
NAPALM Documentation
Release 1

David Barroso

Aug 13, 2017





Contents

1 Installation 3

2 Documentation 5

Python Module Index 35

i



ii



NAPALM Documentation, Release 1

YANG (RFC6020) is a data modelling language, it’s a way of defining how data is supposed to look like. The napalm-
yang library provides a framework to use models defined with YANG in the context of network management. It
provides mechanisms to transform native data/config into YANG and vice versa.

You can take a look to the following tutorial to see what this is about and how to get started.

Contents 1

https://tools.ietf.org/html/rfc6020
https://github.com/napalm-automation/napalm-yang
https://github.com/napalm-automation/napalm-yang
https://github.com/napalm-automation/napalm-yang/blob/develop/interactive_demo/tutorial.ipynb


NAPALM Documentation, Release 1

2 Contents



CHAPTER 1

Installation

To install napalm-yang you can use pip as with any other driver:

pip install -U napalm-yang

3



NAPALM Documentation, Release 1

4 Chapter 1. Installation



CHAPTER 2

Documentation

Profiles

In order to correctly map YANG objects to native configuration and vice versa, napalm-yang uses the concept of
profiles. Profiles, identify the type of device you are dealing with, which can vary depending on the OS, version and/or
platform you are using.

If you are using a napalm driver and have access to your device, you will have access to the profile property which
you can pass to any function that requires to know the profile. If you are not using a napalm driver or don’t have access
to the device, a profile is just a list of strings so you can just specify it directly. For example:

# Without access to the device
model.parse_config(profile=["junos"], config=my_configuration)

# With access
with driver(hostname, username, password) as d:

model.parse_config(device=d)

# With access but overriding profile
with driver(hostname, username, password) as d:

model.parse_config(device=d, profile=["junos13", "junos"])

Note: As you noticed a device may have multiple profiles. When that happens, each model that is parsed will loop
through the profiles from left to right and use the first profile that implements that model (note that a YANG model is
often comprised of multiple modules). This is useful as there might be small variances between different systems but
not enough to justify reimplementing everything.

You can find the profiles here but what exactly is a profile? A profile is a bunch of YAML files that follows the structure
of a YANG model and describes two things:

1. How to parse native configuration/state and map it into a model.

2. How to translate a model and map it into native configuration.

5

https://github.com/napalm-automation/napalm-yang/tree/develop/napalm_yang/mappings


NAPALM Documentation, Release 1

For example, for a given interface, the snippet below specifies how to map configuration into the
openconfig_interface model on EOS:

enabled:
_process:

- mode: is_present
regexp: "(?P<value>no shutdown)"
from: "{{ parse_bookmarks.interface[interface_key] }}"

description:
_process:

- mode: search
regexp: "description (?P<value>.*)"
from: "{{ parse_bookmarks.interface[interface_key] }}"

mtu:
_process:

- mode: search
regexp: "mtu (?P<value>[0-9]+)"
from: "{{ parse_bookmarks.interface[interface_key] }}"

And the following snippet how to map the same attributes from the openconfig_interface to native configura-
tion:

enabled:
_process:

- mode: element
value: " shutdown\n"
when: "{{ not model }}"

description:
_process:

- mode: element
value: " description {{ model }}\n"
negate: " default description"

mtu:
_process:

- mode: element
value: " mtu {{ model }}\n"
negate: " default mtu\n"

Note: Profiles can also deal with structured data like XML or JSON.

As you can see it’s not extremely difficult to understand what they are doing, in the next section we will learn how to
write our own profiles.

YANG Basics

It’s not really necessary to understand how YANG works to write a profile but you need some basic understanding.

Basic Types

• container - A container is just a placeholder, sort of like a map or dictionary. A container doesn’t store any
information per se, instead, it contains attributes of any type. For example, the following config object would
be a valid container with three attributes of various types:

6 Chapter 2. Documentation



NAPALM Documentation, Release 1

container config:
leaf description: string
leaf mtu: uint16
leaf enabled: boolean

• leaf - A leaf is an attribute that stores information. Leafs are of a type and values have to be valid for the given
type. For example:

leaf descrpition: string # Any string is valid
leaf mtu: uint16 # -1 is not valid but 1500 is
leaf enabled: boolean # true, false, 1, 0, True, False are valid

Note: There can be further restrictions, for example the leaf prefix-length is of type uint8 but it’s further
restricted with the option range 0..32

• YANG lists - A YANG list represents a container in the tree that will represent individual members of a list. For
example:

container interfaces:
list interface:

container config:
leaf description: string
leaf mtu: uint16
leaf enabled: boolean

As we start adding elements to the interface list, each individual interface will have it’s own attributes. For example:

interfaces:
interface["eth1"]:

config:
description: "An interface"
mtu: 1500
enabled: true

interface["eth2"]:
config:

description: "Another interface"
mtu: 9000
enabled: false

Writing Profiles

As it’s been already mentioned, a profile is a bunch of YAML files that describe how to map native configuration
and how to translate an object into native configuration. In order to read native configuration we will use parsers, to
translate a YANG model into native configuration we will use translators.

Both parsers and translators follow three basic rules:

1. One directory per module.

2. One file per model.

3. Exact same representation of the model inside the file:

For example:

2.3. Writing Profiles 7



NAPALM Documentation, Release 1

$ tree napalm_yang/mappings/eos/parsers/config
napalm_yang/mappings/eos/parsers/config
- napalm-if-ip
| - secondary.yaml
- openconfig-if-ip
| - ipv4.yaml
- openconfig-interfaces
| - interfaces.yaml
- openconfig-vlan

- routed-vlan.yaml
- vlan.yaml

4 directories, 5 files
$ cat napalm_yang/mappings/eos/parsers/config/openconfig-vlan/vlan.yaml
---
metadata:

(trimmed for brevity)

vlan:
(trimmed for brevity)
config:

(trimmed for brevity)
vlan_id:

(trimmed for brevity)

If we check the content of the file vlan.yaml we can clearly see two parts:

• metadata - This part specifies what parser or translator we want to use as there are several depending on the
type of data we are parsing from or translating to and some options that the parser/translator might need. For
example:

metadata:
processor: XMLParser
execute:

- method: _rpc
args: []
kwargs:

get: "<get-configuration/>"

In this case we are using the XMLParser parser and in order to get the data we need from the device we have to call
the method _rpc with the args and kwargs parameters. This is, by the way, an RPC call for a junos device.

• vlan - This is the part that follows the model specification. In this case is vlan but in others it might be
interfaces, addressess or something else, this will be model dependent but it’s basically whatever
it’s not metadata. This part will follow the model specification and add rules on each attribute to tell the
parser/translator what needs to be done. For example:

vlan:
_process: unnecessary
config:

_process: unnecessary
vlan_id:

_process:
- mode: xpath
xpath: "vlan-id"
from: "{{ parse_bookmarks['parent'] }}"

As we are dealing with a parser we have to specify the _process attribute at each step (translators require the

8 Chapter 2. Documentation



NAPALM Documentation, Release 1

attribute _process). There are two special types of actions; unnecessary and not_implemented. Both do
exactly the same, skip any action and move onto the next attribute. The only difference is purely aesthetically and for
documentation purposes.

Something else worth noting is that each attribute inside _process/_process is evaluated as a jinja2 template
so you can do variable substitutions, evaluations, etc...

Parsers

Parsers are responsible for mapping native configuration/show_commands to a YANG model.

Special actions

Most actions depend on the parser you are using, however, some are common to all of them:

unnecessary

This makes the parser skip the field and continue processing the tree.

not_implemented

This makes the parser stop processing the tree underneath this value. For example:

field_1:
process: unnecessary

field_2:
process: not_implemented
subfield_1:

process: ...
subfield_2:

process: ...
field_3:

...

The not_implemented action will stop the parser from processing subfield_1 and subfield_2 and move
directly onto field_3.

gate

Works like not_implemented but accepts a condition. For example:

protocols:
protocol:

bgp:
_process:
- mode: gate
when: "{{ protocol_key != 'bgp bgp' }}"

global:
...

The snippet above will only process the bgp subtree if the condition is not met.

2.4. Parsers 9



NAPALM Documentation, Release 1

Special fields

When parsing attributes, some fields may depend on the parser you are using but some will be available regardless.
Some may be even be mandatory.

mode

• Mandatory: Yes

• Description: Which parsing/translation action to use for this particular field.

• Example: Parse the description field with a simple regular expression:

_process:
- mode: search

regexp: "description (?P<value>.*)"
from: "{{ bookmarks.interface[interface_key] }}"

when

• Mandatory: No

• Description: The evaluation of this field will determine if the action is executed or skipped. This action is
probably not very useful when parsing but it’s available if you need it.

• Example: Configure switchport on IOS devices only if the interface is not a Loopback or a Management
interface:

ipv4:
_process: unnecessary
config:

_process: unnecessary
enabled:

_process:
- mode: element
value: " no switchport\n"
negate: " switchport\n"
in: "interface.{{ interface_key }}"
when: "{{ model and interface_key[0:4] not in ['Mana', 'Loop'] }

→˓}"

from

• Mandatory: Yes

• Description: Configuration to read. In combination with bookmarks provides the content we are operating
with.

• Example: Get IP addresses from both both interfaces and subinterfaces:

address:
_process:
- mode: xpath
xpath: "family/inet/address"
key: name
from: "{{ bookmarks['parent'] }}"

10 Chapter 2. Documentation



NAPALM Documentation, Release 1

Special Variables

keys

When traversing lists, you will have all the relevant keys for the object available, including on nested lists. Let’s see
it with an example, let’s say we are currently parsing interfaces/interface["et1"]/subinterfaces/
subinterface["0"].ipv4.addresses.address["10.0.0.1"]. At this particular point you will have
the following keys available:

• address_key - 10.0.0.1

• subinterface_key - 0

• interface_key - et1

• parent_key - 0

When a list is traversed you will always have available a key with name $(attribute)_key. In addition, you will
have parent_key as the key of the immediate parent object. In the example above, parent_key will correspond
to 0 as it’s the immediate parent of the address object.

bookmarks

Bookmarks are points of interest in the configuration. Usually, you will be gathering blocks of configurations and
parsing on those but sometimes, the configuration you need might be somewhere else. For those cases, you will be
able to access those with the bookmarks. Using the same example as before, interfaces/interface["et1"]/
subinterfaces/subinterface["0"].ipv4.addresses.address["10.0.0.1"], you will have the
following bookmarks:

• bookmarks.interfaces - The root of the configuration

• bookmarks.interface["et1"] - The block of configuration that corresponds to the interface et1

• bookmarks.subinterface["0"] - The block of configuration that corresponds to the subinterface 0 of
et1.

• bookmarks.address["10.0.0.1"] - The block of configuration for the address belonging to the subin-
terface.

• bookmarks.parent - The block of configuration for the immediate parent, in this case, the subinterface 0.

Note you can use keys instead and do bookmarks.subinterface[parent_key] or bookmarks.
subinterface[subinterface_key].

extra_vars

Some actions let’s you provide additional information for later use. Those will be stored on the extra_vars dictio-
nary. For example:

address:
_process:

- mode: block
regexp: "(?P<block>ip address (?P<key>(?P<ip>.*))\\/(?P<prefix>\\d+))(?P

→˓<secondary> secondary)*"
from: "{{ bookmarks['parent'] }}"

config:
_process: unnecessary
ip:

_process:

2.4. Parsers 11



NAPALM Documentation, Release 1

- mode: value
value: "{{ extra_vars.ip }}"

The first regexp captures a bunch of vars that later can be used by just reading them from extra_Vars.

Metadata

The metadata tells the profile how to process that module and how to get the necessary data from the device. For
example:

---
metadata:

parser: XMLParser
execute:

- method: _rpc
args: []
kwargs:

get: "<get-configuration/>"

• execute is a list of calls to do to from the device to extract the data.

– method is the method from the device to call.

– args are the numbered/ordered arguments for the method

– kwargs are the keyword arguments for the method

In addition, some methods like parse_config and parse_state may have mechanisms to pass the information
needed to the parser instead of relying on a live device to obtain it. For parsers, you will just have to pass a string with
the same information the profile is trying to gather.

XMLParser

This extractor will read an XML an extract data from it.

To illustrate the examples below we will use the following configuration:

<configuration>
<interfaces>

<interface>
<name>ge-0/0/0</name>
<description>adasdasd</description>

</interface>
<interface>

<name>lo0</name>
<disable/>

</interface>
</interfaces>

</configuration>

List - xpath

Advances in the XML document up to the point where the relevant list of elements is found.

Arguments:

12 Chapter 2. Documentation



NAPALM Documentation, Release 1

• xpath (mandatory): elements to traverse

• key (mandatory): which element is the key of the list

• post_process_filter (optional): modify the key with this Jinja2 expression

Example:

Starting from the root, the following action will move us to interface so we can parse each interface
individually:

interface:
_process:
- mode: xpath
xpath: "interfaces/interface"
key: name
from: "{{ bookmarks.interfaces }}"

This means after this action we will have a list of interface blocks like this:

- <interface>
<name>ge-0/0/0</name>
<description>adasdasd</description>

</interface>
- <interface>

<name>lo0</name>
<disable/>

</interface>

And we will be able to keep processing them individually.

Leaf - xpath

Extracts a value from an element.

Arguments:

• xpath (mandatory): element to extract

• regexp (optional): Apply regexp to the value of the element. Must capture value group. See “leaf - map”
example for more details.

• default (optional): Set this value if no element is found.

• attribute (optional): Instead of the text of the element extracted, extract this attribute of the element.

Example:

For each interface, read the element description and map it into the object:

description:
_process:
- mode: xpath
xpath: description
from: "{{ bookmarks['parent'] }}"

Leaf - value

Apply a user-defined value to the object.

2.5. XMLParser 13



NAPALM Documentation, Release 1

Arguments:

• value (mandatory): What value to apply

Example:

In the following example we can assign a value we already have to the interface.name attribute:

name:
_process:
- mode: value
value: "{{ interface_key }}"

Leaf - map

Extract value and do a lookup to choose value.

Arguments:

• xpath (mandatory): Same as xpath action.

• regexp (optional): Same as xpath action.

• map (mandatory): Dictionary where we will do the lookup action.

Example:

We can read an element, extract some information and then apply the lookup function, for example, we
can read the interface name, extract some of the first few characters and figure out the type of interface
like this:

type:
_process:
- mode: map
xpath: name
regexp: "(?P<value>[a-z]+).*"
from: "{{ bookmarks['parent'] }}"
map:

ge: ethernetCsmacd
lo: softwareLoopback
ae: ieee8023adLag

The regular expression will give ge and lo which we can map into ethernetCsmacd and ieee8023adLag
respectively.

Leaf - is_absent

Works exactly like xpath but if the evaluation is None, it will return True.

Example:

We could check if an interface is enabled with this:

enabled:
_process:
- mode: is_absent
xpath: "disable"
from: "{{ bookmarks['parent'] }}"

14 Chapter 2. Documentation



NAPALM Documentation, Release 1

As disable is missing in the interface ge-0/0/0 we know it’s enabled while lo0 will be not as it was present.

Leaf - is_present

Works exactly like xpath but if the evaluation is None, it will return False.

TextParser

Will apply regular expressions to text to extract data from it.

To explain how this parser works, let’s use the following configuration:

interface Ethernet1
no switchport

!
interface Ethernet1.1

description blah
!
interface Loopback1

no switchport
ip address 192.168.0.1/24
ip address 192.168.1.1/24 secondary

!

Note: The regular expressions on this parser have the MULTILINE and IGNORECASE flags turned on.

List - block

Using a regular expression it divides the configuration in blocks where each block is relevant for a different element
of the list.

Arguments:

• regexp (mandatory) - Regular expression to apply. Note that it must capture two things at least; block, which
will be the entire block of configuration relevant for the interface and key, which will be the key of the element.

• mandatory (optional) will force the creation of one or more elements by specifying them manually in a dict the
key, block (can be empty string) and any potential extra_vars you may want to specify.

• composite_key (optional) is a list of attributes captured in the regexp to be used as the key for the element.

• flat (optional) if set to true (default is false) the parser will understand the configuration for the element
consists of flat commands instead of nested (for example BGP neighbors or static routes)

• key (optional) set key manually

• post_process_filter (optional) - Modify the key with this Jinja expression. key and extra_vars variables
are available.

Example 1

Capture the interfaces:

2.6. TextParser 15



NAPALM Documentation, Release 1

_process:
- mode: block

regexp: "(?P<block>interface (?P<key>(\\w|-)*\\d+)\n(?:.|\n)*?^!$)"
from: "{{ bookmarks.interfaces }}"

So the regexp is basically doing two things. Capturing each block of text that starts with interface
(a word)(a number)\n (no dots allowed as a dot means it’s subinterface) and then finishing in !.
It’s also getting the key. So after this step we will have a list like:

- key: Ethernet1
block: interface Ethernet1

no switchport
!

- key: Loopback1
block: interface Loopback1

no switchport
ip address 192.168.0.1/24
ip address 192.168.1.1/24 secondary

!

Note that Ethernet1.1 is missing as it’s not matching the key.

Example 2

As we process Ethernet1 we will want it’s subinterfaces so we can use a similar regexp as before but
looking for a dot in the key, using the interface_key (Ethernet1) as part of the regexp. We
also have to make sure in the from we went back to the root of the config:

subinterface:
_process:
- mode: block
regexp: "(?P<block>interface {{interface_key}}\\.(?P<key>\\d+)\\n(?:.

→˓|\\n)*?^!$)"
from: "{{ bookmarks.interfaces }}"

Example 3

Sometimes we can get easily more information in one go than just the key and the block. For those
cases we can capture more groups and they will be stored in the extra_vars dictionary:

address:
_process:
- mode: block
regexp: "(?P<block>ip address (?P<key>(?P<ip>.*))\\/(?P<prefix>

→˓\\d+))(?P<secondary> secondary)*"
from: "{{ bookmarks['parent'] }}"

Example 4

In some cases native configuration might be “flat” but nested in a YANG model. This is the case of the
global or default VRF, in those cases, it is hard you may want to ensure that global VRF is always created:

_process:
- mode: block

regexp: "(?P<block>vrf definition (?P<key>(.*))\n(?:.|\n)*?^!$)"
from: "{{ bookmarks['network-instances'][0] }}"
mandatory:

- key: "global"

16 Chapter 2. Documentation



NAPALM Documentation, Release 1

block: ""
extra_vars: {}

Example 5

Some list elements have composite keys, if that’s the case, use the composite key to tell the parser how to
map captured elements to the composite key:

protocols:
_process: unnecessary
protocol:

_process:
- mode: block
regexp: "(?P<block>router (?P<protocol_name>(bgp))\\s*(?P

→˓<process_id>\\d+)*\n(?:.|\n)*?)^(!| vrf \\w+)$"
from: "{{ bookmarks['network-instances'][0] }}"
composite_key: [protocol_name, protocol_name]
when: "{{ network_instance_key == 'global' }}"

Example 6

Some list elements (like static routes or BGP neighbors) are configured as a flat list of commands instead
of nested. By default, if you would try to parse each command individually the parser would try to
create a new element with each line and fail as multiple lines belong to the same element but they are
treated independently. By setting flat: true this behavior is changed and subsequent commands
will update an already created object:

bgp:
neighbors:

neighbor:
_process:

- mode: block
regexp: "(?P<block>neighbor (?P<key>\\d+.\\d+.\\d+.\\d+).*)

→˓"
from: "{{ bookmarks['protocol'][protocol_key] }}"
flat: true

Example 7

In some rare cases you might not be able to extract the key directly from the configuration. For example,
the static protocol consists of ip route commands. In that case you can set the key yourself:

protocols:
protocol:

_process:
- mode: block
regexp: "(?P<block>ip route .*\n(?:.|\n)*?^!$)"
from: "{{ bookmarks['network-instances'][0] }}"
key: "static static"

Example 8

Sometimes you need to transform the key value. For example, static routes require the prefix in CIDR
format, but Cisco IOS outputs routes in <network> <mask> format. In that case you can use
post_process_filter to apply additional filters:

static:
_process:

- mode: block

2.6. TextParser 17



NAPALM Documentation, Release 1

regexp: "(?P<block>ip route (?P<key>\\d+\\S+ \\d+\\S+).*)"
from: "{{ bookmarks['network-instances'][0] }}"
post_process_filter: "{{ key|addrmask_to_cidr }}"

Leaf - search

Extract value from a regexp.

Arguments:

• regexp (mandatory) - Regular expression to apply. Note the regular expression has to capture the value at
least but it can capture others if you want.

• default (optional) - Value to assign if the regexp returns nothing.

Example.

Get the description of an interface:

description:
_process:
- mode: search
regexp: "description (?P<value>.*)"
from: "{{ bookmarks.interface[interface_key] }}"

Leaf - value

Apply a user-defined value to the object.

Arguments:

• value (mandatory): What value to apply

Example.

Evaluate a value we already extracted and set model to True if is not None:

secondary:
_process:
- mode: value
value: "{{ extra_vars.secondary != None }}"

Leaf - is_absent

Works exactly like search but if the evaluation is None, it will return True.

Example.

Check if an interface is an IP interface or not:

ipv4:
_process: unnecessary
config:

_process: unnecessary
enabled:

_process:
- mode: is_absent

18 Chapter 2. Documentation



NAPALM Documentation, Release 1

regexp: "(?P<value>^\\W*switchport$)"
from: "{{ bookmarks['parent'] }}"

Leaf - is_present

Works exactly like search but if the evaluation is None, it will return False.

Example.

Check if an interface is enabled:

enabled:
_process:
- mode: is_present
regexp: "(?P<value>no shutdown)"
from: "{{ bookmarks.interface[interface_key] }}"

Leaf - map

Works exactly like search but we do a lookup of the value on a map.

Arguments:

• regexp (mandatory) - Same as search

• default (optional) - Same as search

• map (optional) - Map where to do the lookup function.

Example.

Check type of interface by extracting the name and doing a lookup:

_process:
- mode: map

regexp: "(?P<value>(\\w|-)*)\\d+"
from: "{{ interface_key }}"
map:

Ethernet: ethernetCsmacd
Management: ethernetCsmacd
Loopback: softwareLoopback
Port-Channel: ieee8023adLag
Vlan: l3ipvlan

Translators

Translators are responsible for transforming a model into native configuration.

Special actions

Most actions depend on the parser you are using, however, some are common to all of them:

2.7. Translators 19



NAPALM Documentation, Release 1

unnecessary

This makes the parser skip the field and continue processing the tree.

not_implemented

This makes the parser stop processing the tree underneath this value. For example:

field_1:
process: unnecessary

field_2:
process: not_implemented
subfield_1:

process: ...
subfield_2:

process: ...
field_3:

...

The not_implemented action will stop the parser from processing subfield_1 and subfield_2 and move
directly onto field_3.

gate

Works like not_implemented but accepts a condition. For example:

protocols:
protocol:

bgp:
_process:
- mode: gate
when: "{{ protocol_key != 'bgp bgp' }}"

global:
...

The snippet above will only process the bgp subtree if the condition is not met.

Special fields

When translating an object, some fields might depend on the translator you are using but some will available regardless.
Some may be even be mandatory.

mode

• mandatory: yes

• description: which parsing/translation action to use for this particular field

• example: Translate description attribute of an interface to native configuration:

description:
_process:

- mode: element

20 Chapter 2. Documentation



NAPALM Documentation, Release 1

value: " description {{ model }}\n"
negate: " default description"

when

• mandatory: no

• description: the evaluation of this field will determine if the action is executed or skipped. This action is
probably not very useful when parsing but it’s available if you need it.

• example: configure switchport on IOS devices only if the interface is not a loopback or a management
interface:

ipv4:
_process: unnecessary
config:

_process: unnecessary
enabled:

_process:
- mode: element
value: " no switchport\n"
negate: " switchport\n"
in: "interface.{{ interface_key }}"
when: "{{ model and interface_key[0:4] not in ['mana', 'loop'] }

→˓}"

in

• mandatory: no

• description: where to add the configuration. Sometimes the configuration might have to be installed on a
different object from the one you are parsing. For example, when configuring a tagged subinterface on junos
you will have to add also a vlan-tagging option on the parent interface. On IOS/EOS, when configuring
interfaces, you have to also add the configuration in the root of the configuration and not as a child of the parent
interface:

vlan:
_process: unnecessary
config:

_process: unnecessary
vlan_id:

_process:
- mode: element
element: "vlan-tagging"
in: "interface.{{ interface_key }}" # <--- add element to

→˓parent interface
when: "{{ model > 0 }}"
value: null

- mode: element
element: "vlan-id"
when: "{{ model > 0 }}"

(...)
subinterface:

_process:

2.7. Translators 21



NAPALM Documentation, Release 1

mode: container
key_value: "interface {{ interface_key}}.{{ subinterface_key }}\n"
negate: "no interface {{ interface_key}}.{{ subinterface_key }}\n"
in: "interfaces" # <--- add element to root of

→˓configuration

Note: This field follows the same logic as the bookmarks special field.

continue_negating

• mandatory: no

• description: This option, when added to a container, will make the framework to also negate children.

• example: We can use as an example the “network-instances” model. In the model, BGP is inside the
network-instance container, however, in EOS and other platforms that BGP configuration is decoupled
from the VRF, so in order to tell the framework to delete also the direct children you will have to use this option.
For example:

network-instance:
_process:

- mode: container
key_value: "vrf definition {{ network_instance_key }}\n"
negate: "no vrf definition {{ network_instance_key }}\n"
continue_negating: true
end: " exit\n"
when: "{{ network_instance_key != 'global' }}"

...
protocols:

_process: unnecessary
protocol:

_process:
- mode: container
key_value: "router bgp {{ model.bgp.global_.config.as_ }}\n vrf {

→˓{ network_instance_key}}\n"
negate: "router bgp {{ model.bgp.global_.config.as_ }}\n no vrf {

→˓{ network_instance_key}}\n"
end: " exit\n"
when: "{{ protocol_key == 'bgp bgp' and network_instance_key !=

→˓'global' }}"
replace: false
in: "network-instances"

The example above will generate:

no vrf definition blah
router bgp ASN

no vrf blah

Without continue_negating it would just generate:

no vrf definition blah

22 Chapter 2. Documentation



NAPALM Documentation, Release 1

Special variables

keys

See keys.

model

This is the current model/attribute being translated. You have the entire object at your disposal, not only it’s value so
you can do things like:

vlan_id:
_process:

- mode: element
value: " encapsulation dot1q vlan {{ model }}\n"

Or:

config:
_process: unnecessary
ip:

_process: unnecessary
prefix_length:

_process:
- mode: element
value: " ip address {{ model._parent.ip }}/{{ model }} {{ 'secondary

→˓' if model._parent.secondary else '' }}\n"
negate: " default ip address {{ model._parent.ip }}/{{ model }}\n"

XMLTranslator

XMLTranslator is responsible of translating a model into XML configuration.

Metadata

• xml_root - Set this value on the root of the model to instantiate the XML object.

For example:

---
metadata:

processor: XMLTranslator
xml_root: configuration

This will instantiate the XML object <configuration/>.

Container - container

Creates a container.

Arguments:

• container (mandatory) - Which container to create

2.8. XMLTranslator 23



NAPALM Documentation, Release 1

• replace (optional) - Whether this element has to be replaced in case of merge/replace or it’s not necessary
(remember XML is hierarchical which means you can unset things directly in the root).

Example:

Create the interfaces container:

_process:
. mode: container

container: interfaces
replace: true

List - container

For each element of the list, create a container.

Arguments:

• container (mandatory) - Which container to create

• key_element (mandatory) - Lists require a key element, this is the name of the element.

• key_value (mandatory) - Key element value.

Example:

Create interfaces:

interface:
_process:
. mode: container
container: interface
key_element: name
key_value: "{{ interface_key }}"

This will result elements such as:

<interface>
<name>ge-0/0/0</name>

</interface>
<interface>
<name>lo0</name>

</interface>

Leaf - element

Adds an element to a container.

Arguments:

• element (mandatory): Element name.

• value (optional): Override value. Default is value of the object.

Example 1:

Configure description:

24 Chapter 2. Documentation



NAPALM Documentation, Release 1

description:
_process:

- mode: element
element: description

Example 2:

Enable or disable an interface:

enabled:
_process:

- mode: element
element: "disable"
when: "{{ not model }}"
value: null

We override the value and set it to null because to disable we just have to create the element, we don’t
have to set any value.

Example 3:

Configure an IP address borrowing values from other fields:

config:
_process: unnecessary
ip:

_process: unnecessary
prefix_length:

_process:
- mode: element
element: name
value: "{{ model._parent.ip }}/{{ model }}"
when: "{{ model }}"

TextTranslator

TextTranslator is responsible of translating a model into text configuration.

Metadata

• root - Set to true if this is the root of the model.

List - container

Create/Removes each element of the list.

Arguments:

• key_value (mandatory): How to create the element.

• negate (mandatory): How to eliminate/default the element.

• replace (optional): Whether the element has to be defaulted or not during the replace operation.

• end (optional): Closing command to signal end of element

2.9. TextTranslator 25



NAPALM Documentation, Release 1

Example 1:

Create/Default interfaces:

interfaces:
_process: unnecessary
interface:

_process:
. mode: container
key_value: "interface {{ interface_key }}\n"
negate: "{{ 'no' if interface_key[0:4] in ['Port', 'Loop'] else

→˓'default' }} interface {{ interface_key }}\n"
end: " exit\n"

Example 2:

Configure IP addresses. As the parent interface is defaulted already, don’t do it again:

address:
_process:
. mode: container
key_value: " ip address {{ model.config.ip }} {{ model.config.

→˓prefix_length|cidr_to_netmask }}{{ ' secondary' if model.config.secondary
→˓else '' }}\n"

negate: " default ip address {{ model.config.ip }} {{ model.
→˓config.prefix_length|cidr_to_netmask }}{{ ' secondary' if model.config.
→˓secondary else '' }}\n"

replace: false

Leaf - element

Configures an attribute.

Arguments:

• value (mandatory): How to configure the attribute

• negate (mandatory): How to default the attribute

Example 1:

Configure description:

description:
_process:

- mode: element
value: " description {{ model }}\n"
negate: " default description"

Example 2:

Configure an IP address borrowing values from other fields:

address:
_process: unnecessary
config:

_process: unnecessary
ip:

_process: unnecessary
prefix_length:

26 Chapter 2. Documentation



NAPALM Documentation, Release 1

_process:
- mode: element
value: " ip address {{ model._parent.ip }}/{{ model }} {

→˓{ 'secondary' if model._parent.secondary else '' }}\n"
negate: " default ip address {{ model._parent.ip }}/{{

→˓model }} {{ 'secondary' if model._parent.secondary else '' }}\n"

API

Models

Models are generated by pyangbind so it’s better to check it’s documentation for up to date information: http:
//pynms.io/pyangbind/generic_methods/

Utils

napalm_yang.utils.model_to_dict(model, mode=’‘)
Given a model, return a representation of the model in a dict.

This is mostly useful to have a quick visual represenation of the model.

Parameters

• model (PybindBase) – Model to transform.

• mode (string) – Whether to print config, state or all elements (“” for all)

Returns A dictionary representing the model.

Return type dict

Examples

>>> config = napalm_yang.base.Root()
>>>
>>> # Adding models to the object
>>> config.add_model(napalm_yang.models.openconfig_interfaces())
>>> config.add_model(napalm_yang.models.openconfig_vlan())
>>> # Printing the model in a human readable format
>>> pretty_print(napalm_yang.utils.model_to_dict(config))
>>> {
>>> "openconfig-interfaces:interfaces [rw]": {
>>> "interface [rw]": {
>>> "config [rw]": {
>>> "description [rw]": "string",
>>> "enabled [rw]": "boolean",
>>> "mtu [rw]": "uint16",
>>> "name [rw]": "string",
>>> "type [rw]": "identityref"
>>> },
>>> "hold_time [rw]": {
>>> "config [rw]": {
>>> "down [rw]": "uint32",

2.10. API 27

http://pynms.io/pyangbind/generic_methods/
http://pynms.io/pyangbind/generic_methods/


NAPALM Documentation, Release 1

>>> "up [rw]": "uint32"
(trimmed for clarity)

napalm_yang.utils.diff(f, s)
Given two models, return the difference between them.

Parameters

• f (Pybindbase) – First element.

• s (Pybindbase) – Second element.

Returns A dictionary highlighting the differences.

Return type dict

Examples

>>> diff = napalm_yang.utils.diff(candidate, running)
>>> pretty_print(diff)
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "both": {
>>> "Port-Channel1": {
>>> "config": {
>>> "mtu": {
>>> "first": "0",
>>> "second": "9000"
>>> }
>>> }
>>> }
>>> },
>>> "first_only": [
>>> "Loopback0"
>>> ],
>>> "second_only": [
>>> "Loopback1"
>>> ]
>>> }
>>> }
>>> }

Root

class napalm_yang.base.Root
Bases: object

This is a container you can use as root for your other models.

Examples

>>> config = napalm_yang.base.Root()
>>>
>>> # Adding models to the object

28 Chapter 2. Documentation



NAPALM Documentation, Release 1

>>> config.add_model(napalm_yang.models.openconfig_interfaces())
>>> config.add_model(napalm_yang.models.openconfig_vlan())

add_model(model, force=False)
Add a model.

The model will be asssigned to a class attribute with the YANG name of the model.

Parameters

• model (PybindBase) – Model to add.

• force (bool) – If not set, verify the model is in SUPPORTED_MODELS

Examples

>>> import napalm_yang
>>> config = napalm_yang.base.Root()
>>> config.add_model(napalm_yang.models.openconfig_interfaces)
>>> config.interfaces
<pyangbind.lib.yangtypes.YANGBaseClass object at 0x10bef6680>

compliance_report(validation_file=’validate.yml’)
Return a compliance report. Verify that the device complies with the given validation file and writes a
compliance report file. See https://napalm.readthedocs.io/en/latest/validate.html.

elements()

get(filter=False)
Returns a dictionary with the values of the model. Note that the values of the leafs are YANG classes.

Parameters filter (bool) – If set to True, show only values that have been set.

Returns A dictionary with the values of the model.

Return type dict

Example

>>> pretty_print(config.get(filter=True))
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "et1": {
>>> "config": {
>>> "description": "My description",
>>> "mtu": 1500
>>> },
>>> "name": "et1"
>>> },
>>> "et2": {
>>> "config": {
>>> "description": "Another description",
>>> "mtu": 9000
>>> },
>>> "name": "et2"
>>> }

2.10. API 29

https://napalm.readthedocs.io/en/latest/validate.html


NAPALM Documentation, Release 1

>>> }
>>> }
>>> }

load_dict(data, overwrite=False)
Load a dictionary into the model.

Parameters

• data (dict) – Dictionary to loead

• overwrite (bool) – Whether the data present in the model should be overwritten by
the

• in the dictor not. (data) –

Examples

>>> vlans_dict = {
>>> "vlans": { "vlan": { 100: {
>>> "config": {
>>> "vlan_id": 100, "name": "production"}},
>>> 200: {
>>> "config": {
>>> "vlan_id": 200, "name": "dev"}}}}}
>>> config.load_dict(vlans_dict)
>>> print(config.vlans.vlan.keys())
... [200, 100]
>>> print(100, config.vlans.vlan[100].config.name)
... (100, u'production')
>>> print(200, config.vlans.vlan[200].config.name)
... (200, u'dev')

parse_config(device=None, profile=None, native=None, attrs=None)
Parse native configuration and load it into the corresponding models. Only models that have been added
to the root object will be parsed.

If native is passed to the method that’s what we will parse, otherwise, we will use the device to
retrieve it.

Parameters

• device (NetworkDriver) – Device to load the configuration from.

• profile (list) – Profiles that the device supports. If no profile is passed it will be
read from device.

• native (list of strings) – Native configuration to parse.

Examples

>>> # Load from device
>>> running_config = napalm_yang.base.Root()
>>> running_config.add_model(napalm_yang.models.openconfig_interfaces)
>>> running_config.parse_config(device=d)

30 Chapter 2. Documentation



NAPALM Documentation, Release 1

>>> # Load from file
>>> with open("junos.config", "r") as f:
>>> config = f.read()
>>>
>>> running_config = napalm_yang.base.Root()
>>> running_config.add_model(napalm_yang.models.openconfig_interfaces)
>>> running_config.parse_config(native=config, profile="junos")

parse_state(device=None, profile=None, native=None, attrs=None)
Parse native state and load it into the corresponding models. Only models that have been added to the root
object will be parsed.

If native is passed to the method that’s what we will parse, otherwise, we will use the device to
retrieve it.

Parameters

• device (NetworkDriver) – Device to load the configuration from.

• profile (list) – Profiles that the device supports. If no profile is passed it will be
read from device.

• native (list string) – Native output to parse.

Examples

>>> # Load from device
>>> state = napalm_yang.base.Root()
>>> state.add_model(napalm_yang.models.openconfig_interfaces)
>>> state.parse_config(device=d)

>>> # Load from file
>>> with open("junos.state", "r") as f:
>>> state_data = f.read()
>>>
>>> state = napalm_yang.base.Root()
>>> state.add_model(napalm_yang.models.openconfig_interfaces)
>>> state.parse_config(native=state_data, profile="junos")

to_dict(filter=True)
Returns a dictionary with the values of the model. Note that the values of the leafs are evaluated to python
types.

Parameters filter (bool) – If set to True, show only values that have been set.

Returns A dictionary with the values of the model.

Return type dict

Example

>>> pretty_print(config.to_dict(filter=True))
>>> {
>>> "interfaces": {
>>> "interface": {
>>> "et1": {

2.10. API 31



NAPALM Documentation, Release 1

>>> "config": {
>>> "description": "My description",
>>> "mtu": 1500
>>> },
>>> "name": "et1"
>>> },
>>> "et2": {
>>> "config": {
>>> "description": "Another description",
>>> "mtu": 9000
>>> },
>>> "name": "et2"
>>> }
>>> }
>>> }
>>> }

translate_config(profile, merge=None, replace=None)
Translate the object to native configuration.

In this context, merge and replace means the following:

•Merge - Elements that exist in both self and merge will use by default the values in merge
unless self specifies a new one. Elements that exist only in self will be translated as they are and
elements present only in merge will be removed.

•Replace - All the elements in replace will either be removed or replaced by elements in self.

You can specify one of merge, replace or none of them. If none of them are set we will just translate
configuration.

Parameters

• profile (list) – Which profiles to use.

• merge (Root) – Object we want to merge with.

• replace (Root) – Object we want to replace.

Jinja2 Filters

IP address

FAQ

Some YAML files are insanely largely. Can I break them down into multiple files?

Yes, you can with the !include relative/path/to/file.yaml directive. For example:

# ./main.yaml
my_key:

blah: asdasdasd
bleh: !include includes/bleh.yaml

# ./includes/bleh.yaml

32 Chapter 2. Documentation



NAPALM Documentation, Release 1

qwe: 1
asd: 2

Will result in the final object:

my_key:
blah: asdasdasd
bleh:

qwe: 1
asd: 2

2.12. FAQ 33



NAPALM Documentation, Release 1

34 Chapter 2. Documentation



Python Module Index

n
napalm_yang.jinja_filters.ip_filters,

32

35



NAPALM Documentation, Release 1

36 Python Module Index



Index

A
add_model() (napalm_yang.base.Root method), 29

C
compliance_report() (napalm_yang.base.Root method),

29

D
diff() (in module napalm_yang.utils), 28

E
elements() (napalm_yang.base.Root method), 29

G
get() (napalm_yang.base.Root method), 29

L
load_dict() (napalm_yang.base.Root method), 30

M
model_to_dict() (in module napalm_yang.utils), 27

N
napalm_yang.jinja_filters.ip_filters (module), 32

P
parse_config() (napalm_yang.base.Root method), 30
parse_state() (napalm_yang.base.Root method), 31

R
Root (class in napalm_yang.base), 28

T
to_dict() (napalm_yang.base.Root method), 31
translate_config() (napalm_yang.base.Root method), 32

37


	Installation
	Documentation
	Python Module Index

