
NC Traffic Stops Documentation
Release 0.1

Dylan, Andy, and Colin

Nov 13, 2018

Contents

1 Development Setup 3
1.1 Getting Started . 4
1.2 Development . 4
1.3 When running migrations . 4

2 Docker 5
2.1 Restore Production Data . 6
2.2 Deployment . 6

3 Data Import 7
3.1 Local/Development Environment . 7
3.2 Server . 9
3.3 Updating landing page stats . 10

4 Server Setup 11
4.1 Provisioning . 11
4.2 Layout . 11
4.3 Deployment . 11

5 Server Provisioning 13
5.1 Overview . 13
5.2 Salt Master . 13
5.3 Pillar Setup . 14
5.4 Managing Secrets . 14
5.5 Github Deploy Keys . 16
5.6 Environment Variables . 16
5.7 Setup Checklist . 17
5.8 Provision a Minion . 17
5.9 Optional Configuration . 17
5.10 Quickstart . 19

6 API Endpoints 21
6.1 Stops by all races and ethnicities by year . 21
6.2 Likelihood-of-search by stop-reason . 22
6.3 Use-of-force . 25
6.4 Contraband Hit Rate . 27

i

7 Vagrant Testing 31
7.1 Starting the VM . 31
7.2 Provisioning the VM . 31
7.3 Testing on the VM . 32

8 Indices and tables 33

ii

NC Traffic Stops Documentation, Release 0.1

Open Data Policing is a project of the Southern Coalition for Social Justice. The site’s development team consists of
attorney Ian Mance of the Southern Coalition; Colin Copeland, CTO of Caktus Group, and volunteer developers Andy
Shapiro and Dylan Young of Durham, NC. A special thanks to Tom Meehan for assisting with analyzing US census
data.

This is the developer documentation.

Contents:

Contents 1

http://www.scsj.org/
http://www.caktusgroup.com/

NC Traffic Stops Documentation, Release 0.1

2 Contents

CHAPTER 1

Development Setup

Below you will find basic setup and deployment instructions for the NC Traffic Stops project. To begin you should
have the following applications installed on your local development system:

• Python 3.4

• NodeJS >= 4.2

• pip >= 8 or so

• virtualenv >= 1.10

• virtualenvwrapper >= 3.0

• Postgres >= 9.3

• git >= 1.7

If you need Python 3.4 installed, you can use this PPA:

sudo add-apt-repository ppa:fkrull/deadsnakes
sudo apt-get update
sudo apt-get install python3.4-dev

(If you build Python 3.4 yourself on Ubuntu, ensure that the libbz2-dev package is installed first.)

The tool that we use to deploy code is called Fabric, which is not yet Python3 compatible. So, we need to install that
globally in our Python2 environment:

sudo pip install fabric==1.10.0

For a working fab encrypt you’ll need more modules in a Python 2 environment. Create a new virtualenv for that
and use requirements/fab.txt.

The deployment uses SSH with agent forwarding so you’ll need to enable agent forwarding if it is not already by
adding ForwardAgent yes to your SSH config.

3

http://www.pip-installer.org/
http://www.virtualenv.org/
http://pypi.python.org/pypi/virtualenvwrapper
http://docs.fabfile.org/

NC Traffic Stops Documentation, Release 0.1

1.1 Getting Started

To setup your local environment you should create a virtualenv and install the necessary requirements:

$ which python3.4 # make sure you have Python 3.4 installed
$ mkvirtualenv --python=`which python3.4` opendatapolicing
(opendatapolicing)$ pip install -U pip
(opendatapolicing)$ pip install -r requirements/dev.txt
(opendatapolicing)$ npm install

If npm install fails, make sure you’re using npm from a reasonable version of NodeJS, as documented at the top
of this document.

Next, we’ll set up our local environment variables. We use django-dotenv to help with this. It reads environment
variables located in a file name .env in the top level directory of the project. The only variable we need to start is
DJANGO_SETTINGS_MODULE:

(opendatapolicing)$ cp traffic_stops/settings/local.example.py traffic_stops/settings/
→˓local.py
(opendatapolicing)$ echo "DJANGO_SETTINGS_MODULE=traffic_stops.settings.local" > .env

Exit the virtualenv and reactivate it to activate the settings just changed:

(opendatapolicing)$ deactivate
(opendatapolicing)$ workon opendatapolicing

Create the Postgres database and run the initial syncdb/migrate:

(opendatapolicing)$ createdb -E UTF-8 traffic_stops
(opendatapolicing)$ createdb -E UTF-8 traffic_stops_nc
(opendatapolicing)$ createdb -E UTF-8 traffic_stops_md
(opendatapolicing)$ createdb -E UTF-8 traffic_stops_il
(opendatapolicing)$./migrate_all_dbs.sh

1.2 Development

You should be able to run the development server via the configured dev script:

(opendatapolicing)$ npm run dev

Or, on a custom port and address:

(opendatapolicing)$ npm run dev -- --address=0.0.0.0 --port=8020

Any changes made to Python, Javascript or Less files will be detected and rebuilt transparently as long as the develop-
ment server is running.

1.3 When running migrations

This is a multi-database project. Whenever you have unapplied migrations, either added locally or via an update from
the source repository, the migrations need to be applied to all databases by running the ./migrate_all_dbs.sh
command.

4 Chapter 1. Development Setup

https://github.com/jpadilla/django-dotenv

CHAPTER 2

Docker

You can use the provided docker-compose environment to create a local development environment. See previous
section for more detailed instructions about how this project is configured.

Setup your local development settings:

cp traffic_stops/settings/local.example.py traffic_stops/settings/local.py
uncomment lines below "UNCOMMENT BELOW IF USING DOCKER SETUP" in local.py
echo "DJANGO_SETTINGS_MODULE=traffic_stops.settings.local" > .env

For basic setup, run the following commands:

docker-compose up -d db # start the PostgreSQL container in the background
docker-compose build web # build the container (can take a while)
docker-compose run --rm web createdb -E UTF-8 traffic_stops
docker-compose run --rm web createdb -E UTF-8 traffic_stops_nc
docker-compose run --rm web createdb -E UTF-8 traffic_stops_md
docker-compose run --rm web createdb -E UTF-8 traffic_stops_il
docker-compose run --rm web ./migrate_all_dbs.sh

Run npm install inside the web container (you’ll need to do this for any update to package.json):

rm -rf ./node_modules # if needed
docker-compose run --rm web bash -lc "npm install"

You can now run the web container and tail the logs:

start up the dev server, and watch the logs:
docker-compose up -d web && docker-compose logs -f web

These are other useful docker-compose commands:

explicitly execute runserver in the foreground (for breakpoints):
docker-compose stop web
docker-compose run --rm --service-ports web python manage.py runserver 0.0.0.0:8000

5

NC Traffic Stops Documentation, Release 0.1

Visit http://localhost:8003/ in your browser.

2.1 Restore Production Data

The data import process for each state can take a long time. You can load the production data using the following
steps:

First download a dump (in this case, NC) of the database:

ssh opendatapolicing.com 'sudo -u postgres pg_dump -Fc -Ox traffic_stops_nc_production
→˓' > traffic_stops_nc_production.pgdump

Now run pg_restore within the web container:

docker-compose stop web # free up connections to the DB
docker-compose run --rm web dropdb traffic_stops_nc
docker-compose run --rm web createdb -E UTF-8 traffic_stops_nc
docker-compose run --rm web pg_restore -Ox -d traffic_stops_nc traffic_stops_nc_
→˓production.pgdump
rm traffic_stops_nc_production.pgdump # so it doesn't get built into the container

You can also load the primary DB with user accounts and state statistics:

ssh opendatapolicing.com 'sudo -u postgres pg_dump -Fc -Ox traffic_stops_production' >
→˓ traffic_stops_production.pgdump
docker-compose stop web # free up connections to the DB
docker-compose run --rm web dropdb traffic_stops
docker-compose run --rm web createdb -E UTF-8 traffic_stops
docker-compose run --rm web pg_restore -Ox -d traffic_stops traffic_stops_production.
→˓pgdump
rm traffic_stops_production.pgdump # so it doesn't get built into the container

2.2 Deployment

You can run a deployment from within a docker container using the following commands:

docker-compose run --rm web /bin/bash
eval $(ssh-agent)
ssh-add ~/.ssh/YOUR_KEY

fab -u YOUR_USER staging salt:"test.ping"

6 Chapter 2. Docker

http://localhost:8003/

CHAPTER 3

Data Import

Stop data can be imported in the same manner for all states. Substitute the state abbreviation (e.g., “md”) as appropriate
in the Generic NC instructions below.

Census data for all states is imported all at once, in the same manner for all environments, using the import_census
management command. This must be performed as part of developer and server setup as well as when census support
is added for additional states.

3.1 Local/Development Environment

Before running state imports, first import census data:

python manage.py import_census

3.1.1 Database Dump (quicker)

To load an existing database dump on S3, run:

dropdb traffic_stops_nc
createdb -E UTF-8 traffic_stops_nc
wget https://s3-us-west-2.amazonaws.com/openpolicingdata/traffic_stops_nc_2018_01_08.
→˓dump.zip
unzip traffic_stops_nc_2018_01_08.dump.zip
pg_restore -Ox -d traffic_stops_nc traffic_stops_nc_2018_01_08.dump

Browse https://s3-us-west-2.amazonaws.com/openpolicingdata/ to see what dumps are available.

To create a new database dump, run:

ssh dev.opendatapolicingnc.com 'sudo -u postgres pg_dump -Fc traffic_stops_nc_staging
→˓' > traffic_stops_nc.dump

That can be loaded with the pg_restore command shown above.

7

https://s3-us-west-2.amazonaws.com/openpolicingdata/

NC Traffic Stops Documentation, Release 0.1

3.1.2 Raw NC Data (slower)

The state-specific database must exist and current migrations need to have been applied before importing. If in doubt:

for NC
dropdb traffic_stops_nc && createdb -E UTF-8 traffic_stops_nc
for MD
dropdb traffic_stops_md && createdb -E UTF-8 traffic_stops_md

./migrate_all_dbs.sh

Command-line

If loading NC, make sure to add NC_FTP_USER and NC_FTP_PASSWORD and your .env file.

If on a Mac, install gnu-sed:

brew install gnu-sed --with-default-names

Run the import command:

for NC (~25m)
rm -rf ./ncdata # if you don't want to reuse previous download
python manage.py import_nc --dest $PWD/ncdata --noprime # noprime = don't prime cache
for MD (~30m)
rm -rf ./mddata # if you don't want to reuse previous download
python manage.py import_md --dest $PWD/mddata

This took ~25 minutes on my laptop. Run tail -f traffic_stops.log to follow along. Reusing an existing
--dest directory will speed up import. However, if import code has changed since the last time the directory was
used, don’t reuse an existing directory.

Now you should be able to view data with runserver:

python manage.py runserver

Admin

Access /admin/tsdata/dataset/ and create a “dataset” describing the data to be imported. Setting the fields:

• Select the desired state

• Provide a unique name for the dataset

• The date received should reflect when the raw data was received

• Set the URL to one of the available datasets at https://s3-us-west-2.amazonaws.com/openpolicingdata/ . The
normal URLs are stored in the source code (in <state_app>.data.__init__.py). For NC, if you use
the magic URL ftp://nc.us/, the latest available dataset will be downloaded from the state and used for
this import.

• Specify a destination directory where the dataset will be downloaded and extracted.

• Optionally specify one or two e-mail addresses that will be notified when the import completes successfully.

Once the “dataset” has been created, select the new dataset in list view and apply the “Import selected dataset” action.

8 Chapter 3. Data Import

https://s3-us-west-2.amazonaws.com/openpolicingdata/

NC Traffic Stops Documentation, Release 0.1

3.2 Server

The PostgreSQL user must have SUPERUSER privileges to perform the import. Depending on current admin policies,
that may have to be granted and revoked around the import.

Temporarily grant our PostgreSQL user SUPERUSER privileges:

sudo -u postgres psql -c 'ALTER USER traffic_stops_staging WITH SUPERUSER;'

When finished, revoke SUPERUSER privileges:

sudo -u postgres psql -c 'ALTER USER traffic_stops_staging WITH NOSUPERUSER;'

When importing IL data on a server, paging space is required due to the memory requirements. Currently the staging
and production servers do not have a “swap” file or device permanently assigned, nor do they have a device on which
paging space can be routinely used without incurring I/O charges. Thus a swap file is activated prior to an import of
IL data and then deactivated afterwards, as follows:

sudo fallocate -l 3G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
<<perform the IL data import using the appropriate mechanism>>
sudo swapoff /swapfile
sudo rm /swapfile

3.2.1 Raw NC Data

Command-line

Run the import command:

sudo su - traffic_stops
cd /var/www/traffic_stops
source ./env/bin/activate
./manage.sh import_nc --dest=/var/www/traffic_stops/data

Reusing an existing --dest directory will speed up import. However, if import code has changed since the last time
the directory was used, don’t reuse an existing directory.

Admin

Follow the “Admin” instructions above under “Local/Development Environment”.

3.2.2 Create DB Dump

sudo -u postgres pg_dump -Ox -Ft traffic_stops_nc_production > traffic_stops_nc_
→˓production.tar
zip traffic_stops_nc_production.tar.zip traffic_stops_nc_production.tar
then on local laptop, run:
scp opendatapolicingnc.com:traffic_stops_nc_production.tar.zip .

3.2. Server 9

NC Traffic Stops Documentation, Release 0.1

3.3 Updating landing page stats

NC landing page stats are updated automatically after import. This section applies only to other states. (The NC
command in the example below will work and can be used during development, but for NC it is not necessary to run
the command and update the Django template using the output when you get a new set of data from the state.)

Currently, various statistics on the state landing page are hard-coded in the Django templates for that state, including
the number of stops, the range of dates, and the top five agencies.

When first importing a new set of data from a state, the landing page stats must be edited to reflect the new data. This
process involves the following steps:

1. Calculate the statistics using the new dataset.

2. Update the Django template for the state to include the current statistics.

3. Pay attention to whether or not agency ids or the top five agencies have changed; if they have, the top five
agencies as shown in the landing page will require more editing.

The landing page stats are computed with the <state_app>_dataset_facts management commands. Exam-
ple:

$./manage.py nc_dataset_facts
Timeframe: Jan 01, 2000 - Apr 12, 2016
Stops: 20,622,253
Searches: 632,719
Agencies: 314

Top 5:
Id 193: NC State Highway Patrol 9,608,578
Id 51: Charlotte-Mecklenburg Police Department 1,600,836
Id 224: Raleigh Police Department 863,653
Id 104: Greensboro Police Department 555,453
Id 88: Fayetteville Police Department 503,013

10 Chapter 3. Data Import

CHAPTER 4

Server Setup

4.1 Provisioning

The server provisioning is managed using Salt Stack. The base states are managed in a common repo and additional
states specific to this project are contained within the conf directory at the root of the repository.

For more information see the doc:provisioning guide </provisioning>.

4.2 Layout

Below is the server layout created by this provisioning process:

/var/www/traffic_stops/
source/
env/
log/
public/

static/
media/

ssl/

source contains the source code of the project. env is the virtualenv for Python requirements. log stores the
Nginx, Gunicorn and other logs used by the project. public holds the static resources (css/js) for the project and the
uploaded user media. public/static/ and public/media/ map to the STATIC_ROOT and MEDIA_ROOT
settings. ssl contains the SSL key and certificate pair.

4.3 Deployment

For deployment, each developer connects to the Salt master as their own user. Each developer has SSH access via
their public key. These users are created/managed by the Salt provisioning. The deployment itself is automated with

11

http://saltstack.com/
https://github.com/caktus/margarita
http://www.virtualenv.org/

NC Traffic Stops Documentation, Release 0.1

Fabric. To deploy, a developer simply runs:

Deploy updates to staging
fab staging deploy
Deploy updates to production
fab production deploy

This runs the Salt highstate for the given environment. This handles both the configuration of the server as well as
updating the latest source code. This can take a few minutes and does not produce any output while it is running. Once
it has finished the output should be checked for errors.

12 Chapter 4. Server Setup

http://docs.fabfile.org/

CHAPTER 5

Server Provisioning

5.1 Overview

traffic_stops is deployed on the following stack.

• OS: Ubuntu 14.04 LTS

• Python: 3.4

• Database: Postgres 9.3, PostGIS 2.1

• Application Server: Gunicorn

• Frontend Server: Nginx

• Cache: Memcached

These services can configured to run together on a single machine or on different machines. Supervisord manages the
application server process.

5.2 Salt Master

Each project needs a Salt Master per environment (staging, production, etc). The master is configured with Fabric.
env.master should be set to the IP of this server in the environment where it will be used:

@task
def staging():

...
env.master = <ip-of-master>

You will need to be able to connect to the server as a root user. How this is done will depend on where the server is
hosted. VPS providers such as Linode will give you a username/password combination. Amazon’s EC2 uses a private
key. These credentials will be passed as command line arguments.:

13

http://supervisord.org/

NC Traffic Stops Documentation, Release 0.1

Template of the command
fab -u <root-user> <environment> setup_master
Example of provisioning 33.33.33.10 as the Salt Master for staging
fab -u root staging setup_master
Example AWS setup
fab -u ubuntu -i ~/.ssh/traffic-stops.pem staging setup_master

This will install salt-master and update the master configuration file. The master will use a set of base states from
https://github.com/caktus/margarita checked out at /srv/margarita

As part of the master setup, a new GPG public/private key pair is generated. The private key remains on the mas-
ter but the public version is exported and fetched back to the developer’s machine. This will be put in conf/
<environment>.pub.gpg. This will be used by all developers to encrypt secrets for the environment and needs
to be committed into the repo.

5.3 Pillar Setup

Before your project can be deployed to a server, the code needs to be accessible in a git repository. Once that is done
you should update conf/pillar/<environment>.sls to set the repo and branch for the environment. E.g.,
change this:

FIXME: Update to the correct project repo
repo:

url: git@github.com:CHANGEME/CHANGEME.git
branch: master

to this:

repo:
url: git@github.com:copelco/NC-Traffic-Stops.git
branch: master

You also need to set project_name and python_version in conf/pillar/project.sls. The project
template is set up for 3.4 by default. If you want to use 2.7, you will need to change python_version and make
a few changes to requirements. In requirements/production.txt, change python3-memcached to python-
memcached.

For the environment you want to setup you will need to set the domain in conf/pillar/<environment>.sls.

You will also need add the developer’s user names and SSH keys to conf/pillar/devs.sls. Each user record
(under the parent users: key) should match the format:

example-user:
public_key:
- ssh-rsa <Full SSH Public Key would go here>

Additional developers can be added later, but you will need to create at least one user for yourself.

5.4 Managing Secrets

Secret information such as passwords and API keys must be encrypted before being added to the pillar files. As
previously noted, provisioning the master for the environment generates a public GPG key which is added to repo
under conf/<environment>.pub.gpg To encrypt a new secret using this key, you can use the encrypt fab
command:

14 Chapter 5. Server Provisioning

https://github.com/caktus/margarita

NC Traffic Stops Documentation, Release 0.1

Example command
fab <environment> encrypt:<key>=<secret-value>
Encrypt the SECRET_KEY for the staging environment
fab staging encrypt:SECRET_KEY='thisismysecretkey'

The output of this command will look something like:

"SECRET_KEY": |-
-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.4.11 (GNU/Linux)

hQEMA87BIemwflZuAQf/XDTq6pdZsS07zw88lvGcWbcy5pj5CLueVldE+NLAHilv
YaFb1qPM1W+yrnxFQgsapcHUM82ULkXbMskYoK5qp5Or2ujwzAVRpbSrFTq19Frz
sasFTPNNREgThLB8oyQIHN2XfqSvIqi6RkqXGf+eQDXLyl9Guu+7EhFtW5PJRo3i
BSBVEuMi4Du60uAssQswNuit7lkEqxFprZDb9aHmjVBi+DAipmBuJ+FIyK0ePFAf
dVfp/Es/y4/hWkM7TXDw5JMFtVfCo6Dm1LE53N339eJX01w19exB/Sek6HVwDsL4
d45c1dm7qBiXN0zO8Yadhm520J0H9NcIPO47KyRkCtJAARsY5eu8cHxYW4DcYWLu
PRr2CLuI8At1Q2KqlRgdEm17lV5HOEcMoT1SyvMzaWOnbpul5PoLCAebJ0zcJZT5
Pw==
=V1Uh
-----END PGP MESSAGE-----

where SECRET_KEY would be replace with the key you were trying to encrypt. This block of text should be added to
the environment pillar conf/pillar/<environment>.sls under the secrets block:

secrets:
"SECRET_KEY": |-
-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.4.11 (GNU/Linux)

hQEMA87BIemwflZuAQf/XDTq6pdZsS07zw88lvGcWbcy5pj5CLueVldE+NLAHilv
YaFb1qPM1W+yrnxFQgsapcHUM82ULkXbMskYoK5qp5Or2ujwzAVRpbSrFTq19Frz
sasFTPNNREgThLB8oyQIHN2XfqSvIqi6RkqXGf+eQDXLyl9Guu+7EhFtW5PJRo3i
BSBVEuMi4Du60uAssQswNuit7lkEqxFprZDb9aHmjVBi+DAipmBuJ+FIyK0ePFAf
dVfp/Es/y4/hWkM7TXDw5JMFtVfCo6Dm1LE53N339eJX01w19exB/Sek6HVwDsL4
d45c1dm7qBiXN0zO8Yadhm520J0H9NcIPO47KyRkCtJAARsY5eu8cHxYW4DcYWLu
PRr2CLuI8At1Q2KqlRgdEm17lV5HOEcMoT1SyvMzaWOnbpul5PoLCAebJ0zcJZT5
Pw==
=V1Uh
-----END PGP MESSAGE-----

The Makefile has a make command for generating a random secret. By default this is 32 characters long but can be
adjusted using the length argument.:

make generate-secret
make generate-secret length=64

This can be combined with the above encryption command to generate a random secret and immediately encrypt it.:

fab staging encrypt:SECRET_KEY=`make generate-secret length=64`

By default the project will use the SECRET_KEY if it is set. You can also optionally set a DB_PASSWORD. If not set,
you can only connect to the database server on localhost so this will only work for single server setups.

5.4. Managing Secrets 15

NC Traffic Stops Documentation, Release 0.1

5.5 Github Deploy Keys

The repo will also need a deployment key generated so that the Salt minion can access the repository. You can generate
a deployment key locally for the new server like so:

Example command
make <environment>-deploy-key
Generating the staging deploy key
make staging-deploy-key

This will generate two files named <environment>.priv and conf/<environment>.pub.ssh. The first
file contains the private key and the second file contains the public key. The public key needs to be added to the
“Deploy keys” in the GitHub repository. For more information, see the Github docs on managing deploy keys: https:
//help.github.com/articles/managing-deploy-keys

The text in the private key file should be added to conf/pillar/<environment>.sls‘ under the label github_deploy_key
but it must be encrypted first. To encrypt the file you can use the same encrypt fab command as before passing the
filename rather than a key/value pair:

fab staging encrypt:staging.priv

This will create a new file with appends .asc to the end of the original filename (i.e. staging.priv.asc). The entire
contents of this file should be added to the github_deploy_key section of the pillar file.:

github_deploy_key: |
-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.4.11 (GNU/Linux)

hQEMA87BIemwflZuAQf/RW2bXuUpg5QuwuY9dLqLpdpKz+/971FHqM1Kz5NXgJHo
hir8yh/wxlKlMbSpiyri6QPigj8DZLrGLi+VTwWCXJ
...
-----END PGP MESSAGE-----

Do not commit the original *.priv files into the repo.

5.6 Environment Variables

Other environment variables which need to be configured but aren’t secret can be added to the env dictionary in
conf/pillar/<environment>.sls without encryption:

Additional public environment variables to set for the project
env:

FOO: BAR

For instance the default layout expects the cache server to listen at 127.0.0.1:11211 but if there is a dedicated
cache server this can be changed via CACHE_HOST. Similarly the DB_HOST/DB_PORT defaults to ''/'':

env:
DB_HOST: 10.10.20.2
CACHE_HOST: 10.10.20.1:11211

16 Chapter 5. Server Provisioning

https://help.github.com/articles/managing-deploy-keys
https://help.github.com/articles/managing-deploy-keys

NC Traffic Stops Documentation, Release 0.1

5.7 Setup Checklist

To summarize the steps above, you can use the following checklist

• repo is set in conf/pillar/<environment>.sls

• Developer user names and SSH keys have been added to conf/pillar/devs.sls

• Project name has been set in conf/pillar/project.sls

• Environment domain name has been set in conf/pillar/<environment>.sls

• Environment secrets including the deploy key have been set in conf/pillar/<environment>.sls

5.8 Provision a Minion

Once you have completed the above steps, you are ready to provision a new server for a given environment. Again
you will need to be able to connect to the server as a root user. This is to install the Salt Minion which will connect to
the Master to complete the provisioning. To setup a minion you call the Fabric command:

fab <environment> setup_minion:<roles> -H <ip-of-new-server> -u <root-user>
fab staging setup_minion:web,balancer,db-master,cache -H 33.33.33.10 -u root
Example AWS setup
fab staging setup_minion:web,balancer,db-master,cache,queue,worker -H 52.6.26.10 -u
→˓ubuntu -i ~/.ssh/traffic-stops.pem
fab staging deploy -H 52.6.26.10 -u ubuntu -i ~/.ssh/traffic-stops.pem

The available roles are salt-master, web, worker, balancer, db-master, queue and cache. If you are
running everything on a single server you need to enable the web, balancer, db-master, and cache roles. The
worker and queue roles are only needed to run Celery which is explained in more detail later.

Additional roles can be added later to a server via add_role. Note that there is no corresponding delete_role
command because deleting a role does not disable the services or remove the configuration files of the deleted role:

fab add_role:web -H 33.33.33.10

After that you can run the deploy/highstate to provision the new server:

fab <environment> deploy

The first time you run this command, it may complete before the server is set up. It is most likely still completing in
the background. If the server does not become accessible or if you encounter errors during the process, review the Salt
logs for any hints in /var/log/salt on the minion and/or master. For more information about deployment, see
the server setup </server-setup> documentation.

The initial deployment will create developer users for the server so you should not need to connect as root after the
first deploy.

5.9 Optional Configuration

The default template contains setup to help manage common configuration needs which are not enabled by default.

5.7. Setup Checklist 17

NC Traffic Stops Documentation, Release 0.1

5.9.1 HTTP Auth

The <environment>.sls can also contain a section to enable HTTP basic authentication. This is useful for
staging environments where you want to limit who can see the site before it is ready. This will also prevent bots
from crawling and indexing the pages. To enable basic auth simply add a section called http_auth in the relevant
conf/pillar/<environment>.sls. As with other passwords this should be encrypted before it is added:

Example encryption
fab <environment> encrypt:<username>=<password>
Encrypt admin/abc123 for the staging environment
fab staging encrypt:admin=abc123

This would be added in conf/pillar/<environment>.sls under http_auth:

http_auth:
"admin": |-
-----BEGIN PGP MESSAGE-----
Version: GnuPG v1.4.11 (GNU/Linux)

hQEMA87BIemwflZuAQf+J4+G74ZSfrUPRF7z7+DPAmhBlK//A6dvplrsY2RsfEE4
Tfp7QPrHZc5V/gS3FXvlIGWzJOEFscKslzgzlccCHqsNUKE96qqnTNjsIoGOBZ4z
tmZV2F3AXzOVv4bOgipKIrjJDQcFJFjZKMAXa4spOAUp4cyIV/AQBu0Gwe9EUkfp
yXD+C/qTB0pCdAv5C4vyl+TJ5RE4fGnuPsOqzy4Q0mv+EkXf6EHL1HUywm3UhUaa
wbFdS7zUGrdU1BbJNuVAJTVnxAoM+AhNegLK9yAVDweWK6pApz3jN6YKfVLFWg1R
+miQe9hxGa2C/9X9+7gxeUagqPeOU3uX7pbUtJldwdJBAY++dkerVIihlbyWOkn4
0HYlzMI27ezJ9WcOV4ywTWwOE2+8dwMXE1bWlMCC9WAl8VkDDYup2FNzmYX87Kl4
9EY=
=PrGi
-----END PGP MESSAGE-----

This should be a list of key/value pairs. The keys will serve as the usernames and the values will be the password. As
with all password usage please pick a strong password.

5.9.2 Celery

Many Django projects make use of Celery for handling long running task outside of request/response cycle. En-
abling a worker makes use of Django setup for Celery. As documented you should create/import your Celery app in
traffic_stops/__init__.py so that you can run the worker via:

celery -A traffic_stops worker

Additionally you will need to configure the project settings for Celery:

traffic_stops.settings.staging.py
import os
from traffic_stops.settings.base import *

Other settings would be here
BROKER_URL = 'amqp://traffic_stops_staging:%(BROKER_PASSWORD)s@%(BROKER_HOST)s/
→˓traffic_stops_staging' % os.environ

You will also need to add the BROKER_URL to the traffic_stops.settings.production so that the vhost
is set correctly. These are the minimal settings to make Celery work. Refer to the Celery documentation for additional
configuration options.

BROKER_HOST defaults to 127.0.0.1:5672. If the queue server is configured on a separate host that will need
to be reflected in the BROKER_URL setting. This is done by setting the BROKER_HOST environment variable in the

18 Chapter 5. Server Provisioning

http://celery.readthedocs.org/en/latest/
http://celery.readthedocs.org/en/latest/django/first-steps-with-django.html
http://docs.celeryproject.org/en/latest/configuration.html

NC Traffic Stops Documentation, Release 0.1

env dictionary of conf/pillar/<environment>.sls.

To add the states you should add the worker role when provisioning the minion. At least one server in the stack
should be provisioned with the queue role as well. This will use RabbitMQ as the broker by default. The Rab-
bitMQ user will be named traffic_stops_<environment> and the vhost will be named traffic_stops_<environment>
for each environment. It requires that you add a password for the RabbitMQ user to each of the conf/pillar/
<environment>.sls under the secrets using the key BROKER_PASSWORD. As with all secrets this must be
encrypted.

The worker will run also run the beat process which allows for running periodic tasks.

5.9.3 SSL

The default configuration expects the site to run under HTTPS everywhere. However, unless an SSL certificate is pro-
vided, the site will use a self-signed certificate. To include a certificate signed by a CA you must update the ssl_key
and ssl_cert pillars in the environment secrets. The ssl_cert should contain the intermediate certificates pro-
vided by the CA. It is recommended that this pillar is only pushed to servers using the balancer role. See the
secrets.ex file for an example.

You can use the below OpenSSL commands to generate the key and signing request:

Generate a new 2048 bit RSA key
openssl genrsa -out traffic_stops.key 2048
Make copy of the key with the passphrase
cp traffic_stops.key traffic_stops.key.secure
Remove any passphrase
openssl rsa -in traffic_stops.secure -out traffic_stops.key
Generate signing request
openssl req -new -key traffic_stops.key -out traffic_stops.csr

The last command will prompt you for information for the signing request including the organization for which the
request is being made, the location (country, city, state), email, etc. The most important field in this request is the
common name which must match the domain for which the certificate is going to be deployed (i.e example.com).

This signing request (.csr) will be handed off to a trusted Certificate Authority (CA) such as StartSSL, NameCheap,
GoDaddy, etc. to purchase the signed certificate. The contents of the *.key file will be added to the ssl_key pillar
and the signed certificate from the CA will be added to the ssl_cert pillar. These should be encrypted using the
same proceedure as with the private SSH deploy key.

5.10 Quickstart

5.10.1 Staging

Terraform:

terraform plan -var-file="secrets.tfvars" -var-file="staging.tfvars"
terraform apply -var-file="secrets.tfvars" -var-file="staging.tfvars"

terraform plan -destroy -var-file="secrets.tfvars" -var-file="staging.tfvars"
terraform destroy -var-file="secrets.tfvars" -var-file="staging.tfvars"

Salt:

5.10. Quickstart 19

NC Traffic Stops Documentation, Release 0.1

ssh-keygen -f "$HOME/.ssh/known_hosts" -R dev.opendatapolicingnc.com
ssh-keygen -f "$HOME/.ssh/known_hosts" -R 52.6.26.10
fab -u ubuntu -i ~/.ssh/traffic-stops.pem staging setup_master
fab staging encrypt:DB_PASSWORD=`pwgen --secure -1 32`
fab staging encrypt:SECRET_KEY=`pwgen --secure -1 64`
fab staging encrypt:BROKER_PASSWORD=`pwgen --secure -1 32`
fab staging encrypt:LOG_DESTINATION='<fill-me-in>'
fab staging encrypt:admin='<fill-me-in>'
fab staging encrypt:NEW_RELIC_LICENSE_KEY='<fill-me-in>'
copy each generated encrypted key to conf/pillar/<env>.sls
fab staging setup_minion:web,balancer,db-master,cache,queue,worker,salt-master -H dev.
→˓opendatapolicingnc.com -u ubuntu -i ~/.ssh/traffic-stops.pem
fab staging deploy -H dev.opendatapolicingnc.com -u ubuntu -i ~/.ssh/traffic-stops.pem
fab staging deploy

5.10.2 Production

Terraform:

make production # see plan
make production-apply

Salt:

ssh-keygen -f "$HOME/.ssh/known_hosts" -R opendatapolicing.com
ssh-keygen -f "$HOME/.ssh/known_hosts" -R 52.206.92.217
fab -u ubuntu -i ~/.ssh/traffic-stops.pem production setup_master
rm production*.asc
fab production encrypt:DB_PASSWORD=`pwgen --secure -1 32`
fab production encrypt:SECRET_KEY=`pwgen --secure -1 64`
fab production encrypt:BROKER_PASSWORD=`pwgen --secure -1 32`
fab production encrypt:production-ssl.cert && cat production-ssl.cert.asc
fab production encrypt:production-ssl.key && cat production-ssl.key.asc
fab production encrypt:admin=<fill-me-in>
fab production encrypt:LOG_DESTINATION='<fill-me-in>'
fab production encrypt:NEW_RELIC_LICENSE_KEY='<fill-me-in>'
copy each generated encrypted key to conf/pillar/<env>.sls
fab production setup_minion:web,balancer,db-master,cache,queue,worker,salt-master -H
→˓opendatapolicing.com -u ubuntu -i ~/.ssh/traffic-stops.pem
fab production deploy -H opendatapolicing.com -u ubuntu -i ~/.ssh/traffic-stops.pem
fab production deploy

20 Chapter 5. Server Provisioning

CHAPTER 6

API Endpoints

6.1 Stops by all races and ethnicities by year

URI: /api/agency/<id>/stops/

Officer URI: /api/agency/<id>/stops/?officer=<id>

Counts of stops by all races and by all ethnicities by year.

6.1.1 SQL

Sample SQL query (Durham Police Department):

SELECT count(person_id),
p.race,
extract(YEAR FROM s.date) AS year

FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
WHERE p.type='D'
AND s.agency_id = 78

GROUP BY p.race,
year

ORDER BY year ASC, p.race DESC;

Sample SQL Results:

count | race | year
-------+------+------

4481 | W | 2005
357 | U | 2005

9 | I | 2005
5665 | B | 2005
163 | A | 2005

(continues on next page)

21

https://opendatapolicingnc.com/api/agency/78/stops/
https://opendatapolicingnc.com/api/agency/78/stops/?officer=368

NC Traffic Stops Documentation, Release 0.1

(continued from previous page)

5319 | W | 2006
231 | U | 2006
41 | I | 2006

7205 | B | 2006
178 | A | 2006
7520 | W | 2007
120 | U | 2007
75 | I | 2007

10372 | B | 2007
261 | A | 2007

6.1.2 JSON

Sample JSON response (Durham Police Department):

[
{

"year": 2005,
"native_american": 9,
"black": 5665,
"white": 4481,
"other": 357,
"non-hispanic": 9298,
"hispanic": 1377,
"asian": 163

},
{

"year": 2006,
"native_american": 41,
"black": 7200,
"white": 5318,
"other": 231,
"non-hispanic": 11342,
"hispanic": 1626,
"asian": 178

},
{

"year": 2007,
"native_american": 75,
"black": 10365,
"white": 7516,
"other": 120,
"non-hispanic": 16050,
"hispanic": 2287,
"asian": 261

},
]

6.2 Likelihood-of-search by stop-reason

URI: /api/agency/<id>/stops_by_reason/

Officer URI: /api/agency/<id>/stops_by_reason/?officer=<id>

22 Chapter 6. API Endpoints

https://opendatapolicingnc.com/api/agency/78/stops_by_reason/
https://opendatapolicingnc.com/api/agency/78/stops_by_reason/?officer=368

NC Traffic Stops Documentation, Release 0.1

A count of likelihood-of-search by stop-reason.

6.2.1 SQL Query

One query for all stops and another for only stops with searches.

SELECT count(p.person_id),
p.race,
s.purpose,
extract(YEAR FROM s.date) AS year

FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
WHERE p.type='D'
AND s.agency_id = 78

GROUP BY p.race,
s.purpose,
year

ORDER BY year ASC,
s.purpose ASC,
p.race DESC;

SELECT count(se.person_id),
p.race,
s.purpose,
extract(YEAR FROM s.date) AS year

FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
JOIN stops_search se ON s.stop_id = se.stop_id
WHERE p.type='D'
AND s.agency_id = 78

GROUP BY p.race,
s.purpose,
year

ORDER BY year ASC,
s.purpose ASC,
p.race DESC;

Sample SQL Results:

count | race | purpose | year
-------+------+---------+------

2568 | W | 1 | 2006
134 | U | 1 | 2006
31 | I | 1 | 2006

2386 | B | 1 | 2006
117 | A | 1 | 2006
272 | W | 2 | 2006
18 | U | 2 | 2006

348 | B | 2 | 2006
8 | A | 2 | 2006

29 | W | 3 | 2006
35 | B | 3 | 2006

342 | W | 4 | 2006
9 | U | 4 | 2006
1 | I | 4 | 2006

430 | B | 4 | 2006
11 | A | 4 | 2006

(continues on next page)

6.2. Likelihood-of-search by stop-reason 23

NC Traffic Stops Documentation, Release 0.1

(continued from previous page)

628 | W | 5 | 2006
14 | U | 5 | 2006
3 | I | 5 | 2006

1231 | B | 5 | 2006
12 | A | 5 | 2006

750 | W | 6 | 2006
20 | U | 6 | 2006
4 | I | 6 | 2006

1511 | B | 6 | 2006
11 | A | 6 | 2006

198 | W | 7 | 2006
9 | U | 7 | 2006

373 | B | 7 | 2006
5 | A | 7 | 2006

204 | W | 8 | 2006
3 | U | 8 | 2006

409 | B | 8 | 2006
1 | A | 8 | 2006

328 | W | 9 | 2006
24 | U | 9 | 2006
2 | I | 9 | 2006

482 | B | 9 | 2006
13 | A | 9 | 2006

count | race | purpose | year
-------+------+---------+------

73 | W | 1 | 2006
1 | U | 1 | 2006

126 | B | 1 | 2006
5 | A | 1 | 2006

21 | W | 2 | 2006
1 | U | 2 | 2006

25 | B | 2 | 2006
19 | W | 3 | 2006
18 | B | 3 | 2006
44 | W | 4 | 2006
56 | B | 4 | 2006
62 | W | 5 | 2006

156 | B | 5 | 2006
1 | A | 5 | 2006

47 | W | 6 | 2006
1 | U | 6 | 2006

169 | B | 6 | 2006
5 | W | 7 | 2006
1 | U | 7 | 2006

26 | B | 7 | 2006
29 | W | 8 | 2006
91 | B | 8 | 2006
1 | A | 8 | 2006

16 | W | 9 | 2006
2 | U | 9 | 2006
1 | I | 9 | 2006

50 | B | 9 | 2006

24 Chapter 6. API Endpoints

NC Traffic Stops Documentation, Release 0.1

6.2.2 JSON Response

{
"searches": [

{
"purpose": "Speed Limit Violation",
"year": 2006,
"hispanic": 35,
"native_american": 0,
"white": 73,
"asian": 5,
"black": 126,
"non-hispanic": 170,
"other": 1

},
{

"purpose": "Stop Light/Sign Violation",
"year": 2006,
"hispanic": 14,
"native_american": 0,
"white": 21,
"asian": 0,
"black": 25,
"non-hispanic": 33,
"other": 1

}
],
"stops": [

{
"purpose": "Speed Limit Violation",
"year": 2006,
"hispanic": 475,
"native_american": 31,
"white": 2567,
"asian": 117,
"black": 2386,
"non-hispanic": 4760,
"other": 134

},
{

"purpose": "Stop Light/Sign Violation",
"year": 2006,
"hispanic": 90,
"native_american": 0,
"white": 272,
"asian": 8,
"black": 348,
"non-hispanic": 556,
"other": 18

},
]

}

6.3 Use-of-force

URI: /api/agency/<id>/use_of_force/

6.3. Use-of-force 25

https://opendatapolicingnc.com/api/agency/78/use_of_force/

NC Traffic Stops Documentation, Release 0.1

Officer URI: /api/agency/<id>/use_of_force/?officer=<id>

A count of all use-of-force by all races and by all ethnicities by year.

6.3.1 SQL Query

Sample SQL query:

SELECT count(se.person_id),
p.race,
extract(YEAR FROM s.date) AS year

FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
JOIN stops_search se ON s.stop_id = se.stop_id
WHERE p.type='D'
AND s.agency_id = 78
AND s.engage_force = 't'

GROUP BY p.race,
year

ORDER BY p.race DESC,
year ASC;

Sample SQL results:

count | race | year
-------+------+------

3 | W | 2002
1 | W | 2003
1 | W | 2005
3 | W | 2006
3 | W | 2007
9 | W | 2008
1 | W | 2010
1 | W | 2011
1 | W | 2012
2 | U | 2002

12 | B | 2002
4 | B | 2003
4 | B | 2004
1 | B | 2005
5 | B | 2006

10 | B | 2007
12 | B | 2008
3 | B | 2009
4 | B | 2010
8 | B | 2011
4 | B | 2012
1 | B | 2013

(22 rows)

6.3.2 JSON

Sample JSON response (Durham Police Department):

26 Chapter 6. API Endpoints

https://opendatapolicingnc.com/api/agency/78/use_of_force/?officer=368

NC Traffic Stops Documentation, Release 0.1

[
{

"year": 2006,
"native_american": 0,
"other": 0,
"black": 5,
"hispanic": 3,
"asian": 0,
"non-hispanic": 5,
"white": 3

},
{

"year": 2007,
"native_american": 0,
"other": 0,
"black": 10,
"hispanic": 1,
"asian": 0,
"non-hispanic": 12,
"white": 3

},
{

"year": 2008,
"native_american": 0,
"other": 0,
"black": 12,
"hispanic": 6,
"asian": 0,
"non-hispanic": 15,
"white": 9

}
]

6.4 Contraband Hit Rate

URI: /api/agency/<id>/contraband_hit_rate/

Officer URI: /api/agency/<id>/contraband_hit_rate/?officer=<id>

A count of contraband hit-rate by year and race.

6.4.1 SQL Query

One query for all stops with searches and another for stops with searches with contraband.

SELECT count(se.person_id),
p.race,
extract(YEAR FROM s.date) AS year

FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
JOIN stops_search se ON s.stop_id = se.stop_id
WHERE p.type='D'
AND s.agency_id = 78

GROUP BY p.race,

(continues on next page)

6.4. Contraband Hit Rate 27

https://opendatapolicingnc.com/api/agency/78/contraband_hit_rate/
https://opendatapolicingnc.com/api/agency/78/contraband_hit_rate/?officer=368

NC Traffic Stops Documentation, Release 0.1

(continued from previous page)

year
ORDER BY year ASC,

p.race DESC;

SELECT count(c.person_id),
p.race,
extract(YEAR FROM s.date) AS year

FROM stops_person p
JOIN stops_stop s ON p.stop_id = s.stop_id
JOIN stops_search se ON s.stop_id = se.stop_id
JOIN stops_contraband c ON se.search_id = c.search_id
WHERE p.type='D'
AND s.agency_id = 78

GROUP BY p.race,
year

ORDER BY year ASC,
p.race DESC;

Sample SQL Results:

count | race | year
-------+------+------

316 | W | 2006
6 | U | 2006
1 | I | 2006

717 | B | 2006
7 | A | 2006

465 | W | 2007
5 | U | 2007
3 | I | 2007

934 | B | 2007
17 | A | 2007

count | race | year
-------+------+------

47 | W | 2006
1 | U | 2006

150 | B | 2006
2 | A | 2006

85 | W | 2007
1 | I | 2007

259 | B | 2007
4 | A | 2007

6.4.2 JSON

Sample JSON response (Durham Police Department):

{
"contraband": [

{
"year": 2006,
"hispanic": 17,
"native_american": 0,
"other": 1,

(continues on next page)

28 Chapter 6. API Endpoints

NC Traffic Stops Documentation, Release 0.1

(continued from previous page)

"black": 149,
"asian": 2,
"non-hispanic": 182,
"white": 47

},
{

"year": 2007,
"hispanic": 31,
"native_american": 1,
"other": 0,
"black": 260,
"asian": 4,
"non-hispanic": 319,
"white": 85

},
],
"searches": [

{
"year": 2006,
"hispanic": 174,
"native_american": 1,
"other": 6,
"black": 716,
"asian": 7,
"non-hispanic": 872,
"white": 316

},
{

"year": 2007,
"hispanic": 225,
"native_american": 3,
"other": 5,
"black": 935,
"asian": 17,
"non-hispanic": 1200,
"white": 465

},
]

}

6.4. Contraband Hit Rate 29

NC Traffic Stops Documentation, Release 0.1

30 Chapter 6. API Endpoints

CHAPTER 7

Vagrant Testing

7.1 Starting the VM

You can test the provisioning/deployment using Vagrant. This requires Vagrant 1.3+. The Vagrantfile is configured to
install the Salt Master and Minion inside the VM once you’ve run vagrant up. The box will be installed if you
don’t have it already.:

vagrant up

The general provision workflow is the same as in the previous provisioning guide so here are notes of the Vagrant
specifics.

7.2 Provisioning the VM

Set your environment variables and secrets in conf/pillar/local.sls. It is OK for this to be checked into
version control because it can only be used on the developer’s local machine. To finalize the provisioning you simply
need to run:

fab vagrant deploy

The Vagrant box will use the current working copy of the project and the local.py settings. If you want to use this for
development/testing it is helpful to change your local settings to extend from staging instead of dev:

Example local.py
from traffic_stops.settings.staging import *

Override settings here
DATABASES['default']['NAME'] = 'traffic_stops_local'
DATABASES['default']['USER'] = 'traffic_stops_local'

DEBUG = True

31

http://vagrantup.com/

NC Traffic Stops Documentation, Release 0.1

This won’t have the same nice features of the development server such as auto-reloading but it will run with a
stack which is much closer to the production environment. Also beware that while conf/pillar/local.sls
is checked into version control, local.py generally isn’t, so it will be up to you to keep them in sync.

7.3 Testing on the VM

With the VM fully provisioned and deployed, you can access the VM at the IP address specified in the Vagrantfile,
which is 33.33.33.10 by default. Since the Nginx configuration will only listen for the domain name in conf/
pillar/staging/env.sls, you will need to modify your /etc/hosts configuration to view it at one of those
IP addresses. I recommend 33.33.33.10, otherwise the ports in the localhost URL cause the CSRF middleware to
complain REASON_BAD_REFERER when testing over SSL. You will need to add:

33.33.33.10 <domain>

where <domain> matches the domain in conf/pillar/staging/env.sls. For example, let’s use
dev.example.com:

33.33.33.10 dev.example.com

In your browser you can now view https://dev.example.com and see the VM running the full web stack.

Note that this /etc/hosts entry will prevent you from accessing the true dev.example.com. When your testing is
complete, you should remove or comment out this entry.

32 Chapter 7. Vagrant Testing

https://dev.example.com

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

33

	Development Setup
	Getting Started
	Development
	When running migrations

	Docker
	Restore Production Data
	Deployment

	Data Import
	Local/Development Environment
	Server
	Updating landing page stats

	Server Setup
	Provisioning
	Layout
	Deployment

	Server Provisioning
	Overview
	Salt Master
	Pillar Setup
	Managing Secrets
	Github Deploy Keys
	Environment Variables
	Setup Checklist
	Provision a Minion
	Optional Configuration
	Quickstart

	API Endpoints
	Stops by all races and ethnicities by year
	Likelihood-of-search by stop-reason
	Use-of-force
	Contraband Hit Rate

	Vagrant Testing
	Starting the VM
	Provisioning the VM
	Testing on the VM

	Indices and tables

