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CHAPTER
ONE

USER MANUAL

1.1 Building Nalu-Wind

1.1.1 Building Nalu-Wind Semi-Automatically Using Spack
Mac OS X or Linux

The following describes how to build Nalu-Wind and its dependencies mostly automatically on your Mac using Spack.
This can also be used as a template to build Nalu-Wind on any Linux system with Spack.

Step 1

This assumes you have a (Homebrew) installation of GCC installed already (we are using GCC 7.3.0). These instruc-
tions have been tested on OSX 10.11, MacOS 10.12, and MacOS 10.13. MacOS 10.12/10.13 will not build CMake or
Pkg-Config with GCC because they will pick up system header files that have objective C code in them. Therefore we
build Nalu-Wind using Spack on MacOS Sierra by using Homebrew to install cmake and pkg-config and defining
these as external packages in Spack (see packages.yaml).

Step 2

Checkout the official Spack repo from github (we will checkout into $ { HOME } ):

cd ${HOME} && git clone https://github.com/spack/spack.git

Step 3

Add Spack shell support to your .profile or .bashrc etc, by adding the lines:

export SPACK_ROOT=${HOME}/spack
source ${SPACK_ROOT}/share/spack/setup—-env.sh

Step 4

Run the setup-spack.sh script from the repo which tries to find out what machine you are on and then copies the
corresponding = . yaml configuration files to your Spack installation:



https://spack.readthedocs.io/en/latest
https://github.com/exawind/build-test/blob/master/configs/machines/mac_sierra/packages.yaml
https://github.com/exawind/build-test/blob/master/configs/setup-spack.sh
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cd ${HOME} && git clone https://github.com/exawind/build-test.git
cd ${HOME}/build-test/configs && ./setup-spack.sh

Step 5

Try spack info nalu-wind to see if Spack works. If it does, check the compilers you have available by:

machine:~ user$ spack compilers

==> Available compilers

—-— clang sierra-x86_64 ————————————— -
clang@9.0.0-apple

—— gcc sierra-x86_64 ———————— -
gcc@7.3.0 gcc@6.4.0 gcc@5.5.0

Step 6

Install Nalu-Wind with whatever compiler you prefer (it will default to Apple Clang) merely by running spack
install nalu-wind or by editing and running the install_nalu_gcc_mac. sh script from the build-test
repo:

cd ${HOME}/build-test/install_scripts && ./install_nalu_gcc_mac.sh

That should be it! When using the install script you will see that Spack will install using the constraints we’ve specified
in shared_constraints.sh which specifies a much more specific set of Trilinos options for Nalu-Wind that can
shorten the build time.

NRELs Eagle Machine

The following describes how to build Nalu-Wind and its dependencies mostly automatically on NREL’s Eagle machine
using Spack. This can also be used as a template to help build Nalu-Wind on any Linux system with Spack.

Step 1

Login to Eagle, and checkout the https://github.com/exawind/build-test.git repo (we will be
cloning into the ${HOME} directory):

cd ${HOME} && git clone https://github.com/exawind/build-test.git

Step 2

Checkout the official Spack repo from github:

cd ${HOME} && git clone https://github.com/spack/spack.git
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Step 3

Configure your environment in the recommended way. You should purge all modules and load GCC 7.3.0 in your
login script. In the example .bashrc in the repo we also load Python. If you have problems building with Spack on
Eagle, it is most likely your environment has deviated from this recommended one. Even when building with the Intel
compiler in Spack, this is the recommended environment at login.

module purge
module load gcc/7.3.0

Also add Spack shell support to your .bashrc as shown in the example .bashrc in the repo or the following lines:

export SPACK_ROOT=${HOME}/spack
source ${SPACK_ROOT}/share/spack/setup—-env.sh

Log out and log back in or source your .bashrc to get the Spack shell support loaded. Try spack info
nalu-wind to see if Spack works.

Step 4

Configure Spack for Eagle. This is done by running the setup-spack.sh script provided which tries finding what
machine you’re on and copying the corresponding * . yaml file to your Spack directory:

cd ${HOME}/build-test/configs && ./setup-spack.sh

Step 5

Try spack info nalu-wind to see if Spack works.

Step 6

Note the build scripts and packages.yaml configuration files provided here adhere to the official versions of the third
party libraries we test with, and that you may want to adhere to using them as well. Also note that when you checkout
the latest Spack, it also means you will be using the latest packages available if you do not set constraints at install time
and the newest packages may not have been tested to build correctly on NREL machines yet. So specifying versions
of the TPL dependencies in your packages.yaml file for Spack is recommended.

Install Nalu-Wind using a non-GPU login node with the example script install_nalu_eagle.sh or edit the script to use
the correct allocation and nice ./install_nalu_eagle.sh.

That’s it! Hopefully the install nalu_eagle. sh script installs the entire set of dependencies and you get a
working build of Nalu-Wind on Eagle. . . after several hours of waiting for it to build.

To build with the Intel compiler, note the necessary change listed in the install_nalu_eagle.sh batch script.

To load Nalu-Wind dependencies (you will need Spack’s OpenMPI for Nalu-Wind now) into your path you will need to
spack load openmpi $compiler and spack load nalu-wind %$compiler, using $gccor $intel
to specify which to load.

1.1. Building Nalu-Wind 3
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Development Build of Nalu-Wind

When building Nalu-Wind with Spack, Spack will cache downloaded archive files such as x . tar. gz files. However,
by default Spack will also erase extracted or checked out (‘staged’) source files after it has built a package successfully.
Therefore if your build succeeds, Spack will have erased the Nalu-Wind source code it checked out from Github.

The recommended way to get a version of Nalu-Wind you can develop in is to checkout Nalu-Wind yourself outside
of Spack and build this version using the dependencies Spack has built for you. To do so, checkout Nalu-Wind:

git clone https://github.com/exawind/nalu-wind.git

Next, create your own directory to build in, or use the existing bui1d directory in Nalu-Wind to run the CMake config-
uration. When running the CMake configuration, point Nalu-Wind to the dependencies by using spack location
—-i <package>. For example in the build directory run:

cmake -DTrilinos_DIR:PATH=S$ (spack location —-i trilinos) \
-DYAML_DIR:PATH=S$ (spack location -i yaml-cpp) \
—-DCMAKE_BUILD_TYPE=RELEASE \

make

There are also do—config scripts available for this according to machine under the configs directory here. These
scripts may also provide the capability to access and use pre-built dependencies from a set of modules if they are
available on the machine. This should allow you to have a build of Nalu-Wind in which you are able to continuosly
modify the source code and rebuild.

Building inside Docker Container

It is also possible to build (and run) Nalu-Wind inside a docker container with a prepared environment. This has
the benefit of requiring less setup and usually being faster and can be useful in some situations (e.g. quickly testing
something).

For this, use the container ecpeds/exawind-snapshot:

’docker run —-it ecpeds/exawind-snapshot bash

Inside the container you can directly load the pre-installed version of Nalu-Wind with spack:

’spack load nalu-wind

Spack-Manager is used generate the container and is pre-installed in the container. Additional development of the
code can be done through the Spack-Manager’s developer tools. A quick-start guide for these tools is available here.
This workflow is how the CI builds are generated in GitHub actions.

If you are uncomfortable using spack for development then you can also set up your own build workflow in more of
a “roll-your-own” development environment using CMake and just utilize the pre-installed TPL’s that are available in
the container through spack. This really comes down to your development preferences and your comfort level with
CMake.

1.1.2 Building Nalu-Wind Manually

Although we recommend installing Nalu-Wind with Spack, if you prefer not to build using Spack, below are instruc-
tions which describe the process of building Nalu-Wind by hand. These instructions are an approximation, due to the
many differences that can exist across machines.

4 Chapter 1. User Manual


https://github.com/exawind/build-test
https://hub.docker.com/r/ecpe4s/exawind-snapshot
https://github.com/sandialabs/spack-manager
https://sandialabs.github.io/spack-manager/user_profiles/developers/developer_workflow.html

Nalu-Wind Documentation, Release 1.2.0

Linux and OSX

The instructions for Linux and OSX are mostly the same, except on each OS you may be able to use a package
manager to install some dependencies for you. Using Homebrew on OSX is one option listed below. Compilers and
MPI are expected to be already installed. If they are not, please follow the OpenMPI build instructions. Currently we
are recommending OpenMPI v1.10.7 or MPICH 3.3 and GCC v7.3.0. Start by creating a $ {NALU_ROOT_DIR} to
work in.

Homebrew

If using OSX, you can install many dependencies using Homebrew. Install Homebrew on your local machine and
reference the list below for some packages Homebrew can install for you. This allows you to skip the steps describing
the build process for each of these applications. You will need to find the location of the applications in which
Homebrew has installed them, to use when building Trilinos and Nalu-Wind.

brew install openmpi

brew install cmake

brew install libxml2

brew install boost

brew tap homebrew/science
brew install superlu43

CMake v3.12.4

CMake is provided here.

Prepare:

cd ${NALU_ROOT_DIR}/packages
tar xf cmake-3.12.4.tar.gz

Build:

cd ${NALU_ROOT_DIR}/packages/cmake-3.12.4
./configure —--prefix=${NALU_ROOT_DIR}/install/cmake
make

make install

SuperLU v4.3

SuperLU is provided here.

Prepare:

cd ${NALU_ROOT_DIR}/packages
tar xf superlu_4.3.tar.gz

Build:

cd ${NALU_ROOT_DIR}/packages/SuperLU_4.3
cp MAKE_INC/make.linux make.inc

To find out what the correct platform extension PLAT is:
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uname —m

Edit make . inc as shown below (diffs shown from baseline).

PLAT = _x86_64

SuperLUroot = /your_path/install/SuperLU_4.3 i.e., ${NALU_ROOT_DIR}/install/SuperLU_
4.3

BLASLIB = -L/usr/1lib64 -1blas

ccC = mpicc

FORTRAN = mpif77

On some platforms, the $ {NALU_ROOT_DIR} may be mangled. In such cases, you may need to use the entire path
to install/SuperLU_4.3.

Next, make some new directories:

mkdir ${NALU_ROOT_DIR}/install/SuperLU_4.3

mkdir ${NALU_ROOT_DIR}/install/SuperLU_4.3/1ib

mkdir ${NALU_ROOT_DIR}/install/SuperLU_4.3/include

cd ${NALU_ROOT_DIR}/packages/SuperLU_4.3

make

cp SRC/*.h ${NALU_ROOT_DIR}/install/SuperLU_4.3/include

Libxmi2 v2.9.8

Libxml2 is found here.

Prepare:

cd ${NALU_ROOT_DIR}/packages
tar -xvf libxml2-2.9.8.tar.gz

Build:

cd ${NALU_ROOT_DIR}/packages/libxml2-2.9.8

CC=mpicc CXX=mpicxx ./configure -without-python —--prefix=${NALU_ROOT_DIR}/install/
—libxml2

make

make install

Boost v1.68.0

Boost is found here.

Prepare:

cd ${NALU_ROOT_DIR}/packages
tar —-zxvf boost_1_68_0.tar.gz

Build:

cd ${NALU_ROOT_DIR}/packages/boost_1_68_0
./bootstrap.sh —-prefix=${NALU_ROOT_DIR}/install/boost —--with-libraries=signals, regex,
—~filesystem,system,mpi, serialization,thread, program_options, exception
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Next, edit project-config. jam and add a ‘using mpi’, e.g,

using mpi: /path/to/mpi/openmpi/bin/mpicc

./b2 -3 4 2>81 | tee boost_build_one
./b2 -3 4 install 2>&1 | tee boost_build_intall

YAML-CPP 0.6.2

YAML is provided here. Versions of Nalu before v1.1.0 used earlier versions of YAML-CPP. For brevity only the
latest build instructions are discussed and the history of the Nalu-Wind git repo can be used to find older installation
instructions if required.

Prepare:

cd ${NALU_ROOT_DIR}/packages
git clone https://github.com/Jjbeder/yaml-cpp
cd yaml-cpp && git checkout yaml-cpp-0.6.2

Build:

cd ${NALU_ROOT_DIR}/packages/yaml-cpp

mkdir build

cd build

cmake —-DCMAKE_CXX_COMPILER=mpicxx —-DCMAKE_CXX_ FLAGS=-std=c++11 -DCMAKE_CC_
<»COMPILER=mpicc -DCMAKE_INSTALL_PREFIX=${NALU_ROOT_DIR}/install/yaml-cpp
make

make install

Zlib v1.2.11

Zlib is provided here.

Prepare:

cd ${NALU_ROOT_DIR}/packages
tar -zxvf zlib-1.2.1l.tar.gz

Build:

cd ${NALU_ROOT_DIR}/packages/zlib-1.2.11

CC=gcc CXX=g++ CFLAGS=-03 CXXFLAGS=-03 ./configure —--prefix=${NALU_ROOT_DIR}/install/
—zlib

make

make install

HDF5 v1.10.4

HDFS5 1.10.4 is provided here.

Prepare:

cd ${NALU_ROOT_DIR}/packages
tar -zxvf hdf5-1.10.4.tar.gz
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Build:

cd ${NALU_ROOT_DIR}/packages/hdf5-1.10.4
./configure CC=mpicc FC=mpif90 CXX=mpicxx CXXFLAGS="-fPIC -03" CFLAGS="-fPIC -03" |,

—FCFLAGS="-fPIC -03" —--enable-parallel —--with-z1ib=${NALU_ROOT_DIR}/install/zlib —--—
—prefix=${NALU_ROOT_DIR}/install/hdf5
make

make install
make check

NetCDF v4.6.1 and Parallel NetCDF v1.8.0

In order to support all aspects of Nalu-Wind’s parallel models, this combination of products is required.

Parallel NetCDF v1.8.0

Parallel NetCDF is provided on the Argon Trac Page.

Prepare:

cd ${NALU_ROOT_DIR}/packages
tar -zxvf parallel-netcdf-1.8.0.tar.gz

Build:

cd parallel-netcdf-1.8.0

./configure —-prefix=${NALU_ROOT_DIR}/install/parallel-netcdf CC=mpicc FC=mpif90
—CXX=mpicxx CFLAGS=-03 CXXFLAGS=-03 --disable-fortran

make

make install

NetCDF v4.6.1

NetCDF is provided here.

Prepare:

cd ${NALU_ROOT_DIR}/packages
tar -zxvf netcdf-4.6.1l.tar.gz

Build:

cd netcdf-4.6.1

./configure —--prefix=${NALU_ROOT_DIR}/install/netcdf CC=mpicc FC=mpif90 CXX=mpicxx_,
—CFLAGS="-I${NALU_ROOT_DIR}/install/parallel-netcdf/include -03" LDFLAGS=-L${NALU_
—ROOT_DIR}/install/parallel-netcdf/1lib —--enable-pnetcdf --enable-parallel-tests —-

—enable-netcdf-4 --disable-shared --disable-fsync --disable-cdmremote --disable-dap -
——disable-doxygen --disable-v2
make -3 4

make check
make install
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Trilinos

Trilinos is managed by the Trilinos project and can be found on Github.

Prepare:

cd ${NALU_ROOT_DIR}/packages

git clone https://github.com/trilinos/Trilinos.git
cd ${NALU_ROOT_DIR}/packages/Trilinos

mkdir build

cd build

Now create a do—config-trilinos script with the following recommended options:

#!/bin/bash

# The base directory where mpi is located.

# From here you should be able to find include/mpi.h bin/mpicxx, bin/mpiexec, etc.
MPI_ROOT_DIR=/PathToMPI

NALU_ROOT_DIR=/PathToNaluProjectDir

# Note: Don't forget to set your LD_LIBRARY_PATH to $mpi_base_dir/lib
# You may also need to add to LD_LIBRARY_PATH the 1lib directory for the compiler
# used to create the mpi executables.

# TPLS needed by trilinos, possibly provided by HomeBrew on a Mac
#BOOST_ROOT_DIR=/usr/local/Cellar/boost/1.56.0/include/boost/
#SUPERLU_ROOT_DIR=/usr/local/Cellar/superlu/4.3
BOOST_ROOT_DIR=${NALU_BUILD_DIR}/install/boost
SUPERLU_ROOT_DIR=${NALU_BUILD_DIR}/install/SuperLU_4.3
NETCDF_ROOT_DIR=${NALU_BUILD_DIR}/install/netcdf
HDF5_ROOT_DIR=${NALU_BUILD_DIR}/install/hdf5
PARALLEL_NETCDF_ROOT_DIR=${NALU_BUILD_DIR}/install/parallel-netcdf
ZLIB_ROOT_DIR=${NALU_BUILD_DIR}/install/zlib
TRILINOS_ROOT_DIR=${NALU_BUILD_DIR}/install/trilinos

EXTRA_ARGS=$0

# Cleanup old cache before we configure

# Note: This does not remove files produced by make. Use "make clean" for this.
find . —-name "CMakeFiles" -exec rm -rf {} \;

rm —-f CMakeCache.txt

cmake \
~DCMAKE_ INSTALL_PREFIX=${TRILINOS_ROOT_DIR} \
—DCMAKE_BUILD_TYPE:STRING=RELEASE
—-DMPI_USE_COMPILER_WRAPPERS :BOOL=0ON
-DMPI_CXX_COMPILER:FILEPATH=S${CXX}
—-DKokkos_ENABLE_DEPRECATED_CODE : BOOL=0OFF
—DTpetra_INST_SERIAL:BOOL=ON
-DTrilinos_ENABLE_CXX11:BOOL=0ON
-DTrilinos_ENABLE_EXPLICIT_INSTANTIATION:BOOL=0ON
—DTpetra_INST_DOUBLE :BOOL=0ON
-DTpetra_INST_COMPLEX_DOUBLE:BOOL=0FF
-DTrilinos_ENABLE_TESTS:BOOL=0OFF
-DTrilinos_ENABLE_ALL_OPTIONAL_PACKAGES:BOOL=0OFF
-DTrilinos_ASSERT_MISSING_PACKAGES:BOOL=0OFF
-DTrilinos_ALLOW_NO_PACKAGES:BOOL=0FF

(continues on next page)
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(continued from previous page)

-DTrilinos_ENABLE_Epetra:BOOL=0FF
-DTrilinos_ENABLE_Tpetra:BOOL=0ON
-DTrilinos_ENABLE_KokkosKernels:BOOL=0N
-DTrilinos_ENABLE_ML:BOOL=0FF
-DTrilinos_ENABLE_MueLu:BOOL=0N
—-DXpetra_ENABLE_Kokkos_Refactor:BOOL=0ON
-DMueLu_ENABLE_Kokkos_Refactor:BOOL=0ON
-DTrilinos_ENABLE_EpetraExt :BOOL=0FF
-DTrilinos_ENABLE_AztecOO0:BOOL=0FF
-DTrilinos_ENABLE_Belos:BOOL=0ON
-DTrilinos_ENABLE_TIfpack?2:BOOL=0ON
-DTrilinos_ENABLE_Amesos2:BOOL=0ON
-DTrilinos_ENABLE_ZoltanZ2:BOOL=0ON
-DTrilinos_ENABLE_TIfpack:BOOL=0OFF
-DTrilinos_ENABLE_Amesos:BOOL=0FF
-DTrilinos_ENABLE_Zoltan:BOOL=0ON
-DTrilinos_ENABLE_STK:BOOL=0N
-DTrilinos_ENABLE_Gtest : BOOL=0ON
-DTrilinos_ENABLE_SEACASExodus :BOOL=0N
-DTrilinos_ENABLE_SEACASEpu:BOOL=0ON
-DTrilinos_ENABLE_SEACASExodiff :BOOL=0N
-DTrilinos_ENABLE_SEACASNemspread:BOOL=0N
-DTrilinos_ENABLE_SEACASNemslice:BOOL=0ON
-DTrilinos_ENABLE_ SEACASIoss:BOOL=0ON
-DTPL_ENABLE_MPTI : BOOL=0ON
-DTPL_ENABLE_Boost :BOOL=0ON
-DBoostLib_INCLUDE_DIRS:PATH=S${BOOST_ROOT_DIR}/include
-DBoostLib_LIBRARY_DIRS:PATH=S${BOOST_ROOT_DIR}/1lib
-DBoost_INCLUDE_DIRS:PATH=${BOOST_ROOT_DIR}/include
-DBoost_LIBRARY_DIRS:PATH=${BOOST_ROOT_DIR}/lib
-DTPL_ENABLE_SuperLU:BOOL=0ON
-DSuperLU_INCLUDE_DIRS:PATH=${SUPERLU_ROOT_DIR}/include
-DSuperLU_LIBRARY_DIRS:PATH=${SUPERLU_ROOT_DIR}/1lib
-DTPL_ENABLE_Netcdf : BOOL=0ON
~DNetCDF_ROOT : PATH=S$ {NETCDF_ROOT_DIR}
-DTPL_Netcdf_ PARALLEL:BOOL=0ON
-DTPL_ENABLE_Pnetcdf :BOOL=0ON
~DPNetCDF_ROOT : PATH=$ {PARALLEL_NETCDF_ROOT_DIR}
—-DPnetcdf_INCLUDE_DIRS:PATH=${PARALLEL_NETCDF_ROOT_DIR}/include
-DPnetcdf_LIBRARY DIRS:PATH=${PARALLEL_NETCDF_ROOT_DIR}/1lib
-DTPL_ENABLE_HDF5:BOOL=0N
-DHDF5_ROOT : PATH=$ {HDF5_ROOT_DIR}
—-DHDF5_NO_SYSTEM_PATHS :BOOL=0ON
-DTPL_ENABLE_Z1lib:BOOL=0N
-DZ1lib_INCLUDE_DIRS:PATH=${ZLIB_ROOT_DIR}/include
-DZ1ib_LIBRARY DIRS:PATH=${ZLIB_ROOT_DIR}/lib
-DTPL_ENABLE_BLAS : BOOL=0N
SEXTRA_ARGS \

./

Build

Place into the build directory, the do-config-trilinos script created from the recommended Trilinos configu-
ration listed above.

do-config-trilinos will be used to run cmake to build trilinos correctly for Nalu-Wind.
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Make sure all other paths to netcdf, hdf5, etc., are correct.

./do-config-trilinos
make
make install

HYPRE

Nalu-Wind can use HYPRE solvers and preconditioners, especially for Pressure Poisson solves. However, this depen-
dency is optional and is not enabled by default. Users wishing to use HYPRE solver and preconditioner combination
must compile HYPRE library and link to it when building Nalu-Wind.

# 1. Clone hypre sources
https://github.com/LLNL/hypre.git
cd hypre/src

# 2. Configure HYPRE package and pass installation directory

./configure —--prefix=S5({NALU ROOT_DIR}/install/hypre —--without-superlu —--without-
—openmp —--enable-bigint

# 3. Compile and install
make && make install

Note:

1. Make sure that ——enable-bigint option is turned on if you intend to run linear systems with > 2 billion
rows. Otherwise, nalu executable will throw an error at runtime for large problems.

2. Users must pass ~-DENABLE_HYPRE option to CMake during Nalu-Wind configuration phase. Optionally, the
variable -DHYPRE_DIR‘ can be used to pass the path of HYPRE install location to CMake.

ParaView Catalyst

Optionally enable ParaView Catalyst for in-situ visualization with Nalu-Wind. These instructions can be skipped if
you do not require in-situ visualization with Nalu-Wind. The first thing you will need to do is build Paraview yourself
using their SuperBuild instructions.

Build Nalu-Wind ParaView Catalyst Adapter

Next you will need to build the Catalyst adapter for Trilinos to hook into Paraview. The adapter is lo-
cated in the Trilinos repo at Trilinos/packages/seacas/libraries/ioss/src/visualization/
ParaViewCatalystIossAdapter. To install:

cd Trilinos/packages/seacas/libraries/ioss/src/visualization/
—ParaViewCatalystIossAdapter

cmake —-DParaView_ DIR:PATH=/path/to/paraview/lib/cmake/paraview_version —-DCMAKE_
< INSTALL_ PREFIX:PATH=${NALU_ROOT_DIR}/install

make

make install

1.1. Building Nalu-Wind 11
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Nalu-Wind

Nalu-Wind is provided here. The master branch of Nalu-Wind typically matches with the master branch or develop
branch of Trilinos. If it is necessary to build an older version of Nalu-Wind, refer to the history of the Nalu git repo
for instructions on doing so.

Prepare:

git clone https://github.com/Exawind/nalu-wind.git

Build

Create a nalu-wind/build directory and execute something similar to following commands. The general com-
mands for configuring and building Nalu-Wind are listed below. We show a script which uses modules which populate
the <PACKAGE>_ROOT_DIR locations for the NREL Eagle machine, but it will need to be modified with the specific
TPL locations you have used.

#!/bin/bash -1

Instructions:

Make a directory in the Nalu-Wind directory for building,
Copy this script to that directory and edit the

options below to your own needs and run it.

H= o W

CXX_COMPILER=mpicxx
C_COMPILER=mpicc

FLAGS="-02 -march=native -mtune=native"
OVERSUBSCRIBE_FLAGS="--use-hwthread-cpus --oversubscribe"
set -e

TRILINOS_ROOT_DIR=${NALU_ROOT_DIR}/install/trilinos
YAMIL,_CPP_ROOT_DIR=${NALU_ROOT_DIR}/install/yaml-cpp

# Clean before cmake configure
set +e

rm -rf CMakeFiles

rm —-f CMakeCache.txt

set -e

# Extra TPLs that can be included in the cmake configure:

# —DENABLE_PARAVIEW_CATALYST:BOOL=ON \

# -DPARAVIEW_CATALYST_INSTALL_PATH:PATH=${CATALYST_IOSS_ADAPTER_ROOT_DIR} \
# -DENABLE_OPENFAST:BOOL=ON \

# —-DOpenFAST_DIR:PATH=${OPENFAST_ROOT_DIR} \

# -DENABLE_HYPRE:BOOL=ON \

# -DHYPRE_DIR:PATH=${HYPRE_ROOT_DIR} \

# —DENABLE_TIOGA:BOOL=0ON \

# -DTIOGA_DIR:PATH=${TIOGA_ROOT_DIR} \

(set —-x; cmake \
—DCMAKE_CXX_COMPILER:STRING=${CXX_COMPILER} \
-DCMAKE_CXX_FLAGS:STRING="S${FLAGS}" \
-DMPI_CXX_COMPILER:STRING=S${CXX_COMPILER} \
-DMPIEXEC_PREFLAGS:STRING="${OVERSUBSCRIBE_FLAGS}" \
-DTrilinos_DIR:PATH=${TRILINOS_ROOT_DIR} \

(continues on next page)
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(continued from previous page)

-DYAML_DIR:PATH=${YAML_CPP_ROOT_DIR} \
-DCMAKE_BUILD_TYPE:STRING=RELEASE \
-DENABLE_DOCUMENTATION:BOOL=0FF \
-DENABLE_TESTS :BOOL=0ON \

-)

(set -x; nice make -3j 16)

This process will create naluX within the nalu-wind/build location.

1.2 Running Nalu-Wind

This section describes the general process of setting up and executing Nalu-Wind, understanding the various input
file options available to the user, and how to extract results and analyze them. For the simplest case, Nalu-Wind
requires the user to provide a YAML input file with the options that control the run along with a computational mesh
in Exodus-II format. More complex setups might require additional files:

* Trilinos MueLu preconditioner configuration in XML format
» ParaView Cataylst input file for in-situ visualizations

* Additional Exodus-II mesh files for solving different physics equation sets on different meshes, or for solution
transfer to an input/output mesh.

1.2.1 Exodus-Ill File Format

Nalu-Wind requires the user to provide the computational mesh in Exodus-II format. The output and restart files
generated by Nalu-Wind are also in Exodus-II format where the requested fields are output along side the mesh. The
restart files from one Nalu-Wind simulation can serve as the input file for a subsequent simulation.

Several commercial mesh generation software support output to Exodus-II format. Two such software used by Nalu-
Wind developers are:

e« CUBIT
¢ Pointwise

Furthermore, NaluWindUtils provides an abl_mesh utility that can be used to generate simple structured meshes
(output into Exodus-II format) for use with atmospheric boundary layer simulations.

Examining Exodus-Il Files

Exodus-II uses the NetCDF format to store data, therefore, the several NetCDF utilities can be used to examine the
file metadata. For example, the following code snippet shows the use of ncdump to examine the names of the mesh
blocks and side sets, as well as the nodal fields available in a given mesh file.

ncdump -v eb_names, ss_names,name_nod_var channel_coarse_ic.g
# <output truncated to show only relevant parts>
data:

eb_names =

"interior"

3S_names =

(continues on next page)

1.2. Running Nalu-Wind 13



http://prod.sandia.gov/techlib/access-control.cgi/1992/922137.pdf
https://cubit.sandia.gov/public/13.2/help_manual/WebHelp/cubit_users_manual.html
http://www.pointwise.com
http://naluwindutils.readthedocs.io/en/latest/user/abl_mesh.html
http://www.unidata.ucar.edu/software/netcdf/

Nalu-Wind Documentation, Release 1.2.0

(continued from previous page)

"inlet",
"outlet",
"bottomwall",
"topwall",
"back",
"front" ;
name_nod_var =
"turbulent_ke",
"velocity_x",
"velocity_vy",
"velocity_z"

For brevity, the example above has removed the NetCDF dimensions and variables sections to show just the
contents of the variable names of interest. The output shows that the mesh in question contains one element block
(interior) with six boundary planes (side-sets) and has two nodal fields: the velocity vector, and the turbulent
kinetic energy scalar. nedump can be invoked with the —h flag to print just the headers. Of particular interest is the
NetCDF dimensions section that contains information about the total number of nodes, element, boundary faces,
etc. in the mesh file.

Most visualization programs support loading Exodus-II mesh/solution files and can be used to visualize the flow fields
generated by Nalu-Wind. Two open-source visualization programs available are:

e ParaView
e Vislt

Preliminary support for in-situ visualization using ParaView Catalyst is available within the Nalu-Wind code base and
can be enabled by linking to Catalyst libraries during compile time. See input file specifications more details on setting
up Cataylst for in-situ visualization of Nalu-Wind solution files.

Other Exodus-Il Utilities

A brief description of some useful Exodus-II utilities are provided here. Please consult the documentation of these
programs to understand the full range of options available.

decomp

decomp is a SEACAS utility (available from a Trilinos install) that can be used to decompose a mesh file
acros several MPI ranks for use in a subsequent paralell simulation.

epu

epu performs the reverse action of decomp, i.e., it combines parallel decomposed files from a simulation
into a single Exodus-II database. The simplest invocation is

epu —auto nalu_output.e.8.0

The —auto flag determines the database structured based on the file provided on the command line and
combines the files (in the above example into nalu_output.e).

mapvar-kd
Map solution fields from one mesh to another mesh.
percept

The Percept project provides various tools to perform mesh refinement, higher-order promotion, etc. See
documentation for mesh_adapt to determine various options available.
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1.2.2 Invoking Nalu-Wind - Command-line options

Nalu-Wind’s runtime behavior can be controlled by using several command line input options during invocation. Users
can invoke —h to determine the various options available.

-h, —-help
Print the help message describing all Nalu-Wind options and exit

-i, --input-deck
Use the filename provided as the input file. If this option is not provided, naluX will attempt to load a file
called nalu. i in the current working directory as the input file.

-0, —--log-file
The log file where the output generated by Nalu-Wind is directed to. If no file is provided, then naluX will
use the base name of the Nalu-Wind input file with the extension .log as the output file. For example, if
naluX was invoked as naluX -i ABL.neutral.i then the output will be redirected to a file named
ABL.neutral.log. Note that the file is overwritten if it already exists.

-v, —-version
Print the Nalu-Wind version string.

-p, —--pprint
Enable parallel printing from all MPI ranks.

-D, —-debug
Enable verbose debug printing to log file.

1.2.3 Nalu-Wind Input File

Nalu-Wind requires the user to provide an input file, in YAML format, during invocation at the command line using
the nalux -1 flag. By default, naluX will look for nalu. i in the current working directory to determine the mesh
file as well as the run setup for execution. A sample nalu. i is shown below:

Listing 1.1: Sample Nalu-Wind input file for the Heat Conduction prob-
lem

# —*— mode: yaml —#-—
#
# Example Nalu input file for a heat conduction problem

#

Simulations:
- name: siml
time_integrator: ti_1
optimizer: optl

linear_solvers:

- name: solve_scalar
type: tpetra
method: gmres
preconditioner: sgs
tolerance: le-3
max_iterations: 75
kspace: 75
output_level: 0

realms:

(continues on next page)

1.2. Running Nalu-Wind 15




Nalu-Wind Documentation, Release 1.2.0

(continued from previous page)

- name: realm_1
mesh: periodic3d.g
use_edges: no
automatic_decomposition_type: rcb

equation_systems:
name: theEgSys
max_iterations: 2

solver_system specification:
temperature: solve_scalar

systems:
— HeatConduction:
name: myHC
max_ iterations: 1
convergence_tolerance: le-5

initial conditions:

— constant: ic_1
target_name: block_1
value:

temperature: 10.0

material_ properties:
target_name: block_1
specifications:
- name: density
type: constant
value: 1.0
— name: thermal_conductivity
type: constant
value: 1.0
- name: specific_heat
type: constant
value: 1.0

boundary conditions:

- wall_boundary_condition: bc_left
target_name: surface_l1
wall_user_ data:

temperature: 20.0

- wall_boundary_condition: bc_right
target_name: surface_2
wall_user_ data:
temperature: 40.0

solution_options:
name: myOptions

use_consolidated_solver_algorithm:

yes

(continues on next page)
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(continued from previous page)

options:
- element_source_terms:
temperature: FEM _DIFF

output:
output_data_base_name: femHC.e
output_frequency: 10
output_node_set: no
output_variables:
— dual_nodal_volume
— temperature

Time_Integrators:
- StandardTimeIntegrator:

name: ti_1
start_time: 0
termination_step_count: 25
time_step: 10.0
time_stepping type: fixed
time_step_count: 0
second_order_accuracy: no

realms:
- realm_1

Nalu-Wind input file contains the following top-level sections that describe the simulation to be executed.
Realms

Realms describe the computational domain (via mesh input files) and the set of physics equations (Low-
Mach Navier-Stokes, Heat Conduction, etc.) that are solved over this particular domain. The list can
contain multiple computational domains (realms) that use different meshes as well as solve different sets
of physics equations and interact via solution transfer. This section also contains information regarding
the initial and boundary conditions, solution output and restart options, the linear solvers used to solve the
linear system of equations, and solution options that govern the discretization of the equation set.

A special case of a realm instance is the input-output realm; this realm type does not solve any physics
equations, but instead serves one of the following purposes:

* provide time-varying boundary conditions to one or more boundaries within one or more of the
participating realms in the simulations. In this context, it acts as an input realm.

e extract a subset of data for output at a different frequency from the other realms. In this context, it
acts as an output realm.

Inclusion of an input/output realm will require the user to provide the additional t ransfers section
in the Nalu-Wind input file that defines the solution fields that are transferred between the realms. See
Physics Realm Options for detailed documentation on all Realm options.

Linear Solvers

This section configures the solvers and preconditioners used to solve the resulting linear system of equa-
tions within Nalu-Wind. The linear system convergence tolerance and other controls are set here and can
be used with multiple systems across different realms. See Linear Solvers for more details.

Time Integrators

This section configures the time integration scheme used (first/second order in time), the duration of sim-
ulation, fixed or adaptive timestepping based on Courant number constraints, etc. Each time integration

1.2. Running Nalu-Wind 17




Nalu-Wind Documentation, Release 1.2.0

section in this list can accept one or more realms that are integrated in time using that specific time inte-
gration scheme. See Time Integration Options for complete documentation of all time integration options
available in Nalu-Wind.

Transfers

An optional section that defines one or more solution transfer definitions between the participating
realms during the simulation. Each transfer definition provides a mapping of the to and from realm,
part, and the solution field that must be transferred at every timestep during the simulation. See ABL
Forcing section for complete documentation of all transfer options available in Nalu-Wind.

Simulations

Simulations provides the top-level architecture that orchestrates the time-stepping across all the realms
and the required equation sets.

Linear Solvers

The 1inear_solvers section contains a list of one or more linear solver settings that specify the solver, precon-
ditioner, convergence tolerance for solving a linear system. Every entry in the YAML list will contain the following
entries:

Note: The variable in the 1inear_solvers subsection are prefixed with 1inear_solvers.name but only the
variable name after the period should appear in the input file.

linear_solvers.name
The key wused to refer to the linear solver configuration in equation_systems.
solver system specification section.

linear_solvers.type
The type of solver library used.

Type Description
tpetra | Tpetra data structures and Belos solvers/preconditioners
hypre Hypre data structures and Hypre solver/preconditioners

linear_solvers.method
The solver used for solving the linear system.

When linear_solvers.typeis tpetra the valid options are: gmres, biCgStab, cg. For hypre the
valid options are hypre_boomerAMG and hypre_gmres.

Options Common to both Solver Libraries

linear_solvers.preconditioner
The type of preconditioner used.

When Iinear_solvers.type is tpetra the valid options are sgs, mt_sgs, muelu. For hypre the
valid options are boomerAMG or none.

linear_solvers.tolerance
The relative tolerance used to determine convergence of the linear system.

linear_ solvers.max_ iterations
Maximum number of linear solver iterations performed.

linear_solvers.kspace
The Krylov vector space.
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linear_solvers.output_level
Verbosity of output from the linear solver during execution.

linear_solvers.write matrix_files

A boolean flag indicating whether the matrix, the right hand side, and the solution vector are written to files
during execution. The matrix files are written in MatrixMarket format. The default value is no.

Additional parameters for Belos Solver/Preconditioners

linear_solvers.muelu xml file name

Only used when the 1inear solvers.preconditioner is set to muelu and specifies the path to the
XML filename that contains various configuration parameters for Trilinos MueLu package.

linear_solvers.recompute_preconditioner

A boolean flag indicating whether preconditioner is recomputed during runs. The default value is yes.

linear_solvers.reuse_preconditioner
Boolean flag. Default value is no.

linear solvers.summarize_ muelu_timer

Boolean flag indicating whether MueLu timer summary is printed. Default value is no.

Additional parameters for Hypre Solver/Preconditioners

The user is referred to Hypre Reference Manual for full details on the usage of the parameters described briefly below.

The parameters that start with bamg__ prefix refer to options related to Hypre’s BoomerAMG preconditioner.

linear_solvers.bamg output_level

The level of verbosity of BoomerAMG preconditioner. See HYPRE_BoomerAMGSetPrintLevel. Default:

0.

linear_solvers.bamg coarsen_type
See HYPRE_BoomerAMGSetCoarsenType. Default: 6

linear_solvers.bamg cycle_type
See HYPRE_BoomerAMGSetCycleType. Default: 1

linear_solvers.bamg relax_type
See HYPRE_BoomerAMGSetRelaxType. Default: 6

linear_solvers.bamg relax_order
See HYPRE_BoomerAMGSetRelaxOrder. Default: 1

linear_solvers.bamg num_sweeps
See HYPRE_BoomerAMGSetNumSweeps. Default: 2

linear_solvers.bamg max_levels
See HYPRE_BoomerAMGSetMaxLevels. Default: 20

linear_solvers.bamg strong threshold
See HYPRE_BoomerAMGSetStrongThreshold. Default: 0.25

Time Integration Options

Time_Integrators

A list of time-integration options used to advance the realms in time.
tain a YAML mapping with the key indicating the type of time integrator.

StandardTimeIntegrator is available.

Each list entry must con-
Currently only one option,
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Time_Integrators:
- StandardTimelIntegrator:

name: ti_1
start_time: 0.0
termination_step_count: 10
time_step: 0.5
time_stepping type: fixed
time_step_count: 0
second_order_accuracy: yes

realms:
- fluids_realm

time_int.name
The lookup key for this time integration entry. This name must match the one provided in Simulations
section.

time_ int.termination_time
Nalu-Wind will stop the simulation once the termination_t ime has reached.

time_int.termination_step_count
Nalu-Wind will stop the simulation once the specified termination_step_count timesteps have been
completed. If both time int.termination_time and this parameter are provided then this parameter
will prevail.

time_int.time_step
The time step (At) used for the simulation. If t ime_int.time_stepping_typeis fixed this value does
not change during the simulation.

time_int.start_time
The starting time step (default: 0.0) when starting a new simulation. Note that this has no effect on restart
which is controlled by restart.restart_timeinthe restart section.

time_int.time_step_count
The starting timestep counter for a new simulation. See restart for restarting from a previous simulation.

time_int.second_order_accuracy
A boolean flag indicating whether second-order time integration scheme is activated. Default: no.

time_int.time_stepping_ type
One of fixed or adaptive indicating whether a fixed time-stepping scheme or an adaptive timestepping
scheme is used for simulations. See time step control for more information on max Courant number
based adaptive time stepping.

time_ int.realms
A list of realms names. The names entered here must match name used in the realms section. Names listed
here not found in realms list will trigger an error, while realms not included in this list but present in realms
will not be initialized and silently ignored. This can cause the code to abort if the user attempts to access the
specific realm in the t ransfers section.

Physics Realm Options

As mentioned previously, realms is a YAML list data structure containing at least one Physics Realm Options
entry that defines the computational domain (provided as an Exodus-II mesh), the set of physics equations that must
be solved over this domain, along with the necessary initial and boundary conditions. Each list entry is a YAML
dictionary mapping that is described in this section of the manual. The key subsections of a Realm entry in the input
file are
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Realm subsection

Purpose

equation_systems

Set of physics equations to be solved

initial_conditions

Initial conditions for the various fields

boundary_conditions

Boundary condition for the different fields

material_ properties

Material properties (e.g., fluid density, viscosity etc.)

solution_options

Discretization and numerical stability

mesh_transformation

Mesh transformation

mesh_motion

Mesh motion

output Solution output options (file, frequency, etc.)
restart Optional: Restart options (restart time, checkpoint frequency etc.)
time_step_control Optional: Parameters determining variable timestepping

In addition to the sections mentioned in the table, there are several additional sections that could be present depending
on the specific simulation type and post-processing options requested by the user. A brief description of these optional
sections are provided below:

Realm subsection Purpose

turbulence_averaging Generate statistics for the flow field

post_processing Extract integrated data from the simulation

solution_norm Compare the solution error to a reference solution

data_probes Extract data using probes

actuator Model turbine blades/tower using actuator lines

abl_forcing Momentum source term to drive ABL flows to a desired velocity profile
boundary_layer statistics | Compute boundary layer statistics

Common options

name
The name of the realm. The name provided here is used in the Time Integrators section to determine the
time-integration scheme used for this computational domain.

mesh
The name of the Exodus-II mesh file that defines the computational domain for this realm. Note that only
the base name (i.e., without the . NPROCS. IPROC suffix) is provided even for simulations using previously
decomposed mesh/restart files.

automatic_decomposition_type
Used only for parallel runs, this indicates how the a single mesh database must be decomposed amongst the MPI
processes during initialization. This option should not be used if the mesh has already been decomposed by an
external utility. Possible values are:

Value | Description

rcb recursive coordinate bisection

rib recursive inertial bisection

linear | elements in order first n/p to proc 0, next to proc 1.
cyclic | elements handed out to id % proc_count

activate_aura
A boolean flag indicating whether an extra element is ghosted across the processor boundaries. The default
value is no.
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use_edges
A boolean flag indicating whether edge based discretization scheme is used instead of element based schemes.
The default value is no.

polynomial_order
An integer value indicating the polynomial order used for higher-order mesh simulations. The default value
is 1. When polynomial_ order is greater than 1, the Realm has the capability to promote the mesh to
higher-order during initialization.

solve_frequency
An integer value indicating how often this realm is solved during time integration. The default value is 1.

support_inconsistent_multi_state_restart
A boolean flag indicating whether restarts are allowed from files where the necessary field states are missing. A
typical situation is when the simulation is restarted using second-order time integration but the restart file was
created using first-order time integration scheme.

activate_memory_diagnostic
A boolean flag indicating whether memory diagnostics are activated during simulation. Default value is no.

rebalance_mesh
A boolean flag indicating whether to rebalance mesh using stk_balance. The default value is no. If this param-
eter is activated, it requires that stk_rebalance_method is also set to specify the decomposition method
to be used for rebalance, e.g., RIB, RCB, etc.

balance_nodes
A boolean flag indicating whether node balancing is performed during simulations. See also
balance _node iterations and balance_nodes_target.

balance node_iterations
The frequency at which node rebalancing is performed. Default value is 5.

balance_node_target
The target balance ratio. Default value is 1. 0.

Equation Systems

equation_systems
equation_systems subsection defines the physics equation sets that are solved for this realm and the linear
solvers used to solve the different linear systems.

Note: The variable in the equation_systems subsection are prefixed with equation_systems.name but
only the variable name after the period should appear in the input file.

equation_systems.name
A string indicating the name used in log messages etc.

equation_systems.max_iterations
The maximum number of non-linear iterations performed during a timestep that couples the different equation
systems.

equation_systems.solver_ system_ specification
A mapping containing field_name: linear_solver_name that determines the linear solver used for
solving the linear system. Example:
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solver_system_specification:
pressure: solve_continuity
enthalpy: solve_scalar
velocity: solve_scalar

The above example indicates that the linear systems for the enthalpy and momentum (velocity) equations are
solved by the linear solver corresponding to the tag solve_scalarinthe l1inear_systems entry, whereas
the continuity equation system (pressure Poisson solve) should be solved using the linear solver definition cor-
responding to the tag solve_continuity.

equation_systems.systems
A list of equation systems to be solved within this realm. Each entry is a YAML mapping with the key corre-
sponding to a pre-defined equation system name that contains additional parameters governing the solution of

this equation set. The predefined equation types are

Equation system Description
LowMachEOM Low-Mach Momentum and Continuity equations
Enthalpy Energy equations

ShearStressTransport | k — w SST equation set
TurbKineticEnergy TKE equation system
MassFraction Mass Fraction
MixtureFraction Mixture Fraction
MeshDisplacement Arbitrary Mesh Displacement

An example of the equation system definition for ABL precursor simulations is shown below:

# Equation systems example for ABL precursor simulations
systems:
— LowMachEOM:
name: myLowMach
max_iterations: 1
convergence_tolerance: 1.0e-5
— TurbKineticEnergy:
name: myTke
max iterations: 1
convergence_tolerance: 1.0e-2
— Enthalpy:
name: myEnth
max_ iterations: 1
convergence_tolerance: 1.0e-2

Initial conditions

initial_conditions
The initial_conditions sub-sections defines the conditions used to initialize the computational fields if
they are not provided via the mesh file. Two types of field initializations are currently possible:

* constant - Initialize the field with a constant value throughout the domain;
e user_function - Initialize the field with a pre-defined user function.

The snippet below shows an example of both options available to initialize the various computational fields used
for ABL simulations. In this example, the pressure and turbulent kinetic energy fields are initialized using a con-
stant value, whereas the velocity field is initialized by the user function boundary_layer_perturbation
that imposes sinusoidal fluctations over a velocity field to trip the flow.
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initial conditions:

- constant: ic_1
target_name: [fluid part]
value:

pressure: 0.0
turbulent_ke: 0.1

— user_function: ic_2
target_name: [fluid part]
user_ function_ name:
velocity: boundary_layer_perturbation
user_function_parameters:
velocity: [1.0,0.00753

initial conditions.constant
This input parameter serves two purposes: 1. it indicates the fype (constant), and 2. provides the custom
name for this condition. In addition to the initial_ conditions.target_name this section requires
another entry value that contains the mapping of (field_name, value) as shown in the above example.

initial conditions.user_function
Indicates that this block of YAML input must be parsed as input for a user defined function.

initial_conditions.target_name
A list of element blocks (parts) where this initial condition must be applied. Using the alias al1l_blocks is
equivalent to listing all element blocks in the mesh.

Boundary Conditions

boundary_conditions
This subsection of the physics Realm contains a list of boundary conditions that must be used dur-
ing the simulation. Each entry of this list is a YAML mapping entry with the key of the form
<type>_boundary_condition where the available types are:

e inflow

¢ open — Outflow BC

e wall

¢ symmetry

* periodic

* non_conformal —e.g., BC across sliding mesh interfaces
* overset — overset mesh assembly description

All BC types require bc.target_name that contains a list of side sets where the specified BC is to be ap-
plied. Additional information necessary for certain BC types are provided by a sub-dictionary with the key
<type>_user_data: that contains the parameters necessary to initialize a specific BC type.

bc.target_name
A list of side set part names where the given BC type must be applied. If a single string value is provided, it is
converted to a list internally during input file processing phase.

24 Chapter 1. User Manual



Nalu-Wind Documentation, Release 1.2.0

Inflow Boundary Condition

- inflow_boundary condition: bc_inflow
target_name: inlet
inflow user_data:
velocity: [0.0,0.0,1.0]

Open Boundary Condition

— open_boundary_ condition: bc_open
target_name: outlet
open_user_data:
velocity: [0,0,0]
pressure: 0.0
entrainment_method: {computed, specified}
total_pressure: {yes, no}

Wall Boundary Condition

bc.wall user_data
This subsection contains specifications as to whether wall models are used, or how to treat the velocity at the
wall when there is mesh motion.

The following input file snippet shows an example of using an ABL wall function at the terrain during ABL simula-
tions. See ABL Wall Function for more details on the actual implementation.

# Wall boundary condition example for ABL terrain modeling
— wall_boundary condition: bc_terrain
target_name: terrain
wall user data:
velocity: [0,0,0]
use_abl_wall_ function: yes
heat_flux: 0.0
roughness_height: 0.2
gravity_vector_component: 3
reference_temperature: 300.0

The entry gravity_vector_component is an integer that specifies the component of the gravity vector, de-
fined in solution_options.gravity, that should be used in the definition of the Monin-Obukhov length scale
calculation. The entry reference_temperature is the reference temperature used in calculation of the Monin-
Obukhov length scale.

When there is mesh motion involved the wall boundary velocity takes the value of the mesh_velocity along the part
represented by bc. target_name. In such a scenario all information under bc.wall_user_data is rendered
unused.

Example of wall boundary with a custom user function for temperature at the wall

- wall_boundary_ condition: bc_6
target_name: surface_6
wall_user_data:

user_ function_name:
temperature: steady_2d_thermal
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Symmetry Boundary Condition

Requires no additional input other than bc. target_name.

- symmetry_ boundary_ condition: bc_top
target_name: top
symmetry_user_data:

Periodic Boundary Condition

Unlike the other BCs described so far, the parameter bc. target_name behaves differently for the periodic BC.
This parameter must be a list containing exactly two entries: the boundary face pair where periodicity is enforced.
The nodes on these planes must coincide after translation in the direction of periodicity. This BC also requires a
periodic_user._data section that specifies the search tolerance for locating node pairs.

periodic_user_data

— periodic_boundary condition: bc_east_west
target_name: [east, west]
periodic_user_ data:

search_tolerance: 0.0001

Non-Conformal Boundary

Like the periodic BC, the parameter bc. target_name must be a list with exactly two entries that specify the
boundary plane pair forming the non-conformal boundary.

- non_conformal_ boundary condition: bc_left
target_name: [surface 77, surface 7]
non_conformal user data:

expand_box percentage: 10.0

Material Properties

material_properties
The section provides the properties required for various physical quantities during the simulation. A sample
section used for simulating ABL flows is shown below

material_ properties:
target_name: [fluid part]

constant_specification:
universal _gas_constant: 8314.4621
reference_pressure: 101325.0

reference_quantities:
- species_name: Air
mw: 29.0
mass_fraction: 1.0

specifications:

(continues on next page)
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(continued from previous page)

- name: density
type: constant
value: 1.178037722969475
- name: viscosity
type: constant
value: 1.6e-5
- name: specific_heat
type: constant
value: 1000.0

material_properties.target_name
A list of element blocks (parts) where the material properties are applied. This list should ideally include all
the parts that are referenced by initial conditions.target_name. Using the alias all_blocks is
equivalent to listing all element blocks in the mesh.

material_properties.constant_specification
Values for several constants used during the simulation. Currently the following properties are defined:

Name Description
universal_gas_constant | Ideal gas constant R
reference_temperature Reference temperature for simulations
reference_pressure Reference pressure for simulations

material_ properties.reference_quantities
Provides material properties for the different species involved in the simulation.

Name Description

species_name Name used to lookup properties
mw Molecular weight
mass_fraction Mass fraction

primary_mass_fraction
secondary_mass_fraction
stoichiometry

material_properties.specifications
A list of material properties with the following parameters

material_properties.specifications.name
The name used for lookup, e.g., density, viscosity, etc.

material properties.specifications.type
The type can be one of the following

Type Description

constant Constant value property

polynomial Property determined by a polynomial function
ideal_gas_t Function of Tief, Pref, molecular weight
ideal_gas_t_p Function of Ty, pressure, molecular weight
ideal_gas_yk

hdf5table Lookup from an HDF?5 table

mixture_ fraction | Property determined by the mixture fraction
geometric

generic
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Examples

1. Specification for density as a function of temperature

specifications:
- name: density
type: ideal_gas_t

2. Specification of viscosity as a function of temperature

- name: viscosity
type: polynomial
coefficient_declaration:
— species_name: Air
coefficients: [1.7¢

The species_name must correspond to the entry in reference quantitites tolookup molecular
weight information.

3. Specification via hdf5table

material properties:
table_file_name: SLFM_CGauss_C2H4_ZMean_ZScaledVarianceMean_logChiMean.h5

specifications:
— name: density

type: hdfb5table

independent_variable_set: [mixture fraction,
—~dissipation]

table_name_for property: density

table_name_for independent_variable_set: [ZMean,
—ChiMean]

aux_variables: temperature

table_name_for aux_variables: temperature

alar_variance,

aledvVarianc

- name: viscosity
type: hdfbtable
independent_variable_set: [mixture fraction,
—dissipation]
table_name_for property: mu
table_name_for_ independent_variable_set: [ZMean, 7ZScaledVarianceMean,
—ChiMean]

calar_variance, scalar_

)]

4. Specification viamixture_fraction

material_ properties:
target_name: block_1

specifications:

— name: density
type: mixture_fraction
primary value: 0.163e-3
secondary value: 1.18e-3

- name: viscosity
type: mixture_fraction
primary value: 1.967e-4
secondary_value: 1.85e-4
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Solution Options

Note: The documentation for this section is incomplete.

solution_options
This section defines the discretization and numerical stability approaches, as well as turbulence models.

solution_options.name
Name of solution options group.

solution_options.turbulence_model
Turbulence model used in simulation.

solution_options.options
This subsection defines additional options for the solution options.

For example, one could modify turbulence model constants:

- turbulence model constants:
SDRWallFactor: 0.625

One could also define source terms, such as a momentum forcing in a box of the domain:

- source_terms:
momentum: body_force_box

— source_term parameters:
momentum: [0.011,
momentum box: [-1.0

One can make the momentum forcing in a box dynamic to achieve a target velocity on a face:

- dynamic_body_ force_box parameters:
forcing direction: 0
velocity reference: 21.0
density_ reference: 1.0
velocity target_name: inlet
drag_target_name: [top, bottom]
output_file name: forcing.dat

Mesh Transformation

mesh transformation
This subsection of the realm describes a one time stationary motion undergone by the entire mesh with entries
under mesh_transformation describing the motions applied to different parts in a.

Example:

mesh_transformation:
— name: scale_background

mesh_parts: [ Unspecified-3-HEX ]
motion:
- type: scaling
factor: [1.2, 1.0, 1.2]
origin: [5.0, 0.05, 0.0]

(continues on next page)
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— name: scale_near_body
mesh_parts: [ Unspecified-2-HEX ]
motion:

- type: scaling
factor: [1.2, 1.0, 1.2]
origin: [0.0, 0.05, 0.0]

mesh_transformation.name
Name of motion group.

mesh_transformation.mesh_parts

Mesh parts associated with respective motion group. The user may use all_blocks to apply the transforma-

tion to the entire mesh.

mesh_ transformation.motion

Type of motion. Every group is free to undergo one or multiple motions simultaneously.

Mesh Motion

mesh_motion

This subsection of the of the realm describes the time-dependent rigid body motion undergone by the entire

mesh for as described by entries under mesh_motion.

Example:

mesh _motion:

— name: trans_rot_near_body
mesh_parts: [ Unspecified-2-HEX ]
motion:

- type: rotation
omega: 12.0
axis: [0.0, 1.0, 0.0]
origin: [0.0, 0.05, 0.0]

- type: translation
start_time: 100.0
end time: 200.0
velocity: [0.05, 0.0, 0.0]

mesh_motion.name
Name of motion group.

mesh_motion.mesh_parts

Mesh parts associated with respective motion group. The user may use all_blocks to apply the motion to

the entire mesh.

mesh _motion.motion

Type of motion the current group undergoes. Every frame is free to undergo one or multiple motions simultane-

ously.

Output Options

output
Specifies the frequency of output, the output database name, etc.
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Example:

output:
output_data_base_name: out/ABL.neutral.e
output_frequency: 100
output_node_set: no
output_variables:
- velocity
- pressure
- temperature

output .output_data base_name
The name of the output Exodus-II database. Can specify a directory relative to the run directory, e.g., out/
nalu_results.e. The directory will be created automatically if one doesn’t exist. Default: output .e

output.output_frequency
Nalu-Wind will write the output file every output_frequency timesteps. Note that currently there is no
option to output results at a specified simulation time. Default: 1.

output .output_start
Nalu-Wind will start writing output past the output_start timestep. Default: 0.

output .output_forced wall_time
Force output at a specified wall-clock time in seconds.

output .output_node_set

Boolean flag indicating whether nodesets, if present, should be output to the output file along with element
blocks.

output .compression_level
Integer value indicating the compression level used. Default: 0.

output.output_variables
A list of field names to be output to the database. The field variables can be node or element based quantities.

Restart Options

restart
This section manages the restart for this realm object.

restart.restart_data_base_ name
The filename for restart. Like output, the filename can contain a directory and it will be created if not already
present.

restart.restart_time
If this variable is present, it indicates that the current run will restart from a previous simulation. This
requires that the mesh be a restart file with all the fields necessary for the equation sets defined in the
equation_systems.systems. Nalu-Wind will restart from the closest time available in the mesh to
restart_time. The timesteps available in a restart file can be examined by looking at the t ime_whole
variable using the ncdump utility.

Note: The restart database used for restarting a simulation is the mesh parameter. The
restart_data_base_name parameter is used exclusively for outputs.

restart.restart_frequency
The frequency at which restart files are written to the disk. Default: 500 timesteps.
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restart.restart_start
Nalu-Wind will write a restart file after restart_start timesteps have elapsed.

restart.restart_forced wall time
Force writing of restart file after specified wall-clock time in seconds.

restart.restart _node_set
A boolean flag indicating whether nodesets are output to the restart database.

restart .max_data base_step_size
Default: 100, 000.

restart.compression_level
Compression level. Default: 0.

Time-step Control Options

time_step_control
This optional section specifies the adpative time stepping parameters
time_stepping typeissettoadaptive.

used if time int.

time_step_control:
target_courant: 2.0
time_step_change_factor: 1.2

dtctrl.target_courant
Maximum Courant number allowed during the simulation. Default: 1.0

dtctrl.time_step_change_ factor
Maximum allowable increase in dt over a given timestep.

Turbine specific input options

Actuator Turbine Model

actuator

actuator subsection defines the inputs for actuator line simulations. A sample section is shown below for

running actuator line simulations coupled to OpenFAST with two turbines.

actuator:
type: ActLineFAST
search_method: stk_kdtree
search_target_part: Unspecified-2-HEX

n_turbines_glob: 2

dry_run: False

debug: False

t_start: 0.0

simStart: init # init/trueRestart/restartDriverInitFAST
t_max: 5.0

n_every_ checkpoint: 100

TurbineO:
procNo: 0
num_force_pts_blade: 50
num_force_pts_tower: 20

(continues on next page)
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nacelle cd: 1.0

nacelle_area: 1.0

air_density: 1.225
epsilon: [ 5.0, 5

turbine_base_pos: 0
turbine_hub_pos: [ 0.0, 0.0

restart_filename: ""

FAST input_filename: "TestOl.fst"
turb_id: 1

turbine name: machine_zero

Turbinel:
procNo: 0
num_force_pts_blade: 50
num_force_pts_tower: 20
nacelle cd: 1.0
nacelle_area: 1.0
air_density: 1.225

epsilon: [ 5.0, 5.0,
turbine_base pos: | -90.0 1]
turbine_hub_pos: [ 250.0 .00 ]

restart_filename:
FAST input_filename: "TestO2.fst"
turb_id: 2

turbine name: machine_one

actuator.type
Type of actuator source. Options are ActLineFAST and ActDiskFAST. ActLineFAST is for actuator
lines, and ActDiskFAST is for actuator disks. The actuator disk uses a stationary actuator line model to
compute forces at the blade locations and then the average force of the blades is spread azimuthally between the
blades sampling points.

actuator.search_method
String specifying the type of search method used to identify the nodes within the search radius of the actuator
points. The only valid option is stk_kdtree. The boost_rtree option has been deprecated by the STK
search library.

search_target_part
String or an array of strings specifying the parts of the mesh to be searched to identify the nodes near the actuator
points.

actuator.n_turbines_glob
Total number of turbines in the simulation. The input file must contain a number of turbine specific sections
(Turbine0, Turbinel, ..., Turbine(n-1)) that is consistent with nTurbinesGlob.

actuator.debug
Enable debug outputs if set to true

actuator.dry_run
The simulation will not run if dryRun is set to true. However, the simulation will read the input files, allocate
turbines to processors and prepare to run the individual turbine instances. This flag is useful to test the setup of
the simulation before running it.

actuator.simStart
Flag indicating whether the simulation starts from scratch or restart. simStart takes on one of three values:

e init - Use this option when starting a simulation from ¢=0s.

e trueRestart - While OpenFAST allows for restart of a turbine simulation, external components like

1.2. Running Nalu-Wind 33




Nalu-Wind Documentation, Release 1.2.0

the Bladed style controller may not. Use this option when all components of the simulation are known to
restart.

e restartDriverInitFAST - When the restartDriverInitFAST option is selected, the individ-
ual turbine models start from 7=0s and run up to the specified restart time using the inflow data stored at
the actuator nodes from a hdf5 file. The C++ API stores the inflow data at the actuator nodes in a hdf> file
at every OpenFAST time step and then reads it back when using this restart option. This restart option is
especially useful when the glue code is a CFD solver.

actuator.t_start
Start time of the simulation

actuator.t_end
End time of the simulation. t _end <=t_max

actuator.t_max
Max time of the simulation

Note: t_max can only be set when OpenFAST is running from ¢#=0s and simStart is init. t_max can not
be changed on a restart. OpenFAST will not be able to run beyond t_max. Choose t_max to be large enough
to accomodate any possible future extensions of runs. One can change t_start and t_end to start and stop the
simulation any number of times as long as t_end <=t_max.

actuator.dt_fast
Time step for OpenFAST. All turbines should have the same time step.

actuator.n_every_checkpoint
Restart files will be written every so many time steps

Turbine specific input options

actuator.turbine_base_pos
The position of the turbine base for actuator-line/disk simulations

actuator.num_force_pts_blade
The number of actuator points along each blade for actuator-line/disk simulations

actuator.num_force_pts_tower
The number of actuator points along the tower for actuator-line/disk simulations.

actuator.nacelle_cd
The drag coefficient for the nacelle. If this is set to zero, or not defined, the code will not implement the nacelle
model.

actuator.nacelle_area
The reference area for the nacelle. This is only used if the nacelle model is used.

actuator.air_density
The air density. This is only used to compute the nacelle force. It should match the density being used in both
Nalu and OpenFAST.

actuator.epsilon
The spreading width € in the Gaussian spreading function in the [chordwise, thickness, spanwise] coordinate
system to spread the forces from the actuator point to the nodes. In the case of the actuator disk, only the first
value in the chordwise direction is used for the uniform isotropic Gaussian.

actuator.epsilon_chord
This is the ratio €/c in every direction [chordwise, thickness, spanwise]. If this option is specified, the code will
choose a value of € at every location that is ¢ * €/c. To avoid numerical instabilities, the code will choose the
maximum value between c¢ * €¢/c and the value of actuator.epsilon_min specified.
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actuator.epsilon_min
This is the minimum value of ¢ in the Gaussian spreading function in the [chordwise, thickness, spanwise]
coordinate system to spread the forces from the actuator point to the nodes. This option is required if the option
actuator.epsilon_chordis specified.

actuator.epsilon_tower
The spreading width e in the Gaussian spreading function in the inertial [x, y, z] reference frame. If this value is
not speficied, then actuator.epsilonor actuator.epsilon_min will be used.

actuator.restart_filename
The checkpoint file for this turbine when restarting a simulation

actuator.FAST_input_filename
The FAST input file for this turbine

actuator.turb_id
A unique turbine id for each turbine

actuator.num_swept_pts
This is an optional parameter specifically for actuator disks. This parameter determines the number of points
that are placed azimuthally between the actuator lines and spread the forcing over the disk’s area. When
num_swept_pts is included the number of azimuthal points between the lines is forced to this value at
all radial locations. If num_swept_pts is omitted then the azimuthal sampling is computed automatically
with different sampling at each radial location such that the average distance between points matches the radial
spacing.

Turbulence averaging

turbulence_averaging
turbulence_averaging subsection defines the turbulence post-processing quantities and averaging pro-
cedures. A sample section is shown below

turbulence_averaging:
forced _reset: no
time_filter_interval: 100000.0

averaging_type: nalu_classic/moving_exponential
specifications:

- name: turbulence_postprocessing
target_name: interior
reynolds_averaged_variables:

- velocity

favre_ averaged variables:
- velocity
— resolved_turbulent_ke

compute_tke: yes
compute_reynolds_stress: yes
compute_resolved_stress: yes
compute_temperature_resolved_flux: yes
compute_sfs_stress: yes
compute_temperature_sfs_ flux: yes
compute_g criterion: yes

(continues on next page)

1.2. Running Nalu-Wind 35




Nalu-Wind Documentation, Release 1.2.0

(continued from previous page)

compute_vorticity: yes
compute_lambda_ci: yes

Note: The variable in the turbulence_averaging subsection are prefixed with turbulence_averaging.
name but only the variable name after the period should appear in the input file.

turbulence_averaging. forced_reset
A boolean flag indicating whether the averaging of all quantities in the turbulence averaging section is reset. If
this flag is true, the running average is set to zero.

turbulence_averaging.averaging_ type
This parameter sets the choice of the running average type. Possible values are:

nalu_classic “Sawtooth” average. The running average is set to zero each time the time filter width is
reached and a new average is calculated for the next time interval.

moving_exponential “Moving window” average where the window size is set to to the time filter width.
The contribution of any quantity before the moving window towards the average value reduces exponen-
tially with every time step.

turbulence_averaging.time_filter_ interval
Number indicating the time filter size over which to calculate the running average. This quantity is used in
different ways for each filter discussed above.

turbulence_averaging.specifications
A list of turbulence postprocessing properties with the following parameters

turbulence_averaging.specifications.name
The name used for lookup and logging.

turbulence_averaging.specifications.target_name
A list of element blocks (parts) where the turbulence averaging is applied.

turbulence_averaging.specifications.reynolds_average_variables
A list of field names to be averaged.

turbulence_averaging.specifications.favre_ average_variables
A list of field names to be Favre averaged.

turbulence_averaging.specifications.compute_tke
A boolean flag indicating whether the turbulent kinetic energy is computed. The default value is no.

turbulence_averaging.specifications.compute_reynolds_stress
A boolean flag indicating whether the reynolds stress is computed. The default value is no.

turbulence_averaging.specifications.compute_resolved_stress
A boolean flag indicating whether the average resolved stress is computed as < pu;u; >. The default value is
no. When this option is turned on, the Favre average of the resolved velocity, < pu; >, is computed as well.

turbulence_averaging.specifications.compute_temperature_resolved flux
A boolean flag indicating whether the average resolved temperature flux is computed as < pu;0 >. The default
value is no. When this option is turned on, the Favre average of the resolved temperature, < p# >, is computed
as well.

turbulence_averaging.specifications.compute_sfs_stress
A boolean flag indicating whether the average sub-filter scale stress is computed. The default value is no. The
sub-filter scale stress model is assumed to be of an eddy viscosity type and the turbulent viscosity computed by
the turbulence model is used. The sub-filter scale kinetic energy is used to determine the isotropic component
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of the sub-filter stress. As described in the section Conservation of Momentum, the Yoshizawa model is used to
compute the sub-filter kinetic energy when it is not transported.

turbulence_averaging.specifications.compute_ temperature_sfs_flux

A boolean flag indicating whether the average sub-filter scale flux of temperature is computed. The default value
is no. The sub-filter scale stress model is assumed to be of an eddy diffusivity type and the turbulent diffusivity
computed by the turbulence model is used along with a constant turbulent Prandtl number obtained from the
Realm.

turbulence_averaging.specifications.compute_favre_stress

A boolean flag indicating whether the Favre stress is computed. The default value is no.

turbulence_averaging.specifications.compute_favre_tke

A boolean flag indicating whether the Favre stress is computed. The default value is no.

turbulence_averaging.specifications.compute g criterion

A boolean flag indicating whether the g-criterion is computed. The default value is no.

turbulence_averaging.specifications.compute_vorticity

A boolean flag indicating whether the vorticity is computed. The default value is no.

turbulence_averaging.specifications.compute_lambda_ci

A boolean flag indicating whether the Lambda2 vorticity criterion is computed. The default value is no.

Data probes

data_probes

data_probes subsection defines the data probes. A sample section is shown below

data_probes:
output_frequency: 100
output_format: text
search_method: stk_octree
search_tolerance: 1.0e-3
search_expansion_factor: 2.0

gzip_level: O
write_coords: true

specifications:
- name: probe_bottomwall
from_target_part: bottomwall

line_of site_specifications:
- name: probe_bottomwall
number_ of_ points: 100
tip_coordinates: | 39
tail_coordinates: [4.0, 0.0, 0.0]

output_variables:
— field name: tau_wall
field size: 1
- field_name: pressure

specifications:
- name: probe_profile
from_target_part: interior

(continues on next page)
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line_of_ site_specifications:
— name: probe_profile
number_of points: 100
tip_coordinates: [0, 0.0, 0.0]
tail_coordinates: [0.0, 0.0, 1.0]

plane_specifications:
- name: sample_plane

corner_ coordinates: [0.0, C
edgel_vector: [1.0, 0, 0]
edge2_vector: [0, 2.0, 0]
edgel_numPoints: 11
edge2_numPoints: 21
offset_vector:
offset_spacings: [0, 2]
only output_field: velocity

to, 0, 1]

output_variables:
- field name:
field size:

— field name:
field size:

velocity

3
reynolds_stress
6

Note: The variable in the data_probes subsection are prefixed with data_probes . name but only the variable
name after the period should appear in the input file.

data_probes.output_frequency
Integer specifying the frequency of output.

data_probes.output_format
String specifying the output format for the data probes. Currently available options are text or exodus. If
not specified, the default is text. Multiple output formats can be specified like the following:

output_format:
- text
- exodus

data_probes.search_method
String specifying the search method for finding nodes to transfer field quantities to the data probe lineout.

data_probes.search_tolerance

Number specifying the search tolerance for locating nodes.

data_probes.search_expansion_factor

Number specifying the factor to use when expanding the node search.

data_probes.gzip_level

Optional input, applies to sample planes only. Integer specifying amount of compression to apply to sample
plane output. The default gzip_level=0, means no compression. To apply compression, use gzip_level
from 1 to 9, with 9 indicating maximum compression (and slowest speed). Generally gzip_level=1 or
gzip_level=2 is sufficient.

data_probes.write_coords

Optional input, applies to sample planes only. Boolean specifying whether the sample plane x,y,z coordinates
and indices are to be included with every sample plane output. The default is write_coords=true. For
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write_coords=false, a separate coordinate file will be written at the beginning of the output sequence if
it does not already exist.

data_ probes.time_performance
Optional input, applies to sample planes only. Boolean specifying whether to display timing information when

writing sample planes.

data_probes.specifications
A list of data probe properties with the following parameters

data_probes.specifications.name
The name used for lookup and logging.

data_probes.specifications.from_target_part
A list of element blocks (parts) where to do the data probing.

data probes.specifications.line_of_ site_ specifications
A list specifications defining the lineout

Parameter Description

name File name (without extension) for the data probe
number_of_points | Number of points along the lineout

tip_coordinates List containing the coordinates for the start of the lineout
tail_coordinates List containing the coordinates for the end of the lineout

data_probes.specifications.plane_specifications
A list specifications defining the sampling plane

Parameter Description

name File name (without extension) for the sampling plane

cor- List containing the coordinates for the corner of the plane

ner_coordinates

edgel_vector List containing the vector defining the first edge of the plane (with origin at corner)
edge?2_vector List containing the vector defining the second edge of the plane (with origin at corner)

edgel_numPoints | Number of points along edge 1
edge2_numPoints | Number of points along edge 2

offset_vector [Optional] List containing the vector defining the offset direction for additional planes
offset_spacings [Optional] List containing how far each plane is to be offset in the offset_vector direc-
tion

only_output_field | [Optional] Only include the output of this variable in the sample plane output.

data_ probes.specifications.output_variables
A list of field names (and field size) to be probed.

data_probes.lidar_specifications
Allows line_of_site sampling along trajectories tracing the rosette pattern of a spinner LIDAR.

data_probes.lidar_specifications.from_target_part
The mesh part containing the spinner LIDAR center coordinates.

data_probes.lidar_ specifications.scan_time
The time for a scan by the simulated spinner LIDAR.

data_probes.lidar_specifications.number_of_ samples
The number of lines generated by the spinner LIDAR sampling. For the text output, this will generate a separate
file for each line.
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data_probes.lidar_ specifications.points_along_line
The number samples along each lines. This should be chosen based on the spatial resolution of the underlying
mesh, the LIDAR. measurements and the beam_length parameter.

data probes.lidar_specifications.center
The location of the spinner LIDAR aperture.

data_probes.lidar_specifications.beam_length
The maximum length over which to sample the velocity on a particular line. The spatial resolution of the
sampling is computed from this and the number_of _samples parameter.

data_probes.lidar_ specifications.axis
The orientation vector for the LIDAR measurements.

data_probes.lidar_specifications.output
Output type for subsampling LIDAR. Either fext or netcdf (default).

data probes.lidar_specifications.type
Type of LIDAR scan pattern. scanning, radar or spinner (default).

data_probes.lidar_specifications.warn_on missing
Warn if points aren’t found in the simulation domain. yes or no (default).

data probes.lidar_specifications.reuse_search_data
Save cached search data per line. yes (default) or no.

data_probes.lidar_specifications.always_output
Output even if no points intersect domain. yes or no (default).

data probes.lidar_specifications.scanning lidar_ specifications
Block specifying parameters for the scanning lidar sampling

Parameter Description

beam_length Required. Length over which to measure, e.g. 50.

axis Required. Zero angle vector for the angular sweep, e.g. [1,0,0].

center Required. Location of the scanning LIDAR, e.g. [0,0,0].

stare_time Default 1 second. Time line spends at a particular scan angle.

sweep_angle Default 20 degrees. Extent of angular sweep between sweep_angle/2 to -sweep_angle/2.

step_delta_angle | Default 1 degree. Measurement interval of scan angles over the sweep
reset_time_delta | Default 1 second. Time to reset LIDAR after sweep.

ground_direction | Default [0,0,1]. Orthogonal orientation vector for the LIDAR
elevation_angles | Default none. A list of angles in degrees to change to after each sweep

data probes.lidar_ specifications.radar specifications
Block specifying parameters for the radar sampling
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Parameter Description

axis Required. Zero angle vector for the angular sweep, e.g. [1,0,0].

center Required. Location of the radar, e.g. [0,0,0]. Ideally outside of the bounding box.

bbox Optional. Six values (m) describing [bottom-left, top-right] of radar clip box

box_1 Optional. Along with other vertex specifications in (m) describes the radar clip box.

beam_length Required. Sets the maximum length of the line sampled. Also used if line does not
intersect box.

sweep_angle Default 20 degrees. Extent of angular sweep between -sweep_angle/2 to sweep_angle/2.

angular_speed Default 30 degrees/s. Speed of the angular sweep.

re- Default 1 second. Time to reset LIDAR after sweep.

set_time_delta

ground_direction| Default [0,0,1]. Orthogonal orientation vector for the radar

eleva- Default none. A list of angles in degrees to change to after each sweep

tion_angles

dataprobes.lidar_ specifications.radar_cone_grid

Parameter Description

cone_angle Required. cone half angle in degrees centered on radar_specifications.axis
num_circles Required. Number of rays along the cone angle

lines_per_cone_circle | Required. Number of rays around the cone circumference

dataprobes.lidar_ specifications.radar_cone_filter
Implements a few options for filtering the spherical cap of a cone. truncated_normal{n} rules with n=1,2,3
weight the filtering based on truncated normal distribution, with with the circle of the cone being 1,2, or 3 sigma
away. This means that the sampling is more weighted toward the center of the cone with higher n. radau has
weight function = 1, optionally changeable to a Gaussian reaching half of its peak value at the cone circle.

Parameter Description

cone_angle Required. cone half angle in degrees centered on radar_specifications.axis

quadrature_type Required. Type of quadrature. radau or truncated_normal{n} (n=1,2,3), or trun-
cated_normal_halfpower.

radau_points Optional. If radau quadrature is used, number of integration points

radau_weight_type| Default unity. gaussian_halfpower is also supported.

lines_per_cone_cir¢lRequired. Number of rays around the cone circumference

dataprobes.lidar_specifications.misc
The user may also set a number of parameters corresponding to the hardware configuration of the spinner

LIDAR.
Parameter Description
inner_prism_theta Default 90 degrees. The starting angle of the inner prism
inner_prism_rotation_rate | Default 3.5 degrees per second. Rotation rate of the inner prism
inner_prism_azimuth Default 15.2 degrees. azimuthal angle of the inner prism
outer_prism_theta Default 90 degrees. The starting angle of the outer prism
outer_prism_rotation_rate | Default 6.5 degrees per second. Rotation rate of the outer prism
outer_prism_azimuth Default 15.2 degrees. azimuthal angle of the outer prism
ground_direction Default [0,0,1]. Orthogonal orientation vector for the LIDAR
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Post-processing

post_processing
post_processing subsection defines the different post-processing options. A sample section is shown
below

post_processing:

- type: surface
physics: surface_force_and_moment
output_file name: results/wallHump.dat
frequency: 100
parameters: [0,0]
target_name: bottomwall

Note: The variable in the post_processing subsection are prefixed with post_processing.name but only
the variable name after the period should appear in the input file.

post_processing.type
Type of post-processing. Possible values are:

Value | Description
surface | Post-processing of surface quantities

post_processing.physics
Physics to be post-processing. Possible values are:

Value Description

surface_force_and_moment Calculate surface forces and moments

surface_force_and_moment_wall_function| Calculate surface forces and moments when using a wall func-
tion

post_processing.output_file_name
String specifying the output file name.

post_processing. frequency
Integer specifying the frequency of output.

post_processing.parameters
Parameters for the physics function. For the surface_force_and_moment type functions, this is a list
specifying the centroid coordinates used in the moment calculation.

post_processing.target_name
A list of element blocks (parts) where to do the post-processing

ABL Forcing

abl forcing
abl_forcing allows the user to specify desired velocities and temperatures at different heights. These ve-
locities and temperatures are enforced through the use of source in the momentum and enthalpy equations. The
abl_forcing option needs to be specified in the momentum and/or enthalpy source blocks:
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— source_terms:
momentum: abl_forcing
enthalpy: abl_forcing

This option allows the code to implement source terms in the momentum and/or enthalpy equations. A sample

section is shown below

abl_forcing:

search_tolerance:
output_frequency:
from target_part:

momentum:
type: computed

search_method: stk_kdtree

0.0001

search_expansion_factor: 1.5

1

[fluid_part]

relaxation_factor:
heights: [250.0, 50
target_part_format:

1.0
0.0, 750.0]
"zplane_%06.1£f"

The velocities at each plane

Notice that the total number of elements in each

HH H W H

number of planes + 1
velocity_ x:
- [0.0, 10.0, 5.0, 15.0]

- [100000.0, 10.0, 5.0, 15.0]

velocity_y:
- [0.0,
- [100000.0,

o O
(@]

~

o O
(@]

~
o
o

velocity z:
- [0.0, 0.0,

Fach 1list include a time and the velocities for each plane

list will be

- [100000.

temperature:

0,

type: computed

o
> O
~
-
(@]

relaxation_factor:
heights: [250.0, 50
target_part_ format:

1.0
0.0, 750.0]
"zplane_%06.1f"

temperature:
- [0.0, 300.0, 280.0, 310.01]
- [100000.0, 300.0, 280.0, 310.0]

Note: The variables inthe abl_forcing subsection are prefixed with abl_forcing.name but only the variable

name after the period should appear in the input file.

abl_forcing.search_method

This specifies the search method algorithm within the stk framework. The default option stk_kdtree is recom-

mended.

abl_forcing.search_tolerance

This is the tolerance specified for the search_method algorithm. A default value of 0.0001 is recommended.

1.2. Running Nalu-Wind
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abl_forcing.search_expansion_factor
This option is related to the stk search algorithm. A value of 1.5 is recommended.

abl_ forcing.output_frequency
This is the frequency at which the source term is written to the output value. A value of 1 means the source term
will be written to the output file every time-step.

Note: There are now two options in the following inputs. The can be momentum and/or temperature.

abl_forcing.momentum.computed
This option allows the user to choose if a momentum source is computed from a desired velocity (computed)
or if a user defined source term is directly applied into the momentum equation (user_defined).

abl_ forcing.momentum.relaxation_factor
This is a relaxation factor which can be used to under/over-relax the momentum source term. The default value
is 1.

abl_forcing.momentum.heights
This is a list containing the planes at which the forcing should be implemented. Each input is the height for that
plane. This is the naming convention in the mesh file.

abl_forcing.momentum.target_part_format
This is the format in which the planes are saved in the mesh file.

abl_forcing.momentum.velocity_ x
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the z
direction.

abl_forcing.momentum.velocity_y
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the y
direction.

abl_ forcing.momentum.velocity z
A set of lists containing the time in the first element, followed by the desired velocity at each plane in the z
direction.

Note: The temperature has the same inputs as the momentum source (abl_forcing.temperature.
type, abl_forcing.temperature.relaxation_factor, abl_forcing.temperature.heights,
and abl_forcing.temperature.target_part_format) which take the same options.

abl_forcing.temperature.temperature
A set of lists containing the time in the first element, followed by the desired temperature at each plane.

Boundary Layer Statistics

boundary_ layer statistics
The boundary_layer_statistics subsection defines the statistics to be gathered from the ABL precur-
sor calculation. This section computes the spatial averages of velocity and (optionally) temperature at all height
levels available in the ABL mesh.

The outputs are a series of text files (abl_x_stats.dat) containing the averaged profiles and a netcdf file
(e.g., abl_statistics.nc) containing the time history of the averaged quantities.

A sample section is shown below:
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boundary_layer statistics:
target_name: [fluid part]
stats_output_file: abl_statistics.nc
compute_temperature_statistics: yes
output_frequency: 5000
time_hist_output_frequency: 1
height_multiplier: 1.0e6

The various parameters to boundary_layer_statistics are described below:

boundary_layer statistics.target_name
A list of element blocks (parts) where the ABL statistics are to be computed.

boundary layer statistics.time_filter_ interval
The length of time, in seconds, over which to average the statistics given in the abl_~*_stats.dat files.
[Optional, default value: 3600 . 0]

boundary_layer statistics.compute_temperature_statistics
A yes or no value which indicates whether to include the averaged temperature statistics. [Optional, default
value: yes]

boundary layer statistics.output_frequency
The frequency to output statistics in the abl_x_stats.dat text files. [Optional, default value: 10]

boundary_layer statistics.time_hist_output_frequency
The frequency, in iterations, of the time history statistics included in the netcdf statistics file. [Optional, default
value: 10]

boundary layer statistics.stats_output_file
The name of the netcdf statistics file which includes the time history and averages. [Optional, default value:
abl_statistics.nc]

boundary layer statistics.process_utau_statistics
A yes or no value to indicate whether the utau statistics are to be included in the computations. [Optional,
default value: yes]

boundary_layer statistics.wall_normal_direction
Spatial index to indicate the wall normal direction in the domain. The directions are given by x="1¢, y="2*¢,
z="‘3°“. [Optional, default value: 3]

boundary layer statistics.minimum height
Minimum height to account for negative values in the wall normal direction. [Optional, default value: 0. 0]

boundary_layer statistics.height_multiplier
For the purposes of determining the unique heights for the ABL statistics, wall normal distances are multiplied
by height_multiplier then converted into integers for binning. Larger values of height_multiplier
allow a higher precision to be used in determining the unique heights and better behavior in some meshes.
[Optional, default value: 1.0e6]

1.2.4 Transfers

transfers

Transfers section describes the search and mapping operations to be performed between participating realms
within a simulation.
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1.2.5 Simulations

simulations
This is the top-level section that orchestrates the entire execution of Nalu-Wind.

1.2.6 Lessons Learned from Meshing the McAlister Case

Author Chris Bruner, Dept. 01515, Sandia National Laboratories

Introduction

The series of wind-tunnel tests described by McAlister & Takahashi [McAl1991] have become something of a canon-
ical test case in the rotorcraft community. This is because the tests are well-documented and investigate both tip and
aspect ratio effects, and because the symmetric wing section used is fairly representative of those typically found on
rotorcraft.

This case also serves as a reasonably good test case for wind energy applications as there are measurements of the
trailing tip vortex far downstream, up to 13 chords. This is important to understand the grid requirements of our
unstructured approach to modeling a full-scale blade-resolved rotor and tower system.

Meshes

The meshes for this case are mixed structued/unstructured (hybrid) topologies. The mesh in the immediate vicinity
of the wing uses a quad-dominant approach to produce mostly hexahedra in the wing boundary layer. This has most
of the advantages of an unstructured triangular mesh in terms of ease of meshing and face isotropy in the interior, but
has fewer elements for a comparable node count. A potential disadvantage is that there is no way to produce a mixed
hex/tet mesh without the introduction of pyramid elements, which can cause convergence and accuracy problems.
There is also a refined region around the tipe inside the wing box to ensure resolution of the formation of the wing tip
vortex.

Further downstream, there is a fully structured hex mesh, expanding slightly and covering the path of the tip vortex
downstream as measured in the experiment.

The balance of the test section mesh is unstructured tets (except as noted below), while another structured block is
used upstream of the test section.

The meshes first produced used the Discontinuous Galerkin (DG) non-conformal interface between the hexahedral
tip vortex mesh and the fully unstructured test section mesh. Due to the relative novelty of the DG approach and our
lack of familiarity with its performance in Nalu-Wind, it was decided that a more conservative traditional, conformal
interface between the blocks was preferable. Therefore, the tetrahedral test section block interfaces to the hexahedral
tip vortex block and the upstream block using node-matched pyramid elements.

Notes on Geometry

¢ The trailing edge geometry of the NACAO0O018 airfoil isn’t given in either the McAlister report nor in the original
NACA publications describing it. Therefore, for ease of meshing, a rounded trailing edge was used.

* In order to capture at least the gross blockage effects, the model support structure in the wind tunnel is modeled,
and the tunnel walls are at the correct locations. However, in and effort to keep the mesh size low, the tunnel
walls and the support are modeled as slip walls and not as viscous.

* Most of the McAlister cases of interest were performed using a square wingtip. The initial mesh, however,
uses the rounded tip described in McAlister. We will eventually produce a square tip mesh as this is both more
interesting and has more-complete results.

46 Chapter 1. User Manual



Nalu-Wind Documentation, Release 1.2.0

Surface Mesh

A

Fig. 1.1: The surface mesh near the tip, as viewed from above.

Statistics of Current Mesh (grid07_conformall0.exo)

Node count: 58M
Element Count: 192M total, consisting of:
e 158M tets
* 2.5M pyramids
* 1.IM wedges
* 30M hexes
Mazx. Centroid Skew: 0.866; 52 > 0.8
Max. Included Angle: 177 degrees; 7 > 170 degrees
Max. Volume Ratio: 22; 12 > 20
Max. Aspect Ratio: 346
Wall Spacing on Wing: 8.8 x 107° m
T-Rex Growth Rate: 1.2
Full/Max Layers in Tip Block: 19/19 (limited to preserve quality)
Full/Max Layers in Wing Block: 19/33
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For example, changing the maximum edge length from 0.0025m to
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— equiangle skewness is also OK, but is stricter and can give misleadingly high readings for some tets

— the skewed cells are far away from large gradients; and

— equivolume skewness is useless for tets

¢ Heuristically, volume ratios should ideally be < 20. Slightly larger volume ratios are acceptable as long as there
— there are no more than a handful.

are no steep gradients passing through these elements.
* Centroid skewness should be < 0.8; however, skewness as high as the low 0.9s (usually associated with topology

 Centroid skewness is a better measure than the other skewness metrics as it is more even across element topolo-
transitions) is acceptable as long as:

0.003m produces nearly a factor of 2 difference in the element count in the isotropic portion of the mesh:
gies

* Due to the mathematics of physical space, small changes in the maximum edge length in a block lead to
(0.003/0.0025) = 1.73.

* We need a lot of resolution to resolve and advect the tip vortex: on the order of 2-3mm edge length.
large changes in the final mesh size.

Fig. 1.2: A close-up view of the tip and trailing edge, showing rounded tip and trailing edge and quad-dominant surface
* Aspect ratios should be < 1000:1

mesh.

Lessons Learned
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General Pointwise Tips

* Maximum aspect ratio for quads in domains should be < 4 for good quality extrusions.

e Maximum included angle should be < 170 degrees. The usual exceptions for regions with small gradients
should apply here, but there may be additional restrictions due to the elliptic nature of the incompressible flow
equations.

* It can be beneficial to push poor quality cells out of the boundary layer by increasing the minimum number of
T-Rex layers.

* One can set the maximum number of layers to prevent different numbers of layers in a block and its adjacent
domains. This can eliminate some poor-quality tetrahedra.

References

1.3 Nalu-Wind - Examples

The example cases presented are meant to get users started using nalu-wind.

1.3.1 Introduction

A collection of examples for running large-eddy simulations of wind plant aerodynamics is available under
nalu-wind/examples/. A setup.yaml file is included with all cases. This file has the most revelant pa-
rameters that can be modified for each case of interest.

A set of Python utilities is included with the examples. These utilities are meant to simplify the process of generating
input files for running Nalu and plot results form the simulations.

Each case has a default collection of template input files in . /template_input_files. The executable
nalu_input_fileX will take the input files and modify them according to the inputs set in setup.yaml and
generate new and ready to use input files.

Instructions to compile Nalu are provided in Building Nalu-Wind. The wind-utils repository needs to be compiled
to have a access to all the pre-processing utilities used in the example cases. The wind—utils repository can be
downloaded as a submodule by running this command inside the nalu-wind/ repository:

’qit submodule init && git submodule update

Now, wind-utils can be compiled with Nalu by enabling the compilation flag:

’ —DENABLE_WIND_UTILS=ON

during CMake configure phase. Subsequent make install will install all wind—utils executables along side naluX
under the same installation prefix.

The general instructions to run each case

1. Modify the simulation parameters in the setup. yaml file.
2. Execute the nalu_input_fileX script with the setup.yaml file as an input.
3. Generate the mesh using abl_mesh from nalu wind utils.

4. Generate the initial condition using nalu_preprocess.
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5. Run the simulation using naluX.

Setting up the environment

In order to use the Python utilities to create the input files and post-process some of the data, a proper
environment needs to be set. The user can add these libraries to their Python environment, or use conda
to create the environment needed. Instruction to install conda can be found here.

The new environment can be created through conda using:

conda create -n nalu_python -c conda-forge python=3.6 numpy ruamel.yaml_
—netCDF4 matplotlib scipy pandas

This new environment will allow the execution of nalu_input_fileX. The environment is saved in
THE USER system, so it needs to be created only once. After that, it just needs to be activated.

Now, to use the environment run:

source activate nalu_python

The nalu_input_fileX script

This code is an executable which takes as an input a set-up file. The executable will read in the set-up file,
and create a new nalu input file based on the parameters specified. Excuting the code with the -h flag will
provide the necessary information:

./nalu_input_fileX -h

The setup.yaml file

This file includes the inputs to be modified for a case. This example is for a Neutral Atmospheric Boundary
Layer simulation.

iddazdadazasdasaddasdsdasaddasatdagatdagatdadadaadataadadaadataadadaadadsidia
s ###

# This is the input file for an ABL Simulation.

# All the parameters 1in this file will be used to create Nalu inputs.
FEAFAFHAFAFHAHAFEAHAFEAHAF A HAF A HAF A HAF A HAF A HAF A EAF AR AR AR A A
s ###

FHAFAFHAFAFEAFAFEAHAFEAHAF A HAF A EAF AR F AR A A A FAF A HAF AR F AR AR
# These are the example input files and the files which will be generated.
iddazdadasdadasaddasssdasasdadaddadatsadataadasasdadaddadaddadaddidaddiidai
# The old input files which will be modified

template_input: template_input_files/ablNeutralEdge.yaml
template_preprocess: template_input_files/nalu_preprocess.yaml

# The name of the new input files
new_input: abl_simulation.yaml
new_preprocess: abl_preprocess.yaml

# Establish if the simulation is a restart or not (yes/no)
restart: no

(continues on next page)
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(continued from previous page)

ldddaddddadaddasaddasadaasadaadaaadadd

# Wind speed and temperature profiles

HHAFAAHAFAFHAFAFEAHAFEAHAF A HAF A HAFHA

# Wind speed at specified height [m/s].

UOMag: 8.0

# Wind direction [deg]. A direction of 270 deg means the wind is coming from,
—~the

# west, which is from left to right.

#

# N Odeg

# /

# /

# /

# w 270deg -—— E 90deg

# /

# /

# /

# S 180deg

#

wind_dir: 270.0

# Height at which to drive mean wind to UOMag/dir [m].
wind_height: 90.0

# Temperature values [K] at each height [m] for initial condition
temperature_heights: | 0, 650.0, 750.0, 1000.0 ]
temperature_values: [300.0, 300.0, 308.0, 308.75]

#hAA#A A A A AHAAAAAAFAAA
# Material properties
#HAAHA A A AHAAAREAAFAAA
# Density [kg/m"3]

density: 1.

# Kinematic viscosity [m*2/s].

nu: 1.0E-5

# Reference potential temperature [K].
TRef: 300.0

# Latitude on the Earth of the site [deg].
latitude: 41.3

#HAAFARAHAAAAAS

# Bottom wall

#HAA#ARARARAAS

# Wall-normal component of temperature flux at wall.
# A negative value is flux into domain [K-m/s].
gqwall: 0.

# Surface roughness (m).

z0: 0.15

#HE#FAAAAAHAASHS

# Time controls

#EAEHAAAHAAHAAAHA

# Time-step [s]

time_step: 0.5

# Total number of time to run [s]
total run_time: 20000

# Check for CFL condition

rHAAAAAA

(continues on next page)
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(continued from previous page)

# Mesh
#HAAHAAH
# Here are the mesh properties
mesh:
# Generate the mesh or read from an input file (yes/no)
generate: yes
# The name of the mesh file
# If the mesh is generated the preprocessor will generate a mesh
# If not the code will read in this mesh
mesh file: mesh_abl.exo
# The domain bounds [m]
domain_bounds_x: [0.0, 5000.0]
domain_bounds_y: [0.0, 5000.0]
domain_bounds_z: [0.0, 1000.0]

# The number of grid points in the x, y, z coordinates
# Change this variable
number of cells: [500, 500, 100]

#tHE#AFHAH

# Output

#HA#AARAH

# How often to write output [s]

# This 1is time-steps in nalu input

output_frequency: 10000

# Output file name. It will create the directory

# Change .e

output_data_base_name: output/abl_5km_5km_lkm_neutral.exo

# These are the plane averaged statistics
boundary layer_statistics:
# The file to write output (netcdf)
stats_output_file: abl_statistics.nc
# How often sample the statistics
time_hist_output_frequency: 1

#tHE# AR F AR AFAF A HAF A FAF A RAF RS
# Add restart capability

# Default to write last time-step
#tHA# AR F AR FAF A HAF AR AR RAF RS

#HAAHAAAAAAFARAAARAAFAAA A AA AR A AAAHA A A AHA RS

# Upper wall boundary condition

# This is an optional flag

# If not specified, the gradient will be computed

# based on the initial condition

# at the top of the domain

#HFAHRAAA A AFARAHARAAFAHA A RAAAAAA A AR HA A A AHARAA

# Potential temperature gradient above the strong inversion (K/m).
# Compute this form the last points

# TGradUpper: 0.003

1.3.2 Peregrine

Here are the instructions to use Nalu and these examples on NREL’s HPC system Peregrine.

52 Chapter 1. User Manual



Nalu-Wind Documentation, Release 1.2.0

Initial Setup

These steps need to be completed only once to setup the appropriate Nalu environment on the Peregrine system.

1. Create the conda environment:

module load conda
conda create —n nalu_python -c conda-forge python=3.6 numpy ruamel.yaml netCDF4
—matplotlib scipy pandas

2. Set the Nalu environment. This is the same environment used to compile Nalu. If this has not been set, then it
can be done by adding the following function to $ { HOME } / .bash_profile:

function nalu_env {
module purge
# Load the python environment
module load conda
source activate nalu_python

local mod_dir=/nopt/nrel/ecom/ecp/base/modules/
module use ${mod_dir}/gcc-6.2.0
module load gcc/6.2.0

compiler=${l:-gcc}

case ${compiler} in

gcc)
module unuse S${mod_dir}/intel-18.1.163
module load binutils openmpi/3.1.1 netlib-lapack cmake
i

intel)
module load intel-parallel-studio/cluster.2018.1
module use ${mod_dir}/intel-18.1.163
module load binutils intel-mpi intel-mkl cmake
rr

esac

Source the new $ {HOME } /.bash_profile:

’source ${HOME}/.bash_profile

3. Clone the Nalu repository by:

’git clone https://github.com/Exawind/nalu-wind.git

Now the environment is ready to run the examples. To get started, go to: Atmospheric Boundary Layer - Neutral.

Running Every Case

Every time the user logs into Peregrine and wants to run a case, these steps need to be completed:

1. Load the nalu environment:

nalu_env

2. Copy the executables from the public location to the directory where the case is:
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cp /projects/windsim/nalu-wind-executables/~

The system is now ready to compile and use Nalu.

1.3.3 Atmospheric Boundary Layer - Neutral

This case is a large-eddy simulation of a neutral atmospheric boundary layer. The case uses periodic boundary con-
ditions on the sides (east, west, north, south), a wall-model in the bottom wall and a stress free boundary condition at
the top of the domain. A proportional controller is used to drive the velocity at a given height. The controller adjusts
the forcing at each time-step to match a given planar average velocity at a given height. More information about the
controller can be found in ABL Forcing Source Terms. It takes about 10,000 [s] for the the turbulence to develop. The
example runs for 20,000 [s].

Step by step instructions to run the case

1. Load the appropriate Nalu environment. This requires loading the libraries and Python environment as described
in Setting up the environment. For users on Peregrine the function defined in /nitial Setup should suffice:

’nalu_env

2. Go to the directory where the case is:

’cd nalu-wind/examples/abl_neutral/

3. Modify the setup.yaml file to include all the necessary simulation parameters.

4. Run the executable and provide the setup.yaml file as input:

’../nalu_input_filex -s setup.yaml

For users on Peregrine, now copy the executables to the case directory:

’cp /projects/windsim/nalu-wind-executables/*

5. Generate the mesh:

’./abl_mesh -1 abl_preprocess.yaml

6. Generate the initial condition:

’./nalu_preprocess -1 abl_preprocess.yaml

7. Run the nalu executable:

’mpirun -np 600 naluX -i abl_simulation.yaml

In this example 600 processors are used, but any number of processors could be used. Target SOK elements per
core for choosing number of MPI cores.

Post-processing

Nalu’s output is generated at runtime. The abl_plots.py Python script is used to plot simulation results. The
script will load the plane-averaged statistics and plot them as function of time and height. To run the script, load the
Python environment if needed, and run the Python script:
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python abl_plots.py

1.3.4 Actuator Line Model in Uniform Inflow

This case is a large-eddy simulation of 2 aligned wind turbines under uniform inflow. The turbines are represented
using an actuator line model. The turbine model is the NREL SMW Reference. The case has uniform inflow boundary
condition with an outflow boundary condition on the other end. The sides are specified as zero stress boundary
conditions. The wind turbine aerodynamic forces are computed using OpenFAST.

Step by step instructions to run the case

1. Load the appropriate Nalu environment. This requires loading the libraries and Python environment as described
in Setting up the environment. For users on Peregrine the function defined in /nitial Setup should suffice:

’nalu_env

2. Go to the directory where the case is:

cd nalu-wind/examples/turbine_uniform_inflow/

3. Modify the setup.yaml file to include all the necessary simulation parameters.

4. Run the executable and provide the setup.yaml file as input:

’../nalu_input_filex -s setup.yaml

For users on Peregrine, now copy the executables to the case directory:

’cp /projects/windsim/nalu-wind-executables/*

5. Generate the mesh:

’./abl_mesh -1 alm_preprocess.yaml

6. Run the nalu executable:

’mpirun -np 24 naluX -i alm_simulation.yaml

Post-processing

The turbine output is generated at runtime. The plot_alm.py Python script is used to plot turbine output. The
script will load the OpenFAST data and plot it as a function of time. To run the script, load the Python environment if
needed, and run the Python script:

python plot_alm.py

1.3.5 Wind Farm

This case is a large-eddy simulation of a wind farm under neutral stability conditions. The simulation requires 3
steps: 1) running a precursor atmospheric boundary layer simulation, 2) sampling the data from the boundaries, and
3) running the wind farm simulation with inflow/outflow boundary conditions.
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This examples guides the user through all these steps.

Case 1: Precursor simulation
This example follows the same procedure as Afmospheric Boundary Layer - Neutral. The only difference is that now,
the boundary data is sampled.

1. Load the appropriate Nalu environment. This requires loading the libraries and Python environment as described
in Setting up the environment. For users on Peregrine the function defined in /nitial Setup should suffice:

’nalu_env

2. Go to the directory where the case is:

’cd nalu-wind/examples/wind_farm/casel/

3. Modify the setup.yaml file to include all the necessary simulation parameters.

4. Run the executable and provide the setup.yaml file as input:

’../../nalu_input_filex -s setup.yaml

5. Generate the mesh:

’../abl_mesh -1 case_1l_precursor_preprocess.yaml

6. Generate the initial condition:

’../nalu_preprocess -i case_1_precursor_preprocess.yaml

7. Run the nalu executable:

’mpirun -np 8 ../naluX -i case_1l_precursor_simulation.yaml

In this example 8 processors are used, but any number of processors could be used. Target SOK elements per
core for choosing number of MPI cores.

Case 2: Sampling boundary data
Now, a simulation for sampling the boundary data is performed. This is the same as the previous simulation, but with
2 changes: 1) Data sampling from the boundary conditions. 2) Different time interval

1. Load the appropriate Nalu environment. This requires loading the libraries and Python environment as described
in Setting up the environment. For users on Peregrine the function defined in /nitial Setup should suffice:

’nalu_env

2. Go to the directory where the case is:

’cd nalu-wind/examples/wind_farm/case2

3. Modify the setup.yaml file to include all the necessary simulation parameters.

4. Run the executable and provide the case_2_setup_abl_precursor_boundary_data.yaml file as
input:
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’../../nalu_input_filex -s setup.yaml

5. Generate the boundary data to sample:

’../nalu_preprocess -1 case_2_boundary_data_preprocess.yamnl

6. Run the nalu executable:

’mpirun -np 8 ../naluX -i case_2_abl_precursor_boundary_data.yaml

In this example 8 processors are used, but any number of processors could be used. Target SOK elements per
core for choosing number of MPI cores.

Case 3: Wind farm simulation

The last part is the wind farm simulation. In this example, the simulation is run using the same resolution as the
precursor. However, it is possible to perform local refinement near the turbines. Full instructions are provided in
wind-utils.

1. Load the appropriate Nalu environment. This requires loading the libraries and Python environment as described
in Setting up the environment. For users on Peregrine the function defined in /nitial Setup should suffice:

’nalu_env

2. Go to the directory where the case is:

’cd nalu-wind/examples/wind_farm/case3

3. Modify the setup.yaml file to include all the necessary simulation parameters.

4. Run the executable and provide the setup.yaml file as input:

’../../nalu_input_filex -s setup.yaml

5. Run the nalu executable:

’mpirun -np 8 ../naluX -i case_3_wind_farm.yaml

In this example 8 processors are used, but any number of processors could be used. Target SOK elements per
core for choosing number of MPI cores.

Post-processing

The data generated by this example can be post-processed using the same scripts provided in Atmospheric Boundary
Layer - Neutral and Actuator Line Model in Uniform Inflow.
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CHAPTER
TWO

DEVELOPER MANUAL

2.1 Testing Nalu-Wind

Nalu-Wind’s regression tests and unit tests are run nightly using the GCC and Intel compilers against the Trilinos
master and development branches on a machine at NREL. The results can be seen at the CDash Nalu-Wind website.

2.1.1 Running Tests Locally

The nightly tests are implemented using CTest and these same tests are available to developers to run locally as well.
Due to the nature of error propagation of calculations in computers, results of regression testing can be difficult to
keep consistent. Output from Nalu-Wind can vary from established reference data for the regression tests based on the
compiler you are using, the types of optimizations set, and the versions of the third-party libraries Nalu-Wind utilizes,
along with the blas/lapack implementation in use. Therefore it may make sense when you checkout Nalu-Wind to
create your own reference data for the tests for the machine and configuration you are using, which is described later
in this document. Or you can use a lower tolerance when running the tests. At the moment, a single tolerance is chosen
in which to use for all the tests. The following instructions will describe how to run Nalu-Wind’s tests.

Since Nalu-Wind’s tests require a large amount of data (meshes), this data is hosted in a separate repository from Nalu-
Wind. This mesh repo is set as a submodule in the reg_tests/mesh directory in the main Nalu-Wind repository.
Submodule repos are not checked out by default, so eitheruse git submodule init andthengit submodule
update to clone it in your checkout of Nalu-Wind, or when you first clone Nalu-Wind you can alsouse git clone
—-recursive <repo_url> to checkout all submodules as well.

Once this submodule is intialized and cloned, you will need to configure Nalu-Wind with testing on. To configure
Nalu-Wind with testing enabled, in Nalu-Wind’s existing bui 1d directory, we will run this command:

cmake -DTrilinos_DIR:PATH= spack location —-i nalu-trilinos’ \
-DYAMI_DIR:PATH="spack location -i yaml-cpp  \
—-DENABLE_TESTS :BOOL=0N \

Note we have chosen to originally build Nalu-Wind with Spack in this case, hence the use of spack location -1
<package> to locate our Yaml and Trilinos installations. Then we use ~-DENABLE_TESTS : BOOL=0N to enable
CTest. Once Nalu-Wind is configured, you should be able to run the tests by building Nalu-Wind in the build
directory, and running make test or ctest. Looking at ctest -h will show you many ways you can run tests
and choose which tests to run.

There are advantages to using CTest, such as being able to run subsets of the tests, or tests matching a particular regular
expression for example. To do so, in the build directory, you can run ctest —-R femHC to run the test matching
the femHC regular expression. Other useful capabilities are ctest —--output-on-failure to see test outputs
when they fail, ctest —--rerun-failed to only run the tests that previously failed, ctest --print-labels
to see the test labels, and ctest —L unit to run the tests with label ‘unit’ for example. All testing related log files
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and output can be seen in Nalu-Wind/build/Testing/Temporary and Nalu-Wind/build/reg_tests
after the test have been run.

To define your own tolerance for tests, at configure time, add ~-DTEST_TOLERANCE=0.0001 for example to the
Nalu-Wind CMake configure line.

Updating Reference Data for Your Machine

When running the tests, the norms for each test are the output and they are ‘diffed’ against the ‘gold’ norms that we
have established for each test. To dictate whether or not a test passes, we use a chosen tolerance in which we allow the
results to deviate from the ‘gold’ norm. As stated earlier, these ‘gold’ norms are not able to reflect every configuration
of Nalu-Wind, per compiler, optimization, TPL versions, blas/lapack version, etc. This tolerance is currently defined in
the CMakeLists.txt in Nalu-Wind’s reg_tests directory. This tolerance can also be passed into Nalu-Wind at
configure time using ~-DTEST_TOLERANCE=0.0000001 for example. To update the ‘gold’ norms locally to your
configuration, merely run the tests once, and copy the . norm files in the build/reg_tests/test_files di-
rectory to the corresponding test location in reg_tests/test_£files while overwriting the current ‘gold’ norms.

In regards to ‘official’ gold norms, Linux with GCC 6.4.0, netlib-blas/lapack 3.8.0, and the following TPL versions
are officially tested:

openmpi@l.10.4
boost@1.66.0
cmake@3.9.4
parallel-netcdf@1.8.0
yaml-cpp@develop
hdf5@1.10.1
netcdf@4.4.1.1
z1ib@1.2.11
superlu@4.3

2.1.2 Adding Tests to Nalu-Wind

The testing infrastructure is almost completely confined to the reg_test s directory. To add a test to Nalu-Wind, we
need to add the test name, and create a test directory to place the input files and gold norms for the test. First, the test
itself can be added to the list of CTest tests by adding a line to the CTestList . cmake file. For a single regression
test, provided it is similar to the categories shown at the top of the CTestList .cmake file, it can likely be added
with a single line using the test name and amount of processes you would like to run the test with and choosing the
correct function to use. For example:

add_test_r (mytest 6)

After this has been done, in the reg_tests/test_files directory, you should add a directory corresponding to
your test name and include the input file, mytest . i, and reference output file mytest .norm.gold. If you are
using an xml file that doesn’t exist in the xm1 directory, you will need to commit that as well.

To see commands used when running the tests, see the functions at the top of the CTestList.cmake file. These
functions ultimately create CTestTestFile.cmake files in the CMake build directory at configure time. You can
see the exact commands used for each test after configure in the build/reg_tests/CTestTestFile.cmake
file.

Note if your test doesn’t conform to an existing archetype, a new function in CTestList .cmake may need to be
created. Also, if you are using a mesh file that doesn’t exist in the mesh repo, you will need to add it, and update the
submodule in the Nalu-Wind main repo to use the latest commit of the mesh submodule repo.
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2.1.3 Adding Testing Machines to CDash

To add a testing machine that will post results to CDash first means that you should have all software dependencies
satisified for Nalu-Wind. Next the script located at CTestNightlyScript.cmake can be run for example as:

ctest \
-DNIGHTLY_DIR=S${NALU_WIND_TESTING_DIR} \
-DYAML_DIR=${YAMI_INSTALL_DIR} \
~-DTRILINOS_DIR=${TRILINOS_INSTALL_DIR} \
-DHOST_NAME=machine.domain.com \
-DEXTRA_BUILD_NAME=Linux—-gcc-whatever \
-VV -S ${NALU_WIND_DIR}/reg_tests/CTestNightlyScript.cmake

In this case $ {NALU_WIND_TESTING_DIR} is one directory above where the Nalu-Wind repo has been checked
out. This runs CTest in scripting mode with verbosity on and it will update the Nalu-Wind repo with the latest revisions,
configure, build, test, and finally submit results to the CDash site. Since CTest does the building, it needs to know the
locations of Yaml and Trilinos. For examples of nightly testing, refer to the testing scripts currently being run here.

2.2 Source Code Documentation

The source documentation is extracted from the C++ files using Doxygen.

2.2.1 Simulation — Nalu Top-level Interface

class Simulation

Realms

Realm is a Nalu abstraction of a set of equations that are solved on a computational domain, reresented by an Exodus-II
mesh. A simulation can contain multiple Realms and that can interact via sierra: :nalu: : Transfer instance.
InputOutputRealmis a special type of Realm that exists solely to provide data (input) or extract a subset of data
from another Rea Im.

class Realm
Representation of a computational domain and physics equations solved on this domain.

Subclassed by sierra::nalu::InputOutputRealm

Public Functions

void set_hypre_global_id()
Initialize the HYPRE global row IDs.

See Realm::hypreGloballd_

void check_job (bool get_node_count)
check job for fitting in memory
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Public Members
stk::mesh::PartVector bcPartVec_
Vector holding side sets that have been registered with the boundary conditions in the input file.

The member is intended to for use in Realm::enforce_bc_on_exposed_faces to check for “exposed sur-
faces” that might have not been assigned BCs in the input file.

stk::mesh::Entityld hypreILower
The starting index (global) of the HYPRE linear system in this MPI rank.

Note that this is actually the offset into the linear system. This index must be adjusted accord-
ingly to account for multiple degrees of freedom on a particular node. This is performed in
sierra::nalu::HypreLinearSystem.

stk::mesh::Entityld hypreIUpper
The ending index (global) of the HYPRE linear system in this MPI rank.

Note that this is actually the offset into the linear system. This index must be adjusted accord-
ingly to account for multiple degrees of freedom on a particular node. This is performed in
sierra::nalu::HypreLinearSystem.

stk::mesh::Entityld hypreNumNodes__
The total number of HYPRE nodes in the linear system.

Note that this is not an MPI rank local quantity

HyprelDFieldType *hypreGlobalId_ = {nullptr}
Global Row IDs for the HYPRE linear system.

The HYPRE IDs are different from STK IDs and Realm::naluGloballd_ because HYPRE expects con-
tiguous IDs for matrix rows and further requires that the IDs be ordered across MPI ranks; i.e., startldx
(MPIL_rank + 1) = endldx(MPI_rank) + 1.

bool hypreIsActive_ = {false}
Flag indicating whether Hypre solver is being used for any of the equation systems.

class InputOutputRealm: public sierra::nalu::Realm
class Realms

Time Integration

class TimeIntegrator

Linear Solver Interface
class LinearSystem

Subclassed by sierra::nalu::HypreLinearSystem, sierra::nalu::TpetraLinearSystem,
sierra::nalu::TpetraSegregatedLinearSystem

Public Functions

virtual void buildDirichletNodeGraph (const stk::mesh::PartVector&)
Process nodes that belong to Dirichlet-type BC.

62 Chapter 2. Developer Manual



Nalu-Wind Documentation, Release 1.2.0

virtual void buildDirichletNodeGraph (const std::vector<stk::mesh::Entity>&)
Process nodes as belonging to a Dirichlet-type row.

See the documentation/implementation of sierra::nalu::FixPressure AtNodeAlgorithm for an example of
this use case.

virtual void resetRows (const std::vector<stk::mesh::Entity> &nodeList, const unsigned begin-
Pos, const unsigned endPos, const double diag_value = 0.0, const

double rhs_residual = 0.0) =0
Reset LHS and RHS for the given set of nodes to 0.

Parameters
* nodeList: A list of STK node entities whose rows are zeroed out
* beginPos: Starting index (usually 0)
* endPos: Terminating index (1 for scalar quantities; nDim for vectors)
class LinearSolver
An abstract representation of a linear solver in Nalu.

Defines the basic API supported by the linear solvers for use within Nalu. See concrete implementations such
as sierra::nalu::TpetraLinearSolver for more details.

Subclassed by sierra::nalu::HypreDirectSolver

Public Functions
virtual PetraType getType () =0
Type of solver instance as defined in sierra::nalu::PetraType.

virtual void destroyLinearSolver () =0
Utility method to cleanup solvers during simulation.

bool &recomputePreconditioner ()
Flag indicating whether the preconditioner is recomputed on each invocation.

bool &reusePreconditioner ()
Flag indicating whether the preconditioner is reused on each invocation.

void zero_timer_ precond ()
Reset the preconditioner timer to 0.0 for future accumulation.

double get_timer precond ()
Get the preconditioner timer for the last invocation.

bool &activeMuelu ()
Flag indicating whether the user has activated MueLU.

LinearSolverConfig *getConfig ()
Get the solver configuration specified in the input file.

Public Members

std::string name__
User-friendly identifier for this particular solver instance.

class TpetralinearSystem: public sierra::nalu::LinearSystem
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Public Functions

virtual void resetRows (const std::vector<stk::mesh::Entity> &nodeList, const unsigned begin-
Pos, const unsigned endPos, const double diag_value = 0.0, const

double rhs_residual = 0.0)
Reset LHS and RHS for the given set of nodes to 0.

Parameters
e nodeList: A list of STK node entities whose rows are zeroed out
* beginPos: Starting index (usually 0)

* endPos: Terminating index (1 for scalar quantities; nDim for vectors)

Transfers

class Transfer

class Transfers

2.2.2 Equation Systems
class EquationSystem
Base class representation of a PDE.
EquationSystem defines the API supported by all concrete implementations of PDEs for performing the follow-
ing actions:
¢ Register computational fields
* Register computational algorithms for interior domain and boundary conditions

* Manage solve and update of the PDE for a given timestep

Subclassed by  sierra::nalu::ChienKEpsilonEquationSystem, sierra::nalu::ContinuityEquationSystem,
sierra::nalu::EnthalpyEquationSystem, sierra::nalu::GammaEquationSystem,
sierra::nalu::LowMachEquationSystem, sierra::nalu::MatrixFreeHeatCondEquationSystem,
sierra::nalu::MatrixFreeLowMachEquationSystem, sierra::nalu::MomentumEquationSystem,
sierra::nalu::ProjectedNodalGradientEquationSystem,  sierra::nalu::ShearStressTransportEquationSystem,
sierra::nalu::SpecificDissipationRate EquationSystem, sierra::nalu:: TotalDissipationRateEquationSystem,
sierra::nalu::TurbKineticEnergyEquationSystem, sierra::nalu::VolumeOfFluidEquationSystem,

sierra::nalu::WallDistEquationSystem, sierra::nalu:: WilcoxKOmegaEquationSystem

Public Functions

virtual void solve_and_update ()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work () ;

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
egsys—>pre_iter_work () ;

(continues on next page)
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(continued from previous page)

egsys—>solve_and_update () ; //<<<< Assemble and solve system
egsys—>post_iter_work();

}

post_iter_work();

See EquationSystems::solve_and_update

virtual void pre_iter_ work ()
Perform setup tasks before entering the solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
eqgsys—>pre_iter_work () ; //<<<< Pre-iteration setup
egsys—>solve_and_update () ;
egsys—>post_iter_work();

}

post_iter_work();

See EquationSystems::solve_and_update

virtual void post_iter_work ()
Perform setup tasks after he solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto egsys: equationSystems_) {
eqgsys—>pre_iter_work () ;
egsys—>solve_and_update () ;
egsys—->post_iter_work () ; //<<<< Post—iteration actions
t

post_iter_work();

See EquationSystems::solve_and_update

virtual void post_iter_work_dep ()
Deprecated post iteration work logic.

template<typename T = DoubleType>

PecletFunction<7> *ngp_create_peclet_function (const std::string &dofName)
Create and return an instance of PecletFunction on device for use with Kernel.

virtual void solution_update (const double delta_frac, const stk::mesh::FieldBase &delta,
const double field frac, stk::mesh::FieldBase &field, const
unsigned numComponents = 1, const stk::topology::rank_t rank

= stk::topology::NODE_RANK)
Update field with delta solution of linear solve.

2.2,
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Public Members

std::vector<PecletFunctionBase *> ngpPecletFunctions_
Track NGP instances of PecletFunction.

std::vector<AlgorithmDriver *> preIterAlgDriver_
List of tasks to be performed before each EquationSystem::solve_and_update.

std::vector<AlgorithmDriver *> postIterAlgDriver
List of tasks to be performed after each EquationSystem::solve_and_update.

size_t linsysWriteCounter_ = {0}
Counter to track the number of linear system outputs.

Move this to EquationSystem instead of LinearSystem so that we don’t reset the counter when performing
matrix reinitializations.

class LowMachEquationSystem: public sierra::nalu::EquationSystem

Low-Mach formulation of the Navier-Stokes Equations.

This class is a thin-wrapper around sierra::nalu::ContinuityEquationSystem and
sierra::nalu::MomentumEquationSystem that orchestrates the interactions between the velocity and the
pressure Possion solves in the LowMachEquationSystem::solve_and_update method.

Public Functions

virtual void pre_iter_ work ()
Perform setup tasks before entering the solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work () ;

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
egsys—>pre_iter_work(); //<<<< Pre—-iteration setup
egsys—>solve_and_update () ;
egsys—>post_iter_work();

}

post_iter_work () ;

See EquationSystems::solve_and_update

virtual void solve_and_update ()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work () ;

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
egsys—>pre_iter_work () ;
egsys—>solve_and_update () ; //<<<< Assemble and solve system
eqgsys—>post_iter_work();

}

post_iter_work();

See EquationSystems::solve_and_update

Chapter 2. Developer Manual




Nalu-Wind Documentation, Release 1.2.0

virtual void post_iter_work ()
Perform setup tasks after he solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work () ;

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
egsys—>pre_iter_work () ;
egsys—>solve_and_update () ;
eqgsys—>post_iter_work () ; //<<<< Post—iteration actions

}

post_iter_work () ;

See EquationSystems::solve_and_update

class EnthalpyEquationSystem: public sierra::nalu::EquationSystem

Public Functions

void solve_and_update ()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
eqgsys—>pre_iter_work () ;
egsys—>solve_and_update () ; //<<<< Assemble and solve system
egsys—>post_iter_work();

}

post_iter_work();

See EquationSystems::solve_and_update

void post_iter_work_dep ()
Deprecated post iteration work logic.

class TurbKineticEnergyEquationSystem: public sierra::nalu::EquationSystem

Public Functions

void solve_and_update ()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
eqgsys—>pre_iter_work();

egsys—>solve_and_update () ; //<<<< Assemble and solve system
egsys—>post_iter_work () ;

(continues on next page)
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(continued from previous page)

}

post_iter_work () ;

See EquationSystems::solve_and_update

class ShearStressTransportEquationSystem: public sierra::nalu::EquationSystem

Public Functions

virtual void solve_and_update ()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work () ;

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
egsys—>pre_iter_work () ;
egsys—>solve_and_update () ; //<<<< Assemble and solve system
egsys—>post_iter_work();

}

post_iter_work () ;

See EquationSystems::solve_and_update

void post_iter_ work ()
Perform setup tasks after he solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work();
// Iterate over all equation systems
for (auto eqgsys: equationSystems_) {
eqgsys—>pre_iter_work () ;
egsys—>solve_and_update () ;
egsys—>post_iter_work () ; //<<<< Post-iteration actions
}

post_iter_work();

See EquationSystems::solve_and_update

void pre_iter_work ()
Perform setup tasks before entering the solve and update step.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work () ;

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
egsys—>pre_iter_work () ; //<<<< Pre-iteration setup
egsys—>solve_and_update () ;
egsys->post_iter_work();

}

post_iter_work () ;
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See EquationSystems::solve_and_update

Warning: doxygenclass: Cannot find class “sierra::nalu::HeatCondEquationSystem” in doxygen xml output for
project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::MassFractionEquationSystem” in doxygen xml output
for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::MixtureFractionEquationSystem” in doxygen xml out-
put for project “nalu” from directory: ./doxygen/xml

class MomentumEquationSystem: public sierra::nalu::EquationSystem
Representation of the Momentum conservation equations in 2-D and 3-D.

class ContinuityEquationSystem: public sierra::nalu::EquationSystem
class SpecificDissipationRateEquationSystem: public sierra::nalu::EquationSystem

class ProjectedNodalGradientEquationSystem: public sierra::nalu::EquationSystem

Public Functions

void solve_and_update ()
Assemble the LHS and RHS and perform linear solve for prescribed number of iterations.

This method is invoked in EquationSystems::solve_and_update method as shown below

pre_iter_work () ;

// Iterate over all equation systems

for (auto egsys: equationSystems_) {
eqgsys—>pre_iter_work () ;
egsys—>solve_and_update () ; //<<<< Assemble and solve system
egsys—>post_iter_work () ;

}

post_iter_work () ;

See EquationSystems::solve_and_update

class EquationSystems
A collection of Equations to be solved on a Realm.

EquationSystems holds a vector of EquationSystem instances representing the equations that are being solved in
a given Realm and is responsible for the management of the solve and update of the various field quantities in a
given timestep.

See EquationSystems::solve_and_update
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Public Functions

bool solve_and_update ()
Solve and update the state of all variables for a given timestep.

This method is responsible for executing setup actions before calling solve, performing the actual solve,
updating the solution, and performing post-solve actions after the solution has been updated. To provide
sufficient granularity and control of this pre- and post- solve actions, the solve method uses the following
series of steps:

// Perform tasks for this timestep before any Equation system is called
pre_iter_work () ;
// Iterate over all equation systems
for (auto egsys: equationSystems_) {
egsys—>pre_iter_work () ;
egsys—>solve_and_update () ;
egsys->post_iter_work () ;
}

// Perform tasks after all equation systems have updated

post_iter_work();

Tasks that require to be performed before any equation system is solved for needs to be registered to prelter-
AlgDriver_ on EquationSystems, similiary for post-solve tasks. And actions to be performed immediately
before individual equation system solves need to be registered in EquationSystem::prelterAlgDriver_.
See pre_iter_work(), post_iter_work(), EquationSystem::pre_iter_work(),

See EquationSystem::post_iter_work()

void pre_iter_work ()
Perform necessary setup tasks that affect all EquationSystem instances at a given timestep.

See EquationSystems::solve_and_update()

void post_iter_ work ()
Perform necessary actions once all EquationSystem instances have been updated for the prescribed number
of outer iterations at a given timestep.

See EquationSystems::solve_and_update()

Public Members

std::vector<AlgorithmDriver *> preIterAlgDriver_
A list of tasks to be performed before all EquationSystem::solve_and_update.

std::vector<AlgorithmDriver *> postIterAlgDriver_
A list of tasks to be performed after all EquationSystem::solve_and_update.

int numOversetItersDefault_ = {1}
Default number of overset coupling iterations.

This parameter controls the global settings for decoupled overset simulations. User can override this for
individual equations by specifying the values for the specific equation system.

bool decoupledOversetGlobalFlag_ = {false}
Global flag indicating whether decoupled overset is used for all equation systems in this Realm.
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User can override this for individual equation systems by using the appropriate input options.

2.2.3 Linear Solvers and Systems Interface

Linear Systems

class LinearSystem
Subclassed by sierra::nalu::HypreLinearSystem, sierra::nalu::TpetraLinearSystem,

sierra::nalu::TpetraSegregatedLinearSystem

Public Functions

virtual void buildDirichletNodeGraph (const stk::mesh::PartVector&)
Process nodes that belong to Dirichlet-type BC.

virtual void buildDirichletNodeGraph (const std::vector<stk::mesh::Entity>&)
Process nodes as belonging to a Dirichlet-type row.

See the documentation/implementation of sierra::nalu::FixPressure AtNodeAlgorithm for an example of
this use case.

virtual void resetRows (const std::vector<stk::mesh::Entity> &nodeList, const unsigned begin-
Pos, const unsigned endPos, const double diag_value = 0.0, const
double rhs_residual =0.0) =0

Reset LHS and RHS for the given set of nodes to 0.

Parameters
* nodeList: A list of STK node entities whose rows are zeroed out
* beginPos: Starting index (usually 0)

* endPos: Terminating index (1 for scalar quantities; nDim for vectors)

class TpetralinearSystem: public sierra::nalu::LinearSystem

Public Functions

virtual void resetRows (const std::vector<stk::mesh::Entity> &nodeList, const unsigned begin-
Pos, const unsigned endPos, const double diag_value = 0.0, const

double rhs_residual = 0.0)
Reset LHS and RHS for the given set of nodes to 0.

Parameters
* nodeList: A list of STK node entities whose rows are zeroed out
* beginPos: Starting index (usually 0)
* endPos: Terminating index (1 for scalar quantities; nDim for vectors)
class HyprelinearSystem: public sierra::nalu::LinearSystem
Nalu interface to populate a Hypre Linear System.

This class provides an interface to the HYPRE IJMatrix and IJVector data structures. It is responsible for creat-
ing, resetting, and destroying the Hypre data structures and provides the HypreLinearSystem::suminto interface
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used by Nalu Kernels and SupplementalAlgorithms to populate entries into the linear system. The Hypre-
LinearSystem::solve method interfaces with sierra::nalu::HypreDirectSolver that is responsible for the actual
solution of the system using the required solver and preconditioner combination.

Subclassed by sierra::nalu::HypreUVWLinearSystem

Public Functions

HypreLinearSystem (Realm &realm, const unsigned numDof, EquationSystem *eqSys, Linear-
Solver *linearSolver)

Parameters
* [in] realm: The realm instance that holds the EquationSystem being solved
* [in] numbDof: The degrees of freedom for the equation system created (Default: 1)
* [in] eqgSys: The equation system instance

* [in] linearSolver: Handle to the HypreDirectSolver instance

virtual void buildDirichletNodeGraph (const stk::mesh::PartVector&)
Tag rows that must be handled as a Dirichlet BC node.
Parameters

* [in] partVec: List of parts that contain the Dirichlet nodes

virtual void buildDirichletNodeGraph (const std::vector<stk::mesh::Entity>&)
Tag rows that must be handled as a Dirichlet node.
See sierra::nalu::FixPressure AtNodeAlgorithm
Parameters

* [in] entities: List of nodes where Dirichlet conditions are applied

virtual void loadComplete ()
Finalize construction of the linear system matrix and rhs vector.

This method calls the appropriate Hypre functions to assemble the matrix and rhs in a parallel run, as well
as registers the matrix and rhs with the solver preconditioner.

virtual void zeroSystem ()
Reset the matrix and rhs data structures for the next iteration/timestep.

virtual int solve (stk::mesh::FieldBase *linearSolutionField)
Solve the system Ax =b.

The solution vector is returned in linearSolutionField

Parameters

* [out] linearSolutionField: STK field where the solution is populated

double copy_hypre_to_stk (stk::mesh::FieldBase *)
Helper method to transfer the solution from a HYPRE_IJVector instance to the STK field data instance.
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virtual void applyDirichletBCs (stk::mesh::FieldBase *solutionField, stk::mesh::FieldBase
*bcValuesField, const stk::mesh::PartVector &parts, const

unsigned beginPos, const unsigned endPos)
Populate the LHS and RHS for the Dirichlet rows in linear system.

virtual void sumInto (const std::vector<stk::mesh::Entity> &sym_meshobj, std::vector<int>
&scratchlds, std::vector<double> &scratchVals, const std::vector<double>

&rhs, const std::vector<double> &lhs, const char *trace_tag)
Update coefficients of a particular row(s) in the linear system.

The core method of this class, it updates the matrix and RHS based on the inputs from the various algo-
rithms. Note that, unlike TpetraLinearSystem, this method skips over the fringe points of Overset mesh

and the Dirichlet nodes rather than resetting them afterward.

This overloaded method deals with classic Supplemental Algorithms

Parameters
e [in] sym_meshobj: A list of STK node entities
* [in] scratchIds: Work array for row IDs
* [in] scratchVals: Work array for row entries

* [in] rhs: Array containing RHS entries to be summed into [numEntities * numDof]

* [in] 1lhs: Array containing LHS entries to be summed into. [numEntities * numDof * nu-

mEntities * numDof]

* [in] trace_tag: Debugging message

virtual void resetRows (const std::vector<stk::mesh::Entity> &nodeList, const unsigned begin-
Pos, const unsigned endPos, const double diag_value, const double

rhs_residual)
Reset LHS and RHS for the given set of nodes to 0.

Parameters
e nodeList: A list of STK node entities whose rows are zeroed out
* beginPos: Starting index (usually 0)

* endPos: Terminating index (1 for scalar quantities; nDim for vectors)

class HyprelLinSysCoeffApplier : public sierra::nalu::CoeffApplier

Public Members
stk::mesh::NgpMesh ngpMesh__
mesh

NGPHyprelDFieldType ngpHypreGloballId
stk mesh field for the Hypre Global Id

unsigned numDof_ =0
number of degrees of freedom

unsigned nDim_ =0
number of rhs vectors
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HyprelntType iLower_ =0
The lowest row owned by this MPI rank.

HyprelntType iUpper_ =0
The highest row owned by this MPI rank.

HyprelntType num_rows_owned_
Data structures for the owned CSR Matrix and RHS Vector(s)

HyprelntType num_rows_shared
Data structures for the shared CSR Matrix and RHS Vector(s)

UnsignedViewRA mat_row_start_owned_ra_
Random access views.

PeriodicNodeMap periodic_node_to_hypre_ id
Auxilliary Data structures.

map of the periodic nodes to hypre ids

HyprelntTypeViewScalar checkSkippedRows__
Flag indicating that sumlInto should check to see if rows must be skipped.

HyprelntTypeUnorderedMap skippedRowsMap_
unordered map for skipped rows

HyprelntTypeUnorderedMap oversetRowsMap_
unordered map for overset rows

HypreLinSysCoeffApplier *devicePointer__
this is the pointer to the device function ... that assembles the lists

HyprelntType num_mat_overset_pts_owned__
number of points in the overset data structures

Linear Solvers Interface

class LinearSolver

An abstract representation of a linear solver in Nalu.

Defines the basic API supported by the linear solvers for use within Nalu. See concrete implementations such
as sierra::nalu::TpetraLinearSolver for more details.

Subclassed by sierra::nalu::HypreDirectSolver

Public Functions

virtual PetraType getType () =0
Type of solver instance as defined in sierra::nalu::PetraType.

virtual void destroyLinearSolver () =0
Utility method to cleanup solvers during simulation.

bool &recomputePreconditioner ()
Flag indicating whether the preconditioner is recomputed on each invocation.

bool &reusePreconditioner ()
Flag indicating whether the preconditioner is reused on each invocation.
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void zero_timer_ precond ()
Reset the preconditioner timer to 0.0 for future accumulation.

double get_timer_ precond ()
Get the preconditioner timer for the last invocation.

bool &activeMuelLu ()
Flag indicating whether the user has activated MueLU.

LinearSolverConfig *getConfig ()
Get the solver configuration specified in the input file.

Public Members

std::string name__
User-friendly identifier for this particular solver instance.

Warning: doxygenclass: Cannot find class “sierra::nalu::TpetraLinearSolver” in doxygen xml output for project
“nalu” from directory: ./doxygen/xml

class HypreDirectSolver : public sierra::nalu::LinearSolver
Nalu interface to Hypre Solvers and Preconditioners.

This class is responsible creation, initialization, execution, and clean up of Hypre solver and precon-
ditioner data structures during the simulation. It provides an abstraction layer so that the user can
choose different Hypre solvers via input parameters. This class interacts with rest of Nalu solely via
sierra::nalu::HypreLinearSystem. The configuration of Hypre solver is controlled via user input parameters
processed in sierra::nalu::HypreLinearSolverConfig

Users are referred to the Hypre Reference Manual for detailed documentation on the Hypre functions and data
structures used in this class.

Subclassed by sierra::nalu::HypreUVWSolver

Public Functions

virtual void destroyLinearSolver ()
Clean up Hypre data structures during simulation.

int solve (int&, double&, bool)
Solves the linear system and updates the solution vector.
Parameters
* iters: The number of linear iterations performed

e norm: The norm of the final relative residual

virtual PetraType getType ()
Return the type of solver instance.

virtual void set_initialize_solver_flag()
public API for resetting the flag for how often the preconditioner is recomputed
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Public Members
HYPRE_ParCSRMatrix parMat__
Instance of the Hypre parallel matrix.

HYPRE_ParVector parRhs__
Instance of the Hypre parallel RHS vector.

HYPRE_ParVector parSln_
Instance of Hypre parallel solution vector.

class LinearSolvers
Collection of solvers and their associated configuration.

This class performs the following actions within a Nalu simulation:

 Parse the 1inear_solvers section and create a mapping of user-defined configurations.

* Create solvers for specific equation system and update the mapping

Public Functions

void load (const YAML::Node &node)
Parse the 1inear_solvers section from Nalu input file.

LinearSolver *create_solver (std::string solverBlockName, const std::string realmName, Equa-
tionType theEQ)

Create a solver for the EquationSystem.
Parameters
* [in] solverBlockName: The name specified in the input file, e.g., solve_scalar

* [in] theEQ: The type of equation

Public Members

SolverMap solvers_
Mapping of solver instances to the EquationType.

SolverTpetraConfigMap solverTpetraConfig__
A lookup table of solver configurations against the names provided in the input file when the type is
tpetra

HypreSolverConfigMap solverHypreConfig
A lookup table of solver configurations against the names provided in the input file when type is hypre
or tpetra_hypre

Simulation &sim__
Reference to the sierra::nalu::Simulation instance.

Solver Configuration

class LinearSolverConfig
Subclassed by sierra::nalu::HypreLinearSolverConfig, sierra::nalu::TpetraLinearSolverConfig
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Public Functions

bool reuseLinSysIfPossible () const
User flag indicating whether equation systems must attempt to reuse linear system data structures even for
cases with mesh motion.

This option only affects decoupled overset system solves where the matrix graph doesn’t change, only the
entries within the graph. This can be controlled on a per-solver basis.

class TpetralinearSolverConfig: public sierra::nalu::LinearSolverConfig

class HyprelLinearSolverConfig: public sierra::nalu::LinearSolverConfig

User configuration parmeters for Hypre solvers and preconditioners.

Public Functions

virtual void load (const YAML::Node&)

Process and validate the user inputs and register calls to appropriate Hypre functions to configure the solver

and preconditioner.

2.2.4 CVFEM and FEM Interface

class MasterElement
Subclassed by sierra::nalu::Edge2DSCS,
sierra::nalu::HexSCV, sierra::nalu::PyrSCS,

sierra::nalu::Quad42DSCS,  sierra::nalu::Quad42DSCV

sierra::nalu::Tri32DSCS, sierra::nalu::Tri32DSCV,
sierra::nalu::WedSCV

3-D Topologies

class HexSCV:public sierra::nalu::MasterElement
class HexSCS : public sierra::nalu::MasterElement
class TetSCV:public sierra::nalu::MasterElement
class TetSCS: public sierra::nalu::MasterElement
class PyrSCV:public sierra::nalu::MasterElement
class PyrSCS: public sierra::nalu::MasterElement
class WedSCV:public sierra::nalu::MasterElement
class WedSCS : public sierra::nalu::MasterElement
class Hex8FEM: public sierra::nalu::MasterElement
class Quad3DSCS : public sierra::nalu::MasterElement

class Tri3DSCS : public sierra::nalu::MasterElement

sterra::nalu::Hex8FEM,
sierra::nalu::PyrSCV,
sierra::nalu::TetSCS,
sierra::nalu::Tri3DSCS,

sterra::nalu::HexSCS,
sierra::nalu::Quad3DSCS,
sierra::nalu::TetSCV,
sierra::nalu::WedSCS,
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2-D Topologies

class Quad42DSCV : public sierra::nalu::MasterElement
class Quad42DSCS : public sierra::nalu::MasterElement
class Tri32DSCV:public sierra::nalu::MasterElement

class Tri32DSCS: public sierra::nalu::MasterElement

2.2.5 Actuator Sources

The sierra::nalu::ActuatorLineFAST class is a child class of the generic sierra: :nalu: :Actuator
class that couples Nalu with OpenFAST for actuator line simulations of wind turbines.

Warning: doxygenclass: Cannot find class “sierra::nalu::Actuator” in doxygen xml output for project “nalu”
from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::ActuatorLineFAST” in doxygen xml output for project
“nalu” from directory: ./doxygen/xml

2.2.6 Auxiliary Functions

class AuxFunction
Subclassed by sierra::nalu::BoundaryLayerPerturbationAuxFunction, sierra::nalu::BoussinesqNonIsoTemperature AuxFunction,
sierra::nalu::BoussinesqNonIso Velocity AuxFunction, sierra::nalu::CappinglnversionTemperature AuxFunction,

sierra::nalu::ConstantAuxFunction, sierra::nalu::ConvectingTaylorVortexPressureAuxFunction,
sierra::nalu::ConvectingTaylorVortexPressureGradAuxFunction, sierra::nalu::ConvectingTaylorVortexVelocityAuxFunction,
sierra::nalu::Droplet VOFAuxFunction, sierra::nalu::FlowPastCylinderTempAuxFunction,
sierra::nalu::GaussJetVelocity AuxFunction, sierra::nalu::KovasznayPressureAuxFunction,
sierra::nalu::KovasznayPressureGradientAuxFunction, sierra::nalu::KovasznayVelocityAuxFunction,
sierra::nalu::OneTwoTen Velocity AuxFunction, sierra::nalu::PerturbedShearLayerMixFrac AuxFunction,
sierra::nalu::PerturbedShearLayerVelocity AuxFunction, sierra::nalu::RayleighTaylorMixFracAuxFunction,

sierra::nalu::SinProfileChannelFlow Velocity AuxFunction, sierra::nalu::SteadyTaylorVortexGradPressureAuxFunction,
sierra::nalu::SteadyTaylorVortexPressureAuxFunction, sierra::nalu::SteadyTaylorVortexVelocityAuxFunction,

sierra::nalu::TaylorGreenPressure AuxFunction, sierra::nalu::TaylorGreenVelocity AuxFunction,
sierra::nalu::TornadoAuxFunction, sierra::nalu:: VariableDensityMixFracAuxFunction,
sierra::nalu:: VariableDensityNonIsoTemperature AuxFunction, sierra::nalu:: VariableDensityPressure AuxFunction,
sierra::nalu::VariableDensity Velocity AuxFunction, sierra::nalu::WindEnergyPowerLawAuxFunction,

sierra::nalu:: WindEnergyTaylor Vortex AuxFunction, sierra::nalu::WindEnergyTaylor VortexPressure AuxFunction,
sierra::nalu::WindEnergyTaylor VortexPressureGrad AuxFunction, sierra::nalu::ZalesakDisk VOFAuxFunction,
sierra::nalu::ZalesakSphere VOFAuxFunction

ABL Utilities
class BoundarylayerPerturbationAuxFunction : public sierra::nalu::AuxFunction
Add sinusoidal perturbations to the velocity field.

This function is used as an initial condition, primarily in Atmospheric Boundary Layer (ABL) flows, to trigger
transition to turbulent flow during ABL precursor simulations.
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Steady Taylor Vortex

class SteadyTaylorVortexVelocityAuxFunction : public sierra:nalu::AuxFunction
class SteadyTaylorVortexPressureAuxFunction : public sierra::nalu::AuxFunction

class SteadyTaylorVortexGradPressureAuxFunction : public sierra::nalu::AuxFunction

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyTaylorVortexMomentumSrcElemSuppAlg” in
doxygen xml output for project “nalu” from directory: ./doxygen/xml

class SteadyTaylorVortexMomentumSrcNodeSuppAlg : public sierra::nalu::Supplemental Algorithm

Convecting Taylor Vortex

class ConvectingTaylorVortexVelocityAuxFunction : public sierra::nalu::AuxFunction
class ConvectingTaylorVortexPressureAuxFunction : public sierra::nalu::AuxFunction

class ConvectingTaylorVortexPressureGradAuxFunction : public sierra::nalu::AuxFunction

Kovasznay 2-D Flow

class KovasznayVelocityAuxFunction : public sierra::nalu::AuxFunction
class KovasznayPressureAuxFunction : public sierra::nalu::AuxFunction

class KovasznayPressureGradientAuxFunction : public sierra::nalu::AuxFunction

Steady Thermal MMS (2-D and 3-D)

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyThermal3dContactAuxFunction” in doxygen xml
output for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::Steady Thermal3dContactDtDxAuxFunction” in doxy-
gen xml output for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyThermal3dContactSrcElemKernel” in doxygen
xml output for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyThermal3dContactSrcElemSuppAlgDep” in
doxygen xml output for project “nalu” from directory: ./doxygen/xml
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Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyThermalContact3DSrcNodeSuppAlg” in doxy-
gen xml output for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyThermalContactAuxFunction” in doxygen xml
output for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyThermalContactSrcElemSuppAlg” in doxygen
xml output for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::SteadyThermalContactSrcNodeSuppAlg” in doxygen
xml output for project “nalu” from directory: ./doxygen/xml

Mesh Motion/Displacement Utilities

Warning: doxygenclass: Cannot find class “sierra::nalu::LinearRampMeshDisplacementAuxFunction” in doxy-
gen xml output for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::SinMeshDisplacementAuxFunction” in doxygen xml
output for project “nalu” from directory: ./doxygen/xml

Warning: doxygenclass: Cannot find class “sierra::nalu::WindEnergy AuxFunction” in doxygen xml output for
project “nalu” from directory: ./doxygen/xml

2.2.7 Post-Processing Utilities
class TurbulenceAveragingPostProcessing
Post-processing to collect various types of statistics on flow fields.

This class implements Reynolds and Favre averaging as well as other useful quantities relevant to analyzing
turbulent flows.

Currently supported:
* Reynolds and Favre averaging of flow variables
¢ TKE and stress computation

* Vorticity, Q-criterion, lambda-ci calculation

Public Types

enum AveragingType
Type of time filter averaging applied.
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Values:

NALU CLASSIC=0
Classic Nalu implementation (saw-tooth reset)

MOVING_EXPONENTIAL
Moving exponential window averaging.

class DataProbePostProcessing
class SolutionNormPostProcessing
class SurfaceForceAndMomentAlgorithm: public sierra::nalu::Algorithm

class SurfaceForceAndMomentWallFunctionAlgorithm: public sierra::nalu::Algorithm

2.3 Writing Developer Documentation

Developer documentation should be written using Doxygen annotations directly in the source code. This allows the
documentation to live with the code essentially as comments that Doxygen is able to extract automatically into a more
human readable form. Doxygen requires special syntax markers to indicate comments that should be processed as
inline documentation vs. generic comments in the source code. The Doxygen manual provides detailed information
on the various markers available to tailor the formatting of auto-generated documentation. It is recommended that
users document the classes and methods in the header file. A sample header file with specially formatted comments is
shown below. You can download a copy of the file.

Listing 2.1: Sample C++ header file showing inline documentation using
specially formatted comments.

/#++ @file example.h
* (@brief Brief description of a documented file.
*
* Longer description of a documented file.

*/
/*+ Here is a brief description of the example class.

# This is a more in-depth description of the class.

* This class 1s meant as an example.

* It is not useful by itself, rather its usefulness 1s only a
* function of how much it helps the reader. It is in a sense
* defined by the person who reads it and otherwise does

* not exist in any real form.

* @note This is a note.

#ifndef EXAMPLECLASS H
#define EXAMPLECLASS H

class ExampleClass

{

public:
/// Create an ExampleClass.
ExampleClass();

(continues on next page)
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(continued from previous page)

/#+* Create an ExampleClass with lot's of intial values.
*

@param a This is a description of parameter a.

@param b This is a description of parameter b.

*
*
*
* The distance between \fS(x_ 1,y _1)\f$ and \fS(x 2,y _2)\f$ is
* \F$\sqrt{ (x_2-x_1) "2+ (y_2-y_1)" 2} \FS.

*/
ExampleClass (int a, float b);

/#+# ExampleClass destructor description.
*/
~ExampleClass () ;

/// This method does something.
void DoSomething();

* This 1s a method that does so
* much that I must write an epic
* novel just to describe how much
* it truly does.
*/

void DoNothing () ;

/#++ Brief description of a useful method.
* @param level An integer setting how useful to be.
@return Description of the output.

* %

*

This method does unbelievably useful things.

* And returns exceptionally useful results.
* Use it everyday with good health.

* \f[

* |I_2|=\1left| \int_{0}"T \psi(t)

* \left\{

* u(a,t)-

* \int_{\gamma (t) } "a

* \frac{d\theta}{k (\theta,t)}

* \int_{a}"\theta c(\xi)u_ t (\xi,t)\,d\xi
* \right\} dt

* \right|/

* \f]

*/

voidx VeryUsefulMethod (bool level);

/#++ Brief description of a useful method.
* @param level An integer setting how useful to be.
* @return Description of the output.
*
* — Item 1

*

* More text for this item.

* — Item 2
* + nested list item.
* + another nested item.

(continues on next page)
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(continued from previous page)

* — Item 3
*
* # Markdown Example
* [Here is a link.] (http://www.google.com/)
*/
void* AnotherMethod (bool level);

protected:
/*+ The protected methods can be documented and extracted too.
*
*/
void SomeProtectedMethod () ;

private:
const charx fQuestion; ///< The question
int fAnswer; ///< The answer

}; // End of class ExampleClass

#endif // EXAMPLE_H

Once processed by Doxygen and embedded in Sphinx, the resulting documentation of the class looks as shown below:

class ExampleClass
Here is a brief description of the example class.

This is a more in-depth description of the class. This class is meant as an example. It is not useful by itself,
rather its usefulness is only a function of how much it helps the reader. It is in a sense defined by the person
who reads it and otherwise does not exist in any real form.

Note This is a note.

Public Functions

ExampleClass ()
Create an ExampleClass.

ExampleClass (int g, float b)
Create an ExampleClass with lot’s of intial values.

The distance between (1, y1) and (w2, y2) is \/(.132 —21)2 4 (y2 —y1)%
Parameters
* a: This is a description of parameter a.

* b: This is a description of parameter b.

~ExampleClass ()
ExampleClass destructor description.

void DoSomething ()
This method does something.

void DoNothing ()
This is a method that does so much that I must write an epic novel just to describe how much it truly does.
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void *VeryUsefulMethod (bool level)
Brief description of a useful method.

This method does unbelievably useful things. And returns exceptionally useful results. Use it everyday

with good health.
T a de 0
1Tl = | IRC {u<a,t> - / oo | e dg} dt

Return Description of the output.

Parameters

* level: An integer setting how useful to be.

void *AnotherMethod (bool level)
Brief description of a useful method.
e Jtem 1
More text for this item.
e Jtem 2
— nested list item.
— another nested item.

e Jtem 3

Return Description of the output.
Parameters

* level: Aninteger setting how useful to be.
Markdown Example

Here is a link.

Protected Functions

void SomeProtectedMethod ()
The protected methods can be documented and extracted too.

Private Members
const char *£Question
The question.

int fAnswer
The answer.
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2.4 Writing User Documentation

This documentation is written in Sphinx and is generated automatically on the http://nalu-wind.readthedocs.io website
every time the Nalu-Wind Github repo is updated. This documentation can also be built locally on your machine by
using the instructions here. Sphinx uses restructured text (RST) to generate the documentation in many other formats,
such as this html version. Refer to the primer on writing restructured text here.

2.5 Building the Documentation

This document describes how to build Nalu-Wind’s documentation. The documentation is based on the use of Doxy-
gen, Sphinx, and Doxylink. Therefore we will need to install these tools as well as some extensions of Sphinx that are
utilized.

2.5.1 Install the Tools

Install CMake, Doxygen, Sphinx, Doxylink, and the extensions used. Doxygen uses the dot application installed
with GraphViz. Sphinx uses a combination of extensions installed with pip install as well as some that come
with Nalu-Wind located in the _extensions directory. Using Homebrew on Mac OS X, this would look something
like:

brew install cmake

brew install python

brew install doxygen

brew install graphviz

pip2 install sphinx

pip2 install sphinxcontrib-bibtex
pip2 install breathe

pip2 install sphinx_rtd_theme

On Linux, CMake, Python, Doxygen, and GraphViz could be installed using your package manager, e.g. sudo
apt—-get install cmake.

2.5.2 Run CMake Configure

In the Nalu-Wind repository checkout, create your own or use the build directory that already exists in the repo.
Change to your designated build directory and run CMake with -DENABLE_DOCUMENTATION on. For example:

cmake -DTrilinos_DIR:PATH=$ (spack location -i nalu-trilinos) \
-DYAML_DIR:PATH=S$ (spack location -i yaml-cpp) \
~-DCMAKE_BUILD_TYPE=RELEASE \
—-DENABLE_DOCUMENTATION:BOOL=0ON \

If all of the main tools are found successfully, CMake should configure with the ability to build the documentation. If
Sphinx or Doxygen aren’t found, the configure will skip the documentation.

2.5.3 Make the Docs

In your designated build directory, issue the command make docs which should first build the Doxygen documen-
tation and then the Sphinx documentation. If this completes successfully, the entry point to the documentation should
beinbuild/docs/html/index.html.
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2.6 Developer Workflow

This document describes a suggested developer workflow for Nalu-Wind.

2.7 Nalu Style Guide

1. No tabs. Remove them from your editor. Better yet, use eclipse and follow the xml style. Use the format here.
2. Use underscores for private data, e.g., const double thePrivateData_.
3. Use camel case for data members and classes unless it is silly (you get the idea).

4. Camel case on Class names always; non camel case for methods, e.g.,

const double Realm::get_me () {
return hereIAm_; // hmmm... silly? your call

}

5. Use const when possible, however, do not try to be a member of the ‘const’ police force.

6. We need logic to launch some special physics. Try to avoid run time logic by designing with polymor-
phic/templates.

7. When possible, add classes that manage loading, field registration, setup and execute, e.g., SolutionNormPost-
Processing, etc.

2.8 Contributing to Nalu-Wind

1. There is no rush to push. We only support production tested capability. Better yet, peform code verification and
unit testing.

2. Always run the full regression test suite. No exceptions.
3. Peer review when fully appropriate (ask for a pull request).

4. If adding a new feature, include a regression test for this feature. Refer to the section of this documentation on
adding a test here.
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CHAPTER
THREE

NALU-WIND - THEORY MANUAL

Nalu-Wind represents a generalized unstructured, massively parallel, variable density turbulent flow capability de-
signed for energy applications. This code base began as an effort to prototype Sierra Toolkit, [EWS+10], usage along
with direct parallel matrix assembly to the Trilinos, [HBH+03], Epetra and Tpetra data structure. However, the simu-
lation tool has evolved as a tool to support a variety of research projects germane to the energy sector including wind
aerodynamic prediction and traditional gas-phase combustion applications.

3.1 Low Mach Number Derivation

The low Mach number equations are a subset of the fully compressible equations of motion (momentum, continuity
and energy), admitting large variations in gas density while remaining acoustically incompressible. The low Mach
number equations are preferred over the full compressible equations for low speed flow problems as the accoustics
are of little consequence to the overall simulation accuracy. The technique avoids the need to resolve fast-moving
acoustic signals. Derivations of the low Mach number equations can be found in found in Rehm and Baum, [RB78],
or Paolucci, [Pao82].

The equations are derived from the compressible equations using a perturbation expansion in terms of the lower limit
of the Mach number squared; hence the name. The asymptotic expansion leads to a splitting of pressure into a spatially
constant thermodynamic pressure and a locally varying dynamic pressure. The dynamic pressure is decoupled from
the thermodynamic state and cannot propagate acoustic waves. The thermodynamic pressure is used in the equation of
state and to determine thermophysical properties. The thermodynamic pressure can vary in time and can be calculated
using a global energy balance.

3.1.1 Asymptotic Expansion

The asymptotic expansion for the low Mach number equations begins with the full compressible equations in Cartesian
coordinates. The equations are the minimum set required to propagate acoustic waves. The equations are written in
divergence form using Einstein notation (summation over repeated indices):

Op = Opu;

E—F 637]‘

Opu;  Opuju; ~OP 07
ot 8.73]' (933@ - 8.1‘]‘
OpE  Opu;H _% ou; T,

= - Tty 0s.
8t 3xj 817]+ 3xj +puzgz

207

+ pgi,

The primitive variables are the velocity components, u;, the pressure, P, and the temperature 7". The viscous shear
stress tensor is 7;;, the heat conduction is g;, the total enthalpy is H, the total internal energy is F, the density is p,
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and the gravity vector is g;. The total internal energy and total enthalpy contain the kinetic energy contributions. The
equations are closed using the following models and definitions:

R
P=p—T

PW )
E=H-P/p,

1
H:h—|—§ukuk,

Ou;  Ouy 2 Ouy
i = — Sp=—04,
Tij M(amj +0xi> 3M8xk J
oT
8$i

g =—k

The mean molecular weight of the gas is W, the molecular viscosity is p, and the thermal conductivity is k. A
Newtonian fluid is assumed along with the Stokes hypothesis for the stress tensor.

The equations are scaled so that the variables are all of order one. The velocities, lengths, and times are nondimen-
sionalized by a characteristic velocity, U, and a length scale, L. The pressure, density, and temperature are nondi-
mensionalized by P.., pso, and T,,. The enthalpy and energy are nondimensionalized by C), ocT. Dimensionless
variables are noted by overbars. The dimensionless equations are:

9 , 9pu;
8t 8$j
opu; — Opuju; 1 9P 197 1 _
ot &%j ’yMa2 0T; " Re 89‘:j Fr; Py
dph  dpush 1 1 dg  y—10P
ot 0r;  PrRedz; v Ot
v—1 Ma? ouTy; | __v—1 Ma?
+ — pu;
v Re 0z v Fry
v—1 o5 [ Opuyuy, 8ﬁﬂjﬂkﬂk
— M = .
3 < ot oz,

:07

The groupings of characteristic scaling terms are:

coUso L
Re = pi, Reynoldsnumber,
oo

C [o o) ale ]
Pr = p}giﬂ? Prandtlnumber,

u2
Fr; = OZ, Froudenumber, g; # 0,

9i

/ 2
Ma = ’YR{;%, Machnumber,

where 7 is the ratio of specific heats.

For small Mach numbers, Ma < 1, the kinetic energy, viscous work, and gravity work terms can be neglected in the
energy equation since those terms are scaled by the square of the Mach number. The inverse of Mach number squared
remains in the momentum equations, suggesting singular behavior. In order to explore the singularity, the pressure,
velocity and temperature are expanded as asymptotic series in terms of the parameter e:

P:p0+p1€+p262...
Ui = Ui + i€ + Ui g€ ...
T:T0+T1€+TQE2...
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The zeroeth-order terms are collected together in each of the equations. The form of the continuity equation stays the
same. The gradient of the pressure in the zeroeth-order momentum equations can become singular since it is divided
by the characteristic Mach number squared. In order for the zeroeth-order momentum equations to remain well-
behaved, the spatial variation of the Py term must be zero. If the magnitude of the expansion parameter is selected to
be proportional to the square of the characteristic Mach number, ¢ = yMa?, then the P; term can be included in the
zeroeth-order momentum equation.

The form of the energy equation remains the same, less the kinetic energy, viscous work and gravity work terms. The
P, term remains in the energy equation as a time derivative. The low Mach number equations are the zeroeth-order
equations in the expansion including the P; term in the momentum equations. The expansion results in two different
types of pressure and they are considered to be split into a thermodynamic component and a dynamic component.
The thermodynamic pressure is constant in space, but can change in time. The thermodynamic pressure is used in the
equation of state. The dynamic pressure only arises as a gradient term in the momentum equation and acts to enforce
continuity. The unsplit dimensional pressure is

1
yMa?

Lo o
yMa? Oz;

_ € - 0
Po+ Pit..)=
O Ma? ) 0

Li

= P+ ePy+ ...
oz, <1+6 2+

P = Py, + yMa’Py,

where the dynamic pressure, p = P — P4y, is related to a pressure coefficient

PPy

P = > Pin-
Poolcg

The resulting unscaled low Mach number equations are:

Op = Opu;
il =0
8t + 896]- ’
8,0U1 8pu]ul oP - 8nj
ot o, T om " omy TP TP
Oph  Opujh _ 0q; 0P
ot (‘)xj o 81,‘j ot ’
where the ideal gas law becomes
R
Pth = pr

The hydrostatic pressure gradient has been subtracted from the momentum equation, assuming an ambient density of
po- The stress tensor and heat conduction remain the same as in the original equations.

3.2 Supported Equation Set

This section provides an overview of the currently supported equation sets. Equations will be described in integral
form with assumed Favre averaging. However, the laminar counterparts are supported in the code base and are obtain
in the user file by omitting a turbulence model specification.

3.2.1 Conservation of Mass

The continuity equation is always solved in the variable density form.
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Since Nalu-Wind uses equal-order interpolation (variables are collocated) stabilization is required. The stabilization
choice will be developed in the pressure stabilization section.

Note that the use of a low speed compressible formulation requires that the fluid density be computed by an equation
of state that uses the thermodynamic pressure. This thermodynamic pressure can either be computed based on a global
energy/mass balance or allowed to be spatially varying. By modification of the continuity density time derivative to
include the g—z sensitivity, an equation that admits acoustic pressure waves is realized.

3.2.2 Conservation of Momentum

The integral form of the Favre-filtered momentum equations used for turbulent transport are

ag\ii ~ ~ ~ sgs
pu dV—i—/ﬁuzujnj dS:/O'ijnj dS—/Tijq 1 ds

(3.1
+ [o-prgav+ [t

where the subgrid scale turbulent stress 7;7°

i is defined as

700 = pluiug — wiy). (3.2)

The term f; is a body force used to represent additional momentum sources such as wind turbine blades, Coriolis
effect, driving forces, etc. The Cauchy stress is provided by,

Oi5 = 2,U/§:j - P(Sm
and the traceless rate-of-strain tensor defined as follows:

- ~ 1. ~

Si; = Sij — §5ij5kk

~ 1 Ouy,
= Sij — 390,09

In a low Mach flow, as described in the low Mach theory section, the above pressure, P is the perturbation about
the thermodynamic pressure, P**. In a low speed compressible flow, i.e., flows confined to a closed domain with
energy or mass addition in which the continuity equation has been modified to accommodate acoustics, this pressure
is interpreted at the thermodynamic pressure itself.

For LES, Tisjg ® that appears in Equation (3.1) and defined in Equation (3.2) represents the subgrid stress tensor that
must be closed. The deviatoric part of the subgrid stress tensor is defined as

1
=T = ST (33)

where the subgrid turbulent kinetic energy is defined as 7,7 = 2pk. Note that here, k represents the modeled turbulent
kinetic energy as is formally defined as,

1

pk = §ﬁ(ukuk — Upg,).
Model closures can use, Yoshizawa’s approach when k is not transported:

ol = 201pA%|S).

Above, |§| =1/ 2§ij§ij'
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For low Mach-number flows, a vast majority of the turbulent kinetic energy is contained at resolved scales. For
this reason, the subgrid turbulent kinetic energy is not directly treated and, rather, is included in the pressure as an
additional normal stress. The Favre-filtered momentum equations then become

opu;
ot

~ 1~
/2(u + put) (Sij - 3Skk5ij> n;dS + / (P = po) g:dV,

_ 2
dV + /ﬁﬂﬂjnde—&—/ <P+ Bpk) n;dS =
(3.4)

where LES closure models for the subgrid turbulent eddy viscosity p; are either the constant coefficient Smagorinsky,
WALE or the constant coefficient k44, model (see the turbulence section).

Earth Coriolis Force

For simulation of large-scale atmospheric flows, the following Coriolis force term can be added to the right-hand-side
of the momentum equation ((3.1)):

f; = —2ﬁeiijjuk. 3.5)

Here, Q) is the Earth’s angular velocity vector, and €;;;, is the Levi-Civita symbol denoting the cross product of the
Earth’s angular velocity with the local fluid velocity vector. Consider an “East-North-Up” coordinate system on the
Earth’s surface, with the domain centered on a latitude angle ¢ (changes in latitude within the computational domain
are neglected). In this coordinate system, the integrand of (cor-term), or the Coriolis acceleration vector, is

Uy, SIN G — Uy, COS P

2pw —1Ue SiN @ , (3.6)
Ue COS P
where w = ||Q||. Often, in geophysical flows it is assumed that the vertical component of velocity is small and

that the vertical component of the acceleration is small relative to gravity, such that the terms containing cos ¢ are
neglected. However, there is evidence that this so-called traditional approximation is not valid for some mesoscale
atmospheric phenomena cite{Gerkema_etal:08}, and so the full Coriolis term is retained in Nalu-Wind. The imple-
mentation proceeds by first finding the velocity vector in the East-North-Up coordinate system, then calculating the
Coriolis acceleration vector ((3.6)), then transforming this vector back to the model x — y — 2z coordinate system. The
coordinate transformations are made using user-supplied North and East unit vectors given in the model coordinate
system.

Boussinesq Buoyancy Model

In atmospheric and other flows, the density differences in the domain can be small enough as to not significantly affect
inertia, but nonetheless the buoyancy term,

/ (P —po) gi dV, (3.7)

may still be important. The Boussinesq model ignores the effect of density on inertia while retaining the buoyancy

term in Equation (3.1). For the purpose of evaluating the buoyant force, the density is approximated as
pﬁ ~1-B(T -To), (3.8)

This leads to a buoyancy body force term that depends on temperature (1), a reference density (p,), a reference
temperature (7, ), and a thermal expansion coefficient () as

/ 7poﬁ(T - To)gi dv. (39)

The flow is otherwise kept as constant density.
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3.2.3 Filtered Mixture Fraction

The optional quantity used to identify the chemical state is the mixture fraction, Z. While there are many different
definitions of the mixture fraction that have subtle variations that attempt to capture effects like differential diffusion,
they can all be interpreted as a local mass fraction of the chemical elements that originated in the fuel stream. The
mixture fraction is a conserved scalar that varies between zero in the secondary stream and unity in the primary stream
and is transported in laminar flow by the equation,

8pZ+8pujZ_8( Daz)

ot 8xj o &rj &rj

(3.10)

where D is an effective molecular mass diffusivity.
Applying either temporal Favre filtering for RANS-based treatments or spatial Favre filtering for LES-based treatments
yields

8pZ

= 0Z
5 dV—I—/pujandS:—/TZJn]dS—&—/pDa n;dS, (3.11)

Ly

where sub-filter correlations have been neglected in the molecular diffusive flux vector and the turbulent diffusive flux
vector is defined as

ng]s = ﬁ (ZJ’U,J — Zﬂj) .
This subgrid scale closure is modeled using the gradient diffusion hypothesis,

0z

sgs =
77 = —pDy—
Z. 8l‘j ’

where D is the turbulent mass diffusivity, modeled as pD; = p;/Sc; where i, is the modeled turbulent viscosity
from momentum transport and Sc; is the turbulent Schmidt number. The molecular mass diffusivity is then expressed
similarly as pD = u/Sc so that the final modeled form of the filtered mixture fraction transport equation is

02 o2 _ o [(n, )02
ot O0x;j Oz Sct Oz

In integral form the mixture fraction transport equation is
av Zn;dS = ——n;dS.
ot * /pu] i / (Sc Sci ) O, i

3.2.4 Conservation of Energy

The integral form of the Favre-filtered static enthalpy energy equation used for turbulent transport is
dph ~__ sqs oq,
a” av + /ﬁhujnde =— / gn;ds — /Thg n;dS — / aZ:Z av
K3

oP oP ou;
+/<8t +uJa )dV+/nga dV+/Sng

The above equation is derived by starting with the total internal energy equation, subtracting the mechanical energy
equation and enforcing the variable density continuity equation. Note that the above equation includes possible source
terms due to thermal radiatitive transport, viscous dissipation, pressure work, and external driving sources (Sp).

(3.12)
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The simple Fickian diffusion velocity approximation, Equation (3.22), is assumed, so that the mean diffusive heat flux
vector g; is

K K
_ k Oh I oYy 1 oYy
=== - = hpy— | — — hyp—.
9 CpOzx; Pr kz:; r Ox;j Sc kz::l ¥ Oz,
If Sc = Pr, i.e., unity Lewis number (Le = 1), then the diffusive heat flux vector simplifies to q; = f% aa—f. In the
J

code base, the user has the ability to either specify a laminar Prandtl number, which is a constant, or provide a property
evaluator for thermal conductivity. Inclusion of a Prandtl number prevails and ensures that the thermal conductivity is

computed base on kK = 6;5;‘ . The viscous dissipation term is closed by

T”@xji N Ox;  Ox; 3 p Ntaxk *J Ox;

_ 1 2 - 1 ou;
= [2H51j + 2 <Sij - 3Skk5z‘j> - 3ﬁk5ij] T
j

The subgrid scale turbulent flux vector 7;,Y° in Equation (3.12) is defined as

Thu; = ﬁ(il;; —Eﬂ}) .
As with species transport, the gradient diffusion hypothesis is used to close this subgrid scale model,

sgs __ Ht aﬁ

hog ™ PI‘t 3xj ’

where Pr; is the turbulent Prandtl number and p; is the modeled turbulent eddy viscosity from momentum closure.
The resulting filtered and modeled turbulent energy equation is given by,

dph e po, o\ Oh _ dq;
9 dV+/phujnde/<Pr + Pr; 89&47‘”de /(,midV

oP oP ou,;
= 4L u=—1d i —2dV.
+/<8t +“Jaxj> V+/”axj v

The turbulent Prandtl number must have the same value as the turbulent Schmidt number for species transport to
maintain unity Lewis number.

(3.13)

3.2.5 Review of Prandtl, Schmidt and Unity Lewis Number

For situations where a single diffusion coefficient is applicable (e.g., a binary gas system) the Lewis number is defined
as:

Sc «
le= — = —. 3.14
=5 =5 (3.14)
If the diffusion rates of energy and mass are equal,
Sc = Prand Le = 1. (3.15)
For completeness, the thermal diffusivity, Prandtl and Schmidt number are defined by,
a 3.16
o= —, .
e (3.16)
C
pr— 2t _ A (3.17)
K pa
and
I
Sc = —,
c oD (3.18)

where ¢, is the specific heat, , is the thermal conductivity and « is the thermal diffusivity.
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3.2.6 Thermal Heat Conduction

For non-isothermal object response that may occur in conjugate heat transfer applications, a simple single material
heat conduction equation is supported.

T
/pcp%tdv+/anjds — /SdV. (3.19)

where g; is again the energy flux vector, however, now in the following temperature form:

o or
qj o K;an.

3.2.7 ABL Forcing Source Terms

In LES of wind plant atmospheric flows, it is often necessary to drive the flow to a predetermined vertical velocity
and/or temperature profile. In Nalu-Wind, this is achieved by adding appropriate source terms f; to the momentum
equation (3.1) and Sy to the enthalpy equation (3.12).

First, the momentum source term is discussed. The main objective of this implementation is to force the volume
averaged velocity at a certain location to a specified value (< u; >= Uj;). The brackets used here, <>, mean volume
averaging over a certain region. In order to achieve this, a source term must be applied to the momentum equation.
This source term can be better understood as a proportional controller within the momentum equation.

The velocity and density fields can be decomposed into a volume averaged component and fluctuations about that
volume average as u; = (u;) + u; and p = (p) + p’. A decomposition of the plane averaged momentum at a given
instance in time is then

(pui) = (p) (wi) + (p'u3) .
We now wish to apply a momentum source based on a desired spatial averaged velocity U;. This can be expressed as:

(pu) = (p) (u) + (Pui"),

where u is an unknown reference velocity field whose volume average is the desired velocity (u}) = U,. Since the
correlation (p'u*}) is unknown, we assume that

(i) = (i)

such that the momentum source can now be defined as:

o (LU0 520,

where () denotes volume averaging at a certain time ¢, U; is the desired spatial averaged velocity, and At is the time-
scale between when the source term is computed (time ¢) and when it is applied (time ¢ + At). This is typically chosen
to be the simulation time-step. In the case of an ABL simulation with flat terrain, the volume averaging is done over
an infinitesimally thin slice in the x and y directions, such that the body force is only a function of height z and time ¢.
The implementation allows the user to prescribe relaxation factors a, for the source terms that are applied. Nalu-Wind
uses a default value of 1.0 for the relaxation factors if no values are defined in the input file during initialization.

The enthalpy source term works similarly to the momentum source term. A temperature difference is computed at
every time-step and a forcing term is added to the enthalpy equation:

S@ = Oégcp ( Al
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where 0, is the desired spatial averaged temperature, (6) is the spatial averaged temperature, C,, is the heat capacity,
«vg is the relaxation factor, and At is the time-scale.

The present implementation can vary the source terms as a function of time and space using either a user-defined table
of previously computed source terms (e.g., from a precursor simulation or another model such as WRF), or compute
the source term as a function of the transient flow solution.

3.2.8 Conservation of Species

The integral form of the Favre-filtered species equation used for turbulent transport is

_}“} » L L

where the form of diffusion velocities (see Equation (3.22)) assumes the Fickian approximation with a constant value
of diffusion velocity for consistency with the turbulent form of the energy equation, Equation (3.12). The simplest
form is Fickian diffusion with the same value of mass diffusivity for all species,

1%
Yk 8l‘j '

Uj = —

(3.22)
The subgrid scale turbulent diffusive flux vector 7377 is defined as

0% = (Viws - Vi )
The closure for this model takes on its usual gradient diffusion hypothesis, i.e.,

sgs __ Mt ai}k

Yei = " Se; 0z,
where Sc; is the turbulent Schmidt number for all species and p; is the modeled turbulent eddy viscosity from mo-
mentum closure.

The Favre-filtered and modeled turbulent species transport equation is,

aﬁi;k ~ W Lt 83~/k / -
dv Yiu,;n;dS = —+ — ) =—n;dS dv. 3.23
at +/p KT /<8c+sct oz, T | 629
If transporting both energy and species equations, the laminar Prandtl number must be equal to the laminar Schmidt
number and the turbulent Prandtl number must be equal to the turbulent Schmidt number to maintain unity Lewis
number. Although there is a species conservation equation for each species in a mixture of n species, only n — 1
species equations need to be solved since the mass fractions sum to unity and

Fo1-37

Finally, the reaction rate source term is expected to be added based on an operator split approach whereby the set of
ODE:s are integrated over the full time step. The chemical kinetic source terms can be sub-integrated within a time
step using a stiff ODE integrator package.

The following system of ODEs are numerically integrated over a time step At for a fixed temperature and pressure
starting from the initial values of gas phase mass fraction and density,
Wi (V)

p
The sources for the sub-integration are computed with the composition and density at the new time level which are
used to approximate a mean production rate for the time step
. Yy — pYi
W " ——— .

At

Y, =
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3.2.9 Subgrid-Scale Kinetic Energy One-Equation LES Model

The subgrid scale kinetic energy one-equation turbulence model, or £°9° model, [Dav97], represents a simple LES
closure model. The transport equation for subgrid turbulent kinetic energy is given by

Opkse® ) sgs~ i Ok8° gs
SgS . X _ q S Dsgi
; dV +/pk u]n]dS—/—]C z; dS+/( )dv. (3.24)

The production of subgrid turbulent kinetic energy, P;,*", is modeled by,
P, = —pulu 24 (3.25)
J

while the dissipation of turbulent kinetic energy, D;**, is given by

k5852 2
A
where the grid filter length, A, is given in terms of the grid cell volume by

Dsgs — pC

A=Vs.
The subgrid turbulent eddy viscosity is then provided by
o = Cu AK2,
where the values of C and C),_ are 0.845 and 0.0856, respectively.

For simulations in which a buoyancy source term is desired, the code supports the Rodi form,

ut orT

P, =8~—gy; .
b BPrgl&vi

3.2.10 RANS Model Suite

Although Nalu-Wind is primarily expected to be a LES simulation tool, RANS modeling is supported through the
activation of different two-equation RANS models: the Chien k£ — € model [Chi82], the Wilcox 1998 k — w model
[W+98], and the SST model. For the first two models, the reader is referred to the reference papers and the NASA
Turbulence Modeling Resource for the Chien and Wilcox models. The SST model is explained in more details below.

Shear Stress Transport (SST) Formulation

It has been observed that standard 1998 k£ — w models display a strong sensitivity to the free stream value of w (see
Menter, [MKLO03]). To remedy, this, an alternative set of transport equations have been used that are based on smoothly
blending the k£ — w model near a wall with k — € away from the wall. Because of the relationship between w and e,
the transport equations for turbulent kinetic energy and dissipation can be transformed into equations involving k and
w. Aside from constants, the transport equation for k is unchanged. However, an additional cross-diffusion term is
present in the w equation. Blending is introduced by using smoothing which is a function of the distance from the
wall, F'(y). The transport equations for the Menter 2003 model are then

dpk

ok
5 dV+/pkande / ,u—i—ak,ut)a +/(P,‘;’—B*,6kw) dv,
Tj

Opw ow PO Ok Ow
5 dV—|—/pwu]n]dS / M—!—Uwﬂt)a z; +/2(1_F) w Orj ax]dv

+/ (VP,;” ~ Bpw2) av.
Vi
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where the value of 3* is 0.09.
The model coefficients, 6, 6,, ¥ and B must also be blended, which is represented by
¢ =Fo1+ (1 - F)go.

where o1 = 0.85, o2 = 1.0, 0,1 = 0.5, 02 = 0.856, v1 = g, vo = 0.44, 1 = 0.075 and By = 0.0828. The
blending function is given by

F = tanh(arg?}),

where

arg; = min [ max vk 5004 4pouok
o= Brwy’ py*w | CDroy? )

The final parameter is

1
CDy,, = max (Qpawgakaw, 10_10> .
w Ox; 0x;

An important component of the SST model is the different expression used for the turbulent viscosity,

. a1 pk
Bt = hax (a1w, SFy)’

where F5 is another blending function given by
F, = tanh(arg3).

The final parameter is

2Vk  500p
args = max " =5 |-
Brwy’ pwy

The Menter SST Two-Equation Model with Controlled Decay (SST-SUST) is also supported, [SRO7]. Two new
constants are added that are incorporated into additional source terms for the transport equations:

+/(ﬁ*ﬁkambwamb) dV,
+/ (Bﬁwgmb) dv.
where the constants are kg, and wqm,p. Typically these are set to kgpmp = 10*6U§O and Wemp = E’UT“’ where L

is a defining length scale for the particular problem, and U, is the freestream velocity. The value chosen for these
constants should match the values for w and % at the inflow BC.

SST Mixing Length Limiter

When using SST to model the Atmospheric Boundary Layer with the Coriolis effect, a mixing length limiter should be
included. The limiter included here is based on the limiter for the k-epsilon model in [Kob13]. An analogous limiter
was derived for the SST model. The SST limiter was presented in [AdFM+21] and will be written up in a future
publication.

The mixing length limiter replaces the SST model parameter, -, in the w equation with v*. v* is a blend of +; and 5
using the SST blending function, F’

Y =Fy 4+ (1= F)ys.
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7; fori = 1,2 is calculated from C7; ; as

V= C:l,i - L

C?, ; s calculated by applying the mixing length limiter to Cy1 ; as

1>
l
Ch,i=Coi+ (Cegi — Csl,i)ll-

(1, is calculated from the SST model constant gamma; as

Ceri =7+ 1.
Cy2,; is calculated from the SST model constants 3; and 3* as
Csl}i = % + 1.

The maximum mixing length, /. is calculated as
l. = .00027G/ f,
where G is the geostrophic (freestream) velocity and f, is the Coriolis force. The Coriolis force is calculated as
fe = 2QsinA,

where €2 is the earth’s angular velocity and A is the latitude.

3.2.11 Detached Eddy Simulation (DES) Formulation

The DES technique is also supported in the code base when the SST model is activated. This model seeks to formally
relax the RANS-based approach and allows for a theoretical basis to allow for transient flows. The method follows the
method of Temporally Filtered NS formulation as described by Tieszen, [TDBOS5].

The SST DES model simply changes the turbulent kinetic energy equation to include a new minimum scale that
manipulates the dissipation term.

pk3/2

= )
Ipes

Dy,

where [ppg is the min(lsst, cpgsipes). The constants are given by, lssr = ’El—/j and cppg represents a blended
set of DES constants: cpgrs, = 0.78 and cpgs, = 0.61. The length scale, [pgg is the maximum edge length scale
touching a given node.

3.2.12 Active Model Split (AMS) Formulation

The AMS approach is a recently developed hybrid RANS/LES framework by Haering, Oliver and Moser [HOM20].
In this approach a triple decomposition is used, breaking the instantaneous velocity field into an average component
Tig = 1008 4 rSGET SGRS modeling the mean subgrid stress, taking on the form of a standard RANS
subgrid stress model and T{?GET representing the energy transfer from the resolved to the modeled scales. In addition,
resolved scales. Thus the AMS approach solves the following momentum equation
opu; - _ 2
/%dv + /ﬁuiujnjds +/ <P + 3pk> nidS =

< wu; >, a resolved fluctuation w;” and an unresolved fluctuation uf The subgrid stress is split into two terms,
, with 7;
a forcing stress F; is added to the momentum equations to induce the transfer of energy from the modeled to the
~ 1~ -
21 Sij — gSkk(Sij ledS + (p - po)gidV+ (3.26)

1 ~ ~
/Q,ut (< Si; > ~3 < Skr > (51‘]‘) n;dS + / (uﬁkuj + M;k’ui) nEdS + /fidV.
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Split subgrid model stress

In a typical Hybrid RANS/LES approach, the observation that the LES and RANS equations take on the same math-
ematical form is leveraged, relying simply on a modified turbulent viscosity coefficient that takes into account the
ability to resolve some turbulent content. Due to deficiencies in this approach as discussed in Haering et al. [HOM20],
an alternative approach where the modeled term is split into two contributions, one representing the impact on the
mean flow and one the impact on the resolved fluctuations, from the unresolved content, is used in the Active Model
Split (AMS) formulation.

Starting by substitution of a triple decomposition of the flow variables, ¢ = (@) + ¢~ + ¢<, with (-) representing
a mean quantity, ¢~ a resolved fluctuation and ¢< an unresolved fluctuation and dropping all terms that have an
unresolved fluctuation in them (since by definition, these terms cannot be resolved and thus must be modeled) we get
the following momentum equation:

om  owmu; 1 (9P 0% +6nj}4
(9337;

F;
ot O0x; p N

v
ox yi or j ox yi
Note that here, ¢ = (¢) + ¢~ represents an instantaneous resolved quantity and F; is a forcing term discussed in Sec.
AMS forcing.
The model term in AMS, Tijy is split into two pieces, the first representing the impact of the unresolved scales on
the mean flow, referred to as TZ-‘?GRS , since this mimics the purpose of RANS models and seeks to model the subgrid
Reynolds Stress (SGRS). The second term represents the impact of the unresolved scales on the resolved fluctuations
which acts to capture energy transfer from the resolved fluctuations to the unresolved fluctuations, which as Haering et
al. points out, is really the primary function of typical LES SGS models. As this term models subgrid energy transfer
(SGET), it is referred to as 757

T¢R is modeled using a typical RANS model, but since in the hybrid context, some turbulence is resolved, the

magnitude of the stress tensor is reduced through a derived scaling with o = 87, B = 1 — ky.c5 /ktos, Where kyy is the
total kinetic energy, taken from the RANS model and k;.., = 0.5(u; u; ), a measure of the average resolved turbulent
kinetic energy.

TSGET
sentation, 7;; = 3Ok i + Vix Ox 1, of the stress tensor and a tensorial eddy viscosity, v;; = C(M)(e)!/ 3ij/ %, with
C, a coefficient determined as a function of the eigenvalues of M, a metric tensor measure of the grid and (€) inferred
from the RANS model.

is modeled using the M43 SGS model discussed in Haering et al. [HOM19]. This uses an anisotropic repre-

So this produces the final form for the AMS model term,

M _ _SGRS SGET
Tii = Tij + T

— 20(2— WAVE(S,) — 2Bhny + O (ML 4 pitp 0
t iJ 3 totYij jk oxy, ik oxy, :

The AMS model terms are implemented for the edge based scheme in MomentumSSTAMSDIiffEdgeKernel. The

isotropic component, 28k;,¢0;;/3 is brought into the pressure term.

Averaging functions

The averaging algorithms are invoked as part of the AMSAlgDriver and are called from the pre_iter_work function so
that they are executed at the beginning of each Picard iteration. The AMSAlgDriver is invoked last, so to ensure that
this is also done initially, so that the initial step has correct average quantities, the averaging functions are also called
in the initial_work function.

The main averaging algorithm is SSTAMSAveragesAlg. The averaging function is solving a simple causal average
equation for the intermediate (or final) quantity:

9(¢") 1

ot TEANS

(¢" = (&™)
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Here (-) refers to a mean (time-averaged) quantity and Trang is the timescale of the turbulence determined by the
underlying RANS scalars (1/(8*w) in SST). ()™ refers to a previous timestep quantity and ()* refers to an intermediate
quantity. Note that currently the time scale is stored in a nodal field.

We can discretize the causal average equation explicitly to produce the implemented form:

(6%) = (6) + e (6~ (6")
RANS

o At B At N

@)= gt + (1 7o) 00

The averaging is carried out for velocities (u;), velocity gradients (Ou;/0x;), pressure (P), density (p), resolved
turbulent kinetic energy (ks = 0.5u; u;") and the kinetic energy production (Pj, = (Sy;) (75675 —uy u;)) Note
that ~ is used to denote a resolved fluctuation, i.e. ¢~ = ¢ — ().

Dynamic Hybrid Diagnostics

Typically in a hybrid model, it is necessary to have diagnostics that assess the ability of the grid to resolve turbulent
content and to aid in its introduction. In AMS, there are two main diagnostic quantities, « = 3 L7 — (1—Fyes/ ktot)1'7
and a resolution adequacy parameter, r, which is used to evaluate where in the flow the grid and the amount of resolved
turbulent content is inconsistent.

B is a straight-forward calculation. Limiters are applied to 3 to realize the RANS and DNS limits. In the RANS
limit, ks = 0 and thus 8 = 1, so 3 is limited from evaluation above 1. In the DNS limit, ideally, the ratio of the
approximate Kolmogorov velocity scale to total TKE would be used as a lower bound,

B = max (1 _ Fores (V6)1/2>

ktot ’ ktot
but that has shown some performance issues near the wall when using SST with AMS. Currently an adhoc lower
bound of 8 = 0.01 is used instead. The resolution adequacy parameter is based on the ratio between the anisotropic
grid metric tensor, M = J T J, where 7 is the mapping from a unit cube to the cell, and the length scale associated
with the model production. It takes the form,

3 \3/2
T = <2<1]2>> m)z\a,X(Pis;;GSMkj).

For the RANS models used in Nalu-Wind, (v2) ~ 5vpans/TRANS- PijGS = %(maﬂk/axj + 75,00y /Ox;) is the

full subgrid production tensor, with 7;; = Ti*?GRS + T{?GET + %akztot&j.

Forcing Term

When the grid is capable of resolving some turbulent content, the model will want to reduce the modeled stress and
allow for resolved turbulence to contribute the remaining piece of the total stress. As discussed in Haering et al.
[HOM20] and the observation of “modeled-stress depletion” in other hybrid approaches, such as DES, a mechanism
for inducing resolved turbulent fluctuations at proper energy levels and timescales to match your reduction of the
modeled stress is needed. AMS resolves this issue through the use of an active forcing term, designed to introduce
turbulent fluctuations into regions of the grid where turbulent content can be supported. The implications of the specific
form and method of introduction for this forcing term is still an area of ongoing research, but for now, empirical testing
has shown great success with a simple turbulent structure based off of Taylor-Green vortices.

The forcing term F; is determined by first specifying an auxiliary field based off of a Taylor-Green vortex:

hy = 3 cos(a, ) sin(a,xh) sin(a,zy),

hy = — sin(agz}) cos(ayxh) sin(a,zy),
2

hs = 3 sin(a, ) sin(ayxh) cos(a,zy),
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with x’ = x + (u)t and a; = 7/P;. P is determined as follows,

4 — (1 — max(f,0.8)) (Bk)3/?
0.4 €

3/4
! = min (max (l, 7061/4) ,d>

li = min (I, L,,)

fi = nint <17,’>

Ly,
P; = fi -,
where L,,, is related to the periodic domain size and is user specified. With the initial TG vortex field, h;, determined,
we now determine a scaling factor (1) for the forcing.

Ts = max (ﬂk/e, 6\/1//6)
Fta?“ = 8\/ 0162/T[3

| =

Pr = Atth« (hzuf)

Bk = min(\/ve/k,1)

1-p
R <1
10000 else
1
Cr=-1 tanh(l - ——)

min({rg), 1)

Cf = C4(1.0 — min(tanh(10(3 — 1)) +1,1))

th«Cf <7‘k> <1, P.>0
0 else

Now the final forcing field, F; = nh;. Since this is being added as a source term to the momentum solve, we are
not projecting onto a divergence free field and are instead allowing that to pass into the continuity solve, where the
intermediate velocity field with the forcing will then be projected onto a divergence free field. This is implemented in
the node kernels as MomentumSSTAMSForcingNodeKernel.

AMS with SST Mixing Length Limiter

When using AMS with SST as the mean (RANS) contribution to model the Atmospheric Boundary Layer with the
Coriolis effect, SST should include a mixing length limiter. The mixing length limiter is described in SST" Mixing
Length Limiter. For consistency, when using the limiter the RANS time scale, T'% 4 g, should depend on the mixing
length rather than w to account for the effect of the limiter. The time scale becomes

. l
Trans = ﬁ
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3.2.13 Solid Stress

A fully implicit CVFEM (only) linear elastic equation is supported in the code base. This equation is either used for
true solid stress prediction or for smoothing the mesh due to boundary mesh motion (either through fluid structure
interaction (FSI) or prescribed mesh motion).

Consider the displacement for component i, u; equation set,

82ui 80'1"
o ax; = F, (3.27)

where the Cauchy stress tensor, o;; assuming Hooke’s law is given by,

o Bul an 8uk

Above, the so-called Lame coefficients, Lame’s first parameter, A (also known as the Lame modulus) and Lame’s
second parameter, p (also known as the shear modulus) are provided as functions of the Young’s modulus, E, and
Poisson’s ratio, v; here shown in the context of a isotropic elastic material,

__F 3.29
= saywy (3.29)
and
E
A=V (3.30)

I+v)(1—2v)

Note that the above notation of u; to represent displacement is with respect to the classic definition of current and
model coordinates,

where x; is the position, relative to the fixed, or previous position, X;.

The above equations are solved for mesh displacements, u;. The supplemental relationship for solid velocity, v; is
given by,

- aui

- . 3.32
i = o (3.32)
Numerically, the velocity might be obtained by a backward Euler or BDF2 scheme,
v = 71U?+1 +'72u? +73u;;171 (3.33)

At

3.2.14 Moving Mesh

The code base supports three notions of moving mesh: 1) linear elastic equation system that computes the stress of a
solid 2) solid body rotation mesh motion and 3) mesh deformation via an external source.

The linear elastic equation system is activated via the standard equation system approach. Properties for the solid are
specified in the material block. Mesh motion is prescribed by the input file via the mesh_motion block. Here, it
is assumed that the mesh motion is solid rotation. For fluid/structure interaction (FSI) a mesh smoothing scheme is
used to propagate the surface mesh displacement obtained by the solids solve. Simple mesh smoothing is obtained via
a linear elastic solve in which the so-called Lame constants are proportional to the inverse of the dual volume. This
allows for boundary layer mesh locations to be stiff while free stream mesh elements to be soft.
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Additional mesh motion terms are required for the Eulerian fluid mechanics solve. Using the geometric conservative
law the time and advection source term for a general scalar ¢ can be written as:

)
/%dv-l-/pd)(uj —v;)n, dS—!—/pgbaZ dv, (3.34)

where u; is the fluid velocity and v; is the mesh velocity. Mesh velocities and the mesh velocity spatial derivatives
are provided by the mesh smoothing solve. Activating the external mesh deformation or mesh motion block will result
in the velocity relative to mesh calculation in the advection terms. The line command for source term, “gcl” must
be activated for each equation for the volume integral to be included in the set of PDE solves. Finally, transfers are
expected between the physics. For example, the solids solve is to provide mesh displacements to the mesh smoothing
realm. The mesh smoothing procedure provides the boundary velocity, mesh velocity and projected nodal gradients
of the mesh velocity to the fluids realm. Finally, the fluids solve is to provide the surface force at the desired solids
surface. Currently, the pressure is transferred from the fluids realm to the solids realm. The ideal view of FSI is to
solve the solids pde at the half time step. As such, in time, the Prts s expected. The fsi_interface input line
command attribute is expected to be set at these unique surfaces. More advanced FSI coupling techniques are under
development by a current academic partner.

3.2.15 Radiative Transport Equation

The spatial variation of the radiative intensity corresponding to a given direction and at a given wavelength within a
radiatively participating material, I(s), is governed by the Boltzmann transport equation. In general, the Boltzmann
equation represents a balance between absorption, emission, out-scattering, and in-scattering of radiation at a point.
For combustion applications, however, the steady form of the Boltzmann equation is appropriate since the transient
term only becomes important on nanosecond time scales which is orders of magnitude shorter than the fastest chemical.

Experimental data shows that the radiative properties for heavily sooting, fuel-rich hydrocarbon diffusion flames
(1074% to 10~%% soot by volume) are dominated by the soot phase and to a lesser extent by the gas phase. Since soot
emits and absorbs radiation in a relatively constant spectrum, it is common to ignore wavelength effects when mod-
eling radiative transport in these environments. Additionally, scattering from soot particles commonly generated by
hydrocarbon flames is several orders of magnitude smaller that the absorption effect and may be neglected. Moreover,
the phase function is rarely known. However, for situations in which the phase function can be approximated by the
iso-tropic scattering assumption, i.e., an intensity for direction k has equal probability to be scattered in any direction
1, the appropriate form of the Botzmann radiative transport is

0 MaJT4 Hs
i—1 . I(s) = 4+ 223G, 3.35
gL (9 (o ) 1(s) = P07 4 B (3.35)
where 1, is the absorption coeffiecient, yi5 is the scattering coefficient, I(s) is the intensity along the direction s;, T
is the temperature and the scalar flux is G. The black body radiation, I, is defined by "TTAL Note that for situations in
which the scattering coefficient is zero, the RTE reduces to a set of linear, decoupled equations for each intensity to be
solved.

The flux divergence may be written as a difference between the radiative emission and mean incident radiation at a
point,

gf_ — o [40T* = G, (3.36)

where G is again the scalar flux. The flux divergence term is the same regardless of whether or not scattering is active.
The quantity, G /4, is often referred to as the mean incident intensity. Note that when the scattering coefficient is
non-zero, the RTE is coupled over all intensity directions by the scalar flux relationship.

The scalar flux and radiative flux vector represent angular moments of the directional radiative intensity at a point,

2 pm
G = / / I (S) sin Gzndezndeaz»
0 0
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2
q;’ — / / I (8) S; Sin ezndezndeazv
0 0

where 6., and 0, are the zenith and azimuthal angles respectively as shown in Figure Fig. 3.1.

0 . s=sin@,sind, 1+ coso
Zi

J+sing, coso, k

zn

5]
/—

az

Fig. 3.1: Ordinate Direction Definition, s = sin ,,, sin6,.i + cos@,,j + sinf,,, cos 6, k.

The radiation intensity must be defined at all portions of the boundary along which s;n; < 0, where n; is the outward
directed unit normal vector at the surface. The intensity is applied as a weak flux boundary condition which is deter-
mined from the surface properties and temperature. The diffuse surface assumption provides reasonable accuracy for
many engineering combustion applications. The intensity leaving a diffuse surface in all directions is given by

1
I(s)==[roTy +ecTy+(1—e—1)K], (3.37)
s
where € is the total normal emissivity of the surface, 7 is the transmissivity of the surface, T}, is the temperature of
the boundary, 7%, is the environmental temperature and H is the incident radiation, or irradiation (incoming radiative
flux). Recall that the relationship given by Kirchoff’s Law that relates emissivity, transmissivity and reflectivity, p, is

p+T17+e=1

where it is implied that o = e.

3.2.16 Wall Distance Computation

RANS and DES simulations using k — w SST or SST-DES equations requires the specification of a wall distance
for computing various turbulence parameters. For static mesh simulations this field can be generated using a pre-
processing step and provided as an input in the mesh database. However, for moving mesh simulations, e.g., blade
resolved wind turbine simulations, this field must be computed throughout the course of the simulation. Nalu-Wind
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implements a Poisson equation ([GO03]) to determine the wall distance d using the gradients of a field ¢.

V=1

06\ > 06\ *
i=2 |3 (50) +\| 2 (52) +2

j=1,3 j=1,3

3.3 Discretization Approach

Nalu-Wind supports two discretizations: control volume finite element and (CVFEM) edge-based vertex centered
(EBVC). Each are finite volume forumations and each solve for the primitives are are each considered vertex-based
schemes. Considerable testing has provided a set of general rules as to which scheme is optimal. In general, all
equations and boundary conditions support either equation discretization with exception of the solid stress equation
which has only been implemented for the CVFEM technique.

For generalized unstructured meshes that have poor quality, CVFEM has been shown to excell in accuracy and robust-
ness. This is mostly due to the inherent accuracy limitation for the non-orthogonal correction terms that appear in the
diffusion term and pressure stabilization for the EBVC scheme. For generalized unstructured meshes of decent quality,
either scheme is ideal. Finally, for highly structured meshes with substantail aspect ratios, the edge-based scheme is
ideal.

In general, the edge-based scheme is at least two times faster per iteration than the element-based scheme. For some
classes of flows, it can be up to four times faster. However, due to the lagged coupling between the projected nodal
gradient equation and the dofs, on meshes with high non-orthogonality, nonlinear residual convergence can be delayed.

3.3.1 CVFEM Dual Mesh

The classic low Mach algorithm uses the finite volume technique known as the control volume finite element method,
see Schneider, [SR87], or Domino, [Dom06]. Control volumes (the mesh dual) are constructed about the nodes, shown
in Figure Fig. 3.2 (upper left). Each element contains a set of sub-faces that define control-volume surfaces. The sub-
faces consist of line segments (2D) or surfaces (3D). The 2D segments are connected between the element centroid
and the edge centroids. The 3D surfaces (not shown here) are connected between the element centroid, the element
face centroids, and the edge centroids. Integration points also exist within the sub-control volume centroids.

Recent work by Domino, [Dom14], has provided a proof-of-concept higher order CVFEM implementation whereby
the linear basis and dual mesh definition is extended to higher order. The current code base supports the usage of P=2
elements (quadratic) for both 2D and 3D quad/hex topologies. This method has been formally demonstrated to be
third-order spatially accurate and second-order in-time accurate. General polynomial promotion has been deployed
in the higher order github branch. Figure Fig. 3.2 illustrates a general polynomial promotion from P=1 to P=6 and
demonstrated spectral convergence using the method of manufactured solutions in Figure Fig. 3.3.

When using CVFEM, the discretized equations described in this manual are evaluated at either subcontrol-surface
integration points (terms that have been integrated by parts) or at the subcontrol volume (time and source terms).
Interpolation within the element is obtained by the standard elemental basis functions,

bip = _ NP ox. (3.38)
where the index k represents a loop over all nodes in the element.
Gradients at the subcontrol volume surfaces are obtained by taking the derivative of Eq. (3.38), to obtain,

= — e 3.39
8(Ej Z c%cj ¢k ' ( )

The usage of the CVFEM methods results in the canonical 27-point stencil for a structured hexahedral mesh.
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Fig. 3.2: Polynomial promotion for a canonical CVFEM quad element patch from P = 1to P = 6.
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Fig. 3.3: A recent spectral convergence plot using the Method of Manufactured Solutions for P = 1 through P = 8.

3.3. Discretization Approach 107



Nalu-Wind Documentation, Release 1.2.0

3.3.2 Edge-Based Discretization
In the edge-based discretization, the dual mesh defined in the CVFEM method is used to pre-process both dual mesh

nodal volumes (needed in source and time terms) and edge-based area vectors (required for integrated-by-parts quan-
tities, e.g., advection and diffusion terms).

8 9

@ @ Finite Elements and Nodes

I3 EEEETRIRPEIEEE ] Finite Volumes and Faces

X Integration Point

Fig. 3.4: A control volume centered about a finite-element node in a collection of 2-D quadrilateral elements (from
[Dom06].)

Consider Figure Fig. 3.4, which is the original set of CVFEM dual mesh quadrature points shown above in Figure
Fig. 3.2. Specifically, there are four subcontrol volumes about node 5 that contribute to the nodal volume dual mesh.
In an edge-based scheme, the time and source terms use single point quadrature by assembling these four subcontrol
volume contributions (eight in 3D) into one single nodal volume. In most cases, source terms may include gradients
that are obtained by using the larger element-based stencil.

The same reduction of gauss points is realized for the area vector. Consider the edge between nodes 5 and 6. In the
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full CVFEM approach, subcontrol surfaces within the top element (5,6,9,8) and bottom element (2,3,6,5) are reduced
to a single area vector at the edge midpoint of nodes 5 and 6. Therefore, advection and diffusion is now done in a
manner very consistent with a cell centered scheme, i.e., classic “left”/“right” states.

The consolidation of time and source terms to nodal locations along with advection and diffusion at the edge mid-
point results in a canonical five-point stencil in 2D and seven in 3D. Note the ability to handle hybrid meshes is readily
peformed one nodal volume and edge area are pre-processed. Edges and nodes are the sole topology that are iterated,
thus making this scheme highly efficient, although inherantly limited to second order spatial order of accuracy.

In general, the edge-based scheme is second order spatially accurate. Formal verification has been done to evaluate the
accuracy of the EBVC relative to other implemented methods (Domino, [Dom14]). The edge-based scheme, which is
based on dual mesh post-processing, represents a commonly used finite volume method in gas dynamics applications.
The method also lends itself to psuedo-higher order methodologies by the blending of extrapolated values using the
projected nodal gradient and gauss point values (as does CVFEM). This provides a fourth order accurate diffusion and
advection operator on a structured mesh.

The use of a consistent mass matrix is less apparent in edge-based schemes. However, if desired, the full element-based
stencil can be used by iterating elements and assembling to the nodes.

The advantage of edge-based schemes over cell centered schemes is that the scheme naturally allows for a mixed
elemental discretization. Projected nodal gradients can be element- or edge-based. LES filters and nodal gradients
can also exploit the inherant elemental basis that exists in the pure CVFEM approach. In our experience, the optimal
scheme on high quality meshes uses the CVFEM for the continuity solve and EBVC discretization for all other equa-
tions. This combination allows for the full CVFEM diffusion operator for the pressure Poisson equation and the EBVC
approach for equations where inverse Reynolds scaling reduces the importance of the diffusion operator. This scheme
can be activated by the use of the use_edges: yes Realm line command in combination of the LowMachEOM
system line command, element_continuity_eqgs: yes.

3.3.3 Projected Nodal Gradients

In the edge or element-based algorithm, projected nodal gradients are commonplace. Projected nodal gradients are
used in the fourth order pressure stabilization terms, higher order upwind methods, discontinuity capturing operators
(DCO) and turbulence source terms. For an edge-based scheme, they are also used in the diffusion term when non-
orthogonality of the mesh is noted.

There are many procedures for determining the projected nodal gradient ranging from element-based schemes to edge-
based approached. In general, the projected nodal gradient is viewed as an Ly minimization between the discontinuous
Gauss-point value and the continuous nodal value. The projected nodal gradient, in an Ly sence is given by,

0
/ijquV = / —(de. (3.40)
8xj
Using integration-by-parts and a piece-wise constant test function, the above equation is written as,
/w[GJ(ﬁdV = /qbzpn,dS (341)
For a lumped L2 projected nodal gradient, the approach is based on a Green-Gauss integration,
f ¢i])Aj
G:d= ) (3.42)
i9 av

In the above lumped mass matrix approach, the value at the integration point can either be based on the CVFEM dual
mesh evaluated at the subcontrol surface, i.e., the line command option, element or the edge, which evaluates the
term at the edge midpoint using the assemble edge area vector. In all cases, the lumped mass matrix approach is
strickly second order accurate. When running higher order CVFEM, a consistent mass matrix appraoch is required to
maintain design order of the overall discretization. This is strickly due to the pressure stabilization whose accuracy can
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be affected by the form of the projected nodal gradient (see the Nalu-Wind theory manual or a variety of SNL-based
publications).

In the description that follows, G;(b represent the average nodal gradient evaluated at the integration point of interest.

The choice of projected nodal gradients is specified in the input file for each dof. Keywords element or edge are
used to define the form of the projection. The forms of the projected nodal gradients is arbitrary relative to the choosed
underlying discretization. For strongly non-orthogonal meshes, it is recommended to use an element-based projected
nodal gradient for the continuity equation when the EBVC method is in use. In some limited cases, e.g., pressure,
mixture fraction and enthalpy, the manage-png line command can be used to solve the simple linear system for the
consistent mass matrix.

3.3.4 Time and Source Terms

Time and source terms also volumetric contributions and also use the dual nodal volume. In both discretization
approaches, this assembly is achieved as a simple nodal loop. In some cases, e.g., the k4, partial differential equation,
the source term can use projected nodal gradients.

dpg /
AV = [ Sydv

3.3.5 Diffusion

As already noted, for the CVFEM method, the diffusion term at the subcontrol surface integration points use the the
elemental shape functions and derivatives. For the standard diffusion term, and using Eq. (3.39), the CVFEM diffusion
operator contribution at a given integration point (here simply demonstrated for a 2D edge with prescribed area vector)
is as follows,

9 ONP ONP ONP ONP
a(bA_ zpl( OCbO ¢1>Am+< O¢+ 31} ¢1>Ay

Standard Gauss point locations at the subcontrol surfaces can be shifted to the edge-midpoints for a more stable
(monotonic) diffusion operator that is better conditioned for high aspect ratio meshes.

For the edge-based diffusion operator, special care is noted as there is no ability to use the elemental basis to define the
diffusion operator. As with cell-centered schemes, non-orthogonal contributions for the diffusion operator arise due to
a difference in direction between the assembled edge area vector and the distance vector between nodes on an edge.
On skewed meshes, this non-orthogonality can not be ignored.

Following the work of Jasek, [Jas96], the over-relaxed approach is used. The form of any gradient for direction j for
field ¢ is

ai. =Gjo+ [(0r — ¢1) — Giodx/]

Ox; ip

AJ
Aodon (3.43)

In the above expression, we are iterating edges with a Left node L and Right node R along with edge-area vector,

Aj;. The G}(ﬁ is simple averaging of the left and right nodes to the edge midpoint. In general, a standard edge-based
diffusion term is written as,

06 . . Ao A, + A A
_[r2% 4 =1, ~OA, A gy Aafe + Ay Ay
Az Ay + AyA,
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Momentum Stress

The viscous stress tensor, 7;; is formed based on the standard gradients defined above for either the edge or element-
based discretization. The viscous force for component ¢ is given by,

ou; Ou;
P (24 2
i i

For example, the x and y-component of viscous force is given by,

uy Ouy Oy 0
Fz = —Mip (uAm + uAy) — Mip (uA:L’ + ’l;;/Ay) )

Ox dy ox 0
ou ou Ouy ou
o= o (G ) i (G s ).

Note that the first part of the viscous stress is simply the standard diffusion term. Note that the so-called non-solonoidal
viscous stress contribution is frequently written in terms of projected nodal gradients. However, for CVFEM this
procedure is rarely used given the elemental basis definition. As such, the use of shape function derivatives is clear.

The viscous stress contribution at an integration point for CVFEM (again using the 2D example with variable area
vector) can be written as,

N Ny N Ny
F, = *Fip l(%‘)uzo + a;“ﬂ) A, + <8 0 Uz + 0 L uzl) Ay

dy dy

ONP ON'P ONP ONP
+< ;UmoJr ;Um)AacﬂL( OuyoJr 1uy1>Ay

)

y Or
ON? ON}P ON? ONy”
Fy =Ty [(a;uyo + 8;“;;1> Ag + < 3; Uyq + ayl “y1> Ay

ONP ONP ONP ONP
—|—< Ouwo—i— 1uI1>A$+< O by + 1uy1>Ay

Oy Oy oy Y9 oz

For the edge-based diffusion operator, the value of ¢ is substituted for the component of velocity, u; in the Eq. (3.43).

_ _ A
= Gjui + [(uiR — uiL) — Gluidscl] Akdjxk .

Common approaches in the cell-centered community are to use the projected nodal gradients for the % stress com-
ponent. However, in Nalu-Wind, the above form of equation is used.

Substituting the relations of the velocity gradients for the x and y-componnet of force above provides the following
expression used for the viscous stress contribution:

- - A A +AA
FI = —,Uip |:(GIU,_LA_L =+ GyuwAy) + (Uq;R — UQ;L) WM
x Y
_ - Az AL + AyA,
= (Guado+ Gyuady) 2
: : A A,
— Mip |:Ga:uwAw + GauyAy + (Upp — Upp,) m
Az Ay
+ (uyR - uyL) Awda: T Aydy
A Ay
Azdr + Aydy
Az A,

Agdr + Aydy |’

— (G;uzda: + Gy_uxdy)

— (G;uydac + Gy_uydy)
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Fy = —pup [(qu;,Am +GyuyAy) + (uyp =ty ) m
— (Gruydz + Gyuydy) W
— [hip |:GyUxAx + Gyuy Ay + (uyp —uyp) m
+ (Upp — Uz m
— (Gouyldz + Gyu,dy) m
— (Grtigdz + Gyuady) m ’

Ou; (. Ouj 4 . .
ey Aj and 77+ A; contributions, respectively.

where above, the first [] and second [] represent the

One can use this expression to recognize the ideal LHS sensitivities for row and columns for component ;.

3.4 Advection Stabilization

In general, advection for both the edge and element-based scheme is identical with standard exception of the location
of the integration points. The full advection term is simply written as,

ADVy = / puidipA; =Y iy, (3.44)

where ¢ is u;, Z, h, etc.

The evaluation of ¢;;, defines the advection stabilization choice. In general, the advection choice is a cell Peclet
blending between higher order upwind (¢y.,) and a generalized un-stabilized central (Galerkin) operator, ¢gcds,

¢ip = 77¢upw + (]- - 77)¢gcds- (345)

In the above equation, 7 is a cell Peclet blending. The generalized central operator can take on a pure second order or
pseudo fourth order form (see below). For the classic Peclet number functional form (see Equation (3.46)) a hybrid
upwind factor, ~y, can be used to ensure that no stabilization is added (n = 0) or that full upwind stabilization is included
(as will be shown, even with limiter functions). The hybrid upwind factor allows one to modify the functional blending
function; values of unity result in the normal blending function response in Figure Fig. 3.5; values of zero yield a pure
central operator, i.e., blending function of zero; values >> unity result in a blending function value of unity, i.e., pure
upwind. The constant A is implemented with a value of 5. The value of this constant can not be changed via the input
file. Note that this functional form is named the “classic”” form within the input file.

The classic cell Peclet blending function is given by

yPe?

= —7. 3.46
5 + vPe? (3:40)

Ui

The classic Peclet functional form makes it difficult to dial in the exact point at which the Peclet factor transitions from
pure upwind to pure central. Therefore, an alternative form is provided that has a hyperbolic tangeant functional form.
This form allows one to specify the transition point and the width of the transition (see Equation (3.47)). The general
tanh form is as follows,

1 Pe — cirans

n==[(a+0b)+ (b—a)tanh(

(3.47)
2 Cwidth

Above, the constant c¢;,qy,s represents the transition Peclet number while c,,;4¢,, represents the width of the transition.
The value of A is simply the shift between of the raw tanh function from zero while ¢ is the difference between the
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max Peclet factor (unity) and the minimum value prior to normalization. This approach ensures that the function starts
Pe — Ctrans)

at zero and asymptotes to unity,
1
17 = =[1 + tanh(
Cwidth

The cell-Peclet number is computed for each sub-face in the element from the two adjacent left (L) and right (R)

3 (uryi +ur;) (Tri — xL;)
12

nodes,
Pe =

Peclet Factor (Y-axis) vs Peclet Number (X-axis)

/

A dot-product is implied by repeated indices.
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Fig. 3.5: Cell-Peclet number blending function outlining classic (varying the hybrid factor v from 1.0, 0.1 and 0.01;

again A = 5) and tanh functional form (¢¢rqns = 2000 and cy;q¢n, = 200).
The upwind operator, ¢, is computed based on a blending of the extrapolated state (using the projected nodal

gradient) and the linear interpolated state. Second or third order upwind is provided based on the value of vy
(3.48)

¢upw = Oéupwg’ﬁpw + (1 - aupw) Geds;m > 0,

blending
aupw&gpw + (1 - aupw) Deds;m < 0.

(3.49)

L _ 4L
- ¢ J 81‘] )
r 00"

The extrapolated value based on the upwinded left (¢”) or right (¢%) state,
o L
upw + dL i

TR R
upw d) j 8Z‘j

The distance vectors are defined based on the distances between the L/R points and the integration point (for both edge
(3.50)

or element-based),
L _ ,ip L
dy = z; —xy,
R _ R __ _ip
di' =z; z;.
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In the case of all transported quantities, a Van Leer limiter of the extrapolated value is supported and can be activated
within the input file (using the solution options “limiter” specification).

Second order central is simply written as a linear combination of the nodal values,
beds = Y NP y.. (3.51)

where N, ,ip is either evaluated at the subcontrol surface or edge midpoint. In the case of the edge-based scheme, the
edge midpoint evaluation provides for a skew symmetric form of the operator.

The generalized central difference operator is provided by blending with the extrapolated values and second order
Galerkin,

(Aﬁpw + éﬁﬁpw) : (3.52)

|~

d)gcds =

where,

éﬁpw = aéipw + (1 - Oé) ¢cds;

i s (3.53)
Epw = a¢§pw + (1 - a) ¢cds'

The value of a provides the type of psuedo fourth order stencil and is specified in the user input file.

The above set of advection operators can be used to define an idealized one dimensional stencil denoted by (¢ — 2,
i—1,4,4+ 1,7+ 2), where ¢ represents the particular row for the given transported variable. Below, in the table, the
stencil can be noted for each value of v and vy, .

1—2 | 1—11|1 1+1|14+2 | « Qupw
01 —é 0 +§ o1 ? n/a
+§1 *§8 O +§8 *gl g n/a
eI BN TURN B B T BN - S R
+7 —2 421 +5 |0 m>0]1
0 —% —% +§ -1 [m<o]1
1 [§] 3 2 3 1
+g _g +§ +g 01 m>0 ?
0 —5 | —gltg |- |m<O0]3

It is noted that by varying these numerical parameters, both high quality, low dissipation operators suitable for LES
usage or limited, monotonic operators suitable for RANS modeling can be accomodated.

3.5 Pressure Stabilization

A number of papers describing the pressure stabilization approach that Nalu-Wind uses are in the open literature,
Domino, [Dom06], [Dom08], [Dom14]. Nalu-Wind supports an incremental fourth order approximate projection
scheme with time step scaling. By scaling, it is implied that a time scale based on either the physical time step or a
combined elemental advection and diffusion time scale based on element length along with advection and diffusional
parameters. An alternative to the approaximate projection concept is to view the method as a variational multiscale
(VMS) method wherebye the momentum residual augments the continuity equation. This allows for a diagonal entry
for the pressure degree of freedom.

Here, the fine-scale momentum residual is written in terms of a projected momentum residual evaluated at the Gauss
point,

J
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The above equation is derived simply by writing a fine-scale momentum equation at the Gauss-points and using the
nodal projected residual to reconstruct the individual terms. Therefore, the continuity equation solved, using the
VMS-based projected momentum residual, is

op . - [ 0P
/aquL/(puiJrTGiP) mde/Ta—ximdS.

Above, G; P is defined as a L2 nodal projection of the pressure gradient. Note that the notion of a provisional velocity,
u;, 1s used to signify that this velocity is the product of the momentum solve. The difference between the projected
nodal gradient interpolated to the gauss point and the local gauss point pressure gradient provides a fourth order
pressure stabilization term. This term can also be viewed as an algebraic form for the momentum residual. For the
continuity equation only, a series of element-based options that shift the integration points to the edges of the iterated
element is an option.

3.5.1 The Role of

In all of the above equations, the advection term is written in terms of a linearized mass flow rate including a sum
over all subcontrol surface integration points, Eq (3.44). The mass flow rate includes the full set of stabilization terms
obtained from the continuity solve,

_ P
m:<pfbi+TGiP—Ta )nzdS
Bxi

The inclusion of the pressure stabilization terms in the advective transport for the primitives is a required step for
ensuring that the advection velocity is mass conserving. In practice, the mass flow rate is stored at each integration
point in the mesh (edge midpoints for the edge-based scheme and subcontrol surfaces for the element-based scheme).
When the mixed CVFEM/EBVC scheme is used, the continuity equation solves for a subcontrol-surface value of the
mass flow rate. These values are assembled to the edge for use in the EBVC discretization approach. Therefore, the
storage for mass flow rate is higher.

3.6 RTE Stabilization

The RTE is solved using the method of discrete ordinates using the symmetric Thurgood quadrature set. The discrete
ordinates method is one in which discrete directions of the intensity are solved. The quadrature order, NV, defines the
number of ordinate directions that are solved in a given iteration. In the case of non-scattering media, this results is a set
of decoupled linear partial differential equations. For the symmetric Thurgood set, the number of ordinate directions is
given by 8N2. Values of N that are required for suitable accuracy starts at N = 2 with more than adequate resolution
at N = 4.

For each ordinate direction, a weight is provided, wy, (not to be confused with the test function w). For each intensity
ordinate direction, [}, integrated quantities such as scalar flux and radiative heat flux are computed as,

G = kawk

and,

q; = Zlksjwk.

The stabilization that is used in the RTE equation can be placed in the class of residual-based stabilization. In this
particular implementation, the scaled residual of the RTE equation is added. This implementation has its roots in the
classic variational multiscale (VMS).
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In the VMS framework, the degree of freedom is decomposed in terms of its resolved and fine scale, I + I’. Without
specific definition of the test function, the weighted residual statement for the RTE within a VMS framework is given
by,

/w <si£ (I(s)+1"(5) + (pta + ps) (I (5) + 1" (s)) — ““%Tél — ﬁG) dv =0. (3.55)

Grouping resolved and fine scale terms results in an equation takes the form of a standard Galerkin contribution in
addition to the fine structure statement,

0 ,UJaUT4 Hs
/w <828{L,LI (8) + (Ma + MS)I — - — EG dVv

(3.56)

0
+/w <Si8 I'(s) + (pa +us)l’> dV =0.
T4
Note that the isotropic source term has not contributed to the VMS framework other than through the right hand source

term.

In general, gradients in the fine scale quantity are to be avoided. Therefore, the first term in the second line of Eq. (3.56)
is integrated by parts to yield the following form (note the boundary term, fr that is shown below is frequently dropped)

0 ,uaO'T4 Hs
/w (Szaxif(s) +(pa +ps)l = ——— MG> av

_/I’siZZdV—&—/wsil’nidS—&—/w(ua—i—us)I'dV:0.
i r

(3.57)

The following ansatz, which now includes the classic stabilization parameter, 7, provides closure of the above fine
scale equation,

4
re <3i81<s> ()T () = LT e

oz, - i G) = —7R(s) (3.58)

Substituting Eq. (3.58) into Eq. (3.57) yields,

4
/w <si;1(s) (e + pua)T — HaoT ZG) av
i T T (3.59)

+/TSZ‘§7MR(S)(1V - / TwR(s)s;n;dS — /Tw(ua + ps)R(s)dV = 0.
i r

In the above equation, the residual of the intensity equation for ordinate s is denoted by R(s). A compact form of the
equation is provided by defining a modified test function, w, (again note retention of the stabilized boundary term)

4
/w <5 O 1(5) + (1a + )T — ““;T - “SG> av

; 4
O T (3.60)
—ﬁ/ TwR(s)s;n;dS = 0.
r
where w is simply equal to,
1o}
W=w+T1 <5jw+a(ua+us)w> . (3.61)
85(]j
When o« = —1, we have the above VMS derivation; for « = 1, Galerkin Least Squares is realized; finally for o = 0,

we have SUPG. For any formulation other than VMS, the residual contribution at the boundaries of the domain is
dropped (8 = 0).
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The full residual-based equation is placed in divergence form,

0 oo T ps
/w ((%sif(s) + (ta + ps)1 () — "% - Zﬁa) av
¢ (3.62)
—ﬁ/ TwR(s)s;n;dS = 0.
r
and split into its Galerkin and stabilized contributions,
0 ,uaO'T4 Hs
/w (axiSzI(S) + (fta + ps)1 () — Y EG av
0
+ / rsja—w_R(s)dV
i (3.63)

+a/7w(ua + ps)R(s)dV
—ﬁ/ TwR(s)s;n;dS = 0.
r

Note that the first term in the above equation is integrated by parts,

0 ow
/w(“)TciSiI (s)dV = —/I(s) Sia—xidv—&—/rwsil (s) n;dS.

Again, the usage of I' provides emphasis that the contribution is a boundary (exposed face) condition. Therefore, the
full VMS-based stabilized RTE equation is as follows,

ow uaUT4 Hs
/ (—](3) e + (o + ps)I (s) — T MG) dv

+/ws1;l (s) n;dS
r

+ / O p(s)av (3.64)

Tsjail'j
+ a/Tw(,ua + ps)R(s)dV

- B/ TwR(s)sin;dS = 0.
r

3.6.1 Definition of the test function

Following the work of Martinez, [Mar(05], the test function is chosen to be a piecewise-constant value within the
control volume, w = w; and zero outside of this control volume (Heaviside). A key property of this function, as
pointed out by Martinez, is that its gradient is a distribution of delta functions on the control volume boundary:

(911}]
8:52-

where I'; is boundary of control volume I and n; is the outward normal on that boundary. Substituting this relationship
into the residual equation provides the final form of vertex-centered finite volume RTE stabilized equation,

Jrersmas s [ (s nr) -0 - e av

= —n;é(x — xr,) (3.65)

T 47

+/siI (s) n;dS (3.66)
r

—/TR(s)simdS + a/T(ua + us)R(s)dV — B/FTR(S)SmidS =0.
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Given this equation, either an edge-based or element-based scheme can be used. For & = 0 and 5 = 0, it is noted that
classic SUCV is obtained. The second line of Eq. (3.66) represents a boundary contribution. This is where the intensity
boundary condition (Eq. (3.126)) is applied. As noted in the RTE equation section, when s;n; is greater than zero, the
interpolated intensity based on the surface nodal values is used. However, when s;n; is less than zero, the intensity
boundary condition value is used. Since the original RTE equation was integrated by parts, a natural surface flux
contribution is applied. In alternative discretization approaches, e.g., the SUPG FEM-based Sierra Thermal Radiation
Module: Syrinx code, the RTE is not integrated by parts. Therefore, no boundary term exists, and, therefore, a dirichlet
be is applied. At corner nodes, this approach can lead to non-intuitive approaches since the corner node might have
surface facets that are both incoming and outgoing. Weak integration of the flux term eliminated this complexity.

3.6.2 The form of 7

The value of the stabilization parameter 7 can take on a variety of forms. A classic derivation provides the form of 7

to be broken out into two forms, 7,4, = % and 7g;pp = (#7}#) An ad-hoc blending is given by,

L (22 L > (3.67)
h + (Ma + MS)Q

Finally, the classic GFEM form of 7 is given by use of the metric tensor for the element mapping is noted,

T = B%[5:9i55;] 3, (3.68)

with 3* equal to unity for SUCV and 1; for FEM.
2

3.6.3 Pure Edge-based Upwind Method

The residual-based stabilization apporach can lead to predicting negative intensities. This is simply due to the fact that
the stabilization approach (SUPG) is a linear approach. Extensions of this residual-based stabilization to include a dis-
continuity capturing operator (DCO) are underway. This adds a non-linear stabilization approach that will, hopefully,
eliminate negative intensity predictions.

Alternatively, a first order upwind approach has been implemented by using EBVC discretization. At this point, no
higher order upwind extensions have been implemented. For the upwind implementation, the equation solved is,

Jr6rsmas s [ (i) - 222 - Leg) av

(3.69)
Jr/ siI (s)n;dS = 0.
r

In the above equation, the “advection operator”, I (s) s;n;dS is approximated as using the “upwind” intensity, e.g., if
s;n; is greater than zero, the left nodal value is used.

3.6.4 Finite Element SUPG Form

For the FEM, the test function is the standard weighting. Assuming a pure SUPG formulation, i.e., « = § = 0 in
Equation (3.64), thereby reducing the final form to the following:

/ (-I(S) Szg—;i + w[(pa + ps)I (s) — H“ZT4 — ﬁG]) av

—&—/wsﬂ(s) n;dS (3.70)
r

+/T8j§;l}jR(s)dV
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The weak boundary condition is applied in a similar manner as with the CVFEM and EBVC form, however, using the
appropriate FEM test test function definition. Finally, the form of 7 follows the above CVFEM form.

3.7 Nonlinear Stabilization Operator (NSO)

An alternative to classic Peclet number blending is the usage of a discontinuity capturing operator (DCO), or in the
low Mach context a nonlinear stabilization operator (NSO). In this method, an artifical viscosity is defined that is a
function of the local residual and scaled computational gradients. Viable usages for the NSO can be advection/diffusion
problems in addition to the aforementioned RTE VMS approach.

The formal finite element kernel for a NSO approach is as follows,

ow ,; 0¢
¥
Ee /Q v(R) 5,9 axjdﬂ’ (3.71)

where (R) is the artifical viscosity which is a function of the pde fine-scale residual and g%/ is the covariant metric
tensor).

For completeness, the covariant and contravarient metric tensor are given by,

o Qx; Ox;
E i et iy 3.72
O 06 G-72)
and
- _ 08 0%k
9ij = o, 5'zj’ (3.73)

where & = (&1, &2,&3)T. The form of v(R) currently used is as follows,

Ry R
v= [ (3.74)
79 e

The classic paper by Shakib ( [SHZ91]) represents the genesis of this method which was done in the accoustically
compressible context.

A residual for a classic advection/diffusion/source pde is simply the fine scale residual computed at the gauss point,

5~ Opp 0 ol
R=——+ —(puj0 — p/ ——
J 8xj

T )— S (3.75)

Note that the above equation requires a second derivative whose source is the diffusion term. The first derivative is
generally determined by using projected nodal gradients. As will be noted in the pressure stabilization section, the
advection term carries the pressure stabilization terms. However, in the above equation, these terms are not explicity
noted. Therefore, an option is to subtract the fine scale continuity equation to obtain the final general form of the
source term,

- Op = Opu;
R=R-¢(=— +
ot 6mj

). (3.76)

An alternative to the fine-scale PDE is a form that is found by differencing the linearized form of the residual from the
nonlinear residual,
_ Opuj¢p

R= 81,‘]‘ (¢

opt | . 99
81,‘]‘ + puj 8a;j )

(3.77)

The above resembles a commutation error in the nonlinear advection term.
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In general, the NSO-v is prone to percision issues when the gradients are very close to zero. As such, the value of v
is limited to a first-order like value. This parameter is proposed as follows: if an operator were written as a Galerkin
(un-stabilized) plus a diffusion operator, what is the value of the diffusion coefficient such that first-order upwind is
obtained for the combined operator? This upwind limited value of v provides the highest value that this coefficient
can (or should) be. The current form of the limited upwind v is as follows,

JUPw Cupw (puigij pU; ) % (378)

where Clyy,,, is generally taked to be 0.1.

Using a piecewise-constant test function suitable for CVFEM and EBVC schemes (the reader is refered to the VMS
RTE section), Eq. (3.71) can be written as,

0
7; /F V(R)g”%nids. (3.79)

J

A fourth order form, which writes the stabilization as the difference between the Gauss-point gradient and the projected
nodal gradient interpolated to the Gauss-point, is also supported,

9
-> /F V(R)g”(% — Gj¢)n:dS. (3.80)

3.7.1 NSO Based on Kinetic Energy Residual

An alternative formulation explored is to share the general kernal form shown in Equation (3.80), however, compute v
based on a fine-scale kinetic energy residual. In this formulation, the fine-scale kinetic energy residual is obtained from
the fine-scale momentum residual dotted with velocity. As with the continuity stabilization approach, the fine-scale
momentum residual is provided by Equation (3.81). Therefore, the fine-scale kinetic energy is written as,
(Pp _ .
R, — W (3.81)

while the denominator for v now includes the gradient in ke,
RkeRke
Y7 Oke ij Oke (3.82)
8{137; g 8{13]‘

ke — “’;“k (3.83)

The kinetic energy is simply given by,

The kinetic energy form of v is used for all equation sets with transformation by usage of a turbulent Schmidt/Prandtl
number.

3.7.2 Local or Projected NSO Diffusive Flux Coefficient

While the NSO kernel is certainly evaluated at the subcontrol surfaces, the evaluation of v can be computed by a
multitude of approaches. For example, the artificial diffusive flux coefficient can be computed locally (with local
residuals and local metric tensors) or can be projected to the nodes (via an L, or Ly projection) and re-interpolated
to the gauss points. The former results in a sharper local value while the later results in a more filtered-like value. The
code base only supports a local NSO v calculation.
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3.7.3 General Findings

In general, the NSO approach seems to work best when running the fourth-order option as the second-order imple-
mentation still looks more diffuse. When compared to the standard MUSCL-limited scheme, the NSO is the preferred
choice. More work is underway to improve stabilization methods. Note that a limited set of NSOs are activated in
the code base with specific interest on scalar transport, e.g, momentum, mixture fraction and static enthalpy transport.
When using the 4*" order method, the consistent mass matrix approach for the projected nodal gradients is supported
for higher order.

3.7.4 NSO as a Turbulence Model

The kinetic energy residual form has been suggested to be used as a turbulence model (Guermond and Larios, 2015).
However, inspection of the above NSO kernel form suggests that the model form is not symmetric. Rather, in the
context of turbulence modeling, is closer to the metric tensor acting on the difference between the rate of strain and
antisymmetric tensor. As such, the theory developed, e.g., for eigenvalue perturbations of the stress tensor (see Jofre
and Domino, 2017) can not be applied. In this section, a new form of the NSO is provided in an effort to be used for
an LES closure.

In this proposed NSO formulation, the subgrid stress tensor, 7,* = w;u; — u;1;, is given by,

1 Ouy,

Ty = =209 (Sij — 55 0i)

ij

= —2pygijS;‘j. (3.84)

Interestingly, the units of v are of an inverse time scale while the product 2prg* can be viewed as an non-isotropic
eddy viscosity, 4.

The first order clipping may be relaxed by defining v as,

UV = |Rk6| .
kel

(3.85)

The above form would be closer to what Guermond uses and would avoid the divide-by-zero noted in regions of
uniform flow.

3.8 Turbulence Modeling

Unlike a RANS approach which models most or all of the turbulent fluctuations, LES directly solves for all resolved
turbulent length scales and only models the smallest scales below the grid size. In this way, a majority of the problem-
dependent, energy-containing turbulent structure is directly solved in a model-free fashion. The subgrid scales are
closer to being isotropic than the resolved scales, and they generally act to dissipate turbulent kinetic energy cascaded
down from the larger scales in momentum-driven turbulent flows. Modeling of these small scales is generally more
straightforward than RANS approaches, and overall solutions are usually more tolerant to LES modeling errors be-
cause the subgrid scales comprise such a small portion of the overall turbulent structure. While LES is generally
accepted to be much more accurate than RANS approaches for complex turbulent flows, it is also significantly more
expensive than equivalent RANS simulations due to the finer grid resolution required. Additionally, since LES results
in a full unsteady solution, the simulation must be run for a long time to gather any desired time-averaged statistics.
The tradeoff between accuracy and cost must be weighed before choosing one method over the other.

The separation of turbulent length scales required for LES is obtained by using a spatial filter rather than the RANS
temporal filter. This filter has the mathematical form

+oo
o(x,t) E/ oz’ )G(x' — x)dx’, (3.86)

— 00
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which is a convolution integral over physical space x with the spatially-varying filter function G. The filter function
has the normalization property fj;o G(x)dx = 1, and it has a characteristic length scale A so that it filters out
turbulent length scales smaller than this size. In the present formulation, a simple “box filter” is used for the filter
function,

, v (2 —x)eV
Gla' —=z) = { 0 otherwise

)

where V' is the volume of control volume V whose central node is located at . This is essentially an unweighted
average over the control volume. The length scale of this filter is approximated by A = V5. This is typically called
the grid filter, as it filters out scales smaller than the computational grid size.

Similar to the RANS temporal filter, a variable can be represented in terms of its filtered and subgrid fluctuating
components as

p=0+¢"
For most forms of the filter function G'(x), repeated applications of the grid filter to a variable do not yield the same
result. In other words, ¢ # ¢ and therefore ¢’ # 0, unlike with the RANS temporal averages.

As with the RANS formulation, modeling is much simplified in the presence of large density variations if a Favre-
filtered approach is used. A Favre-filtered variable ¢ is defined as

-
3

b=
p

and a variable can be decomposed in terms of its Favre-filtered and subgrid fluctuating component as
¢=0+0¢"

Again, note that the useful identities for the Favre-filtered RANS variables do not apply, so that q:S #* d; and ¢ # 0.
The Favre-filtered approach is used for all LES models in Nalu-Wind.

3.8.1 Standard Smagorinsky LES Model

The standard Smagorinsky LES closure model approximates the subgrid turbulent eddy viscosity using a mixing
length-type model, where the LES grid filter size A provides a natural length scale. The subgrid eddy viscosity is
modeled simply as (Smagorinsky)

e =p(Cs)? 8], (3.87)

The constant coefficient C typically varies between 0.1 and 0.24 and should be carefully tuned to match the problem
being solved (Rogallo and Moin, [RM84]). The default value of 0.17 is assigned in the code base.

Although this model is desirable due to its simplicity and efficiency, care should be taken in its application. It is
known to predict subgrid turbulent eddy viscosity proportional to the shear rate in the flow, independent of the local
turbulence intensity. Non-zero subgrid turbulent eddy viscosity is even predicted in completely laminar regions of the
flow, sometimes even preventing a natural transition to turbulence. The model also does not asymptotically replicate
near wall behavior without either dampening or a dynamic procedure.

3.8.2 Wall Adapting Local Eddy-Viscosity, WALE

The WALE model of Ducros el al., [DNP9S8], properly captures the asymptotic behavior for flows that are wall
bounded. In this model, the turbulent viscosity is given by,

3/2
(5555)

(SijSij)5/2 + (Sdsd )5/47

1~y

Ht = p (CwA)2

(3.88)
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with the constant C, of 0.325 and a standard filter, A related to the volume, V3. The rate of strain tensor is defined

as,
1 aul auj
while S, is,
d 1 2 2 1 2
Sij = ) (gij +gji) - §5ij9kk~ (3.90)

Finally, the velocity gradient squared ters are

o Ou; Quy

and
ou; Ouy,
2 779 . 3.92
9ji oxy, Ox; (3-92)

3.8.3 One Equation £®9°

See k9% PDE section.

3.8.4 RANS Models

As noted, Nalu-Wind supports several different RANS-based model (the reader is referred to the RANS model equation
set description).

3.8.5 Hybrid RANS/LES Models

Nalu-Wind supports the Active Model Split (AMS) hybrid RANS/LES turbulence model [HOM20]. The reader is
referred to the AMS equation set for more details.

3.8.6 Wall Models

Flows are either expected to be fully resolved or, alternatively, under-resolved where wall functions are used. A classic
law of the wall has been implemented in Nalu-Wind. Wall models to handle adverse pressure gradients are planned.
For more information of the form of wall models, please refer to the boundary condition section of this manual.

3.9 Supported Boundary Conditions

3.9.1 Inflow Boundary Condition

Continuity

Continuity uses a flux boundary condition with the incoming mass flow rate based on the user specified values for
velocity,
mc = pspecujpECAj.

As this is a vertex-based code, at inflow and Dirichlet wall boundary locations, the continuity equation uses the
specified velocity within the inflow boundary condition block.
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Momentum, Mixture Fraction, Enthalpy, Species, . ., k and w

These degree-of-freedoms (DOFs) each use a Dirichlet value with the specified user value. For all Dirichlet values,
the row is zeroed with a unity placed on the diagonal. The residual is zeroed and set to the difference between the
current value and user specified value.

3.9.2 Wall Boundary Conditions

Continuity

Continuity uses a no-op.

Momentum

When resolving the boundary layer, Momentum again uses a no-slip Dirichlet condition., e.g., u; = 0.

In the case of a wall model, a classic wall function is applied. The wall shear stress enters the discretization of the
momentum equations by the term

/Tijnde = _Fwi- (393)

Wall functions are used to prescribe the value of the wall shear stress rather than resolving the boundary layer within
the near-wall domain. The fundamental momentum law of the wall formulation, assuming fully-developed turbulent
flow near a no-slip wall, can be written as,

B (Eyt), (3.94)

Uy K
where uT is defined by the the near-wall parallel velocity, u|, normalized by the wall friction velocity, u,. The wall
friction velocity is related to the turbulent kinetic energy by,
ur = CH/AEY2. (3.95)
by assuming that the production and dissipation of turbulence is in local equilibrium. The wall friction velocity is also
computed given the density and wall shear stress,
Tw

ur = (—

)0.5'
p

The normalized perpendicular distance from the point in question to the wall, 4T, is defined as the following:
1/2
) (Tw) " PYpur (3.96)
wo\p Iz

The classical law of the wall is as follows:

1
ut = p In(y™) + C, (3.97)

where « is the von Karman constant and C' is the dimensionless integration constant that varies based on authorship
and surface roughness. The above expression can be re-written as,

ut = %ln(yJ“) + éln(exp(liC’)), (3.98)
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or simplified to the following expression:

(ln(y+) + ln(exp(nC’)))

In(Ey™).

(3.99)

N

In the above equation, F, is referred to in the text as the dimensionless wall roughness parameter and is described by,
E = exp(kC). (3.100)

In Nalu-Wind, « is set to the value of 0.42 while the value of E is set to 9.8 for smooth walls (White suggests values

of kK = 0.41 and E = 7.768.). The viscous sublayer is assumed to extend to a value of y* = 11.63.

The wall shear stress, 7,,, can be expressed as,

2 Uy pRUr _
Tw = P = pur— = WUH = Ay, (3.101)
where ), is simply the grouping of the factors from the law of the wall. For values of yT less than 11.63, the wall
shear stress is given by,

Tw = Nﬂ- (3.102)
Y, :
The force imparted by the wall, for the 4;;, component of velocity, can be written as,
Fui = =AM Awu, (3.103)

where A,, is the total area over which the shear stress acts.

The use of a general, non-orthogonal mesh adds a slight complexity to specifying the force imparted on the fluid by
the wall. As shown in Equation (3.103), the velocity component parallel to the wall must be determined. Use of the
unit normal vector, n;, provides an easy way to determine the parallel velocity component by the following standard
vector projection:

Carrying out the projection of a general velocity, which is not necessarily parallel to the wall, yields the velocity vector
parallel to the wall,
wip = Tyuy = u; (1=n%) = > wyminy. (3.105)
J=13#7
Note that the component that acts on the particular 7*" component of velocity,

—AwAw (1 —nin;) uy, (3.106)

provides a form that can be potentially treated implicitly; i.e., in a way to augment the diagonal dominance of the
central coefficient of the i*” component of velocity. The use of residual form adds a slight complexity to this implicit
formulation only in that appropriate right-hand-side source terms must be added.

Mixture Fraction

If a value is specified for each quantity within the wall boundary condition block, a Dirichlet condition is applied. If
no values are specified, a zero flux condition is applied.
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Enthalpy

If the temperature is specified within the wall boundary condition block, a Dirichlet condition is always specified. Wall
functions for enthalpy transport have not yet been implemented.

The simulation tool supports multi-physics coupling via conjugate heat transfer and radiative heat transfer. Coupling
parameters required for the thermal boundary condition are post processed by the fluids or PMR Realm. For conjugate
and radiative coupling, the thermal solve provides the surface temperature. From the surface temperature, a wall
enthalpy is computed and used.

Thermal Heat Conduction

If a temperature is specified in the wall block, and the surface is not an interface condition, then a Dirichlet approach
is used. If conjugate heat transfer is included, then the boundary condition applied is as follows,

or

where h is the heat transfer coefficient and T is the reference temperature. The details of how these quantities are
computed are currently omitted in this manual. In general, the quantities are post processed from the fluids temperature
field. A surface-based gradient is computed on the boundary face. Nodes on the face augment a heat transfer coefficient
field while nodes off the face contribute to a reference temperature.

For radiative heat transfer, the boundary condition applied is as follows:

or
K z; n;dS = e(ol )ds,

where H is again the irradiation provided by the RTE solve.

If no temperature is specified or an adiabatic line command is used, a zero flux condition is applied.

Species

If a value is specified for each quantity within the wall boundary condition block, a Dirichlet condition is applied. If
no values are specified, a zero flux condition is applied.

3.9.3 Atmospheric Boundary Layer Surface Conditions

Monin-Obukhov Theory

Consider atmospheric flow over a flat but non-smooth surface; the coordinate system convention is that flow is along
the x-axis, while the z-axis is oriented normal to the surface. The surface layer is the relatively thin layer near the
surface where strong wind and temperature gradients exist. Turbulence within this layer can be generated through
mechanisms of both shear and thermal convection; the relative contributions of these two mechanisms is determined
by the stability state of the atmosphere. The stability state is characterized by the Monin-Obukhov length:

U-,S—oref .
kg(w'0)s’

u, s the friction velocity, defined as the square root of the magnitude of the Reynolds shear stress at the surface, or
——2 2\1/4 T,
Ur = (w’u’ + w'v’ ) =,/=
Ps
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Ores is a reference (virtual potential) temperature associated with the air within the surface layer; for example, the
average temperature within the surface layer. « ~ 0.41 is the von Karman constant, and g is the acceleration of
gravity. w’’ is the surface turbulent temperature flux. Both the turbulent shear stress and turbulent temperature flux
are approximately constant within the surface layer.

Applying a gradient diffusion model for the turbulent temperature flux leads to:

.-

The sign of L is then connected to the sign of the temperature gradient within the surface layer. Three regimes are
delineated:

o L a0 1 1
T+ >0, 5, >0, stable stratification

=0, % = 0, neutral stratification

<0, % < 0, unstable stratification

Sl e

Monin-Obukhov theory postulates the following similarity laws for mean velocity parallel to the surface and temper-
ature,

Zi 352' b (7> , (3.107)
“f;if 0 _ = o ( ) (3.108)

where the forms of the non-dimensional functions ¢,, and ¢;, are determined from empirical observations. Analytical
functions have been fit to the data; these are not given here, rather, we present the integrated form of ((3.107)) and
((3.108)), since these are the forms required by the code implementation.

For neutral stratification, ¢,,, = 1 and we recover the logarithmic profile for a “fully rough” surface,

Ur z
W(z) = "I —, (3.109)

<0

where zq is the characteristic roughness height. Note that viscous scaling involving surface viscosity and density
properties is not required with this form of the logarithmic profile, since the roughness height is large enough to
eliminate the presence of a laminar sublayer and buffer layer.

For stable stratification, the surface layer profiles take the form

ur z
m = 1 m 3.110
Uj| (Z) - ( n— +, L) ( )
8(2) = 9z0) + 2 (anin = 472 G.111)
zZ) = 2 —_— « n— — .
0 o h % ’Yh,L
0, is calculated from the temperature flux and friction velocity as 6, = —@, and v,,, ap, and v, are constants
specified below.
For unstable stratification, the surface layer profiles take the form
Ur
7 (2) = = (ln — Y ()) 3.112)
K 20
— — 0.
B(z) = B(z0) + -~ In = — oy, ( ) (3.113)
20
where
z 14+ 1+ 22 1 s z\ /4
m (=) =21 1 —2 T :(1_ mf) 3.114
’(/J(L) n 5 + In 5 tan x—|—2, T BL , ( )
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z 1+y Z\1/2
Z) = —(1-58 2 3.115
¥ (L) ==y (1 g hL) ' G115
The constants used in ((3.110)) — ((3.115)) are [Dye74]

k=041, ap=1, Bm =16, By =16, vm = 5.0, v, = 5.0.

ABL Wall Function

The equations from the preceeding section can be used to formulate a wall function boundary condition for simulation
of atmospheric boundary layers. The user-specified inputs to this boundary condition are: roughness length, zy, and
surface heat flux, g, = pC,(w'6’)s. The surface layer profile model is evaluated for each surface boundary flux
integration point; the wall-normal distance of the “first point off the wall” is taken to be one fourth of the length of the
nearest edge intersecting the boundary face. The boundary condition is specified weakly through the imposition of a
surface shear stress and surface heat flux.

The procedure for applying the boundary condition is as follows:

1. Determine the stratification state of the boundary layer by calculating the sign of the Monin-Obukhov length
scale.

2. Solve the appropriate profile equation, either ((3.109)), ((3.110)), or ((3.112)), for the friction velocity u,. For
the neutral case, u, can be solved for directly. For the stable and unstable cases, u, must be solved for iteratively
because L appears in these equations and L depends on ..

3. The surface shear stress is calculated as 7, = psug. For calculating left-hand-side Jacobian entries, the form
(3.116) is used, where v’ is zero for a neutral profile, —~,,z/ L for a stable profile, and v;,(z/L) for an unstable
profile. The Jacobian entries follow directly from this form.

4. The user specified surface heat flux is applied to the enthalpy equation. Evaluation of surface temperature is not
required for the boundary condition specification. However, if surface temperature is required for evaluation of
other quantities within the code, the appropriate surface layer temperature profile should be used, either ((3.111))
or ((3.113)).

KpUr

T T AU T g z0) — W /D) G110

3.9.4 Atmospheric Boundary Layer Top Conditions

The abltop option is intended for the upper boundary of atmospheric boundary layer simulations. Currently it has two
functions: (1) to provide a fully-automated open boundary condition that allows for inflows and outflows generated by
terrain features or obstacles placed within the domain interior, and (2) to allow for mean temperature gradients at the
upper boundary. These two features will be described separately below.

Inflow-Outflow Capability

The inflow-outflow capability is facilitated by a potential flow solution on a sub-domain consisting of a thin slab
extending from the upper boundary a short distance into the domain. The vertical velocity at the slab bottom face is
measured directly from the solution at each time step and this information is used to form a potential flow solution
for the entire slab, which effectively provides all three velocity components at the main domain upper boundary. The
potential flow solution is achieved at very little computational cost via Fast Fourier Transforms. The mathematical
aspects of the boundary condition solution procedure are sketched below.

We start by assuming that the flow near the upper boundary is either laminar or weakly turbulent, as is the norm in
atmospheric boundary layer simulations due to the presence of capping inversions (a region of increased stability that
effectively terminates the boundary layer). If any turbulence within the slab is weak then the flow is approximately
irrotational and any density fluctuations are weak. Furthermore, if the slab is thin (compared with the density scale
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height ~ 8 km) then the mean density variation is also negligible. Thus we idealize the flow as being irrotational and
of constant density, which leads to the following potential flow framework

V¢ =
U= V¢ + (i),

where ¢ is the disturbance potential and (&) is the mean velocity.

A Fourier transform of Laplace’s equation in = and y leads to

O
<

_(k2 + l2)¢E 07

Q’\

where k£ and [ are the wavenumber components in the x and y directions respectively, and where gZ; is the Fourier
transform of ¢.

The bounded solution to the above equation is
bk, 1,2) = o exp [—\/ k2 +12(z — zo)] ,

where (ﬁo is the Fourier transform of ¢ on the horizontal plane z = zy. The vertical velocity component (in Fourier
T — y space) is

w(k,l,z) — k2 + [2¢0 exp [ VE24+12(z — zo)} )

When evaluated at the position z = zj the above relation yields the following specification for gﬁo
s 1 R
R

Making use of this result, the solution for (5 can be written as
- 1
ok, 1, 2) = —mwo exp [— VE2+12(2 — ZO):|

If we identify 2 with the position of the potential flow slab lower face (the sampling plane), then the above prescription
for ¢ yields the solution anywhere in the slab using just knowledge of w at its lower boundary. The three velocity
components are

a(k,l,z) =
d¢ ik
a% == e [~ VE B - x0)] +
o(k,l,z) =
¢ il
%:—7k;+lzwoexp[ k:2+l2z—zo]+
w(k,l,z) =
29
9y = Doexp {f\/ k2 +12(z — zo)] + (w)

Notice that all three velocity components contain a common wavenumber-dependent exponential damping term. This
feature indicates that high wavenumber (small-scale) information on the sampling plane is strongly filtered in con-
structing the velocity field at the upper boundary. Thus the boundary condition velocity field will always be smoother
that the velocity on the sampling plane. The filtering also increases with larger separations between the sampling plane
and the upper boundary. This fact poses the need to compromise between the additional computational cost of adding
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a thicker potential flow region and the reduced filtering resulting from a thin slab. We have found that a potential flow
region thickness of 10% of the overall computational domain height provides a good compromise between these two
competing aspects of the solution.

The solution procedure is rather simple:
1. Measure w(zx,y, z = 2p), at the position of the sampling plane.
2. Take the 2D Fourier transform of w to get wo(k, ).

3. Solve for the three velocity components given above using the computational domain upper boundary position
for z and the sampling plane position for 2.

4. Inverse Fourier transform all three solution components.

While this solution procedure is simple and can be computed at very low cost using Fast Fourier Transforms (FFTs),
it does have some obvious restrictions, namely

1. Data must be sampled on a uniform Cartesian grid at a fixed elevation.
2. Periodic or symmetry boundary conditions must exist in the lateral directions.

The simplest way to achieve the first constraint is to add a Cartesian mesh block to the upper portion of the main
computational domain. The thickness of the addition can be rather small, say about 10% of the original domain
height. The current implementation assumes that a plane at constant elevation with a uniform Cartesian mesh exists
near the upper boundary. However, if required in the future, interpolation can be used to sample the solution on a
horizontal plane. The BdyLayerVelocitySampler class can do this.

While the second constraint may seem restrictive, it allows for any combination of periodic or inflow/outflow
boundary conditions in either of the two lateral directions. Half-wave instead of periodic transforms are used
for an inflow/outflow direction. For example, for inflow/outflow in the = direction, we take u ~ cos(mwkz/xzL),
v ~ sin(mkx/xL), w ~ sin(rkx/xL). These prescriptions dictate that Ou/dx = 0 at = 0 (the inlet) and at
x = xL (the outlet) and that v = 0, w = 0 at the inlet and outlet. In order to meet these constraints, the terrain
should be horizontal for a short distance downstream of the inlet and a short distance upstream of the outlet. The
appropriate combination of half-wave and full-wave (periodic) transforms in the two coordinate directions allow for
various combinations of inflow/outflow or periodic conditions in these directions.

Temperature Gradient Capability

The temperature almost always varies with height within the atmosphere. The temperature gradient option allows the
simulation to be consistent with this fact specifying the rate of change in temperature at the upper boundary.

Implementation Details

The ABL top boundary condition is activated by the keyword abltop_boundary_condition in the input file. The fol-
lowing is an example block of an ABL top boundary condition specification:

- abltop_boundary_condition: bc_upper
target_name: top
abltop_user_data:

potential_flow_bc: true
grid_dimensions: [121, 2, 61]
horizontal_bcs: [1, -1, 0, 0]
z_sample: 0.85
normal_temperature_gradient: 0.01
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The potential flow and temperature gradient options can be used independently or together. The Boolean in-
put potential_flow_bc: true activates the potential flow feature, whereas the presence of the keyword nor-
mal_temperature_gradient: value activates the temperature gradient feature. If only the temperature gradient feature
is called for, then symmetry conditions (i.e. a slip wall) are used continuity and momentum boundary conditions at the
upper boundary. If only the potential flow boundary condition is called for then the condition d(7T") /dz = 0 is used at
the upper boundary (where () indicates a horizontal average).

If the potential flow option is selected, the user must then specify three additional user inputs: grid_dimensions,
horizontal_bcs and z_sample. The grid_dimensions input specifies the number of mesh points in the three coordinate
directions for the structured Cartesian portion of the domain containing the potential flow slab. This may be the entire
domain, or just a sub-portion of it. The current implementation assumes that the grid points within the structured
Cartesian region are tagged with a mesh index flag that indicates the relative position of each point within the structured
mesh system. For example, if (imax,jmax,kmax) are the grid dimensions in the three coordinate directions, then the
mesh index for the point (i,j,k) is k*imax*jmax + j*imax + i. The abl_mesh program will include the mesh index tag
in the exodus grid file.

The horizontal_bcs input specifies the lateral boundary conditions in use in the i and j grid directions. Inflow is
specified with +1, outlfow -1, and periodic with zero. Thus in the example above, inflow is used at the i=0 boundary,
outflow at the i=imax boundary, and periodic conditions are used in the j direction.

The input z_sample specifies the elevation of the sampling plane. If this input is missing, the default position of 90%
of the distance between the lower and upper boundary will be used.

3.9.5 Turbulent Kinetic Energy, k., LES model
When the boundary layer is assumed to be resolved, the natural boundary condition is a Dirichlet value of zero,
ksgs = 0.

When the wall model is used, a standard wall function approach is used with the assumption of equal production and
dissipation.

The turbulent kinetic energy production term is consistent with the law of the wall formulation and can be expressed

as,

Prw =Tw—- (3.117)

(3.118)

Taking the derivative of both sides of Equation (3.118), and substituting this relationship into Equation (3.117) yields,

72 ut

Applying the derivative of the law of the wall formulation, Equation (3.94), provides the functional form of du™ /9y™,

out 0

1 N 1
I E P 12
oyt oyt Lln( Y )] (3.120)

Kyt

Substituting Equation (3.94) within Equation (3.119) yields a commonly used form of the near wall production term,

2

Py = . 3.121
kw pl‘iUTYp ( )
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Assuming local equilibrium, P, = pe, and using Equation (3.121) and Equation (3.95) provides the form of wall shear
stress is given by,

Tw = pC)/%k. (3.122)
Under the above assumptions, the near wall value for turbulent kinetic energy, in the absence of convection, diffusion,

or accumulation is given by,

2

u’l’
i (3.123)

k=

This expression for turbulent kinetic energy is evaluated at the boundary faces of the exposed wall boundaries and is
area-assembled to the nodal value for use in a Dirichlet condition.

Turbulent Kinetic Energy and Specific Dissipation SST Low Reynolds Number Boundary conditions
For the turbulent kinetic energy equation, the wall boundary conditions follow that described for the k4, model, i.e.,
k=0.

A Dirichlet condition is also used on w. For this boundary condition, the w equation depends only on the near-wall
grid spacing. The boundary condition is given by,

6v
W= —",
Bry?

which is valid for 5y < 3.

Turbulent Kinetic Energy and Specific Dissipation SST High Reynolds Number Boundary conditions

The high Reynolds approach uses the law of the wall assumption and also follows the description provided in the wall
modeling section with only a slight modification in constant syntax,

u?

. 3.124
5 ( )

In the case of w, an analytic expression is known in the log layer:

k=

Uy

VB Yy

which is independent of k. Because all these expressions require y to be in the log layer, they should absolutely not
be used unless it can be guaranteed that y™ > 10, and y* > 25 is preferable. Automatic blending is not currently
supported.

Solid Stress

The boundary conditions applied are either force provided by a static pressure,

Fr = / Pn,dS, (3.125)

(3

or a Dirichlet condition, i.e., u; = u;"

prescribed [static] pressure.

, on the displacement field. Above, F" is the force for component ¢ due to a
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Intensity
The boundary condition for each intensity assumes a grey, diffuse surface as,

1
I(s):; [ToTo +eocTy+(1—e—71)K] . (3.126)

3.9.6 SST of the Atmospheric Boundary Layer

The following boundary conditions simulate the Atmospheric Boundary Layer, as described in Bautista, [Baul 1] and
[BDM15]. The Nalu-Wind SST RANS implementation matches the Monin-Obukhov profile when used with the
model constants from Table-A I-1 (Boundreault, 2011) in [Baul 1] and the meshing method described in [BDM15].
The mesh described in [BDM15] gives the Monin-Obukhov profile for roughness height 0.1. When the roughness
height is decreased, the mesh must be refined near the wall. For example, for the [BDM15] ABL test case using
roughness height 0.001 instead of 0.1, the mesh size needs to be halved near the wall.

The k and w boundary conditions are the same as in the Turbulent Kinetic Energy and Specific Dissipation SST High
Reynolds Number Boundary Conditions:

and
Ur

w = Wﬁy

The friction velocity, u, is calculated from a reference velocity, uy,, at height, h. h and wj, could, for example, be the
hub height of a wind turbine and the velocity measured at that height.

The momentum boundary condition is a no-slip Dirichlet condition, u; = 0, as described in the momentum wall
boundary conditions.

The streamwise and spanwise boundary conditions are periodic, as described in periodic boundary conditions.

The k, w, and u wall boundary conditions are set in the input file by specifying a wall boundary condition with
RANS_abl_bc. The input file must also specify a height and the velocity at that height with reference_height
and reference_velocity.

realms:
- name: fluidRealm
boundary conditions:
- wall boundary condition: bc_lower
wall user data:
RANS_abl_bc: yes
reference_velocity: 6.6
reference_height: 90.0

Rather than specifying a momentum source term, dp/dz, the velocity is set to the geostrophic (freestream) value near
the top of the domain using the ABL forcing method described in ABL Forcing Source Terms. The ABL forcing term
is turned on and the desired wind velocity and height must be specified in the input file:

realms:
- name: fluidRealm
solution_options:

(continues on next page)
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(continued from previous page)

options:
— source_terms:
momentum:
- abl_forcing

abl_forcing:
output_format: "abl %s_sources.dat"
momentum:
type: computed
relaxation factor: 1.0
heights: [2500.0]
velocity_x:
- [0.0, 17.5]
- [1000000.0, 17.5]

velocity_ y:
- [0.0, 0.0]
- [1000000.0, 0.0]

velocity_ z:
- [0.0, 0.0]
- [1000000.0

3.9.7 AMS of the Atmospheric Boundary Layer

The following boundary conditions are meant for Active Model Split (AMS) of the Atmospheric Boundary Layer
(ABL) when using SST as the mean (RANS) contribution to AMS. The boundary conditions on u;, k, and w are
the same as for SST of the ABL, as described in SST of the Atmospheric Boundary Layer. When using this boundary
condition for AMS, the energy transfer (LES) components of AMS should be turned off below the sand grain roughness
height, ks = 30z, where z is the roughness height. Below this height the solution from the boundary condition is
not necessarily accurate. Therefore including energy transfer components of AMS, such as the active forcing, in this
region could introduce errors.

Specifically, the energy transfer components of AMS below kg are turned off by setting the scaling coefficient on the
energy transfer contribution to AMS to one, resolution adequacy indicator to one, and active forcing to zero. To turn
off the energy transfer components the input file should include:

realms:
- name: fluidRealm
solution_options:
options:
— user_constants:
roughness_height: 0.3
rans_below ks: true

3.9.8 Open Boundary Condition

Open boundary conditions require far more care. In general, open bcs are assembled by iterating faces and the bound-
ary integration points on the exposed face. The parent element is also required since oftentimes gradients are used
(for momentum). For an open boundary condition the flow can either leave or enter the domain depending on what
the computed mass flow rate at the exposed boundary integration point is. Two options are available computing the
velocity of the entrained flow—either the normal velocity at the integration point is used or a specified normal velocity
is used. The tangential components are always specified.
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Continuity

For continuity, the boundary mass flow rate must also be computed. This value is stored and used for the other
equations that require advection. The same formula is used for the pressure-stabilized mass flow rate. However, the
local pressure gradient for each boundary contribution is based on the difference between the interior integration point
and the user-specified pressure which takes on the boundary value. This can optionally be modified to be a “total
pressure”—removing the kinetic energy associated with entrainment at the open. The interior integration point is
determined by linear interpolation. For CVFEM, full elemental averaging is used while in EBVC discretization, the
midpoint value between the nearest node and opposing node to the boundary integration point is used. In both dis-
cretization approaches, non-orthogonal corrections are required. This procedure has been very important for stability
for CVFEM tet-based meshes where a natural non-orthogonality exists between the boundary and interior integration
point.

For wind energy applications, the usage of the standard open boundary mass flow rate expression, which includes
pressure contributions, is not appropriate due to complex temperature/buoyancy specifications. In these cases, a global
correction algorithm is supported. Specifically, pressure terms are dropped at the open boundary mass flow rate
expression in favor or a pre-processing algorithm that uniformly distributes the continuity mass flow rate (and possible
density accumulation) “error” over the entire set of open boundary conditions. The global correction scheme may
perform well with single open boundary condition specification, e.g., multiple inflows with a single open location,
however, it is to be avoided if the flow leaving the domain is complex in that a simulation includes multiple open
boundary conditions. A complex situation might be an open jet with entrainment from the side (open boundary that
allows for inflow) and a top open that allows for outflow. However, a routine case might be a backward facing step
with a single inflow, side periodic, top wall and open boundary. Not that the ability for the continuity solve to be well
conditioned may require an interior Dirichlet on pressure as the open pressure specification for the global correction
algorithm is lacking. In most cases, a Dirichlet condition is not actually required as the nullspace of the continuity
system may not be found in the solve.

Momentum

For momentum, the normal component of the stress is subtracted out we subtract out the normal component of the
stress. The normal stress component for component i can be written as Fyngn;. The tangential component for
component i is simply, F; — Fyngn;. As an example, the tangential viscous stress for component X is,

FI' = F, — (Fung + Fyny)ng,

x

which can be written in general component form as,

FT = Fi(l - nm7) - ZFJ’RLTLJ

7
i'=j

Finally, the normal stress contribution is applied based on the user specified pressure,
FN = pSrec,
i .

For CVFEM, the face gradient operators are used for the thermal stress terms. For EBVC discretization, from the
boundary integration point, the nearest node (the “Right” state) is used as well as the opposing node (the “Left” state).
The nearest node and opposing node are used to compute gradients required for any derivatives. This equation follows
the standard gradient description in the diffusion section with non-orthogonal corrections used. In this formulation,
the area vector is taken to be the exposed area vector. Non-orthogonal terms are noted when the area vector and edge
vector are not aligned.

For advection, if the flow is leaving the domain, we simply advect the nearest nodal value to the boundary integration
point. If the flow is coming into the domain, we simply confine the flow to be normal to the open boundary integration
point area vector. The value entrained can be the nearest node or an upstream velocity value defined by the edge
midpoint value or by a specified value.
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Mixture Fraction, Enthalpy, Species, k., k and w

Open boundary conditions assume a zero normal gradient. When flow is entering the domain, the far-field user supplied
value is used. Far field values are used for property evaluations. When flow is leaving the domain, the flow is advected
out consistent with the choice of interior advection operator.

3.9.9 Strong Symmetry Boundary Condition

There are two implementations of the symmetry boundary condition: strong and weak. In the strong symmetry
implementation, the normal velocity is set to zero at the boundary. Strong symmetry has only been implemented for
a cartesian mesh, meaning it can be used for flat surfaces that are aligned with the principle cartesian directions. It
cannot be used for curved surfaces or flat surfaces that are not aligned with the principle cartesian directions. Both the
strong and weak symmetry boundary conditions have an associated error. In the strong form the associated error lies
not on the boundary but in the domain.

3.9.10 Weak Symmetry Boundary Condition

Continuity, Mixture Fraction, Enthalpy, Species, k4, k and w

Weak symmetry applies zero diffusion at the boundary for scalar quantities, which effectively sets the boundary-
normal gradients of these quantities to zero. This means that, unlike for strong symmetry, in the weak symmetry
implementation, normal velocity can be non-zero. This is possible because the cell averaged quantities in Nalu-
Wind’s discretization are stored at the nodes and therefore reside on the boundaries. In general, a non-zero normal
velocity can cause net inflow or outflow. The Poisson solve prevents this by enforcing mass conservation globally to
the order of linear solver convergence.

Momentum

A symmetry boundary is one that is described by removal of the tangential stress. For weak symmetry this is done in
the momentum equation by applying only the normal component of stress:

F} = (Fyng + Fyny)ng,
which can be written in general component form as,
Fin = anjni.

The momentum equation also penalizes non-zero normal velocity. The strength of this penality depends on the penalty
factor. One can enforce a stronger representation of the boundary by amplifying the penalty factor through the symme-
try_bc_penalty_factor variable in solution_options. Its default value is 2.0 which is the minimum required for stability.
Amplifying the penalty factor will enforce the boundary in a stronger sense, but can also lead to a more difficult matrix
solve as with any large penalty term.

Both strong and weak symmetry boundary conditions have associated error. In the weak form the error manifests as
non-zero local velocities at the boundary. As the mesh is refined, the weak symmetry boundary condition converges
to the strong symmetry boundary condition (zero normal velocity) with a first order rate. Note that switching from
weak to strong symmetry boundary condition does not make the error go away; the error just moves off the boundary
and into the domain. The errors for both weak and strong symmetry boundary conditions do go away as the mesh is
refined, decreasing with first order rate.

Weak symmetry has not been implemented for Active Model Split (AMS).

If the symmetry type is not specified in the input file then the code defaults to weak symmetry. If the ABL top bound-
ary condition is used and it defaults to symmetry, as described in ref:Atmospheric Boundary Layer Top Conditions
<theory_abltop_bc>:, then strong or weak symmetry can be specified explicitly in the input file:
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realms:
- name: fluidRealm
boundary_ conditions:
— abltop_boundary condition: bc_upper
target_name: upper
symmetry user_data:
symmetry_ type: "z_direction_strong”

Specified Boundary-Normal Temperature Gradient Option

The standard symmetry boundary condition applies zero diffusion at the boundary for scalar quantities, which effec-
tively results in those scalars having a zero boundary-normal gradient. There are situations, especially for atmospheric
flows in which the user may desire a finite boundary-normal gradient of temperature. For example, the atmospheric
boundary layer is often simulated with a stably stratified capping inversion in which the temperature linearly increases
with height all the way to the upper domain boundary. We apply symmetry conditions to this upper boundary for mo-
mentum, but we specify the boundary-normal temperature gradient on this boundary to match the capping inversion’s
gradient.

This is an option in the symmetry boundary condition specification, which appears in the input file as:

- symmetry boundary_ condition: bc_upper
target_name: upper
symmetry_ user_data:

normal_ temperature_gradient: -0.003

In this example, the temperature gradient normal to the symmetry boundary is set to -0.003 K/m, where the boundary-
normal direction is pointed into the domain.

Nalu-Wind does not solve a transport equation for temperature directly, but rather it solves one for enthalpy. Ther-
fore, the boundary-normal temperature gradient condition is applied internally in the code through application of a
compatible heat flux,

oT
n = —ReffCp—=
q ffpan

where ¢, is the heat flux at the boundary, x. ¢ is the effective thermal diffusivity (the molecular and turbulent parts),
¢p 1s the specific heat, and 9T'/On is the boundary-normal temperature gradient.

3.9.11 Periodic Boundary Condition

A parallel multiple-periodic boundary condition is supported. Mappings are created between master/slave surface
node pairs. The node pairs are obtained from a parallel search and are expected to be unique. The node pairs are used
to map the slave global id to that of the master. This allows the linear system to include matrix rows for only a subset
of the overall set of nodes. Moreover, a periodic assembly for assembled quantities is managed via: m+ = s and
s = m, where m and s are master/slave nodes, respectively. For each parallel assembled quantity, e.g., dual volume,
turbulence quantities, etc., this procedure is used. Periodic boxes and periodic couette and channel flow have been
simulated in this code base. Tow forms of parallel searches exist and are supported (one through the Boost TPL and
another through the STK Search module).

3.9.12 Non-conformal Boundary Condition

A surface-based approach based on a DG method has been discussed in the 2010 CTR summer proceedings by
Domino, [Dom10]. Both the edge- and element-based formulation currently exists in the code base using the CVFEM
and EBVC approaches.
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Fig. 3.6: Two-block example with one common surface, I" 4 5.

Consider two domains, A and B, which have a common interface, I' 4 5, and a set of interfaces not in common, I'\T' 4 5
(see Figure Fig. 3.6), and assume that the solution of the time-dependent advection/diffusion equation is to be solved
in both domains. Each domain has a set of outwardly pointing normals. In this cartoon, the interface is well resolved,
although in practice this may not be the case.

An interior penalty approach is constructed at each integration point at the exposed surface set. The numerical flux for
a general scalar ¢ is constructed at the current integration point which is based on the current (A) and opposing (B)
elemental contributions,

ApA _ BB A A
/QAdS:/[W+/\A(¢A—¢B)]dSA+mA(¢ O g gm), a2

where q;‘ and qf are the diffusive fluxes computed using the current and opposing elements and normals are outward
facing. The penalty coefficient A4 contains the diffusive contributions averaged over the two elements,

a_ (DA/LA 4+ T5/17)
: |

(3.128)

Above, I'* is the diffusive flux coefficient evaluated at current and opposing element location, respectively, and L*
is an elemental length scale normal to the surface (again for current and opposing locations, A and :math‘B‘). When
upwinding is activated, the value of 7 is unity.

As written in Equation (3.127), the default convection and diffusion term is a Galerkin approach, i.e., equally averaged
between the current and opposing face. The standard advection term is given by,

/ pii;dn;dS. (3.129)

For surface A, the form is as follows:

A B
/ pitontdst = mA%, (3.130)
with the nonconformal mass flow rate given by,
A B
(put +9(rGip — 1)t — (puf +y(rGPp — Tg=))n?
mA — [ J J Ox; /7777 J J Ox; /777 +)\A(pA _pB”dSA. (3.131)

2
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In the above set of expressions, the consistent definition of ;, i.e., the convecting velocity including possible pressure
stabilization terms, is retained.

As with the interior advection scheme, the mass flow rate involves pressure stabilization terms. The value of - defines
whether or not the full pressure stabilization terms are included in the mass flow rate expression. Equation (3.131)
also forms the continuity nonconformal boundary contribution.

With the substitution of 7 to be unity, the effective convective term is as follows:

/ pijpnitdS?t =

(i + i) + (i — | A])¢”

: (3.132)

Note that this form reduces to a standard upwind operator.

Since this algorithm is a dual pass approach, a numerical flux can be written for the integration point on block B,

B,B_ A A .

o

(¢B — ¢A), (3.133)

As with Equation (3.133), i (see Equation (3.134)) is of similar form to 74,

n. B A
(puf +y(rGPp =Gy — (puf! +(rGp — r)nit
mB = [ J J Ox; /773 5 J J Ox; /7] + )\A(pB _pA)}dSB. (3.134)

For low-order meshes with curved surface, faceting will occur. In this case, the outward facing normals may not be
(sign)-unity factors of each other. In this case, it may be adventageous to define the opposing outward normal as,

B_ __A
ny = —-n;.

Domino, [Dom10] provided an overview of a FEM fluids implementation. In such a formulation, the interior penalty
term appears, i.e.,

OwA
—— i\ — ¢B)dr,
[ G

and

ow?
BA J

Although the sign of this term is often debated in the literature, the above set of expressions acts to increase penalty
term stencil to include the full element contribution. As the CVFEM uses a piecewise-constant test function, this term
is currently neglected.

Average fluxes are computed based on the current and opposing integration point locations. The appropriate DG terms
are assembled as boundary conditions first with block A integration points as current (integrations points for block
B are opposing) and then with block B integration points as current (surfaces for block A are, therefore, opposing).
Figure Fig. 3.6 graphically demonstrates the procedure in which integration point values of the flux and penalty term
are computed on the block A surface and at the projected location of block B.

A parallel search is conducted to project the current integration point location to the opposing element exposed face.
The search, therefore, provides the isoparametric coordinates on the opposing element. Elemental shape functions and
shape function derivatives are used to construct the numerical flux for both the edge- and element-based scheme. The
location of the Gauss points on the current element are either the Gauss Labatto or Gauss Legendre locations (input
file specification). For each equation (momentum, continuity, enthalpy, etc.) the numerical flux is computed at each
exposed non-conformal surface.

As noted, for most equations other than continuity and heat condition, the numerical flux includes advection and
diffusion contributions. The diffusive contribution is easily provided using elemental shape function derivatives at the
current and opposing surface.
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Fig. 3.7: Description of the numerical flux calculation for the DG algorithm. The value of fluxes and penalty values
on the current block (A) and the opposing block (B) are used for the calculation of numerical fluxes. ¢ represents the
projected value.

Above, special care is taken for the value of the mass flow rate at the non-conformal interface. Also, note that the above
written form does not upwind the advective flux, although the code allows for an upwinded approach. In general, the
advective term contains contributions from both elements identified at the interface, specifically.

The penalty coefficient for the mass flow rate at the non-conformal boundary points is again a function of the blended
inverse length scale at the current and opposing element surface location. The form of the mass flow rate above pro-
vides the continuity contribution and the form of the mass flow rate used in the scalar non-conformal flux contribution.

The full connectivity for element integration and opposing elements is within the linear system. As such, for sliding
mesh configurations, the linear system connectivity graph changes each time step. Recent prototyping of the dG-based
and the overset scheme has allowed this method to be used across both disparate low-order topologies (see Figure Fig.
3.8).

velocity_ Magnitude

0.000e+00 75 1.500e+02
e

Fig. 3.8: Discontinuous Galerkin non-conformal interface mixed topology (hex8/tet4).
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3.10 Overset

Nalu-Wind supports simulations using an overset mesh methodology to model complex geometries. Currently the
codebase supports two approaches to determine overset mesh connectivity:

1. Overset mesh hole-cutting algorithm based on native STK search routines, and

2. Hole-cutting and donor/reception determination using the TIOGA (Topology Independent Overset Grid Assem-
bly) TPL.

The native STK based overset grid assembly (OGA) requires no additional packages, but is limited to simple geome-
tries where the search and hole-cutting procedure works only simple rectangular boundaries (for the inner mesh) that
are aligned along the major axes. On the other hand, TIOGA based hole cutting is capable of performing overset
grid assembly on arbitrary mesh geometries and orientation, supports generalized mesh motion, and can determine
donor/recipient status with multiple meshes overlapping in the same space. A specific use-case for the need to perform
OGA on multiple meshes is the simulation of a wind turbine in an atmospheric boundary layer, where the turbine
blade, nacelle, and the background ABL mesh might all overlap near the rotor hub.

3.10.1 Overset Grid Assembly using Native STK Search

The overset descriptions begins with the basic background mesh (block 1) and overset mesh (block 2) depicted in
Figure Fig. 3.9. Also shown in this figure is the reduction outer surface of block 2 (light blue). Elements within
this reduced overset block will be determined by a parallel search. The collection of elements within this bounding
box will be skinned to form a surface on which orphan nodes are placed. Elements within this volume are set in a
new internally managed inactive block. These mesh entities are fully removed from the overall matrix for each dof.
Elements within this volume are provided a masking integer element varibale of unity to select out of the visualizattion
tool. Therefore, orphan nodes live at the external boundary of block 2 and along the reduced surface. The parallel
search provides the mapping of orphan node and owning element from which the state can be constructed.

L BLOCK 1

Fig. 3.9: Two-block use case describing background mesh (block 1) and overset mesh (block 2).

After the full search and overset initialization, this simple example yields the original block 1 and 2, the newly created
inactive block 3, the original surface of the overset mesh and the new skinned surface (101) of the inactive block
(Figure Fig. 3.10).

A simple heat conduction example is provided in Figure Fig. 3.11 where the circular boundary is set at a temperature
of 500 with all external boundaries set to adiabatic.
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changed part)

BLOCK_1 . Surface_1 (read in)
L Surface_101 (newly declared and changed part)

Fig. 3.10: Three-block and two surface, post over set initialization.

Reconstruct the following set of orphan nodes™

Fig. 3.11: A simple heat conduction example providing the overset mesh and donor orphan nodes.
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As noted before, every orphan node lies within an owning element. Sufficient overlap is required to make the system
well posed. A fully implicit procedure is provided by writing the orphan node value as a linear constraint of the owning
element (Figure Fig. 3.12).
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Fig. 3.12: Orphan nodes for background and overset mesh for which a fully implicit constraint equation is written.

For completeness, the constraint equation for any dof ¢ is simply,

¢° =Y Npgp = 0. (3.135)

As noted, full sensitivities are provided in the linear system by constructing a row entry with the columns of the nodes
within the owning element and the orphan node itself.

Finally, a mixed hex/tet mesh configuration example (overset mesh is tet while background is hex) is provided in
Figure Fig. 3.13.

3.10.2 Overset Grid Assembly using TIOGA

Topology Independent Overset Grid Assembler (TIOGA) is an open-source connectivity package that was developed
as an academic/research counterpart for PUNDIT (the overset grid assembler used in HPCMP CREATE™ A/V pro-
gram and HELIOS). The base library has been modified to remove the limitation where each MPI rank could only own
one mesh block. The code has been extended to handle multiple mesh blocks per MPI rank to support Nalu-Wind’s
mesh decomposition strategies.

TIOGA uses a different nomenclature for overset mesh assembly. A brief description is provided here to familiarize
users with the differences in nomenclature used in the previous section. When determining overset connectivity,
TIOGA ends up assigning IBLANK values to the nodes in a mesh. The IBLANK field is an integer field that determines
the status of the node which can be one of three states:
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Fig. 3.13: Flow past a three-dimensional sphere using a hybrid topology (hex/tet) mesh configuration.
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field point

A field point is a node that behaves as a normal mesh point, i.e., the equations are solved on these nodes
and the linear system assembly proceeds as normal. The field points are indicated by an IBLANK value
of 1.

fringe point

A fringe point is a receptor on the receving mesh where the solution field is mapped from the donor
element. A fringe point is indicated by an IBLANK value of —1. Fringe points are how information is
transferred between the participating meshes. Note that fringe points are referred to as orphan points in
the STK based overset description.

hole point

A hole point is a node on a mesh that occurs inside a solid body being modeled in another mesh. These
points have no valid solution for the equations solved and should not participate in the linear system.

In addition to the IBLANK status, the following terms are useful when using TIOGA
donor element

The element that is used to interpolate field data from donor mesh to a recipient mesh. While TIOGA pro-
vides flow interpolation routines, the current implementation in Nalu-Wind uses the MasterElement
classes in Nalu-Wind to maintain consistency between the STK and the TIOGA overset implementations.

orphan points

The term orphan point is used differently in TIOGA than the STK based overset implementation. TIOGA
refers to nodes as orphan points when there it cannot find a suitable donor element for those nodes that
are considered fringe points. This can happen when the nodes on the enclosing element are themselves
labeled fringe points.

Unlike the STK based hole cutting approach, that uses predefined bounding boxes to determine donor/receptor loca-
tions, TIOGA uses the element volume as the metric to determine the field and fringe points. The high level hole
cutting algorithm can be described in the following steps:

¢ Determine and tag hole points that are fully enclosed within solid bodies, tag neighboring points to be fringe
points.

* Determine and flag all mandatory fringe points, e.g., embedded boundaries of interior meshes.

* Determine fringe locations for the exterior meshes where information is transferred back from interior meshes
to the exterior/background mesh.

In the current integration, only the hole-cutting and donor/receptor information is processed by the TIOGA library.
The linear system assembly, specifically the constraint equations for the fringe points are managed by the same classes
that are used with the native STK hole-cutting approach.

Figure Fig. 3.14 shows the field and fringe points as determined by TIOGA during the hole-cutting process. The
central white region shows the mesh points of the interior mesh. The salmon colored region shows the overlapping
field points where the flow equations are solved on both participating meshes. The green-ish boundary shows the
mandatory fringe points for the interior mesh along its outer boundary. The interior boundary of the overlap region
are the fringe points for the background mesh where information is transferred from the interior mesh. The extent of
the overlap region is determined by the number of element layers necessary to ensure adequate separation between the
fringe boundaries on the participating meshes.

Figure Fig. 3.15 shows the resulting overset assembly for cylinder mesh and a background mesh with an intermediate
refinement zone. The hole points (inside the cylinder) have been removed from the linear system for both the interme-
diate and background mesh. The magenta region shows the overlap of field points of the cylinder and the intermediate
mesh. And the yellow region shows the overlap between the background and the intermediate mesh.
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Fig. 3.14: TIOGA overset hole cutting for a rotated internal mesh configuration showing the field and fringe locations.

Fig. 3.15: Overset mesh configuration for simulating flow past a cylinder using a three mesh setup: near-body, body-
fitted cylinder mesh, intermediate refined mesh, and coarse background mesh.
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Figures Fig. 3.16 and Fig. 3.17 shown the velocity and vorticity contours for the flow past a cylinder simulated using
the overset mesh methodology with TIOGA overset connectivity.

Fig. 3.16: Velocity field for a flow past cylinder simulating using an overset mesh methodology with TIOGA mesh
connectivity approach.

3.11 Property Evaluations

Property specification is provided in the material model section of the input file. Unity Lewis number assumptions for
diffusive flux coefficients for mass fraction and enthalpy are assumed.

3.11.1 Density

At present, property evaluation for density is given by constant, single mixture fraction-based, HDF5 tables, or ideal
gas. For ideal gas, we support a non-isothermal, non-uniform and even an acoustically compressible form.

3.11.2 Viscosity
Property evaluation for viscosity is given by constant, single mixture fraction-based, simple tables or Sutherland’s

three coefficient as a function of temperature. When mixtures are used, either by reference or species transport, only a
mass fraction-weighed approach is used.

3.11.3 Specific Heat

Property evaluation for specific heat is either constant of two-band standard NASA polynomials; again species com-
position weighting are used (either transported or reference).
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Fig. 3.17: Vorticity field for a flow past cylinder simulating using an overset mesh methodology with TIOGA mesh
connectivity approach.

3.11.4 Lame Properties

Lame constants are either of type constant or for use in mesh motion/smoothing geometric whereby the values are
inversely proportional to the dual volume.

3.12 Coupling Approach

The classic low Mach implementation uses an incremental approximate pressure projection scheme in which nonlinear
convergence is obtained using outer Picard loops. Recently a full study on coupling approaches has been conducted
using ASC Algorithm funds. In this project, coupling methods ranging from fully implicit, fully coupled equal order
pressure/velocity interpolation with pressure stabilization to explicit advection/diffusion pressure projection schemes.
A brief summary of the results follows.

Specifically, five algorithms were considered and are as follows:
1. A monolithic scheme in which advection and diffusion are implicit using full analytical sensitivities,

2. Monolithic momentum solve with implicit advection/diffusion in the context of a fourth order stabilized incre-
mental pressure projection scheme,

3. Monolithic momentum solve with explicit advection; implicit diffusion in the context of a fourth order stabilized
incremental pressure projection scheme,

4. Segregated momentum solve with implicit advection/diffusion in the context of a fourth order stabilized incre-
mental pressure porjectin scheme, and

5. Explicit momementum advection/diffusion predictor/corrector scheme in the context of a second order stabilized
pressure-free approximate projection scheme.

Each of the above algorithms has been run in the context of a transient uniform flow low Mach flow. The emphasis of
this project is transient flows. As such, the numbers below are to be cast in this context. If steady flows are desired,
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conclusions may be different. The slowdown of each implementation is relative to the core low Mach algorith, i.e.,
algorithm (4) above. Numbers less than unity represent a speed-up whereas numbers greater than unity represent a
slow down: 1) 3.4x, 2) 1.2x, 3) 0.6x, 4) 1.0x, 5) 0.7x.

The above runs were made using a time step that corresponded to a CFL of slightly less than unity. In this particlar
flow, a transitionally turbulent open jet, the diffusion time scale stability limit was not a factor. In other words, there
existed no detailed boundary layer at the wall bounded flow at the ground plane. Results for a Reynolds number of
45000 back step also are similar to the above jet results.

In general, although a mixture of implicit diffusion and explicit advection seem to be the winning combination, this
scheme is very sensitive to time step and must be used by an educated user. In general, the conclusions are, thus far,
that the standard segregated pressure projection scheme is preferred.

The algorithm implemented in Nalu-Wind is a fourth order approximate projection scheme with monolithic momentum
coupling. Evaluation of a predictor/corrector approach for reating flow is anticipated in the late FY 15 time frame.

3.12.1 Errors due to Splitting and Stabilization

As noted in many of our papers, the error in the above method can be written in block form (let’s relax the variable
density nuance - or simple fold these extra terms into our operators). Here we specifically partition error into both
splitting (the pressure projection aspect of the alg that factorizes the fully coupled system) and pressure stabilization.
Note that when we run fully coupled simulation with the same pressure stabilization algorithm, the answers converge
to the same result.

Below, also forgive the specific definitions of 7. In general, they represent a choice of projection and stabilization time
scales. Finally, the Laplace operator, e.g., L, have the 7’s built into them.

R R P i 130
where the error term that appears for the discrete continuity solve is given by,
e(Li, 73, D,G) = (L1 — D3G)
—(Lz = D7 G)) (""" —p") (3.137)
+(Lg — D72 G)p™ ™!

For the sake of this write-up, let Ly = Lo and 75 = 73.

3.13 Time discretization

Time integrators range from simple backward Euler or a second order three state scheme, BDF2.

A general time discretization approach can be written as,

009 gy — / (" 1" 4 92p" " + ysp" ")

ot At

5 av

where ~; represent the appropriate factors for either Backward Euler or a three-point BDF2 scheme. In both discretiza-
tion approaches, the value for density and other dofs are evaluated at the node. As such, the time contribution is a
lumped mass scheme with the volume simply the dual volume. The topology over one loops to assemble system is
simply the node. Although CVFEM affords the use of a consistent mass matrix, this scheme is not used at present.
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3.14 Multi-Physics

The equation set required to support the energy sector is already represented as a multiphysics application. However,
in some common cases of coupling including conjugate heat transfer and coupling to participating media radiation, an
operator split method may be preferred. The general concept is to define multiple Nalu-Wind Realms that each own
the mesh on which the particular physics is solved. Surface- and volume-based couplings are supported through linear
interpolation of the coupling parameters.

A typical CHT application involves the coupling of a thermal response and fluid transport. The coupling occurs
between the surface that shares the thermal equation and static enthalpy equation. Moreover, coupling to a PMR solve
is a volume-based coupling. Multiple Realms are supported with multiple transfers.

In Nalu-Wind, the method to achieve coupling in CHT or RTE coupled systems is through the usage of the STK
Transfer module. This allows for linear interpolation between disparate meshes. Advanced conservative transfers are
being evaluated, however, are not yet implemented in the code base. In general, the STK Transfer interface allows for
this design point.

For FSI, the usage of the transfer module is also expected.

3.15 Wind Energy Modeling

Wind energy analysis is the primary application area for the Nalu-Wind development team. This section describes the
theoretical basis of Nalu-Wind from a wind energy perspective, using nomenclature familiar to wind energy experts
and mapping it to Nalu-Wind concepts and nomenclature described in previous sections. Hopefully, this will provide
an easier transition for users familiar with WRF and SOWFA to Nalu-Wind.

In order to evaluate the energy output and the structural loading on wind turbines, the code must model: 1. the in-
coming turbulent wind field across the entire wind farm, and 2. the evolution of turbine wakes in turbulent inflow
conditions and their interaction with the downstream turbines. First, the governing equations with all the terms neces-
sary to model a wind farm are presented with links to implementation and verification details elsewhere in the theory
and/or verification manuals. A brief description of Nalu-Wind’s numerical discretization schemes is presented next.
This is followed by a brief discussion of the boundary conditions used to model atmospheric boundary layer (ABL)
flows with or without wind turbines (currently modeled as actuator sources within the flow domain).

Currently Nalu-Wind supports two types of wind simulations:
Precursor simulations

Precursor simulations are used in wind applications to generate time histories of turbulent ABL inflow
profiles that are used as inlet conditions in subsequent wind farm simulations. The primary purpose of
these simulations are to trigger turbulence generation and obtain velocity and temperature profiles that
have converged to a statistic equilibrium.

Wind farm simulation with turbines as actuator sources

In this case, the wind turbine blades and tower are modeled as actuator source terms by coupling to the
OpenFAST libraries. Velocity fields are sampled at the blade and tower control points within the Nalu-
Wind domain and the blade positions and blade/tower loading is provided by OpenFAST to be used as
source terms within the momentum equation.

3.15.1 Governing Equations

We begin with a review of the momentum and enthalpy conservation equations within the context of wind farm mod-
eling [CLM+12]. Equation (3.138) shows the Favre-filtered momentum conservation equation (Eq. (3.1)) reproduced
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here with all the terms required to model a wind farm.

0, - 0 - op’ 0T
— (PU) + — (PUT;) = — ——8;; — —2L — 20 €;:5 Qs o—po)gi+ S* T
ot (puz)+ 8{Ej (puzuj) a$j ij 8£Uj P Eijk juk+(p P )gl+ i T fz (3.138)

Term I represents the time rate of change of momentum (inertia);

Term IT represents advection;

Term ITI represents the pressure gradient forces (deviation from hydrostatic and horizontal mean gradient);
Term IV represents stresses (both viscous and sub-filter scale (SFS)/Reynolds stresses);

Term V describes the influence Coriolis forces due to earth’s rotation — see Sec. Section 3.2.2;

Term VT describes the effects of buoyancy using the Boussinesq approximation — see Section 3.2.2;

Term VII represents the source term used to drive the flow to a horizontal mean velocity at desired height(s) — see
Section 3.2.7; and

Term VIII is an optional term representing body forces when modeling turbine with actuator disk or line representa-
tions — see Section 3.15.6.

In wind energy applications, the energy conservation equation is often written in terms of the Favre-filtered potential
temperature, ¢, equation, as shown below

% (p6) + % (pi,0) = —aijcij (3.139)

J

where, §; represents the temperature transport due to molecular and SFS turbulence effects. Due to the high Reynolds
number associated with ABL flows, the molecular effects are neglected everywhere except near the terrain. Potential
temperature is related to absolute temperature by the following equation

R

er()

Under the assumption of ideal gas conditions and constant c,,, the gradients in potential temperature are proportional
to the gradients in absolute temperature, i.e.,

or or oT] ([ p\(
ot’ 0z’ oy |  \po
Furthermore, ignoring the pressure and viscous work terms in Eq. (3.12) and assuming constant density (incom-

pressible flow), it can be shown that solving the enthalpy equation is equivalent to solving the potential temperature
equation. The enthalpy equation solved in wind energy problems is shown below

% (o7) + % (pu,T) = —;%qj (3.140)

J
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It is noted here that the terms ¢; (Eq. (3.139)) and ¢; (Eq. (3.140)) are not equivalent and must be scaled appropriately.
User can still provide the appropriate initial and boundary conditions in terms of potential temperature field. Under
these assumptions and conditions, the resulting solution can then be interpreted as the variation of potential temperature
field in the computational domain.

3.15.2 Turbulence Modeling

LES turbulence closure is provided by the Subgrid-Scale Kinetic Energy One-Equation LES Model or the standard
Smagorinsky model for wind farm applications.
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3.15.3 Numerical Discretization & Stabilization

Nalu-Wind provides two discretization approaches
Control Volume Finite Element Method (CVFEM)

Nalu-Wind uses a dual mesh approach (see Section 3.3.1) where the control volumes are constructed
around the nodes of the finite elements within the mesh — see Fig. 3.18. The equations are solved at the
integration points on the sub-control surfaces and/or the sub-control volumes.

Edge-Based Vertex Centered Scheme

The edge-based scheme is similar to the finite-volume approach used in SOWFA with the nodes at the
cell center of the dual mesh.
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Fig. 3.18: Schematic of HEX-8 mesh showing the finite elements, nodes, and the associated control volume dual mesh.

The numerical discretization approach is covered in great detail in Section 3.3, the advection and pressure stabilization
approaches are documented in Section 3.4 and Section 3.5 respectively. Users are strongly urged to read those sections
to gain a thorough understanding of the discretization scheme and its impact on the simulations.

3.15.4 Time stepping scheme

The time stepping method in Nalu-Wind is described in the Fuego theory manual [Teal6] for the backward Euler time
discretization. The implementation details of the BDF2 time stepping scheme used in Nalu-Wind is described here.
The Navier-Stokes equations are written as

) n+1
F,(p"t uptt, Pty — / ag? av =0,
(3.141)
n+1, n+l1 n, n n, n—1
Fi(pn+1’u:}+1’Pn+l) _ (mp" "y +72Apt Ui +Y3p Uy )AV —0,
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where

Fi(p”J“lu:-H'l) = /p"+1 ntl ;L'Hn]dSJr/ Z+1ndef/P”+1mde/(pn+1 *po) g;dV,

:7/ ntl; n+1+/ 70 dS — /P”“nide/(p”H*Po)gidV

and ~; are factors for BDF2 time discretization scheme (see Section 3.13). As is typical of incompressible flow solvers,
the mass flow rate through the sub-control surfaces is tracked independent of the velocity to maintain conservation of
mass. The following conventions are used:

¢* = Predicted value of ¢ at n + 1 time step before linear solve

QAS = ¢** = Predicted value of ¢ at n + 1 time step after linear solve

The Newton’s method is used along with a linearization procedure to predict a solution to the Navier-Stokes equations
at time stepn + 1 as

%, K N, N n, n—1
Ay bu; = Fr — (1p"u” + 92p"us" + 3p" 0" ) g,
At
where du; = u;" —uj,
v10* OF; * (3.142)
A= AV ;5 ,
J ( At 8uj )

and F} = f/u;‘m* +/T;;-njd57/P*nide/(p* — po) g:dV.

After each Newton or outer iteration, ¢** is a better approximation to ¢™*! compared to ¢*. p* and rn* are retained

constant through each outer iteration. F(p* **) is linear in »; and hence
F; = /P n;dS — / P = po) g:dV (3.143)
3u3

Applying Eq. (3.143) to Eq. (3.142), we get the linearized momentum predictor equation solved in Nalu-Wind.

Al~6u»: /P n;dS — / p* = po) g:dV
J J 87.LJ
_ P e 4 e e
At
OF; |*
Aij 5'U,j = (A’/IA[;/ AV(5 (97 )Uj* - /P*nzdS —/(p* - po)gde
U (3.144)
n n—1, n—1
_ (e A i) L
At
Ajjduy = Agjuj — /P*nidS - / (p* = po) g:dV
N, N n—1, n—1
_ Oep" i e )
At

u}* will not satisfy the continuity equation. A correction step is performed at the end of each outer iteration to make
u;* satisfy the continuity equation as

+1 73
where AP** = P** — P*
As described in Section 3.12.1, the continuity equation to be satisfied along with the splitting and stabilization errors
is

Dpu** = b+ (L; — D73G) AP** + (Ly — Do G) P* (3.145)
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where b contains any source terms when the velocity field is not divergence free and the other terms are the errors
due to pressure stabilization as shown by Domino [Dom06]. The final pressure Poisson equation solved to enforce
continuity at each outer iteration is

T
un+l — u** _ EGAP**

p
b—|— (Ll - DTgG) AP** + (Lz - DTQG) pr
= D(pu"*") = D(pti) — D(1sGAP™) (3.146)

b+ LiAP™ = D(pi) — (Ly — D12G) P*
—LlAP** = Dpa—i—DTgGP* - LzP*
—LiAP*™ = —Dpu — DnGP* + LaP* + b

Thus, the final set of equations solved at each outer iteration is
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Approximations for the Schur complement

Nalu-Wind implements two options for approximating the Schur complement for the split velocity-pressure solution
of the incompressible momentum and continuity equation. The two options are:

T =7 =7 =73 = At Originalimplementation
= (Ai)™'  Alternatealgorithm

where A;; is the diagonal entry of the momentum linear system. The latter option is similar to the SIMPLE and
PIMPLE implementations in OpenFOAM and is used for simulations with RANS and hybrid RANS-LES models
with large Courant numbers.

Underrelaxation for momentum and scalar transport

By default, Nalu-Wind applies no underrelaxation during the solution of the Navier-Stokes equations. However, in
RANS simulations at large timesteps some underrelaxation might be necessary to restore the diagonal dominance of
the transport equations. User has the option to specify underrelaxation through the input files. When underrelaxation
is applied, the advection and diffusion contributions to the diagonal term are modifed by dividing these terms by
the underrelaxation factor. It must be noted that the underrelaxation is only applied to the advective and viscous
contributions in the diagonal term and not the time derivative term.

Dizj Aij L 1PAV
w AT

The pressure update can also be underrelaxed by specifying the appropriate relaxation factor in the input file. When
this option is activated, the full pressure update, in a given Picard iteration step, is used to project the velocity and
mass flow rate and the relaxation is applied to the pressure solution at the end of the Picard iteration.

Ay =—

3.15.5 Initial & Boundary Conditions

This section briefly describes the boundary conditions available in Nalu-Wind for modeling wind farm problems. The
terrain and top boundary conditions are described first as they are common to precusor and wind farm simulations.
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Initial conditions

Nalu-Wind has the ability to initialize the internal flow fields to uniform conditions for all pressure, velocity, tempera-
ture, and TKE (k) in the input £ile. Nalu-Wind also provides a user function to add perturbations to the velocity
field to trigger turbulence generation during precursor simulations. To specify more complex flow field conditions,
a temperature profile with a capping inversion for example, users are referred to pre-processing utilities available in
NaluWindUltils library.

Terrain (Wall) boundary condition

Users are referred to Section 3.9.3 for the treatment of the terrain BC using roughness models. For enthalpy, users can
provide a surface heat flux for modeling stratified flows.

Top boundary condition

For problems with minimal streamline curvature near the upper boundary (e.g. nearly flat terrain, negligible turbine
blockage), a symmetry BC (slip wall) can be when modeling wind farm problems. By default a zero vertical tempera-
ture gradient will be imposed for the enthalpy equation when the symmetry boundary condition is used. If a non-zero
normal temperature gradient is required to drive the flow to a desired temperaure profile, e.g., a capping inversion, then
the abltop BC can be used. In this case the user_data input normal_temperature_gradient: value will set the normal
temperature gradient to value at the top boundary.

For cases with significant terrain features or significant turbine blockage, the abltop BC can also be used to achieve
an open boundary that allows for both inflows and outflows at the domain top. See the abltop BC documentation for
details.

Inlet conditions

Time histories of inflow velocity and temperaure profiles can be provided as inputs (via I/O transfer) to drive the wind
farm simulation with the desired flow conditions. See Section 4.8.3 for more details on this capability. Driving a wind
farm simulation using velocity and temperature fields from a mesoscale (WRF) simulation would require an additional
pre-processing steps with the wrftonalu utility.

Outlet conditions

See the description of open BC for detailed description of the outlet BC implementation. For wind energy problems,
it is necessary to activate the global mass correction as a single value of pressure across the boundary layer is not
apprpriate in the presence of buoyancy effects. It might also be necessary to fix the reference pressure at an interior
node in order to ensure that the Pressure Poisson solver is well conditioned.

3.15.6 Wind Turbine Modeling

Wind turbine rotor and tower aerodynamic effects are modeled using actuator source representations. Compared to
resolving the geometry of the turbine, actuator modeling alleviates the need for a complex body-fitted meshes, can
relax time step restrictions, and eliminates the need for turbulence modeling at the turbine surfaces. This comes at the
expense of a loss of fine-scale detail, for example, the boundary layers of the wind turbine surfaces are not resolved.
However, actuator methods well represent wind turbine wakes in the mid to far downstream regions where wake
interactions are important.
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Actuator methods usually fall within the classes of disks, lines, surface, or some blend between the disk and line (i.e.,
the swept actuator line). Most commonly, the force over the actuator is computed, and then applied as a body-force
source term, f; (Term VIII), to the Favre-filtered momentum equation (Eq. (3.138)).

The body-force term f; is volumetric and is a force per unit volume. The actuator forces, F/, are not volumetric.
They exist along lines or on surfaces and are force per unit length or area. Therefore, a projection function, g, is used
to project the actuator forces into the fluid volume as volumetric forces. A simple and commonly used projection
function is a uniform Gaussian as proposed by Sorensen and Shen [SorensenS02],

1 e
9(7) = =g 1V,

where 7 is the position vector between the fluid point of interest to a particular point on the actuator, and € is the width
of the Gaussian, that determines how diluted the body force become. As an example, for an actuator line extending
from | = 0 to L, the body force at point (x, y, z) due to the line is given by

L
fi(x,y,z)z/o g (7)) F} (1) dl. (3.147)

Here, the projection function’s position vector is a function of position on the actuator line. The part of the line nearest
to the point in the fluid at (z, y, z) has most weight.

The force along an actuator line or over an actuator disk is often computed using blade element theory, where it is
convenient to discretize the actuator into a set of elements. For example, with the actuator line, the line is broken into
discrete line segments, and the force at the center of each element, Fik, is computed. Here, k is the actuator element
index. These actuator points are independent of the fluid mesh. The point forces are then projected onto the fluid
mesh using the Gaussian projection function, g(7), as described above. This is convenient because the integral given
in Equation (3.147) can become the summation

N
filw,y,2) = > g()Ff. (3.148)
k=0

This summation well approximates the integral given in Equation (3.147) so long as the ratio of actuator element size
to projection function width € does not exceed a certain threshold.

Presently, Nalu-Wind uses an actuator line representation to model the effects of turbine on the flow field; however, the
class hierarchy is designed with the potential to add other actuator source terms such as actuator disk, swept actuator
line and actuator surface capability in the future. The ActuatorLineFAST class couples Nalu-Wind with NREL’s
OpenFAST for actuator line simulations of wind turbines. OpenFAST is a aero-hydro-servo-elastic tool to model wind
turbine developed by the National Renewable Energy Laboratory (NREL). The ActuatorLineFAST class allows
Nalu-Wind to interface as an inflow module to OpenFAST by supplying the velocity field information.

Nalu-Wind — OpenFAST Coupling Algorithm

A nacelle model is implemented using a Gaussian drag body force. The model implements a drag force in a direction
opposite to velocity field at the center of the Gaussian. The width of the Gaussian kernel is determined using the
reference area and drag coefficient of the nacelle as shown by Martinez-Tossas. [MartinezT17]

€4 = \/QCdA/Tr

where ¢ is the drag coefficient, and A is the reference area. This value of €4 ensures that the momentum thickness of
the generated wake is of the right size. The velocity sampled at the center of the Gaussian is corrected to obtain the
upstream velocity.

1 ~
1—cq A/(4ﬂ'e§)uic

Ujoo =
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where u;,, is the velocity at the center of the Gaussian and u; is the free-stream velocity used to compute the drag
force. The drag body force is then

]. ~ 9 7|—“2/ 2
fa(z,y,2) = 50(1/1%‘00 7_‘_3/2636 /e

where 7’is the position vector between the fluid point of interest and the center of the Gaussian force.

The actuator line implementation allows for flexible blades that are not necessarily straight (pre-bend and sweep). The
current implementation requires a fixed time step when coupled to OpenFAST, but allows the time step in Nalu-Wind
to be an integral multiple of the OpenFAST time step. At present, a simple time lagged FSI model is used to interface
Nalu-Wind with the turbine model in OpenFAST:

* The velocity at time step at time step n is sampled at the actuator points and sent to OpenFAST,
* OpenFAST advances the turbines up-to the next Nalu-Wind time step n + 1,

» The body forces at the actuator points are converted to the source terms of the momentum equation to advance
Nalu-Wind to the next time step n + 1.

This FSI algorithm is expected to be only first order accurate in time. We are currently working on improving the FSI
coupling scheme to be second order accurate in time.

Nalu-Wind — Actuator Disk Model via OpenFAST

An actuator disk model is implemented in Nalu-Wind by using an OpenFAST actuator line to sample the flow and
compute the forcing. The actuator line is held stationary which leads to computational savings during execution
because there is only 1 search operation in the initial setup.

The forces are gathered at each actuator line point, and the total force at each discrete radial location (r; where
j € [1, Ng]) is computed using (3.149).

Np
Fiotar(r;) = ZF(ijai) (3.149)
i1

where Np and Ny are the number of blades and number of radial points respectively.

Fotq1(r;) is then spread evenly across the original actuator line points and additional ‘swept-points’ that are added in
between the actuator lines. The swept-points are always uniformly distributed azimuthally, but the number of swept
points can either be non-uniformly or uniformly distributed along the radial direction (left and right images in figure
Fig. 3.19). The non-uniform distribution uses the distance between points along the embedded actuator line blades as
the arc-length between points in the azimuthal direction. This is the default behavior. If uniform spacing is desired
then num_swept_pts must be specified in the input deck. This is the number of points between the actuator lines, so in
figure Fig. 3.19 the num_swept_pts is 3.

Fig. 3.19: Actuator Disk with non-uniform (left) and uniform (right) sampling in the azimuthal direction.
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The force that is spread across all the points at a given radius is then calculated as (3.150).

Ftotal (T’j )

f(rj) = —F~——— 3.150
)= Np+(Nsy + D) G0
where Ng ; is the number of swept points for a given radius. The index j is used because this value varies between

radii when non-uniform sampling is applied.

3.16 Topological Support

The currently supported elements are as follows: hex, tet, pyramid, wedge, quad, and tri. In general, hybrid meshes
are fully supported for the edge-based scheme. For CVFEM, hybrid meshes are also supported, however, wedge and
pyramid elements are not permitted at exposed open or symmetry boundaries. The remedy to the CVFEM constraint
is to simply implement the exposed face gradient operators.

3.17 Adaptivity

Adaptivity is supported through usage of the Percept module. However, this code base has not yet been deployed to
the open sector. As such, ifdef guards are placed within the code base. A variety of choices exist for the manner by
which hanging nodes are removed in a vertex-centered code base.

A typical h-adapted patch of elements is shown in Figure Fig. 3.20. The “hanging nodes” do not have control volumes
associated with them. Rather, they are constrained to be a linear combination of the two parent edge nodes. There is
no element assembly procedure to compute fluxes for the “hanging sub-faces” associated with the hanging nodes that
occur along the parent-child element boundary.

Use linear
constraints for
nodal condition,

---d---+--—T— Subfaces have
| no fluxes

Fig. 3.20: Control volume definition on an h-adapted mesh with hanging nodes. (Four-patch of parent elements with
refinement in bottom-right element.)

In general, for a vertex-centered scheme, the h-adaptive scheme is driven at the element level. Refinement occurs
within the element and the topology of refined elements is the same as the parent element.
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Aftosmis [Aft94] describes a vertex-centered finite-volume scheme on unstructured Cartesian meshes. A transitional
set of control volumes are formed about the hanging nodes, shown in Figure Fig. 3.21. on unstructured meshes. This
approach would require a series of specialized master elements to deal with the different transition possibilities.

Fig. 3.21: Control volume definition on an h-adapted mesh with transition control volumes about the hanging nodes.
(Four-patch of parent elements with refinement in bottom-right element.)

Kallinderis [KB89] describes a vertex-centered finite-volume scheme on unstructured quad meshes. Hanging nodes
are treated with a constraint condition. The flux construction for a node on a refinement boundary is based on the
unrefined parent elements, leading to a non-conservative scheme.

Kallinderis [KV93] also describes a vertex-centered finite-volume scheme on unstructured tetrahedral meshes. Hang-
ing nodes are removed by splitting the elements on the “unrefined” side of the refinement boundary. Mavriplis [Mav00]
uses a similar technique, however, extends it to a general set of heterogeneous elements, shown in Figure Fig. 3.22.

The future deployment of Percept will use the procedure of Mavriplis whereby hanging nodes are removed by neighbor
topological changes. A variety of error indicators exists and a prototyped error transport equation appraoch for the
one-equation £°9° model has been tested for classic jet-in-crossflow configurations.
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Fig. 3.22: Control volume definition on a heterogeneous h-adapted mesh with no hanging nodes. (Four-patch of parent
elements with refinement in bottom-right element and splitting in adjacent parent elements.)
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3.17.1 Prolongation and Restriction

Nodal variables are interpolated between levels of the h-adapted mesh hierarchy using the traditional prolongation and
restriction operators defined over an element. The prolongation operation is used to compute values for new nodes that
arise from element sub-division. The parent element shape functions are used to interpolate values from the parent
nodes to the sub-divided nodes.

Prolongation and restriction operators for element variables and face variables are required to maintain mass flow rates
that satisfy continuity. When adaptivity takes place, a code option to reconstruct the mass flow rates must be used.
Whether or not a Poisson system must be created has been explored. More work is required to understand the nuances
associated with prolongation, specifically with respect to possible dispersion errors.

3.18 Code Abstractions

The Nalu-Wind code base is a c++ code-base that significantly leverages the Sierra Toolkit and Trilinos infrastructure.
This section is designed to provide a high level overview of the underlying abstractions that the code base exercises.
For more detailed code information, the developer is referred to the Trilinos project (github.com). In the sections that
follow, only a high level overview is provided.

The Nalu-Wind code base emerged as a small testbed unit test to evaluate the STK infrastructure. Interestingly, the
first “algorithm” implementation was a simple Lo projected nodal gradient. This effort involved reading in a mesh,
registering a nodal (vector) field, iterating elements and exposed surfaces to assemble the projected nodal gradient to
the nodes of the mesh (in parallel). When evaluating kokkos, this algorithm was also used to learn about the parallel
NGP abstraction provided.

3.18.1 Sierra Toolkit Abstractions

Consider a typical mesh that consists of nodes, sides of elements and elements. Such a mesh, when using the Exodus
standard, will liekly be represented by a collection of “element blocks”, “sidesets” and, possibly, “nodesets”. The
definition of the mesh (generated by the user through commercial meshing packages such as pointwise or ICM-CFD)

will provide the required spatial definitions of the volume physics and the required boundary conditions.

An element block is a homegeneous collection of elements of the same underlying topology, e.g., HEXAHEDRAL-8.
A sideset is a set of exposed element faces on which a boundary condition is to be applied. Finally, a nodeset is a
collection of nodes. In general, nodesets are possibly output entities as the code does not exercise enforcing physics
or boundary conditions on nodesets. Although Nalu-Wind supports an edge-based scheme, an edge, which is an
entity connecting two nodes, is not part of the Exodus standard and must be generated within the STK infrastructure.
Therefore, a particular discretization choice may require stk: :mesh: :Entity types of element, face (or side),
edge and node.

Once the mesh is read in, a variety of routine operations are generally required. For example, a low-Mach physics
equation set may want to be applied to bl ock_1 while inflow, open, symmetry, periodic and wall boundary conditions
can be applied to a variety of sidesets. For example, surface_1 might be of an “inflow” type. Therefore, the high
level set of requirements on a mesh infrastructure might be to allow one to iterate parts of the mesh and, in the end,
assemble a quantity to a nodal or elemental field.

Meta and Bulk Data

Meta and Bulk data are simply STK containers. MetaData is used to extract parts, extract ownership status, determine
the side rank, field declaration, etc. BulkData is used to extract buckets, extract upward and downward connectivities
and determine node count for a given entity.

3.18. Code Abstractions 161



Nalu-Wind Documentation, Release 1.2.0

Parallel Rules

In STK, elements are locally owned by a single rank. Elements may be ghosted to other parallel ranks through
STK custom ghosting. Exposed faces are locally owned by the lower parallel rank. Nodes are also locally owned
by the lower parallel rank and can also be shared by all parallel ranks touching them. Edges and internal faces
(element:face:element connectivity) have the same rule of locally owned/shared and can also be ghosted. Again,
edges and internal faces must be created by existing STK methods should the physics algorithm require them. In
Nalu-Wind, the choice of element-based or edge-based is determined within the input file.

Connectivity

In an unstructured mesh, connectivity must be built from the mesh and can not be assumed to follow an assumed “i-j-
k” data layout, i.e., structured. In general, one speaks of downward and upward relationships between the underlying
entities. For example, if one has a particular element, one might like to extract all of the nodes connected to the
element. Likewise, this represents a common opporation for faces and edges. Such examples are those in which
downward relationships are required. However, one might also have a node and want to extract all of the connected
elements to this node (consider some sort of patch recovery algorithm). STK provides the ability to extract such
connectivities. In general, full downward and upward connectivities are created.

For example, consider an example in which one has a pointer to an element and wants to extract the nodes of this
element. At this point, the developer has not been exposed to abstractions such as buckets, selectors, etc. As such,
this is a very high level overview with more details to come in subsequent sections. Therefore, the scope below is to
assume that from an element-k of a “bucket”, b[k] (which is a collection of homogeneous RANK-ed entities) we will
extract the nodes of this element using the STK bulk data.

// extract element from this bucket
stk::mesh::Entity elem = b[k];

// extract node relationship from bulk data
stk::mesh::Entity const % node_rels = bulkData_.begin_nodes (elem);
int num_nodes = bulkData_.num_nodes (elem);

// iterate nodes
for ( int ni = 0; ni < num_nodes; ++ni ) {
stk::mesh::Entity node = node_rels[ni];

// set connected nodes
connected_nodes[ni] = node;

// gather some data, e.g., density at state Npl,
// into a local workset pointer to a std::vector
p_density[ni] = *stk::mesh::field_data(densityNpl, node );

Parts

As noted before, a stk: :mesh: :Part is simply an abstraction that describes a set of mesh entities. If one has the
name of the part from the mesh data base, one may extract the part. Once the part is in hand, one may iterate the
underlying set of entities, walk relations, assemble data, etc.

The following example simply extracts a part for each vector of names that lives in the vector targetNames and
provides this part to all of the underlying equations that have been created for purposes of nodal field registration. Parts
of the mesh that are not included within the targetNames vector would not be included in the field registration and,
as such, if this missing part was used to extract the data, an error would occur.

162 Chapter 3. Nalu-Wind - Theory Manual




Nalu-Wind Documentation, Release 1.2.0

for ( size_t itarget = 0; itarget < targetNames.size(); ++itarget ) {
stk::mesh::Part »targetPart = metaData_.get_part (targetNames|[itarget]);

// check for a good part

if ( NULL == targetPart ) {

throw std::runtime_error ("Trouble with part " + targetNames|[itarget]);
}
else {

EquationSystemVector::iterator 1ii;
for( ii=equationSystemVector_.begin(); ii!=equationSystemVector_.end(); ++ii )
(#1i) —>register_nodal_fields (targetPart);

Selectors
In order to arrive at the precise parts of the mesh and entities on which one desires to operate, one needs to “select”
what is useful. The STK selector infrastructure provides this.

In the following example, it is desired to obtain a selector that contains all of the parts of interest to a physics algorithm
that are locally owned and active.

// define the selector; locally owned, the parts I have served up and active
stk::mesh::Selector s_locally_owned_union = metaData_.locally_owned_part ()

& stk::mesh::selectUnion (partVec_)

& !(realm_.get_inactive_selector());

Buckets

Once a selector is defined (as above) an abstraction to provide access to the type of data can be defined. In STK, the
mechanism to iterate entities on the mesh is through the stk: :mesh: :bucket interface. A bucket is a homoge-
neous collection of stk: :mesh: :Entity.

In the below example, the selector is used to define the bucket of entities that are provided to the developer.

// given the defined selector, extract the buckets of type " ‘element''
stk::mesh: :BucketVector consts& elem_buckets
= bulkData_.get_buckets( stk::topology::ELEMENT_RANK,
s_locally_owned_union );

// loop over the vector of buckets
for ( stk::mesh::BucketVector::const_iterator ib

elem_buckets.begin();

ib != elem_buckets.end() ; ++ib ) {
stk::mesh: :Bucket & b = x+xib ;
const stk::mesh::Bucket::size_type length = b.size();

// extract master element (homogeneous over buckets)
MasterElement »meSCS = sierra::nalu::get_surface_master_element (b.topology());

for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) {

// extract element from this bucket
stk::mesh::Entity elem = b[k];

// etc...

(continues on next page)
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(continued from previous page)

The look-and-feel for nodes, edges, face/sides is the same, e.g.,

o for nodes:

// given the defined selector, extract the buckets of type ' 'node'’
stk::mesh: :BucketVector consts& node_buckets
= bulkData_.get_buckets( stk::topology::NODE_RANK,
s_locally_owned_union );

// loop over the vector of buckets

o for edges:

// given the defined selector, extract the buckets of type " ‘edge''
stk::mesh: :BucketVector const& edge_buckets
= bulkData_.get_buckets( stk::topology: :EDGE_RANK,
s_locally_owned_union );

// loop over the vector of buckets

o for faces/sides:

rr

// given the defined selector, extract the buckets of type ' 'face/side
stk::mesh: :BucketVector consts face_buckets
= bulkData_.get_buckets( metaData_.side_rank (),
s_locally_owned_union );

// loop over the vector of buckets

Field Data Registration

Given a part, we would like to declare the field and put the field on the part of interest. The developer can register

fields of type elemental, nodal, face and edge of desired size.

e nodal field registration:

void
LowMachEquationSystem: :register_nodal_fields(
stk::mesh::Part =*part)

// how many states? BDF2 requires Npl, N and Nml
const int numStates = realm_.number_of_ states|();

// declare it
density_
= & (metaData_.declare_field<ScalarFieldType> (stk::topology: :NODE_RANK,
"density", numStates));

// put it on this part
stk::mesh::put_field(xdensity_, =*part);

e edge field registration:
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void
LowMachEquationSystem: :register_edge_fields (
stk::mesh::Part *part)

const int nDim = metaData_.spatial_dimension();
edgeAreaVec_
= & (metaData_.declare_field<VectorFieldType> (stk::topology: :EDGE_RANK,
"edge_area_vector"));
stk::mesh::put_field(xedgeAreaVec_, xpart, nDim);

o side/face field registration:

void

MomentumEquationSystem: :register_wall_bc (
stk::mesh::Part *part,
const stk::topology &theTopo,
const WallBoundaryConditionData &wallBCData)

// Dirichlet or wall function bc
if ( wallFunctionApproach ) {
stk::topology::rank_t sideRank
= static_cast<stk::topology::rank_t> (metaData_.side_rank());
GenericFieldType *wallFrictionVelocityBip
= & (metaData_.declare_field<GenericFieldType>
(sideRank, "wall_ friction_velocity_bip"));
stk::mesh::put_field(*wallFrictionVelocityBip, +*part, numIp);

Field Data Access
Once we have the field registered and put on a part of the mesh, we can extract the field data anytime that we have the
entity in hand. In the example below, we extract nodal field data and load a workset field.

To obtain a pointer for a field that was put on a node, edge face/side or element field, the string name used for
declaration is used in addition to the field template type,

VectorFieldType xvelocityRTM
= metaData_.get_field<VectorFieldType> (stk::topology: :NODE_RANK,
"velocity");
ScalarFieldType =xdensity
= metaData_.get_field<ScalarFieldType> (stk::topology: :NODE_RANK,
"density");}

VectorFieldType xedgeAreaVec
= metaData_.get_field<VectorFieldType> (stk::topology: :EDGE_RANK,
"edge_area_vector");

GenericFieldType +massFlowRate
= metaData_.get_field<GenericFieldType> (stk::topology: :ELEMENT_RANK,
"mass_flow_rate_scs");

GenericFieldType *wallFrictionVelocityBip_
= metaData_.get_field<GenericFieldType> (metaData_.side_rank(),
"wall_ friction_velocity_bip");
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State

For fields that require state, the field should have been declared with the proper number of states (see field declaration
section). Once the field pointer is in hand, the specific field with state is easily extracted,

ScalarFieldType =xdensity
= metaData_.get_field<ScalarFieldType> (stk::topology: :NODE_RANK,
"density");

densityNml_ = & (density->field_of_state(stk::mesh::StateNMl));
densityN_ = & (density->field_of_state(stk::mesh::StateN));
densityNpl_ = & (density->field_of_state(stk::mesh::StateNP1l));

With the field pointer already in hand, obtaining the particular data is field the field data method.

e nodal field data access:

// gather some data (density at state Npl) into a local workset pointer
p_density[ni] = xstk::mesh::field_data(densityNpl, node );

o edge field data access: (from an edge bucket loop with the same selector as defined above)

stk::mesh: :BucketVector const& edge_buckets
= bulkData_.get_buckets( stk::topology::EDGE_RANK, s_locally_owned_union );
for ( stk::mesh::BucketVector::const_iterator ib = edge_buckets.begin();

ib != edge_buckets.end() ; ++ib ) {
stk::mesh: :Bucket & b = x+xib ;
const stk::mesh::Bucket::size_type length = b.size();

// pointer to edge area vector and mdot (all of the buckets)
const double * av = stk::mesh::field_data (xedgeAreaVec_, b);
const double * mdot = stk::mesh::field_data(massFlowRate_, Db);

for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) {
// copy edge area vector to a pointer
for ( int j = 0; j < nDim; ++3 )
p_areaVec[]j] = av[kx*nDim+3j];

// save off mass flow rate for this edge
const double tmdot = mdot[k];

3.18.2 High Level Nalu-Wind Abstractions
Realm
A realm holds a particular physics set, e.g., low-Mach fluids. Realms are coupled loosely through a transfer operation.

For example, one might have a turbulent fluids realm, a thermal heat conduction realm and a PMR realm. The realm
also holds a BulkData and MetaData since a realm requires fields and parts to solve the desired physics set.

EquationSystem

An equation system holds the set of PDEs of interest. As Nalu-Wind uses a pressure projection scheme with split PDE
systems, the pre-defined systems are, LowMach, MixtureFraction, Enthalpy, TurbKineticEnergy, etc. New monolithic
equation system can be easily created and plugged into the set of all equation systems.
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In general, the creation of each equation system is of arbitrary order, however, in some cases fields required for
MixtureFraction, e.g., mass_flow_rate might have only been registered on the low-Mach equation system. As
such, if MixtureFraction is created before LowMachEOS, an error might be noted. This can be easily resolved by
cleaning the code base such that each equation system is “autonomous”.

Each equation system has a set of virtual methods expected to be implemented. These include, however, are not limited
to registration of nodal fields, edge fields, boundary conditions of fixed type, e.g., wall, inflow, symmetry, etc.
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CHAPTER
FOUR

NALU-WIND - VERIFICATION MANUAL

Nalu-Wind represents a generalized unstructured, massively parallel, variable density turbulent flow capability de-
signed for energy applications. This code base began as an effort to prototype Sierra Toolkit, [EWS+10], usage along
with direct parallel matrix assembly to the Trilinos, [HBH+03], Epetra and Tpetra data structure. However, the simu-
lation tool has evolved as a tool to support a variety of research projects germane to the energy sector including wind
aerodynamic prediction and traditional gas-phase combustion applications.

4.1 Introduction

The methodology used to evaluate the accuracy of each proposed scheme will be the method of manufactured solutions.
The objective of code verification is to reveal coding mistakes that affect the order of accuracy and to determine if the
governing discretized equations are being solved correctly. Quite often, the process of verification reveals algorithmic
issues that would otherwise remain unknown.

In practice, a variety of comparison techniques exist for verification. For example, benchmark and code-to-code
comparison are not considered rigorous due to the errors that exist in other code solutions, such as from discretization
and iteration. Analytic solutions and the method of manufactured solutions remain the most powerful methods for
code verification, since they provide a means to obtain quantitative error estimations in space and time.

Roache has made the distinction between code verification and calculation verification, where calculation verification
involves grid refinement required for every problem solution to assess the magnitude, not order, of the discretization
error. Discretization error, distinguished from modeling and iteration errors, is defined as the difference between the
exact solution to the continuum governing equations and the solution to the algebraic systems representation due to
discretization of the continuum equations. The order of accuracy can be determined by comparing the discretization
error on successively refined grids. Thus, it is desirable to have an exact solution for comparision to determine the
discretization errors.

4.2 2D Unsteady Uniform Property: Convecting Decaying Taylor Vor-
tex

Verification of first-order and second-order temporal accuracy for the CVFEM and EBVC formulation in Nalu-Wind
is performed using the method of manufactured solution (MMS) technique. For the unsteady isothermal, uniform
laminar physics set, the exact solution of the convecting, decaying Taylor vortex is used.

U= Uy — cos(m(x — upt))sin(m(y — vot))e 20w 4.1)
v = v, + sin(r(z — uot))cos(m(y — vot))e 20t 4.2)
p= —%’(cos(%r(x — Uot)) + cos(27(y — vot)))e ! (4.3)
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In this study, the constants u,, v,, and p, are all assigned values of 1.0, and the viscosity p is set to a constant value
of 0.001. The value of w is w2 u. This particular viscosity value results in a maximum cell reynolds number of twenty.

4.2.1 Temporal Order Of Accuracy Results

The temporal order of accuracy for the first order backward Euler and second order BDF2 are outlined in Figure Fig.
4.1 and Figure Fig. 4.2. Each of these simulations used a hybrid factor of zero to ensure pure second order central
usage. A fixed Courant number of two was used for each of the three meshes (100x100, 200x200 and 400x400).
The simulation was run out to 0.2 seconds and Lo error norms were computed. The standard fourth order pressure
stabilization scheme with time step scaling is used. This scheme is also known as the standard incremental pressure,
approximate pressure projection scheme.

Two other pressure projection schemes have been evaluated in this study. Each represent a simplification of the
standard pressure projection scheme. Figure Fig. 4.3 outlines three projection schemes: the first is when the projected
nodal gradient appearing in the fourth-order pressure stabilization is lagged while the second is the classic pressure-
free pressure approximate projection scheme with second order pressure stabilization. The third is the baseline fourth-
order incremental pressure projection scheme. The error plots demonstrate that lagging the projected nodal gradient
for pressure retains second order accuracy. However, as expected the pressure free pressure projection scheme is
confirmed to be first order accurate given the first order splitting error noted in this fully implicit momentum solve.

The Steady Taylor Vortex will be used to verify the spatial accuracy for the full set of advection operators supported
in Nalu-Wind.

4.3 Higher Order 2D Steady Uniform Property: Taylor Vortex

A higher order unstructured CVFEM method has been developed by Domino [Dom14]. A 2D structured mesh study
demonstrating second order time and third order in space scheme has been demonstrated. The below work has empha-
sis on unstructured meshes.

4.3.1 Source Term Quadrature

Higher order accuracy is only demonstrated on solutions with source terms when a fully integrated approach is used.
Lumping the source term evaluation is a second order error and is fully noted in the MMS study (not shown).

4.3.2 Projected nodal gradients

Results show that one must use design order projected nodal gradients. Figure Fig. 4.4 demonstrates a code verification
result for a steady thermal manufactured solution comparing lumped and consistent mass matrix approaches for the
projected nodal gradient on a quadratic tquad mesh. In the lumped approach, a simple explicit algorithm is processed
while for the consistent approach, a simple mass matrix inversion equation must be solved. The lumped approach is
first order while the consistent approach retains the expected second order as the projected nodal gradient is expected
to be order P. Both Dirichlet and periodic domains display the same order of convergence.

4.3.3 Momentum and Pressure

The steady taylor vortex exact solution was run on a quadratic tquad mesh. Figure Fig. 4.5 demonstrates the order of
accuracy for projected nodal gradients (pressure) and the velocity field (x-component). Second order accuracy for the
projected nodal gradient (pressure) and third order for the velocity field is realized when the consistent mass matrix
approach is used for the projected nodal pressure gradient. Note that this term is used in the pressure stabilization
approach. However, order of convergence for the projected nodal pressure gradient and velocity field is compromised
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Fig. 4.1: Error norms as a function of timestep size for the v and v component of velocity using fourth order pressure
stabilization with timestep scaling, backward Euler
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Fig. 4.2: Error norms as a function of timestep size for the v and v component of velocity using fourth order pressure

stabilization with timestep scaling, BDF2
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Fig. 4.3: Error norms as a function of timestep size for the u and v component of velocity using the lagged projected
nodal pressure gradient and pressure-free pressure projection scheme; all with with timestep scaling, BDF2
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when the lumped mass matrix approach is used for the pressure stabilization term. Note that both approaches use the
fully integrated pressure gradient term in the momentum equation (i.e., [ pn;dS). Therefore, the reduced order of
integration for the projected nodal pressure gradient has consequence on the velocity field order of convergence.

Again, dirichlet (inflow) and periodic domains display the same order of convergence.
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Fig. 4.5: Error norms as a function of mesh size for the Steady Taylor Vortex momentum and pressure gradient field.

4.4 3D Steady Non-isothermal with Buoyancy

Building from the basic functional form of the Taylor Vortex, a non-isothermal solution (momentum, pressure and
static enthalpy) is manufactured as follows:

u = —u,cos(anx)sin(amy)sin(anz)

v = Fv,sin(anx)cos(any)sin(arz)

w = —wysin(arx)sin(ary)cos(anz) (4.4)
p= —%(cos(?awm) + cos(2amy) + cos(2arz))

h = +hocos(apmx)cos(apmy)cos(apmz)

The equation of state is simply the ideal gas law,

pre/ M
p =
RT

4.5)
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The simulation is run on a three-dimensional domain ranging from -0.05:+0.05 with constants
a,an, M, R, Cy, P™/ | T,.;, Pr, pequal to (20, 10, 30, 10, 0.01, 100, 300, 0.8, 0.00125), respectively.

At reference conditions, the density is unity. The effects of buoyancy are also provided by an arbitrary gravity vector
of magnitude of approximately ten, g; = (—5,6,7)7. On this domain, the enthalpy ranges from zero to unity. Given
the reference values, the temperature field ranges from 300K to 400K which is designed to mimic a current LES
non-isothermal validation suite.

Edge- and element-based discretization (P=1) demonstrate second order convergence in the Ly norm for u, v, w and
temperature. This test is captured within the variableDensityMMS regression test suite.

4.5 3D Steady Non-uniform with Buoyancy

Building from the basic functional form of the Taylor Vortex, a non-uniform solution (momentum, pressure and mix-
ture fraction) is manufactured as follows:

u = —u,cos(anx)sin(any)sin(anz)

v = tv,sin(anz)cos(ary)sin(anz)

w = —wysin(amz)sin(ary)cos(anz) (4.6)
p= —%’(cos(Zaﬂ'x) + cos(2amy) + cos(2arz))

2z = +2z,c08(a,mx)cos(a,my)cos(a,mz)

The equation of state is simply the standard inverse mixture fraction property expression for density,

1

p= @7

ThZoP + 'r‘lf:og
The simulation is run on a three-dimensional domain ranging from -0.05:+0.05 with constants a, a., p¥, p°, Sc, p equal
to (20, 10, 0.1, 1.0, 0.8, 0.001), respectively.

At reference conditions, the density is that of the primary condition (0.1). The effects of buoyancy are also provided
by an arbitrary gravity vector of magnitude of approximately ten, g; = (—5,6,7)7. On this domain, the mixture
fraction ranges from zero to unity. This test case is designed to support the helium plume DNS study with primary and
secondary density values of helium and air, respectively.

Edge- and element-based discretization (P=1) demonstrate second order convergence in the Ly norm for u, v, w and
mixture fraction. This test is captured within the variableDensityMMS regression test suite.

4.6 2D Steady Laplace Operator

The evaluation of the low-Mach Laplace (or diffusion operator) is of great interest to the core supported application
space. Although the application space for Nalu-Wind is characterized by a highly turbulent flow, the usage of an
approximate pressure projection scheme always makes the chosen Laplace form important. Although the element-
based scheme is expected to be accurate, it can be problematic on high aspect ratio meshes as element-based schemes
are not gauranteed to be monotonic for aspect ratios as low as /2 for FEM-based schemes and v/3 for CVEM-based
approaches (both when using standard Gauss point locations). Conversely, while the edge-based operator is accurate
on high aspect ratio meshes, it suffers on skewed meshes due to both quadrature error and the inclusion of a non
orthogonal correction (NOC).

In order to assess the accuracy of the Laplace operator, a the two-dimensional MMS temperature solution is used. The
functional temperature field takes on the following form:

T = 2(003(2(17733) + cos(2amy)). (4.8)
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The above manufactured solution is run on three meshes of domain size of 1x1. The domain was first meshed as a
triangular mesh and then converted to a tquad4 mesh. Therefore, non orthogonal correction (NOC) effects are expected
for the edge-based scheme. In this study, both A and a are unity. Either periodic or Dirichlet conditions are used for
boundary conditions.

A brief overview of the diffusion operator tested is now provided. For more details, consult the theory manual. The
general diffusion kernel is as follows:

o ,

— | T
6l‘j J

(4.9)

The choice of the gradient operator at the integration point is a functin of the underlying method. For CVFEM, the
gradient operator is provided by the standard shape function derivatives,

W DR h, . (4.10)
8(Ej Z 8(Ej ¢k
For the edge-based scheme, a blending of an orthogonal gradient along the edge and a NOC is employed,
8¢ip - - A
=G, — — Giod . .
oz, = a0+ [(0n— o) = Grodm] L (4.11)
In the above equation, G;¢ is a projected nodal gradient. The general equation for this quantity is
0
/w]G](de = w,—¢dV (412)
8xj

Possible forms of this include either lumped or consistent mass (the later requires a global equation solve) with either
the full CVFEM stencil or the edge-based (reduced) stencil. The above equation can even be applied within the
element itself for a simple, local integration step that provides a piecewise constant gradient over the element.

The simulation study is run with the following diffusion operators: 1) the standard CVFEM operator, 2) the edge-based
operator with CVFEM projected nodal gradients (NOC), 3) the edge-based operator with edge-based projected nodal
gradients (NOC), 4) the edge-based operator without NOC correction, 5) the CVFEM operator with shifted integration
points to the edge, and, lastly, 6) a mixed edge/element scheme in which the orthogonal diffuion operator is edge-based
while the NOC terms are based on the elemental CVFEM gradient (either evaluated at the given integration point or
integrated over the element for a piecewise constant form).

The last operator is interesting in that it represents a candidate operator for the CVFEM pressure Poisson system when
high aspect ratio meshes are used. Figure Fig. 4.6 outlines the convergence of the five above operators; shown are all
of the standard norms (oo, 1 and 2) for the RO, R1 and R2 mesh refinements. The results in the left side of the figure
indicate that the edge-based scheme with NOC retains second-order convergence for all norms when the more accurate
CVFEM projected nodal gradient is used (lumped only tested given its good results). Convergence is degraded with the
edge-based scheme when NOC terms are either neglected or use the reduced edge-based projected nodal gradient. The
CVFEM-based methods are second order accurate in the I.; and Lo norms, however, questionable results are noted
in the L., norm for all methods that include any shape function derivative for local or elemental piecwise constant
gradient operators. Shifting the Gauss points from the standard subcontrol surface to the edges of the element (while
still using shape function derivatives) is only problematic in the L., norm (just as the standard CVFEM approach).
The use of the mixed-approach with a piecewise constant gradient over the element demonstrates the same behavior
as when using the integration point CVFEM gradient operator. Figure Fig. 4.7 outlines two more refinement meshes
for the CVFEM operator (R3 and R4). Results indicate that the L., norm is approaching second order accuracy.

An inspection of the magnitude of error between the exact and computed temperature for the R3 mesh is shown in
Figure Fig. 4.8. Results show that the CVFEM error is highest at the corner mesh nodes that form a reduced stencil.
The edge-based scheme shows increased error at the higher aspect ratio dual mesh.

4.6. 2D Steady Laplace Operator 177



Nalu-Wind Documentation, Release 1.2.0

T — — — First Order

1 0'2 - — — - —-— Second Order
[ ——=—— Edge CVFEM NOC, Loo
B — - & -— Edge CVFEM NOC, L1
;_ — &— — Edge CVFEM NOC, L2
T —=—— CVFEM, Loo
= T — -4 -— CVFEM. L1
T — N — & — CVFEM, L2
Ty T~ Mixed, Loo

= e T : Mixed, L1

- T ™~ Mixed, L2

Edge Edge NOC, Loo
& Edge Edge NOC, L1
— +— — Edge Edge NOC, L2
—=—— Edge No NOC, Loo
— - < -— Edge No NOC, L1
— <— — Edge No NOC, L2
Shifted CVFEM, Loo
Shifted CVFEM. L1
Shifted CVFEM, L2

Error

-
~
N ~—~
\\Aﬁ\“ -~ -
~ -
IS
\\
\\
NI |
2
10

0
Normalized Element Count

Fig. 4.6: Error norms for tquad4 refinement study. R0, R1, and R2 refinement.
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Fig. 4.8: Magnitude of the L., temperature norm comparing the edge-based CVFEM (NOC) and standard CVFEM
operators on the R3 mesh.
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4.7 3D Steady Laplace Operator with Nonconformal Interface

A three dimensional element-based verification study is provided to evaluate the DG-based CVFEM approach.

A
T= Z(cos(2amc) + cos(2amy) + cos(2arz)). (4.13)
Figure Fig. 4.9 represents the MMS field for temperature. The simulation study includes uniform refinement of a first-
and second-order CVFEM basis. Both temperature field and projected nodal gradient norms are of interest.

Figure Fig. 4.10 outlines the linear and quadratic basis. For P1, the CVFEM temperature field predicts between second
and first order while for P2, third order is recovered. When using a consistent mass matrix for the projected nodal
gradient, second order is noted, see Figure Fig. 4.11.

dof Lo L1 L2

temperature | 3.33067e-16 | 2.30077e-17 | 4.68103e-17
dTdx 4.13225e-13 | 9.06848e-15 | 1.98249¢-14
dTdy 4.15668e-13 | 1.11256e-14 | 2.15065¢e-14
dTdz 4.31211e-13 | 9.60785e-15 | 1.97517e-14

Given the order of accuracy results for the P1 implementation, a linear patch test was run. The temperature solution
was simply, T'(z,y, z) = © + y + z; all analytical temperature gradients are unity. Table Table 4.7 demonstrates the
successful patch test results for a PI CVFEM implementation.

4.8 Precursor-based Simulations

In the field of turbulent flow modeling and simulation, often times simulations may require sophisticated boundary
conditions that can only be obtained from previously run high-fidelity simulations. For example, consider a typical
turbulent jet simulation in which the experimental inlet condition was preceeded by a turbulent pipe entrance region.
Furthermore, in most cases the ability to adequately predict the developing jet flow regime may be highly sensitive
to proper inlet conditions. Figure Fig. 4.12 and Figure Fig. 4.13 outline a process in which a high fidelity large-
eddy simulation of a periodic pipe was used to determine a representative inlet condition for a turbulent round jet.
Specifically, a precursor pipe flow simulation is run with velocity provided to an output file. This output file serves as
the inlet velocity profile for the subsequent simulation.

In the above use case, as with most general simulation studies, the mesh resolution for the precursor simulation may be
different from the subsequent simulation. Moreover, the time scale for the precursor simulation may be much shorter
than the subsequent simulation. Finally, the data required for the subsequent simulation will likely be at different time
steps unless an overly restrictive rule is enforced, i.e., a fixed timestep for each simulation.

In order to support such use cases, extensive usage of the the Sierra Toolkit infrastructure is expected, most notably
within the IO and Transfer modules. The IO module can be used to interpolate the precursor simulation boundary
data to the appropriate time required by the subsequent simulation. Specifically, the IO module linearly interpolates
between the closest data interval in the precursor data set. A recycling offset factor is included within the IO interface
that allows for the cycling of data over the full time scale of interest within the subsequent simulation. For typical
statistically stationary turbulent flows, this is useful to ensure proper statistics are captured in subsequent runs.

After the transient data set from the precursor simulation is interpolated to the proper time, the data is spatially
interpolated and transferred to the subsequent simulation mesh using the STK Transfer module. Efficient coarse
parallel searches (point/bounding box) provide the list of candidate owning elements on which the fine-scale search
operates to determine the best search candidate. The order of spatial interpolation depends on the activated numerical
discretization. Therefore, by combining the two STK modules, the end use case to support data transfers of boundary
data is supported.
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Fig. 4.9: MMS temperature field for nonconformal algorithm.
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Fig. 4.12: Precursor periodic pipe flow large-eddy simulation that will serve as the inlet boundary condition for a

subsequent turbulent jet simulation.
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Fig. 4.13: Subsequent turbulent jet simulation using the precursor data obtained by a periodic pipe flow.
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As noted, there are many other use cases in addition to the overviewed turbulent jet simulation that require such tempo-
ral/spatial interpolation capabilities. For example, in typical wind farm simulation applications, a proper atmospheric
boundary layer (ABL) configuration is required to capture a given energy state of the boundary layer. In this case, a
periodic precusor ABL is run with the intent of providing the inlet condition to the subsequent wind farm domain. As
with the previous description, the infrustructure requirements remain the same.

Finally, the general creation of an “input_output” region can be useful in validation cases where data are provided
at a subset of the overall simulation domain. Such is the case in PIV and PLIF experimental data sets. Although the
temporal interpolation is not required, the transfer of this data at high time step frequency is useful for post-processing.

In this verification section, a unit test approach will be referenced that is captured within the STK module test suite.
This foundational test coverage provides confidence in the underlying IO and parallel search/interpolation processes.
In addition to briefly describing the infrastructure testing, application tests are provided as further evidence of correct-
ness. The application test first is based on the convecting Taylor vortex verification case while the second is the ABL
precursor application space demonstration.

4.8.1 Infrastructure Unit Test

As noted above, the Nalu-Wind application code leverages the STK unit tests within the IO and transfer
modules. Interested parties may peruse the STK product under a cloned Trilinos cloned project, i.e., Trili-
nos/packages/stk/stk_doc_test. Under the STK product, a variety of search, transfer and input/output tests exist. For
example, interpolation in time using the IO infrastructure is captured in addition to a variety of search and transfer use
cases.

4.8.2 Application Verification Test; Convecting Taylor Vortex

Although the foundational infrastructure tests are useful, the application must adequately interface the IO and Trans-
fer modules to support the end use case. In this section, two tests will be demonstrated that illustrate the precur-
sor/subsequent simulation use case.

The first test considered will be the convecting Talor vortex. In this configuration, a very fine mesh simulation is
run with boundary conditions specified in the input file to be of type, “convecting_taylor_vortex”. This specifies
the analytical function for the x-component of velocity as provided in Equation (4.1). The simulation is run while
providing output to a Realm of type “input_output” using a transfer objective, “input_output”. The transient data is
then used for a series of mesh refinement studies. The viscosity is set at 0.001 while the domain is 1x1. In this study,
the edge-based scheme is activated, however, the precursor interpolation methodology is not sensitive to the underlying
numerical method.

In Figure Fig. 4.14, a plot between the analytical x-component of velocity and a nodal query of the outputted velocity
component is provided. Although not immediately apparent, the values are exactly the same. This finding confirms
that the data set output is consistent with the nodal exact value.

With the precursor data base containing the full transient data, a refinement study can be accomplished to determine
numerical errors. Although the full machinery for temporal and spatial interpolation is active, the data requirement at
the coarse simulations are represented as the subsets of the full data - both in space and time. As such, no numerical
degradation of second-order accuracy is expected. The subsequent simulations are run with an “external_data” transfer
objective and a Realm of type, “external_data_provider”.

In Figure Fig. 4.15, a plot of L, norms of the x-component of velocity are shown for the subsequent set of simulations
that use the precursor data. Results of this study verify both the second-order temporal accuracy of the underlying
numerical scheme and the process of using both space and time interpolation.
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Fig. 4.14: Temporal plot of the exact x-velocity component and precursor output.
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Fig. 4.15: Temporal accuracy plot of the x-velocity component norms using the precursor data.
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4.8.3 Application Verification Test; ABL Precursor/Subsequent

The second, and final application test is an ABL-based simulation that first runs a precursor periodic solution in order
to capture an appropriate ABL specification. The boundary data saved from the precursor simulation are then used as
an inflow boundary condition for the subsequent ABL simulation. As the precurosr is run for a smaller time frame
than the subsequent simulation, the usage of data cycling is active. This full integration test is captured within the
regression test suite. The simulation is described as a non-isothermal turbulent flow.

In Figure Fig. 4.16, the transient recycling of the ABL thermal inflow boundary condition is captured at an arbitrary
nodal location very near the wall boundary condition. The subsequent simulation reads the precursor data set for time
zero seconds until 3000 seconds at which time it recylces the inlet condition back to the initial precursor simulation
time, i.e., zero seconds. An interesting note in this study is the fact that the precursor periodic simulation, which
was run at the same Courant number, was using time steps approximately three times greater than the subsequent
inflow/open configuration.

In Figure Fig. 4.17, (left) the subsequent simulation inflow temperature field and full profile over the full domain is
captured at approximately 4620 seconds. On the right of the figure, the temperature boundary condition data that
originated from the precursor simulation, which was read into the subsequent “external_field_provider” Realm, is
shown (again at approximately 4620 seconds).

4.9 Boussinesq Verification

4.9.1 Unit tests

Unit-level verification was performed for the Boussinesq body force term (3.9) with a nodal source appropriate to
the edge-based scheme (MomentumBoussinesqSrcNodeSuppAlg.single_value) as well as a separate unit test for the
element-based “consolidated” Boussinesq source term (MomentumKernelHex8Mesh.buoyancy_boussinesq). Proper
volume integration with different element topologies is also tested (the “volume integration” tests in the MasterElement
and HOMasterElement test cases).

4.9.2 Stratified MMS

A convergence study using the method of manufactured solutions (MMS) was also performed to assess the integration
of the source term into the governing equations. An initial condition of a Taylor-Green vortex for velocity, a zero-
gradient pressure field, and a linear enthalpy profile in the z-direction are imposed.

1
u=— 5008(27m:)5in(27Ty)sz'n(27rz)

v = sin(2mwx)cos(2my)sin(2wz)

w = —%sin(27r:c)sin(27ry)cos(27rz) @.14)
p=20

h=z.

The simulation is run on a three-dimensional domain ranging from -1/2:+1/2 with reference density, reference tem-

perature and the thermal expansion coefficient to equal to 1, 300, and 1, respectively. 5 is much larger than typical
(1/T}e) so that the buoyancy term is a significant term in the MMS in this configuration.

The Boussinesq buoyancy model uses a gravity vector of magnitude of ten in the z-direction opposing the enthalpy
gradient, g; = (0,0, —10)T. The temperature for this test ranges between 250K and 350K. The test case was run with
aregular hexahedral mesh, using the edge-based vertex centered finite volume scheme. Each case was run with a fixed
maximum Courant number of 0.8 relative to the specified solution.
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Fig. 4.16: Transient recycling of the temperature inflow boundary condition for the subsequent ABL simulation. After
3000 seconds, the inflow boundary condition is recycled from the begining of the precursor simulation.
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Fig. 4.17: Subsequent simulation showing the full temperature domain (left) and on the precursor inflow temperature
boundary condition field obtained from the perspective of the subsequent “external_field_provider” Realm (right).

Table 4.1: Error in x-component of velocity

h Lo L1 L2 Order
1/32 8.91e-3 1.12e-3 1.77e-3 NA
1/64 2.03e-3 3.04e-4 4.27e-4 2.05
1/128 4.65¢e-4 7.64e-5 1.05e-4 2.03
Table 4.2: Error in y-component of velocity
h Lo L1 L2 Order
1/32 1.78e-2 2.31e-3 3.47e-3 NA
1/64 4.18e-3 5.92¢e-4 8.23e-4 2.06
1/128 9.70e-4 1.50e-4 2.02e-4 2.03
Table 4.3: Error in z-component of velocity
h Lo L1 L2 Order
1/32 8.68e-2 1.17e-3 1.73e-3 NA
1/64 2.00e-3 2.99¢-4 4.22e-4 2.04
1/128 4.64e-4 7.63e-5 1.05e-4 2.00
Table 4.4: Error in temperature
h Lo L1 L2 Order
1/32 1.09e-2 1.46e-3 2.10e-3 NA
1/64 2.06e-3 3.13e-4 4.19¢-4 2.32
1/128 4.18e-4 7.54e-5 1.00e-4 2.06

This test is added to Nalu-Wind’s nightly test suite, testing that the convergence rate between the 1/32 and 1/64 element

sizes is second order.
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4.10 3D Hybrid 1x2x10 Duct: Specified Pressure Drop

In this section, a specified pressure drop in a simple 1x2x10 configuration is run with a variety of homogeneous
blocks of the following topology: hexahedral, tetrahedral, wedge, and thexahedral. This analytical solution is given
by an infinite series and is coded as the “1x2x10” user function. The simulation is run with an outer wall boundary
condition with two open boundary conditions. The specified pressure drop is 0.016 over the 10 cm duct. The density
and viscosity are 1.0e-3 and 1.0e-4, respectively. The siumulation study is run a fixed Courant numbers with a mesh
spacing ranging from 0.2 to 0.025. Figure Fig. 4.18 provides the standard velocity profile for the structured hexahedral
and unstructured tetrahedral element type.

Fig. 4.18: Streamwise velocity profile for specified pressure drop flow; tetrahedral and hexahedral topology.

The simulation study employed a variety of elemental topologies of uniform mesh spacing as noted above. Figure Fig.
4.19 outlines the convergence in the Ly norm using the low-order elemental CVFEM implementation using the recently
changed tetrahedral and wedge element quadrature rules. Second-order accuracy is noted. Interestingly, the hexahedral
and wedge topology provided nearly the same accuracy. Also, the tetrahedral accuracy was approximately four tiomes
greater. Finally, the Thexahedral topology proved to be second-order, however, provided very poor accuracy results.

4.11 3D Hybrid 1x1x1 Cube: Laplace

The standard Laplace operator is evalued on the full set of low-order hybrid topologies (not inlcuding the pyramid).
In this example, the temperature field is again,

T = %(608(20,71'56) + cos(2amy) + cos(2arz)). 4.15)

Figure Fig. 4.20 represents the MMS field for temperature on a variety of mesh topologies. The thexahedral mesh is
obtained from the standard uniform spacing tetrahedral mesh (not shown). The tetrahedral mesh shown is a tet-based
conversion of the standard structured hexahedral mesh. This approach ensures that the number of nodes between the
hexahedral and tetrahedral mesh are the same.

Figure Fig. 4.21 provides the Lo norms, all of which are showing second-order accuracy. In Figure Fig. 4.22, the
L, error is shown. As indicated from the convergence plot, slight degradation in order-of-accuracy is noted for the
thexahedral topology.
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Fig. 4.19: L4 error for the CVFEM scheme on a variety of element types.
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Fig. 4.20: Temperature shadings for hexahedral, thexahedral, wedge, and tetrahedral topologies (clockwise from the
upper left).

4.12 Fixed Wing Verification Problem

Introduction A basic verification of the actuator line theory can be done by considering a fixed, 2D wing in a uniform
flow. Such a test can be done independently of the openFAST library and can be easily verified by a simple algebraic
calculation.

actuator:
type: ActLineSimple
search _method: stk_kdtree
search_target_part: Unspecified-2-HEX

n_simpleblades: 1
debug_output: false
n_turbines_glob: 0

BladeO:
num_force_pts_blade: 20
epsilon: [3.0, 3.0, 3.0]
pl: [-25, —4, 0]
p2: [-25, 4, 0]

pl_zero_alpha_dir: [1, 0, 0]
chord _table: [1.0]
twist_table: [0.0]

aoa_table: [-180, 0, 180]
cl_table: [-19.739208802178716, 0, 19.739208802178716]
cd_table: [0]

The fixed wing is defined between points p; and ps given the chord length and blade twist defined in
chord_table and twist_table. The direction pl, corresponding to the zero degree angle of attack is given
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Fig. 4.21: L, norms for the full set of hybrid Laplace MMS study.
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Fig. 4.23: Schematic of the fixed wing airfoil problem.
An example of the fixed wing specification in the Nalu-Wind input file is shown below. The actuator type can be
ActLineSimpleNGP for the NGP version and ActLineSimple for the non-NGP version (soon to be deprecated).

inpl_zero_alpha_dir. The lift coefficients C, and drag coefficients C'p are tabulated in the c1_table and
cd_table parameters, respectively, as functions of the angle of attack o in aca_table.

The lift L and drag D on the fixed wing can be calculated by infinite 2D airfoil theory using the formulas:

1

L= §pUQCL(a)S (4.16)
1 2

D= §pU Cp(a)S (4.17)

In equations (4.16) and (4.17), the area of the airfoil is given by .S, the density is given by p, and the wind speed is
given by U.

For the verification problem, a simple 2D, extruded blade is used with span [ = 8m and chord ¢ = 1m, giving an area
S = 8m?. An isotropic force spreading value of ¢ = 3 is used, along with 20 blade stations. The wind conditions are
given by p = 1.0 kg/m® and U = 2 m/s.

The aerodynamic properties of the fixed wing are given by the linear lift coefficient
Cr =2na (4.18)
and zero drag
Cp =0. (4.19)

A comparison of total lift force calculated Nalu-Wind against the 2D airfoil theory is shown in Figure Fig. 4.24. As
expected, the total lift force varies linearly with the angle of attack, and the agreement between theory and Nalu-Wind
is good. Differences between the two methods were seen to be less than 0.1% over the range 0 < o < 5 degrees.

4.13 Actuator line simulations coupled to OpenFAST

We test the implementation of the actuator line algorithm in Nalu-Wind coupled to OpenFAST by performing a simu-
lation of a flow past an elliptic wing at a constant angle of attack. We compare the solution from the coupled simulation
to that using lifting line theory [KP02].

The elliptic wing is modeled using OpenFAST, a aero-hydro-servo-elastic tool to model wind turbines developed by
the National Renewable Energy Laboratory (NREL). A static wind turbine model was created in OpenFAST with just
one elliptic wing and all other systems including structural deformation, controls, etc. are turned off. The elliptic wing
simulated in this work is an infinitesimally thin wing with a maximum chord (cy) of 1m and an aspect ratio (b/cg) of
10.0. The lift-curve slope (dC}/da) of all airfoil sections on the wing is assumed to be 27 with no pressure or viscous
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Fig. 4.24: Comparison of the total lift force from Nalu-Wind and from 2D airfoil theory.

drag. Using lifting line theory [KP02], the loads on the elliptic wing are

Area S =
co b
Ty
Maximum circulation I',.x =
2bU o (v — g 0)
14+ 4b/27cq
Lift coefficient Cy, =
L T b MNnax
05pU%LS 28 Us ’
Lift coefficient C'p =
D T anax
0.5pU2S ~ 4S U2’

Constant induced downwash w; =

Fmax

2
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Span b = 10m
Max chord ¢y = 1.0m
Angle of attack o = 7°
Us = 10.0m/s
Reynolds number based on chord = 0.66 M

Number of actuator points across span = 50

(4.20)

The flow past the elliptic wing is simulated in a domain of size 4b x 3b x 3b. Some parameters of the simulation are
described in equation (4.20). As described in the section Wind Turbine Modeling, the actuator line algorithm solves
the momentum equation with a body force term spread to the nodes where ¢ is the spreading width. It is necessary to
maintain a constant e to observe convergence of the solution with grid refinement. However, we do expect the solution
from the actuator line algorithm to be closer to that from lifting line theory with reducing €. Hence, we perform five
numerical simulations with grid resolutions as shown in table shown below. Simulations a,b,c use ¢ = 1m and d,e
use € = 0.5m. We expect to see grid convergence with simulations a,b,c while we expect simulations d,e to predict a
solution closer to the lifting line solution compared to simulations a,b,c.

Case | Ax/cy | At e/A
a 0.125 0.00125 | 8.0
b 0.25 0.0025 4.0
c 0.5 0.005 2.0
d 0.125 0.00125 | 4.0
e 0.25 0.0025 2.0

The data shown in Fig. 4.25 - Fig. 4.29 are computed purely using output from OpenFAST. Unfortunately OpenFAST
can only output data at a maximum of 9 stations along the blade. For this specific work, I had designed the aerody-
namics module (AeroDyn) inside OpenFAST to use 18 stations to compute the forces along the blade. However, the
mesh mapping algorithm in OpenFAST is used to interpolate the forces per unit length along the blade into discrete
point forces at 50 actuator points along the blade as described in equation (4.20).

Fig. 4.25-Fig. 4.26 shows the comparsion of lift and drag coefficient predicted by the actuator line simulations to the
solution from lifting line theory. Simulations d and e are closer to the lifting line solution compared to a,b,c because
of the smaller €. Simulations a,b,c show grid convergence since they use the same €. Fig. 4.27-Fig. 4.28 show similar
results through the span wise distribution of the lift and drag per unit length along the blade. Fig. 4.29 shows the
comparison of the predicted angle of attack on the blade to the constant angle attack predicted by the lifting line
theory. As expected, the agreement with the lifting line theory is much better near the mid-span region compared to
the wing tips.

4.14 Open Boundary Condition With Outflow Thermal Stratification

In situations with significant thermal stratification at the outflow of the domain, the standard open boundary condition
alone is not adequate because it requires the specification of motion pressure at the boundary, and this is not known
a priori. Two solutions to this problem are: 1) to use the global mass flow rate correction option, or 2) to use the
standard open boundary condition in which the buoyancy term uses a local time-averaged reference value, rather than
a single reference value.

We test these open boundary condition options on a simplified stratified flow through a channel with slip walls. The
flow entering the domain is non-turbulent and uniformly 8 m/s. The temperature linearly varies from 300 K to 310
K from the bottom to top of the channel with compatible, opposite-sign heat flux on the two walls to maintain this
profile. The Boussinesq buoyancy option is used, and the density is set constant to 1.17804 kg/m 3. This density is
compatible with the reference pressure of 101325 Pa and a reference temperature of 300 K. The viscosity is set to
1.0e-5 Pa-s. The flow should keep its inflow velocity and temperature profiles throughout the length of the domain.
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Fig. 4.25: Comparison of lift coefficient C', for an elliptic wing simulated using actuator line algorithm to solution
using lifting line theory.
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Fig. 4.26: Comparison of drag coefficient C'p for an elliptic wing simulated using actuator line algorithm to solution
using lifting line theory.
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Fig. 4.27: Comparison of lift coefficient C', for an elliptic wing simulated using actuator line algorithm to solution
using lifting line theory. Results are only shown at 9 different stations along the blade that are output from OpenFAST.
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Fig. 4.28: Comparison of drag coefficient C'p for an elliptic wing simulated using actuator line algorithm to solution
using lifting line theory. Results are only shown at 9 different stations along the blade that are output from OpenFAST.
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Fig. 4.29: Comparison of angle of attack distribution on an elliptic wing simulated using actuator line algorithm to
solution using lifting line theory. Results are only shown at 9 different stations along the blade that are output from
OpenFAST.
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The domain is 3000 m long, 1000 m tall, and 20 m wide with 300 x 100 x 2 elements. The upper and lower boundaries
are symmetry with the specified normal gradient of temperature option used such that the gradient matches the initial
temperature profile with its gradient of 0.01 K/m. Flow enters from the left and exits on the right. The remaining
boundaries are periodic.

We test the problem on three configurations: 1) using the standard open boundary condition, 2) using the global-mass-
flow-rate-correction option, and 3) using the standard open boundary condition with a local moving-time-averaged
reference temperature in the Boussinesq buoyancy term.

Figure Fig. 4.30 shows the across-channel profile of outflow streamwise velocity. It is clear that in configuration 1, the
velocity is significantly distorted from the correct solution. Configurations 2 and 3 remedy the problem. However, if
we reduce the range of the x-axis, as shown in Figure Fig. 4.31, we see that configuration 3, the use of the standard
open boundary condition with a local moving-time-averaged Boussinesq reference temperature, provides a superior
solution in this case. In Figure, Fig. 4.32, we also see that configuration 1 significantly distorts the temperature from
the correct solution.
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E |
[ |
400 H |

200 | — standard open BC with 7- 7., Boussinesq

I — - nrcorrected open BC with r— r.; Boussinesq
] - - standard open BC with 7- (1) Boussinesg
0 T T 1 T T T T T

8
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u, (m/s)
Fig. 4.30: Outflow velocity profiles for the thermally stratified slip-channel flow.

We also verify that the global mass-flow-rate correction of configuration 2 is correcting the outflow mass flow rate
properly. The output from Nalu-Wind showing the correction is correct and is shown as follows:

Mass Balance Review:
Density accumulation: O

Integrated inflow: -188486.0356751138

Integrated open: 188486.035672821

Total mass closure: -2.29277e-06

A mass correction of: -2.86596e-09 occurred on: 800 boundary integration points:

Post-corrected integrated open: 188486.0356751139

204 Chapter 4. Nalu-Wind - Verification Manual




Nalu-Wind Documentation, Release 1.2.0

1000 —_— .
"’1:; — - m-corrected open BC with r- 7.y Boussinesq
- = standard open BC with r- (7} Boussinesg
= 1
800 RN
o~
I AN
: A
600 — | |
B -
g o
- | f
400 - "y
v
A
7
200 g
S
=
—_ 1
0 I | E— | I |
7.9900 7.99257.99507.9975 8.0000 8.0025 8.00508.00758.0100
i, (m/s)

Fig. 4.31: Outflow velocity profiles for the thermally stratified slip-channel flow considering only the case with the
global mass-flow-rate correction and the standard open boundary with the local moving-time-averaged Boussinesq
reference value.
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Fig. 4.32: Outflow temperature profiles for the thermally stratified slip-channel flow.
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4.15 Specified Normal Temperature Gradient Boundary Condition

The motivation for adding the ability to specify the boundary-normal temperature gradient is atmospheric boundary
layer simulation in which the upper portion of the domain often contains a stably stratified layer with a temperature
gradient that extends all the way to the upper boundary. The desire is for the simulation to maintain that gradient
throughout the simulation duration.

Our test case is a laminar infinite channel with slip walls. In this case, the flow velocity is zero so the problem is simply
a heat conduction through fluid. The density is fixed as constant, and there are no source terms including buoyancy.

This problem has an the analytical solution for the temperature profile across the channel:

—9H — Yo

- M(z—z()ﬂ 4.21)

T(t, Z) = T(to, Zo) + Va0

ﬁeff(t —t9) +go(z — 20) +
where % is the initial time; 2 is the height of the lower channel wall; H is the channel height; gg and gz are the wall-
normal gradients of temperature at the lower and upper walls, respectively; ks is the effective thermal diffusivity;
and z is the distance in the cross-channel direction. The sign of the temperature gradients assumes that boundary
normal points inward from the boundary. For this solution to hold, the initial solution must be that of (4.21) with
t =to.

For all test cases, we use a domain that is 10 m x 10 m in the periodic (infinite) directions, and 100 m in the cross-
channel (z) direction. We specify a constant density of 1 kg/m 3, zero velocity, no buoyancy source term, a viscosity
of 1 Pa-s, and a laminar Prandtl number of 1. No turbulence model is used. The value of T'(¢, z0) is 300 K.

4.15.1 Simple Linear Temperature Profile: Equal and Opposite Specified Tempera-
ture Gradients

A simple verification test that is representative of a stable atmospheric capping inversion is to compute the simple
thermal channel with equal and opposite specified temperature gradients on each wall. By setting gy = —go in
Equation (4.21), we are left with

T(z) = T(20) + go(z — 20)- (4.22)
In other words, if we set the initial temperature profile to that of (4.22), with g = —gg, the profile should remain

fixed for all time. In this case, we set gg = 0.01 K/m and gy = —0.01 K/m.

We use a mesh that 2 elements wide in the periodic directions and 20 elements across the channel. We simulate a long
time period of 25,000 s. Figure Fig. 4.33 shows that the computed and analytical solutions agree.

4.15.2 Parabolic Temperature Profile: Equal Specified Temperature Gradients

Next, we verify the specified normal temperature gradient boundary condition option by computing the simple thermal
channel with equal specified temperature gradients, which yields the full time-dependent solution of Equation (4.21).
Here, we set go = gy = 0.01 K/m.

We use meshes that are 2 elements wide in the periodic directions and 20, 40, and 80 elements across the channel.
We simulate a long time period of 25,000 s. Figure Fig. 4.34 shows that the computed and analytical solutions agree.
There is no apparent overall solution degradation on the coarser meshes.
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Fig. 4.33: The analytical (black solid) and computed (red dashed) temperature profile from the case with g = —go
att = 25,000 s.
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Fig. 4.34: The analytical (black solid) and computed (colored) temperature profile from the case with g = gp att =
25,000 s.
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-p, —-pprint, 15

-v, -version,l5
name

Nalu-Wind Input File

O

output
Nalu-Wind Input File
output.compression_level
Nalu-Wind Input File

specifications,
specifications.
specifications
specifications
specifications
specifications
specifications
specifications
specifications
specifications
specifications
specifications
specifications.
specifications
specifications

specifications

compute_fav

.compute_fav

.compute_lam

.compute_qg_c
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