

NanoK Documentation

This is the root documentation of the NanoK kernel. Take a tour by going
through the Introduction page. If you are interested in developping NanoK,
please visit NanoK Development.

Warning

NanoK is under heavy development, and as such is not ready for anything but
its own development.

Documentation Contents

	Introduction
	What is NanoK?

	What hardware does NanoK support?

	How to build NanoK?

	How to contribute to the development of NanoK?

	NanoKBS
	Introduction

	Command-Line Interface

	Describing a NanoK Application

	NanoK Development
	Installing the build dependencies

	Building the Core Unit Tests

	Developping on the STM32f4

	Development Workflow

	Coding Guidelines

	NanoK Unit Tests

Introduction

Contents

	Introduction

	What is NanoK?

	What hardware does NanoK support?

	How to build NanoK?

	How to contribute to the development of NanoK?

What is NanoK?

NanoK is a nanoscopic kernel for micro-controllers. It aims at providing an
efficient runtime tasks abstraction for hardware that does not come with many
resources. It is not a standalone kernel: it must be compiled with the
application that will run on the selected hardware. This allows the kernel to
be tuned finely for a given usage. As such, NanoK can be seen as a unikernel [https://en.wikipedia.org/wiki/Unikernel]

What hardware does NanoK support?

Warning

NanoK is still in an omega development phase. It is highly experimental and
shall not be used for anything but its own development.

	STM32F4-DISCOVERY [https://www.st.com/en/evaluation-tools/stm32f4discovery.html]: ST’s discovery board with an STM324f variant.

How to build NanoK?

Please refer to the NanoKBS page.

How to contribute to the development of NanoK?

Please refer to the NanoK Development page.

NanoKBS

Introduction

As stated in the Introduction page, NanoK must be compiled with the application
that will run on the targeted hardware. As such, NanoK’s build shall be driven
by the application. Given this requirement, NanoK should not be built on its
own. So, NanoK does not provide a build system out-of-the-box. This may seem
shocking at first, but this allows an more in-depth integration with the
application. Third parties will be able to tweak NanoK more easily.

Instead, NanoK provides an exhaustive and comprehensive description of its
sources, as well as a small (python3) script nanokbs/nanokbs.py that
allows to generate a build system from an input template file. Third-parties
will be able to write the template that better suit their needs. A basic
ninja [https://ninja-build.org] build template is provided by NanoK for its testing. It can be used as
an example.

Command-Line Interface

nanokbs/nanokbs.py can be run as an executable python3 script. To consult
the command-line interface of this tool, run the following command, from the
top source directory of NanoK:

./nanokbs/nanokbs.py --help

nanokbs/nanokbs.py is run to generate a build system if the following
arguments are provided:

	--app (or -a) to provide the path to a JSON (hjson [https://hjson.org]) file that
describes how the application is built (see Describing a NanoK Application);

	--template (or -t) to provide the path to a jinja2 [https://pypi.org/project/Jinja2/] template
that will be used to generate the application build system; and

	--output (or -o) to specify the path where the generated build system
shall be written.

It is likely to always be used as follows:

./nanokbs/nanokbs.py -a "<path/to/app.hjson>" -t "<path/to/template>" -o "<build>"

Describing a NanoK Application

An application shall be defined in an hjson [https://hjson.org] file. It is a superset of JSON,
so this description can be written in JSON instead of HJSON. Note however that
HJSON offers a more understandable syntax with syntactic suggar.

This document must define a key app, which shall contain the following data:

	arch: a string that indicates the hardware architecture to be used. The
possible options can be seen by looking at the directories in the
src/arch folder. Note that pc is reserved to unit tests.

	products: it is a list of binaries compiled against NanoK. Each element
within this list shall define the following data:

	name: the name of the binary to be generated;

	path: provide the path from with all strings in the field c_sources
and asm_sources are relative to;

	c_sources and asm_sources, which consists in the source files
required by the product.

	and any other data that a user-defined template may want to use.

You can have a look at the following existing files:

	tests/pc/unit.hjson: used to generate the unit tests;

	tests/target/disco.hjson: used to generate an stm32f4-disco program.

NanoK Development

Installing the build dependencies

NanoK requires python3 (probably at least 3.4, but this was not tested so
earlier python3 versions may work). It relies on the hjson [https://pypi.org/project/hjson/] and jinja2 [https://pypi.org/project/Jinja2/]
packages. Assuming that pip3 is your pip program for python3, run the
following to install the python dependencies for the current user:

pip3 install --user -r env/requirements.txt

Then, you need to install the following programs:

	ninja [https://ninja-build.org]: the fast incremental and parallel build-system;

	gcc [https://www.gnu.org/software/gcc/]: the GNU Compiler Collection with C11 support;

	diff [https://www.gnu.org/software/diffutils/]: to compare files.

You can install the right packages using this one-liner, depending on your
GNU/Linux distribution. It must be run from the top-source directory of NanoK:

	Distribution

	Command

	Debian/Ubuntu

	cat env/debian_packages.txt | xargs sudo apt install

If you plan to develop for the STM32f4 platform, you will need to install the
following tools:

	the arm-none-eabi- GCC toolchain. You may find it here [https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads];

	the st-link [https://github.com/texane/stlink.git] utility, to flash and debug your applications on the hardware
target.

See scripts/gen-disco.sh to have an idea of the build and installation
procedure of these tools.

Building the Core Unit Tests

The core services provided by NanoK are written in a platform-agnostic module.
This allows them to be tested on a Linux-hosted platform, so the underlying
logic of NanoK can be unit-tested without the burden of maintaining hardware
tests. As such, NanoK is first developed on a Linux-hosted platform, and then
implemented on a physical platform.

You should first make sure you are able to compile and run the core test suite
on a Linux platform. First generate the appropriate build system, then use the
generated build.ninja to perform the tasks. Assuming a POSIX shell, run the
following:

sh ./scripts/gen-unit-tests.sh
ninja check

To better understand what the tests do, and how to maintain them, please refer
to the NanoK Unit Tests page.

Developping on the STM32f4

As previously mentioned, you will need the install the st-link [https://github.com/texane/stlink.git] utility. Run
the following:

git clone https://github.com/texane/stlink.git
make -C stlink release
sudo make -C stlink/build/Release install

Note that this will install st-link on your system. This is required
because udev rules are distributed.

Then, run the following to compile, flash and start to run the test application:

./scripts/gen-disco.sh
ninja gdb-test-run

This will compile the application and uploaded through a GDB server interface.
You can now drive the application:

Development Workflow

NanoK is hosted on GitHub [https://github.com/jeanguyomarch/nanok], and
git [https://git-scm.com/] is the source control management software used for its development.

The branch master is the stable development branch. All work shall be done
in branches. When a feature, bugfix or any other kind of modification to the
sources of NanoK is ready, a pull request [https://services.github.com/on-demand/github-cli/open-pull-request-github]
shall be initiated with the master branch as being the destination. The
commits will be rebased onto master and submitted to the continuous
integration server [https://travis-ci.org/jeanguyomarch/nanok]. Once all the
tests pass, the pull request containing your changes will be rebased onto
master.

Coding Guidelines

NanoK is written in C11 with GNU extensions.

NanoK Unit Tests

Unit tests reside in the tests/pc/ directory. The following files are worth
considering:

	unit.hjson: which describes the different applications (products) to be
built. Each product is actually a test;

	build-unit-tests.ninja.j2: which is a ninja [https://ninja-build.org] build template to compile
and run the unit tests on a Linux-hosted platform; and

	run-test.sh: which is the unit tests runner. Each unit test is supposed
to produce a given result in its standard output. This test compares the
output to a known reference. Failure in executing the test or exactly
matching the expected output will yield to a test failure. These references
are stores in the tests/pc/refs/ directory.

Index

 nav.xhtml

 Table of Contents

 		
 NanoK Documentation

 		
 Introduction

 		
 What is NanoK?

 		
 What hardware does NanoK support?

 		
 How to build NanoK?

 		
 How to contribute to the development of NanoK?

 		
 NanoKBS

 		
 Introduction

 		
 Command-Line Interface

 		
 Describing a NanoK Application

 		
 NanoK Development

 		
 Installing the build dependencies

 		
 Building the Core Unit Tests

 		
 Developping on the STM32f4

 		
 Development Workflow

 		
 Coding Guidelines

 		
 NanoK Unit Tests

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

