
MysqlSimpleQueryBuilder Manual
Release 0.4.0

saaj

May 13, 2018

Contents

1 Autocommit 3

2 Nested transaction 5

3 Implicit transaction completion 7

4 Concurrency 9

5 Persistent connection 11

6 MySQL versus 13

7 Install 15
7.1 Adapter . 15
7.2 Performance . 16

8 Reference 17
8.1 Facade . 17
8.2 Cursor . 20
8.3 Internal . 21

9 Profiling 23
9.1 Example . 24

10 Mysql Simple Query Builder 27
10.1 Scope . 27

i

ii

MysqlSimpleQueryBuilder Manual, Release 0.4.0

Briefly about the main module myquerybuilder.builder. It is about two hundred logical lines of code. It’s
mere string building that gives up most aspects of operation, like escaping, connectivity and types, to the underlying
MySQL adapters. Nothing really technically fancy, but rather simple thin convenience wrapper.

For supported adapters see Install.

Contents 1

MysqlSimpleQueryBuilder Manual, Release 0.4.0

2 Contents

CHAPTER 1

Autocommit

PEP-2491 proposes (it doesn’t mandate if you still remember what the last P stands for), auto-commit to be initially
off. To speak it outright in case of MySQL, it is blatantly wrong.

Not only it is counterintuitive, different to DBAPIs in other languages, breaks the Zen of Python, explicit is better than
implicit, and leads to countless and constant surprise of beginners like where is my data?, why does MyISAM work
but InnoDB doesn’t?, why does SELECT work but UPDATE doesn’t?, Why doesn’t MySQL INSERT into database?
and so on and so forth234. It also leads more established developers to scratch their heads, because InnoDB’s default
transaction isolation is REPEATABLE READ5, and the reader will only receive its first snapshot6.

Read-only transactions lead to many performance issues78 and complicate application design when frameworks do
weird twist pulling out consistency matters from their inherent domain model origin to request level. In that way
even monstrous things like Django with huge codebases and the established practice rethink the decision and enable
auto-commit9.

Because decisions in domain model consistency should be conscious and elaborate, MySQL Simple Query Builder sets
auto-commit to the server default setting, which is usually ON.

1 https://www.python.org/dev/peps/pep-0249/
2 http://stackoverflow.com/q/1028671/2072035
3 http://stackoverflow.com/q/1451782/2072035
4 http://stackoverflow.com/q/14445090/2072035
5 http://dev.mysql.com/doc/refman/5.5/en/set-transaction.html#isolevel_repeatable-read
6 http://stackoverflow.com/q/25991345/2072035
7 https://blogs.oracle.com/mysqlinnodb/entry/better_scaling_of_read_only
8 https://mariadb.com/blog/every-select-your-python-program-may-acquire-metadata-lock
9 https://docs.djangoproject.com/en/1.7/topics/db/transactions/#autocommit

3

https://www.python.org/dev/peps/pep-0249/
http://stackoverflow.com/q/1028671/2072035
http://stackoverflow.com/q/1451782/2072035
http://stackoverflow.com/q/14445090/2072035
http://dev.mysql.com/doc/refman/5.5/en/set-transaction.html#isolevel_repeatable-read
http://stackoverflow.com/q/25991345/2072035
https://blogs.oracle.com/mysqlinnodb/entry/better_scaling_of_read_only
https://mariadb.com/blog/every-select-your-python-program-may-acquire-metadata-lock
https://docs.djangoproject.com/en/1.7/topics/db/transactions/#autocommit

MysqlSimpleQueryBuilder Manual, Release 0.4.0

4 Chapter 1. Autocommit

CHAPTER 2

Nested transaction

InnoDB supports transaction savepoints10. These are named sub-transactions that run in the scope of a normal transac-
tion. Having begin, commit and rollback that always behave in a semantically correct way is usually beneficial.
It’s so for atomic domain object methods’ that may call other atomic methods, for unit and integration tests and other
cases. Here’s how nested calls correspond to queries.

call query
qb.begin() BEGIN
qb.begin() SAVEPOINT LEVEL1
qb.begin() SAVEPOINT LEVEL2
qb.rollback() ROLLBACK TO SAVEPOINT LEVEL2
qb.commit() RELEASE SAVEPOINT LEVEL1
qb.rollback() ROLLBACK
qb.begin() BEGIN
qb.commit() COMMIT

Warning: In MySQL you can query unmatched BEGIN, COMMIT and ROLLBACK without an error. For instance
you can ROLLBACK without preceding BEGIN, or several BEGIN queries in row. MySQL just ignores the queries
that make no sense. This is no longer the case with myquerybuilder.builder.QueryBuilder which
maintains stack order transaction level counter, and raises OperationalError on unmatched calls.

If certain functionality doesn’t need to be atomic or possible speedup from grouping statements into transactions is
negligible, just rely in auto-commit and don’t bother. Otherwise if you have decided to employ a transaction make
sure you have the idea what ACID11 is, and what impact InnoDB transaction isolation levels have17. It’s important for
your transactional code to be properly wrapped in try...except clause:

10 http://dev.mysql.com/doc/refman/5.5/en/savepoint.html
11 http://en.wikipedia.org/wiki/ACID
17 http://dimitrik.free.fr/blog/archives/02-01-2015_02-28-2015.html

5

http://dev.mysql.com/doc/refman/5.5/en/savepoint.html
http://en.wikipedia.org/wiki/ACID
http://dimitrik.free.fr/blog/archives/02-01-2015_02-28-2015.html

MysqlSimpleQueryBuilder Manual, Release 0.4.0

qb.begin()
try:

your workload
qb.commit()

except:
qb.rollback()
raise

To reduce the boilerplate a simple decorator can be implemented as follows. Note that the example is applicable only
to methods (or functions whose first argument has attribute _db):

import functools

def transaction(fn):
'''Decorator that wraps a model method into transaction'''

@functools.wraps(fn)
def _transaction(self, *args, **kwargs):
self._db.begin()
try:

result = fn(self, *args, **kwargs)
self._db.commit()

except:
self._db.rollback()
raise

else:
return result

return _transaction

6 Chapter 2. Nested transaction

CHAPTER 3

Implicit transaction completion

MySQL can implicitly (i.e. without your direct command), commit or roll back a transaction. If you use nested
transactions and have the following exception, it’s very likely it is the case.

OperationalError: (1305, 'SAVEPOINT LEVEL1 does not exist')

MySQL implicitly commits a transaction in case of most DDLs, system tables modification, locking statements, data
loading statements, administrative statements and more12. Implicit rollback occurs when13:

• Transaction deadlock is detected

• Lock wait is timed out (until 5.0.13 or if configured explicitly thereafter)

• Reconnection happened

The missing savepoint error is very likely originated from a deadlock. Take a look at myquerybuilder.test.
builder.TestQueryBuilderTransaction for simulated implicit transaction completion.

12 http://dev.mysql.com/doc/refman/5.5/en/implicit-commit.html
13 http://dev.mysql.com/doc/refman/5.0/en/innodb-error-handling.html

7

http://dev.mysql.com/doc/refman/5.5/en/implicit-commit.html
http://dev.mysql.com/doc/refman/5.0/en/innodb-error-handling.html

MysqlSimpleQueryBuilder Manual, Release 0.4.0

8 Chapter 3. Implicit transaction completion

CHAPTER 4

Concurrency

Underlying MySQL adapters are not thread-safe so isn’t the library. If you will share the query builder instances,
and thus the DBAPI connection object, among threads most likely outcome for a libmysqlclient-based adapter is
segmentation fault and crash of whole Python process. For pure-Python adapter you will face weird behaviour, lost
data and out-of-sync errors.

Suggested way is one of the simplest. Use thread-mapped persistent connections. It is perfectly fine to have several
dozens of established MySQL connections14. This way any overhead related to establishing connection is eliminated
and you get your data as soon as possible.

Though a transparent connection pooling or thread-mapping may appear in future releases as it simplifies things.

14 http://stackoverflow.com/a/99565/2072035

9

http://stackoverflow.com/a/99565/2072035

MysqlSimpleQueryBuilder Manual, Release 0.4.0

10 Chapter 4. Concurrency

CHAPTER 5

Persistent connection

Persistent connection to MySQL server has its performance benefits, which are paid off by the need to maintain the
state and availability. For figuring out whether connection is alive while staying idle for a long time, ping MySQL API
function is used. It is also the reconnection function. The library’s counterpart is ping().

Note: In case of web application and persistent connection, you need to call qb.ping(True) before processing a
request to ensure that connection is alive and to reconnect if it was lost.

Alternatively, you can wrap your public methods or classes with decorator as follows:

def ping(clsOrFn):
'''Class or function decorator that pings database connecting before execution
of the function(s)'''

if isinstance(clsOrFn, type):
for name, member in clsOrFn.__dict__.items():

if not name.startswith('_') and isinstance(member, types.FunctionType):
setattr(clsOrFn, name, ping(member))

return clsOrFn
elif isinstance(clsOrFn, types.FunctionType):
@functools.wraps(clsOrFn)
def _ping(self, *args, **kwargs):
self._db.ping()
return clsOrFn(self, *args, **kwargs)

return _ping
else:
raise TypeError

MySQL also has auto-reconnection feature16. It was even enabled by default from MySQL 5.0.0 to 5.0.3. It allows
silent reconnection on any query when the client has found that the connection was lost. It may sound like a handy
thing, but in fact it is a dangerous and discouraged one.

16 http://dev.mysql.com/doc/refman/5.0/en/auto-reconnect.html

11

http://dev.mysql.com/doc/refman/5.0/en/auto-reconnect.html

MysqlSimpleQueryBuilder Manual, Release 0.4.0

When reconnection does occur, no matter silent or deliberate, the connection’s state is severely affected, including but
not limited to:

• Active transaction is rolled back

• All table locks are released

• All temporary tables are closed and dropped

• User variable settings are lost

In worst case the server may not yet know that the client has lost connection, thus the client that has just reconnected
may find itself in a separate to its old transaction.

The subtle point with auto-reconnection and pinging is that MySQL-python (and mysqlclient as a fork) accepts
reconnect argument for connection’s method ping, which has a side-effect that sets connection-wide auto-
reconnection behaviour. In other words:

import MySQLdb
conn = MySQLdb.connect(user = 'guest')
conn.ping(True)

And your connection works in auto-reconnection mode and you should expect the unexpected later on. It is sub-
tle because ping’s docstring is the only source and it’s defined in _mysql.c, so you see one only if you ask it,
help(conn.ping). There’s just a brief remark:

Accepts an optional reconnect parameter. If True, then the client will attempt reconnection. Note that this
setting is persistent.

Therefore, to avoid the persistent side-effect when called with True reconnection argument ping() calls underlying
ping method with False second time.

For simulated behaviour, see myquerybuilder.test.builder.TestQueryBuilder.testPing.

12 Chapter 5. Persistent connection

CHAPTER 6

MySQL versus

Here goes a note about what makes MySQL (which usually should be read as InnoDB) “special” and why it has been
chosen for the library in the first place. Or in other words why not PostgreSQL? which you may hear claimed superior
and “true” database (as opposite to MySQL) here and there.

I can’t say anything good or bad about PostgreSQL. It is just cut off. That is when one submits to Occam’s razor to
gain mastery with one thing, rather what acquaintance with many. Thus nothing makes it special in the first place but
the historic choice. However I will quote a translation of one good related comment I read long ago, which has only
survived in my personal correspondence:

You may notice that Google hasn’t overgrown MySQL and still uses it in replicated setup with hundreds
of geographically distributed servers. Makes sense? Why do Facebook, Yahoo and other giants nearly the
same thing? So what makes your project so special that you say you have overgrown it?

There is no doubt that true scalability is sharding. Full-featured SQL, when you never shy to JOIN any
table, unfortunately, doesn’t scale. In no way. Just forget about it. Eventually, you will be sharding your
data and your business logic will retrace back to middleware. Where it belongs, though.

Of course it disturbs “true” RDBMS vendors who wish as most business logic as possible to reside inside
the database. Otherwise they have nothing to sell you. So far as business logic lives in middleware, only
a reliable storage is needed. This is what MySQL can cope with. Don’t trust me? Ask Google.

13

MysqlSimpleQueryBuilder Manual, Release 0.4.0

14 Chapter 6. MySQL versus

CHAPTER 7

Install

MySQL Simple Query Builder can employ three MySQL client adapters which are either equivalent or compatible by
design:

• PyMySQL

• mysqlclient

• MySQL-python

The library works on Python 2, Python 3 and PyPy. At server side all MySQL-family should work, including MySQL,
MariaDB, Percona Server, Sphinx Search and probably others. Though CI is made only for MySQL1.

7.1 Adapter

For actual combination of supported Python versions and MySQL adapters, see tox file2.

7.1.1 PyMySQL

This is a pure-Python adapter, so it is straightforward:

pip install MysqlSimpleQueryBuilder[pymysql]

7.1.2 mysqlclient

This one made recent appearance, and in fact it is a fork of MySQL-python. But the fork has remarkable qualities.
Unlike long-stale MySQL-python and its possible future version called moist, it also supports Python 3 and PyPy.

1 https://drone.io/bitbucket.org/saaj/mysql-simple-query-builder
2 https://bitbucket.org/saaj/mysql-simple-query-builder/src/default/tox.ini

15

https://drone.io/bitbucket.org/saaj/mysql-simple-query-builder
https://bitbucket.org/saaj/mysql-simple-query-builder/src/default/tox.ini

MysqlSimpleQueryBuilder Manual, Release 0.4.0

Moreover it’s being actively developed by the same PyMySQL people3, who port bugs from the MySQL-python bug
tracker, and overall making a great job!

To be able to build C part of the client on Debian you, of course need build-essential, corresponding develop-
ment version of Python, for instance python-dev for Python 2, and libmysqlclient-dev:

apt-get install build-essential python-dev libmysqlclient-dev

Then:

pip install MysqlSimpleQueryBuilder[mysqlclient]

7.1.3 MySQL-python

This is our old default Python 2-only thing. The same OS packages are requires as for mysqlclient:

pip install MysqlSimpleQueryBuilder[mysqldb]

7.2 Performance

Here goes a quick benchmark of the supported environments to give you a clue of expectation. I set
myquerybuilder.test.benchmark.Benchmark.repeat = 10240, commented out py27-mysqldb
commands in tox, which also serves a role of code coverage environment and run:

for i in {1..8}; do tox -- -s myquerybuilder.test.benchmark.Benchmark.
→˓testSelectManyFields; done

As it wasn’t the point to benchmark MySQL per se, all queries are served from query cache. For PyMySQL it was
~95% CPU utilization by Python process, ~8% by mysqld. For libmysqlclient ~90% and ~15%, respectively.

It was run on Linux Mint Olivia with Intel Core i5 1.8GHz x 2 with HT. MySQL 5.5.34, Python 2.7.4 and 3.3.1 were
from Ubuntu repository. Python 3.4.2 was from deadspakes PPA, PyPy 2.4.0 (implements equivalent of Python 2.7.8)
from PyPy PPA (see tox setupdrone environment2).

There’s no surprise, but I will comment on a few observations anyway:

• PyPy is good for pure-Python libraries

• PyPy is bad for libraries with native C calls

• deadsnakes is test-only

• mysqlclient and MySQL-python are neck and neck

3 https://github.com/PyMySQL/

16 Chapter 7. Install

https://github.com/PyMySQL/

CHAPTER 8

Reference

This page is reference manual for the builder functionality. For more examples take a look at the project’s test suite1.
As well as the following snippets, the test suite is built against Sakila test database2.

8.1 Facade

class myquerybuilder.builder.QueryBuilder(clauseBuilder=<class ’myquery-
builder.builder.ClauseBuilder’>, **kwargs)

The package’s facade. The initializer sets autocommit to server’s default and establishes connection.

from myquerybuilder import QueryBuilder

qb = QueryBuilder(user = 'guest', passwd = 'pass', db = 'sakila')

cursorType = {<type 'tuple'>: <class 'myquerybuilder.builder.NamedCursor'>, <type 'dict'>: <class 'myquerybuilder.builder.NamedDictCursor'>}
The alias mapping that cursor() will look up for actual cursor class.

select(fields, table, where=None, order=None, limit=None)
Executes a SELECT query with the specified clauses.

param fields str sequence of fields to fetch. When it is an one-element sequence,
return value is tuple of scalars, otherwise return value is tuple of dict values. If no
row is matched, empty tuple is returned.

param table str of table name.

param where dict of conditions which is applied as a conjunction and whose values
can be scalar or vector. These values are values that can be escaped by the underlying
MySQL diver. Note that set has correspondence to MySQL ENUM type.

• None

• number: int, long, float, Decimal
1 https://bitbucket.org/saaj/mysql-simple-query-builder/src/default/myquerybuilder/test/
2 http://dev.mysql.com/doc/sakila/en/index.html

17

https://bitbucket.org/saaj/mysql-simple-query-builder/src/default/myquerybuilder/test/
http://dev.mysql.com/doc/sakila/en/index.html

MysqlSimpleQueryBuilder Manual, Release 0.4.0

• date: datetime, date

• string: str, unicode, bytes

• number or string sequence

E.g. {'a': 'foo'', 'b': (21, 9), 'c': None} results in WHERE
(`a` = %(a)s AND `b` IN %(b)s) AND `c` IS %(c)s which in turn
is interpolated by the driver library.

param order tuple sequence of field and sort order, e.g. [('a', 'asc'),
('b', 'desc')].

param limit int of row limit or tuple with offset and row limit, e.g. 10 or (100,
10).

fields = 'film_id', 'title'
table = 'film'
where = {'rating': ('R', 'NC-17'), 'release_year': 2006}
order = [('release_year', 'asc'), ('length', 'desc')]
limit = 2

rows = qb.select(fields, table, where, order, limit)
print(rows)
(
{'film_id': 872, 'title': 'SWEET BROTHERHOOD'},
{'film_id': 426, 'title': 'HOME PITY'},
)

fields = 'film_id',
rows = qb.select(fields, table, where, order, limit)
print(rows)
(872, 426)

one(fields, table, where=None, order=None)
Returns first matched row’s field values. When fields is one-element sequence, it returns the field’s
value, otherwise returns value is a dict. If no row is matched, None is returned.

fields = 'username', 'email'
table = 'staff'
where = {'active': True}
order = [('last_name', 'asc')]

row = qb.one(fields, table, where, order)
print(row)
{'username': 'Mike', 'email': 'Mike.Hillyer@sakilastaff.com'}

fields = 'username',
value = qb.one(fields, table, where, order)
print(value)
Mike

count(table, where=None)
Returns matched row count.

count = qb.count('payment', {'customer_id': (1, 2, 3), 'staff_id': 1}
print(count)
46

18 Chapter 8. Reference

MysqlSimpleQueryBuilder Manual, Release 0.4.0

insert(table, values)
Inserts a row with the values into the table. Last inserted id is returned.

actor = {
'first_name' : 'John',
'last_name' : 'Doe'

}
id = self.testee.insert('actor', actor)

update(table, values, where)
Updates the matched rows in the table. Affected row count is returned. If where is None it updates every
row in the table.

values = {'title': 'My New Title', 'length': 99}
where = {'film_id': 10}

affected = qb.update('film', values, where)

delete(table, where)
Deletes the matched rows from the table. Affected row count is returned. If where is None it deletes
every row in the table.

where = {'release_year': 2000}

affected = qb.delete('film', where)

cursor(type=<type ’tuple’>)
Return a cursor instance that corresponds to the provided type. Type can be either an actual cursor class,
or an alias that is looked up in cursorType.

quote(value)
Returns literal representation comprised of UTF-8 bytes, str for Python 2 and bytes with surroga-
teescape encoding for Python3, for the value. It doesn’t necessarily quotes the value, when it’s an int, or,
specifically in case of pymysql decimal.Decimal.

query(sql, where=None, order=None, limit=None)
Executes the SQL query and returns its cursor. Returned cursor is the cursor aliased by dict. The method
is an aid for complex query construction when its WHERE, ORDER, LIMIT are yet simple. If there is no
clause placeholder in the query, but clause values are provided, its representation is appended to the query.
If there is a placeholder, but no values, it is replaced with empty string.

sql = '''
SELECT address, district
FROM (
SELECT ad.*
FROM country cn
JOIN city ct USING(country_id)
JOIN address ad USING(city_id)
{where}
{order}

) AS `derived`
{limit}

'''
where = {

'ad.address2' : None,
'ct.city_id' : 300,
'ad.address_id' : (1, 2, 3)

(continues on next page)

8.1. Facade 19

MysqlSimpleQueryBuilder Manual, Release 0.4.0

(continued from previous page)

}
order = [('ad.address_id', 'desc')]
limit = 10

cursor = qb.query(sql, where, order, limit)

ping(reconnect=True)

Checks connection to the server.

param reconnect Controls whether reconnection should be performed in case of lost con-
nection.

raises OperationalError Is raised when ping has failed.

Warning: When reconnection occurs, implicit rollback, lock release and other resets are performed!
In worst case the server may not yet know that the client has lost connection, thus the client may find
itself in a separate to its old transaction. For more details read Persistent connection.

begin()
Starts a transaction on the first call (in stack order), or creates a save point on a consecutive call. Increments
the transaction level. Read Nested transaction.

commit()
Commits a transaction if it’s the only pending one. Otherwise releases the savepoint. Decrements the
transaction level. Read Nested transaction.

rollback()
Rolls back a transaction if it’s the only pending one. Otherwise rolls back the savepoint. Decrements the
transaction level. Read Nested transaction.

8.2 Cursor

class myquerybuilder.builder.NamedCursor(connection)
Default cursor type of QueryBuilder. It converts named paramstyle into pyformat, so it can work with
MySQLdb-family as it uses client-side query parametrisation with string interpolation via % operator. Named
paramstyle is easy to read and write. Though if you don’t need it you can opt-put with setting desired
cursorType mapping as QueryBuilder internally doesn’t rely on named paramstyle.

sql = '''
SELECT c.first_name `firstName`, c.last_name `lastName`
FROM customer c
JOIN store s USING(store_id)
JOIN staff t ON s.manager_staff_id = t.staff_id
WHERE c.active = :active AND t.email LIKE :email
LIMIT 0, 1

'''
cursor = self.testee.cursor(dict)
cursor.execute(sql, {'active': True, 'email': '%@sakilastaff.com'})

print(cursor.fetchall())
({'firstName': u'MARY', 'lastName': u'SMITH'},)

20 Chapter 8. Reference

MysqlSimpleQueryBuilder Manual, Release 0.4.0

execute(query, args=None)
Executes a query.

Parameters

• query – Query to execute on server.

• args – Optional sequence or mapping, parameters to use with query. If args is a se-
quence, then format paramstyle, %s, must be used in the query. If a mapping is used, then
it should be either named or pyformat, :foo and %(bar)s respectively.

Returns Number of affected rows.

class myquerybuilder.builder.NamedDictCursor(connection)
The same as NamedCursor but with records represented by a dict.

8.3 Internal

class myquerybuilder.builder.ClauseBuilder
The class is responsible for handling SQL clause strings.

where = '{where}'
SQL WHERE clause placeholder to be used with query().

order = '{order}'
SQL ORDER clause placeholder to be used with query().

limit = '{limit}'
SQL LIMIT clause placeholder to be used with query().

getReference(name, alias=None)
Returns a valid reference for a field, with optional alias, or a table, e.g.:

name →‘name‘
a.name → a.‘name‘

getPlaceholder(name, nameOnly=False, postfix=”)
Returns pyformat paramstyle placeholder, which can optionally be postfixed.

getExpressions(fields, postfix=”, op=’=’)
Returns a tuple of boolean binary expressions for provided field names, where the entry looks like field
operator placeholder. Default operator is equality, =. Placeholder can be postfixed.

getSelectClause(fields)
Returns SELECT clause string with provided fields.

getFromClause(table)
Returns FROM clause string with provided table name.

getWhereClause(where)
Returns WHERE clause string with conjunction of provided conditions. Empty string when no condition
is provided.

getOrderClause(order)
Returns ORDER clause string with provided order sequence. Empty string when no order is provided.

8.3. Internal 21

MysqlSimpleQueryBuilder Manual, Release 0.4.0

getLimitClause(limit)
Returns LIMIT clause string with provided limit. Empty string when no limit is provided. The parameter
can be either entry limiting int or two-element sequence (start, offset).

replaceClause(sql, name, values)
Handles the clause in the SQL query. If the query has a placeholder, {where} for instance, and correspond-
ing values are provided, the placeholder is replaced with return value of the clause callable. If there’s no
placeholder, return value is appended to the query. If a placeholder presents, but no values are provided,
it’s replaced with empty string.

Parameters

• sql – SQL query to process.

• name – Clause name: where, order, limit.

• values – Values to pass to the clause callable.

Returns SQL query with processed clause.

class myquerybuilder.builder.ClauseBuilderCamelCase
The subclass that makes it possible to reference fields and tables with camelCase (also called mixed case when
it starts from lowercase letter), when MySQL side, which is dominating convention, uses underscore convention
and Python side uses camelCase. QueryBuilder can be instantiated with custom clause builder like this:

qb = QueryBuilder(clauseBuilder = ClauseBuilderCamelCase, **config)

getReference(name, alias=None)
Returns a valid reference for a field, with optional alias, or a table, e.g.:

nameToName →‘name_to_name‘
a.nameToName → a.‘name_to_name‘

22 Chapter 8. Reference

CHAPTER 9

Profiling

MySQL Simple Query Builder provides profiling1 automation and status variable2 collection for a query or series of
queries. Specifically what it does is:

1. Turn off query cache

2. Fetch status variables before the target queries

3. Wrap target queries in SET profiling = 1 and SET profiling = 0

4. Fetch status variables after the target queries and calculate a difference

myquerybuilder.profiler.QueryProfiler only collects profiles and status changes. If you need to profile
a method or a query subclass myquerybuilder.test.ProfilerTestCase. It is a subclass of unittest.
TestCase and is intended to be used with compatible test runner.

Note: myquerybuilder.profiler.QueryProfiler overrides cursorType with aliases to profilable cur-
sors. Thus if you use non-alias or None type argument for cursor(), the queries won’t be handled.

By default, myquerybuilder.test.ProfilerTestCase prints only non-zero changes in status variables and
performance entries which are greater than or equal to 5% of the query total execution time. You can adjust these by
changing its skipZeroStatus and durationThreshold attributes, respectively. Also it prints queries, query
arguments and their execution plans.

QueryProfiler.groups defines status groups which should be collected. By default it is ('select',
'sort', 'handler', 'created', 'innodb_buffer'). See MySQL server status variable description3.

Note: MySQL variable profiling_history_size4 defines the number of statements for which to maintain
profiling information if profiling is enabled, which by default is 15. If you need to profile a group of more than 15
queries, you need to increase it.

1 http://dev.mysql.com/doc/refman/5.5/en/show-profile.html
2 http://dev.mysql.com/doc/refman/5.5/en/show-status.html
3 http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html
4 http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_profiling_history_size

23

http://dev.mysql.com/doc/refman/5.5/en/show-profile.html
http://dev.mysql.com/doc/refman/5.5/en/show-status.html
http://dev.mysql.com/doc/refman/5.5/en/server-status-variables.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_profiling_history_size

MysqlSimpleQueryBuilder Manual, Release 0.4.0

9.1 Example

from myquerybuilder import test, profiler

class TestExample(test.ProfilerTestCase):

def setUp(self):
test.ProfilerTestCase.profiler = profiler.QueryProfiler(**config)

super(TestQueryProfiler, self).setUp()

@test.ProfilerTestCase.profile
def testProfile(self):
sql = '''

SELECT country_id, city_id, city
FROM city
JOIN country USING(country_id)
{where}

'''
self.profiler.query(sql, {'country': 'Japan'})

The output for this test case looks like this:

********* profile **********
#1 0.000717 - 100.0%
starting 0.000072
sending data 0.000389
freeing items 0.000075

*********** plan ***********
***************** id:1 *****************
select_type SIMPLE
table country
type ALL
possible_keys PRIMARY
key
key_len
ref
rows 109
extra Using where

***************** id:1 *****************
select_type SIMPLE
table city
type ref
possible_keys idx_fk_country_id
key idx_fk_country_id
key_len 2
ref sakila.country.country_id
rows 3
extra

********** query ***********

SELECT country_id, city_id, city
FROM city
JOIN country USING(country_id)

(continues on next page)

24 Chapter 9. Profiling

MysqlSimpleQueryBuilder Manual, Release 0.4.0

(continued from previous page)

WHERE (`country` = %(country)s)

******** arguments *********
{'country': 'Japan'}

****** status handler ******
handler_commit 1.0
handler_read_first 1.0
handler_read_key 2.0
handler_read_next 31.0
handler_read_rnd_next 110.0

*** status innodb_buffer ***
innodb_buffer_pool_read_requests 116.0

****** status select *******
select_scan 1.0

For more examples you can look at the profiler test module5.

5 https://bitbucket.org/saaj/mysql-simple-query-builder/src/default/myquerybuilder/test/profiler.py

9.1. Example 25

https://bitbucket.org/saaj/mysql-simple-query-builder/src/default/myquerybuilder/test/profiler.py

MysqlSimpleQueryBuilder Manual, Release 0.4.0

26 Chapter 9. Profiling

CHAPTER 10

Mysql Simple Query Builder

Following the rule simple easy, complex possible, the package provides API for simple queries, nested transactions
and aid for complex query building and profiling. It’s a small wrapper around a Python MySQL driver.

The package is written on the following assumptions:

1. SQL is feasible and representative DSL

2. Simple SQL is simple but tedious to write by hand

3. Complex SQL is possible and should be written by hand or constructed elaborately

4. Unit/integration testing of domain logic against database is necessary

5. Database abstraction in the age of SaaS is a waste

10.1 Scope

What is simple SQL? Here are signatures for the query methods:

select(self, fields, table, where = None, order = None, limit = None)
one(self, fields, table, where = None, order = None)
count(self, table, where = None)
insert(self, table, values)
update(self, table, values, where)
delete(self, table, where)

What is complex SQL? Here are signatures of query construction:

cursor(self, type = tuple)
quote(self, value)
query(self, sql, where = None, order = None, limit = None)

Short argument description follows. For detailed description read Reference.

• fields is str sequence, e.g. ('film_id', 'title')

27

MysqlSimpleQueryBuilder Manual, Release 0.4.0

• table is str, e.g. 'film'

• where is dict, e.g. {'rating': ('R', 'NC-17'), 'release_year': 2006}

• order is tuple sequence of field and sort order, e.g. [('release_year', 'asc'), ('length',
'desc')]

• limit is int of row limit or tuple with offset and row limit, e.g. 10 or (100, 10)

• values is dict, e.g. {'title': 'My New Title', 'length': 99}

Accordingly, simple SELECT query is a query to single table with conjunction of conditions whose values are literal,
set of fields to order by and row offset and limit. Methods for INSERT, UPDATE and DELETE queries are similar.
Complex SQL is everything else.

That is to say the package doesn’t even try to abstract away from SQL. But rather it takes away the need of writing
really simple queries by hand. These method calls have obvious corresponding SQL, so obvious are their execution
plans.

The library was written for web application use case when dealing with domain objects’ representations is more
natural order of things than classical domain simulation with domain objects per se. Thus if you work on a classical
environment with long-living in-memory domain objects, taking philosophical problem of object-relational mismatch1

serious, or just developing a shrink-wrap, unlikely you will find the library useful. If that’s the case it’s worth looking
at SQLAlchemy2, peewee3 or the like.

1 http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
2 http://www.sqlalchemy.org/
3 https://peewee.readthedocs.org/

28 Chapter 10. Mysql Simple Query Builder

http://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
http://www.sqlalchemy.org/
https://peewee.readthedocs.org/

Index

B
begin() (myquerybuilder.builder.QueryBuilder method),

20

C
ClauseBuilder (class in myquerybuilder.builder), 21
ClauseBuilderCamelCase (class in myquery-

builder.builder), 22
commit() (myquerybuilder.builder.QueryBuilder

method), 20
count() (myquerybuilder.builder.QueryBuilder method),

18
cursor() (myquerybuilder.builder.QueryBuilder method),

19
cursorType (myquerybuilder.builder.QueryBuilder

attribute), 17

D
delete() (myquerybuilder.builder.QueryBuilder method),

19

E
execute() (myquerybuilder.builder.NamedCursor

method), 20

G
getExpressions() (myquerybuilder.builder.ClauseBuilder

method), 21
getFromClause() (myquerybuilder.builder.ClauseBuilder

method), 21
getLimitClause() (myquerybuilder.builder.ClauseBuilder

method), 21
getOrderClause() (myquerybuilder.builder.ClauseBuilder

method), 21
getPlaceholder() (myquerybuilder.builder.ClauseBuilder

method), 21
getReference() (myquerybuilder.builder.ClauseBuilder

method), 21

getReference() (myquery-
builder.builder.ClauseBuilderCamelCase
method), 22

getSelectClause() (myquerybuilder.builder.ClauseBuilder
method), 21

getWhereClause() (myquery-
builder.builder.ClauseBuilder method), 21

I
insert() (myquerybuilder.builder.QueryBuilder method),

18

L
limit (myquerybuilder.builder.ClauseBuilder attribute),

21

N
NamedCursor (class in myquerybuilder.builder), 20
NamedDictCursor (class in myquerybuilder.builder), 21

O
one() (myquerybuilder.builder.QueryBuilder method), 18
order (myquerybuilder.builder.ClauseBuilder attribute),

21

P
ping() (myquerybuilder.builder.QueryBuilder method),

20

Q
query() (myquerybuilder.builder.QueryBuilder method),

19
QueryBuilder (class in myquerybuilder.builder), 17
quote() (myquerybuilder.builder.QueryBuilder method),

19

R
replaceClause() (myquerybuilder.builder.ClauseBuilder

method), 22

29

MysqlSimpleQueryBuilder Manual, Release 0.4.0

rollback() (myquerybuilder.builder.QueryBuilder
method), 20

S
select() (myquerybuilder.builder.QueryBuilder method),

17

U
update() (myquerybuilder.builder.QueryBuilder method),

19

W
where (myquerybuilder.builder.ClauseBuilder attribute),

21

30 Index

	Autocommit
	Nested transaction
	Implicit transaction completion
	Concurrency
	Persistent connection
	MySQL versus
	Install
	Adapter
	Performance

	Reference
	Facade
	Cursor
	Internal

	Profiling
	Example

	Mysql Simple Query Builder
	Scope

