nanite Documentation
Release 0.9.0

Paul Muller

Nov 14, 2018

Contents

Getting started 3
.1 Inmstallation e e e e e e 3
1.2 Whatisnanite? L e e e e e e e e e e e 3
1.3 USECASES . v v v v v ot e 3
1.4 Basicusage v v i e e e e e e 4
Command-line interface 5
2.1 nanite-setup-profile L e e e 5
2.2 manite-fit . . . oL L e e e e e e e e e e e e e e e e 5
23 NANIe-TALE Lt e e e e e e e e e e e e e e e e e e 5
2.4 nanite-generate-training-Set i e e e e e e e e e e e e e e e e e e e 6
Fitting guide 7
3.1 PreproCessorso v v i e e e e e e e e e e e e e e e e e e 7
32 Models e 7
33 Parameters e e e e 8
3.4 Workflow L e e 8

34.1 Command-lineusage e e 8

342 SCriptin@ USAZe . . v v v vt e 10
Rating workflow 13
4.1 Rating experimental datamanually oL Lo 13
4.2 Generating the trainiNg SEt v v v v v v i e e e e e e e e e e e e e e e e e e e 15
43 Applyingthe trainin@ Set i i e e e e e e e e e e e e e e e 15
Scripting examples 17
5.1 Approximating the Hertzian model with a spherical indenter 17
Code reference 21
6.1 Modulelevel aliases e 21
6.2 Force-indentationdata e e 21
6.3 GIoUPS . . . o o i e e e e e e e e e e 23
6.4 Loadingdata L e e e e e e e e 24
6.5 Preprocessing e e e 25
6.6 Modeling e 26

6.6.1 Methodsandconstants Ll 26

6.6.2 Models e 26

8

9

6.7 Fitting . . .
6.8 Rating . ..

6.9 Quantitative mapsS v v e

Changelog
7.1 version 0.9.0
7.2 version 0.8.0

Bilbliography

Indices and tables

Bibliography

Python Module Index

37

39

41

43

nanite Documentation, Release 0.9.0

Nanite is a Python library for loading, fitting, and rating AFM force-indentation data. This is the documentation of
nanite version 0.9.0.

Contents 1

nanite Documentation, Release 0.9.0

2 Contents

CHAPTER 1

Getting started

1.1 Installation

To install nanite, use one of the following methods (the package dependencies will be installed automatically):
e from PyPI: pip install nanite[CLI]
e from sources: pip install -e .[CLI]

The appendix [CLI] makes sure that all dependencies for the command line interface are installed. If you are only
using nanite as a Python module, you may safely omit it.

Note that if you are installing from source or if no binary wheel is available for your platform and Python version,
Cython will be installed to build the required nanite extensions. If this process fails, please request a binary wheel for
your platform (e.g. Windows 64bit) and Python version (e.g. 3.6) by creating a new issue.

1.2 What is nanite?

The development of nanite was motivated by a unique problem that arises in AFM force-indentation data analysis,
particularly for biological samples: The data quality varies a lot due to biological variation and due to experimental
complexities that have to be dealt with when measuring biological samples. To address this problem, nanite makes
use of machine-learning (4 la scikit-learn), which allows to automatically determine the quality of a force-indentation
curve based on a user-defined rating scheme (see Rating workflow for more information). But nanite is much more
than just that. It comes with an extensive set of tools for AFM force-indentation data analysis.

1.3 Use cases

If you are a frequent AFM user, you might have run into several problems involving data analysis, ranging from simple
data fitting to the visualization of quantitative force-indentation maps. Here are a few usage examples of nanite:

https://pypi.python.org/pypi/nanite
https://github.com/AFM-Analysus/nanite
http://cython.org/
https://github.com/AFM-Analysis/nanite/issues
http://scikit-learn.org/

nanite Documentation, Release 0.9.0

* You would like to automate your data analysis pipeline from loading force-indentation data to displaying a fit to
the approach part with a Hertz model for a spherical indenter. You can do so with nanite, either via scripting or
via the command-line interface that comes with nanite. For more information, see Fitting guide.

* You would like to automatically analyze and visualize maps of force-indentation data. This is possible with the
nanite.QMap class.

* You would like to sort force-indentation data according to data quality using your own training set (not the
one shipped with nanite). Nanite allows you to create your own training set from your own experimental data,
locally. Besides that, you can make use of multiple regressors and visualize the rating e.g. of force-indentation
maps. For an overview, see Rating workflow.

1.4 Basic usage

If you are not interested in scripting, please have a look at the firting guide.

In a Python script, you may use nanite as follows:

In [1]: import nanite

In [2]: group = nanite.load_group ("data/force-save-example. jpk-force")

In [3]: idnt = groupl[0] # This group actually as only one indentation curve.

In [4]: idnt.apply_preprocessing(["compute_ tip_ position",
"correct_force_offset",
"correct_tip_offset"])

In [5]: idnt.fit_model (model_key="sneddon_spher™)

In [6]: idnt.rate_quality () # 0 means bad, 10 means good quality
Out[6]: 9.03167147631572

You can find more examples in the examples section.

4 Chapter 1. Getting started

CHAPTER 2

Command-line interface

The nanite command-line interface (CLI) simplifies several functionalities of nanite, making fitting, rating, and the
generation of training sets easily accessible to the user.

2.1 nanite-setup-profile

Set up a profile for fitting and rating.

’usage: nanite-setup-profile [-h]

2.2 nanite-fit

Fit a model to experimental AFM curves.

’usage: nanite-fit [-h] data_path out_dir

positional arguments
data_path Input folder containing AFM data
out_dir Results directory

2.3 nanite-rate

Manually rate experimental AFM curves.

’usage: nanite-rate [-h] data_path rating_path

nanite Documentation, Release 0.9.0

positional arguments
data_path Input folder containing AFM data
rating_path Path to the output rating container (will be created if it does not already exist)

2.4 nanite-generate-training-set

Create a training set for usage in nanite from an .h5 file generated by the nanite-rate command.

’usage: nanite-generate-training-set [-h] data_path out_dir

positional arguments
data_path Path to a rating container or a folder of rating containers
out_dir Path to output training set

6 Chapter 2. Command-line interface

CHAPTER 3

Fitting guide

This is a summary of the methods used by nanite for fitting force-indentation data. Examples are given below.

3.1 Preprocessors

Prior to data analysis, force-indentation data has to be preprocessed. One of the most important preprocessing steps
is to perform a tip-sample separation which computes the correct tip position from the recorded piezo height and the
cantilever deflection. Other preprocessing steps correct for offsets or smoothen the data:

preprocessor key description details
compute_tip_position Compute the tip-sample separation code
reference
correct_force_offset Correct the force offset with an average baseline value code
reference
cor- Split the approach and retract curves (farthest point | code
rect_split_approach_retract method) reference
correct_tip_offset Correct the offset of the tip position code
reference
smooth_height Smoothen height data code
reference

3.2 Models

Nanite comes with a predefined set of model functions, that are identified (in scripting as well as in the command line

interface) via their model keys.

nanite Documentation, Release 0.9.0

model key description details

hertz_cone conical indenter (Hertz) code reference
hertz_para parabolic indenter (Hertz) code reference
hertz_pyr3s pyramidal indenter, three-sided (Hertz) code reference
sneddon_spher spherical indenter (Sneddon) code reference
sneddon_spher_approx | spherical indenter (Sneddon, approximative) | code reference

These model functions can be used to fit experimental force-indentation data that have been preprocessed as described
above.

3.3 Parameters

Besides the modeling parameters (e.g. Young’s modulus or contact point), nanite allows to define an extensive set of
fitting options, that are described in more detail in nanite. fit.IndentationFitter.

parameter description

model_key Key of the model function used
optimal_fit_edelta Plateau search for Young’s modulus
optimal_fit_num_samples | Number of points for plateau search
params_initial Initial parameters

preprocessing List of preprocessor keys

range_type ‘absolute’ for static range, ‘relative cp’ for dynamic range
range_x Fitting range (min/max)

segment Which segment to fit (‘approach’ or ‘retract’)
weight_cp Suppression of residuals near contact point
X_axis X-data used for fitting (defaults to ‘top position’)
y_axis Y-data used for fitting (defaults to ‘force’)

3.4 Workflow

There are two ways to fit force-indentation curves with nanite: via the command line interface (CLI) or via Python
scripting. The CLI does not require programming knowledge while Python-scripting allows fine-tuning and straight-
forward automation.

3.4.1 Command-line usage

First, setup up a fitting profile by running (e.g. in a command prompt on Windows).

nanite-setup-profile

This program will ask you to specify preprocessors, model parameters, and other fitting parameters. Simply enter the
values via the keyboard and hit enter to let them be acknowledged. If you want to use the default values, simply hit
enter without typing anything. A typical output will look like this:

Define preprocessing:
1: compute_tip_position
2: correct_force_offset
3: correct_split_approach_retract

(continues on next page)

8 Chapter 3. Fitting guide

nanite Documentation, Release 0.9.0

(continued from previous page)

4: correct_tip_offset
5: smooth_height
(currently '1,2,4"):

Select model number:

1: hertz_cone

2: hertz_para

3: hertz_pyr3s

4: sneddon_spher

5: sneddon_spher_approx
(currently '5"):

Set fit parameters:

— initial value for E [Pa] (currently '3000.0"): 50
vary E (currently 'True'):

— initial value for R [m] (currently 'le-5"): 18.64e-06
vary R (currently 'False'):

— initial value for nu (currently '0.5'):
vary nu (currently 'False'):

— initial value for contact_point [m] (currently '0.0"):
vary contact_point (currently 'True'):

— initial value for baseline [N] (currently '0.0"):
vary baseline (currently 'False'):

Select range type (absolute or relative):
(currently 'absolute'):

Select fitting interval:
left [pm] (currently '0.0"):
right [pm] (currently '0.0'):

Suppress residuals near contact point:
size [pm] (currently '0.5"): 2

Select training set:
training set (path or name) (currently 'zefl8'"):

Select rating regressor:
1: AdaBoost
Decision Tree
Extra Trees
Gradient Tree Boosting
Random Forest
SVR (RBF kernel)
7: SVR (linear kernel)
(currently '3"):

o U1 W N

Done. You may edit all parameters in '/home/user/.config/nanite/cli_profile.cfg'.

In this example, the only modifications of the default values are the initial value of the Young’s modulus (50 Pa), the
value for the tip radius (18.64 um), and the suppression of residuals near the contact point with a £2 pm interval.
When nanite-setup-profile is run again, it will use the values from the previous run as default values. The
training set and rating regressor options are discussed in the rating workflow.

Finally, to perform the actual fitting, use the command-line script

3.4. Workflow 9

nanite Documentation, Release 0.9.0

nanite-fit data_path output_path

This command will recursively search the input folder data_path for data files, fit the data with the parameters in
the profile, and write the statistics (statistics.tsv) and visualizations of the fits (multi-page TIFF file plots.tif, open with
Fiji or the Windows Photo Viewer) to the directory output_path.

61 — fit
6 - data
Fit parameters:
model: sneddon_spher_approx
| . \ E=1.66e+02
5 | 5 \\ R=1.86e-05
| \ nu=5.00e-01
| \ contact_point=-5.54e-07
\ s baseline=0.00e+00
4 - |
=1 Rating parameters:
\ It 3 regressor: Extra Trees
| @ i .
| @ training set: zefl8
—_ \] \ rating: 9.0
= ™
c 3 N
Py 21 X
b
L2
l 4
2 <
ol
\
l -
0 0.5 1
1+
3
'% 0.0
04 ==
= 0.5
T T T T
-3 -2 -1 0
T T T T T T
0 5 10 15 20 25

tip position [pm]

Fig. 3.1: Example image generated with nanite-fit. Note that the dataset is already rated with the default method
“Extra Tree” and the default training set label “zef18”. See Rating workflow for more information on rating.
3.4.2 Scripting usage

Using nanite in a Python script for data fitting is straight forward. First, load the data; group is an instance of
nanite.IndentationGroup:

In [1]: import nanite

In [2]: group = nanite.load_group("data/force-save-example. jpk-force")

Second, obtain the first nanite. Indentation instance and apply the preprocessing:

In [3]: idnt = groupl[0]

In [4]: idnt.apply_preprocessing(["compute_ tip position",
: "correct_force_offset",

(continues on next page)

10 Chapter 3. Fitting guide

https://fiji.sc

nanite Documentation, Release 0.9.0

(continued from previous page)

"correct_tip_offset"])

Now, setup the model parameters:

In [5]: idnt.fit_properties["model_key"] = "sneddon_spher"

In [6]: params = idnt.get_initial_ fit_parameters()

In [7]: params["E"].value 50
In [8]: params["R"].value = 18.64e-06

In [9]: params.pretty_print ()

Name Value Min Max Stderr Vary Expr
E 50 0 inf None True None
R 1.864e-05 —-inf inf None False None
baseline 0 —inf inf None False None
contact_point 0 —inf inf None True None
nu 0.5 —-inf inf None False None

Finally, fit the model:

In [10]: idnt.fit_model (model_key="sneddon_spher", params_initial=params, weight_
—Ccp=2e-6)

In [11]: idnt.fit_properties|["params_fitted"].pretty_print ()

Name Value Min Max Stderr Vary Expr

E 165.8 0 inf 0.1802 True None

R 1.864e-05 —-inf inf 0 False None
baseline 0 —inf inf 0 False None
contact_point -5.544e-07 —-inf inf 1.617e-09 True None
nu 0.5 —-inf inf 0 False None

The fitting results are identical to those shown in figure 3.1 above.

Note that, amongst other things, preprocessing can also be specified directly in the i ¢t_model function.

3.4. Workflow 11

nanite Documentation, Release 0.9.0

12 Chapter 3. Fitting guide

CHAPTER 4

Rating workflow

One of the main aims of nanite is to simplify data analysis by sorting out bad curves automatically based on a user
defined rating scheme. Nanite allows to automate the rating process using machine learning, based on scikit-learn. In
short, an estimator is trained with a sample dataset that was manually rated by a user. This estimator is then applied to
new data and, in an optimal scenario, reproduces the rating scheme that the user intended when he rated the training
dataset.

Nanite already comes with a default training set that is based on AFM data recorded for zebrafish spinal cord sections,
called zef18. The original zef18 dataset is available on figshare /MMG18]. Download links:

* https://ndownloader.figshare.com/files/13481393
(SHA256: 63d89a8aa911a255fb4597b2c1801e30eal4810feef1bb42c11ef10f02a1d055)

With nanite, you can also create your own training set. The required steps to do so are described in the following.

4.1 Rating experimental data manually

In the rating step, experimental data are fitted and manually rated by the user. The raw data, the preprocessed data, the
fit, all parameters, and the manual rating are then stored in an HDF5 (.h5) file.

First, set up a fitting profile using nanite-setup-profile if you have not already done so in the fitting guide. You can run
the command nanite-setup-profile again to verify that all settings are correct.

To start manual rating, use the command nanite-rate. The first argument is a folder containing experimental force-
indentation curves and the second argument is a path to a rating container (nameXY .h5). If the rating container
already exists, new data will be appended (nothing is overridden).

nanite-rate path/to/data/directory path/to/nameXY.h5

This will open a graphical user interface that displays the preprocessed and fitted experimental data:

For the subsequent steps, it is irrelevant whether you create many small rating containers or one global rating container.
Many small containers have the advantage that the effect of individual rating sessions could be analyzed separately,
while a global rating container keeps all data in one place.

13

http://scikit-learn.org/
https://ndownloader.figshare.com/files/13481393

nanite Documentation, Release 0.9.0

nanite force-indentation rater x

curve 47/49: ftmp/ftest datafforce-save-2016.06.15-15.56.49.959.pk-force - O

6 -
— fit
Fit parameters: —— data
model: sneddon_spher_approx
51 E=1.66e+02
R=1.86e-05
nu=5.00e-01
i contact_point=-5.54e-07
4 baseline=0.00e+00
=
£ 34
[+H]
b
L2
2 -
l -
0 -
T T T T
-3 -2 -1 0
T T T T T T
0 5 10 15 20 25
tip position [um]
u5er:|pau| rating:| =] Previous (Alt+Left) ‘ Next (Alt+Right)
comment:|

Fig. 4.1: Graphical user interface (GUI) for rating. The inset shows a close-up of the indentation part and the fitted
parameters. The user name (defaults to login name) is used to assign a rating to a user (not mandatory). The rating
(integer from O/bad to 10/good or -1/invalid) and a comment can be defined for each curve. The shortcuts ALT+Left
and ALT+Right can be used to navigate within the dataset while keeping the cursor focused in the rating field. While
navigating, the data are stored in the rating container and the GUI can be closed without data loss.

14 Chapter 4. Rating workflow

nanite Documentation, Release 0.9.0

4.2 Generating the training set

The training set consists only of the samples (features of each force-indentation curve) and the manual ratings. It is
stored as a set of small text files on disk. As described earlier, nanite comes with the predefined zefI8 training set. In
this step, a user-defined training set will be generated for use with nanite.

Use the command nanite-generate-trainining-set to convert the rating container(s) to a training set:

nanite-generate-trainining-set path/to/nameXY.h5 path/to/training_set/

This will create the folder path/to/training_set/ts_nameXY containing several text files, one for each
feature and one for the manual rating.

4.3 Applying the training set

To apply the training set when rating curves with nanite-fit, you will have to update the profile using
nanite-setup-profile again (see fitting guide). The relevant program output will look like this:

cmd>~: nanite-setup-profile

Select training set:
training set (path or name) (currently 'zefl8'): path/to/training_set/ts_nameXY

Select rating regressor:
1: AdaBoost
Decision Tree
Extra Trees
Gradient Tree Boosting
Random Forest
SVR (RBF kernel)
7: SVR (linear kernel)
(currently '3"):

o U W N

Done. You may edit all parameters in '/home/user/.config/nanite/cli_profile.cfg'.

When running nanite-fit data_path output_path now, the new training set is used for rating. The new
ratings are stored in output_path/statistics.tsv and can be used for further analysis, e.g. quality assess-
ment or sorting.

If you would like to employ a user-defined training set in a Python script, you may do so by specifying the training set
path as an argument to nanite. Indentation.rate_quality.

4.2. Generating the training set 15

nanite Documentation, Release 0.9.0

16 Chapter 4. Rating workflow

Bow on =

CHAPTER B

Scripting examples

5.1 Approximating the Hertzian model with a spherical indenter

There is no closed form for the Hertzian model with a spherical indenter. The force F' does not directly depend on the
indentation depth 4, but has an indirect dependency via the radius of the circular contact area between indenter and

sample a:
FE R? +a? R+a
F= | —aR
1—u2(2 n<R—a) a)

a R+a
6_21n<R—a>

Here, E is the Young’s modulus, R is the radius of the indenter, and v is the Poisson’s ratio of the probed material.

Because of this indirect dependency, fitting this model to experimental data can be time-consuming. Therefore, it is
beneficial to approximate this model with a polynomial function around small values of §/R using the Hertz model
for a parabolic indenter as a starting point:

4 E 16 1 6\ 11 (6N 137 (6"
F=_ RZ1- ——=— — (= — (= (=
31 -2 VR 10R 840 \ R + 15120 \ R + 6652800 \ R
This example illustrates the error made with this approach. In nanite, the model for a spherical indenter has the
identifier “sneddon_spher” and the approximate model has the identifier “sneddon_spher_approx”.

The plot shows the error for the parabolic indenter model “/ertz_para” and for the approximation to the spherical
indenter model. The maximum indentation depth is set to R. The error made by the approximation of the spherical
indenter is more than four magnitudes lower than the maximum force during indentation.

model_spherical_indenter.py

import matplotlib.pylab as plt

from mpl toolkits.axes_gridl import make_axes_locatable
from matplotlib.lines import Line2D

import matplotlib as mpl

(continues on next page)

17

20
21
22
23
24
25
26
27
28
29
30
31
32

nanite Documentation, Release 0.9.0

100

-1 | P A i A A T i A i A i i i o el o P e —
10 £ fffd% S

10—3 -

1075 + ————

10—? 4

10—9 -

10—11 N

10—13 4

10—15 N

error in force relative to maximum F/F pax

10~17 4 ==~ parabolic indenter
—— approximation of spherical indenter

80

40

indenter radius [pm]

20

T T T T T
=100 -80 —60 =40 =20
indentation depth & [um]

(continued from previous page)

import numpy as np
from nanite.model import models_available

models

exact = models_available["sneddon_spher"]

approx = models_available["sneddon_spher_approx"]
para = models_available["hertz_para"]

parameters

params = exact.get_parameter_defaults ()
params["E"] .value = 1000
radii

radii = np.linspace(2e-6, 100e-6, 20)

plot results
plt.figure(figsize=(8, 5))

overview plot
ax = plt.subplot ()
for ii, rad in enumerate (radii):
params["R"] .value = rad
indentation range
x = np.linspace (0, -rad, 300)
yex = exact.model (params, Xx)
yap = approx.model (params, X)
ypa = para.model (params, Xx)
ax.plot (x+x1le6, np.abs(yex - yap)/yex.max(),

(continues on next page)

18 Chapter 5. Scripting examples

40

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

57

58

60

61

62

63

64

nanite Documentation, Release 0.9.0

(continued from previous page)

color=mpl.cm.get_cmap ("viridis") (ii/radii.size),
zorder=2)

ax.plot (x+x1le6, np.abs(yex - ypa)/yex.max(), ls="--",
color=mpl.cm.get_cmap ("viridis") (ii/radii.size),
zorder=1)

ax.set_xlabel ("indentation depth δ [pm]")

ax.set_ylabel ("error in force relative to maximum S$F/F_{max}s$")
ax.set_yscale("log")

ax.grid()

legend
custom_lines = [Line2D([0], [0], color="k", 1ls="--"),
Line2D([0], [0], color="k", 1ls="-"),
]
ax.legend(custom_lines, ['parabolic indenter',
'approximation of spherical indenter'])

divider = make_axes_locatable (ax)
cax = divider.append_axes ("right", size="3%", pad=0.05)

norm = mpl.colors.Normalize (vmin=radii[0]+1le6, vmax=radii[-1]x1e6)
mpl.colorbar.ColorbarBase (ax=cax,

cmap="viridis",

norm=norm,

orientation='vertical',

label="indenter radius [pm]"

)

plt.tight_layout ()
plt.savefig("model_spherical_indenter.jpg", dpi=120)
plt.show ()

5.1. Approximating the Hertzian model with a spherical indenter

19

nanite Documentation, Release 0.9.0

20

Chapter 5. Scripting examples

CHAPTER O

Code reference

6.1 Module level aliases

For user convenience, the following objects are available at the module level.

class nanite.Indentation
alias of nanite.indent.Indentation

class nanite.IndentationGroup
alias of nanite.group.IndentationGroup

class nanite.IndentationRater
alias of nanite.rate.IndentationRater

class nanite.QMap
alias of nanite.gmap.QOMap

nanite.load_group ()
alias of nanite.group.load group

6.2 Force-indentation data

class nanite.indent.Indentation (idnt_data)
Force-indentation

Parameters idnt_data (nanite.read.IndentationData) — Object holding the experi-
mental data

apply_preprocessing (preprocessing=None)
Perform curve preprocessing steps

Parameters preprocessing (1ist)— A list of preprocessing method names that are stored
in the IndentationPreprocessor class. If set to None, self.preprocessing will be used.

21

https://docs.python.org/3/library/stdtypes.html#list

nanite Documentation, Release 0.9.0

compute_emodulus_mindelta (callback=None)
Compute elastic modulus vs. mindelta

Parameters callback (callable)— A method that is called with the emoduli and indenta-
tions as the computation proceeds every five steps.

Returns emoduli, indentations — The fitted elastic moduli and at the corresponding maximal
indentation depths.

Return type 1d ndarrays

Notes

The information about emodulus and mindelta is also stored in self.fit_properties with the keys
“optimal_fit_E_array” and “optimal_fit_delta_array”, if self.fit_ model is called with the argument
search_optimal_fit set to True.

estimate_contact_point_index ()
Estimate the contact point

Contact point (CP) estimation is performed with two methods and that one which returns the smallest
index is returned.

Method 1: baseline deviation

1. Obtain the baseline (initial 10% of the approach curve)

2. Compute average and maximum deviation of the baseline

3. The CP is the index of the approach curve where it exceeds twice of the maximum deviation
Method 2: sign of gradient

1. Perform a median filter on the approach curve

2. Compute the gradient

3. Cut off trailing 10 points from the gradient (noise)

4

. The CP is the index of the gradient curve when the sign changes, measured from the point of maximal
indentation.

If one of the methods fail, the index O is returned.

estimate_optimal_mindelta()
Estimate the optimal indentation depth

This is a convenience function that wraps around compute_emodulus_mindelta and IndentationFit-
ter.compute_opt_mindelta.

export (path)
Saves the current data as tab separated values

fit_model (**kwargs)
Fit the approach-retract data to a model function

Parameters
* model_key (str)— A key referring to a model in nanite.model.models_available

* params_initial (instance of Imfit.Parameters or dict) — Parame-
ters for fitting. If not given, default parameters are used.

* range_x (tuple of 2)- The range for fitting, see range_type below.

22 Chapter 6. Code reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

nanite Documentation, Release 0.9.0

e range_type (str)— One of:
— absolute: Set the absolute fitting range in values given by the x_axis.

— relative cp: In some cases it is desired to be able to fit a model only up until a certain
indentation depth (tip position) measured from the contact point. Since the contact
point is a fit parameter as well, this requires a two-pass fitting.

* preprocessing (list of str)- Preprocessing
* segment (str)— One of “approach” or “retract”.

* weight_cp (float) — Weight the contact point region which shows artifacts that are
difficult to model with e.g. Hertz.

* optimal_fit_edelta (bool) — Search for the optimal fit by varying the maximal
indentation depth and determining a plateau in the resulting Young’s modulus (fitting pa-
rameter “E”).

get_initial_fit_parameters ()

rate_quality (regressor="Extra Trees’, training_set="zefl8’, names=None, I[da=None)
Compute the quality of the obtained curve

Uses heuristic approaches to rate a curve.
Parameters
* regressor (str)— The regressor name used for rating.

* training_set (str) — A label for a training set shipped with nanite or a path to
a training set.

Returns rating — A value between 0 and 10 where O is the lowest rating. If no fit has been
performed, a rating of -1 is returned.

Return type float

Notes

The rating is cached based on the fitting hash (see IndentationFitter._hash).

reset ()
Resets all data operations

data = None
All data in a Pandas DataFrame

fit_properties = None
Fitting results, see Tndentation.fit_model ())

preprocessing = None
Default preprocessing steps steps, see Indentation.apply preprocessing ().

6.3 Groups

class nanite.group.IndentationGroup (path=None, callback=None)
Group of Indentation

Parameters

6.3. Groups

23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

nanite Documentation, Release 0.9.0

* path (st r)—The path to the data file. The data format is determined using the extension
of the file and the data is loaded with the correct method.

* callback (callable or None)— A method that accepts a float between 0 and 1
to externally track the process of loading the data.

append (ifem)
index (item)

subgroup_with_path (path)
Return a subgroup with measurements matching path

nanite.group.load_group (path, callback=None)
Load indentation data from disk

Parameters

* path (path-11ike) - Path to experimental data

* callback (callable or None)— Callback function for tracking loading progress
Returns group — Indentation group with force-indentation data

Return type nanite.IndetationGroup

6.4 Loading data

nanite.read.get_data_paths (path)
Obtain a list of data files

Parameters path (str or pathlib.Path) — Path to a data file or a directory containing
data files.

Returns paths — All supported data files found in path. If path is a file, [pathlib. Path(path)] is
returned. If path has an unsupported extion, an empty list is returned.

Return type list of pathlib.Path
nanite.read.get_data_paths_enum (path, skip_errors=False)

nanite.read.load_data (path, callback=None)
Load data and return list of Indentation

nanite.read.load_raw_data (path, callback=None)
Load raw data

Parameters

* path (str or pathlib.Path) - Path to a data file or a directory containing data
files. The data format is determined using the extension of the file.

* callback (callable or None)— A method that accepts a float between 0 and 1
to externally track the process of loading the data.

e ret_indentation (bool)— Return the indentation
Returns data — A measurements list that contains the data.
Return type list

nanite.read.readers = [(<function load_jpk>, ['.jpk—force', '.jpk—-force-map'])]
All available readers and associated file extensions

24 Chapter 6. Code reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list

nanite Documentation, Release 0.9.0

nanite.read.supported _extensions = ['.jpk—-force', '.jpk-force-map']
All supported file extensions

6.5 Preprocessing

exception nanite.preproc.CannotSplitWarning

class nanite.preproc.IndentationPreprocessor

static apply (apret, preproc_names)
Perform force-indentation preprocessing steps

Parameters
* apret (nanite.Indentation)— The afm data to preprocess

* preproc_names (Iist) — A list of names for static methods in IndentationPre-
processor that will be applied (in the order given).

Notes

This method is usually called from within the Indentation class instance. If you are using this class directly
and apply it more than once, you might need to call apret.reset() before preprocessing a second time.

static available()
List available preprocessor names

static compute_tip position (apret)
Compute the tip-sample separation

This computation correctly reproduces the column “Vertical Tip Position™ as it is exported by the JPK
analysis software with the checked option “Use Unsmoothed Height”.

static correct_force_offset (apret)
Correct the force offset with an average baseline value

static correct_split_approach_retract (apret)
Split the approach and retract curves (farthest point method)

Approach and retract curves are defined by the microscope. When the direction of piezo movement is
flipped, the force at the sample tip is still increasing. This can be either due to a time lag in the AFM
system or due to a residual force acting on the sample due to the bent cantilever.

To repair this time lag, we append parts of the retract curve to the approach curve, such that the curves are
split at the minimum height.

static correct_tip offset (apret)
Correct the offset of the tip position

An estimate of the tip position is used to compute the contact point.

static smooth_height (aprer)
Smoothen height data

For the columns “height (measured)” and “tip position”, and for the approach and retract data separately,
this method adds the columns “height (measured, smoothed)” and “tip position (smoothed)” to self.data.

nanite.preproc.available_preprocessors = ['compute_tip_ position', 'correct_force_offset’,
Available preprocessors

6.5. Preprocessing 25

https://docs.python.org/3/library/stdtypes.html#list

nanite Documentation, Release 0.9.0

6.6 Modeling

6.6.1 Methods and constants
nanite.model.get_init_parms (model_key)
Get initial fit parameters for a model

nanite.model.get_model_by_ name (name)
Convenience function to obtain a model by name instead of by key

nanite.model.get_parm_name (model_key, parm_key)
Get human readable parameter label

Parameters
* model_key (str)— The model key (e.g. “hertz_cone”)
* parm_key (str)— The parameter key (e.g. “E”)
Returns parm_name — The parameter name (e.g. “Young’s Modulus™)

Return type str

6.6.2 Models

Each model is implemented as a submodule in nanite.model. For instance nanite.model.
model_hertz_parabolic. Each of these modules implements the following functions (which are not
listed for each model in the subsections below):

nanite.model.model_submodule.get_parameter_defaults ()
Return the default parameters of the model.

nanite.model.model_submodule.model ()
Wrap the actual model for fitting.

nanite.model .model_submodule.residual ()
Compute the residuals during fitting.

In addition, each submodule contains the following attributes:

nanite.model.model_submodule.model_doc
The doc-string of the model function.

nanite.model.model_submodule.model_key
The model key used in the command line interface and during scripting.

nanite.model .model_submodule.model_name
The name of the model.

nanite.model.model_submodule.parameter_keys
Parameter keywords of the model for higher-level applications.

nanite.model.model_submodule.parameter_ names
Parameter names of the model for higher-level applications.

nanite.model.model_submodule.parameter_units
Parameter units for higher-level applications.

26 Chapter 6. Code reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

nanite Documentation, Release 0.9.0

conical indenter (Hertz)

model key hertz_cone
model name conical indenter (Hertz)
model location | nanite.model.model_conical_indenter

nanite.model .model_conical_indenter.hertz_conical (E, delta, alpha, nu, con-
tact_point=0, baseline=0)
Hertz model for a conical indenter
_ 2tana E 52

F
T 1—1v2

Parameters
 E (float) - Young’s modulus [N/m?]
* delta (Id ndarray) - Indentation [m]
* alpha (float)— Half cone angle [degrees]
e nu (float) - Poisson’s ratio
* contact_point (float) - Indentation offset [m]
* baseline (f1oat)— Force offset [N]

* negindent (bool) — If True, will assume that the indentation value(s) given by delta
are negative and must be mutlitplied by -1.

Returns F — Force [N]
Return type float

Notes

These approximations are made by the Hertz model:
* The sample is isotropic.
* The sample is a linear elastic solid.
* The sample is extended infinitely in one half space.
* The indenter is not deformable.

* There are no additional interactions between sample and indenter.

parabolic indenter (Hertz)

model key hertz_para
model name parabolic indenter (Hertz)
model location | nanite.model.model_hertz_parabolic

nanite.model .model_hertz_parabolic.hertz_parabolic (E, delta, R, nu, contact_point=0,

baseline=0)
Hertz model for a parabolic indenter

_4 FE 3/2
F*31—y2\/§5

6.6. Modeling 27

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

nanite Documentation, Release 0.9.0

Parameters

* E(float)— Young’s modulus [N/m?]

e delta (Id ndarray) - Indentation [m]

* R(float) - Tip radius [m]

* nu (float)— Poisson’s ratio

* contact_point (float) - Indentation offset [m]

* baseline (f1oat) - Force offset [N]

* negindent (bool) — If True, will assume that the indentation value(s) given by delta
are negative and must be mutlitplied by -1.

Returns F — Force [N]

Return type float

Notes

These approximations are made by the Hertz model:

* The sample is isotropic.

The sample is a linear elastic solid.

The sample is extended infinitely in one half space.

The indenter is not deformable.

There are no additional interactions between sample and indenter.

pyramidal indenter, three-sided (Hertz)

model key

hertz_pyr3s

model name

pyramidal indenter, three-sided (Hertz)

model location

nanite.model.model_hertz_three_sided_pyramid

nanite.model.model_hertz_three_sided_pyramid.hertz_three_ sided pyramid (E,

Hertz model for three sided pyramidal indenter

Parameters

E
F =0.887tan« - . 52

* E (float) - Young’s modulus [N/m?]

* delta (Id ndarray) - Indentation [m]

delta,

al-

pha,

nu,

con-
tact_point=0,
base-

line=0)

28

Chapter 6

. Code reference

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

nanite Documentation, Release 0.9.0

* alpha (f1oat)— Face angle of the pyramid [degrees]
e nu (float) - Poisson’s ratio

* contact_point (float) - Indentation offset [m]

¢ baseline (float)— Force offset [N]

* negindent (bool) — If True, will assume that the indentation value(s) given by delta
are negative and must be mutlitplied by -1.

Returns F — Force [N]
Return type float

Notes

These approximations are made by the Hertz model:
* The sample is isotropic.
» The sample is a linear elastic solid.
* The sample is extended infinitely in one half space.
* The indenter is not deformable.

* There are no additional interactions between sample and indenter.

References

Bilodeau et al. 1992 [Bil92]

spherical indenter (Sneddon)

model key sneddon_spher
model name spherical indenter (Sneddon)
model location | nanite.model.model_sneddon_spherical

nanite.model .model_sneddon_spherical.delta_of a()
Compute indentation from contact area radius (wrapper)

nanite.model.model_sneddon_spherical.get_a()
Compute the contact area radius (wrapper)

nanite.model.model_sneddon_spherical.hertz_spherical ()
Hertz model for Spherical indenter - modified by Sneddon

E R? 4 o2 R+a
F= 1 —
1—v2 (2 n<R—a) aR)

a R+a
6_21n(R—a>

(a is the radius of the circular contact area between bead and sample.)

Parameters

* E (float) - Young’s modulus [N/m?]

6.6. Modeling 29

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

nanite Documentation, Release 0.9.0

Returns

delta (1d ndarray) - Indentation [m]

R (float)— Tip radius [m]

nu (f1oat)— Poisson’s ratio

contact_point (f1loat)— Indentation offset [m]

baseline (float) — Force offset [N]

negindent (bool) — If True, will assume that the indentation value(s) given by delta
are negative and must be multiplied by -1.

F — Force [N]

Return type float

References

Sneddon 1965 [Sne65]

spherical indenter (Sneddon, approximative)

model key

sneddon_spher_approx

model name

spherical indenter (Sneddon, approximative)

model location

nanite.model.model_sneddon_spherical_approximation

nanite.model.model_sneddon_spherical_approximation.hertz_sneddon_spherical_approx (E,

Hertz model for Spherical indenter - approximation

i B @53/2<1” ! <6

10R 840 \ R

* E (float) - Young’s modulus [N/m?]

) +

delta (1d ndarray) - Indentation [m]

11

15120

contact_point (f1oat) - Indentation offset [m]

baseline (float)— Force offset [N]

(

0

R

)+

1357 (6"
6652800 \ R

negindent (bool) — If True, will assume that the indentation value(s) given by delta
are negative and must be mutlitplied by -1.

F=-
31—0v2
Parameters
* R(float) - Tipradius [m]
e nu (float) - Poisson’s ratio
Returns F — Force [N]

Return type float

30

Chapter 6. Code reference

delta,

R,

nu,

con-
tact_point=(
base-
line=0)

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

nanite Documentation, Release 0.9.0

References

TODO

6.7 Fitting

exception nanite.fit.FitDataError

exception nanite.fit .FitKeyError

exception nanite.fit.FitWarning

class nanite.fit.FitProperties
Fit property manager class

Provide convenient access to fit properties as a dictionary and dynamically manage resets due to new initial

parameters.

Dynamic properties include:

* set “params_initial” to None if the “model_key” changes

» remove all keys except those in FP_DEFAULT if a key that is in FP_DEFAULT changes (All other keys
are considered to be obsolete fitting results).

Additional attributes:

* “segment_bool”’: bool Fulse for “approach” and True for “retract”

reset ()

restore (props)
update the dictionary without removing any keys

class nanite.fit.IndentationFitter (data_set, **kwargs)
Fit force-indentation curves

Parameters

model_key (str)— A key referring to a model in nanite.model.models_available

params_initial (instance of Imfit.Parameters) — Parameters for fit-
ting. If not given, default parameters are used.

range_x (tuple of 2)-The range for fitting, see range_type below.
range_type (str)— One of:
— absolute: Set the absolute fitting range in values given by the x_axis.

— relative cp: Insome cases it is desired to be able to fit a model only up until a certain
indentation depth (tip position) measured from the contact point. Since the contact
point is a fit parameter as well, this requires a two-pass fitting.

preprocessing (1ist of str)- Preprocessing
segment (st r)— One of “approach” or “retract”.

weight_cp (float) — Weight the contact point region which shows artifacts that are
difficult to model with e.g. Hertz.

6.7. Fitting

31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

nanite Documentation, Release 0.9.0

* optimal_fit_edelta (bool) — Search for the optimal fit by varying the maximal
indentation depth and determining a plateau in the resulting Young’s modulus (fitting
parameter “E”).

* optimal_ fit_num_samples (int)— Number of samples to use for searching the
optimal fit

compute_emodulus_vs_mindelta (callback=None)
Compute elastic modulus vs. minimal indentation curve

static compute_opt_mindelta (emoduli, indentations)
Determine the plateau of an emodulus-indentation curve

The following procedure is performed:
1. Smooth the emodulus data with a Butterworth filter
2. Label sequences that have similar values by binning into ten regions between the min and max.
3. Ignore sequences with emodulus that is smaller than the binning size.
4. Determine the longest sequence.

fit ()
Fit the approach-retract data to a model function

get_initial_ parameters (data_set=None, model_key="hertz_para’)
Get initial fit parameters for a specific model

nanite.fit.obj2str (0bj)
String representation of an object for hashing

6.8 Rating

6.9 Quantitative maps

exception nanite.gmap.DataMissingWarning

class nanite.gmap.QMap (path_or_dataset, callback=None)
Quantitative force spectroscopy map handling

Parameters

* path_or_dataset (str or nanite.IndentationGroup) - The path to the
data file. The data format is determined using the extension of the file and the data is
loaded with the correct method.

* callback (callable or None)— A method that accepts a float between 0 and 1
to externally track the process of loading the data.

feat_data_min_height_measured_um (idnt)
feat_fit_youngs_modulus (idnt)
feat_meta_rating (idnt)

feat_meta_ scan_order (idnt)

get_qgmap (feature, gmap_only=False)
Return the quantitative map for a feature

Parameters

32 Chapter 6. Code reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

nanite Documentation, Release 0.9.0

* feature (str) - Feature to compute map for (see OMap. features)
* gmap_only — Only return the quantitative map data, not the coordinates
Returns

* X,y (Id ndarray) — Only returned if gmap_only is False; Pixel grid coordinates along
x andy

e gmap (2d ndarray) — Quantitative map

extent
extent (x1, x2, y1, y2) [um]

features = None
Available features (see nanite.gmap.available features)

get_coords
Get the gqmap coordinates for each curve in QMap.ds

Parameters which (str)— “px” for pixels or “um” for microns.

group = None
Indentation data (instance of nanite. IndentationGroup)

shape
shape of the map [px]

nanite.gmap.available_features = ['data min height', "fit young's modulus", 'meta rating’,
Available features for quantitative maps

6.9. Quantitative maps 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

nanite Documentation, Release 0.9.0

34

Chapter 6. Code reference

CHAPTER /

Changelog

List of changes in-between nanite releases.

7.1 version 0.9.0

* ref: remove legacy “discrete” feature type

* ref: renamed kwargs for Indetation.rate_quality

* ref: new method nanite.load_group for loading experimental data

* ref: new class read.data.IndentationData for managing data

* ref: replace dataset.IndentationDataSet with group.IndentationGroup to avoid ambiguities
* fix: add missing “zef18” training set

* fix: sample weight computation failed when a rating level was missing

¢ enh: add nanite-generate-training-set command line program

* tests: reduce warnings and increase coverage

* cleanup: old docs in nanite.rate.io

* docs: major update using helper extensions

7.2 version 0.8.0

e initial release

35

nanite Documentation, Release 0.9.0

36

Chapter 7. Changelog

CHAPTER 8

Bilbliography

37

nanite Documentation, Release 0.9.0

38

Chapter 8. Bilbliography

CHAPTER 9

Indices and tables

* genindex
* modindex

e search

39

nanite Documentation, Release 0.9.0

40

Chapter 9. Indices and tables

Bibliography

[Bil92] G. G. Bilodeau. Regular pyramid punch problem. Journal of Applied Mechanics, 59(3):519, 1992.
doi:10.1115/1.2893754.

[MMG18] Paul Miiller, Stephanie Moéllmert, and Jochen Guck. Atomic force microscopy indentation data of zebrafish
spinal cord sections. Figshare, 11 2018. doi:10.6084/m9.figshare.7297202.v1.

[Sne65] Ian N. Sneddon. The relation between load and penetration in the axisymmetric boussinesq prob-
lem for a punch of arbitrary profile. International Journal of Engineering Science, 3(1):47-57, may 1965.
doi:10.1016/0020-7225(65)90019-4.

41

https://doi.org/10.1115/1.2893754
https://doi.org/10.6084/m9.figshare.7297202.v1
https://doi.org/10.1016/0020-7225(65)90019-4

nanite Documentation, Release 0.9.0

42

Bibliography

Python Module Index

n

nanite.
nanite.
.indent, 21

nanite

nanite.
nanite.
nanite.
nanite.

nanite.
nanite.
nanite.
nanite.

nanite.
nanite.

fit, 31
group, 23

model, 26

model .model_conical_indenter, 27
model.model_hertz_parabolic, 27

model .model_hertz_three_sided_pyramid,
28

model .model_sneddon_spherical,

29

model .model_sneddon_spherical_approximation
30

preproc, 25

gmap, 32

rate, 32

read, 24

43

nanite Documentation, Release 0.9.0

44

Python Module Index

Index

A

append() (nanite.group.IndentationGroup method), 24

apply() (nanite.preproc.IndentationPreprocessor static
method), 25

apply_preprocessing() (nanite.indent.Indentation
method), 21

available() (nanite.preproc.IndentationPreprocessor static
method), 25

available_features (in module nanite.qmap), 33
available_preprocessors (in module nanite.preproc), 25

C

CannotSplitWarning, 25

compute_emodulus_mindelta()
(nanite.indent.Indentation method), 21

compute_emodulus_vs_mindelta()
(nanite.fit.IndentationFitter method), 32

compute_opt_mindelta() (nanite.fit.IndentationFitter
static method), 32

estimate_optimal_mindelta() (nanite.indent.Indentation
method), 22
export() (nanite.indent.Indentation method), 22

extent (nanite.qmap.QMap attribute), 33

F

feat_data_min_height_measured_um()
(nanite.qmap.QMap method), 32

feat_fit_youngs_modulus() (nanite.qmap.QMap method),
32

feat_meta_rating() (nanite.qmap.QMap method), 32

feat_meta_scan_order() (nanite.qmap.QMap method), 32

features (nanite.qmap.QMap attribute), 33

fit() (nanite.fit.IndentationFitter method), 32

fit_model() (nanite.indent.Indentation method), 22

fit_properties (nanite.indent.Indentation attribute), 23

FitDataError, 31

FitKeyError, 31

FitProperties (class in nanite.fit), 31

FitWarning, 31

compute_tip_position() (nanite.preproc.IndentationPreprocessor

static method), 25

G

correct_force_offset() (nanite.preproc.IndentationPreprocessor

static method), 25

correct_split_approach_retract()
(nanite.preproc.IndentationPreprocessor static
method), 25

correct_tip_offset() (nanite.preproc.IndentationPreprocessor

static method), 25

D

data (nanite.indent.Indentation attribute), 23
DataMissingWarning, 32
delta_of_a() (in module
nanite.model.model_sneddon_spherical),
29

E

estimate_contact_point_index()
(nanite.indent.Indentation method), 22

get_a() (in module nanite.model.model_sneddon_spherical),
29
get_coords (nanite.qmap.QMap attribute), 33
get_data_paths() (in module nanite.read), 24
get_data_paths_enum() (in module nanite.read), 24
get_init_parms() (in module nanite.model), 26
get_initial_fit_parameters() (nanite.indent.Indentation
method), 23
get_initial_parameters()
method), 32
get_model_by_name() (in module nanite.model), 26
get_parm_name() (in module nanite.model), 26
get_qgmap() (nanite.qmap.QMap method), 32
group (nanite.qmap.QMap attribute), 33

H

hertz_conical() (in module
nanite.model.model_conical_indenter), 27

(nanite.fit.IndentationFitter

45

nanite Documentation, Release 0.9.0

hertz_parabolic() (in module
nanite.model.model_hertz_parabolic), 27
hertz_sneddon_spherical_approx() (in module

nanite.preproc (module), 25
nanite.QMap (built-in class), 21
nanite.qmap (module), 32

nanite.model.model_sneddon_spherical_approxinmimterate (module), 32

30
hertz_spherical() (in module

nanite.model.model_sneddon_spherical),

29
hertz_three_sided_pyramid()

(in module

nanite.read (module), 24

obj2str() (in module nanite.fit), 32

nanite.model.model_hertz_three_sided_pyramid), P

28

Indentation (class in nanite.indent), 21
IndentationFitter (class in nanite.fit), 31
IndentationGroup (class in nanite.group), 23
IndentationPreprocessor (class in nanite.preproc), 25
index() (nanite.group.IndentationGroup method), 24

L

load_data() (in module nanite.read), 24
load_group() (in module nanite.group), 24
load_raw_data() (in module nanite.read), 24

M

model_doc (nanite.model.nanite.model.model_submodule
attribute), 26

model_key (nanite.model.nanite.model.model_submodule
attribute), 26

model_name (nanite.model.nanite.model.model_submodule

attribute), 26

N

nanite.fit (module), 31
nanite.group (module), 23
nanite.indent (module), 21
nanite.Indentation (built-in class), 21
nanite.IndentationGroup (built-in class), 21
nanite.IndentationRater (built-in class), 21
nanite.load_group() (built-in function), 21
nanite.model (module), 26
nanite.model.model_conical_indenter (module), 27
nanite.model.model_hertz_parabolic (module), 27
nanite.model.model_hertz_three_sided_pyramid
ule), 28
nanite.model.model_sneddon_spherical (module), 29
nanite.model.model_sneddon_spherical_approximation
(module), 30
nanite.model.model_submodule.get_parameter_defaults()
(in module nanite.model), 26
nanite.model.model_submodule.model()
nanite.model), 26
nanite.model.model_submodule.residual() (in module
nanite.model), 26

(mod-

(in module

parameter_keys (nanite.model.nanite.model.model_submodule
attribute), 26

parameter_names (nanite.model.nanite.model.model_submodule
attribute), 26

parameter_units (nanite.model.nanite.model.model_submodule
attribute), 26

preprocessing (nanite.indent.Indentation attribute), 23

Q

QMap (class in nanite.qmap), 32

R

rate_quality() (nanite.indent.Indentation method), 23
readers (in module nanite.read), 24

reset() (nanite.fit.FitProperties method), 31

reset() (nanite.indent.Indentation method), 23
restore() (nanite.fit.FitProperties method), 31

shape (nanite.qmap.QMap attribute), 33

smooth_height() (nanite.preproc.IndentationPreprocessor
static method), 25

subgroup_with_path() (nanite.group.IndentationGroup
method), 24

supported_extensions (in module nanite.read), 24

46

Index

	Getting started
	Installation
	What is nanite?
	Use cases
	Basic usage

	Command-line interface
	nanite-setup-profile
	nanite-fit
	nanite-rate
	nanite-generate-training-set

	Fitting guide
	Preprocessors
	Models
	Parameters
	Workflow
	Command-line usage
	Scripting usage

	Rating workflow
	Rating experimental data manually
	Generating the training set
	Applying the training set

	Scripting examples
	Approximating the Hertzian model with a spherical indenter

	Code reference
	Module level aliases
	Force-indentation data
	Groups
	Loading data
	Preprocessing
	Modeling
	Methods and constants
	Models

	Fitting
	Rating
	Quantitative maps

	Changelog
	version 0.9.0
	version 0.8.0

	Bilbliography
	Indices and tables
	Bibliography
	Python Module Index

