

MySensors

Welcome to MySensors’ unofficial documentation. We are trying to gather
relevant information and API documentation which will help new users and
developers.

MySensors is a library built focusing on Arduino platform to make home automation
easier. There is a set of third-party libraries which complements the whole
library.

If you don’t find what you want in this page, you always can go to the MySensors’ official
website [http://www.mysensors.org/] and its Forum [http://forum.mysensors.org/]

Protocol version 1.6

Contents:

	Getting Started

	Supported Hardware
	Tested Hardware

	Bootloaders
	Arduino Bootloader

	MYSBootloader

	Dual Optiboot

	Protocol
	Message Structure Elements

	Message Types

	Message Sub-types

	Examples

	Controllers
	List of controllers

	Other tools

	Nodes

	Security
	Background and concepts

	Why encryption is not part of this

	How this is done

	How to use this

	Whitelisting and node revocation

	The technical stuff

	Known limitations

	Typical usecases

	Api
	Functions

	Objects

What’s new:

	Library size reduced ~20% by removing a lot of C++ overhead.

	Full configuration of library behaviours and features directly from sketch
code.

	No more MySensors constructor mess with radio drivers and signing backends.
All setup and initialization is handled “behind-the-scene”.

	Calls to process() is handled in the background automatically.

	Structural change: Embedding of drivers and libraries in a structured way
instead of using the weird arduino-build-system util-folder which includes
everything when building.

	All gateway variants available as examples without any need for
re-configuration (E.g. SOFT-SPI automatically enabled for W5100).

	Gateway just another sensor node! So now you can have wired ethernet sensors
and wireless ESP8266 sensors without any radio attach if you want.

	AES encryption (RF24)

	Introducing a presentation() function in sketch - This allows controller to
re-request presentation and do re-configuring node after startup.

	Optional receive() function in sketch replaces begin(callback).

	sendHeartbeat() - Allows node to send heartbeat and controller to ping nodes.

	Ethernet/ESP8266 gateway supports setting static ip and using dhcp.

	Ethernet/ESP8266 gateway allowing communication using UDP.

	Ethernet/ESP8266 gateway can now act as a client which opens a socket to
controller at startup. NOTE: This has to be supported by controller.

	MQTT client gateway on ESP8266 or Arduino+W5100 Ethernet adapter.

	Serial transport layer (RS232/RS485) with dePin management.

	Added variable V_CUSTOM - For sending/requesting custom data to/from
controller and between nodes. Preferable using S_CUSTOM device. This
variable-type is controller specific so use it with care in the officially
provided examples.

	New sensors types and variables: S_INFO, S_GAS, S_GPS, V_TEXT, V_CUSTOM,
V_POSITION.

	New command I_DISCOVER - retrieve active nodes and topology.

	Detection of mis-wired RFM69 radios.

	MyMessage:getCommand() (get message type, e.g.: internal, stream, set, ...)

	“Smart sleep” variants of all sleep methods that allows nodes to receive
buffered messages/commands from controller that was issued while node was
sleeping. When calling the smartSleep() variant, the node immediately sends a
heartbeat mesage when waking up (informing controller that node is awake).
Before going back to sleep it waits MY_SMART_SLEEP_WAIT_DURATION to process
any incoming buffered messages from the controller. NOTE: Controller must
support this feature.

Getting Started

To start building your own Home Automation network, you need to setup at least
one Gateway.

Since protocol version 1.6 Gateways can be used as sensor nodes, so you don’t
need to setup other nodes to get your networking working.

Supported Hardware

MySensors library doesn’t have any specific hardware to be used in. However,
it was built around Arduino Uno that uses Atmega 328p, so, it’s most likely that
you will get your networking working if you use any board that uses the same
microcontroller.

Tested Hardware

	Arduino Uno

	Arduino Nano

	Arduino Mini Pro

	ESP8266

Bootloaders

Bootladers are softwares that run at the boot of your device to perform
some tasks like upload your new code.

MySensors library works officially with three different bootloaders:

	Arduino Bootloader

	MYSBootloader

	Dual Optiboot

Arduino Bootloader

Official Link: Arduino Bootloader [https://www.arduino.cc/en/Hacking/Bootloader?from=Tutorial.Bootloader]

It is the official Arduino Bootloader and every Arduino comes with it.
There is no special feature on it.

Advantage:

	Upload over Serial

Disadvantage:

	

MYSBootloader

Offial Link: MYSBootloader [https://github.com/mysensors/MySensorsBootloaderRF24]

Dual Optiboot

Official Link: Dual Optiboot [https://github.com/mysensors/DualOptiboot]

Protocol

The protocol used between the Gateway and the Controller is a simple semicolon
separated list of values. The last part of each “command” is the payload.
All commands ends with a newline. The serial commands has the following format:

<node-id>;<child-sensor-id>;<message-type>;<ack>;<sub-type>;<payload>\n

Message Structure Elements

	Message Part
	Description

	node-id
	The unique id of the node that sends or should receive the message (address)

	child-sensor-id
	Each node can have several sensors attached. This is the child-sensor-id that uniquely identifies one attached sensor

	message-type
	
Type of message sent - See table below ack

The ack parameter has the following meaning:

Outgoing: 0 = unacknowledged message, 1 = request ack from destination node

Incoming: 0 = normal message, 1 = this is an ack message

	sub-type
	Depending on messageType this field has different meaning. See tables below

	payload
	The payload holds the message coming in from sensors or instruction going out to actuators.

Warning

The maximum payload size is 25 bytes!

The NRF24L01+ has a maximum of 32 bytes. The MySensors library (version 1.5) uses 7 bytes for the message header.

Message Types

	Type
	Value
	Comment

	presentation
	0
	Sent by a node when they present attached sensors. This is usually done in setup() at startup.

	set
	1
	This message is sent from or to a sensor when a sensor value should be updated.

	req
	2
	Requests a variable value (usually from an actuator destined for controller).

	internal
	3
	This is a special internal message. See table below for the details.

	stream
	4
	Used for OTA firmware updates.

Message Sub-types

Note

If you feel that these sub-types don’t fit your needs, there are some
custom varaibles that you can use. However, you think that people maybe
have the same issue, you can modify the liberary and add your variable,
then, pull your modifications to the development branch.

Presentation

When a presentation message is sent from a sensor, sub-type can one the following:

The payload of presentation message will be set to the library version (node device) or an optional description for the sensors.

	Type
	Value
	Comment
	Variables

	S_DOOR
	0
	Door and window sensors
	V_TRIPPED, V_ARMED

	S_MOTION
	1
	Motion sensors
	V_TRIPPED, V_ARMED

	S_SMOKE
	2
	Smoke sensor
	V_TRIPPED, V_ARMED

	S_LIGHT
	3
	Light Actuator (on/off)
	V_STATUS (or V_LIGHT), V_WATT

	S_BINARY
	3
	Binary device (on/off), Alias for S_LIGHT
	V_STATUS (or V_LIGHT), V_WATT

	S_DIMMER
	4
	Dimmable device of some kind
	V_STATUS, V_DIMMER, V_WATT

	S_COVER
	5
	Window covers or shades
	V_UP, V_DOWN, V_STOP, V_PERCENTAGE

	S_TEMP
	6
	Temperature sensor
	V_TEMP, V_ID

	S_HUM
	7
	Humidity sensor
	V_HUM

	S_BARO
	8
	Barometer sensor (Pressure)
	V_PRESSURE, V_FORECAST

	S_WIND
	9
	Wind sensor
	V_WIND, V_GUST

	S_RAIN
	10
	Rain sensor
	V_RAIN, V_RAINRATE

	S_UV
	11
	UV sensor
	V_UV

	S_WEIGHT
	12
	Weight sensor for scales etc.
	V_WEIGHT, V_IMPEDANCE

	S_POWER
	13
	Power measuring device, like power meters
	V_WATT, V_KWH

	S_HEATER
	14
	Heater device
	V_HVAC_SETPOINT_HEAT, V_HVAC_FLOW_STATE, V_TEMP

	S_DISTANCE
	15
	Distance sensor
	V_DISTANCE, V_UNIT_PREFIX

	S_LIGHT_LEVEL
	16
	Light sensor
	V_LIGHT_LEVEL, V_LEVEL

	S_ARDUINO_NODE
	17
	Arduino node device
	

	S_ARDUINO_REPEATER_NODE
	18
	Arduino repeating node device
	

	S_LOCK
	19
	Lock device
	V_LOCK_STATUS

	S_IR
	20
	Ir sender/receiver device
	V_IR_SEND, V_IR_RECEIVE

	S_WATER
	21
	Water meter
	V_FLOW, V_VOLUME

	S_AIR_QUALITY
	22
	Air quality sensor e.g. MQ-2
	V_LEVEL, V_UNIT_PREFIX

	S_CUSTOM
	23
	
Use this for custom sensors where no

other fits.

	

	S_DUST
	24
	Dust level sensor
	V_LEVEL, V_UNIT_PREFIX

	S_SCENE_CONTROLLER
	25
	Scene controller device
	V_SCENE_ON, V_SCENE_OFF

	S_RGB_LIGHT
	26
	RGB light
	V_RGB, V_WATT

	S_RGBW_LIGHT
	27
	RGBW light
	V_RGBW, V_WATT

	S_COLOR_SENSOR
	28
	Color sensor
	V_RGB

	S_HVAC
	29
	Thermostat/HVAC device
	V_HVAC_SETPOINT_HEAT, V_HVAC_SETPOINT_COLD, V_HVAC_FLOW_STATE, V_HVAC_FLOW_MODE, V_HVAC_SPEED

	S_MULTIMETER
	30
	Multimeter device
	V_VOLTAGE, V_CURRENT, V_IMPEDANCE

	S_SPRINKLER
	31
	Sprinkler device
	V_STATUS, V_TRIPPED

	S_WATER_LEAK
	32
	Water leak sensor
	V_TRIPPED, V_ARMED

	S_SOUND
	33
	Sound sensor
	V_LEVEL(dB), V_TRIPPED, V_ARMED

	S_VIBRATION
	34
	Vibration sensor
	V_LEVEL(Hz), V_TRIPPED, V_ARMED

	S_MOISTURE
	35
	Moisture sensor
	V_LEVEL, V_TRIPPED, V_ARMED

	S_INFO
	36
	LCD text device
	V_TEXT

	S_GAS
	37
	Gas meter
	V_FLOW, V_VOLUME

	S_GPS
	38
	GPS Sensor
	V_POSITION

Set & Req

When a set or request message is being sent, the sub-type has to be one of the following:

	Type
	Value
	Comment
	Used by

	V_TEMP
	0
	Temperature
	S_TEMP, S_HEATER, S_HVAC

	V_HUM
	1
	Humidity
	S_HUM

	V_STATUS
	2
	Binary status. 0=off 1=on
	S_LIGHT, S_DIMMER, S_SPRINKLER, S_HVAC, S_HEATER

	V_PERCENTAGE
	3
	Percentage value. 0-100(%)
	S_DIMMER

	V_PRESSURE
	4
	Atmospheric Pressure
	S_BARO

	V_FORECAST
	5
	
Whether forecast. One of “stable”,

“sunny”, “cloudy”, “unstable”,

“thunderstorm” or “unknown”

	S_BARO

	V_RAIN
	6
	Amount of rain
	S_RAIN

	V_RAINRATE
	7
	Rate of rain
	S_RAIN

	V_WIND
	8
	Windspeed
	S_WIND

	V_GUST
	9
	Gust
	S_WIND

	V_DIRECTION
	10
	Wind direction
	S_WIND

	V_UV
	11
	UV light level
	S_UV

	V_WEIGHT
	12
	Weight (for scales etc)
	S_WEIGHT

	V_DISTANCE
	13
	Distance
	S_DISTANCE

	V_IMPEDANCE
	14
	Impedance value
	S_MULTIMETER, S_WEIGHT

	V_ARMED
	15
	
Armed status of a security sensor.

1=Armed, 0=Bypassed

	S_DOOR, S_MOTION, S_SMOKE, S_SPRINKLER, S_WATER_LEAK, S_SOUND, S_VIBRATION, S_MOISTURE

	V_TRIPPED
	16
	
Tripped status of a security sensor.

1=Tripped, 0=Untripped

	S_DOOR, S_MOTION, S_SMOKE, S_SPRINKLER, S_WATER_LEAK, S_SOUND, S_VIBRATION, S_MOISTURE

	V_WATT
	17
	Watt value for power meters
	S_POWER, S_LIGHT, S_DIMMER, S_RGB, S_RGBW

	V_KWH
	18
	
Accumulated number of KWH for a

power meter

	S_POWER

	V_SCENE_ON
	19
	Turn on a scene
	S_SCENE_CONTROLLER

	V_SCENE_OFF
	20
	Turn off a scene
	S_SCENE_CONTROLLER

	V_HVAC_FLOW_STATE
	21
	
Mode of header. One of “Off”,

“HeatOn”, “CoolOn”, or “AutoChangeOver”

	S_HVAC, S_HEATER

	V_HVAC_SPEED
	22
	
HVAC/Heater fan speed

(“Min”, “Normal”, “Max”, “Auto”)

	S_HVAC, S_HEATER

	V_LIGHT_LEVEL
	23
	
Uncalibrated light level. 0-100%.

Use V_LEVEL for light level in lux.

	S_LIGHT_LEVEL

	V_VAR1
	24
	Custom value
	Any device

	V_VAR2
	25
	Custom value
	Any device

	V_VAR3
	26
	Custom value
	Any device

	V_VAR4
	27
	Custom value
	Any device

	V_VAR5
	28
	Custom value
	Any device

	V_UP
	29
	Window covering. Up.
	S_COVER

	V_DOWN
	30
	Window covering. Down.
	S_COVER

	V_STOP
	31
	Window covering. Stop.
	S_COVER

	V_IR_SEND
	32
	Send out an IR-command
	S_IR

	V_IR_RECEIVE
	33
	
This message contains a received

IR-command

	S_IR

	V_FLOW
	34
	Flow of water (in meter)
	S_WATER

	V_VOLUME
	35
	Water volume
	S_WATER

	V_LOCK_STATUS
	36
	
Set or get lock status.

1=Locked, 0=Unlocked

	S_LOCK

	V_LEVEL
	37
	Used for sending level-value
	S_DUST, S_AIR_QUALITY, S_SOUND (dB), S_VIBRATION (hz), S_LIGHT_LEVEL (lux)

	V_VOLTAGE
	38
	Voltage level
	S_MULTIMETER

	V_CURRENT
	39
	Current level
	S_MULTIMETER

	V_RGB
	40
	
RGB value transmitted as ASCII

hex string (I.e “ff0000” for red)

	S_RGB_LIGHT, S_COLOR_SENSOR

	V_RGBW
	41
	
RGBW value transmitted as ASCII

hex string

	S_RGBW_LIGHT

	V_ID
	42
	
Optional unique sensor id

(e.g. OneWire DS1820b ids)

	S_TEMP

	V_UNIT_PREFIX
	43
	
Allows sensors to send in a string

representing the unit prefix to be

displayed in GUI. This is not parsed by

controller! E.g. cm, m, km, inch.

	S_DISTANCE, S_DUST, S_AIR_QUALITY

	V_HVAC_SETPOINT_COOL
	44
	HVAC cold setpoint
	S_HVAC

	V_HVAC_SETPOINT_HEAT
	45
	HVAC/Heater setpoint
	S_HVAC, S_HEATER

	V_HVAC_FLOW_MODE
	46
	
Flow mode for HVAC

(“Auto”, “ContinuousOn”, “PeriodicOn”)

	S_HVAC

	V_TEXT
	47
	Text message to display on LCD or
| controller device
	S_INFO

	V_CUSTOM
	48
	Custom messages used for controller
| /inter node specific commands,
| preferably using S_CUSTOM device type.
	S_CUSTOM

	V_POSITION
	49
	GPS position and altitude. Payload:
| latitude;longitude;altitude(m).
| E.g. “55.722526;13.017972;18”
	S_GPS

	V_IR_RECORD
	50
	Record IR codes S_IR for playback
	S_IR

Internal

The internal messages are used for different tasks in the communication between sensors, the gateway to controller and between sensors and the gateway.

When an internal messages is sent, the sub-type has to be one of the following:

	Type
	Value
	Comment

	I_BATTERY_LEVEL
	0
	Use this to report the battery level (in percent 0-100).

	I_TIME
	1
	Sensors can request the current time from the Controller using this message. The time will be reported as the seconds since 1970

	I_VERSION
	2
	Used to request gateway version from controller.

	I_ID_REQUEST
	3
	Use this to request a unique node id from the controller.

	I_ID_RESPONSE
	4
	Id response back to sensor. Payload contains sensor id.

	I_INCLUSION_MODE
	5
	Start/stop inclusion mode of the Controller (1=start, 0=stop).

	I_CONFIG
	6
	Config request from node. Reply with (M)etric or (I)mperal back to sensor.

	I_FIND_PARENT
	7
	When a sensor starts up, it broadcast a search request to all neighbor nodes. They reply with a I_FIND_PARENT_RESPONSE.

	I_FIND_PARENT_RESPONSE
	8
	Reply message type to I_FIND_PARENT request.

	I_LOG_MESSAGE
	9
	Sent by the gateway to the Controller to trace-log a message

	I_CHILDREN
	10
	A message that can be used to transfer child sensors (from EEPROM routing table) of a repeating node.

	I_SKETCH_NAME
	11
	Optional sketch name that can be used to identify sensor in the Controller GUI

	I_SKETCH_VERSION
	12
	Optional sketch version that can be reported to keep track of the version of sensor in the Controller GUI.

	I_REBOOT
	13
	Used by OTA firmware updates. Request for node to reboot.

	I_GATEWAY_READY
	14
	Send by gateway to controller when startup is complete.

	I_REQUEST_SIGNING
	15
	Used between sensors when initialting signing.

	I_GET_NONCE
	16
	Used between sensors when requesting nonce.

	I_GET_NONCE_RESPONSE
	17
	Used between sensors for nonce response.

	I_HEARTBEAT
	18
	

	I_PRESENTATION
	19
	

	I_DISCOVER
	20
	

	I_DISCOVER_RESPONSE
	21
	

Stream

	Type
	Value
	Comment

	ST_FIRMWARE_CONFIG_REQUEST
	0
	

	ST_FIRMWARE_CONFIG_RESPONSE
	1
	

	ST_FIRMWARE_REQUEST
	2
	

	ST_FIRMWARE_RESPONSE
	3
	

	ST_SOUND
	4
	Used to transfer sound to controller

	ST_IMAGE
	5
	Used to transfer image to controller

Examples

Received message from radio network from one of the sensors: Incoming presentation
message from node 12 with child sensor 6. The presentation is for a binary
light S_LIGHT. The payload holds a description of the sensor.
Gateway passes this over to the controller.

12;6;0;0;3;My Light\n

Received message from radio network from one of the sensors: Incoming
temperature V_TEMP message from node 12 with child sensor 6. The gateway
passed this over to the controller.

12;6;1;0;0;36.5\n

Received command from the controller that should be passed to radio network:
Outgoing message to node 13. Set V_LIGHT variable to 1 (=turn on) for child
sensor 7. No ack is requested from destination node.

13;7;1;0;2;1\n

Note

There are some messages which are processed by the MySensors library.
Which means that you don’t have to implement an action for them.

E.g.: I_REBOOT.

Controllers

Controllers are softwares which are responsible for answer the requests
from the nodes and send commands made by users to nodes.

Example of tasks made by controllers:

	Auto assign an ID to a node

	Keep tracking of node on the network

All the magic is made by the controllers, the nodes are just responsible for
collect and send the data. Then, the controller gather the all data and “think”
how it should respond.

You can control your nodes send commands over your gateway. However, if you
really want to automate your home, you must use a controller. If you don’t
know how or you don’t want to developer a new one, you can use one of them
listed below.

List of controllers

	Ago Control [http://www.agocontrol.com/]

	Calaos [https://calaos.fr/]

	Domoticz [http://www.domoticz.com/]

	DomotiGa [https://domotiga.nl/]

	FHEM [http://www.fhem.de/]

	Freedomotic [http://freedomotic.com/]

	Home Assistant [https://home-assistant.io/]

	Homeseer [http://www.homeseer.com/]

	Indigo Domotics [http://www.indigodomo.com/]

	Jeedom [https://jeedom.fr/]

	MajorDoMo [http://majordomohome.com/]

	MyController.org [http://mycontroller.org/]

	MyNetSensors [http://forum.mysensors.org/topic/1984]

	OpenHAB [http://www.openhab.org/]

	openLuup [https://github.com/akbooer/openLuup]

	PiDome [http://pidome.wordpress.com/]

	Pimatic [http://pimatic.org/]

	Vera [http://getvera.com/]

Other tools

	MYSController [http://forum.mysensors.org/topic/838/windows-gui-controller-for-mysensors]

	Yveaux NRF24 Sniffer [https://github.com/Yveaux/NRF24_Sniffer]

Nodes

Test

Security

Signing support has now been implemented and is available from release 1.5 of the
MySensors library.Since doxygen documentation is not yet available for the master
branch from which releases really made, I have documented signing support in this
post. If you use the development branches, I strongly urge you to read the “live”
documentation which is available here. You can find the signing documentation under “modules” and “MySensors internal APIs and functionalities > MySigning”.

In an effort to normalize the technical playing field for all forum members I will
describe what this means, and why it is important. And I will also briefly touch
on the generic concept of authentication and verification, motivate the need for
this (and explain why encryption is not part of this) and go on to explain the
architecture used for MySensors and how to enable and use this new feature.

Background and concepts

Suppose two participants, Alice and Bob, wants to exchange a message. Alice sends
a message to Bob. In MySensors “language” Alice could be a gateway and Bob an
actuator (light swich, electronic lock, etc). But to be generic, we will
substitute the term “gateway” with Alice and a “node” with Bob (although the
reverse relationship is also supported).

Alice sends a message to Bob. This message can be heard by anyone who wants to
listen (and also by anyone that is within “hearing” distance). Normally, this is
perhaps not a big issue. Nothing Alice says to Bob may be secret or sensitive in any way.

However, sometimes (or perhaps always) Bob want to be sure that the message Bob
receives actually came from Alice. In cryptography, this is known as authenticity.
Bob need some way of determining that the message is authentic from Alice, when
Bob receives it. This prevent an eavesdropper, Eve, to trick Bob into thinking it
was Alice that sent a message Eve in fact transmitted. Bob also need to know how
to determine if the message has been repeated. Eve could record a message sent by
Alice that Bob accepted and then send the same message again. Eve could also in
some way prevent Bob from receiving the message and delay it in order to permit
the message to arrive to Bob at a time Eve chooses, instead of Alice. Such an
attack is known as a replay attack. Authenticity permits Bob to determine
if Alice is the true sender of a message.

[image: _images/security_1.png]
It can also be interesting for Bob to know that the message Alice sent has not
been tampered with in any way. This is the integrity of the message. We now
introduce Mallory, who could be intercepting the communication between Alice
and Bob and replace some parts of the message but keeping the parts that
authenticate the message. That way, Bob still trusts Alice to be the source, but
the contents of the message was not the content Alice sent. Bob needs to be able
to determine that the contents of the message was not altered after Alice sent it.

Mallory would in this case be a man-in-the-middle attacker.

Integrity permits Bob to verify that the messages received from Alice has not
been tampered with. This is achieved by adding a signature to the message, which
Bob can inspect to validate that Alice is the author.

[image: _images/security_2.png]
The signing scheme used, needs to address both these attack scenarios. Neither
Eve nor Mallory must be permitted to interfere with the message exchange between
Alice and Bob.

The key challenge to implementing a secure signing scheme is to ensure that every
signature is different, even if the message is not. If not, replay attacks
would be very hard to prevent.

One way of doing this is to increment some counter on the sender side and include
it in the signature. This is however predictable.

A better option would be to introduce a random number to the signature. That way,
it is impossible to predict what the signature will be. The problem is, that also
makes it impossible for the receiver (Bob) to verify that the signature is valid.
A solution to this is to let Bob generate the random number, keep it in memory
and send it to Alice. Alice can then use the random number in the signature
calculation and send the signed message back to Bob who can validate the
signature with the random number used. This random number is in cryptography
known as a nonce [http://en.wikipedia.org/wiki/Cryptographic_nonce] or
salt [http://en.wikipedia.org/wiki/Salt_%28cryptography%29].

However, Mallory might be eavesdropping on the communication and snoop up the
nonce in order to generate a new valid signature for a different message. To
counter this, both Alice and Bob keep a secret that only they know. This secret
is never transmitted over the air, nor is it revealed to anybody. This secret
is known as a pre-shared key (PSK).

If Even or Mallory are really sophisticated, he/she might use a delayed replay
attack. This can be done by allowing Bob to transmit a nonce to Alice. But when
Alice transmits the uniquely signed message, Mallory prevents Bob from receiving
it, to a point when Mallory decides Bob should receive it. An example of such an
attack is described here [http://spencerwhyte.blogspot.se/2014/03/delay-attack-jam-intercept-and-replay.html]. This needs to be addressed as well, and one way
of doing this is to have Bob keep track of time between a transmitted nonce and
a signed message to verify. If Bob is asked for a nonce, Bob knows that a signed
message is going to arrive “soon”. Bob can then decide that if the signed message
does not arrive within a predefined timeframe, Bob throws away the generated nonce
and thus makes it impossible to verify the message if it arrives late.

The flow can be described like this:

[image: _images/security_3.png]
The benefits for MySensors to support this are obvious. Nobody wants others to
be able to control or manipulate any actuators in their home.

Why encryption is not part of this

Well, some could be uncomfortable with somebody being able to snoop temperatures,
motion or the state changes of locks in the environment. Signing does not
address these issues. Encryption is needed to prevent this.

It is my personal standpoint that encryption should not be part of the MySensors
“protocol”. The reason is that a gateway and a node does not really care about
messages being readable or not by “others”. It makes more sense that such
guarantees are provided by the underlying transmission layer (RF solution in this
case). It is the information transmitted over the air that needs to be secret
(if user so desires). The “trust” level on the other hand needs to go all the way
into the sketches (who might have different requirements of trust depending on
the message participant), and for this reason, it is more important (and less
complicated) to ensure authenticity and integrity at protocol-level as message
contents is still readable throughout the protocol stack. But as soon as the
message leaves the “stack” it can be scramble into “garbage” when transmitted
over the air and then reassembled by a receiving node before being fed in “the
clear” up the stack at the receiving end.

There are methods and possibilities to provide encryption also in software, but
if this is done, it is my recommendation that this is done after integrity- and
authentication information has been provided to the message (if this is desired).
Integrity and authentication is of course not mandatory and some might be happy
with only having encryption to cover their need for security. I, however, have
only focused on integrity and authenticity while at the same time keeping the
current message routing mechanisms intact and therefore leave the matter of
secrecy to be implemented in the “physical” transport layer. With the integrity
and authenticity handled in the protocol it ought to be enough for a simple
encryption (nonce-less AES with a PSK for instance) on the message as it is sent
to the RF backend. Atmel does provide such circuits as well but I have not
investigated the matter further as it given the current size of the ethernet
gateway sketch is close to the size limit on an Arduino Nano, so it will be
difficult to fit this into some existing gateway designs.

Also it is worth to consider that the state of a lock can just as readily be
determined by simply looking at the door in question or attempting to open it,
so obfuscating this information will not necessarily deter an attacker in any way.
Nevertheless, I do acknowledge that people find the fact that all information is
sent “in the clear” even if it require some technical effort for an intruder to
obtain and inspect this information. So I do encourage the use of encrypting
transport layers.

This is however not covered by this topic nor my implementation.

How this is done

There exist many forms of message signature solutions to combat Eve and Mallory.
Most of these solutions are quite complex in term of computations, so I elected
to use an algorithm that an external circuit is able to process. This has the
added benefit of protecting any keys and intermediate data used for calculating
the signature so that even if someone were to actually steal a sensor and
disassembled it, they would not be able to extract the keys and other information
from the device.

A common scheme for message signing (authenticity and integrity) is implemented
using HMAC which in combination with a strong hash function provides a very
strong level of protection.

The Atmel ATSHA204A is a low-cost, low-voltage/current circuit that provides HMAC
calculation capabilities with SHA256 hashing which is a (currently) virtually
unbreakable combination. If SHA256 were to be hacked, a certain cryptocurrency
would immediately be rendered worthless. The ATSHA device also contain a random
number generator (RNG) which enables the generation of a good nonce, as in,
non-predictable. As I acknowledge that some might not want to use an additional
external circuit, I have also implemented a software version of the ATSHA device,
capable of generating the same signatures as the ATSHA device does. Because it is
pure-software however, it does not provide as good nonces (it uses the Arduino
pseudo-random generator) and the HMAC key is stored in SW and is therefore
readable if the memory is dumped. It also naturally claims more flash space due
to the more complex software. But for indoor sensors/actuators this might be good
enough for most people.

How to use this

Before we begin with the details, I just want to emphasize that signing is
completely optional and although it is enabled by default, it will use a default
backend that does not require signing and does not enforce signature checks.
However, if you really do not want any additional “cost” in program space related
to signing, you can disable MY_SIGNING_FEATURE in MyConfig.h.

Firstly, you need to make sure MY_SIGNING_FEATURE is enabled in MyConfig.h.
You then select which backend to use by passing the appropriate handle when
constructing the MySensor object. The handle is passed as the third argument
(example here uses the real ATSHA without whitelisting):

#include <MySigningAtsha204.h>

MyTransportNRF24 radio; // NRFRF24L01 radio driver
MyHwATMega328 hw; // Select AtMega328 hardware profile
MySigningAtsha204 signer; // Select HW ATSHA signing backend

MySensor gw(radio, hw, signer);

If the software equivalent if the ATSHA is desired instead do

#include <MySigningAtsha204Soft.h>

MyTransportNRF24 radio; // NRFRF24L01 radio driver
MyHwATMega328 hw; // Select AtMega328 hardware profile

// Change the soft_serial value to an arbitrary value for proper security
uint8_t soft_serial[SHA204_SERIAL_SZ] = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09};
MySigningAtsha204Soft signer(true, 0, NULL, soft_serial); // Select SW ATSHA signing backend

MySensor gw(radio, hw, signer);

It is legal to mix MySigningAtsha204 and MySigningAtsha204Soft
backends in a network. They work together.

Secondly, you need to verify the configuration for the backend. Currently,
only MySigningAtsha204 and MySigningAtsha204Soft backends have a
specific configuration. For MySigningAtsha204 it is the pin the device is
connected to. In MyConfig.h there are defaults for sensors and gateways
which you might need to adjust to match your personal build. The setting is
defined using MY_ATSHA204_PIN and the default is to use pin A3. For
MySigningAtsha204Soft, an unconnected analog pin is required to set a
random seed for the pseudo-random generator. It is important that the pin is
floating, or the output of the pseudo-random generator will be predictable, and
thus compromise the signatures. The setting is defined using
MY_RANDOMSEED_PIN and the default is to use pin A7.

Thirdly, if you use the MySigningAtsha204Soft backend, you need to
create/set a HMAC key to use. This key is 32 bytes wide and should be an
arbitrarily chosen value. A string is OK, but as this key never needs to be
“parsed” a completely random number is recommended. The key is stored in our
sketch and is passed when constructing the MySigningAtsha204Soft object.

If you use the “real” ATSHA204A, before any signing operations can be done, the
device needs to be personalized. This can be a daunting process as it involves
irreversibly writing configurations to the device, which cannot be undone. I
have however tried to simplify the process as much as possibly by creating a
helper-sketch specifically for this purpose in
libraries/MySensors/examples/Sha204Personalizer/sha204_personalizer.ino

The process of personalizing the ATSHA204A involves

	Writing and locking chip configuration

	(optionally) Generating and (mandatory) writing HMAC key

	(optionally) Locking data sections

First execute the sketch without modifications to make sure communications with
the device can be established. It is highly recommended that the first time this
is done, a device with serial debug possibilities is used. When this has been
confirmed, it is time to decide what type of personalization is desired. There
are a few options here.

Firstly, enable LOCK_CONFIGURATION to allow the sketch to lock the chip
configuration. The sketch will write the default settings to the chip because
these are fine for our purposes. This also enables the RNG which is required to
allow the sketch to automatically generate a PSK if this is desired. Now it is
possible to execute the sketch to lock the configuration and enable the RNG.

Next step is to decide if a new key should be generated or an existing key should
be stored to the device. This is determined using USER_KEY_DATA, which,
if defined, will use the data in the variable user_key_data. If
USER_KEY_DATA is disabled, the RNG will be used to generate a key. This
key obviously need to be made available to you so you can use it in other devices
in the network, and this key is therefore also printed on the serial console when
it has been generated. The key (generated or provided) will be written to the
device unless SKIP_KEY_STORAGE is set. As long as the data zone is kept
unlocked the key can be replaced at any time. However, Atmel suggests the data
region to be locked for maximum security. On the other hand, they also claim
that the key is not readable from the device even if the data zone remains
unlocked so the need for locking the data region is optional for MySensors usage.

For devices that does not have serial debug possibilities, it is possible to set
SKIP_UART_CONFIRMATION, but it is required to set :code`USER_KEY_DATA`
if this option is enabled since a generated and potentially unknown key could be
written to the device and thus rendering it useless (if the data zone is also
locked).

For devices with serial debug possibilities it is recommended to not use
SKIP_UART_CONFIRMATION as the sketch without that setting will ask user
to send a “space” character on the serial terminal before any locking operations
are executed as an additional confirmation that this irreversible operation is
done. However, if a number of nodes are to undergo personalization, this option
can be enabled to streamline the personalization.
This is a condensed description of settings to fully personalize and lock down a
set of sensors (and gateways): Pick a “master” device with serial debug port.

Set the following sketch configuration of the personalizer:

Enable LOCK_CONFIGURATION

Disable LOCK_DATA

Enable SKIP_KEY_STORAGE

Disable SKIP_UART_CONFIGURATION

Disable USER_KEY_DATA

Execute the sketch on the “master” device to obtain a randomized key. Save this
key to a secure location and keep it confidential so that you can retrieve it if
you need to personalize more devices later on.

Now reconfigure the sketch with these settings:

Enable LOCK_CONFIGURATION

Enable LOCK_DATA (if you are sure you do not need to replace/revoke the key, this is the most secure option to protect from key readout according to Atmel, but they also claim that key is not readable even if data region remains unlocked from the slot we are using)

Disable SKIP_KEY_STORAGE

Enable SKIP_UART_CONFIGURATION

Enable USER_KEY_DATA

Put the saved key in the user_key_data variable.

Now execute the sketch on all devices you want to personalize with this secret
key. That’s it. Personalization is done and the device is ready to execute
signing operations which are valid only on your personal network.

In case you want to be able to “whitelist” trusted nodes (in order to be able to
revoke them in case they are lost) you also need to take note of the serial
number of the ATSHA device. This is unique for each device. The serial number
is printed in a copy+paste friendly format by the personalizer for this purpose.

Signing in the MySensors network is driven from the receiving nodes. That means,
if a node require signing it will inform the gateway of this. To instruct a node
to require signing by the gateway, provide a suitable backend to the library
constructor. Both MySigningAtsha204 and MySigningAtsha204Soft backends will
by-default require signing when used. The default constructors for these backends
can be overridden to disable signing requirements if the node does not require
signed messages but still need the ability to verify messages (like a gateway).

Example for a node that uses ATSHA and require signing:

#include <MySigningAtsha204.h>
MyTransportNRF24 radio; // NRFRF24L01 radio driver
MyHwATMega328 hw; // Select AtMega328 hardware profile
MySigningAtsha204 signer; // Select ATSHA204A physical signing circuit
MySensor gw(radio, hw, signer);

Example for a gateway that uses ATSHA signing in software and do not require signing from nodes:

#include <MySigningAtsha204Soft.h>
MyTransportNRF24 radio; // NRFRF24L01 radio driver
MyHwATMega328 hw; // Select AtMega328 hardware profile
uint8_t soft_serial[SHA204_SERIAL_SZ] = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09};
MySigningAtsha204Soft signer(false, 0, NULL, soft_serial); // Select ATSHA204A software signing backend
MySensor gw(radio, hw, signer);

If a node does require signing, any unsigned message sent to the node will be
rejected. This also applies to the gateway. However, the difference is that the
gateway will only require signed messages from nodes it knows in turn require
signed messages.

A node can also inform a different node that it expects to receive signed
messages from it. This is done by transmitting an internal message of type
I_REQUEST_SIGNING and provide a boolean for payload, set to true.

All nodes and gateways in a network maintain a table where the signing preferences
of all nodes are stored. This is also stored in EEPROM so if the gateway reboots,
the nodes does not have to retransmit a signing request to the gateway for the
gateway to realize that the node expect signed messages. Also, the nodes that do
not require signed messages will also inform gateway of this, so if you reprogram
a node to stop require signing, the gateway will adhere to this as soon as the
new node has presented itself to the gateway.

The following sequence diagram illustrate how messages are passed in a MySensors
network with respect to signing:

[image: _images/security_4.png]
None of this activity is “visible” to you (as the sensor sketch implementor). All
you need to do is to set your preferences in MyConfig.h, depending on
chosen backend, do personalization or key configurations and set the
requestSignatures parameter to true. That is enough to enable protection
from both Eve and Mallory in your network (although because of the lack of
encryption, Eve can eavesdrop, but not do anything about, your messages).

Whitelisting and node revocation

Consider the situation when you have set up your secure topology. We use the remotely operated garage door as an example:

	You have a node inside your garage (therefore secure and out of reach from prying eyes) that controls your garage door motor. This node require signing since you do not want an unauthorized person sending it orders to open the door.

	You have a keyfob node with a signing backend that uses the same PSK as your door opener node.

In this setup, your keyfob can securely transmit messages to your door node since
the keyfob will sign the messages it sends and the door node will verify that
these were sent from a trusted node (since it used the correct PSK). If the
keyfob does not sign the messages, the door node will not accept them.

One day your keyfob gets stolen or you lost it or it simply broke down.

You know end up with a problem; you need some way of telling your door node that
the keyfob in question cannot be trusted any more. Furthermore, you maybe locked
the data region in your door nodes ATSHA device and is not able to revoke/change
your PSK, or you have some other reason for not wanting to replace the PSK. How
do you make sure that the “rogue” keyfob can be removed from the “trusted chain”?

The answer to this is whitelisting. You let your door node keep a whitelist of
all nodes it trusts. If you stop trusting a particular node, you remove it from
the nodes whitelist, and it will no longer be able to communicate signed messages
to the door node.

This is achieved by ‘salting’ the signature with some node-unique information
known to the receiver. In the case of ATSHA204A this is the unique serial number
programmed into the circuit. This unique number is never transmitted over the air
in clear text, so Eve will not be able to figure out a “trusted” serial by
snooping on the traffic. Instead the value is hashed together with the senders
NodeId into the HMAC signature to produce the final signature. The receiver will
then take the originating NodeId of the signed message and do the corresponding
calculation with the serial it has stored in it’s whitelist if it finds a
matching entry in it’s whitelist.

Whitelisting is an optional alternative because it adds some code which might not
be desirable for every user. So if you want the ability to provide and use
whitelists, as well as transmitting to a node with a whitelist, you need to
enable MY_SECURE_NODE_WHITELISTING in MyConfig.h. The whitelist
is provided when constructing the signing backend as follows (example is a node
that require signing as well):

#include <MySigningAtsha204.h>
MyTransportNRF24 radio; // NRFRF24L01 radio driver
MyHwATMega328 hw; // Select AtMega328 hardware profile
#ifdef MY_SECURE_NODE_WHITELISTING
whitelist_entry_t node_whitelist[] = {
 { .nodeId = 55, // Just some value, this need to be changed to the NodeId of the trusted node
 .serial = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09} } // This need to change to the serial of the trusted node
};
MySigningAtsha204 signer(true, 1, node_whitelist); // Select ATSHA204A software signing backend with one entry in the whitelist
#else
MySigningAtsha204 signer; // Select ATSHA204A software signing backend
#endif
MySensor gw(radio, hw, signer);

The “soft” backend of course also support whitelisting. However, since it does
not contain a unique identifier, you have to provide an additional constructor
argument when you enable whitelisting as illustrated in this example:

#include <MySigningAtsha204Soft.h>
MyTransportNRF24 radio; // NRFRF24L01 radio driver
MyHwATMega328 hw; // Select AtMega328 hardware profile
#ifdef MY_SECURE_NODE_WHITELISTING
// Change the soft_serial value to an arbitrary value for proper security
uint8_t soft_serial[SHA204_SERIAL_SZ] = {0x09,0x08,0x07,0x06,0x05,0x04,0x03,0x02,0x01};
whitelist_entry_t node_whitelist[] = {
 { .nodeId = 55, // Just some value, this need to be changed to the NodeId of the trusted node
 .serial = {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09} } // This need to change to the serial of the trusted node
};
MySigningAtsha204Soft signer(true, 1, node_whitelist, soft_serial); // Select ATSHA204A software signing backend with one entry in the whitelist and our unique serial
#else
MySigningAtsha204 signer; // Select ATSHA204A software signing backend
#endif
MySensor gw(radio, hw, signer);

For a node that should transmit whitelisted messages but not receive whitelisted
messages, you can simply skip the whitelist arguments (1 and node_whitelist
above). For the “soft” backend, you can set these to 0 and NULL since you then
need to provide the soft_serial buffer.

It is important to emphasize that you do not have to provide a whitelist that
has entries for all nodes that transmit signed messages to the node in question.
You only need to have entries for the nodes that in turn have enabled
MY_SECURE_NODE_WHITELISTING. Nodes that does not have this option enabled
can still transmit “regular” signed messages as long as they do not match a
NodeId in the receivers whitelist.

The technical stuff

How are the messages actually affected by the signing?

The following illustration shows what part of the message is signed, and where
the signature is stored:

[image: _images/security_5.gif]
The first byte of the header is not covered by the signature, because in the
network, this byte is used to track hops in the network and therefore might change
if the message is passing a relay node. So it cannot be part of the signature,
or the signature would be invalid when it arrives to its destination. The
signature also carries a byte with a signing identifier to prevent false results
from accidental mixing of incompatible signing backends in the network. Thus, the
maximum size for a payload is 29-7 bytes. Larger payloads are not possible to
sign. Another thing to consider is that the strength of the signature is inversely
proportional to the payload size.

As for the ATSHA204SOFT backend, it turns out that the ATSHA does not do “vanilla”
HMAC processing. Fortunately, Atmel has documented exactly how the circuit
processes the data and hashes thus making it possible to generate signatures that
are identical to signatures generated by the circuit.

The signatures are calculates in the following way:

[image: _images/security_6.gif]
Exactly how this is done can be reviewd in the source for the ATSHA204SOFT
backend and the ATSHA204A datasheet.

In the MySensors protocol, the following new internal messagetypes has been added
for handling signature requirements and nonce requests:

I_REQUEST_SIGNING

I_GET_NONCE

I_GET_NONCE_RESPONSE

Also, the version field in the header has been reduced from 3 to 2 bits in order
to fit a single bit to indicate that a message is signed.

Known limitations

It is very important to emphasize that with the current implementation of message
signing, OTA firmware updates are transmitted unsigned. In other words, it is
technically possible for Mallory to reset a node by cutting power or some other
attack, spoof a gateway and push his/her own custom firmware to the node even if
the old sketch was requiring signing. The current architecture of the OTA
solution prevents signing support from being implemented in the bootloader due
to size constraints.

It is still possible to use OTA bootloader with a signing gateway and node, but
it is important to understand this potentially provides an attack vector for
compromising the security of the node.

Also, due to the limiting factor our our Arduino nodes, the use of diversified
keys is not implemented. That mean that all nodes in your network share the same
PSK (at least the ones that are supposed to exchange signed data). It is
important to understand the implications of this, and that is hopefully covered
in the “Typical usecases” chapter below.

Also be reminded that the strength of the signature is inversely proportional to
the size of the message. The larger the message, the weaker the signature.

Typical usecases

“Securely located” in this context mean a node which is not physically publicly
accessible. Typically at least your gateway.

“Public” in this context mean a node that is located outside your “trusted
environment”. This includes sensors located outdoors, keyfobs etc.

Securely located lock

You have a securely located gateway and a lock somewhere inside your “trusted
environment” (e.g. inside your house door, the door to your dungeon or similar).

You should then keep the data section of your gateway and your lock node unlocked.
Locking the data (and therefore the PSK) will require you to replace at least the
signing circuit in case you need to revoke the PSK because some other node in your
network gets compromised.

Patio motion sensor

Your gateway is securely located inside your house, but your motion sensor is
located outside your house. You have for some reason elected that this node
should sign the messages it send to your gateway.You should lock the data (PSK)
in this node then, because if someone were to steal your patio motion sensor,
they could rewrite the firmware and spoof your gateway to use it to transmit a
correctly signed message to your secure lock inside your house. But if you
revoke your gateway (and lock) PSK the outside sensor cannot be used for this
anymore. Nor can it be changed in order to do it in the future. You can also
use whitelisting to revoke your lost node. This is an unlikely usecase because
it is really no reason to sign sensor values. If you for some reason want to
obfuscate sensor data, encryption is a better alternative.

Keyfob for garage door opener

Perhaps the most typical usecase for signed messages. Your keyfob should be
totally locked down. If the garage door opener is secured (and it should be) it
can be unlocked. That way, if you loose your keyfob, you can revoke the PSK in
both the opener and your gateway, thus rendering the keyfob useless without
having to replace your nodes. You can also use whitelisting to revoke your lost
keyfob.

Api

In this page you will find about the functions you must implement and the
objects you may use on your sketches.

Functions

presentation

void presentation()

This function must be implemented (at least present) in your sketch. It will be
called at the start of your node and every time your nome receive an
I_PRESENTATION.

@params: None

@return: None

receive

void receive(const MyMessage &msg)

If you want to handle messages you must implement this function on your sketch.
If you don’t implement it, you won’t be able to handle the messages and they will
just be ignored, if they are not “special” messages which are handled behind
the scenes.

Then, you will use the MyMessage object to see what is inside the message.

@params:

	msg: It takes a reference of a MyMessage that you will to manipulate.

@return: None

receiveTime

void receiveTime(unsigned long time)

This function will be called every time your node receives time from controller.
So if you want to handle it, you must implement this functions.

@params:

	time:

@return: None

getConfig

ControllerConfig getConfig()

It takes the most recent node configuration received from controller

@params: None

@return: ControllerConfig struct with all configuration

getNodeId

uint8_t getNodeId()

@params: None

@return: Node’s id

loadState

uint8_t loadState(uint8_t pos)

Load a state (from local EEPROM).

@params:

	pos: The position to fetch value from 0 to 255

@return: Value that was stored in position

present

void present(uint8_t sensorId, uint8_t sensorType, const char*
description="", bool ack=false)

Each node must present all attached sensors before any values can be handled correctly by the controller.
It is usually good to present all attached sensors after power-up in setup().

@params:

	sensorId: Select a unique sensor id for this sensor. Choose a number between 0-254.

	sensorType: The sensor type. See sensor typedef in MyMessage.h.

	description: A textual description of the sensor.

	ack: Set this to true if you want destination node to send ack back to this node.
Default is not to request any ack.

	description: A textual description of the sensor.

@return: None

request

void request(uint8_t childSensorId, uint8_t variableType, uint8_t
destination=GATEWAY_ADDRESS)

It sends an requesting package.

@params:

	childSensorId: The variable’s node’s id you want to request.

	variableType: The type of variable you are requesting.

	destination: Destination node. The default destination is the Gateway.

@return: None

requestTime

void requestTime()

Requests time from controller. Answer will be delivered to receiveTime function
in sketch.

@params: None

@return: None

saveState

void saveState(uint8_t pos, uint8_t value)

Save a state (in local EEPROM). Good for actuators to “remember” state between
power cycles.
You have 256 bytes to play with. Note that there is a limitation on the number
of writes the EEPROM can handle (~100 000 cycles on ATMega328).

@params:

	pos: The position to store value in 0 to 255

	value: Value to store in position

@return: None

send

bool send(MyMessage &msg, bool ack=false)

Sends a message to gateway or one of the other nodes in the radio network

@params:

	msg: It takes a reference to a Message object to send.

	ack: Set this to true if you want destination node to send ack back to this
node. Default is not to request any ack.

@return: Returns true if message reached the first stop on its way to
destination.

sendBatteryLevel

void sendBatteryLevel(uint8_t level, bool ack=false)

Send this nodes battery level to gateway.

@params:

	level: Level between 0-100(%)

	ack: Set this to true if you want destination node to send ack back to this
node. Default is not to request any ack.

@return: None

sendHeartbeat

void sendHeartbeat()

Send a heartbeat message (I’m alive!) to the gateway/controller.
The payload will be an incremental 16 bit integer value starting at 1 when
sensor is powered on.

Allows node to send heartbeat and controller to ping nodes.

@params: None

@return: None

sendSketchInfo

void sendSketchInfo(const char* name, const char* version,
bool ack=false)

It sends sketch meta information to the gateway. Not mandatory but a nice thing
to do.

@params:

	name String containing a short Sketch name or NULL if not applicable

	version String containing a short Sketch version or NULL if not applicable

	ack Set this to true if you want destination node to send ack back to this
node. Default is not to request any ack.

@return: None

sleep

void sleep(unsigned long ms)

Sleep (PowerDownMode) the MCU and radio. Wake up on timer.

@params:

	ms: Number of milliseconds to sleep.

@return: None

smartSleep

void smartSleep(unsigned long ms)

@params:

	ms: Number of milliseconds to sleep.

sleep

bool sleep(uint8_t interrupt, uint8_t mode, unsigned long ms=0)

Sleep (PowerDownMode) the MCU and radio. Wake up on timer or pin change.
See: http://arduino.cc/en/Reference/attachInterrupt for details on modes and which pin
is assigned to what interrupt. On Nano/Pro Mini: 0=Pin2, 1=Pin3

@params:

	interrupt: Pin that should trigger the wakeup

	mode: RISING, FALLING, CHANGE

	ms: Number of milliseconds to sleep or 0 to sleep forever

@return: True if wake up was triggered by pin change and false means timer woke
it up.

smartSleep

bool smartSleep(uint8_t interrupt, uint8_t mode, unsigned long ms=0)

@params:

	interrupt: Pin that should trigger the wakeup

	mode: RISING, FALLING, CHANGE

	ms: Number of milliseconds to sleep or 0 to sleep forever

@return: True if wake up was triggered by pin change and false means timer woke
it up.

sleep

int8_t sleep(uint8_t interrupt1, uint8_t mode1, uint8_t interrupt2,
uint8_t mode2, unsigned long ms=0)

Sleep (PowerDownMode) the MCU and radio. Wake up on timer or pin change for two separate interrupts.
See: http://arduino.cc/en/Reference/attachInterrupt for details on modes and which pin
is assigned to what interrupt. On Nano/Pro Mini: 0=Pin2, 1=Pin3

@params:

	interrupt1 First interrupt that should trigger the wakeup

	mode1 Mode for first interrupt (RISING, FALLING, CHANGE)

	interrupt2 Second interrupt that should trigger the wakeup

	mode2 Mode for second interrupt (RISING, FALLING, CHANGE)

	ms Number of milliseconds to sleep or 0 to sleep forever

@return: Pin number wake up was triggered by pin change and negative if
timer woke it up.

smartSleep

int8_t smartSleep(uint8_t interrupt1, uint8_t mode1, uint8_t interrupt2,
uint8_t mode2, unsigned long ms=0)

@params:

	interrupt1 First interrupt that should trigger the wakeup

	mode1 Mode for first interrupt (RISING, FALLING, CHANGE)

	interrupt2 Second interrupt that should trigger the wakeup

	mode2 Mode for second interrupt (RISING, FALLING, CHANGE)

	ms Number of milliseconds to sleep or 0 to sleep forever

@return: Pin number wake up was triggered by pin change and negative if
timer woke it up.

wait

void wait(unsigned long ms)

Wait for a specified amount of time to pass. Keeps process()ing.
This does not power-down the radio nor the Arduino.
Because this calls process() in a loop, it is a good way to wait
in your loop() on a repeater node or sensor that listens to messages.

@params:

	ms: Number of milliseconds to sleep.

@return: None

Objects

MyMessage

MyMessage msg1(CHILD_ID, CHILD_TYPE);
MyMessage msg2();

This object will handle incoming and outcoming messages. You must create one
message for each sensor you have in your node.

Attributes

uint8_t last

8 bit - Id of last node this message passed

uint8_t sender

8 bit - Id of sender node (origin)

uint8_t destination

8 bit - Id of destination node

uint8_t version_length

2 bit - Protocol version

1 bit - Signed flag

5 bit - Length of payload

uint8_t command_ack_payload

3 bit - Command type

1 bit - Request an ack - Indicator that receiver should send an ack back.

1 bit - Is ack messsage - Indicator that this is the actual ack message.

3 bit - Payload data type

uint8_t type

8 bit - Type varies depending on command

uint8_t sensor

8 bit - Id of sensor that this message concerns.

char data[MAX_PAYLOAD + 1];

That is the message’s payload

Methods

getCommand

uint8_t getCommand()

@params: None

@return: It returns the value of command (type of message). E.g.:
C_SET, C_REQ, ...

isAck

bool isAck()

@params: None

@return: It return if it is an ack or not.

set

MyMessage& set(void* payload, uint8_t length)

MyMessage& set(const char* value)

MyMessage& set(float value, uint8_t decimals)

MyMessage& set(uint8_t value)

MyMessage& set(uint32_t value)

MyMessage& set(int32_t value)

MyMessage& set(uint16_t value)

MyMessage& set(int16_t value)

This function set the message’s payload. There are a lot of overwritten in this
function, which allow you to send many types of value.

@params:

	payload:

	length:

	value:

	decimals:

@return: It returns a reference to your MyMessage object.

setDestination

MyMessage& setDestination(uint8_t destination)

It sets the destination of the package.

@params:

	destination

@return: It returns a reference to your MyMessage object.

setSensor

MyMessage& setSensor(uint8_t sensor)

It sets the sensor’s id which will be send on the protocol header.

@params:

	sensor

@return: It returns a reference to your MyMessage object.

setType

MyMessage& setType(uint8_t type)

It sets the sensor’s type which will be send on the protocol header.

@params:

	type

@return: It returns a reference to your MyMessage object.

Index

 _images/security_5.gif
31-n

_images/security_6.gif
MESSAGE
B

4
STATIC ATSHA204 SALT 1 % SHA256 NONCE
v
STATIC ATSHA204 SALT 2 % HMAC HMAC KEY<
If whitelisting is enabled v
= B &

SIGNATURE!

_images/security_3.png
Authentication and validation between Alice and Bob

Alice Bob

| Get nonce

Start timer

: Purge nonce ftimer expires

Message+signature

LMessagetsignature]

| Verify message with nonce and PSK.

_images/security_1.png
message

Bob

Alice

Eve

_static/minus.png

_static/up-pressed.png

_images/security_2.png
% message - % message’ - %
Bob

Alice Mallory

_images/security_4.png
Authentication and validation with MySensors (Gateway transmitting a signed message to a Node)

signing backend signing backend
onng Gateway Node onng
| |_GET_NONCE '
PLSELNOMCE 5

<
signer->sethonce() |

signer->signisgl) | :
< :

>

| signed message
— >

signer->checkTimer()
— >

| signer->verifyMsg()
- slgner-2veriiyMsgl)_ |

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		MySensors

 		Getting Started

 		Supported Hardware

 		Tested Hardware

 		Bootloaders

 		Arduino Bootloader

 		MYSBootloader

 		Dual Optiboot

 		Protocol

 		Message Structure Elements

 		Message Types

 		Message Sub-types

 		Presentation

 		Set & Req

 		Internal

 		Stream

 		Examples

 		Controllers

 		List of controllers

 		Other tools

 		Nodes

 		Security

 		Background and concepts

 		Why encryption is not part of this

 		How this is done

 		How to use this

 		Whitelisting and node revocation

 		The technical stuff

 		Known limitations

 		Typical usecases

 		Securely located lock

 		Patio motion sensor

 		Keyfob for garage door opener

 		Api

 		Functions

 		presentation

 		receive

 		receiveTime

 		getConfig

 		getNodeId

 		loadState

 		present

 		request

 		requestTime

 		saveState

 		send

 		sendBatteryLevel

 		sendHeartbeat

 		sendSketchInfo

 		sleep

 		smartSleep

 		sleep

 		smartSleep

 		sleep

 		smartSleep

 		wait

 		Objects

 		MyMessage

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

