

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	nap 0.1 documentation

Welcome to nap’s documentation!

nap

Accessing APIs open-endily is an easy affair. pip install requests, pass in your data get data back. But the slight differences and demands of different API creating code that’s structured, re-usable and simple proves difficult.

nap hopes to help.

nap aims to be:

	Support Read (GET) and Write (POST/PUT/PATCH)

	Little to no configuration needed for to-spec REST APIs

	Easy to configure to fit any REST-like API

	Customize to fit even edgier use cases

Contents:

	Quickstart
	Step One: Declare your resource

	Step Two: Access your api

	Step Three: Set up custom lookup_urls

	Step Four: What’s next?

	
	Tutorial.

	
	Part 1: a Tastypie API

	Part 2: Github Gist API

	ResourceModel API
	Fields

	Lookup URLs

	Options

	API

	Fields

	URLs
	How a URL lookup works

	URL API

	Options
	resource_name

	root_url

	urls

	append_urls

	prepend_urls

	add_slash

	update_from_write

	update_method

	auth

	Authorization

	About
	Warnings about API Design.

	Thanks

	Roadmap
	Future Version Feature List

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nap 0.1 documentation

Quickstart

Step One: Declare your resource

note/client.py
from nap.resources import ResourceModel, Field

class Note(ResourceModel):

 pk = Field(api_name='id', resource_id=True)
 title = Field()
 content = Field()

 class Meta:
 root_url = 'http://127.0.0.1:8000/api/'
 resource_name = 'note'

Step Two: Access your api

from note.client import Note

n = Note(title='Some Title', content="some content")

POST http://127.0.0.1:8000/api/note/
n.save()

n = Note.objects.get('note/1/')
Some Title
n.title

GET http://127.0.0.1:8000/api/note/1/
n = Note.objects.lookup(pk=1)
n.title = "New Title"
n.content = "I sure do love butterflies"

PUT http://127.0.0.1:8000/api/note/1/
n.save()

n = Note.objects.get('note/1/')
"New Title"
n.title

Step Three: Set up custom lookup_urls

from nap.resources import ResourceModel, Field
from nap.lookup import nap_url

class Note(ResourceModel):

 pk = Field(api_name='id', resource_id=True)
 title = Field()
 content = Field()

 class Meta:
 root_url = 'http://127.0.0.1:8000/api/'
 resource_name = 'note'
 additional_urls = (
 nap_url(r'%(resource_name)s/title/%(title)s/'),
)

GET http://127.0.0.1:8000/api/note/title/butterflies/
n = Note.objects.lookup(title='New Title')
"I sure do love butterflies"
n.content

Step Four: What’s next?

	Learn more about tweaking ResourceModel by looking at Tutorial: Part 1

	Learn about LookupURLs, the glue between your resource and its API

	
	Look deeper into the core modules behind nap:

	
	ResourceModel API, The Pythonic representation of your resource.

	engine, all the HTTP nuts-and-bolts powering nap.

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nap 0.1 documentation

ResourceModel API

The ResourceModel is the main component to interaction with nap. While not intereacted with directly, subclasses of nap provide the functionality needed to working with APIs. Because of this, ResourceModel is designed to have as many hooks as possible to tweak the functionality of it’s primary method calls.

Fields

Main article: Fields

Each field is a one-to-one mapping with a attribute returned in your API’s response. It handles any validation and coerition (scrubbing) necessary to turn the API data into Python (and back to an API data string again). Special fields can be used to group API data into sub-collections of ResourceModels.

Lookup URLs

Main article: URLs

LookupURLs power the main engine of nap. By defining dynamic URLs, API get/create/update operations can be issued without specifying a raw URL, and instead the necessary data to complete the operation.

How LookupURLs work and

Options

Main article: Options

API

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nap 0.1 documentation

Fields

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nap 0.1 documentation

URLs

Proper URL patterns are the backbone of a ResourceModel. URLs are defined in a ResourceModel as a tuple of nap_urls–a thin wrapper around a python-formatted string. These are defined and tied to a ResourceModel through the urls, prepend_urls, and append_urls. These are stored in the ResourceModel’s _meta

By default, ResourceModels have two nap_urls that allow them to make all common calls to a to-spec REST API:

(
 nap_url('%(resource_name)s/', create=True, lookup=False, collection=True),
 nap_url('%(resource_name)s/%(resource_id)s/', update=True),
)

How a URL lookup works

nap_urls contain three parts of information:

	The kinds of lookups that this url can be used for.

	The URL String itself

	The names of variables needed to generate

On calls that are backed by a URL, Nap will iterate through every URL in it’s url list looking for a match. A match is considered a URL where

	The URL is valid for the type of request being attempted

	The variablres required to generated a valid URL are available.

Let’s dive into each part of a URL to understand this process a bit better.

Lookup Types

Lookup types closely match the kind of operations possible with an API. They are
create, lookup, update, collection.

	create: URLs that can be used to create new resources. Used for the create() method.

	lookup: URLs that can be used to retreive a single resource. Used for the get() method when using keyword arguments.

	update: URLs that can be used to create update an existing resource. Used for the update() method.

	collection: URLs that can be used to retrieve collections of resources. Used for the filter() and all() methods.

Valid URL Strings

A URL string is simply a python string, optionally containing dictionary-format variables.

nap bases it’s required variables partially on any format variables contained in the URL string.

URL Variables

LookupURLs may require variables to fully resolve. Required variables are either

	Python string format variables contained in the url_string, or

	Any variables named passed into a __init__‘s param parameter. These variables are passed into the URL via a URL query string.

ResourceModel passes in three kinds of variables into the LookupURL’s match function to determine if all required variables are available for URL resolution:

	Keyword arguments passed to lookup function (eg, ResourceModel.get(), ResourceModel.update())

	The values of fields, where the name of the field is passed as the variable name.

	Meta variables specific to the subclass of ResourceModel

The above lists these groups in order of presidence–eg, If update() is called on a ResourceModel with a resource_name of ‘person’, but a keyword argument of resource_name='author', %(resource_name)s will resolve to author.

Meta Variables available for URLs

Currently, there is only one meta variable passed to LookupURL.

resource_name

The resource name of the ResourceModel. Equal to resource_name

URL API

	
class nap.lookup.LookupURL

	Class in charge of resolving variable URLs based on keyword arguments. Used for any dynamic API method on ResourceModel

	
LookupURL.__init__(url_string[, params=None, create=False, update=False, lookup=False, collection=False])

	

	Parameters:	
	url_string – python-formatted string representing a URL

	params – an iterable of variables names required by the URL, as passed in a GET query string.

	create – Designates whether or not the URL is valid for create operations

	update – Designates whether or not the URL is valid for create operations

	lookup – Designates whether or not the URL is valid for create operations

	collection – Designates whether or not the URL is valid for create operations

	
LookupURL.url_vars

	Returns a tuple the names of variables contained within a LookupURL

	
LookupURL.required_vars

	Returns a tuple of the the names of all variables required to successfully resolve a URL.

	
LookupURL.match(**lookup_vars)

	Attempts to resolve a string of a URL, resolving any variables based on lookup_vars.

Returns a two tuple of the matching URL string and extra lookup variables that were passed in but not part of the required values.

If no match is found, a two tuple of (None, None) is returned.

	Parameters:	lookup_vars – A dict-like variable mapping URL variables names to

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nap 0.1 documentation

Options

resource_name

Optional

The name used to refer to a source in URLs. resource_name is appended to root_url to create the default url set.

Defaults to: ResourceModel’s class name, in all lower case. eg:

class FooBar(ResourceModel):
 # fields here..
 # resource_name is `foobar`

root_url

Optional

Defaults to: None

urls

Optional

URLs used to lookup API requests. See URLs for more information on definging ResourceModel urls.

Defaults to: A tuple of urls set to:

(
 nap_url('%(resource_name)s/',
 create=True,
 lookup=False,
 collection=True
),
 nap_url('%(resource_name)s/%(resource_id)s', update=True),
)

append_urls

Optional

URLs to be added after ResourceModel’s default_urls. See URLs for more information on definging ResourceModel urls.

Defaults to: () (an empty tuple)

prepend_urls

Optional

URLs to be added before ResourceModel’s default_urls. See URLs for more information on definging ResourceModel urls.

Defaults to: () (an empty tuple)

add_slash

Optional

Determines whehter or not slashes are appended to a url.

	If True, slashes will always be added to the end of URLs.

	If False, slashes will always be removed from the end of URLs

	If None, URLs will follow what is defined in the nap_url string.

Defaults to: None

update_from_write

Optional

Determines whether or not nap attempts to change an object’s field data based on the HTTP content of create and update requests.

Defaults to: True

update_method

Optional

String representing HTTP method used to update (edit) resource objects.

Defaults to: “PUT”

auth

Iterable of authorization classes. See :doc:auth for more information on Authorization classes.

Defaults to: () (an empty tuple)

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nap 0.1 documentation

Authorization

	
class HttpAuthorization

	

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nap 0.1 documentation

About

Warnings about API Design.

REST, similarly so many wonderful technological buzzronyms before it, was something specific that has come to mean something vaguely “not SOAP.” Because of this, nap triesto pick safe, undestructive defaults. The tradeoff with this decision is there is a little bit more customization required to make things work than a more traditional modeling backend (such as a relational database). To facilitate this, nap has an extensive list of options to make setting these configuration easy as possible.

Your nap models will only go as far as your API allows. For instance, if your API’s collections only return partial data about your object, you won’t have access to the left out fields (and risk saving over them without proper configuration!). The more you expose in your API the easier using nap will be.

Thanks

nap is the spiritual descendant of remote objects [https://github.com/saymedia/remoteobjects], and owes the core idea to it’s leg work – and both owe a great deal to the declarative syntax of Django models [http://www.sqlalchemy.org/] and SQLAlchemy [https://docs.djangoproject.com/en/dev/topics/db/models/]

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	nap 0.1 documentation

Roadmap

Future Version Feature List

0.1.1

	Minimal Feature complete.

	Handling of Tastypie-stype collections (contained within ‘objects’)

	Proper Error Raising

0.2.0

	Inheritence Features and Tests

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	nap 0.1 documentation

 Python Module Index

 n

 			

 		
 n	

 	[image: -]
 	
 nap	

 	
 	
 nap.resources	

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	nap 0.1 documentation

Index

 _
 | H
 | L
 | M
 | N
 | R
 | U

_

 	

 	__init__() (nap.lookup.LookupURL method)

H

 	

 	HttpAuthorization (built-in class)

L

 	

 	LookupURL (class in nap.lookup)

M

 	

 	match() (nap.lookup.LookupURL method)

N

 	

 	nap.resources (module)

R

 	

 	required_vars (nap.lookup.LookupURL attribute)

U

 	

 	url_vars (nap.lookup.LookupURL attribute)

 Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

 tutorial/tutorial2.html

 Navigation

 		
 index

 		
 modules |

 		nap 0.1 documentation »

Tutorial: Part 2

Writing clients against Tastypie APIs give a couple advantages. Not only do we usually have direct access to the API itself to make changes that would be better suited on the API side.

Writing a REST client against a third party site can be a more challenging affair. Sites may make slight changes to the REST spec for convenience (or random) reasons. Getting our LookupURL engine to be able to successfully talk to them will require some adjustments.

Github exposes a very open API to most of it’s resources. Since it’s gists [https://gist.github.com/] product is a fairly simple model, let’s use that for this example. Docs on the API itself can be found here [http://developer.github.com/v3/gists/].

Let’s get started.

Step 1: Basic Setup

Let’s start by applying what we learned in Part 1 to a Gist. Let’s only include the key fields right now–there’s no need to include everything an API returns to us. To create a gist, we usually need three fields – its description and files, and whether or not it’s public or not. Let’s also add a html_url field so we can check any new Gists we make easily:

import nap
from nap.auth import FoauthAuthorization
from nap.lookup import nap_url

class Gist(nap.ResourceModel):
 id = nap.Field(resource_id=True)

 description = nap.Field()
 public = nap.Field()
 files = nap.Field()

 html_url = nap.Field()

 class Meta:
 resource_name = 'gists'
 root_url = 'https://api.github.com/'

Immediately we see one difference from our Tastypie example. While we could have left off the resource_name for our Note class, the Github API uses a plural forum in their URLs. Becuase of this, seting resource_name to ‘gists’ is required.

Let’s try using this by grabbing a example gist [https://gist.github.com/3256061]:

>>> g = Gist.objects.get(id='3256061')
Traceback (most recent call last):
...
ValueError: Expected status code in (200,), got 404

Well, that’s not good! Diving into the gist API docs, we see that Github’s API URLs do not include a trailing slash, as our default URLs do. This is a fairly common API spec, and we can accommodate this by setting the Meta option add_slash to False.

class Gist(nap.ResourceModel):
 id = nap.Field(resource_id=True)

 description = nap.Field()
 public = nap.Field()
 files = nap.Field()

 html_url = nap.Field()

 class Meta:
 resource_name = 'gists'
 root_url = 'https://api.github.com/'
 add_slash = False

Let’s give that a try:

>>> g = Gist.objects.get(id='3256061')
>>> print g.description # "Nap Example"

That’s better!

Now would be a good time to show off the extra_data attribute available on ResourceModels. Our Gist class contains only a few fields that the API returns. By default, anything returned by the API that has no corresponding field gets thrown into the extra_data dictionary on an object:

>>> g.extra_data
{u'created_at': u'2012-08-04T08:41:32Z', u'updated_at': u'2012-08-04T08:41:32Z' ... }

This is useful if you only need to grab data in a rare case, or want to introspect the data being returned to you by an API.

Step 2: Authentication

Let’s see how creating goes. A gist requires only a files dictionary to be created:

>>> g = Gist(files={'x.txt': {'content': 'hello world'}})
>>> g.save()
>>> g.html_url # A gist url

If we load up that URL, we see that everything seems keen, but the gist we made is made by Anonymous. Not only does this deprive of us of the fame and glory that comes from such a poetic gist, it also forbids us from ever updating it again. Since updating is a key feature of nap, let’s add some authentication information. Github has two ways to authenticate – HTTP basic auth and Oauth. To keep things (much) simpler, let’s just use HTTP Auth for now. In the example below, replace the username and password arguments with your own Github username and password.

class Gist(nap.ResourceModel):
 id = nap.Field(resource_id=True)

 description = nap.Field()
 public = nap.Field()
 files = nap.Field()

 html_url = nap.Field()

 class Meta:
 resource_name = 'gists'
 root_url = 'https://api.github.com/'
 add_slash = False
 auth = (
 nap.auth.HttpAuthorization(
 username="YOUR USERNAME",
 password="YOUR PASSWORD"),
)

the auth Meta option is a tuple of Auth middlewares to apply to nap calls right before the request is made. HttpAuthorization applies basic HTTP auth to all requests made by nap. In case you need multiple forms of authentication, you can chain multiple Authorization backends in this setting. For more information on authorization in nap, see Authorization

Let’s try that same Creation, but using our new auth backend:

>>> g = Gist(files={'x.txt': {'content': 'hello world'}})
>>> g.save()
>>> g.html_url # a new gist url

(assuming you put your correct credentials in) Success!

Now that we have an authenticating model and a Gist, let’s try adding a description to it.:

>>> g.save()
ValueError: Invalid Update Response: expected stauts_code in (204,), got 404

Well that’s the pits. Reading more into the docs on Editing a gist, there’s two notable differences between nap’s defaults and the Gist API.

		The HTTP Method PATCH is used instead of PUT

		The valid response code is 200, not 204

Both of these cases are handled by Meta options. Let’s add them.

class Gist(nap.ResourceModel):
 id = nap.Field(resource_id=True)

 description = nap.Field()
 public = nap.Field()
 files = nap.Field()

 html_url = nap.Field()

 class Meta:
 resource_name = 'gists'
 root_url = 'https://api.github.com/'
 add_slash = False
 auth = (
 nap.auth.HttpAuthorization(
 username="YOUR USERNAME",
 password="YOUR PASSWORD"),
)
 update_method = 'PATCH'
 valid_update_status = (204, 200)

Now let’s fetch our Gist using a get, and try editing it again:

>>> g = Gist.objects.get(id='USE_YOUR_GIST_ID_HERE')
>>> g.description = 'new description'
>>> g.save()

Loading up the gist’s html_url, we see our new description is up!

Final Gist Model

import nap
from nap.auth import FoauthAuthorization
from nap.lookup import nap_url

import secret

class GistFile(nap.ResourceModel):
 content = nap.Field()

 size = nap.Field(readonly=True)
 raw_url = nap.Field(readonly=True)

 class Meta:
 root_url = 'https://api.github.com/gists'

class Gist(nap.ResourceModel):
 id = nap.Field(resource_id=True)

 description = nap.Field()
 public = nap.Field()
 files = nap.DictField(GistFile)

 url = nap.Field(readonly=True)
 user = nap.Field(readonly=True)
 html_url = nap.Field(readonly=True)

 class Meta:
 resource_name = 'gists'
 root_url = 'https://api.github.com/'
 add_slash = False
 update_method = 'PATCH'
 prepend_urls = (
 # For accessing /gists/starred and /gists/public, eg.
 # Gist.objects.filter(property='starred')
 nap_url('%(resource_name)s/%(property)s', collection=True, lookup=False),
)
 auth = (
 FoauthAuthorization(secret.foauth_email, secret.foauth_password),
)

 © Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

tutorial/tutorial1.html

 Navigation

 		
 index

 		
 modules |

 		nap 0.1 documentation »

Tutorial: Part 1

In part one of our tutorial, we’ll be creating a ResourceModel to interact with a simple Tastypie Django site. Tastypie [http://tastypieapi.org/] is a third party Django app that makes creating to-spec REST APIs. Because of this, it’s the perfect match to write our first ResourceModel, as it will require only a little fine tuning.

Step 0: Writing our API

Our API will closely match the one inferred to in Quickstart. Feel free to write your own as you follow along with this tutorial, but if you’d like to just use ours, the source code is available here [https://github.com/jacobb/example_nap_api/]

Step 1: Writing a basic ResourceModel

Let’s start by writing a very basic ResourceModel and going through it’s parts:

from nap import ResourceModel, Field, ResourceField

class Note(ResourceModel):

 title = Field(default='new title')
 content = Field()

 pk = Field(api_name='id', resource_id=True)

 class Meta:
 root_url = 'http://127.0.0.1:8000/api/v1/'
 resource_name = 'note'

We have a few things to note here:

		Two normal Fields, title and content. On any lookup field nap does, these will simple load whatever value the API returns for attributes with the same names. If the fields are not present, the Note object will be loaded with their default value (a blank string by default, or ‘new title’ in the case of title)

		
		A field pk with two special keyword arguments, api_name and resource_id

		
		api_name allows you to refer to a API variable by a different name on the object than what the API uses. In this case, a attribute on the API data called ‘id’ will be preferred to by a python attribute pk

		resource_id designates this field as the primary identifier for the object. This is used in issuing API requests to URLs that require an id (such as the default URL for update() and get()). It is also used to help represent the object in it’s __unicode__() method.

		
		the Meta class. This is the primary way to tweak and configure your ResourceModel. This one is pretty sparse, and contains the two primary options of a Meta class:

		
		root_url - This is a full base URL of your API. All requests to your API will be prefaced with this setting.

		resource_name - The primary name of your resource class. This is used to construct all default URLs. For this class, this option is not necessary – if left out of the Meta class, resource_name defaults to the name of the class in all lowercase – but it never hurts to be explicit!

That’s quite a lot! Feel free to quick through the in-links above to find out more about each option, but there’s no need to dive in too deeply yet.

Step 2: Using your ResourceModel

Our API has no resources to show us (assuming you haven’t added data manually), so let’s add a new Note:

>>> n = Note(title="A New Note!")
>>> n.content = "Daniel Lindsley rocks da house"
>>> n.save()

There! We’ve now created our first object in our API, and can retrieve it by it’s id:

>>> n = Note.objects.lookup(pk=1)
>>> print n.title # "A New Note!"

Remember, since we used api_name on the pk Field in our ResourceModel definition, we use pk to look up a value that the API refers to as id

We can also update and save this resource:

>>> n.title = "Let's use a new title"
>>> n.save()

And a PUT is issued to our API, updating our record.

Note that we had to re-fetch our Note in order to properly have access to it’s pk attribute. When we issued the create command, we weren’t able to update our Note with information calculated by the API itself (such as it’s ID, and created/updated timestamps). If we need to make many of these kind of creates and don’t mind the cost of an extra request, it may be beneficial to automate a refresh of the object after it is created. Our next step will go into a few ways we can handle that.

Step 3: Finer customization

By default, Tastypie APIs respond to a POST request with 201 response with a Location header pointing to the new resource’s URL. By default, nap will automatically set the value of the Location header as the Note object’s full_url, so any further updates should work. However, because Tastypie by default does not return a serialized representation of the object, we can’t get updated information without issuing a second GET request.

There are several ways we could address this:

		Set the Tastypie Resource Meta setting always_return_data to True. By default, if the 201 response after a create issues has content, Nap will attempt to update itself based on that content. However, since this is a nap tutorial and not a Tastypie tutorial, let’s say we don’t have access to change the API at hand.

		Manually Refresh the object. After saving the object, we could call refresh(), which issues a GET request to update our fields based on what the API has. But this seems a little overly manual, no?

		Subclass and extend the handle_create_response() method to automatically refresh after create if we have no content.

Not only does this sound like the best method, it also gives us an excuse to
show how easy it is to extend ResourceModel.

from nap import ResourceModel, Field, ResourceField

class Note(ResourceModel):

 title = Field(default='new title')
 content = Field()

 pk = Field(api_name='id', resource_id=True)

 class Meta:
 root_url = 'http://127.0.0.1:8000/api/v1/'
 resource_name = 'note'

 def handle_create_response(self, response):
 super(Note, self).handle_create_response(response)
 if not response.content:
 self.refresh()

We call the parent handle_create_response to let it handle the default behavior (eg, setting of full_url), then if we don’t have any content to go off of, refresh the object. Now our create process is seemless:

>>> n = Note(title='what up')
>>> n.save() # Issues a POST to /api/v1/note/
>>> print n.pk # 6
>>> n.content = 'some content'
>>> n.save() # Issues a PUT to /api/v1/note/6/

And there we have it! A feature-full interface to our REST API.

In the next step, We’ll go into handling a REST-like, but slightly off spec, REST API with some further tweaks.

 © Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		nap 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Jacob Burch.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/nap.png

_static/down.png

