resolution is larger than the requested image resolution. Defaults to False.

NC_ENABLE_STRIDING = False








NC_FORCE_WEBP

Return WebP-formatted images instead of PNG if the browser supports it, regardless of requested format. Defaults to
False.

NC_FORCE_WEBP = False








NC_INSTALLED_INTERFACES

A list of web services interfaces to enable. By default, this is the ArcGIS REST API (plus
the extended ArcGIS API) and the data interface.

NC_INSTALLED_INTERFACES = (
    'ncdjango.interfaces.data',
    'ncdjango.interfaces.arcgis_extended',
    'ncdjango.interfaces.arcgis'
)








NC_MAX_TEMPORARY_SERVICE_AGE

The length of time (in seconds) to keep a temporary service (usually created as the result of a geoprocessing job)
before automatically deleting it. Defaults to 43200 seconds (12 hours).

NC_MAX_TEMPORARY_SERVICE_AGE = 43200  # 12 hours








NC_MAX_UNIQUE_VALUES

The maximum number of unique values for a dataset to return through the data interface.
Defaults to 100.

NC_MAX_UNIQUE_VALUES = 100








NC_REGISTERED_JOBS

A list of geoprocessing jobs to make available to clients. This should be a dictionary with the following format:

NC_REGISTERED_JOBS = {
    '<name>': {  # Name used for the API
        'type': '<task|workflow>',  # Job type: 'task' or 'workflow'
        'task': '<module path to task class>',  # If type is task
        'path': '<absolute path to workflow definition file>',  # If type is workflow
        'publish_raster_results': True,  # Automatically publish raster outputs as services?
        'results_renderer': StretchedRenderer([
            (0, Color(240, 59, 32)),
            (50, Color(254, 178, 76)),
            (100, Color(255, 237, 160))
        ])  # Renderer definition for automatically published services
    }
}








NC_SERVICE_DATA_ROOT

The root location of NetCDF datasets. Defaults to /var/ncdjango/services/.

NC_SERVICE_DATA_ROOT = '/var/ncdjango/services/'








NC_TEMPORARY_FILE_LOCATION

The location to store temporary files (uploads). Defaults to /tmp.

NC_TEMPORARY_FILE_LOCATION = '/tmp'








NC_WARP_MAX_DEPTH

The maximum recursion depth to use when generating the mesh used to warp output images to the requested projection.
Defaults to 5.

NC_WARP_MAX_DEPTH = 5








NC_WARP_PROJECTION_THRESHOLD

The tolerance (in pixels) to use when warping images to the requested projection. Defaults to 1.5. When warping
the image, a mesh of varying size is used. The size is determined by recursively subdividing a line and comparing the
projected midpoint to a “guessed” midpoint. The subdivision stops when the difference is within the tolerance, or
:ref:`setting-warp-max-depth` is reached.

NC_WARP_PROJECTION_THRESHOLD = 1.5











          

      

      

    

  

    
      
          
            

   Python Module Index


   
   n
   


   
     		 	

     		
       n	

     
       	[image: -]
       	
       ncdjango	
       

     
       	
       	   
       ncdjango.models	
       

   



          

      

      

    

  

    
      
          
            

Index



 C
 | D
 | F
 | I
 | J
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X
 | Y
 


C


  	
      	calendar (ncdjango.models.Service attribute)


      	celery_id (ncdjango.models.ProcessingJob attribute)


  

  	
      	created (ncdjango.models.ProcessingJob attribute)

      
        	(ncdjango.models.ProcessingResultService attribute)


      


  





D


  	
      	data_path (ncdjango.models.Service attribute)


  

  	
      	description (ncdjango.models.Service attribute)

      
        	(ncdjango.models.Variable attribute)


      


  





F


  	
      	full_extent (ncdjango.models.Service attribute)

      
        	(ncdjango.models.Variable attribute)


      


  





I


  	
      	index (ncdjango.models.Variable attribute)


      	initial_extent (ncdjango.models.Service attribute)


  

  	
      	inputs (ncdjango.models.ProcessingJob attribute)


      	is_temporary (ncdjango.models.ProcessingResultService attribute)


  





J


  	
      	job (ncdjango.models.ProcessingJob attribute)

      
        	(ncdjango.models.ProcessingResultService attribute)


      


  





N


  	
      	name (ncdjango.models.Service attribute)

      
        	(ncdjango.models.Variable attribute)


      


  

  	
      	ncdjango.models (module)


  





O


  	
      	outputs (ncdjango.models.ProcessingJob attribute)


  





P


  	
      	ProcessingJob (class in ncdjango.models)


      	ProcessingResultService (class in ncdjango.models)


  

  	
      	projection (ncdjango.models.Service attribute)

      
        	(ncdjango.models.Variable attribute)


      


  





R


  	
      	render_top_layer_only (ncdjango.models.Service attribute)


  

  	
      	renderer (ncdjango.models.Variable attribute)


  





S


  	
      	Service (class in ncdjango.models)


      	service (ncdjango.models.ProcessingResultService attribute)

      
        	(ncdjango.models.Variable attribute)


      


  

  	
      	status (ncdjango.models.ProcessingJob attribute)


      	supports_time (ncdjango.models.Service attribute)

      
        	(ncdjango.models.Variable attribute)


      


  





T


  	
      	time_dimension (ncdjango.models.Variable attribute)


      	time_end (ncdjango.models.Service attribute)

      
        	(ncdjango.models.Variable attribute)


      


      	time_interval (ncdjango.models.Service attribute)


  

  	
      	time_interval_units (ncdjango.models.Service attribute)


      	time_start (ncdjango.models.Service attribute)

      
        	(ncdjango.models.Variable attribute)


      


      	time_steps (ncdjango.models.Variable attribute)


      	time_stops (ncdjango.models.Variable attribute)


  





U


  	
      	user (ncdjango.models.ProcessingJob attribute)


  

  	
      	user_ip (ncdjango.models.ProcessingJob attribute)


      	uuid (ncdjango.models.ProcessingJob attribute)


  





V


  	
      	Variable (class in ncdjango.models)


  

  	
      	variable (ncdjango.models.Variable attribute)


  





X


  	
      	x_dimension (ncdjango.models.Variable attribute)


  





Y


  	
      	y_dimension (ncdjango.models.Variable attribute)


  







          

      

      

    

  _static/minus.png





_static/comment-close.png





_static/up.png





_static/down-pressed.png





_static/ajax-loader.gif





_static/file.png





nav.xhtml

    
      Table of Contents


      
        		ncdjango


        		Getting Started
          
          		Requirements


          		Installation


          		Setup


          		Publishing Services


          


        


        		Interfaces
          
          		ArcGIS REST Interface
            
            		ArcGIS REST Extended Interface


            


          


          		Data Interface


          		Adding your own interface


          


        


        		Geoprocessing
          
          		Getting Started
            
            		Creating a task


            		Running the task from Python


            		Registering the task with the web API


            		Running the task from the web


            


          


          		Tasks
            
            		Basic Task


            		Default Inputs


            		Multiple Return Values


            


          


          		Workflows


          		REST API
            
            		Registering Jobs


            		Using the API


            		Loading Service Data with RasterParameter


            


          


          


        


        		Reference
          
          		Models


          		Settings
            
            		NC_ALLOW_BEST_FIT_TIME_INDEX


            		NC_ARCGIS_BASE_URL


            		NC_ENABLE_STRIDING


            		NC_FORCE_WEBP


            		NC_INSTALLED_INTERFACES


            		NC_MAX_TEMPORARY_SERVICE_AGE


            		NC_MAX_UNIQUE_VALUES


            		NC_REGISTERED_JOBS


            		NC_SERVICE_DATA_ROOT


            		NC_TEMPORARY_FILE_LOCATION


            		NC_WARP_MAX_DEPTH


            		NC_WARP_PROJECTION_THRESHOLD


            


          


          


        


      


    
  

_static/up-pressed.png





_static/plus.png





_static/comment-bright.png





_static/comment.png





_static/down.png





