

Network Balancing Act

Network Balancing Act, or NBA, is a packet processing framework based on Linux and commodity Intel x86 hardware.

Its goal is to offer both programmability and high performance by exploiting modern commodity hardware such as multi-queue-enabled 10 GbE network cards, multi-socket/multi-core CPUs, and computation accelerators like GPUs.
The programming interface resembles the Click modular router [http://www.read.cs.ucla.edu/click/click], which express packet processing functions as composable C++ classes (called elements).
Click has been a de-facto standard framework for software-based packet processors for years, but suffered from low performance.
In contrast, on Intel Sandy Bridge (E5-2670) dual-socket servers with eight 10 GbE (Intel X520-DA2) network cards, NBA saturates the hardware I/O capacity with light-weight workloads: 80 Gbps IPv4 forwarding throughput for large packets and 62 Gbps for minimum-sized packets.

Note that NBA covers per-packet processing only—it does not support flow-level processing yet.

Getting Started Guide

	System Requirements
	Supported Hardware

	BIOS Settings

	Building NBA
	Supported Platforms

	Step-by-step Guide

	DPDK Configs for Network Cards

	Optional Installations

	Customizing Your Build

	Running NBA
	Standalone Execution

	Scripted Execution

	Updating Documentation

Using NBA

	System Configuration

	Pipeline Configuration

	Writing Elements

	Writing Offloadable Elements

Element Catalog

	Intrinsic Elements

	Ethernet Elements

	IP Elements

	IPv6 Elements

	IPsec Elements

	Load Balancers

Extending NBA

	Writing Your Load Balancer

	Adding a New Compute Device

Indices and tables

	Index

	Module Index

	Search Page

System Requirements

Supported Hardware

NBA can run on most Intel servers with supported NICs,
but we recommend Sandy Bridge or newer generations of Intel CPUs
since integrated memory controller and integrated PCIe controller is a
important performance booster.

For GPU acceleration, the current version only supports NVIDIA CUDA GPUs,
either desktop class (GeForce) or server class (Tesla) models.

BIOS Settings

	If available, turn off Intel EIST technology in BIOS.

	You need to fix the clock speed of individual CPU cores on Haswell systems
(Xeon E5-XXXXv3) for accurate timing control and performance measurements.

Building NBA

Supported Platforms

Currently NBA is only tested on Linux x86_64 3.10 or newer kernels,
and the Ubuntu 14.04/16.04 LTS distribution.

Step-by-step Guide

Installing dependencies

Ensure that you have a C/C++ compiler (e.g., g++ 4.8 or newer).
The compiler must support the C++11 standard.

Check out the latest DPDK source tree:

$ git clone git://dpdk.org/dpdk
$ cd dpdk
$ $EDITOR configs/common_linuxapp
$ make install T=x86_64-native-linuxapp-gcc

See details on what you need to edit on configs/common_linuxapp
at DPDK configurations for network cards.

Note

You need to install the kernel header/source packages first.

Install library dependencies on your system:

$ sudo apt-get install libev-dev libssl-dev libpapi-dev

Install Python 3.5 on your system.
You may use the system package manager such as apt-get.
In that case, ensure that you also have development package as well:

$ sudo apt-get install python3.5 libpython3.5-dev

Then install our Python dependencies:

$ pip3 install --user snakemake

Note

We recommend using a separate Python environment contained inside the user directory.
See pyenv [https://github.com/yyuu/pyenv] for more details.

Compilation

Clone the project source code:

$ git clone https://github.com/anlab-kaist/NBA nba

Install our 3rd-party libraries, the Click configuration parser:

$ cd nba
$ git submodule init && git submodule update

It will be automatically built along with NBA when you first build NBA.

Set the environment variable as follows:

$ export NBA_DPDK_PATH=/home/userid/dpdk/x86_64-native-linuxapp-gcc
$ export USE_CUDA=0 # for testing CPU-only version without CUDA installation

Finally, run:

$ snakemake -j

If all is well, the executable is located in bin/main.

DPDK Configs for Network Cards

Intel X520 Series (82599 chipset)

You just need to bind the PCI addresses of network cards to igb_uio using
tools/dpdk_nic_bind.py script provided by DPDK.

Attention

When using ixgbe driver with vectorized PMD enabled, you should fix the IO
batch size to be 32, whereas you may change the computation batch size as
you want.

In our experiements, the IO batch size 32 and the computation batch size 64 performs best.
We have already set those as the default values. (see config/default.py)

Mellanox ConnectX Series

You need to install the OFED toolchain provided by Mellanox because DPDK’s mlx4
poll-mode driver uses Mellanox’s kernel Infiniband driver to control the
hardware and perform DMA.
We recommend to use version 3.0 or later, as these new versions have much
better performance and includes firmware updates.

To use mlx4_pmd on DPDK, turn on it inside DPDK’s configuration:

CONFIG_RTE_LIBRTE_MLX4_PMD=y

To increase throughputs, set the following in the same config:

CONFIG_RTE_LIBRTE_MLX4_SGE_WR_N=1

For maximum throughputs, turn off the followings:

	blueflame 1: sudo ethtool --set-priv-flags ethXX blueflame off

	rx/tx auto-negotiation for flow control: sudo ethtool -A ethXX rx off tx off

Note that above settings must be done in packet generators as well.

Warning

We recommend to turn off blueflame when loading the mlx4_core kernel module
as module parameters, instead of using ethtool afterwards.

You do not need to explicitly bind the PCI addresses of Mellanox cards to
igb_uio because mlx4_pmd automatically detects them using the kernel driver.

To use mlx4 in NBA, set the following environment variable and rebuild:

$ export NBA_PMD=mlx4
$ snakemake clean && snakemake -j

	1

	“blueflame” is a Mellanox-specific feature that uses PCI BAR for tranferring
descriptors of small packets instead of using DMA on RX/TX rings. It is
known to have lower latency, but causes throughput degradation with NBA.

Optional Installations

NVIDIA CUDA

If you want to use GPU acceleration, install NVIDIA CUDA 7.0 or newer.
We recommend to download the latest version of .bin package from the NVIDIA website [https://developer.nvidia.com/cuda-downloads] instead of using system packages.

Note

A small daemon is required to “pin” GPU’s interrupts to specific cores.
See details in our gist [https://gist.github.com/3404967].

Make CUDA binaries accessible from your shell:

$ echo 'export PATH="$PATH:/usr/local/cuda/bin"' >> ~/.profile
$ sudo sh -c 'echo /usr/local/cuda/lib64 > /etc/ld.so.conf.d/cuda.conf'
$ sudo ldconfig

To use CUDA in NBA, do:

$ export USE_CUDA=1
$ snakemake clean && snakemake -j

Intel Xeon Phi

If you want to use Xeon Phi acceleration, install the latest Intel MPSS (many-core platform software stack) by visiting the official website [https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss].

CPU statistics

To run experiment scripts, install sysstat package (or any package that offers mpstat command).

Customizing Your Build

Our build script offers a few configurable parameters as environment variables:

	NBA_DPDK_PATH: specifies the path to Intel DPDK (required)

	NBA_RANDOM_PORT_ACCESS: randomizes the RX queue scanning order for each worker thread (default: false)

	NBA_OPENSSL_PATH: specifies the path of OpenSSL library (default: /usr)

	DEBUG: build without compiler optimization (default: 0)

	USE_CUDA: activates NVIDIA CUDA support (default: 1)

	USE_KNAPP: activates Knapp-based Intel Xeon Phi support (default: 0)

	USE_PHI: activates OpenCL-based Intel Xeon Phi support (default: 0, not implemented)

	USE_NVPROF: activates nvprof API calls to track GPU-related timings (default: 0)

	USE_OPENSSL_EVP: determines whether to use EVP API for OpenSSL that enables AES-NI support (default: 1)

	NBA_NO_HUGE: determines whether to use huge-pages (default: 1)

	NBA_PMD: determines what poll-mode driver to use (default: ixgbe)

Note

1 means true and 0 means false for boolean options.

Running NBA

Standalone Execution

Execute bin/main with DPDK EAL arguments and NBA arguments.
For example,

$ sudo bin/main -cffff -n4 -- configs/rss.py configs/ipv4-router.click

For details about DPDK EAL arguments, see DPDK’s documentation [http://dpdk.readthedocs.org/].

Scripted Execution

Updating Documentation

Install the latest Python (3.5+ recommended) and Sphinx utility.

$ pip3 install --user Sphinx sphinx_rtd_theme

Then you may now compile the documentation as follows:

$ cd docs
$ make html
open _build/index.html in your web browser

Committing and pushing the updates to the NBA repository will automatically trigger the updates in the online documentation [https://nba.readthedocs.io].

System Configuration

Pipeline Configuration

Writing Elements

Writing Offloadable Elements

Intrinsic Elements

	FromInput

	ToOutput

	Discard

	Queue

	RandomWeightedBranch

	Classifier

	PacketSizeClassifier

	None

Ethernet Elements

	L2Forward

	DropBroadcasts

IP Elements

	CheckIPHeader

	DecIPTTL

	IPLookup

	IPv4 datablocks

IPv6 Elements

	CheckIP6Header

	DecIP6HLIM

	LookupIP6Route

	IPv6 datablocks

IPsec Elements

	IPsecESPEncap

	IPsecAES

	IPsecAuthHMACSHA1

	IPsec datablocks

Load Balancers

	CPUOnly

	GPUOnly

	LoadBalanceThruput

	LoadBalanceAdaptiveMeasure

Writing Your Load Balancer

Adding a New Compute Device

Index

 D
 | E
 | N
 | U

D

 	
 	DEBUG

E

 	
 	
 environment variable

 	DEBUG

 	NBA_DPDK_PATH

 	NBA_NO_HUGE

 	NBA_OPENSSL_PATH

 	NBA_PMD

 	NBA_RANDOM_PORT_ACCESS

 	USE_CUDA

 	USE_KNAPP

 	USE_NVPROF

 	USE_OPENSSL_EVP

 	USE_PHI

N

 	
 	NBA_DPDK_PATH

 	NBA_NO_HUGE

 	
 	NBA_OPENSSL_PATH

 	NBA_PMD

 	NBA_RANDOM_PORT_ACCESS

U

 	
 	USE_CUDA

 	USE_KNAPP

 	
 	USE_NVPROF

 	USE_OPENSSL_EVP

 	USE_PHI

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Network Balancing Act

 		
 System Requirements

 		
 Supported Hardware

 		
 BIOS Settings

 		
 Building NBA

 		
 Supported Platforms

 		
 Step-by-step Guide

 		
 Installing dependencies

 		
 Compilation

 		
 DPDK Configs for Network Cards

 		
 Intel X520 Series (82599 chipset)

 		
 Mellanox ConnectX Series

 		
 Optional Installations

 		
 NVIDIA CUDA

 		
 Intel Xeon Phi

 		
 CPU statistics

 		
 Customizing Your Build

 		
 Running NBA

 		
 Standalone Execution

 		
 Scripted Execution

 		
 Updating Documentation

 		
 System Configuration

 		
 Pipeline Configuration

 		
 Writing Elements

 		
 Writing Offloadable Elements

 		
 Intrinsic Elements

 		
 Ethernet Elements

 		
 IP Elements

 		
 IPv6 Elements

 		
 IPsec Elements

 		
 Load Balancers

 		
 Writing Your Load Balancer

 		
 Adding a New Compute Device

_static/comment-bright.png

_static/ajax-loader.gif

