
NanoK Documentation
Release 0.0.1

Jean Guyomarc’h

Oct 07, 2018

Documentation Contents

1 Introduction 3
1.1 What is NanoK? . 3
1.2 What hardware does NanoK support? . 3
1.3 How to build NanoK? . 4
1.4 How to contribute to the development of NanoK? . 4

2 NanoKBS 5
2.1 Introduction . 5
2.2 Command-Line Interface . 5
2.3 Describing a NanoK Application . 6

3 NanoK Development 7
3.1 Installing the build dependencies . 7
3.2 Building the Core Unit Tests . 8
3.3 Developping on the STM32f4 . 8
3.4 Development Workflow . 8
3.5 Coding Guidelines . 8

4 NanoK Unit Tests 9

i

ii

NanoK Documentation, Release 0.0.1

This is the root documentation of the NanoK kernel. Take a tour by going through the Introduction page. If you are
interested in developping NanoK, please visit NanoK Development.

Warning: NanoK is under heavy development, and as such is not ready for anything but its own development.

Documentation Contents 1

NanoK Documentation, Release 0.0.1

2 Documentation Contents

CHAPTER 1

Introduction

Contents

• Introduction

– What is NanoK?

– What hardware does NanoK support?

– How to build NanoK?

– How to contribute to the development of NanoK?

1.1 What is NanoK?

NanoK is a nanoscopic kernel for micro-controllers. It aims at providing an efficient runtime tasks abstraction for
hardware that does not come with many resources. It is not a standalone kernel: it must be compiled with the appli-
cation that will run on the selected hardware. This allows the kernel to be tuned finely for a given usage. As such,
NanoK can be seen as a unikernel

1.2 What hardware does NanoK support?

Warning: NanoK is still in an omega development phase. It is highly experimental and shall not be used for
anything but its own development.

• STM32F4-DISCOVERY: ST’s discovery board with an STM324f variant.

3

https://en.wikipedia.org/wiki/Unikernel
https://www.st.com/en/evaluation-tools/stm32f4discovery.html

NanoK Documentation, Release 0.0.1

1.3 How to build NanoK?

Please refer to the NanoKBS page.

1.4 How to contribute to the development of NanoK?

Please refer to the NanoK Development page.

4 Chapter 1. Introduction

CHAPTER 2

NanoKBS

2.1 Introduction

As stated in the Introduction page, NanoK must be compiled with the application that will run on the targeted hardware.
As such, NanoK’s build shall be driven by the application. Given this requirement, NanoK should not be built on its
own. So, NanoK does not provide a build system out-of-the-box. This may seem shocking at first, but this allows an
more in-depth integration with the application. Third parties will be able to tweak NanoK more easily.

Instead, NanoK provides an exhaustive and comprehensive description of its sources, as well as a small (python3)
script nanokbs/nanokbs.py that allows to generate a build system from an input template file. Third-parties will
be able to write the template that better suit their needs. A basic ninja build template is provided by NanoK for its
testing. It can be used as an example.

2.2 Command-Line Interface

nanokbs/nanokbs.py can be run as an executable python3 script. To consult the command-line interface of this
tool, run the following command, from the top source directory of NanoK:

./nanokbs/nanokbs.py --help

nanokbs/nanokbs.py is run to generate a build system if the following arguments are provided:

• --app (or -a) to provide the path to a JSON (hjson) file that describes how the application is built (see De-
scribing a NanoK Application);

• --template (or -t) to provide the path to a jinja2 template that will be used to generate the application build
system; and

• --output (or -o) to specify the path where the generated build system shall be written.

It is likely to always be used as follows:

./nanokbs/nanokbs.py -a "<path/to/app.hjson>" -t "<path/to/template>" -o "<build>"

5

https://ninja-build.org
https://hjson.org
https://pypi.org/project/Jinja2/

NanoK Documentation, Release 0.0.1

2.3 Describing a NanoK Application

An application shall be defined in an hjson file. It is a superset of JSON, so this description can be written in JSON
instead of HJSON. Note however that HJSON offers a more understandable syntax with syntactic suggar.

This document must define a key app, which shall contain the following data:

• arch: a string that indicates the hardware architecture to be used. The possible options can be seen by looking
at the directories in the src/arch folder. Note that pc is reserved to unit tests.

• products: it is a list of binaries compiled against NanoK. Each element within this list shall define the
following data:

– name: the name of the binary to be generated;

– path: provide the path from with all strings in the field c_sources and asm_sources are relative to;

– c_sources and asm_sources, which consists in the source files required by the product.

• and any other data that a user-defined template may want to use.

You can have a look at the following existing files:

• tests/pc/unit.hjson: used to generate the unit tests;

• tests/target/disco.hjson: used to generate an stm32f4-disco program.

6 Chapter 2. NanoKBS

https://hjson.org

CHAPTER 3

NanoK Development

3.1 Installing the build dependencies

NanoK requires python3 (probably at least 3.4, but this was not tested so earlier python3 versions may work). It relies
on the hjson and jinja2 packages. Assuming that pip3 is your pip program for python3, run the following to install
the python dependencies for the current user:

pip3 install --user -r env/requirements.txt

Then, you need to install the following programs:

• ninja: the fast incremental and parallel build-system;

• gcc: the GNU Compiler Collection with C11 support;

• diff: to compare files.

You can install the right packages using this one-liner, depending on your GNU/Linux distribution. It must be run
from the top-source directory of NanoK:

Distribution Command
Debian/Ubuntu cat env/debian_packages.txt | xargs sudo apt install

If you plan to develop for the STM32f4 platform, you will need to install the following tools:

• the arm-none-eabi- GCC toolchain. You may find it here;

• the st-link utility, to flash and debug your applications on the hardware target.

See scripts/gen-disco.sh to have an idea of the build and installation procedure of these tools.

7

https://pypi.org/project/hjson/
https://pypi.org/project/Jinja2/
https://ninja-build.org
https://www.gnu.org/software/gcc/
https://www.gnu.org/software/diffutils/
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads
https://github.com/texane/stlink.git

NanoK Documentation, Release 0.0.1

3.2 Building the Core Unit Tests

The core services provided by NanoK are written in a platform-agnostic module. This allows them to be tested on
a Linux-hosted platform, so the underlying logic of NanoK can be unit-tested without the burden of maintaining
hardware tests. As such, NanoK is first developed on a Linux-hosted platform, and then implemented on a physical
platform.

You should first make sure you are able to compile and run the core test suite on a Linux platform. First generate the
appropriate build system, then use the generated build.ninja to perform the tasks. Assuming a POSIX shell, run
the following:

sh ./scripts/gen-unit-tests.sh
ninja check

To better understand what the tests do, and how to maintain them, please refer to the NanoK Unit Tests page.

3.3 Developping on the STM32f4

As previously mentioned, you will need the install the st-link utility. Run the following:

git clone https://github.com/texane/stlink.git
make -C stlink release
sudo make -C stlink/build/Release install

Note that this will install st-link on your system. This is required because udev rules are distributed.

Then, run the following to compile, flash and start to run the test application:

./scripts/gen-disco.sh
ninja gdb-test-run

This will compile the application and uploaded through a GDB server interface. You can now drive the application:

3.4 Development Workflow

NanoK is hosted on GitHub, and git is the source control management software used for its development.

The branch master is the stable development branch. All work shall be done in branches. When a feature, bugfix
or any other kind of modification to the sources of NanoK is ready, a pull request shall be initiated with the master
branch as being the destination. The commits will be rebased onto master and submitted to the continuous integra-
tion server. Once all the tests pass, the pull request containing your changes will be rebased onto master.

3.5 Coding Guidelines

NanoK is written in C11 with GNU extensions.

8 Chapter 3. NanoK Development

https://github.com/texane/stlink.git
https://github.com/jeanguyomarch/nanok
https://git-scm.com/
https://services.github.com/on-demand/github-cli/open-pull-request-github
https://travis-ci.org/jeanguyomarch/nanok
https://travis-ci.org/jeanguyomarch/nanok

CHAPTER 4

NanoK Unit Tests

Unit tests reside in the tests/pc/ directory. The following files are worth considering:

• unit.hjson: which describes the different applications (products) to be built. Each product is actually a test;

• build-unit-tests.ninja.j2: which is a ninja build template to compile and run the unit tests on a
Linux-hosted platform; and

• run-test.sh: which is the unit tests runner. Each unit test is supposed to produce a given result in its standard
output. This test compares the output to a known reference. Failure in executing the test or exactly matching the
expected output will yield to a test failure. These references are stores in the tests/pc/refs/ directory.

9

https://ninja-build.org

	Introduction
	What is NanoK?
	What hardware does NanoK support?
	How to build NanoK?
	How to contribute to the development of NanoK?

	NanoKBS
	Introduction
	Command-Line Interface
	Describing a NanoK Application

	NanoK Development
	Installing the build dependencies
	Building the Core Unit Tests
	Developping on the STM32f4
	Development Workflow
	Coding Guidelines

	NanoK Unit Tests

