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Mypy is a static type checker for Python.

Type checkers help ensure that you’re using variables and functions in your code correctly. With mypy, add type hints
(PEP 484) to your Python programs, and mypy will warn you when you use those types incorrectly.

Python is a dynamic language, so usually you’ll only see errors in your code when you attempt to run it. Mypy is a
static checker, so it finds bugs in your programs without even running them!

Here is a small example to whet your appetite:

number = input("What is your favourite number?")
print("It is", number + 1) # error: Unsupported operand types for + ("str" and "int")

Adding type hints for mypy does not interfere with the way your program would otherwise run. Think of type hints as
similar to comments! You can always use the Python interpreter to run your code, even if mypy reports errors.

Mypy is designed with gradual typing in mind. This means you can add type hints to your code base slowly and that
you can always fall back to dynamic typing when static typing is not convenient.

Mypy has a powerful and easy-to-use type system, supporting features such as type inference, generics, callable types,
tuple types, union types, structural subtyping and more. Using mypy will make your programs easier to understand,
debug, and maintain.

Note: Although mypy is production ready, there may be occasional changes that break backward compatibility. The
mypy development team tries to minimize the impact of changes to user code. In case of a major breaking change,
mypy’s major version will be bumped.

FIRST STEPS 1
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CHAPTER

ONE

CONTENTS

1.1 Getting started

This chapter introduces some core concepts of mypy, including function annotations, the typing module, stub files,
and more.

If you’re looking for a quick intro, see the mypy cheatsheet.

If you’re unfamiliar with the concepts of static and dynamic type checking, be sure to read this chapter carefully, as the
rest of the documentation may not make much sense otherwise.

1.1.1 Installing and running mypy

Mypy requires Python 3.8 or later to run. You can install mypy using pip:

$ python3 -m pip install mypy

Once mypy is installed, run it by using the mypy tool:

$ mypy program.py

This command makes mypy type check your program.py file and print out any errors it finds. Mypy will type check
your code statically: this means that it will check for errors without ever running your code, just like a linter.

This also means that you are always free to ignore the errors mypy reports, if you so wish. You can always use the
Python interpreter to run your code, even if mypy reports errors.

However, if you try directly running mypy on your existing Python code, it will most likely report little to no errors.
This is a feature! It makes it easy to adopt mypy incrementally.

In order to get useful diagnostics from mypy, you must add type annotations to your code. See the section below for
details.

3
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1.1.2 Dynamic vs static typing

A function without type annotations is considered to be dynamically typed by mypy:

def greeting(name):
return 'Hello ' + name

By default, mypy will not type check dynamically typed functions. This means that with a few exceptions, mypy will
not report any errors with regular unannotated Python.

This is the case even if you misuse the function!

def greeting(name):
return 'Hello ' + name

# These calls will fail when the program runs, but mypy does not report an error
# because "greeting" does not have type annotations.
greeting(123)
greeting(b"Alice")

We can get mypy to detect these kinds of bugs by adding type annotations (also known as type hints). For example,
you can tell mypy that greeting both accepts and returns a string like so:

# The "name: str" annotation says that the "name" argument should be a string
# The "-> str" annotation says that "greeting" will return a string
def greeting(name: str) -> str:

return 'Hello ' + name

This function is now statically typed: mypy will use the provided type hints to detect incorrect use of the greeting
function and incorrect use of variables within the greeting function. For example:

def greeting(name: str) -> str:
return 'Hello ' + name

greeting(3) # Argument 1 to "greeting" has incompatible type "int"; expected "str
→˓"
greeting(b'Alice') # Argument 1 to "greeting" has incompatible type "bytes"; expected
→˓"str"
greeting("World!") # No error

def bad_greeting(name: str) -> str:
return 'Hello ' * name # Unsupported operand types for * ("str" and "str")

Being able to pick whether you want a function to be dynamically or statically typed can be very helpful. For example,
if you are migrating an existing Python codebase to use static types, it’s usually easier to migrate by incrementally
adding type hints to your code rather than adding them all at once. Similarly, when you are prototyping a new feature,
it may be convenient to initially implement the code using dynamic typing and only add type hints later once the code
is more stable.

Once you are finished migrating or prototyping your code, you can make mypy warn you if you add a dynamic function
by mistake by using the --disallow-untyped-defs flag. You can also get mypy to provide some limited checking
of dynamically typed functions by using the --check-untyped-defs flag. See The mypy command line for more
information on configuring mypy.

4 Chapter 1. Contents
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1.1.3 Strict mode and configuration

Mypy has a strict mode that enables a number of additional checks, like --disallow-untyped-defs.

If you run mypy with the --strict flag, you will basically never get a type related error at runtime without a corre-
sponding mypy error, unless you explicitly circumvent mypy somehow.

However, this flag will probably be too aggressive if you are trying to add static types to a large, existing codebase. See
Using mypy with an existing codebase for suggestions on how to handle that case.

Mypy is very configurable, so you can start with using --strict and toggle off individual checks. For instance, if you
use many third party libraries that do not have types, --ignore-missing-imports may be useful. See Introduce
stricter options for how to build up to --strict.

See The mypy command line and The mypy configuration file for a complete reference on configuration options.

1.1.4 More complex types

So far, we’ve added type hints that use only basic concrete types like str and float. What if we want to express more
complex types, such as “a list of strings” or “an iterable of ints”?

For example, to indicate that some function can accept a list of strings, use the list[str] type (Python 3.9 and later):

def greet_all(names: list[str]) -> None:
for name in names:

print('Hello ' + name)

names = ["Alice", "Bob", "Charlie"]
ages = [10, 20, 30]

greet_all(names) # Ok!
greet_all(ages) # Error due to incompatible types

The list type is an example of something called a generic type: it can accept one or more type parameters. In this
case, we parameterized list by writing list[str]. This lets mypy know that greet_all accepts specifically lists
containing strings, and not lists containing ints or any other type.

In the above examples, the type signature is perhaps a little too rigid. After all, there’s no reason why this function
must accept specifically a list – it would run just fine if you were to pass in a tuple, a set, or any other custom iterable.

You can express this idea using collections.abc.Iterable:

from collections.abc import Iterable # or "from typing import Iterable"

def greet_all(names: Iterable[str]) -> None:
for name in names:

print('Hello ' + name)

This behavior is actually a fundamental aspect of the PEP 484 type system: when we annotate some variable with a
type T, we are actually telling mypy that variable can be assigned an instance of T, or an instance of a subtype of T.
That is, list[str] is a subtype of Iterable[str].

This also applies to inheritance, so if you have a class Child that inherits from Parent, then a value of type Child
can be assigned to a variable of type Parent. For example, a RuntimeError instance can be passed to a function that
is annotated as taking an Exception.

As another example, suppose you want to write a function that can accept either ints or strings, but no other types. You
can express this using the Union type. For example, int is a subtype of Union[int, str]:

1.1. Getting started 5
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from typing import Union

def normalize_id(user_id: Union[int, str]) -> str:
if isinstance(user_id, int):

return f'user-{100_000 + user_id}'
else:

return user_id

The typing module contains many other useful types.

For a quick overview, look through the mypy cheatsheet.

For a detailed overview (including information on how to make your own generic types or your own type aliases), look
through the type system reference.

Note: When adding types, the convention is to import types using the form from typing import Union (as op-
posed to doing just import typing or import typing as t or from typing import *).

For brevity, we often omit imports from typing or collections.abc in code examples, but mypy will give an error
if you use types such as Iterable without first importing them.

Note: In some examples we use capitalized variants of types, such as List, and sometimes we use plain list. They
are equivalent, but the prior variant is needed if you are using Python 3.8 or earlier.

1.1.5 Local type inference

Once you have added type hints to a function (i.e. made it statically typed), mypy will automatically type check that
function’s body. While doing so, mypy will try and infer as many details as possible.

We saw an example of this in the normalize_id function above – mypy understands basic isinstance checks and
so can infer that the user_id variable was of type int in the if-branch and of type str in the else-branch.

As another example, consider the following function. Mypy can type check this function without a problem: it will use
the available context and deduce that output must be of type list[float] and that num must be of type float:

def nums_below(numbers: Iterable[float], limit: float) -> list[float]:
output = []
for num in numbers:

if num < limit:
output.append(num)

return output

For more details, see Type inference and type annotations.
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1.1.6 Types from libraries

Mypy can also understand how to work with types from libraries that you use.

For instance, mypy comes out of the box with an intimate knowledge of the Python standard library. For example, here
is a function which uses the Path object from the pathlib standard library module:

from pathlib import Path

def load_template(template_path: Path, name: str) -> str:
# Mypy knows that `template_path` has a `read_text` method that returns a str
template = template_path.read_text()
# ...so it understands this line type checks
return template.replace('USERNAME', name)

If a third party library you use declares support for type checking, mypy will type check your use of that library based
on the type hints it contains.

However, if the third party library does not have type hints, mypy will complain about missing type information.

prog.py:1: error: Library stubs not installed for "yaml"
prog.py:1: note: Hint: "python3 -m pip install types-PyYAML"
prog.py:2: error: Library stubs not installed for "requests"
prog.py:2: note: Hint: "python3 -m pip install types-requests"
...

In this case, you can provide mypy a different source of type information, by installing a stub package. A stub package
is a package that contains type hints for another library, but no actual code.

$ python3 -m pip install types-PyYAML types-requests

Stubs packages for a distribution are often named types-<distribution>. Note that a distribution name may be
different from the name of the package that you import. For example, types-PyYAML contains stubs for the yaml
package.

For more discussion on strategies for handling errors about libraries without type information, refer to Missing imports.

For more information about stubs, see Stub files.

1.1.7 Next steps

If you are in a hurry and don’t want to read lots of documentation before getting started, here are some pointers to quick
learning resources:

• Read the mypy cheatsheet.

• Read Using mypy with an existing codebase if you have a significant existing codebase without many type anno-
tations.

• Read the blog post about the Zulip project’s experiences with adopting mypy.

• If you prefer watching talks instead of reading, here are some ideas:

– Carl Meyer: Type Checked Python in the Real World (PyCon 2018)

– Greg Price: Clearer Code at Scale: Static Types at Zulip and Dropbox (PyCon 2018)

• Look at solutions to common issues with mypy if you encounter problems.

• You can ask questions about mypy in the mypy issue tracker and typing Gitter chat.
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• For general questions about Python typing, try posting at typing discussions.

You can also continue reading this document and skip sections that aren’t relevant for you. You don’t need to read
sections in order.

1.2 Type hints cheat sheet

This document is a quick cheat sheet showing how to use type annotations for various common types in Python.

1.2.1 Variables

Technically many of the type annotations shown below are redundant, since mypy can usually infer the type of a variable
from its value. See Type inference and type annotations for more details.

# This is how you declare the type of a variable
age: int = 1

# You don't need to initialize a variable to annotate it
a: int # Ok (no value at runtime until assigned)

# Doing so can be useful in conditional branches
child: bool
if age < 18:

child = True
else:

child = False

1.2.2 Useful built-in types

# For most types, just use the name of the type in the annotation
# Note that mypy can usually infer the type of a variable from its value,
# so technically these annotations are redundant
x: int = 1
x: float = 1.0
x: bool = True
x: str = "test"
x: bytes = b"test"

# For collections on Python 3.9+, the type of the collection item is in brackets
x: list[int] = [1]
x: set[int] = {6, 7}

# For mappings, we need the types of both keys and values
x: dict[str, float] = {"field": 2.0} # Python 3.9+

# For tuples of fixed size, we specify the types of all the elements
x: tuple[int, str, float] = (3, "yes", 7.5) # Python 3.9+

# For tuples of variable size, we use one type and ellipsis
x: tuple[int, ...] = (1, 2, 3) # Python 3.9+

(continues on next page)
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(continued from previous page)

# On Python 3.8 and earlier, the name of the collection type is
# capitalized, and the type is imported from the 'typing' module
from typing import List, Set, Dict, Tuple
x: List[int] = [1]
x: Set[int] = {6, 7}
x: Dict[str, float] = {"field": 2.0}
x: Tuple[int, str, float] = (3, "yes", 7.5)
x: Tuple[int, ...] = (1, 2, 3)

from typing import Union, Optional

# On Python 3.10+, use the | operator when something could be one of a few types
x: list[int | str] = [3, 5, "test", "fun"] # Python 3.10+
# On earlier versions, use Union
x: list[Union[int, str]] = [3, 5, "test", "fun"]

# Use Optional[X] for a value that could be None
# Optional[X] is the same as X | None or Union[X, None]
x: Optional[str] = "something" if some_condition() else None
if x is not None:

# Mypy understands x won't be None here because of the if-statement
print(x.upper())

# If you know a value can never be None due to some logic that mypy doesn't
# understand, use an assert
assert x is not None
print(x.upper())

1.2.3 Functions

from typing import Callable, Iterator, Union, Optional

# This is how you annotate a function definition
def stringify(num: int) -> str:

return str(num)

# And here's how you specify multiple arguments
def plus(num1: int, num2: int) -> int:

return num1 + num2

# If a function does not return a value, use None as the return type
# Default value for an argument goes after the type annotation
def show(value: str, excitement: int = 10) -> None:

print(value + "!" * excitement)

# Note that arguments without a type are dynamically typed (treated as Any)
# and that functions without any annotations are not checked
def untyped(x):

x.anything() + 1 + "string" # no errors

(continues on next page)
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(continued from previous page)

# This is how you annotate a callable (function) value
x: Callable[[int, float], float] = f
def register(callback: Callable[[str], int]) -> None: ...

# A generator function that yields ints is secretly just a function that
# returns an iterator of ints, so that's how we annotate it
def gen(n: int) -> Iterator[int]:

i = 0
while i < n:

yield i
i += 1

# You can of course split a function annotation over multiple lines
def send_email(address: Union[str, list[str]],

sender: str,
cc: Optional[list[str]],
bcc: Optional[list[str]],
subject: str = '',
body: Optional[list[str]] = None
) -> bool:

...

# Mypy understands positional-only and keyword-only arguments
# Positional-only arguments can also be marked by using a name starting with
# two underscores
def quux(x: int, /, *, y: int) -> None:

pass

quux(3, y=5) # Ok
quux(3, 5) # error: Too many positional arguments for "quux"
quux(x=3, y=5) # error: Unexpected keyword argument "x" for "quux"

# This says each positional arg and each keyword arg is a "str"
def call(self, *args: str, **kwargs: str) -> str:

reveal_type(args) # Revealed type is "tuple[str, ...]"
reveal_type(kwargs) # Revealed type is "dict[str, str]"
request = make_request(*args, **kwargs)
return self.do_api_query(request)

1.2.4 Classes

from typing import ClassVar

class BankAccount:
# The "__init__" method doesn't return anything, so it gets return
# type "None" just like any other method that doesn't return anything
def __init__(self, account_name: str, initial_balance: int = 0) -> None:

# mypy will infer the correct types for these instance variables
# based on the types of the parameters.
self.account_name = account_name

(continues on next page)
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(continued from previous page)

self.balance = initial_balance

# For instance methods, omit type for "self"
def deposit(self, amount: int) -> None:

self.balance += amount

def withdraw(self, amount: int) -> None:
self.balance -= amount

# User-defined classes are valid as types in annotations
account: BankAccount = BankAccount("Alice", 400)
def transfer(src: BankAccount, dst: BankAccount, amount: int) -> None:

src.withdraw(amount)
dst.deposit(amount)

# Functions that accept BankAccount also accept any subclass of BankAccount!
class AuditedBankAccount(BankAccount):

# You can optionally declare instance variables in the class body
audit_log: list[str]

def __init__(self, account_name: str, initial_balance: int = 0) -> None:
super().__init__(account_name, initial_balance)
self.audit_log: list[str] = []

def deposit(self, amount: int) -> None:
self.audit_log.append(f"Deposited {amount}")
self.balance += amount

def withdraw(self, amount: int) -> None:
self.audit_log.append(f"Withdrew {amount}")
self.balance -= amount

audited = AuditedBankAccount("Bob", 300)
transfer(audited, account, 100) # type checks!

# You can use the ClassVar annotation to declare a class variable
class Car:

seats: ClassVar[int] = 4
passengers: ClassVar[list[str]]

# If you want dynamic attributes on your class, have it
# override "__setattr__" or "__getattr__"
class A:

# This will allow assignment to any A.x, if x is the same type as "value"
# (use "value: Any" to allow arbitrary types)
def __setattr__(self, name: str, value: int) -> None: ...

# This will allow access to any A.x, if x is compatible with the return type
def __getattr__(self, name: str) -> int: ...

a = A()
a.foo = 42 # Works

(continues on next page)
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(continued from previous page)

a.bar = 'Ex-parrot' # Fails type checking

1.2.5 When you’re puzzled or when things are complicated

from typing import Union, Any, Optional, TYPE_CHECKING, cast

# To find out what type mypy infers for an expression anywhere in
# your program, wrap it in reveal_type(). Mypy will print an error
# message with the type; remove it again before running the code.
reveal_type(1) # Revealed type is "builtins.int"

# If you initialize a variable with an empty container or "None"
# you may have to help mypy a bit by providing an explicit type annotation
x: list[str] = []
x: Optional[str] = None

# Use Any if you don't know the type of something or it's too
# dynamic to write a type for
x: Any = mystery_function()
# Mypy will let you do anything with x!
x.whatever() * x["you"] + x("want") - any(x) and all(x) is super # no errors

# Use a "type: ignore" comment to suppress errors on a given line,
# when your code confuses mypy or runs into an outright bug in mypy.
# Good practice is to add a comment explaining the issue.
x = confusing_function() # type: ignore # confusing_function won't return None here␣
→˓because ...

# "cast" is a helper function that lets you override the inferred
# type of an expression. It's only for mypy -- there's no runtime check.
a = [4]
b = cast(list[int], a) # Passes fine
c = cast(list[str], a) # Passes fine despite being a lie (no runtime check)
reveal_type(c) # Revealed type is "builtins.list[builtins.str]"
print(c) # Still prints [4] ... the object is not changed or casted at runtime

# Use "TYPE_CHECKING" if you want to have code that mypy can see but will not
# be executed at runtime (or to have code that mypy can't see)
if TYPE_CHECKING:

import json
else:

import orjson as json # mypy is unaware of this

In some cases type annotations can cause issues at runtime, see Annotation issues at runtime for dealing with this.

See Silencing type errors for details on how to silence errors.
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1.2.6 Standard “duck types”

In typical Python code, many functions that can take a list or a dict as an argument only need their argument to be
somehow “list-like” or “dict-like”. A specific meaning of “list-like” or “dict-like” (or something-else-like) is called a
“duck type”, and several duck types that are common in idiomatic Python are standardized.

from typing import Mapping, MutableMapping, Sequence, Iterable

# Use Iterable for generic iterables (anything usable in "for"),
# and Sequence where a sequence (supporting "len" and "__getitem__") is
# required
def f(ints: Iterable[int]) -> list[str]:

return [str(x) for x in ints]

f(range(1, 3))

# Mapping describes a dict-like object (with "__getitem__") that we won't
# mutate, and MutableMapping one (with "__setitem__") that we might
def f(my_mapping: Mapping[int, str]) -> list[int]:

my_mapping[5] = 'maybe' # mypy will complain about this line...
return list(my_mapping.keys())

f({3: 'yes', 4: 'no'})

def f(my_mapping: MutableMapping[int, str]) -> set[str]:
my_mapping[5] = 'maybe' # ...but mypy is OK with this.
return set(my_mapping.values())

f({3: 'yes', 4: 'no'})

import sys
from typing import IO

# Use IO[str] or IO[bytes] for functions that should accept or return
# objects that come from an open() call (note that IO does not
# distinguish between reading, writing or other modes)
def get_sys_IO(mode: str = 'w') -> IO[str]:

if mode == 'w':
return sys.stdout

elif mode == 'r':
return sys.stdin

else:
return sys.stdout

You can even make your own duck types using Protocols and structural subtyping.

1.2. Type hints cheat sheet 13
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1.2.7 Forward references

# You may want to reference a class before it is defined.
# This is known as a "forward reference".
def f(foo: A) -> int: # This will fail at runtime with 'A' is not defined

...

# However, if you add the following special import:
from __future__ import annotations
# It will work at runtime and type checking will succeed as long as there
# is a class of that name later on in the file
def f(foo: A) -> int: # Ok

...

# Another option is to just put the type in quotes
def f(foo: 'A') -> int: # Also ok

...

class A:
# This can also come up if you need to reference a class in a type
# annotation inside the definition of that class
@classmethod
def create(cls) -> A:

...

See Class name forward references for more details.

1.2.8 Decorators

Decorator functions can be expressed via generics. See Declaring decorators for more details.

from typing import Any, Callable, TypeVar

F = TypeVar('F', bound=Callable[..., Any])

def bare_decorator(func: F) -> F:
...

def decorator_args(url: str) -> Callable[[F], F]:
...

1.2.9 Coroutines and asyncio

See Typing async/await for the full detail on typing coroutines and asynchronous code.

import asyncio

# A coroutine is typed like a normal function
async def countdown(tag: str, count: int) -> str:

while count > 0:
print(f'T-minus {count} ({tag})')

(continues on next page)
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(continued from previous page)

await asyncio.sleep(0.1)
count -= 1

return "Blastoff!"

1.3 Using mypy with an existing codebase

This section explains how to get started using mypy with an existing, significant codebase that has little or no type
annotations. If you are a beginner, you can skip this section.

1.3.1 Start small

If your codebase is large, pick a subset of your codebase (say, 5,000 to 50,000 lines) and get mypy to run successfully
only on this subset at first, before adding annotations. This should be doable in a day or two. The sooner you get some
form of mypy passing on your codebase, the sooner you benefit.

You’ll likely need to fix some mypy errors, either by inserting annotations requested by mypy or by adding # type:
ignore comments to silence errors you don’t want to fix now.

We’ll mention some tips for getting mypy passing on your codebase in various sections below.

1.3.2 Run mypy consistently and prevent regressions

Make sure all developers on your codebase run mypy the same way. One way to ensure this is adding a small script
with your mypy invocation to your codebase, or adding your mypy invocation to existing tools you use to run tests, like
tox.

• Make sure everyone runs mypy with the same options. Checking a mypy configuration file into your codebase is
the easiest way to do this.

• Make sure everyone type checks the same set of files. See Specifying code to be checked for details.

• Make sure everyone runs mypy with the same version of mypy, for instance by pinning mypy with the rest of
your dev requirements.

In particular, you’ll want to make sure to run mypy as part of your Continuous Integration (CI) system as soon as
possible. This will prevent new type errors from being introduced into your codebase.

A simple CI script could look something like this:

python3 -m pip install mypy==1.8
# Run your standardised mypy invocation, e.g.
mypy my_project
# This could also look like `scripts/run_mypy.sh`, `tox run -e mypy`, `make mypy`, etc

1.3. Using mypy with an existing codebase 15
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1.3.3 Ignoring errors from certain modules

By default mypy will follow imports in your code and try to check everything. This means even if you only pass in a
few files to mypy, it may still process a large number of imported files. This could potentially result in lots of errors
you don’t want to deal with at the moment.

One way to deal with this is to ignore errors in modules you aren’t yet ready to type check. The ignore_errors option
is useful for this, for instance, if you aren’t yet ready to deal with errors from package_to_fix_later:

[mypy-package_to_fix_later.*]
ignore_errors = True

You could even invert this, by setting ignore_errors = True in your global config section and only enabling error
reporting with ignore_errors = False for the set of modules you are ready to type check.

The per-module configuration that mypy’s configuration file allows can be extremely useful. Many configuration op-
tions can be enabled or disabled only for specific modules. In particular, you can also enable or disable various error
codes on a per-module basis, see Error codes.

1.3.4 Fixing errors related to imports

A common class of error you will encounter is errors from mypy about modules that it can’t find, that don’t have types,
or don’t have stub files:

core/config.py:7: error: Cannot find implementation or library stub for module named
→˓'frobnicate'
core/model.py:9: error: Cannot find implementation or library stub for module named 'acme
→˓'
...

Sometimes these can be fixed by installing the relevant packages or stub libraries in the environment you’re running
mypy in.

See Missing imports for a complete reference on these errors and the ways in which you can fix them.

You’ll likely find that you want to suppress all errors from importing a given module that doesn’t have types. If you
only import that module in one or two places, you can use # type: ignore comments. For example, here we ignore
an error about a third-party module frobnicate that doesn’t have stubs using # type: ignore:

import frobnicate # type: ignore
...
frobnicate.initialize() # OK (but not checked)

But if you import the module in many places, this becomes unwieldy. In this case, we recommend using a configuration
file. For example, to disable errors about importing frobnicate and acme everywhere in your codebase, use a config
like this:

[mypy-frobnicate.*]
ignore_missing_imports = True

[mypy-acme.*]
ignore_missing_imports = True

If you get a large number of errors, you may want to ignore all errors about missing imports, for instance by setting
--disable-error-code=import-untyped . or setting ignore_missing_imports to true globally. This can hide
errors later on, so we recommend avoiding this if possible.
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Finally, mypy allows fine-grained control over specific import following behaviour. It’s very easy to silently shoot
yourself in the foot when playing around with these, so this should be a last resort. For more details, look here.

1.3.5 Prioritise annotating widely imported modules

Most projects have some widely imported modules, such as utilities or model classes. It’s a good idea to annotate these
pretty early on, since this allows code using these modules to be type checked more effectively.

Mypy is designed to support gradual typing, i.e. letting you add annotations at your own pace, so it’s okay to leave
some of these modules unannotated. The more you annotate, the more useful mypy will be, but even a little annotation
coverage is useful.

1.3.6 Write annotations as you go

Consider adding something like these in your code style conventions:

1. Developers should add annotations for any new code.

2. It’s also encouraged to write annotations when you modify existing code.

This way you’ll gradually increase annotation coverage in your codebase without much effort.

1.3.7 Automate annotation of legacy code

There are tools for automatically adding draft annotations based on simple static analysis or on type profiles collected
at runtime. Tools include MonkeyType, autotyping and PyAnnotate.

A simple approach is to collect types from test runs. This may work well if your test coverage is good (and if your tests
aren’t very slow).

Another approach is to enable type collection for a small, random fraction of production network requests. This clearly
requires more care, as type collection could impact the reliability or the performance of your service.

1.3.8 Introduce stricter options

Mypy is very configurable. Once you get started with static typing, you may want to explore the various strictness
options mypy provides to catch more bugs. For example, you can ask mypy to require annotations for all functions in
certain modules to avoid accidentally introducing code that won’t be type checked using disallow_untyped_defs.
Refer to The mypy configuration file for the details.

An excellent goal to aim for is to have your codebase pass when run against mypy --strict. This basically ensures
that you will never have a type related error without an explicit circumvention somewhere (such as a # type: ignore
comment).

The following config is equivalent to --strict (as of mypy 1.0):

# Start off with these
warn_unused_configs = True
warn_redundant_casts = True
warn_unused_ignores = True

# Getting these passing should be easy
strict_equality = True
strict_concatenate = True

(continues on next page)
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# Strongly recommend enabling this one as soon as you can
check_untyped_defs = True

# These shouldn't be too much additional work, but may be tricky to
# get passing if you use a lot of untyped libraries
disallow_subclassing_any = True
disallow_untyped_decorators = True
disallow_any_generics = True

# These next few are various gradations of forcing use of type annotations
disallow_untyped_calls = True
disallow_incomplete_defs = True
disallow_untyped_defs = True

# This one isn't too hard to get passing, but return on investment is lower
no_implicit_reexport = True

# This one can be tricky to get passing if you use a lot of untyped libraries
warn_return_any = True

Note that you can also start with --strict and subtract, for instance:

strict = True
warn_return_any = False

Remember that many of these options can be enabled on a per-module basis. For instance, you may want to enable
disallow_untyped_defs for modules which you’ve completed annotations for, in order to prevent new code from
being added without annotations.

And if you want, it doesn’t stop at --strict. Mypy has additional checks that are not part of --strict that can be
useful. See the complete The mypy command line reference and Error codes for optional checks.

1.3.9 Speed up mypy runs

You can use mypy daemon to get much faster incremental mypy runs. The larger your project is, the more useful this
will be. If your project has at least 100,000 lines of code or so, you may also want to set up remote caching for further
speedups.
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1.4 Built-in types

This chapter introduces some commonly used built-in types. We will cover many other kinds of types later.

1.4.1 Simple types

Here are examples of some common built-in types:

Type Description
int integer
float floating point number
bool boolean value (subclass of int)
str text, sequence of unicode codepoints
bytes 8-bit string, sequence of byte values
object an arbitrary object (object is the common base class)

All built-in classes can be used as types.

1.4.2 Any type

If you can’t find a good type for some value, you can always fall back to Any:

Type Description
Any dynamically typed value with an arbitrary type

The type Any is defined in the typing module. See Dynamically typed code for more details.

1.4.3 Generic types

In Python 3.9 and later, built-in collection type objects support indexing:

Type Description
list[str] list of str objects
tuple[int, int] tuple of two int objects (tuple[()] is the empty tuple)
tuple[int, ...] tuple of an arbitrary number of int objects
dict[str, int] dictionary from str keys to int values
Iterable[int] iterable object containing ints
Sequence[bool] sequence of booleans (read-only)
Mapping[str, int] mapping from str keys to int values (read-only)
type[C] type object of C (C is a class/type variable/union of types)

The type dict is a generic class, signified by type arguments within [...]. For example, dict[int, str] is a
dictionary from integers to strings and dict[Any, Any] is a dictionary of dynamically typed (arbitrary) values and
keys. list is another generic class.
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Iterable, Sequence, and Mapping are generic types that correspond to Python protocols. For example, a str object
or a list[str] object is valid when Iterable[str] or Sequence[str] is expected. You can import them from
collections.abc instead of importing from typing in Python 3.9.

See Using generic builtins for more details, including how you can use these in annotations also in Python 3.7 and 3.8.

These legacy types defined in typing are needed if you need to support Python 3.8 and earlier:

Type Description
List[str] list of str objects
Tuple[int, int] tuple of two int objects (Tuple[()] is the empty tuple)
Tuple[int, ...] tuple of an arbitrary number of int objects
Dict[str, int] dictionary from str keys to int values
Iterable[int] iterable object containing ints
Sequence[bool] sequence of booleans (read-only)
Mapping[str, int] mapping from str keys to int values (read-only)
Type[C] type object of C (C is a class/type variable/union of types)

List is an alias for the built-in type list that supports indexing (and similarly for dict/Dict and tuple/Tuple).

Note that even though Iterable, Sequence and Mapping look similar to abstract base classes defined in
collections.abc (formerly collections), they are not identical, since the latter don’t support indexing prior to
Python 3.9.

1.5 Type inference and type annotations

1.5.1 Type inference

For most variables, if you do not explicitly specify its type, mypy will infer the correct type based on what is initially
assigned to the variable.

# Mypy will infer the type of these variables, despite no annotations
i = 1
reveal_type(i) # Revealed type is "builtins.int"
l = [1, 2]
reveal_type(l) # Revealed type is "builtins.list[builtins.int]"

Note: Note that mypy will not use type inference in dynamically typed functions (those without a function type
annotation) — every local variable type defaults to Any in such functions. For more details, see Dynamically typed
code.

def untyped_function():
i = 1
reveal_type(i) # Revealed type is "Any"

# 'reveal_type' always outputs 'Any' in unchecked functions
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1.5.2 Explicit types for variables

You can override the inferred type of a variable by using a variable type annotation:

from typing import Union

x: Union[int, str] = 1

Without the type annotation, the type of x would be just int. We use an annotation to give it a more general type
Union[int, str] (this type means that the value can be either an int or a str).

The best way to think about this is that the type annotation sets the type of the variable, not the type of the expression.
For instance, mypy will complain about the following code:

x: Union[int, str] = 1.1 # error: Incompatible types in assignment
# (expression has type "float", variable has type "Union[int,␣

→˓str]")

Note: To explicitly override the type of an expression you can use cast(<type>, <expression>). See Casts for
details.

Note that you can explicitly declare the type of a variable without giving it an initial value:

# We only unpack two values, so there's no right-hand side value
# for mypy to infer the type of "cs" from:
a, b, *cs = 1, 2 # error: Need type annotation for "cs"

rs: list[int] # no assignment!
p, q, *rs = 1, 2 # OK

1.5.3 Explicit types for collections

The type checker cannot always infer the type of a list or a dictionary. This often arises when creating an empty list
or dictionary and assigning it to a new variable that doesn’t have an explicit variable type. Here is an example where
mypy can’t infer the type without some help:

l = [] # Error: Need type annotation for "l"

In these cases you can give the type explicitly using a type annotation:

l: list[int] = [] # Create empty list of int
d: dict[str, int] = {} # Create empty dictionary (str -> int)

Note: Using type arguments (e.g. list[int]) on builtin collections like list, dict, tuple, and set only works in
Python 3.9 and later. For Python 3.8 and earlier, you must use List (e.g. List[int]), Dict, and so on.
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1.5.4 Compatibility of container types

A quick note: container types can sometimes be unintuitive. We’ll discuss this more in Invariance vs covariance.
For example, the following program generates a mypy error, because mypy treats list[int] as incompatible with
list[object]:

def f(l: list[object], k: list[int]) -> None:
l = k # error: Incompatible types in assignment

The reason why the above assignment is disallowed is that allowing the assignment could result in non-int values stored
in a list of int:

def f(l: list[object], k: list[int]) -> None:
l = k
l.append('x')
print(k[-1]) # Ouch; a string in list[int]

Other container types like dict and set behave similarly.

You can still run the above program; it prints x. This illustrates the fact that static types do not affect the runtime
behavior of programs. You can run programs with type check failures, which is often very handy when performing a
large refactoring. Thus you can always ‘work around’ the type system, and it doesn’t really limit what you can do in
your program.

1.5.5 Context in type inference

Type inference is bidirectional and takes context into account.

Mypy will take into account the type of the variable on the left-hand side of an assignment when inferring the type of
the expression on the right-hand side. For example, the following will type check:

def f(l: list[object]) -> None:
l = [1, 2] # Infer type list[object] for [1, 2], not list[int]

The value expression [1, 2] is type checked with the additional context that it is being assigned to a variable of type
list[object]. This is used to infer the type of the expression as list[object].

Declared argument types are also used for type context. In this program mypy knows that the empty list [] should have
type list[int] based on the declared type of arg in foo:

def foo(arg: list[int]) -> None:
print('Items:', ''.join(str(a) for a in arg))

foo([]) # OK

However, context only works within a single statement. Here mypy requires an annotation for the empty list, since the
context would only be available in the following statement:

def foo(arg: list[int]) -> None:
print('Items:', ', '.join(arg))

a = [] # Error: Need type annotation for "a"
foo(a)

Working around the issue is easy by adding a type annotation:
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...
a: list[int] = [] # OK
foo(a)

1.5.6 Silencing type errors

You might want to disable type checking on specific lines, or within specific files in your codebase. To do that, you can
use a # type: ignore comment.

For example, say in its latest update, the web framework you use can now take an integer argument to run(), which
starts it on localhost on that port. Like so:

# Starting app on http://localhost:8000
app.run(8000)

However, the devs forgot to update their type annotations for run, so mypy still thinks run only expects str types.
This would give you the following error:

error: Argument 1 to "run" of "A" has incompatible type "int"; expected "str"

If you cannot directly fix the web framework yourself, you can temporarily disable type checking on that line, by adding
a # type: ignore:

# Starting app on http://localhost:8000
app.run(8000) # type: ignore

This will suppress any mypy errors that would have raised on that specific line.

You should probably add some more information on the # type: ignore comment, to explain why the ignore was
added in the first place. This could be a link to an issue on the repository responsible for the type stubs, or it could be
a short explanation of the bug. To do that, use this format:

# Starting app on http://localhost:8000
app.run(8000) # type: ignore # `run()` in v2.0 accepts an `int`, as a port

Type ignore error codes

By default, mypy displays an error code for each error:

error: "str" has no attribute "trim" [attr-defined]

It is possible to add a specific error-code in your ignore comment (e.g. # type: ignore[attr-defined]) to clarify
what’s being silenced. You can find more information about error codes here.
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Other ways to silence errors

You can get mypy to silence errors about a specific variable by dynamically typing it with Any. See Dynamically typed
code for more information.

from typing import Any

def f(x: Any, y: str) -> None:
x = 'hello'
x += 1 # OK

You can ignore all mypy errors in a file by adding a # mypy: ignore-errors at the top of the file:

# mypy: ignore-errors
# This is a test file, skipping type checking in it.
import unittest
...

You can also specify per-module configuration options in your The mypy configuration file. For example:

# Don't report errors in the 'package_to_fix_later' package
[mypy-package_to_fix_later.*]
ignore_errors = True

# Disable specific error codes in the 'tests' package
# Also don't require type annotations
[mypy-tests.*]
disable_error_code = var-annotated, has-type
allow_untyped_defs = True

# Silence import errors from the 'library_missing_types' package
[mypy-library_missing_types.*]
ignore_missing_imports = True

Finally, adding a @typing.no_type_check decorator to a class, method or function causes mypy to avoid type check-
ing that class, method or function and to treat it as not having any type annotations.

@typing.no_type_check
def foo() -> str:
return 12345 # No error!

1.6 Kinds of types

We’ve mostly restricted ourselves to built-in types until now. This section introduces several additional kinds of types.
You are likely to need at least some of them to type check any non-trivial programs.
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1.6.1 Class types

Every class is also a valid type. Any instance of a subclass is also compatible with all superclasses – it follows that every
value is compatible with the object type (and incidentally also the Any type, discussed below). Mypy analyzes the
bodies of classes to determine which methods and attributes are available in instances. This example uses subclassing:

class A:
def f(self) -> int: # Type of self inferred (A)

return 2

class B(A):
def f(self) -> int:

return 3
def g(self) -> int:

return 4

def foo(a: A) -> None:
print(a.f()) # 3
a.g() # Error: "A" has no attribute "g"

foo(B()) # OK (B is a subclass of A)

1.6.2 The Any type

A value with the Any type is dynamically typed. Mypy doesn’t know anything about the possible runtime types of such
value. Any operations are permitted on the value, and the operations are only checked at runtime. You can use Any as
an “escape hatch” when you can’t use a more precise type for some reason.

Any is compatible with every other type, and vice versa. You can freely assign a value of type Any to a variable with a
more precise type:

a: Any = None
s: str = ''
a = 2 # OK (assign "int" to "Any")
s = a # OK (assign "Any" to "str")

Declared (and inferred) types are ignored (or erased) at runtime. They are basically treated as comments, and thus the
above code does not generate a runtime error, even though s gets an int value when the program is run, while the
declared type of s is actually str! You need to be careful with Any types, since they let you lie to mypy, and this could
easily hide bugs.

If you do not define a function return value or argument types, these default to Any:

def show_heading(s) -> None:
print('=== ' + s + ' ===') # No static type checking, as s has type Any

show_heading(1) # OK (runtime error only; mypy won't generate an error)

You should give a statically typed function an explicit None return type even if it doesn’t return a value, as this lets
mypy catch additional type errors:

def wait(t: float): # Implicit Any return value
print('Waiting...')
time.sleep(t)

(continues on next page)
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(continued from previous page)

if wait(2) > 1: # Mypy doesn't catch this error!
...

If we had used an explicit None return type, mypy would have caught the error:

def wait(t: float) -> None:
print('Waiting...')
time.sleep(t)

if wait(2) > 1: # Error: can't compare None and int
...

The Any type is discussed in more detail in section Dynamically typed code.

Note: A function without any types in the signature is dynamically typed. The body of a dynamically typed function
is not checked statically, and local variables have implicit Any types. This makes it easier to migrate legacy Python
code to mypy, as mypy won’t complain about dynamically typed functions.

1.6.3 Tuple types

The type tuple[T1, ..., Tn] represents a tuple with the item types T1, . . . , Tn:

# Use `typing.Tuple` in Python 3.8 and earlier
def f(t: tuple[int, str]) -> None:

t = 1, 'foo' # OK
t = 'foo', 1 # Type check error

A tuple type of this kind has exactly a specific number of items (2 in the above example). Tuples can also be used
as immutable, varying-length sequences. You can use the type tuple[T, ...] (with a literal ... – it’s part of the
syntax) for this purpose. Example:

def print_squared(t: tuple[int, ...]) -> None:
for n in t:

print(n, n ** 2)

print_squared(()) # OK
print_squared((1, 3, 5)) # OK
print_squared([1, 2]) # Error: only a tuple is valid

Note: Usually it’s a better idea to use Sequence[T] instead of tuple[T, ...], as Sequence is also compatible
with lists and other non-tuple sequences.

Note: tuple[...] is valid as a base class in Python 3.6 and later, and always in stub files. In earlier Python versions
you can sometimes work around this limitation by using a named tuple as a base class (see section Named tuples).
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1.6.4 Callable types (and lambdas)

You can pass around function objects and bound methods in statically typed code. The type of a function that accepts
arguments A1, . . . , An and returns Rt is Callable[[A1, ..., An], Rt]. Example:

from typing import Callable

def twice(i: int, next: Callable[[int], int]) -> int:
return next(next(i))

def add(i: int) -> int:
return i + 1

print(twice(3, add)) # 5

You can only have positional arguments, and only ones without default values, in callable types. These cover the vast
majority of uses of callable types, but sometimes this isn’t quite enough. Mypy recognizes a special form Callable[.
.., T] (with a literal ...) which can be used in less typical cases. It is compatible with arbitrary callable objects
that return a type compatible with T, independent of the number, types or kinds of arguments. Mypy lets you call such
callable values with arbitrary arguments, without any checking – in this respect they are treated similar to a (*args:
Any, **kwargs: Any) function signature. Example:

from typing import Callable

def arbitrary_call(f: Callable[..., int]) -> int:
return f('x') + f(y=2) # OK

arbitrary_call(ord) # No static error, but fails at runtime
arbitrary_call(open) # Error: does not return an int
arbitrary_call(1) # Error: 'int' is not callable

In situations where more precise or complex types of callbacks are necessary one can use flexible callback protocols.
Lambdas are also supported. The lambda argument and return value types cannot be given explicitly; they are always
inferred based on context using bidirectional type inference:

l = map(lambda x: x + 1, [1, 2, 3]) # Infer x as int and l as list[int]

If you want to give the argument or return value types explicitly, use an ordinary, perhaps nested function definition.

Callables can also be used against type objects, matching their __init__ or __new__ signature:

from typing import Callable

class C:
def __init__(self, app: str) -> None:

pass

CallableType = Callable[[str], C]

def class_or_callable(arg: CallableType) -> None:
inst = arg("my_app")
reveal_type(inst) # Revealed type is "C"

This is useful if you want arg to be either a Callable returning an instance of C or the type of C itself. This also
works with callback protocols.
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1.6.5 Union types

Python functions often accept values of two or more different types. You can use overloading to represent this, but
union types are often more convenient.

Use the Union[T1, ..., Tn] type constructor to construct a union type. For example, if an argument has type
Union[int, str], both integers and strings are valid argument values.

You can use an isinstance() check to narrow down a union type to a more specific type:

from typing import Union

def f(x: Union[int, str]) -> None:
x + 1 # Error: str + int is not valid
if isinstance(x, int):

# Here type of x is int.
x + 1 # OK

else:
# Here type of x is str.
x + 'a' # OK

f(1) # OK
f('x') # OK
f(1.1) # Error

Note: Operations are valid for union types only if they are valid for every union item. This is why it’s often necessary
to use an isinstance() check to first narrow down a union type to a non-union type. This also means that it’s
recommended to avoid union types as function return types, since the caller may have to use isinstance() before
doing anything interesting with the value.

1.6.6 Optional types and the None type

You can use the Optional type modifier to define a type variant that allows None, such as Optional[int]
(Optional[X] is the preferred shorthand for Union[X, None]):

from typing import Optional

def strlen(s: str) -> Optional[int]:
if not s:

return None # OK
return len(s)

def strlen_invalid(s: str) -> int:
if not s:

return None # Error: None not compatible with int
return len(s)

Most operations will not be allowed on unguarded None or Optional values:

def my_inc(x: Optional[int]) -> int:
return x + 1 # Error: Cannot add None and int
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Instead, an explicit None check is required. Mypy has powerful type inference that lets you use regular Python idioms
to guard against None values. For example, mypy recognizes is None checks:

def my_inc(x: Optional[int]) -> int:
if x is None:

return 0
else:

# The inferred type of x is just int here.
return x + 1

Mypy will infer the type of x to be int in the else block due to the check against None in the if condition.

Other supported checks for guarding against a None value include if x is not None, if x and if not x. Addi-
tionally, mypy understands None checks within logical expressions:

def concat(x: Optional[str], y: Optional[str]) -> Optional[str]:
if x is not None and y is not None:

# Both x and y are not None here
return x + y

else:
return None

Sometimes mypy doesn’t realize that a value is never None. This notably happens when a class instance can exist in
a partially defined state, where some attribute is initialized to None during object construction, but a method assumes
that the attribute is no longer None. Mypy will complain about the possible None value. You can use assert x is
not None to work around this in the method:

class Resource:
path: Optional[str] = None

def initialize(self, path: str) -> None:
self.path = path

def read(self) -> str:
# We require that the object has been initialized.
assert self.path is not None
with open(self.path) as f: # OK
return f.read()

r = Resource()
r.initialize('/foo/bar')
r.read()

When initializing a variable as None, None is usually an empty place-holder value, and the actual value has a different
type. This is why you need to annotate an attribute in cases like the class Resource above:

class Resource:
path: Optional[str] = None
...

This also works for attributes defined within methods:

class Counter:
def __init__(self) -> None:

self.count: Optional[int] = None
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This is not a problem when using variable annotations, since no initial value is needed:

class Container:
items: list[str] # No initial value

Mypy generally uses the first assignment to a variable to infer the type of the variable. However, if you assign both a
None value and a non-None value in the same scope, mypy can usually do the right thing without an annotation:

def f(i: int) -> None:
n = None # Inferred type Optional[int] because of the assignment below
if i > 0:

n = i
...

Sometimes you may get the error “Cannot determine type of <something>”. In this case you should add an explicit
Optional[...] annotation (or type comment).

Note: None is a type with only one value, None. None is also used as the return type for functions that don’t return a
value, i.e. functions that implicitly return None.

Note: The Python interpreter internally uses the name NoneType for the type of None, but None is always used in
type annotations. The latter is shorter and reads better. (NoneType is available as types.NoneType on Python 3.10+,
but is not exposed at all on earlier versions of Python.)

Note: Optional[...] does not mean a function argument with a default value. It simply means that None is a valid
value for the argument. This is a common confusion because None is a common default value for arguments.

X | Y syntax for Unions

PEP 604 introduced an alternative way for spelling union types. In Python 3.10 and later, you can write Union[int,
str] as int | str. It is possible to use this syntax in versions of Python where it isn’t supported by the runtime with
some limitations (see Annotation issues at runtime).

t1: int | str # equivalent to Union[int, str]

t2: int | None # equivalent to Optional[int]

1.6.7 Type aliases

In certain situations, type names may end up being long and painful to type:

def f() -> Union[list[dict[tuple[int, str], set[int]]], tuple[str, list[str]]]:
...

When cases like this arise, you can define a type alias by simply assigning the type to a variable:
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AliasType = Union[list[dict[tuple[int, str], set[int]]], tuple[str, list[str]]]

# Now we can use AliasType in place of the full name:

def f() -> AliasType:
...

Note: A type alias does not create a new type. It’s just a shorthand notation for another type – it’s equivalent to the
target type except for generic aliases.

Since Mypy 0.930 you can also use explicit type aliases, which were introduced in PEP 613.

There can be confusion about exactly when an assignment defines an implicit type alias – for example, when the alias
contains forward references, invalid types, or violates some other restrictions on type alias declarations. Because the
distinction between an unannotated variable and a type alias is implicit, ambiguous or incorrect type alias declarations
default to defining a normal variable instead of a type alias.

Explicit type aliases are unambiguous and can also improve readability by making the intent clear:

from typing import TypeAlias # "from typing_extensions" in Python 3.9 and earlier

AliasType: TypeAlias = Union[list[dict[tuple[int, str], set[int]]], tuple[str,␣
→˓list[str]]]

1.6.8 Named tuples

Mypy recognizes named tuples and can type check code that defines or uses them. In this example, we can detect code
trying to access a missing attribute:

Point = namedtuple('Point', ['x', 'y'])
p = Point(x=1, y=2)
print(p.z) # Error: Point has no attribute 'z'

If you use namedtuple to define your named tuple, all the items are assumed to have Any types. That is, mypy doesn’t
know anything about item types. You can use NamedTuple to also define item types:

from typing import NamedTuple

Point = NamedTuple('Point', [('x', int),
('y', int)])

p = Point(x=1, y='x') # Argument has incompatible type "str"; expected "int"

Python 3.6 introduced an alternative, class-based syntax for named tuples with types:

from typing import NamedTuple

class Point(NamedTuple):
x: int
y: int

p = Point(x=1, y='x') # Argument has incompatible type "str"; expected "int"
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Note: You can use the raw NamedTuple “pseudo-class” in type annotations if any NamedTuple object is valid.

For example, it can be useful for deserialization:

def deserialize_named_tuple(arg: NamedTuple) -> Dict[str, Any]:
return arg._asdict()

Point = namedtuple('Point', ['x', 'y'])
Person = NamedTuple('Person', [('name', str), ('age', int)])

deserialize_named_tuple(Point(x=1, y=2)) # ok
deserialize_named_tuple(Person(name='Nikita', age=18)) # ok

# Error: Argument 1 to "deserialize_named_tuple" has incompatible type
# "Tuple[int, int]"; expected "NamedTuple"
deserialize_named_tuple((1, 2))

Note that this behavior is highly experimental, non-standard, and may not be supported by other type checkers and
IDEs.

1.6.9 The type of class objects

(Freely after PEP 484: The type of class objects.)

Sometimes you want to talk about class objects that inherit from a given class. This can be spelled as type[C] (or, on
Python 3.8 and lower, typing.Type[C]) where C is a class. In other words, when C is the name of a class, using C to
annotate an argument declares that the argument is an instance of C (or of a subclass of C), but using type[C] as an
argument annotation declares that the argument is a class object deriving from C (or C itself).

For example, assume the following classes:

class User:
# Defines fields like name, email

class BasicUser(User):
def upgrade(self):

"""Upgrade to Pro"""

class ProUser(User):
def pay(self):

"""Pay bill"""

Note that ProUser doesn’t inherit from BasicUser.

Here’s a function that creates an instance of one of these classes if you pass it the right class object:

def new_user(user_class):
user = user_class()
# (Here we could write the user object to a database)
return user

How would we annotate this function? Without the ability to parameterize type, the best we could do would be:
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def new_user(user_class: type) -> User:
# Same implementation as before

This seems reasonable, except that in the following example, mypy doesn’t see that the buyer variable has type
ProUser:

buyer = new_user(ProUser)
buyer.pay() # Rejected, not a method on User

However, using the type[C] syntax and a type variable with an upper bound (see Type variables with upper bounds)
we can do better:

U = TypeVar('U', bound=User)

def new_user(user_class: type[U]) -> U:
# Same implementation as before

Now mypy will infer the correct type of the result when we call new_user() with a specific subclass of User:

beginner = new_user(BasicUser) # Inferred type is BasicUser
beginner.upgrade() # OK

Note: The value corresponding to type[C] must be an actual class object that’s a subtype of C. Its constructor must
be compatible with the constructor of C. If C is a type variable, its upper bound must be a class object.

For more details about type[] and typing.Type[], see PEP 484: The type of class objects.

1.6.10 Generators

A basic generator that only yields values can be succinctly annotated as having a return type of either
Iterator[YieldType] or Iterable[YieldType]. For example:

def squares(n: int) -> Iterator[int]:
for i in range(n):

yield i * i

A good rule of thumb is to annotate functions with the most specific return type possible. However, you should also
take care to avoid leaking implementation details into a function’s public API. In keeping with these two principles,
prefer Iterator[YieldType] over Iterable[YieldType] as the return-type annotation for a generator function,
as it lets mypy know that users are able to call next() on the object returned by the function. Nonetheless, bear in
mind that Iterable may sometimes be the better option, if you consider it an implementation detail that next() can
be called on the object returned by your function.

If you want your generator to accept values via the send() method or return a value, on the other hand, you should
use the Generator[YieldType, SendType, ReturnType] generic type instead of either Iterator or Iterable.
For example:

def echo_round() -> Generator[int, float, str]:
sent = yield 0
while sent >= 0:

sent = yield round(sent)
return 'Done'
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Note that unlike many other generics in the typing module, the SendType of Generator behaves contravariantly, not
covariantly or invariantly.

If you do not plan on receiving or returning values, then set the SendType or ReturnType to None, as appropriate.
For example, we could have annotated the first example as the following:

def squares(n: int) -> Generator[int, None, None]:
for i in range(n):

yield i * i

This is slightly different from using Iterator[int] or Iterable[int], since generators have close(), send(),
and throw() methods that generic iterators and iterables don’t. If you plan to call these methods on the returned
generator, use the Generator type instead of Iterator or Iterable.

1.7 Class basics

This section will help get you started annotating your classes. Built-in classes such as int also follow these same rules.

1.7.1 Instance and class attributes

The mypy type checker detects if you are trying to access a missing attribute, which is a very common programming
error. For this to work correctly, instance and class attributes must be defined or initialized within the class. Mypy
infers the types of attributes:

class A:
def __init__(self, x: int) -> None:

self.x = x # Aha, attribute 'x' of type 'int'

a = A(1)
a.x = 2 # OK!
a.y = 3 # Error: "A" has no attribute "y"

This is a bit like each class having an implicitly defined __slots__ attribute. This is only enforced during type checking
and not when your program is running.

You can declare types of variables in the class body explicitly using a type annotation:

class A:
x: list[int] # Declare attribute 'x' of type list[int]

a = A()
a.x = [1] # OK

As in Python generally, a variable defined in the class body can be used as a class or an instance variable. (As discussed
in the next section, you can override this with a ClassVar annotation.)

Similarly, you can give explicit types to instance variables defined in a method:

class A:
def __init__(self) -> None:

self.x: list[int] = []

(continues on next page)
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(continued from previous page)

def f(self) -> None:
self.y: Any = 0

You can only define an instance variable within a method if you assign to it explicitly using self:

class A:
def __init__(self) -> None:

self.y = 1 # Define 'y'
a = self
a.x = 1 # Error: 'x' not defined

1.7.2 Annotating __init__ methods

The __init__ method is somewhat special – it doesn’t return a value. This is best expressed as -> None. However,
since many feel this is redundant, it is allowed to omit the return type declaration on __init__ methods if at least one
argument is annotated. For example, in the following classes __init__ is considered fully annotated:

class C1:
def __init__(self) -> None:

self.var = 42

class C2:
def __init__(self, arg: int):

self.var = arg

However, if __init__ has no annotated arguments and no return type annotation, it is considered an untyped method:

class C3:
def __init__(self):

# This body is not type checked
self.var = 42 + 'abc'

1.7.3 Class attribute annotations

You can use a ClassVar[t] annotation to explicitly declare that a particular attribute should not be set on instances:

from typing import ClassVar

class A:
x: ClassVar[int] = 0 # Class variable only

A.x += 1 # OK

a = A()
a.x = 1 # Error: Cannot assign to class variable "x" via instance
print(a.x) # OK -- can be read through an instance

It’s not necessary to annotate all class variables using ClassVar. An attribute without the ClassVar annotation can
still be used as a class variable. However, mypy won’t prevent it from being used as an instance variable, as discussed
previously:
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class A:
x = 0 # Can be used as a class or instance variable

A.x += 1 # OK

a = A()
a.x = 1 # Also OK

Note that ClassVar is not a class, and you can’t use it with isinstance() or issubclass(). It does not change
Python runtime behavior – it’s only for type checkers such as mypy (and also helpful for human readers).

You can also omit the square brackets and the variable type in a ClassVar annotation, but this might not do what you’d
expect:

class A:
y: ClassVar = 0 # Type implicitly Any!

In this case the type of the attribute will be implicitly Any. This behavior will change in the future, since it’s surprising.

An explicit ClassVarmay be particularly handy to distinguish between class and instance variables with callable types.
For example:

from typing import Callable, ClassVar

class A:
foo: Callable[[int], None]
bar: ClassVar[Callable[[A, int], None]]
bad: Callable[[A], None]

A().foo(42) # OK
A().bar(42) # OK
A().bad() # Error: Too few arguments

Note: A ClassVar type parameter cannot include type variables: ClassVar[T] and ClassVar[list[T]] are both
invalid if T is a type variable (see Defining generic classes for more about type variables).

1.7.4 Overriding statically typed methods

When overriding a statically typed method, mypy checks that the override has a compatible signature:

class Base:
def f(self, x: int) -> None:

...

class Derived1(Base):
def f(self, x: str) -> None: # Error: type of 'x' incompatible

...

class Derived2(Base):
def f(self, x: int, y: int) -> None: # Error: too many arguments

...
(continues on next page)
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(continued from previous page)

class Derived3(Base):
def f(self, x: int) -> None: # OK

...

class Derived4(Base):
def f(self, x: float) -> None: # OK: mypy treats int as a subtype of float

...

class Derived5(Base):
def f(self, x: int, y: int = 0) -> None: # OK: accepts more than the base

... # class method

Note: You can also vary return types covariantly in overriding. For example, you could override the return type
Iterable[int] with a subtype such as list[int]. Similarly, you can vary argument types contravariantly – sub-
classes can have more general argument types.

In order to ensure that your code remains correct when renaming methods, it can be helpful to explicitly mark a method
as overriding a base method. This can be done with the @override decorator. @override can be imported from
typing starting with Python 3.12 or from typing_extensions for use with older Python versions. If the base method
is then renamed while the overriding method is not, mypy will show an error:

from typing import override

class Base:
def f(self, x: int) -> None:

...
def g_renamed(self, y: str) -> None:

...

class Derived1(Base):
@override
def f(self, x: int) -> None: # OK

...

@override
def g(self, y: str) -> None: # Error: no corresponding base method found

...

Note: Use –enable-error-code explicit-override to require that method overrides use the @override decorator. Emit
an error if it is missing.

You can also override a statically typed method with a dynamically typed one. This allows dynamically typed code to
override methods defined in library classes without worrying about their type signatures.

As always, relying on dynamically typed code can be unsafe. There is no runtime enforcement that the method override
returns a value that is compatible with the original return type, since annotations have no effect at runtime:

class Base:
def inc(self, x: int) -> int:

(continues on next page)
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(continued from previous page)

return x + 1

class Derived(Base):
def inc(self, x): # Override, dynamically typed

return 'hello' # Incompatible with 'Base', but no mypy error

1.7.5 Abstract base classes and multiple inheritance

Mypy supports Python abstract base classes (ABCs). Abstract classes have at least one abstract method or property
that must be implemented by any concrete (non-abstract) subclass. You can define abstract base classes using the
abc.ABCMeta metaclass and the @abc.abstractmethod function decorator. Example:

from abc import ABCMeta, abstractmethod

class Animal(metaclass=ABCMeta):
@abstractmethod
def eat(self, food: str) -> None: pass

@property
@abstractmethod
def can_walk(self) -> bool: pass

class Cat(Animal):
def eat(self, food: str) -> None:

... # Body omitted

@property
def can_walk(self) -> bool:

return True

x = Animal() # Error: 'Animal' is abstract due to 'eat' and 'can_walk'
y = Cat() # OK

Note that mypy performs checking for unimplemented abstract methods even if you omit the ABCMeta metaclass. This
can be useful if the metaclass would cause runtime metaclass conflicts.

Since you can’t create instances of ABCs, they are most commonly used in type annotations. For example, this method
accepts arbitrary iterables containing arbitrary animals (instances of concrete Animal subclasses):

def feed_all(animals: Iterable[Animal], food: str) -> None:
for animal in animals:

animal.eat(food)

There is one important peculiarity about how ABCs work in Python – whether a particular class is abstract or not
is somewhat implicit. In the example below, Derived is treated as an abstract base class since Derived inherits an
abstract f method from Base and doesn’t explicitly implement it. The definition of Derived generates no errors from
mypy, since it’s a valid ABC:

from abc import ABCMeta, abstractmethod

class Base(metaclass=ABCMeta):
@abstractmethod

(continues on next page)
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def f(self, x: int) -> None: pass

class Derived(Base): # No error -- Derived is implicitly abstract
def g(self) -> None:

...

Attempting to create an instance of Derived will be rejected, however:

d = Derived() # Error: 'Derived' is abstract

Note: It’s a common error to forget to implement an abstract method. As shown above, the class definition will not
generate an error in this case, but any attempt to construct an instance will be flagged as an error.

Mypy allows you to omit the body for an abstract method, but if you do so, it is unsafe to call such method via super().
For example:

from abc import abstractmethod
class Base:

@abstractmethod
def foo(self) -> int: pass
@abstractmethod
def bar(self) -> int:

return 0
class Sub(Base):

def foo(self) -> int:
return super().foo() + 1 # error: Call to abstract method "foo" of "Base"

# with trivial body via super() is unsafe
@abstractmethod
def bar(self) -> int:

return super().bar() + 1 # This is OK however.

A class can inherit any number of classes, both abstract and concrete. As with normal overrides, a dynamically typed
method can override or implement a statically typed method defined in any base class, including an abstract method
defined in an abstract base class.

You can implement an abstract property using either a normal property or an instance variable.

1.7.6 Slots

When a class has explicitly defined __slots__, mypy will check that all attributes assigned to are members of
__slots__:

class Album:
__slots__ = ('name', 'year')

def __init__(self, name: str, year: int) -> None:
self.name = name
self.year = year
# Error: Trying to assign name "released" that is not in "__slots__" of type

→˓"Album"
self.released = True

(continues on next page)
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my_album = Album('Songs about Python', 2021)

Mypy will only check attribute assignments against __slots__ when the following conditions hold:

1. All base classes (except builtin ones) must have explicit __slots__ defined (this mirrors Python semantics).

2. __slots__ does not include __dict__. If __slots__ includes __dict__, arbitrary attributes can be set,
similar to when __slots__ is not defined (this mirrors Python semantics).

3. All values in __slots__ must be string literals.

1.8 Annotation issues at runtime

Idiomatic use of type annotations can sometimes run up against what a given version of Python considers legal code.
This section describes these scenarios and explains how to get your code running again. Generally speaking, we have
three tools at our disposal:

• Use of from __future__ import annotations (PEP 563) (this behaviour may eventually be made the de-
fault in a future Python version)

• Use of string literal types or type comments

• Use of typing.TYPE_CHECKING

We provide a description of these before moving onto discussion of specific problems you may encounter.

1.8.1 String literal types and type comments

Mypy allows you to add type annotations using # type: type comments. For example:

a = 1 # type: int

def f(x): # type: (int) -> int
return x + 1

# Alternative type comment syntax for functions with many arguments
def send_email(

address, # type: Union[str, List[str]]
sender, # type: str
cc, # type: Optional[List[str]]
subject='',
body=None # type: List[str]

):
# type: (...) -> bool

Type comments can’t cause runtime errors because comments are not evaluated by Python.

In a similar way, using string literal types sidesteps the problem of annotations that would cause runtime errors.

Any type can be entered as a string literal, and you can combine string-literal types with non-string-literal types freely:

def f(a: list['A']) -> None: ... # OK, prevents NameError since A is defined later
def g(n: 'int') -> None: ... # Also OK, though not useful

(continues on next page)
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class A: pass

String literal types are never needed in # type: comments and stub files.

String literal types must be defined (or imported) later in the same module. They cannot be used to leave cross-module
references unresolved. (For dealing with import cycles, see Import cycles.)

1.8.2 Future annotations import (PEP 563)

Many of the issues described here are caused by Python trying to evaluate annotations. Future Python versions (poten-
tially Python 3.12) will by default no longer attempt to evaluate function and variable annotations. This behaviour is
made available in Python 3.7 and later through the use of from __future__ import annotations.

This can be thought of as automatic string literal-ification of all function and variable annotations. Note that function
and variable annotations are still required to be valid Python syntax. For more details, see PEP 563.

Note: Even with the __future__ import, there are some scenarios that could still require string literals or result in
errors, typically involving use of forward references or generics in:

• type aliases;

• type narrowing;

• type definitions (see TypeVar, NewType, NamedTuple);

• base classes.

# base class example
from __future__ import annotations
class A(tuple['B', 'C']): ... # String literal types needed here
class B: ...
class C: ...

Warning: Some libraries may have use cases for dynamic evaluation of annotations, for instance, through use of
typing.get_type_hints or eval. If your annotation would raise an error when evaluated (say by using PEP
604 syntax with Python 3.9), you may need to be careful when using such libraries.

1.8.3 typing.TYPE_CHECKING

The typing module defines a TYPE_CHECKING constant that is False at runtime but treated as True while type
checking.

Since code inside if TYPE_CHECKING: is not executed at runtime, it provides a convenient way to tell mypy something
without the code being evaluated at runtime. This is most useful for resolving import cycles.
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1.8.4 Class name forward references

Python does not allow references to a class object before the class is defined (aka forward reference). Thus this code
does not work as expected:

def f(x: A) -> None: ... # NameError: name "A" is not defined
class A: ...

Starting from Python 3.7, you can add from __future__ import annotations to resolve this, as discussed earlier:

from __future__ import annotations

def f(x: A) -> None: ... # OK
class A: ...

For Python 3.6 and below, you can enter the type as a string literal or type comment:

def f(x: 'A') -> None: ... # OK

# Also OK
def g(x): # type: (A) -> None

...

class A: ...

Of course, instead of using future annotations import or string literal types, you could move the function definition after
the class definition. This is not always desirable or even possible, though.

1.8.5 Import cycles

An import cycle occurs where module A imports module B and module B imports module A (perhaps indirectly, e.g. A
-> B -> C -> A). Sometimes in order to add type annotations you have to add extra imports to a module and those
imports cause cycles that didn’t exist before. This can lead to errors at runtime like:

ImportError: cannot import name 'b' from partially initialized module 'A' (most likely␣
→˓due to a circular import)

If those cycles do become a problem when running your program, there’s a trick: if the import is only needed for type
annotations and you’re using a) the future annotations import, or b) string literals or type comments for the relevant
annotations, you can write the imports inside if TYPE_CHECKING: so that they are not executed at runtime. Example:

File foo.py:

from typing import TYPE_CHECKING

if TYPE_CHECKING:
import bar

def listify(arg: 'bar.BarClass') -> 'list[bar.BarClass]':
return [arg]

File bar.py:
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from foo import listify

class BarClass:
def listifyme(self) -> 'list[BarClass]':

return listify(self)

1.8.6 Using classes that are generic in stubs but not at runtime

Some classes are declared as generic in stubs, but not at runtime.

In Python 3.8 and earlier, there are several examples within the standard library, for instance, os.PathLike and queue.
Queue. Subscripting such a class will result in a runtime error:

from queue import Queue

class Tasks(Queue[str]): # TypeError: 'type' object is not subscriptable
...

results: Queue[int] = Queue() # TypeError: 'type' object is not subscriptable

To avoid errors from use of these generics in annotations, just use the future annotations import (or string literals or
type comments for Python 3.6 and below).

To avoid errors when inheriting from these classes, things are a little more complicated and you need to use typ-
ing.TYPE_CHECKING:

from typing import TYPE_CHECKING
from queue import Queue

if TYPE_CHECKING:
BaseQueue = Queue[str] # this is only processed by mypy

else:
BaseQueue = Queue # this is not seen by mypy but will be executed at runtime

class Tasks(BaseQueue): # OK
...

task_queue: Tasks
reveal_type(task_queue.get()) # Reveals str

If your subclass is also generic, you can use the following:

from typing import TYPE_CHECKING, TypeVar, Generic
from queue import Queue

_T = TypeVar("_T")
if TYPE_CHECKING:

class _MyQueueBase(Queue[_T]): pass
else:

class _MyQueueBase(Generic[_T], Queue): pass

class MyQueue(_MyQueueBase[_T]): pass

(continues on next page)
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task_queue: MyQueue[str]
reveal_type(task_queue.get()) # Reveals str

In Python 3.9, we can just inherit directly from Queue[str] or Queue[T] since its queue.Queue implements
__class_getitem__(), so the class object can be subscripted at runtime without issue.

1.8.7 Using types defined in stubs but not at runtime

Sometimes stubs that you’re using may define types you wish to re-use that do not exist at runtime. Importing these types
naively will cause your code to fail at runtime with ImportError or ModuleNotFoundError. Similar to previous
sections, these can be dealt with by using typing.TYPE_CHECKING:

from __future__ import annotations
from typing import TYPE_CHECKING
if TYPE_CHECKING:

from _typeshed import SupportsRichComparison

def f(x: SupportsRichComparison) -> None

The from __future__ import annotations is required to avoid a NameError when using the imported symbol.
For more information and caveats, see the section on future annotations.

1.8.8 Using generic builtins

Starting with Python 3.9 (PEP 585), the type objects of many collections in the standard library support subscription
at runtime. This means that you no longer have to import the equivalents from typing; you can simply use the built-in
collections or those from collections.abc:

from collections.abc import Sequence
x: list[str]
y: dict[int, str]
z: Sequence[str] = x

There is limited support for using this syntax in Python 3.7 and later as well: if you use from __future__ import
annotations, mypy will understand this syntax in annotations. However, since this will not be supported by the Python
interpreter at runtime, make sure you’re aware of the caveats mentioned in the notes at future annotations import.

1.8.9 Using X | Y syntax for Unions

Starting with Python 3.10 (PEP 604), you can spell union types as x: int | str, instead of x: typing.
Union[int, str].

There is limited support for using this syntax in Python 3.7 and later as well: if you use from __future__ import
annotations, mypy will understand this syntax in annotations, string literal types, type comments and stub files.
However, since this will not be supported by the Python interpreter at runtime (if evaluated, int | str will raise
TypeError: unsupported operand type(s) for |: 'type' and 'type'), make sure you’re aware of the
caveats mentioned in the notes at future annotations import.
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1.8.10 Using new additions to the typing module

You may find yourself wanting to use features added to the typing module in earlier versions of Python than the
addition, for example, using any of Literal, Protocol, TypedDict with Python 3.6.

The easiest way to do this is to install and use the typing_extensions package from PyPI for the relevant imports,
for example:

from typing_extensions import Literal
x: Literal["open", "close"]

If you don’t want to rely on typing_extensions being installed on newer Pythons, you could alternatively use:

import sys
if sys.version_info >= (3, 8):

from typing import Literal
else:

from typing_extensions import Literal

x: Literal["open", "close"]

This plays nicely well with following PEP 508 dependency specification: typing_extensions;
python_version<"3.8"

1.9 Protocols and structural subtyping

The Python type system supports two ways of deciding whether two objects are compatible as types: nominal subtyping
and structural subtyping.

Nominal subtyping is strictly based on the class hierarchy. If class Dog inherits class Animal, it’s a subtype of Animal.
Instances of Dog can be used when Animal instances are expected. This form of subtyping is what Python’s type
system predominantly uses: it’s easy to understand and produces clear and concise error messages, and matches how
the native isinstance check works – based on class hierarchy.

Structural subtyping is based on the operations that can be performed with an object. Class Dog is a structural subtype
of class Animal if the former has all attributes and methods of the latter, and with compatible types.

Structural subtyping can be seen as a static equivalent of duck typing, which is well known to Python programmers.
See PEP 544 for the detailed specification of protocols and structural subtyping in Python.

1.9.1 Predefined protocols

The typing module defines various protocol classes that correspond to common Python protocols, such as
Iterable[T]. If a class defines a suitable __iter__method, mypy understands that it implements the iterable protocol
and is compatible with Iterable[T]. For example, IntList below is iterable, over int values:

from typing import Iterator, Iterable, Optional

class IntList:
def __init__(self, value: int, next: Optional['IntList']) -> None:

self.value = value
self.next = next

(continues on next page)
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def __iter__(self) -> Iterator[int]:
current = self
while current:

yield current.value
current = current.next

def print_numbered(items: Iterable[int]) -> None:
for n, x in enumerate(items):

print(n + 1, x)

x = IntList(3, IntList(5, None))
print_numbered(x) # OK
print_numbered([4, 5]) # Also OK

Predefined protocol reference lists all protocols defined in typing and the signatures of the corresponding methods
you need to define to implement each protocol.

1.9.2 Simple user-defined protocols

You can define your own protocol class by inheriting the special Protocol class:

from typing import Iterable, Protocol

class SupportsClose(Protocol):
# Empty method body (explicit '...')
def close(self) -> None: ...

class Resource: # No SupportsClose base class!

def close(self) -> None:
self.resource.release()

# ... other methods ...

def close_all(items: Iterable[SupportsClose]) -> None:
for item in items:

item.close()

close_all([Resource(), open('some/file')]) # OK

Resource is a subtype of the SupportsClose protocol since it defines a compatible close method. Regular file
objects returned by open() are similarly compatible with the protocol, as they support close().
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1.9.3 Defining subprotocols and subclassing protocols

You can also define subprotocols. Existing protocols can be extended and merged using multiple inheritance. Example:

# ... continuing from the previous example

class SupportsRead(Protocol):
def read(self, amount: int) -> bytes: ...

class TaggedReadableResource(SupportsClose, SupportsRead, Protocol):
label: str

class AdvancedResource(Resource):
def __init__(self, label: str) -> None:

self.label = label

def read(self, amount: int) -> bytes:
# some implementation
...

resource: TaggedReadableResource
resource = AdvancedResource('handle with care') # OK

Note that inheriting from an existing protocol does not automatically turn the subclass into a protocol – it just creates a
regular (non-protocol) class or ABC that implements the given protocol (or protocols). The Protocol base class must
always be explicitly present if you are defining a protocol:

class NotAProtocol(SupportsClose): # This is NOT a protocol
new_attr: int

class Concrete:
new_attr: int = 0

def close(self) -> None:
...

# Error: nominal subtyping used by default
x: NotAProtocol = Concrete() # Error!

You can also include default implementations of methods in protocols. If you explicitly subclass these protocols you
can inherit these default implementations.

Explicitly including a protocol as a base class is also a way of documenting that your class implements a particular
protocol, and it forces mypy to verify that your class implementation is actually compatible with the protocol. In
particular, omitting a value for an attribute or a method body will make it implicitly abstract:

class SomeProto(Protocol):
attr: int # Note, no right hand side
def method(self) -> str: ... # Literally just ... here

class ExplicitSubclass(SomeProto):
pass

ExplicitSubclass() # error: Cannot instantiate abstract class 'ExplicitSubclass'
# with abstract attributes 'attr' and 'method'
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Similarly, explicitly assigning to a protocol instance can be a way to ask the type checker to verify that your class
implements a protocol:

_proto: SomeProto = cast(ExplicitSubclass, None)

1.9.4 Invariance of protocol attributes

A common issue with protocols is that protocol attributes are invariant. For example:

class Box(Protocol):
content: object

class IntBox:
content: int

def takes_box(box: Box) -> None: ...

takes_box(IntBox()) # error: Argument 1 to "takes_box" has incompatible type "IntBox";␣
→˓expected "Box"

# note: Following member(s) of "IntBox" have conflicts:
# note: content: expected "object", got "int"

This is because Box defines content as a mutable attribute. Here’s why this is problematic:

def takes_box_evil(box: Box) -> None:
box.content = "asdf" # This is bad, since box.content is supposed to be an object

my_int_box = IntBox()
takes_box_evil(my_int_box)
my_int_box.content + 1 # Oops, TypeError!

This can be fixed by declaring content to be read-only in the Box protocol using @property:

class Box(Protocol):
@property
def content(self) -> object: ...

class IntBox:
content: int

def takes_box(box: Box) -> None: ...

takes_box(IntBox(42)) # OK
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1.9.5 Recursive protocols

Protocols can be recursive (self-referential) and mutually recursive. This is useful for declaring abstract recursive
collections such as trees and linked lists:

from typing import TypeVar, Optional, Protocol

class TreeLike(Protocol):
value: int

@property
def left(self) -> Optional['TreeLike']: ...

@property
def right(self) -> Optional['TreeLike']: ...

class SimpleTree:
def __init__(self, value: int) -> None:

self.value = value
self.left: Optional['SimpleTree'] = None
self.right: Optional['SimpleTree'] = None

root: TreeLike = SimpleTree(0) # OK

1.9.6 Using isinstance() with protocols

You can use a protocol class with isinstance() if you decorate it with the @runtime_checkable class decorator.
The decorator adds rudimentary support for runtime structural checks:

from typing import Protocol, runtime_checkable

@runtime_checkable
class Portable(Protocol):

handles: int

class Mug:
def __init__(self) -> None:

self.handles = 1

def use(handles: int) -> None: ...

mug = Mug()
if isinstance(mug, Portable): # Works at runtime!

use(mug.handles)

isinstance() also works with the predefined protocols in typing such as Iterable.

Warning: isinstance() with protocols is not completely safe at runtime. For example, signatures of methods
are not checked. The runtime implementation only checks that all protocol members exist, not that they have the
correct type. issubclass() with protocols will only check for the existence of methods.
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Note: isinstance() with protocols can also be surprisingly slow. In many cases, you’re better served by using
hasattr() to check for the presence of attributes.

1.9.7 Callback protocols

Protocols can be used to define flexible callback types that are hard (or even impossible) to express using the
Callable[...] syntax, such as variadic, overloaded, and complex generic callbacks. They are defined with a special
__call__ member:

from typing import Optional, Iterable, Protocol

class Combiner(Protocol):
def __call__(self, *vals: bytes, maxlen: Optional[int] = None) -> list[bytes]: ...

def batch_proc(data: Iterable[bytes], cb_results: Combiner) -> bytes:
for item in data:

...

def good_cb(*vals: bytes, maxlen: Optional[int] = None) -> list[bytes]:
...

def bad_cb(*vals: bytes, maxitems: Optional[int]) -> list[bytes]:
...

batch_proc([], good_cb) # OK
batch_proc([], bad_cb) # Error! Argument 2 has incompatible type because of

# different name and kind in the callback

Callback protocols and Callable types can be used mostly interchangeably. Argument names in __call__ methods
must be identical, unless a double underscore prefix is used. For example:

from typing import Callable, Protocol, TypeVar

T = TypeVar('T')

class Copy(Protocol):
def __call__(self, __origin: T) -> T: ...

copy_a: Callable[[T], T]
copy_b: Copy

copy_a = copy_b # OK
copy_b = copy_a # Also OK
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1.9.8 Predefined protocol reference

Iteration protocols

The iteration protocols are useful in many contexts. For example, they allow iteration of objects in for loops.

Iterable[T]

The example above has a simple implementation of an __iter__ method.

def __iter__(self) -> Iterator[T]

See also Iterable.

Iterator[T]

def __next__(self) -> T
def __iter__(self) -> Iterator[T]

See also Iterator.

Collection protocols

Many of these are implemented by built-in container types such as list and dict, and these are also useful for user-
defined collection objects.

Sized

This is a type for objects that support len(x).

def __len__(self) -> int

See also Sized.

Container[T]

This is a type for objects that support the in operator.

def __contains__(self, x: object) -> bool

See also Container.

1.9. Protocols and structural subtyping 51

https://docs.python.org/3/reference/datamodel.html#object.__iter__
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/typing.html#typing.Sized
https://docs.python.org/3/library/typing.html#typing.Container


Mypy Documentation, Release 1.10.0

Collection[T]

def __len__(self) -> int
def __iter__(self) -> Iterator[T]
def __contains__(self, x: object) -> bool

See also Collection.

One-off protocols

These protocols are typically only useful with a single standard library function or class.

Reversible[T]

This is a type for objects that support reversed(x).

def __reversed__(self) -> Iterator[T]

See also Reversible.

SupportsAbs[T]

This is a type for objects that support abs(x). T is the type of value returned by abs(x).

def __abs__(self) -> T

See also SupportsAbs.

SupportsBytes

This is a type for objects that support bytes(x).

def __bytes__(self) -> bytes

See also SupportsBytes.

SupportsComplex

This is a type for objects that support complex(x). Note that no arithmetic operations are supported.

def __complex__(self) -> complex

See also SupportsComplex.
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SupportsFloat

This is a type for objects that support float(x). Note that no arithmetic operations are supported.

def __float__(self) -> float

See also SupportsFloat.

SupportsInt

This is a type for objects that support int(x). Note that no arithmetic operations are supported.

def __int__(self) -> int

See also SupportsInt.

SupportsRound[T]

This is a type for objects that support round(x).

def __round__(self) -> T

See also SupportsRound.

Async protocols

These protocols can be useful in async code. See Typing async/await for more information.

Awaitable[T]

def __await__(self) -> Generator[Any, None, T]

See also Awaitable.

AsyncIterable[T]

def __aiter__(self) -> AsyncIterator[T]

See also AsyncIterable.
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AsyncIterator[T]

def __anext__(self) -> Awaitable[T]
def __aiter__(self) -> AsyncIterator[T]

See also AsyncIterator.

Context manager protocols

There are two protocols for context managers – one for regular context managers and one for async ones. These allow
defining objects that can be used in with and async with statements.

ContextManager[T]

def __enter__(self) -> T
def __exit__(self,

exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[TracebackType]) -> Optional[bool]

See also ContextManager.

AsyncContextManager[T]

def __aenter__(self) -> Awaitable[T]
def __aexit__(self,

exc_type: Optional[Type[BaseException]],
exc_value: Optional[BaseException],
traceback: Optional[TracebackType]) -> Awaitable[Optional[bool]]

See also AsyncContextManager.

1.10 Dynamically typed code

In Dynamic vs static typing, we discussed how bodies of functions that don’t have any explicit type annotations in their
function are “dynamically typed” and that mypy will not check them. In this section, we’ll talk a little bit more about
what that means and how you can enable dynamic typing on a more fine grained basis.

In cases where your code is too magical for mypy to understand, you can make a variable or parameter dynamically
typed by explicitly giving it the type Any. Mypy will let you do basically anything with a value of type Any, including
assigning a value of type Any to a variable of any type (or vice versa).

from typing import Any

num = 1 # Statically typed (inferred to be int)
num = 'x' # error: Incompatible types in assignment (expression has type "str",␣
→˓variable has type "int")

(continues on next page)
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dyn: Any = 1 # Dynamically typed (type Any)
dyn = 'x' # OK

num = dyn # No error, mypy will let you assign a value of type Any to any variable
num += 1 # Oops, mypy still thinks num is an int

You can think of Any as a way to locally disable type checking. See Silencing type errors for other ways you can shut
up the type checker.

1.10.1 Operations on Any values

You can do anything using a value with type Any, and the type checker will not complain:

def f(x: Any) -> int:
# All of these are valid!
x.foobar(1, y=2)
print(x[3] + 'f')
if x:

x.z = x(2)
open(x).read()
return x

Values derived from an Any value also usually have the type Any implicitly, as mypy can’t infer a more precise result
type. For example, if you get the attribute of an Any value or call a Any value the result is Any:

def f(x: Any) -> None:
y = x.foo()
reveal_type(y) # Revealed type is "Any"
z = y.bar("mypy will let you do anything to y")
reveal_type(z) # Revealed type is "Any"

Any types may propagate through your program, making type checking less effective, unless you are careful.

Function parameters without annotations are also implicitly Any:

def f(x) -> None:
reveal_type(x) # Revealed type is "Any"
x.can.do["anything", x]("wants", 2)

You can make mypy warn you about untyped function parameters using the --disallow-untyped-defs flag.

Generic types missing type parameters will have those parameters implicitly treated as Any:

from typing import List

def f(x: List) -> None:
reveal_type(x) # Revealed type is "builtins.list[Any]"
reveal_type(x[0]) # Revealed type is "Any"
x[0].anything_goes() # OK

You can make mypy warn you about untyped function parameters using the --disallow-any-generics flag.

Finally, another major source of Any types leaking into your program is from third party libraries that mypy does not
know about. This is particularly the case when using the --ignore-missing-imports flag. See Missing imports for
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more information about this.

1.10.2 Any vs. object

The type object is another type that can have an instance of arbitrary type as a value. Unlike Any, object is an
ordinary static type (it is similar to Object in Java), and only operations valid for all types are accepted for object
values. These are all valid:

def f(o: object) -> None:
if o:

print(o)
print(isinstance(o, int))
o = 2
o = 'foo'

These are, however, flagged as errors, since not all objects support these operations:

def f(o: object) -> None:
o.foo() # Error!
o + 2 # Error!
open(o) # Error!
n: int = 1
n = o # Error!

If you’re not sure whether you need to use object or Any, use object – only switch to using Any if you get a type
checker complaint.

You can use different type narrowing techniques to narrow object to a more specific type (subtype) such as int. Type
narrowing is not needed with dynamically typed values (values with type Any).

1.11 Type narrowing

This section is dedicated to several type narrowing techniques which are supported by mypy.

Type narrowing is when you convince a type checker that a broader type is actually more specific, for instance, that an
object of type Shape is actually of the narrower type Square.

1.11.1 Type narrowing expressions

The simplest way to narrow a type is to use one of the supported expressions:

• isinstance() like in isinstance(obj, float) will narrow obj to have float type

• issubclass() like in issubclass(cls, MyClass) will narrow cls to be Type[MyClass]

• type like in type(obj) is int will narrow obj to have int type

• callable() like in callable(obj) will narrow object to callable type

• obj is not None will narrow object to its non-optional form

Type narrowing is contextual. For example, based on the condition, mypy will narrow an expression only within an if
branch:

56 Chapter 1. Contents

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/functions.html#issubclass
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#callable


Mypy Documentation, Release 1.10.0

def function(arg: object):
if isinstance(arg, int):

# Type is narrowed within the ``if`` branch only
reveal_type(arg) # Revealed type: "builtins.int"

elif isinstance(arg, str) or isinstance(arg, bool):
# Type is narrowed differently within this ``elif`` branch:
reveal_type(arg) # Revealed type: "builtins.str | builtins.bool"

# Subsequent narrowing operations will narrow the type further
if isinstance(arg, bool):

reveal_type(arg) # Revealed type: "builtins.bool"

# Back outside of the ``if`` statement, the type isn't narrowed:
reveal_type(arg) # Revealed type: "builtins.object"

Mypy understands the implications return or exception raising can have for what type an object could be:

def function(arg: int | str):
if isinstance(arg, int):

return

# `arg` can't be `int` at this point:
reveal_type(arg) # Revealed type: "builtins.str"

We can also use assert to narrow types in the same context:

def function(arg: Any):
assert isinstance(arg, int)
reveal_type(arg) # Revealed type: "builtins.int"

Note: With --warn-unreachable narrowing types to some impossible state will be treated as an error.

def function(arg: int):
# error: Subclass of "int" and "str" cannot exist:
# would have incompatible method signatures
assert isinstance(arg, str)

# error: Statement is unreachable
print("so mypy concludes the assert will always trigger")

Without --warn-unreachable mypy will simply not check code it deems to be unreachable. See Unreachable code
for more information.

x: int = 1
assert isinstance(x, str)
reveal_type(x) # Revealed type is "builtins.int"
print(x + '!') # Typechecks with `mypy`, but fails in runtime.

1.11. Type narrowing 57



Mypy Documentation, Release 1.10.0

issubclass

Mypy can also use issubclass() for better type inference when working with types and metaclasses:

class MyCalcMeta(type):
@classmethod
def calc(cls) -> int:

...

def f(o: object) -> None:
t = type(o) # We must use a variable here
reveal_type(t) # Revealed type is "builtins.type"

if issubclass(t, MyCalcMeta): # `issubclass(type(o), MyCalcMeta)` won't work
reveal_type(t) # Revealed type is "Type[MyCalcMeta]"
t.calc() # Okay

callable

Mypy knows what types are callable and which ones are not during type checking. So, we know what callable()
will return. For example:

from typing import Callable

x: Callable[[], int]

if callable(x):
reveal_type(x) # N: Revealed type is "def () -> builtins.int"

else:
... # Will never be executed and will raise error with `--warn-unreachable`

callable function can even split Union type for callable and non-callable parts:

from typing import Callable, Union

x: Union[int, Callable[[], int]]

if callable(x):
reveal_type(x) # N: Revealed type is "def () -> builtins.int"

else:
reveal_type(x) # N: Revealed type is "builtins.int"

1.11.2 Casts

Mypy supports type casts that are usually used to coerce a statically typed value to a subtype. Unlike languages such
as Java or C#, however, mypy casts are only used as hints for the type checker, and they don’t perform a runtime type
check. Use the function cast() to perform a cast:

from typing import cast

o: object = [1]
(continues on next page)
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x = cast(list[int], o) # OK
y = cast(list[str], o) # OK (cast performs no actual runtime check)

To support runtime checking of casts such as the above, we’d have to check the types of all list items, which would be
very inefficient for large lists. Casts are used to silence spurious type checker warnings and give the type checker a
little help when it can’t quite understand what is going on.

Note: You can use an assertion if you want to perform an actual runtime check:

def foo(o: object) -> None:
print(o + 5) # Error: can't add 'object' and 'int'
assert isinstance(o, int)
print(o + 5) # OK: type of 'o' is 'int' here

You don’t need a cast for expressions with type Any, or when assigning to a variable with type Any, as was explained
earlier. You can also use Any as the cast target type – this lets you perform any operations on the result. For example:

from typing import cast, Any

x = 1
x.whatever() # Type check error
y = cast(Any, x)
y.whatever() # Type check OK (runtime error)

1.11.3 User-Defined Type Guards

Mypy supports User-Defined Type Guards (PEP 647).

A type guard is a way for programs to influence conditional type narrowing employed by a type checker based on
runtime checks.

Basically, a TypeGuard is a “smart” alias for a bool type. Let’s have a look at the regular bool example:

def is_str_list(val: list[object]) -> bool:
"""Determines whether all objects in the list are strings"""
return all(isinstance(x, str) for x in val)

def func1(val: list[object]) -> None:
if is_str_list(val):

reveal_type(val) # Reveals list[object]
print(" ".join(val)) # Error: incompatible type

The same example with TypeGuard:

from typing import TypeGuard # use `typing_extensions` for Python 3.9 and below

def is_str_list(val: list[object]) -> TypeGuard[list[str]]:
"""Determines whether all objects in the list are strings"""
return all(isinstance(x, str) for x in val)

def func1(val: list[object]) -> None:
(continues on next page)
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if is_str_list(val):
reveal_type(val) # list[str]
print(" ".join(val)) # ok

How does it work? TypeGuard narrows the first function argument (val) to the type specified as the first type parameter
(list[str]).

Note: Narrowing is not strict. For example, you can narrow str to int:

def f(value: str) -> TypeGuard[int]:
return True

Note: since strict narrowing is not enforced, it’s easy to break type safety.

However, there are many ways a determined or uninformed developer can subvert type safety – most commonly by
using cast or Any. If a Python developer takes the time to learn about and implement user-defined type guards within
their code, it is safe to assume that they are interested in type safety and will not write their type guard functions in a
way that will undermine type safety or produce nonsensical results.

Generic TypeGuards

TypeGuard can also work with generic types:

from typing import TypeVar
from typing import TypeGuard # use `typing_extensions` for `python<3.10`

_T = TypeVar("_T")

def is_two_element_tuple(val: tuple[_T, ...]) -> TypeGuard[tuple[_T, _T]]:
return len(val) == 2

def func(names: tuple[str, ...]):
if is_two_element_tuple(names):

reveal_type(names) # tuple[str, str]
else:

reveal_type(names) # tuple[str, ...]

TypeGuards with parameters

Type guard functions can accept extra arguments:

from typing import Type, TypeVar
from typing import TypeGuard # use `typing_extensions` for `python<3.10`

_T = TypeVar("_T")

def is_set_of(val: set[Any], type: Type[_T]) -> TypeGuard[set[_T]]:
return all(isinstance(x, type) for x in val)

items: set[Any]
(continues on next page)
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if is_set_of(items, str):
reveal_type(items) # set[str]

TypeGuards as methods

A method can also serve as a TypeGuard:

class StrValidator:
def is_valid(self, instance: object) -> TypeGuard[str]:

return isinstance(instance, str)

def func(to_validate: object) -> None:
if StrValidator().is_valid(to_validate):

reveal_type(to_validate) # Revealed type is "builtins.str"

Note: Note, that TypeGuard does not narrow types of self or cls implicit arguments.

If narrowing of self or cls is required, the value can be passed as an explicit argument to a type guard function:

class Parent:
def method(self) -> None:

reveal_type(self) # Revealed type is "Parent"
if is_child(self):

reveal_type(self) # Revealed type is "Child"

class Child(Parent):
...

def is_child(instance: Parent) -> TypeGuard[Child]:
return isinstance(instance, Child)

Assignment expressions as TypeGuards

Sometimes you might need to create a new variable and narrow it to some specific type at the same time. This can be
achieved by using TypeGuard together with := operator.

from typing import TypeGuard # use `typing_extensions` for `python<3.10`

def is_float(a: object) -> TypeGuard[float]:
return isinstance(a, float)

def main(a: object) -> None:
if is_float(x := a):

reveal_type(x) # N: Revealed type is 'builtins.float'
reveal_type(a) # N: Revealed type is 'builtins.object'

reveal_type(x) # N: Revealed type is 'builtins.object'
reveal_type(a) # N: Revealed type is 'builtins.object'

What happens here?
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1. We create a new variable x and assign a value of a to it

2. We run is_float() type guard on x

3. It narrows x to be float in the if context and does not touch a

Note: The same will work with isinstance(x := a, float) as well.

1.11.4 Limitations

Mypy’s analysis is limited to individual symbols and it will not track relationships between symbols. For example, in
the following code it’s easy to deduce that if a is None then b must not be, therefore a or b will always be a string,
but Mypy will not be able to tell that:

def f(a: str | None, b: str | None) -> str:
if a is not None or b is not None:

return a or b # Incompatible return value type (got "str | None", expected "str
→˓")
return 'spam'

Tracking these sort of cross-variable conditions in a type checker would add significant complexity and performance
overhead.

You can use an assert to convince the type checker, override it with a cast or rewrite the function to be slightly more
verbose:

def f(a: str | None, b: str | None) -> str:
if a is not None:

return a
elif b is not None:

return b
return 'spam'

1.12 Duck type compatibility

In Python, certain types are compatible even though they aren’t subclasses of each other. For example, int objects are
valid whenever float objects are expected. Mypy supports this idiom via duck type compatibility. This is supported
for a small set of built-in types:

• int is duck type compatible with float and complex.

• float is duck type compatible with complex.

• bytearray and memoryview are duck type compatible with bytes.

For example, mypy considers an int object to be valid whenever a float object is expected. Thus code like this is
nice and clean and also behaves as expected:

import math

def degrees_to_radians(degrees: float) -> float:
return math.pi * degrees / 180

(continues on next page)
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n = 90 # Inferred type 'int'
print(degrees_to_radians(n)) # Okay!

You can also often use Protocols and structural subtyping to achieve a similar effect in a more principled and extensible
fashion. Protocols don’t apply to cases like int being compatible with float, since float is not a protocol class but
a regular, concrete class, and many standard library functions expect concrete instances of float (or int).

1.13 Stub files

A stub file is a file containing a skeleton of the public interface of that Python module, including classes, variables,
functions – and most importantly, their types.

Mypy uses stub files stored in the typeshed repository to determine the types of standard library and third-party library
functions, classes, and other definitions. You can also create your own stubs that will be used to type check your code.

1.13.1 Creating a stub

Here is an overview of how to create a stub file:

• Write a stub file for the library (or an arbitrary module) and store it as a .pyi file in the same directory as the
library module.

• Alternatively, put your stubs (.pyi files) in a directory reserved for stubs (e.g., myproject/stubs). In this case
you have to set the environment variable MYPYPATH to refer to the directory. For example:

$ export MYPYPATH=~/work/myproject/stubs

Use the normal Python file name conventions for modules, e.g. csv.pyi for module csv. Use a subdirectory with
__init__.pyi for packages. Note that PEP 561 stub-only packages must be installed, and may not be pointed at
through the MYPYPATH (see PEP 561 support).

If a directory contains both a .py and a .pyi file for the same module, the .pyi file takes precedence. This way you
can easily add annotations for a module even if you don’t want to modify the source code. This can be useful, for
example, if you use 3rd party open source libraries in your program (and there are no stubs in typeshed yet).

That’s it!

Now you can access the module in mypy programs and type check code that uses the library. If you write a stub for
a library module, consider making it available for other programmers that use mypy by contributing it back to the
typeshed repo.

Mypy also ships with two tools for making it easier to create and maintain stubs: Automatic stub generation (stubgen)
and Automatic stub testing (stubtest).

The following sections explain the kinds of type annotations you can use in your programs and stub files.

Note: You may be tempted to point MYPYPATH to the standard library or to the site-packages directory where your
3rd party packages are installed. This is almost always a bad idea – you will likely get tons of error messages about
code you didn’t write and that mypy can’t analyze all that well yet, and in the worst case scenario mypy may crash due
to some construct in a 3rd party package that it didn’t expect.
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1.13.2 Stub file syntax

Stub files are written in normal Python syntax, but generally leaving out runtime logic like variable initializers, function
bodies, and default arguments.

If it is not possible to completely leave out some piece of runtime logic, the recommended convention is to replace or
elide them with ellipsis expressions (...). Each ellipsis below is literally written in the stub file as three dots:

# Variables with annotations do not need to be assigned a value.
# So by convention, we omit them in the stub file.
x: int

# Function bodies cannot be completely removed. By convention,
# we replace them with `...` instead of the `pass` statement.
def func_1(code: str) -> int: ...

# We can do the same with default arguments.
def func_2(a: int, b: int = ...) -> int: ...

Note: The ellipsis ... is also used with a different meaning in callable types and tuple types.

1.13.3 Using stub file syntax at runtime

You may also occasionally need to elide actual logic in regular Python code – for example, when writing methods in
overload variants or custom protocols.

The recommended style is to use ellipses to do so, just like in stub files. It is also considered stylistically acceptable
to throw a NotImplementedError in cases where the user of the code may accidentally call functions with no actual
logic.

You can also elide default arguments as long as the function body also contains no runtime logic: the function body
only contains a single ellipsis, the pass statement, or a raise NotImplementedError(). It is also acceptable for the
function body to contain a docstring. For example:

from typing import Protocol

class Resource(Protocol):
def ok_1(self, foo: list[str] = ...) -> None: ...

def ok_2(self, foo: list[str] = ...) -> None:
raise NotImplementedError()

def ok_3(self, foo: list[str] = ...) -> None:
"""Some docstring"""
pass

# Error: Incompatible default for argument "foo" (default has
# type "ellipsis", argument has type "list[str]")
def not_ok(self, foo: list[str] = ...) -> None:

print(foo)
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1.14 Generics

This section explains how you can define your own generic classes that take one or more type parameters, similar to
built-in types such as list[X]. User-defined generics are a moderately advanced feature and you can get far without
ever using them – feel free to skip this section and come back later.

1.14.1 Defining generic classes

The built-in collection classes are generic classes. Generic types have one or more type parameters, which can be
arbitrary types. For example, dict[int, str] has the type parameters int and str, and list[int] has a type
parameter int.

Programs can also define new generic classes. Here is a very simple generic class that represents a stack:

from typing import TypeVar, Generic

T = TypeVar('T')

class Stack(Generic[T]):
def __init__(self) -> None:

# Create an empty list with items of type T
self.items: list[T] = []

def push(self, item: T) -> None:
self.items.append(item)

def pop(self) -> T:
return self.items.pop()

def empty(self) -> bool:
return not self.items

The Stack class can be used to represent a stack of any type: Stack[int], Stack[tuple[int, str]], etc.

Using Stack is similar to built-in container types:

# Construct an empty Stack[int] instance
stack = Stack[int]()
stack.push(2)
stack.pop()
stack.push('x') # error: Argument 1 to "push" of "Stack" has incompatible type "str";␣
→˓expected "int"

Construction of instances of generic types is type checked:

class Box(Generic[T]):
def __init__(self, content: T) -> None:

self.content = content

Box(1) # OK, inferred type is Box[int]
Box[int](1) # Also OK
Box[int]('some string') # error: Argument 1 to "Box" has incompatible type "str";␣
→˓expected "int"
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1.14.2 Defining subclasses of generic classes

User-defined generic classes and generic classes defined in typing can be used as a base class for another class (generic
or non-generic). For example:

from typing import Generic, TypeVar, Mapping, Iterator

KT = TypeVar('KT')
VT = TypeVar('VT')

# This is a generic subclass of Mapping
class MyMap(Mapping[KT, VT]):

def __getitem__(self, k: KT) -> VT: ...
def __iter__(self) -> Iterator[KT]: ...
def __len__(self) -> int: ...

items: MyMap[str, int] # OK

# This is a non-generic subclass of dict
class StrDict(dict[str, str]):

def __str__(self) -> str:
return f'StrDict({super().__str__()})'

data: StrDict[int, int] # Error! StrDict is not generic
data2: StrDict # OK

# This is a user-defined generic class
class Receiver(Generic[T]):

def accept(self, value: T) -> None: ...

# This is a generic subclass of Receiver
class AdvancedReceiver(Receiver[T]): ...

Note: You have to add an explicit Mapping base class if you want mypy to consider a user-defined class as a mapping
(and Sequence for sequences, etc.). This is because mypy doesn’t use structural subtyping for these ABCs, unlike
simpler protocols like Iterable, which use structural subtyping.

Generic can be omitted from bases if there are other base classes that include type variables, such as Mapping[KT,
VT] in the above example. If you include Generic[...] in bases, then it should list all type variables present in other
bases (or more, if needed). The order of type variables is defined by the following rules:

• If Generic[...] is present, then the order of variables is always determined by their order in Generic[...].

• If there are no Generic[...] in bases, then all type variables are collected in the lexicographic order (i.e. by
first appearance).

For example:

from typing import Generic, TypeVar, Any

T = TypeVar('T')
S = TypeVar('S')
U = TypeVar('U')

(continues on next page)
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class One(Generic[T]): ...
class Another(Generic[T]): ...

class First(One[T], Another[S]): ...
class Second(One[T], Another[S], Generic[S, U, T]): ...

x: First[int, str] # Here T is bound to int, S is bound to str
y: Second[int, str, Any] # Here T is Any, S is int, and U is str

1.14.3 Generic functions

Type variables can be used to define generic functions:

from typing import TypeVar, Sequence

T = TypeVar('T')

# A generic function!
def first(seq: Sequence[T]) -> T:

return seq[0]

As with generic classes, the type variable can be replaced with any type. That means first can be used with any
sequence type, and the return type is derived from the sequence item type. For example:

reveal_type(first([1, 2, 3])) # Revealed type is "builtins.int"
reveal_type(first(['a', 'b'])) # Revealed type is "builtins.str"

Note also that a single definition of a type variable (such as T above) can be used in multiple generic functions or
classes. In this example we use the same type variable in two generic functions:

from typing import TypeVar, Sequence

T = TypeVar('T') # Declare type variable

def first(seq: Sequence[T]) -> T:
return seq[0]

def last(seq: Sequence[T]) -> T:
return seq[-1]

A variable cannot have a type variable in its type unless the type variable is bound in a containing generic class or
function.
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1.14.4 Generic methods and generic self

You can also define generic methods — just use a type variable in the method signature that is different from class type
variables. In particular, the self argument may also be generic, allowing a method to return the most precise type
known at the point of access. In this way, for example, you can type check a chain of setter methods:

from typing import TypeVar

T = TypeVar('T', bound='Shape')

class Shape:
def set_scale(self: T, scale: float) -> T:

self.scale = scale
return self

class Circle(Shape):
def set_radius(self, r: float) -> 'Circle':

self.radius = r
return self

class Square(Shape):
def set_width(self, w: float) -> 'Square':

self.width = w
return self

circle: Circle = Circle().set_scale(0.5).set_radius(2.7)
square: Square = Square().set_scale(0.5).set_width(3.2)

Without using generic self, the last two lines could not be type checked properly, since the return type of set_scale
would be Shape, which doesn’t define set_radius or set_width.

Other uses are factory methods, such as copy and deserialization. For class methods, you can also define generic cls,
using Type[T]:

from typing import TypeVar, Type

T = TypeVar('T', bound='Friend')

class Friend:
other: "Friend" = None

@classmethod
def make_pair(cls: Type[T]) -> tuple[T, T]:

a, b = cls(), cls()
a.other = b
b.other = a
return a, b

class SuperFriend(Friend):
pass

a, b = SuperFriend.make_pair()

Note that when overriding a method with generic self, you must either return a generic self too, or return an instance
of the current class. In the latter case, you must implement this method in all future subclasses.
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Note also that mypy cannot always verify that the implementation of a copy or a deserialization method returns the
actual type of self. Therefore you may need to silence mypy inside these methods (but not at the call site), possibly by
making use of the Any type or a # type: ignore comment.

Note that mypy lets you use generic self types in certain unsafe ways in order to support common idioms. For example,
using a generic self type in an argument type is accepted even though it’s unsafe:

from typing import TypeVar

T = TypeVar("T")

class Base:
def compare(self: T, other: T) -> bool:

return False

class Sub(Base):
def __init__(self, x: int) -> None:

self.x = x

# This is unsafe (see below) but allowed because it's
# a common pattern and rarely causes issues in practice.
def compare(self, other: Sub) -> bool:

return self.x > other.x

b: Base = Sub(42)
b.compare(Base()) # Runtime error here: 'Base' object has no attribute 'x'

For some advanced uses of self types, see additional examples.

1.14.5 Automatic self types using typing.Self

Since the patterns described above are quite common, mypy supports a simpler syntax, introduced in PEP 673, to make
them easier to use. Instead of defining a type variable and using an explicit annotation for self, you can import the
special type typing.Self that is automatically transformed into a type variable with the current class as the upper
bound, and you don’t need an annotation for self (or cls in class methods). The example from the previous section
can be made simpler by using Self:

from typing import Self

class Friend:
other: Self | None = None

@classmethod
def make_pair(cls) -> tuple[Self, Self]:

a, b = cls(), cls()
a.other = b
b.other = a
return a, b

class SuperFriend(Friend):
pass

a, b = SuperFriend.make_pair()
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This is more compact than using explicit type variables. Also, you can use Self in attribute annotations in addition to
methods.

Note: To use this feature on Python versions earlier than 3.11, you will need to import Self from
typing_extensions (version 4.0 or newer).

1.14.6 Variance of generic types

There are three main kinds of generic types with respect to subtype relations between them: invariant, covariant, and
contravariant. Assuming that we have a pair of types A and B, and B is a subtype of A, these are defined as follows:

• A generic class MyCovGen[T] is called covariant in type variable T if MyCovGen[B] is always a subtype of
MyCovGen[A].

• A generic class MyContraGen[T] is called contravariant in type variable T if MyContraGen[A] is always a
subtype of MyContraGen[B].

• A generic class MyInvGen[T] is called invariant in T if neither of the above is true.

Let us illustrate this by few simple examples:

# We'll use these classes in the examples below
class Shape: ...
class Triangle(Shape): ...
class Square(Shape): ...

• Most immutable containers, such as Sequence and FrozenSet are covariant. Union is also covariant in all
variables: Union[Triangle, int] is a subtype of Union[Shape, int].

def count_lines(shapes: Sequence[Shape]) -> int:
return sum(shape.num_sides for shape in shapes)

triangles: Sequence[Triangle]
count_lines(triangles) # OK

def foo(triangle: Triangle, num: int):
shape_or_number: Union[Shape, int]
# a Triangle is a Shape, and a Shape is a valid Union[Shape, int]
shape_or_number = triangle

Covariance should feel relatively intuitive, but contravariance and invariance can be harder to reason about.

• Callable is an example of type that behaves contravariant in types of arguments. That is, Callable[[Shape],
int] is a subtype of Callable[[Triangle], int], despite Shape being a supertype of Triangle. To un-
derstand this, consider:

def cost_of_paint_required(
triangle: Triangle,
area_calculator: Callable[[Triangle], float]

) -> float:
return area_calculator(triangle) * DOLLAR_PER_SQ_FT

# This straightforwardly works
def area_of_triangle(triangle: Triangle) -> float: ...

(continues on next page)
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cost_of_paint_required(triangle, area_of_triangle) # OK

# But this works as well!
def area_of_any_shape(shape: Shape) -> float: ...
cost_of_paint_required(triangle, area_of_any_shape) # OK

cost_of_paint_required needs a callable that can calculate the area of a triangle. If we give it a callable that
can calculate the area of an arbitrary shape (not just triangles), everything still works.

• List is an invariant generic type. Naively, one would think that it is covariant, like Sequence above, but consider
this code:

class Circle(Shape):
# The rotate method is only defined on Circle, not on Shape
def rotate(self): ...

def add_one(things: list[Shape]) -> None:
things.append(Shape())

my_circles: list[Circle] = []
add_one(my_circles) # This may appear safe, but...
my_circles[-1].rotate() # ...this will fail, since my_circles[0] is now a Shape,␣
→˓not a Circle

Another example of invariant type is Dict. Most mutable containers are invariant.

By default, mypy assumes that all user-defined generics are invariant. To declare a given generic class as covariant or
contravariant use type variables defined with special keyword arguments covariant or contravariant. For example:

from typing import Generic, TypeVar

T_co = TypeVar('T_co', covariant=True)

class Box(Generic[T_co]): # this type is declared covariant
def __init__(self, content: T_co) -> None:

self._content = content

def get_content(self) -> T_co:
return self._content

def look_into(box: Box[Animal]): ...

my_box = Box(Cat())
look_into(my_box) # OK, but mypy would complain here for an invariant type
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1.14.7 Type variables with upper bounds

A type variable can also be restricted to having values that are subtypes of a specific type. This type is called the upper
bound of the type variable, and is specified with the bound=... keyword argument to TypeVar.

from typing import TypeVar, SupportsAbs

T = TypeVar('T', bound=SupportsAbs[float])

In the definition of a generic function that uses such a type variable T, the type represented by T is assumed to be a
subtype of its upper bound, so the function can use methods of the upper bound on values of type T.

def largest_in_absolute_value(*xs: T) -> T:
return max(xs, key=abs) # Okay, because T is a subtype of SupportsAbs[float].

In a call to such a function, the type T must be replaced by a type that is a subtype of its upper bound. Continuing the
example above:

largest_in_absolute_value(-3.5, 2) # Okay, has type float.
largest_in_absolute_value(5+6j, 7) # Okay, has type complex.
largest_in_absolute_value('a', 'b') # Error: 'str' is not a subtype of␣
→˓SupportsAbs[float].

Type parameters of generic classes may also have upper bounds, which restrict the valid values for the type parameter
in the same way.

1.14.8 Type variables with value restriction

By default, a type variable can be replaced with any type. However, sometimes it’s useful to have a type variable that
can only have some specific types as its value. A typical example is a type variable that can only have values str and
bytes:

from typing import TypeVar

AnyStr = TypeVar('AnyStr', str, bytes)

This is actually such a common type variable that AnyStr is defined in typing and we don’t need to define it ourselves.

We can use AnyStr to define a function that can concatenate two strings or bytes objects, but it can’t be called with
other argument types:

from typing import AnyStr

def concat(x: AnyStr, y: AnyStr) -> AnyStr:
return x + y

concat('a', 'b') # Okay
concat(b'a', b'b') # Okay
concat(1, 2) # Error!

Importantly, this is different from a union type, since combinations of str and bytes are not accepted:

concat('string', b'bytes') # Error!
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In this case, this is exactly what we want, since it’s not possible to concatenate a string and a bytes object! If we tried
to use Union, the type checker would complain about this possibility:

def union_concat(x: Union[str, bytes], y: Union[str, bytes]) -> Union[str, bytes]:
return x + y # Error: can't concatenate str and bytes

Another interesting special case is calling concat() with a subtype of str:

class S(str): pass

ss = concat(S('foo'), S('bar'))
reveal_type(ss) # Revealed type is "builtins.str"

You may expect that the type of ss is S, but the type is actually str: a subtype gets promoted to one of the valid values
for the type variable, which in this case is str.

This is thus subtly different from bounded quantification in languages such as Java, where the return type would be
S. The way mypy implements this is correct for concat, since concat actually returns a str instance in the above
example:

>>> print(type(ss))
<class 'str'>

You can also use a TypeVar with a restricted set of possible values when defining a generic class. For example, mypy
uses the type Pattern[AnyStr] for the return value of re.compile(), since regular expressions can be based on a
string or a bytes pattern.

A type variable may not have both a value restriction (see Type variables with upper bounds) and an upper bound.

1.14.9 Declaring decorators

Decorators are typically functions that take a function as an argument and return another function. Describing this
behaviour in terms of types can be a little tricky; we’ll show how you can use TypeVar and a special kind of type
variable called a parameter specification to do so.

Suppose we have the following decorator, not type annotated yet, that preserves the original function’s signature and
merely prints the decorated function’s name:

def printing_decorator(func):
def wrapper(*args, **kwds):

print("Calling", func)
return func(*args, **kwds)

return wrapper

and we use it to decorate function add_forty_two:

# A decorated function.
@printing_decorator
def add_forty_two(value: int) -> int:

return value + 42

a = add_forty_two(3)

Since printing_decorator is not type-annotated, the following won’t get type checked:
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reveal_type(a) # Revealed type is "Any"
add_forty_two('foo') # No type checker error :(

This is a sorry state of affairs! If you run with --strict, mypy will even alert you to this fact: Untyped decorator
makes function "add_forty_two" untyped

Note that class decorators are handled differently than function decorators in mypy: decorating a class does not erase
its type, even if the decorator has incomplete type annotations.

Here’s how one could annotate the decorator:

from typing import Any, Callable, TypeVar, cast

F = TypeVar('F', bound=Callable[..., Any])

# A decorator that preserves the signature.
def printing_decorator(func: F) -> F:

def wrapper(*args, **kwds):
print("Calling", func)
return func(*args, **kwds)

return cast(F, wrapper)

@printing_decorator
def add_forty_two(value: int) -> int:

return value + 42

a = add_forty_two(3)
reveal_type(a) # Revealed type is "builtins.int"
add_forty_two('x') # Argument 1 to "add_forty_two" has incompatible type "str";␣
→˓expected "int"

This still has some shortcomings. First, we need to use the unsafe cast() to convince mypy that wrapper() has the
same signature as func. See casts.

Second, the wrapper() function is not tightly type checked, although wrapper functions are typically small
enough that this is not a big problem. This is also the reason for the cast() call in the return statement in
printing_decorator().

However, we can use a parameter specification (ParamSpec), for a more faithful type annotation:

from typing import Callable, TypeVar
from typing_extensions import ParamSpec

P = ParamSpec('P')
T = TypeVar('T')

def printing_decorator(func: Callable[P, T]) -> Callable[P, T]:
def wrapper(*args: P.args, **kwds: P.kwargs) -> T:

print("Calling", func)
return func(*args, **kwds)

return wrapper

Parameter specifications also allow you to describe decorators that alter the signature of the input function:
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from typing import Callable, TypeVar
from typing_extensions import ParamSpec

P = ParamSpec('P')
T = TypeVar('T')

# We reuse 'P' in the return type, but replace 'T' with 'str'
def stringify(func: Callable[P, T]) -> Callable[P, str]:

def wrapper(*args: P.args, **kwds: P.kwargs) -> str:
return str(func(*args, **kwds))

return wrapper

@stringify
def add_forty_two(value: int) -> int:

return value + 42

a = add_forty_two(3)
reveal_type(a) # Revealed type is "builtins.str"
add_forty_two('x') # error: Argument 1 to "add_forty_two" has incompatible type "str";␣
→˓expected "int"

Or insert an argument:

from typing import Callable, TypeVar
from typing_extensions import Concatenate, ParamSpec

P = ParamSpec('P')
T = TypeVar('T')

def printing_decorator(func: Callable[P, T]) -> Callable[Concatenate[str, P], T]:
def wrapper(msg: str, /, *args: P.args, **kwds: P.kwargs) -> T:

print("Calling", func, "with", msg)
return func(*args, **kwds)

return wrapper

@printing_decorator
def add_forty_two(value: int) -> int:

return value + 42

a = add_forty_two('three', 3)

Decorator factories

Functions that take arguments and return a decorator (also called second-order decorators), are similarly supported via
generics:

from typing import Any, Callable, TypeVar

F = TypeVar('F', bound=Callable[..., Any])

def route(url: str) -> Callable[[F], F]:
...

(continues on next page)
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@route(url='/')
def index(request: Any) -> str:

return 'Hello world'

Sometimes the same decorator supports both bare calls and calls with arguments. This can be achieved by combining
with @overload:

from typing import Any, Callable, Optional, TypeVar, overload

F = TypeVar('F', bound=Callable[..., Any])

# Bare decorator usage
@overload
def atomic(__func: F) -> F: ...
# Decorator with arguments
@overload
def atomic(*, savepoint: bool = True) -> Callable[[F], F]: ...

# Implementation
def atomic(__func: Optional[Callable[..., Any]] = None, *, savepoint: bool = True):

def decorator(func: Callable[..., Any]):
... # Code goes here

if __func is not None:
return decorator(__func)

else:
return decorator

# Usage
@atomic
def func1() -> None: ...

@atomic(savepoint=False)
def func2() -> None: ...

1.14.10 Generic protocols

Mypy supports generic protocols (see also Protocols and structural subtyping). Several predefined protocols are
generic, such as Iterable[T], and you can define additional generic protocols. Generic protocols mostly follow
the normal rules for generic classes. Example:

from typing import Protocol, TypeVar

T = TypeVar('T')

class Box(Protocol[T]):
content: T

def do_stuff(one: Box[str], other: Box[bytes]) -> None:
...

(continues on next page)
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class StringWrapper:
def __init__(self, content: str) -> None:

self.content = content

class BytesWrapper:
def __init__(self, content: bytes) -> None:

self.content = content

do_stuff(StringWrapper('one'), BytesWrapper(b'other')) # OK

x: Box[float] = ...
y: Box[int] = ...
x = y # Error -- Box is invariant

Note that class ClassName(Protocol[T]) is allowed as a shorthand for class ClassName(Protocol,
Generic[T]), as per PEP 544: Generic protocols,

The main difference between generic protocols and ordinary generic classes is that mypy checks that the declared
variances of generic type variables in a protocol match how they are used in the protocol definition. The protocol in
this example is rejected, since the type variable T is used covariantly as a return type, but the type variable is invariant:

from typing import Protocol, TypeVar

T = TypeVar('T')

class ReadOnlyBox(Protocol[T]): # error: Invariant type variable "T" used in protocol␣
→˓where covariant one is expected
def content(self) -> T: ...

This example correctly uses a covariant type variable:

from typing import Protocol, TypeVar

T_co = TypeVar('T_co', covariant=True)

class ReadOnlyBox(Protocol[T_co]): # OK
def content(self) -> T_co: ...

ax: ReadOnlyBox[float] = ...
ay: ReadOnlyBox[int] = ...
ax = ay # OK -- ReadOnlyBox is covariant

See Variance of generic types for more about variance.

Generic protocols can also be recursive. Example:

T = TypeVar('T')

class Linked(Protocol[T]):
val: T
def next(self) -> 'Linked[T]': ...

class L:
val: int

(continues on next page)
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def next(self) -> 'L': ...

def last(seq: Linked[T]) -> T: ...

result = last(L())
reveal_type(result) # Revealed type is "builtins.int"

1.14.11 Generic type aliases

Type aliases can be generic. In this case they can be used in two ways: Subscripted aliases are equivalent to original
types with substituted type variables, so the number of type arguments must match the number of free type variables
in the generic type alias. Unsubscripted aliases are treated as original types with free variables replaced with Any.
Examples (following PEP 484: Type aliases):

from typing import TypeVar, Iterable, Union, Callable

S = TypeVar('S')

TInt = tuple[int, S]
UInt = Union[S, int]
CBack = Callable[..., S]

def response(query: str) -> UInt[str]: # Same as Union[str, int]
...

def activate(cb: CBack[S]) -> S: # Same as Callable[..., S]
...

table_entry: TInt # Same as tuple[int, Any]

T = TypeVar('T', int, float, complex)

Vec = Iterable[tuple[T, T]]

def inproduct(v: Vec[T]) -> T:
return sum(x*y for x, y in v)

def dilate(v: Vec[T], scale: T) -> Vec[T]:
return ((x * scale, y * scale) for x, y in v)

v1: Vec[int] = [] # Same as Iterable[tuple[int, int]]
v2: Vec = [] # Same as Iterable[tuple[Any, Any]]
v3: Vec[int, int] = [] # Error: Invalid alias, too many type arguments!

Type aliases can be imported from modules just like other names. An alias can also target another alias, although
building complex chains of aliases is not recommended – this impedes code readability, thus defeating the purpose of
using aliases. Example:

from typing import TypeVar, Generic, Optional
from example1 import AliasType
from example2 import Vec

# AliasType and Vec are type aliases (Vec as defined above)
(continues on next page)
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def fun() -> AliasType:
...

T = TypeVar('T')

class NewVec(Vec[T]):
...

for i, j in NewVec[int]():
...

OIntVec = Optional[Vec[int]]

Using type variable bounds or values in generic aliases has the same effect as in generic classes/functions.

1.14.12 Generic class internals

You may wonder what happens at runtime when you index a generic class. Indexing returns a generic alias to the
original class that returns instances of the original class on instantiation:

>>> from typing import TypeVar, Generic
>>> T = TypeVar('T')
>>> class Stack(Generic[T]): ...
>>> Stack
__main__.Stack
>>> Stack[int]
__main__.Stack[int]
>>> instance = Stack[int]()
>>> instance.__class__
__main__.Stack

Generic aliases can be instantiated or subclassed, similar to real classes, but the above examples illustrate that type
variables are erased at runtime. Generic Stack instances are just ordinary Python objects, and they have no extra
runtime overhead or magic due to being generic, other than a metaclass that overloads the indexing operator.

Note that in Python 3.8 and lower, the built-in types list, dict and others do not support indexing. This is why we
have the aliases List, Dict and so on in the typing module. Indexing these aliases gives you a generic alias that
resembles generic aliases constructed by directly indexing the target class in more recent versions of Python:

>>> # Only relevant for Python 3.8 and below
>>> # For Python 3.9 onwards, prefer `list[int]` syntax
>>> from typing import List
>>> List[int]
typing.List[int]

Note that the generic aliases in typing don’t support constructing instances:

>>> from typing import List
>>> List[int]()
Traceback (most recent call last):
...
TypeError: Type List cannot be instantiated; use list() instead
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1.15 More types

This section introduces a few additional kinds of types, including NoReturn, NewType, and types for async code. It
also discusses how to give functions more precise types using overloads. All of these are only situationally useful, so
feel free to skip this section and come back when you have a need for some of them.

Here’s a quick summary of what’s covered here:

• NoReturn lets you tell mypy that a function never returns normally.

• NewType lets you define a variant of a type that is treated as a separate type by mypy but is identical to the original
type at runtime. For example, you can have UserId as a variant of int that is just an int at runtime.

• @overload lets you define a function that can accept multiple distinct signatures. This is useful if you need to
encode a relationship between the arguments and the return type that would be difficult to express normally.

• Async types let you type check programs using async and await.

1.15.1 The NoReturn type

Mypy provides support for functions that never return. For example, a function that unconditionally raises an exception:

from typing import NoReturn

def stop() -> NoReturn:
raise Exception('no way')

Mypy will ensure that functions annotated as returning NoReturn truly never return, either implicitly or explicitly.
Mypy will also recognize that the code after calls to such functions is unreachable and will behave accordingly:

def f(x: int) -> int:
if x == 0:

return x
stop()
return 'whatever works' # No error in an unreachable block

In earlier Python versions you need to install typing_extensions using pip to use NoReturn in your code. Python
3 command line:

python3 -m pip install --upgrade typing-extensions

1.15.2 NewTypes

There are situations where you may want to avoid programming errors by creating simple derived classes that are only
used to distinguish certain values from base class instances. Example:

class UserId(int):
pass

def get_by_user_id(user_id: UserId):
...

However, this approach introduces some runtime overhead. To avoid this, the typing module provides a helper object
NewType that creates simple unique types with almost zero runtime overhead. Mypy will treat the statement Derived
= NewType('Derived', Base) as being roughly equivalent to the following definition:
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class Derived(Base):
def __init__(self, _x: Base) -> None:

...

However, at runtime, NewType('Derived', Base) will return a dummy callable that simply returns its argument:

def Derived(_x):
return _x

Mypy will require explicit casts from int where UserId is expected, while implicitly casting from UserId where int
is expected. Examples:

from typing import NewType

UserId = NewType('UserId', int)

def name_by_id(user_id: UserId) -> str:
...

UserId('user') # Fails type check

name_by_id(42) # Fails type check
name_by_id(UserId(42)) # OK

num: int = UserId(5) + 1

NewType accepts exactly two arguments. The first argument must be a string literal containing the name of the new type
and must equal the name of the variable to which the new type is assigned. The second argument must be a properly
subclassable class, i.e., not a type construct like Union, etc.

The callable returned by NewType accepts only one argument; this is equivalent to supporting only one constructor
accepting an instance of the base class (see above). Example:

from typing import NewType

class PacketId:
def __init__(self, major: int, minor: int) -> None:

self._major = major
self._minor = minor

TcpPacketId = NewType('TcpPacketId', PacketId)

packet = PacketId(100, 100)
tcp_packet = TcpPacketId(packet) # OK

tcp_packet = TcpPacketId(127, 0) # Fails in type checker and at runtime

You cannot use isinstance() or issubclass() on the object returned by NewType, nor can you subclass an object
returned by NewType.

Note: Unlike type aliases, NewType will create an entirely new and unique type when used. The intended purpose of
NewType is to help you detect cases where you accidentally mixed together the old base type and the new derived type.

For example, the following will successfully typecheck when using type aliases:
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UserId = int

def name_by_id(user_id: UserId) -> str:
...

name_by_id(3) # ints and UserId are synonymous

But a similar example using NewType will not typecheck:

from typing import NewType

UserId = NewType('UserId', int)

def name_by_id(user_id: UserId) -> str:
...

name_by_id(3) # int is not the same as UserId

1.15.3 Function overloading

Sometimes the arguments and types in a function depend on each other in ways that can’t be captured with a Union. For
example, suppose we want to write a function that can accept x-y coordinates. If we pass in just a single x-y coordinate,
we return a ClickEvent object. However, if we pass in two x-y coordinates, we return a DragEvent object.

Our first attempt at writing this function might look like this:

from typing import Union, Optional

def mouse_event(x1: int,
y1: int,
x2: Optional[int] = None,
y2: Optional[int] = None) -> Union[ClickEvent, DragEvent]:

if x2 is None and y2 is None:
return ClickEvent(x1, y1)

elif x2 is not None and y2 is not None:
return DragEvent(x1, y1, x2, y2)

else:
raise TypeError("Bad arguments")

While this function signature works, it’s too loose: it implies mouse_event could return either object regardless of the
number of arguments we pass in. It also does not prohibit a caller from passing in the wrong number of ints: mypy
would treat calls like mouse_event(1, 2, 20) as being valid, for example.

We can do better by using overloading which lets us give the same function multiple type annotations (signatures) to
more accurately describe the function’s behavior:

from typing import Union, overload

# Overload *variants* for 'mouse_event'.
# These variants give extra information to the type checker.
# They are ignored at runtime.

(continues on next page)
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@overload
def mouse_event(x1: int, y1: int) -> ClickEvent: ...
@overload
def mouse_event(x1: int, y1: int, x2: int, y2: int) -> DragEvent: ...

# The actual *implementation* of 'mouse_event'.
# The implementation contains the actual runtime logic.
#
# It may or may not have type hints. If it does, mypy
# will check the body of the implementation against the
# type hints.
#
# Mypy will also check and make sure the signature is
# consistent with the provided variants.

def mouse_event(x1: int,
y1: int,
x2: Optional[int] = None,
y2: Optional[int] = None) -> Union[ClickEvent, DragEvent]:

if x2 is None and y2 is None:
return ClickEvent(x1, y1)

elif x2 is not None and y2 is not None:
return DragEvent(x1, y1, x2, y2)

else:
raise TypeError("Bad arguments")

This allows mypy to understand calls to mouse_event much more precisely. For example, mypy will understand
that mouse_event(5, 25) will always have a return type of ClickEvent and will report errors for calls like
mouse_event(5, 25, 2).

As another example, suppose we want to write a custom container class that implements the __getitem__ method
([] bracket indexing). If this method receives an integer we return a single item. If it receives a slice, we return a
Sequence of items.

We can precisely encode this relationship between the argument and the return type by using overloads like so:

from typing import Sequence, TypeVar, Union, overload

T = TypeVar('T')

class MyList(Sequence[T]):
@overload
def __getitem__(self, index: int) -> T: ...

@overload
def __getitem__(self, index: slice) -> Sequence[T]: ...

def __getitem__(self, index: Union[int, slice]) -> Union[T, Sequence[T]]:
if isinstance(index, int):

# Return a T here
elif isinstance(index, slice):

# Return a sequence of Ts here
else:

(continues on next page)
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raise TypeError(...)

Note: If you just need to constrain a type variable to certain types or subtypes, you can use a value restriction.

The default values of a function’s arguments don’t affect its signature – only the absence or presence of a default value
does. So in order to reduce redundancy, it’s possible to replace default values in overload definitions with ... as a
placeholder:

from typing import overload

class M: ...

@overload
def get_model(model_or_pk: M, flag: bool = ...) -> M: ...
@overload
def get_model(model_or_pk: int, flag: bool = ...) -> M | None: ...

def get_model(model_or_pk: int | M, flag: bool = True) -> M | None:
...

Runtime behavior

An overloaded function must consist of two or more overload variants followed by an implementation. The variants
and the implementations must be adjacent in the code: think of them as one indivisible unit.

The variant bodies must all be empty; only the implementation is allowed to contain code. This is because at runtime,
the variants are completely ignored: they’re overridden by the final implementation function.

This means that an overloaded function is still an ordinary Python function! There is no automatic dispatch handling
and you must manually handle the different types in the implementation (e.g. by using if statements and isinstance
checks).

If you are adding an overload within a stub file, the implementation function should be omitted: stubs do not contain
runtime logic.

Note: While we can leave the variant body empty using the pass keyword, the more common convention is to instead
use the ellipsis (...) literal.

Type checking calls to overloads

When you call an overloaded function, mypy will infer the correct return type by picking the best matching variant,
after taking into consideration both the argument types and arity. However, a call is never type checked against the
implementation. This is why mypy will report calls like mouse_event(5, 25, 3) as being invalid even though it
matches the implementation signature.

If there are multiple equally good matching variants, mypy will select the variant that was defined first. For example,
consider the following program:
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# For Python 3.8 and below you must use `typing.List` instead of `list`. e.g.
# from typing import List
from typing import overload

@overload
def summarize(data: list[int]) -> float: ...

@overload
def summarize(data: list[str]) -> str: ...

def summarize(data):
if not data:

return 0.0
elif isinstance(data[0], int):

# Do int specific code
else:

# Do str-specific code

# What is the type of 'output'? float or str?
output = summarize([])

The summarize([]) call matches both variants: an empty list could be either a list[int] or a list[str]. In this
case, mypy will break the tie by picking the first matching variant: output will have an inferred type of float. The
implementor is responsible for making sure summarize breaks ties in the same way at runtime.

However, there are two exceptions to the “pick the first match” rule. First, if multiple variants match due to an argument
being of type Any, mypy will make the inferred type also be Any:

dynamic_var: Any = some_dynamic_function()

# output2 is of type 'Any'
output2 = summarize(dynamic_var)

Second, if multiple variants match due to one or more of the arguments being a union, mypy will make the inferred
type be the union of the matching variant returns:

some_list: Union[list[int], list[str]]

# output3 is of type 'Union[float, str]'
output3 = summarize(some_list)

Note: Due to the “pick the first match” rule, changing the order of your overload variants can change how mypy type
checks your program.

To minimize potential issues, we recommend that you:

1. Make sure your overload variants are listed in the same order as the runtime checks (e.g. isinstance checks)
in your implementation.

2. Order your variants and runtime checks from most to least specific. (See the following section for an example).
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Type checking the variants

Mypy will perform several checks on your overload variant definitions to ensure they behave as expected. First, mypy
will check and make sure that no overload variant is shadowing a subsequent one. For example, consider the following
function which adds together two Expression objects, and contains a special-case to handle receiving two Literal
types:

from typing import overload, Union

class Expression:
# ...snip...

class Literal(Expression):
# ...snip...

# Warning -- the first overload variant shadows the second!

@overload
def add(left: Expression, right: Expression) -> Expression: ...

@overload
def add(left: Literal, right: Literal) -> Literal: ...

def add(left: Expression, right: Expression) -> Expression:
# ...snip...

While this code snippet is technically type-safe, it does contain an anti-pattern: the second variant will never be selected!
If we try calling add(Literal(3), Literal(4)), mypy will always pick the first variant and evaluate the function
call to be of type Expression, not Literal. This is because Literal is a subtype of Expression, which means the
“pick the first match” rule will always halt after considering the first overload.

Because having an overload variant that can never be matched is almost certainly a mistake, mypy will report an error.
To fix the error, we can either 1) delete the second overload or 2) swap the order of the overloads:

# Everything is ok now -- the variants are correctly ordered
# from most to least specific.

@overload
def add(left: Literal, right: Literal) -> Literal: ...

@overload
def add(left: Expression, right: Expression) -> Expression: ...

def add(left: Expression, right: Expression) -> Expression:
# ...snip...

Mypy will also type check the different variants and flag any overloads that have inherently unsafely overlapping vari-
ants. For example, consider the following unsafe overload definition:

from typing import overload, Union

@overload
def unsafe_func(x: int) -> int: ...

(continues on next page)
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@overload
def unsafe_func(x: object) -> str: ...

def unsafe_func(x: object) -> Union[int, str]:
if isinstance(x, int):

return 42
else:

return "some string"

On the surface, this function definition appears to be fine. However, it will result in a discrepancy between the inferred
type and the actual runtime type when we try using it like so:

some_obj: object = 42
unsafe_func(some_obj) + " danger danger" # Type checks, yet crashes at runtime!

Since some_obj is of type object, mypy will decide that unsafe_func must return something of type str and
concludes the above will type check. But in reality, unsafe_func will return an int, causing the code to crash at
runtime!

To prevent these kinds of issues, mypy will detect and prohibit inherently unsafely overlapping overloads on a best-effort
basis. Two variants are considered unsafely overlapping when both of the following are true:

1. All of the arguments of the first variant are potentially compatible with the second.

2. The return type of the first variant is not compatible with (e.g. is not a subtype of) the second.

So in this example, the int argument in the first variant is a subtype of the object argument in the second, yet the
int return type is not a subtype of str. Both conditions are true, so mypy will correctly flag unsafe_func as being
unsafe.

Note that in cases where you ignore the overlapping overload error, mypy will usually still infer the types you expect at
callsites.

However, mypy will not detect all unsafe uses of overloads. For example, suppose we modify the above snippet so it
calls summarize instead of unsafe_func:

some_list: list[str] = []
summarize(some_list) + "danger danger" # Type safe, yet crashes at runtime!

We run into a similar issue here. This program type checks if we look just at the annotations on the overloads. But
since summarize(...) is designed to be biased towards returning a float when it receives an empty list, this program
will actually crash during runtime.

The reason mypy does not flag definitions like summarize as being potentially unsafe is because if it did, it would be
extremely difficult to write a safe overload. For example, suppose we define an overload with two variants that accept
types A and B respectively. Even if those two types were completely unrelated, the user could still potentially trigger a
runtime error similar to the ones above by passing in a value of some third type C that inherits from both A and B.

Thankfully, these types of situations are relatively rare. What this does mean, however, is that you should exercise
caution when designing or using an overloaded function that can potentially receive values that are an instance of two
seemingly unrelated types.
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Type checking the implementation

The body of an implementation is type-checked against the type hints provided on the implementation. For example,
in the MyList example up above, the code in the body is checked with argument list index: Union[int, slice]
and a return type of Union[T, Sequence[T]]. If there are no annotations on the implementation, then the body is
not type checked. If you want to force mypy to check the body anyways, use the --check-untyped-defs flag (more
details here).

The variants must also also be compatible with the implementation type hints. In the MyList example, mypy will
check that the parameter type int and the return type T are compatible with Union[int, slice] and Union[T,
Sequence] for the first variant. For the second variant it verifies the parameter type slice and the return type
Sequence[T] are compatible with Union[int, slice] and Union[T, Sequence].

Note: The overload semantics documented above are new as of mypy 0.620.

Previously, mypy used to perform type erasure on all overload variants. For example, the summarize example from the
previous section used to be illegal because list[str] and list[int] both erased to just list[Any]. This restriction
was removed in mypy 0.620.

Mypy also previously used to select the best matching variant using a different algorithm. If this algorithm failed to
find a match, it would default to returning Any. The new algorithm uses the “pick the first match” rule and will fall
back to returning Any only if the input arguments also contain Any.

Conditional overloads

Sometimes it is useful to define overloads conditionally. Common use cases include types that are unavailable at runtime
or that only exist in a certain Python version. All existing overload rules still apply. For example, there must be at least
two overloads.

Note: Mypy can only infer a limited number of conditions. Supported ones currently include TYPE_CHECKING, MYPY,
Python version and system platform checks, --always-true, and --always-false values.

from typing import TYPE_CHECKING, Any, overload

if TYPE_CHECKING:
class A: ...
class B: ...

if TYPE_CHECKING:
@overload
def func(var: A) -> A: ...

@overload
def func(var: B) -> B: ...

def func(var: Any) -> Any:
return var

reveal_type(func(A())) # Revealed type is "A"

88 Chapter 1. Contents

https://docs.python.org/3/library/typing.html#typing.TYPE_CHECKING


Mypy Documentation, Release 1.10.0

# flags: --python-version 3.10
import sys
from typing import Any, overload

class A: ...
class B: ...
class C: ...
class D: ...

if sys.version_info < (3, 7):
@overload
def func(var: A) -> A: ...

elif sys.version_info >= (3, 10):
@overload
def func(var: B) -> B: ...

else:
@overload
def func(var: C) -> C: ...

@overload
def func(var: D) -> D: ...

def func(var: Any) -> Any:
return var

reveal_type(func(B())) # Revealed type is "B"
reveal_type(func(C())) # No overload variant of "func" matches argument type "C"

# Possible overload variants:
# def func(var: B) -> B
# def func(var: D) -> D
# Revealed type is "Any"

Note: In the last example, mypy is executed with --python-version 3.10. Therefore, the condition sys.
version_info >= (3, 10) will match and the overload for B will be added. The overloads for A and C are ignored!
The overload for D is not defined conditionally and thus is also added.

When mypy cannot infer a condition to be always True or always False, an error is emitted.

from typing import Any, overload

class A: ...
class B: ...

def g(bool_var: bool) -> None:
if bool_var: # Condition can't be inferred, unable to merge overloads

@overload
(continues on next page)
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def func(var: A) -> A: ...

@overload
def func(var: B) -> B: ...

def func(var: Any) -> Any: ...

reveal_type(func(A())) # Revealed type is "Any"

1.15.4 Advanced uses of self-types

Normally, mypy doesn’t require annotations for the first arguments of instance and class methods. However, they may
be needed to have more precise static typing for certain programming patterns.

Restricted methods in generic classes

In generic classes some methods may be allowed to be called only for certain values of type arguments:

T = TypeVar('T')

class Tag(Generic[T]):
item: T
def uppercase_item(self: Tag[str]) -> str:

return self.item.upper()

def label(ti: Tag[int], ts: Tag[str]) -> None:
ti.uppercase_item() # E: Invalid self argument "Tag[int]" to attribute function

# "uppercase_item" with type "Callable[[Tag[str]], str]"
ts.uppercase_item() # This is OK

This pattern also allows matching on nested types in situations where the type argument is itself generic:

T = TypeVar('T', covariant=True)
S = TypeVar('S')

class Storage(Generic[T]):
def __init__(self, content: T) -> None:

self.content = content
def first_chunk(self: Storage[Sequence[S]]) -> S:

return self.content[0]

page: Storage[list[str]]
page.first_chunk() # OK, type is "str"

Storage(0).first_chunk() # Error: Invalid self argument "Storage[int]" to attribute␣
→˓function

# "first_chunk" with type "Callable[[Storage[Sequence[S]]], S]
→˓"

Finally, one can use overloads on self-type to express precise types of some tricky methods:
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T = TypeVar('T')

class Tag(Generic[T]):
@overload
def export(self: Tag[str]) -> str: ...
@overload
def export(self, converter: Callable[[T], str]) -> str: ...

def export(self, converter=None):
if isinstance(self.item, str):

return self.item
return converter(self.item)

In particular, an __init__() method overloaded on self-type may be useful to annotate generic class constructors
where type arguments depend on constructor parameters in a non-trivial way, see e.g. Popen.

Mixin classes

Using host class protocol as a self-type in mixin methods allows more code re-usability for static typing of mixin
classes. For example, one can define a protocol that defines common functionality for host classes instead of adding
required abstract methods to every mixin:

class Lockable(Protocol):
@property
def lock(self) -> Lock: ...

class AtomicCloseMixin:
def atomic_close(self: Lockable) -> int:

with self.lock:
# perform actions

class AtomicOpenMixin:
def atomic_open(self: Lockable) -> int:

with self.lock:
# perform actions

class File(AtomicCloseMixin, AtomicOpenMixin):
def __init__(self) -> None:

self.lock = Lock()

class Bad(AtomicCloseMixin):
pass

f = File()
b: Bad
f.atomic_close() # OK
b.atomic_close() # Error: Invalid self type for "atomic_close"

Note that the explicit self-type is required to be a protocol whenever it is not a supertype of the current class. In this
case mypy will check the validity of the self-type only at the call site.
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Precise typing of alternative constructors

Some classes may define alternative constructors. If these classes are generic, self-type allows giving them precise
signatures:

T = TypeVar('T')

class Base(Generic[T]):
Q = TypeVar('Q', bound='Base[T]')

def __init__(self, item: T) -> None:
self.item = item

@classmethod
def make_pair(cls: Type[Q], item: T) -> tuple[Q, Q]:

return cls(item), cls(item)

class Sub(Base[T]):
...

pair = Sub.make_pair('yes') # Type is "tuple[Sub[str], Sub[str]]"
bad = Sub[int].make_pair('no') # Error: Argument 1 to "make_pair" of "Base"

# has incompatible type "str"; expected "int"

1.15.5 Typing async/await

Mypy lets you type coroutines that use the async/await syntax. For more information regarding coroutines, see PEP
492 and the asyncio documentation.

Functions defined using async def are typed similar to normal functions. The return type annotation should be the
same as the type of the value you expect to get back when await-ing the coroutine.

import asyncio

async def format_string(tag: str, count: int) -> str:
return f'T-minus {count} ({tag})'

async def countdown(tag: str, count: int) -> str:
while count > 0:

my_str = await format_string(tag, count) # type is inferred to be str
print(my_str)
await asyncio.sleep(0.1)
count -= 1

return "Blastoff!"

asyncio.run(countdown("Millennium Falcon", 5))

The result of calling an async def function without awaiting will automatically be inferred to be a value of type
Coroutine[Any, Any, T], which is a subtype of Awaitable[T]:

my_coroutine = countdown("Millennium Falcon", 5)
reveal_type(my_coroutine) # Revealed type is "typing.Coroutine[Any, Any, builtins.str]"
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Asynchronous iterators

If you have an asynchronous iterator, you can use the AsyncIterator type in your annotations:

from typing import Optional, AsyncIterator
import asyncio

class arange:
def __init__(self, start: int, stop: int, step: int) -> None:

self.start = start
self.stop = stop
self.step = step
self.count = start - step

def __aiter__(self) -> AsyncIterator[int]:
return self

async def __anext__(self) -> int:
self.count += self.step
if self.count == self.stop:

raise StopAsyncIteration
else:

return self.count

async def run_countdown(tag: str, countdown: AsyncIterator[int]) -> str:
async for i in countdown:

print(f'T-minus {i} ({tag})')
await asyncio.sleep(0.1)

return "Blastoff!"

asyncio.run(run_countdown("Serenity", arange(5, 0, -1)))

Async generators (introduced in PEP 525) are an easy way to create async iterators:

from typing import AsyncGenerator, Optional
import asyncio

# Could also type this as returning AsyncIterator[int]
async def arange(start: int, stop: int, step: int) -> AsyncGenerator[int, None]:

current = start
while (step > 0 and current < stop) or (step < 0 and current > stop):

yield current
current += step

asyncio.run(run_countdown("Battlestar Galactica", arange(5, 0, -1)))

One common confusion is that the presence of a yield statement in an async def function has an effect on the type
of the function:

from typing import AsyncIterator

async def arange(stop: int) -> AsyncIterator[int]:
# When called, arange gives you an async iterator
# Equivalent to Callable[[int], AsyncIterator[int]]

(continues on next page)
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i = 0
while i < stop:

yield i
i += 1

async def coroutine(stop: int) -> AsyncIterator[int]:
# When called, coroutine gives you something you can await to get an async iterator
# Equivalent to Callable[[int], Coroutine[Any, Any, AsyncIterator[int]]]
return arange(stop)

async def main() -> None:
reveal_type(arange(5)) # Revealed type is "typing.AsyncIterator[builtins.int]"
reveal_type(coroutine(5)) # Revealed type is "typing.Coroutine[Any, Any, typing.

→˓AsyncIterator[builtins.int]]"

await arange(5) # Error: Incompatible types in "await" (actual type
→˓"AsyncIterator[int]", expected type "Awaitable[Any]")

reveal_type(await coroutine(5)) # Revealed type is "typing.AsyncIterator[builtins.
→˓int]"

This can sometimes come up when trying to define base classes, Protocols or overloads:

from typing import AsyncIterator, Protocol, overload

class LauncherIncorrect(Protocol):
# Because launch does not have yield, this has type
# Callable[[], Coroutine[Any, Any, AsyncIterator[int]]]
# instead of
# Callable[[], AsyncIterator[int]]
async def launch(self) -> AsyncIterator[int]:

raise NotImplementedError

class LauncherCorrect(Protocol):
def launch(self) -> AsyncIterator[int]:

raise NotImplementedError

class LauncherAlsoCorrect(Protocol):
async def launch(self) -> AsyncIterator[int]:

raise NotImplementedError
if False:

yield 0

# The type of the overloads is independent of the implementation.
# In particular, their type is not affected by whether or not the
# implementation contains a `yield`.
# Use of `def`` makes it clear the type is Callable[..., AsyncIterator[int]],
# whereas with `async def` it would be Callable[..., Coroutine[Any, Any,␣
→˓AsyncIterator[int]]]
@overload
def launch(*, count: int = ...) -> AsyncIterator[int]: ...
@overload
def launch(*, time: float = ...) -> AsyncIterator[int]: ...

(continues on next page)
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async def launch(*, count: int = 0, time: float = 0) -> AsyncIterator[int]:
# The implementation of launch is an async generator and contains a yield
yield 0

1.16 Literal types and Enums

1.16.1 Literal types

Literal types let you indicate that an expression is equal to some specific primitive value. For example, if we annotate
a variable with type Literal["foo"], mypy will understand that variable is not only of type str, but is also equal to
specifically the string "foo".

This feature is primarily useful when annotating functions that behave differently based on the exact value the caller
provides. For example, suppose we have a function fetch_data(...) that returns bytes if the first argument is True,
and str if it’s False. We can construct a precise type signature for this function using Literal[...] and overloads:

from typing import overload, Union, Literal

# The first two overloads use Literal[...] so we can
# have precise return types:

@overload
def fetch_data(raw: Literal[True]) -> bytes: ...
@overload
def fetch_data(raw: Literal[False]) -> str: ...

# The last overload is a fallback in case the caller
# provides a regular bool:

@overload
def fetch_data(raw: bool) -> Union[bytes, str]: ...

def fetch_data(raw: bool) -> Union[bytes, str]:
# Implementation is omitted
...

reveal_type(fetch_data(True)) # Revealed type is "bytes"
reveal_type(fetch_data(False)) # Revealed type is "str"

# Variables declared without annotations will continue to have an
# inferred type of 'bool'.

variable = True
reveal_type(fetch_data(variable)) # Revealed type is "Union[bytes, str]"

Note: The examples in this page import Literal as well as Final and TypedDict from the typing module. These
types were added to typing in Python 3.8, but are also available for use in Python 3.4 - 3.7 via the typing_extensions
package.
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Parameterizing Literals

Literal types may contain one or more literal bools, ints, strs, bytes, and enum values. However, literal types cannot
contain arbitrary expressions: types like Literal[my_string.trim()], Literal[x > 3], or Literal[3j + 4]
are all illegal.

Literals containing two or more values are equivalent to the union of those values. So, Literal[-3, b"foo",
MyEnum.A] is equivalent to Union[Literal[-3], Literal[b"foo"], Literal[MyEnum.A]]. This makes writ-
ing more complex types involving literals a little more convenient.

Literal types may also contain None. Mypy will treat Literal[None] as being equivalent to just None. This means
that Literal[4, None], Union[Literal[4], None], and Optional[Literal[4]] are all equivalent.

Literals may also contain aliases to other literal types. For example, the following program is legal:

PrimaryColors = Literal["red", "blue", "yellow"]
SecondaryColors = Literal["purple", "green", "orange"]
AllowedColors = Literal[PrimaryColors, SecondaryColors]

def paint(color: AllowedColors) -> None: ...

paint("red") # Type checks!
paint("turquoise") # Does not type check

Literals may not contain any other kind of type or expression. This means doing Literal[my_instance],
Literal[Any], Literal[3.14], or Literal[{"foo": 2, "bar": 5}] are all illegal.

Declaring literal variables

You must explicitly add an annotation to a variable to declare that it has a literal type:

a: Literal[19] = 19
reveal_type(a) # Revealed type is "Literal[19]"

In order to preserve backwards-compatibility, variables without this annotation are not assumed to be literals:

b = 19
reveal_type(b) # Revealed type is "int"

If you find repeating the value of the variable in the type hint to be tedious, you can instead change the variable to be
Final (see Final names, methods and classes):

from typing import Final, Literal

def expects_literal(x: Literal[19]) -> None: pass

c: Final = 19

reveal_type(c) # Revealed type is "Literal[19]?"
expects_literal(c) # ...and this type checks!

If you do not provide an explicit type in the Final, the type of c becomes context-sensitive: mypy will basically try
“substituting” the original assigned value whenever it’s used before performing type checking. This is why the revealed
type of c is Literal[19]?: the question mark at the end reflects this context-sensitive nature.

For example, mypy will type check the above program almost as if it were written like so:
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from typing import Final, Literal

def expects_literal(x: Literal[19]) -> None: pass

reveal_type(19)
expects_literal(19)

This means that while changing a variable to be Final is not quite the same thing as adding an explicit Literal[...]
annotation, it often leads to the same effect in practice.

The main cases where the behavior of context-sensitive vs true literal types differ are when you try using those types
in places that are not explicitly expecting a Literal[...]. For example, compare and contrast what happens when
you try appending these types to a list:

from typing import Final, Literal

a: Final = 19
b: Literal[19] = 19

# Mypy will choose to infer list[int] here.
list_of_ints = []
list_of_ints.append(a)
reveal_type(list_of_ints) # Revealed type is "list[int]"

# But if the variable you're appending is an explicit Literal, mypy
# will infer list[Literal[19]].
list_of_lits = []
list_of_lits.append(b)
reveal_type(list_of_lits) # Revealed type is "list[Literal[19]]"

Intelligent indexing

We can use Literal types to more precisely index into structured heterogeneous types such as tuples, NamedTuples, and
TypedDicts. This feature is known as intelligent indexing.

For example, when we index into a tuple using some int, the inferred type is normally the union of the tuple item types.
However, if we want just the type corresponding to some particular index, we can use Literal types like so:

from typing import TypedDict

tup = ("foo", 3.4)

# Indexing with an int literal gives us the exact type for that index
reveal_type(tup[0]) # Revealed type is "str"

# But what if we want the index to be a variable? Normally mypy won't
# know exactly what the index is and so will return a less precise type:
int_index = 0
reveal_type(tup[int_index]) # Revealed type is "Union[str, float]"

# But if we use either Literal types or a Final int, we can gain back
# the precision we originally had:
lit_index: Literal[0] = 0

(continues on next page)
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fin_index: Final = 0
reveal_type(tup[lit_index]) # Revealed type is "str"
reveal_type(tup[fin_index]) # Revealed type is "str"

# We can do the same thing with with TypedDict and str keys:
class MyDict(TypedDict):

name: str
main_id: int
backup_id: int

d: MyDict = {"name": "Saanvi", "main_id": 111, "backup_id": 222}
name_key: Final = "name"
reveal_type(d[name_key]) # Revealed type is "str"

# You can also index using unions of literals
id_key: Literal["main_id", "backup_id"]
reveal_type(d[id_key]) # Revealed type is "int"

Tagged unions

When you have a union of types, you can normally discriminate between each type in the union by using isinstance
checks. For example, if you had a variable x of type Union[int, str], you could write some code that runs only if
x is an int by doing if isinstance(x, int): ....

However, it is not always possible or convenient to do this. For example, it is not possible to use isinstance to
distinguish between two different TypedDicts since at runtime, your variable will simply be just a dict.

Instead, what you can do is label or tag your TypedDicts with a distinct Literal type. Then, you can discriminate
between each kind of TypedDict by checking the label:

from typing import Literal, TypedDict, Union

class NewJobEvent(TypedDict):
tag: Literal["new-job"]
job_name: str
config_file_path: str

class CancelJobEvent(TypedDict):
tag: Literal["cancel-job"]
job_id: int

Event = Union[NewJobEvent, CancelJobEvent]

def process_event(event: Event) -> None:
# Since we made sure both TypedDicts have a key named 'tag', it's
# safe to do 'event["tag"]'. This expression normally has the type
# Literal["new-job", "cancel-job"], but the check below will narrow
# the type to either Literal["new-job"] or Literal["cancel-job"].
#
# This in turns narrows the type of 'event' to either NewJobEvent
# or CancelJobEvent.
if event["tag"] == "new-job":

(continues on next page)
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print(event["job_name"])
else:

print(event["job_id"])

While this feature is mostly useful when working with TypedDicts, you can also use the same technique with regular
objects, tuples, or namedtuples.

Similarly, tags do not need to be specifically str Literals: they can be any type you can normally narrow within if
statements and the like. For example, you could have your tags be int or Enum Literals or even regular classes you
narrow using isinstance():

from typing import Generic, TypeVar, Union

T = TypeVar('T')

class Wrapper(Generic[T]):
def __init__(self, inner: T) -> None:

self.inner = inner

def process(w: Union[Wrapper[int], Wrapper[str]]) -> None:
# Doing `if isinstance(w, Wrapper[int])` does not work: isinstance requires
# that the second argument always be an *erased* type, with no generics.
# This is because generics are a typing-only concept and do not exist at
# runtime in a way `isinstance` can always check.
#
# However, we can side-step this by checking the type of `w.inner` to
# narrow `w` itself:
if isinstance(w.inner, int):

reveal_type(w) # Revealed type is "Wrapper[int]"
else:

reveal_type(w) # Revealed type is "Wrapper[str]"

This feature is sometimes called “sum types” or “discriminated union types” in other programming languages.

Exhaustiveness checking

You may want to check that some code covers all possible Literal or Enum cases. Example:

from typing import Literal

PossibleValues = Literal['one', 'two']

def validate(x: PossibleValues) -> bool:
if x == 'one':

return True
elif x == 'two':

return False
raise ValueError(f'Invalid value: {x}')

assert validate('one') is True
assert validate('two') is False
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In the code above, it’s easy to make a mistake. You can add a new literal value to PossibleValues but forget to handle
it in the validate function:

PossibleValues = Literal['one', 'two', 'three']

Mypy won’t catch that 'three' is not covered. If you want mypy to perform an exhaustiveness check, you need to
update your code to use an assert_never() check:

from typing import Literal, NoReturn
from typing_extensions import assert_never

PossibleValues = Literal['one', 'two']

def validate(x: PossibleValues) -> bool:
if x == 'one':

return True
elif x == 'two':

return False
assert_never(x)

Now if you add a new value to PossibleValues but don’t update validate, mypy will spot the error:

PossibleValues = Literal['one', 'two', 'three']

def validate(x: PossibleValues) -> bool:
if x == 'one':

return True
elif x == 'two':

return False
# Error: Argument 1 to "assert_never" has incompatible type "Literal['three']";
# expected "NoReturn"
assert_never(x)

If runtime checking against unexpected values is not needed, you can leave out the assert_never call in the above
example, and mypy will still generate an error about function validate returning without a value:

PossibleValues = Literal['one', 'two', 'three']

# Error: Missing return statement
def validate(x: PossibleValues) -> bool:

if x == 'one':
return True

elif x == 'two':
return False

Exhaustiveness checking is also supported for match statements (Python 3.10 and later):

def validate(x: PossibleValues) -> bool:
match x:

case 'one':
return True

case 'two':
return False

assert_never(x)
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Limitations

Mypy will not understand expressions that use variables of type Literal[..] on a deep level. For example, if you
have a variable a of type Literal[3] and another variable b of type Literal[5], mypy will infer that a + b has
type int, not type Literal[8].

The basic rule is that literal types are treated as just regular subtypes of whatever type the parameter has. For exam-
ple, Literal[3] is treated as a subtype of int and so will inherit all of int’s methods directly. This means that
Literal[3].__add__ accepts the same arguments and has the same return type as int.__add__.

1.16.2 Enums

Mypy has special support for enum.Enum and its subclasses: enum.IntEnum, enum.Flag, enum.IntFlag, and enum.
StrEnum.

from enum import Enum

class Direction(Enum):
up = 'up'
down = 'down'

reveal_type(Direction.up) # Revealed type is "Literal[Direction.up]?"
reveal_type(Direction.down) # Revealed type is "Literal[Direction.down]?"

You can use enums to annotate types as you would expect:

class Movement:
def __init__(self, direction: Direction, speed: float) -> None:

self.direction = direction
self.speed = speed

Movement(Direction.up, 5.0) # ok
Movement('up', 5.0) # E: Argument 1 to "Movement" has incompatible type "str"; expected
→˓"Direction"

Exhaustiveness checking

Similar to Literal types, Enum supports exhaustiveness checking. Let’s start with a definition:

from enum import Enum
from typing import NoReturn
from typing_extensions import assert_never

class Direction(Enum):
up = 'up'
down = 'down'

Now, let’s use an exhaustiveness check:

def choose_direction(direction: Direction) -> None:
if direction is Direction.up:

reveal_type(direction) # N: Revealed type is "Literal[Direction.up]"
(continues on next page)

1.16. Literal types and Enums 101

https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.IntEnum
https://docs.python.org/3/library/enum.html#enum.Flag
https://docs.python.org/3/library/enum.html#enum.IntFlag
https://docs.python.org/3/library/enum.html#enum.StrEnum
https://docs.python.org/3/library/enum.html#enum.StrEnum


Mypy Documentation, Release 1.10.0

(continued from previous page)

print('Going up!')
return

elif direction is Direction.down:
print('Down')
return

# This line is never reached
assert_never(direction)

If we forget to handle one of the cases, mypy will generate an error:

def choose_direction(direction: Direction) -> None:
if direction == Direction.up:

print('Going up!')
return

assert_never(direction) # E: Argument 1 to "assert_never" has incompatible type
→˓"Direction"; expected "NoReturn"

Exhaustiveness checking is also supported for match statements (Python 3.10 and later).

Extra Enum checks

Mypy also tries to support special features of Enum the same way Python’s runtime does:

• Any Enum class with values is implicitly final. This is what happens in CPython:

>>> class AllDirection(Direction):
... left = 'left'
... right = 'right'
Traceback (most recent call last):
...

TypeError: AllDirection: cannot extend enumeration 'Direction'

Mypy also catches this error:

class AllDirection(Direction): # E: Cannot inherit from final class "Direction"
left = 'left'
right = 'right'

• All Enum fields are implicitly final as well.

Direction.up = '^' # E: Cannot assign to final attribute "up"

• All field names are checked to be unique.

class Some(Enum):
x = 1
x = 2 # E: Attempted to reuse member name "x" in Enum definition "Some"

• Base classes have no conflicts and mixin types are correct.

class WrongEnum(str, int, enum.Enum):
# E: Only a single data type mixin is allowed for Enum subtypes, found extra

→˓"int"
(continues on next page)
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...

class MixinAfterEnum(enum.Enum, Mixin): # E: No base classes are allowed after
→˓"enum.Enum"

...

1.17 TypedDict

Python programs often use dictionaries with string keys to represent objects. TypedDict lets you give precise types
for dictionaries that represent objects with a fixed schema, such as {'id': 1, 'items': ['x']}.

Here is a typical example:

movie = {'name': 'Blade Runner', 'year': 1982}

Only a fixed set of string keys is expected ('name' and 'year' above), and each key has an independent value type
(str for 'name' and int for 'year' above). We’ve previously seen the dict[K, V] type, which lets you declare
uniform dictionary types, where every value has the same type, and arbitrary keys are supported. This is clearly not a
good fit for movie above. Instead, you can use a TypedDict to give a precise type for objects like movie, where the
type of each dictionary value depends on the key:

from typing import TypedDict

Movie = TypedDict('Movie', {'name': str, 'year': int})

movie: Movie = {'name': 'Blade Runner', 'year': 1982}

Movie is a TypedDict type with two items: 'name' (with type str) and 'year' (with type int). Note that we used
an explicit type annotation for the movie variable. This type annotation is important – without it, mypy will try to infer
a regular, uniform dict type for movie, which is not what we want here.

Note: If you pass a TypedDict object as an argument to a function, no type annotation is usually necessary since
mypy can infer the desired type based on the declared argument type. Also, if an assignment target has been previously
defined, and it has a TypedDict type, mypy will treat the assigned value as a TypedDict, not dict.

Now mypy will recognize these as valid:

name = movie['name'] # Okay; type of name is str
year = movie['year'] # Okay; type of year is int

Mypy will detect an invalid key as an error:

director = movie['director'] # Error: 'director' is not a valid key

Mypy will also reject a runtime-computed expression as a key, as it can’t verify that it’s a valid key. You can only use
string literals as TypedDict keys.

The TypedDict type object can also act as a constructor. It returns a normal dict object at runtime – a TypedDict
does not define a new runtime type:
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toy_story = Movie(name='Toy Story', year=1995)

This is equivalent to just constructing a dictionary directly using { ... } or dict(key=value, ...). The con-
structor form is sometimes convenient, since it can be used without a type annotation, and it also makes the type of the
object explicit.

Like all types, TypedDicts can be used as components to build arbitrarily complex types. For example, you can define
nested TypedDicts and containers with TypedDict items. Unlike most other types, mypy uses structural compatibility
checking (or structural subtyping) with TypedDicts. A TypedDict object with extra items is compatible with (a
subtype of) a narrower TypedDict, assuming item types are compatible (totality also affects subtyping, as discussed
below).

A TypedDict object is not a subtype of the regular dict[...] type (and vice versa), since dict allows arbitrary keys
to be added and removed, unlike TypedDict. However, any TypedDict object is a subtype of (that is, compatible
with) Mapping[str, object], since Mapping only provides read-only access to the dictionary items:

def print_typed_dict(obj: Mapping[str, object]) -> None:
for key, value in obj.items():

print(f'{key}: {value}')

print_typed_dict(Movie(name='Toy Story', year=1995)) # OK

Note: Unless you are on Python 3.8 or newer (where TypedDict is available in standard library typing module) you
need to install typing_extensions using pip to use TypedDict:

python3 -m pip install --upgrade typing-extensions

1.17.1 Totality

By default mypy ensures that a TypedDict object has all the specified keys. This will be flagged as an error:

# Error: 'year' missing
toy_story: Movie = {'name': 'Toy Story'}

Sometimes you want to allow keys to be left out when creating a TypedDict object. You can provide the total=False
argument to TypedDict(...) to achieve this:

GuiOptions = TypedDict(
'GuiOptions', {'language': str, 'color': str}, total=False)

options: GuiOptions = {} # Okay
options['language'] = 'en'

You may need to use get() to access items of a partial (non-total) TypedDict, since indexing using [] could fail at
runtime. However, mypy still lets use [] with a partial TypedDict – you just need to be careful with it, as it could
result in a KeyError. Requiring get() everywhere would be too cumbersome. (Note that you are free to use get()
with total TypedDicts as well.)

Keys that aren’t required are shown with a ? in error messages:

# Revealed type is "TypedDict('GuiOptions', {'language'?: builtins.str,
# 'color'?: builtins.str})"
reveal_type(options)
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Totality also affects structural compatibility. You can’t use a partial TypedDict when a total one is expected. Also, a
total TypedDict is not valid when a partial one is expected.

1.17.2 Supported operations

TypedDict objects support a subset of dictionary operations and methods. You must use string literals as keys when
calling most of the methods, as otherwise mypy won’t be able to check that the key is valid. List of supported operations:

• Anything included in Mapping:

– d[key]

– key in d

– len(d)

– for key in d (iteration)

– d.get(key[, default])

– d.keys()

– d.values()

– d.items()

• d.copy()

• d.setdefault(key, default)

• d1.update(d2)

• d.pop(key[, default]) (partial TypedDicts only)

• del d[key] (partial TypedDicts only)

Note: clear() and popitem() are not supported since they are unsafe – they could delete required TypedDict items
that are not visible to mypy because of structural subtyping.

1.17.3 Class-based syntax

An alternative, class-based syntax to define a TypedDict is supported in Python 3.6 and later:

from typing import TypedDict # "from typing_extensions" in Python 3.7 and earlier

class Movie(TypedDict):
name: str
year: int

The above definition is equivalent to the original Movie definition. It doesn’t actually define a real class. This syntax
also supports a form of inheritance – subclasses can define additional items. However, this is primarily a notational
shortcut. Since mypy uses structural compatibility with TypedDicts, inheritance is not required for compatibility.
Here is an example of inheritance:

class Movie(TypedDict):
name: str
year: int

(continues on next page)
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class BookBasedMovie(Movie):
based_on: str

Now BookBasedMovie has keys name, year and based_on.

1.17.4 Mixing required and non-required items

In addition to allowing reuse across TypedDict types, inheritance also allows you to mix required and non-required
(using total=False) items in a single TypedDict. Example:

class MovieBase(TypedDict):
name: str
year: int

class Movie(MovieBase, total=False):
based_on: str

Now Movie has required keys name and year, while based_on can be left out when constructing an object. A
TypedDict with a mix of required and non-required keys, such as Movie above, will only be compatible with another
TypedDict if all required keys in the other TypedDict are required keys in the first TypedDict, and all non-required
keys of the other TypedDict are also non-required keys in the first TypedDict.

1.17.5 Unions of TypedDicts

Since TypedDicts are really just regular dicts at runtime, it is not possible to use isinstance checks to distinguish
between different variants of a Union of TypedDict in the same way you can with regular objects.

Instead, you can use the tagged union pattern. The referenced section of the docs has a full description with an example,
but in short, you will need to give each TypedDict the same key where each value has a unique Literal type. Then, check
that key to distinguish between your TypedDicts.

1.18 Final names, methods and classes

This section introduces these related features:

1. Final names are variables or attributes that should not be reassigned after initialization. They are useful for
declaring constants.

2. Final methods should not be overridden in a subclass.

3. Final classes should not be subclassed.

All of these are only enforced by mypy, and only in annotated code. There is no runtime enforcement by the Python
runtime.

Note: The examples in this page import Final and final from the typing module. These types were added to
typing in Python 3.8, but are also available for use in Python 3.4 - 3.7 via the typing_extensions package.
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1.18.1 Final names

You can use the typing.Final qualifier to indicate that a name or attribute should not be reassigned, redefined, or
overridden. This is often useful for module and class level constants as a way to prevent unintended modification.
Mypy will prevent further assignments to final names in type-checked code:

from typing import Final

RATE: Final = 3_000

class Base:
DEFAULT_ID: Final = 0

RATE = 300 # Error: can't assign to final attribute
Base.DEFAULT_ID = 1 # Error: can't override a final attribute

Another use case for final attributes is to protect certain attributes from being overridden in a subclass:

from typing import Final

class Window:
BORDER_WIDTH: Final = 2.5
...

class ListView(Window):
BORDER_WIDTH = 3 # Error: can't override a final attribute

You can use @property to make an attribute read-only, but unlike Final, it doesn’t work with module attributes, and
it doesn’t prevent overriding in subclasses.

Syntax variants

You can use Final in one of these forms:

• You can provide an explicit type using the syntax Final[<type>]. Example:

ID: Final[int] = 1

Here mypy will infer type int for ID.

• You can omit the type:

ID: Final = 1

Here mypy will infer type Literal[1] for ID. Note that unlike for generic classes this is not the same as
Final[Any].

• In class bodies and stub files you can omit the right hand side and just write ID: Final[int].

• Finally, you can write self.id: Final = 1 (also optionally with a type in square brackets). This is allowed
only in __init__ methods, so that the final instance attribute is assigned only once when an instance is created.
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Details of using Final

These are the two main rules for defining a final name:

• There can be at most one final declaration per module or class for a given attribute. There can’t be separate
class-level and instance-level constants with the same name.

• There must be exactly one assignment to a final name.

A final attribute declared in a class body without an initializer must be initialized in the __init__ method (you can
skip the initializer in stub files):

class ImmutablePoint:
x: Final[int]
y: Final[int] # Error: final attribute without an initializer

def __init__(self) -> None:
self.x = 1 # Good

Final can only be used as the outermost type in assignments or variable annotations. Using it in any other position is
an error. In particular, Final can’t be used in annotations for function arguments:

x: list[Final[int]] = [] # Error!

def fun(x: Final[list[int]]) -> None: # Error!
...

Final and ClassVar should not be used together. Mypy will infer the scope of a final declaration automatically
depending on whether it was initialized in the class body or in __init__.

A final attribute can’t be overridden by a subclass (even with another explicit final declaration). Note however that a
final attribute can override a read-only property:

class Base:
@property
def ID(self) -> int: ...

class Derived(Base):
ID: Final = 1 # OK

Declaring a name as final only guarantees that the name will not be re-bound to another value. It doesn’t make the
value immutable. You can use immutable ABCs and containers to prevent mutating such values:

x: Final = ['a', 'b']
x.append('c') # OK

y: Final[Sequence[str]] = ['a', 'b']
y.append('x') # Error: Sequence is immutable
z: Final = ('a', 'b') # Also an option
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1.18.2 Final methods

Like with attributes, sometimes it is useful to protect a method from overriding. You can use the typing.final
decorator for this purpose:

from typing import final

class Base:
@final
def common_name(self) -> None:

...

class Derived(Base):
def common_name(self) -> None: # Error: cannot override a final method

...

This @final decorator can be used with instance methods, class methods, static methods, and properties.

For overloaded methods you should add @final on the implementation to make it final (or on the first overload in
stubs):

from typing import Any, overload

class Base:
@overload
def method(self) -> None: ...
@overload
def method(self, arg: int) -> int: ...
@final
def method(self, x=None):

...

1.18.3 Final classes

You can apply the typing.final decorator to a class to indicate to mypy that it should not be subclassed:

from typing import final

@final
class Leaf:

...

class MyLeaf(Leaf): # Error: Leaf can't be subclassed
...

The decorator acts as a declaration for mypy (and as documentation for humans), but it doesn’t actually prevent sub-
classing at runtime.

Here are some situations where using a final class may be useful:

• A class wasn’t designed to be subclassed. Perhaps subclassing would not work as expected, or subclassing would
be error-prone.

• Subclassing would make code harder to understand or maintain. For example, you may want to prevent unnec-
essarily tight coupling between base classes and subclasses.
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• You want to retain the freedom to arbitrarily change the class implementation in the future, and these changes
might break subclasses.

An abstract class that defines at least one abstract method or property and has @final decorator will generate an error
from mypy, since those attributes could never be implemented.

from abc import ABCMeta, abstractmethod
from typing import final

@final
class A(metaclass=ABCMeta): # error: Final class A has abstract attributes "f"

@abstractmethod
def f(self, x: int) -> None: pass

1.19 Metaclasses

A metaclass is a class that describes the construction and behavior of other classes, similarly to how classes describe
the construction and behavior of objects. The default metaclass is type, but it’s possible to use other metaclasses.
Metaclasses allows one to create “a different kind of class”, such as Enums, NamedTuples and singletons.

Mypy has some special understanding of ABCMeta and EnumMeta.

1.19.1 Defining a metaclass

class M(type):
pass

class A(metaclass=M):
pass

1.19.2 Metaclass usage example

Mypy supports the lookup of attributes in the metaclass:

from typing import Type, TypeVar, ClassVar
T = TypeVar('T')

class M(type):
count: ClassVar[int] = 0

def make(cls: Type[T]) -> T:
M.count += 1
return cls()

class A(metaclass=M):
pass

a: A = A.make() # make() is looked up at M; the result is an object of type A
print(A.count)

(continues on next page)
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(continued from previous page)

class B(A):
pass

b: B = B.make() # metaclasses are inherited
print(B.count + " objects were created") # Error: Unsupported operand types for + ("int
→˓" and "str")

1.19.3 Gotchas and limitations of metaclass support

Note that metaclasses pose some requirements on the inheritance structure, so it’s better not to combine metaclasses
and class hierarchies:

class M1(type): pass
class M2(type): pass

class A1(metaclass=M1): pass
class A2(metaclass=M2): pass

class B1(A1, metaclass=M2): pass # Mypy Error: metaclass conflict
# At runtime the above definition raises an exception
# TypeError: metaclass conflict: the metaclass of a derived class must be a (non-strict)␣
→˓subclass of the metaclasses of all its bases

class B12(A1, A2): pass # Mypy Error: metaclass conflict

# This can be solved via a common metaclass subtype:
class CorrectMeta(M1, M2): pass
class B2(A1, A2, metaclass=CorrectMeta): pass # OK, runtime is also OK

• Mypy does not understand dynamically-computed metaclasses, such as class A(metaclass=f()): ...

• Mypy does not and cannot understand arbitrary metaclass code.

• Mypy only recognizes subclasses of type as potential metaclasses.

1.20 Running mypy and managing imports

The Getting started page should have already introduced you to the basics of how to run mypy – pass in the files and
directories you want to type check via the command line:

$ mypy foo.py bar.py some_directory

This page discusses in more detail how exactly to specify what files you want mypy to type check, how mypy discovers
imported modules, and recommendations on how to handle any issues you may encounter along the way.

If you are interested in learning about how to configure the actual way mypy type checks your code, see our The mypy
command line guide.
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1.20.1 Specifying code to be checked

Mypy lets you specify what files it should type check in several different ways.

1. First, you can pass in paths to Python files and directories you want to type check. For example:

$ mypy file_1.py foo/file_2.py file_3.pyi some/directory

The above command tells mypy it should type check all of the provided files together. In addition, mypy will
recursively type check the entire contents of any provided directories.

For more details about how exactly this is done, see Mapping file paths to modules.

2. Second, you can use the -m flag (long form: --module) to specify a module name to be type checked. The name
of a module is identical to the name you would use to import that module within a Python program. For example,
running:

$ mypy -m html.parser

. . .will type check the module html.parser (this happens to be a library stub).

Mypy will use an algorithm very similar to the one Python uses to find where modules and imports are located
on the file system. For more details, see How imports are found.

3. Third, you can use the -p (long form: --package) flag to specify a package to be (recursively) type checked.
This flag is almost identical to the -m flag except that if you give it a package name, mypy will recursively type
check all submodules and subpackages of that package. For example, running:

$ mypy -p html

. . .will type check the entire html package (of library stubs). In contrast, if we had used the -m flag, mypy would
have type checked just html’s __init__.py file and anything imported from there.

Note that we can specify multiple packages and modules on the command line. For example:

$ mypy --package p.a --package p.b --module c

4. Fourth, you can also instruct mypy to directly type check small strings as programs by using the -c (long form:
--command) flag. For example:

$ mypy -c 'x = [1, 2]; print(x())'

. . .will type check the above string as a mini-program (and in this case, will report that list[int] is not callable).

You can also use the files option in your mypy.ini file to specify which files to check, in which case you can simply
run mypy with no arguments.

1.20.2 Reading a list of files from a file

Finally, any command-line argument starting with @ reads additional command-line arguments from the file following
the @ character. This is primarily useful if you have a file containing a list of files that you want to be type-checked:
instead of using shell syntax like:

$ mypy $(cat file_of_files.txt)

you can use this instead:
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$ mypy @file_of_files.txt

This file can technically also contain any command line flag, not just file paths. However, if you want to configure many
different flags, the recommended approach is to use a configuration file instead.

1.20.3 Mapping file paths to modules

One of the main ways you can tell mypy what to type check is by providing mypy a list of paths. For example:

$ mypy file_1.py foo/file_2.py file_3.pyi some/directory

This section describes how exactly mypy maps the provided paths to modules to type check.

• Mypy will check all paths provided that correspond to files.

• Mypy will recursively discover and check all files ending in .py or .pyi in directory paths provided, after
accounting for --exclude.

• For each file to be checked, mypy will attempt to associate the file (e.g. project/foo/bar/baz.py) with a
fully qualified module name (e.g. foo.bar.baz). The directory the package is in (project) is then added to
mypy’s module search paths.

How mypy determines fully qualified module names depends on if the options --no-namespace-packages and
--explicit-package-bases are set.

1. If --no-namespace-packages is set, mypy will rely solely upon the presence of __init__.py[i] files to
determine the fully qualified module name. That is, mypy will crawl up the directory tree for as long as it
continues to find __init__.py (or __init__.pyi) files.

For example, if your directory tree consists of pkg/subpkg/mod.py, mypy would require pkg/__init__.py
and pkg/subpkg/__init__.py to exist in order correctly associate mod.py with pkg.subpkg.mod

2. The default case. If --namespace-packages is on, but --explicit-package-bases is off, mypy will al-
low for the possibility that directories without __init__.py[i] are packages. Specifically, mypy will look at
all parent directories of the file and use the location of the highest __init__.py[i] in the directory tree to
determine the top-level package.

For example, say your directory tree consists solely of pkg/__init__.py and pkg/a/b/c/d/mod.py. When
determining mod.py’s fully qualified module name, mypy will look at pkg/__init__.py and conclude that the
associated module name is pkg.a.b.c.d.mod.

3. You’ll notice that the above case still relies on __init__.py. If you can’t put an __init__.py in your top-
level package, but still wish to pass paths (as opposed to packages or modules using the -p or -m flags),
--explicit-package-bases provides a solution.

With --explicit-package-bases, mypy will locate the nearest parent directory that is a member of the
MYPYPATH environment variable, the mypy_path config or is the current working directory. Mypy will then
use the relative path to determine the fully qualified module name.

For example, say your directory tree consists solely of src/namespace_pkg/mod.py. If you run the following
command, mypy will correctly associate mod.py with namespace_pkg.mod:

$ MYPYPATH=src mypy --namespace-packages --explicit-package-bases .

If you pass a file not ending in .py[i], the module name assumed is __main__ (matching the behavior of the Python
interpreter), unless --scripts-are-modules is passed.

Passing -v will show you the files and associated module names that mypy will check.
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1.20.4 How mypy handles imports

When mypy encounters an import statement, it will first attempt to locate that module or type stubs for that module
in the file system. Mypy will then type check the imported module. There are three different outcomes of this process:

1. Mypy is unable to follow the import: the module either does not exist, or is a third party library that does not use
type hints.

2. Mypy is able to follow and type check the import, but you did not want mypy to type check that module at all.

3. Mypy is able to successfully both follow and type check the module, and you want mypy to type check that
module.

The third outcome is what mypy will do in the ideal case. The following sections will discuss what to do in the other
two cases.

1.20.5 Missing imports

When you import a module, mypy may report that it is unable to follow the import. This can cause errors that look like
the following:

main.py:1: error: Skipping analyzing 'django': module is installed, but missing library␣
→˓stubs or py.typed marker
main.py:2: error: Library stubs not installed for "requests"
main.py:3: error: Cannot find implementation or library stub for module named "this_
→˓module_does_not_exist"

If you get any of these errors on an import, mypy will assume the type of that module is Any, the dynamic type. This
means attempting to access any attribute of the module will automatically succeed:

# Error: Cannot find implementation or library stub for module named 'does_not_exist'
import does_not_exist

# But this type checks, and x will have type 'Any'
x = does_not_exist.foobar()

This can result in mypy failing to warn you about errors in your code. Since operations on Any result in Any, these
dynamic types can propagate through your code, making type checking less effective. See Dynamically typed code for
more information.

The next sections describe what each of these errors means and recommended next steps; scroll to the section that
matches your error.

Missing library stubs or py.typed marker

If you are getting a Skipping analyzing X: module is installed, but missing library stubs or py.
typed marker, error, this means mypy was able to find the module you were importing, but no corresponding type
hints.

Mypy will not try inferring the types of any 3rd party libraries you have installed unless they either have declared them-
selves to be PEP 561 compliant stub package (e.g. with a py.typed file) or have registered themselves on typeshed,
the repository of types for the standard library and some 3rd party libraries.

If you are getting this error, try to obtain type hints for the library you’re using:

1. Upgrading the version of the library you’re using, in case a newer version has started to include type hints.
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2. Searching to see if there is a PEP 561 compliant stub package corresponding to your third party library. Stub
packages let you install type hints independently from the library itself.

For example, if you want type hints for the django library, you can install the django-stubs package.

3. Writing your own stub files containing type hints for the library. You can point mypy at your type hints either by
passing them in via the command line, by using the files or mypy_path config file options, or by adding the
location to the MYPYPATH environment variable.

These stub files do not need to be complete! A good strategy is to use stubgen, a program that comes bundled
with mypy, to generate a first rough draft of the stubs. You can then iterate on just the parts of the library you
need.

If you want to share your work, you can try contributing your stubs back to the library – see our documentation
on creating PEP 561 compliant packages.

If you are unable to find any existing type hints nor have time to write your own, you can instead suppress the errors.

All this will do is make mypy stop reporting an error on the line containing the import: the imported module will
continue to be of type Any, and mypy may not catch errors in its use.

1. To suppress a single missing import error, add a # type: ignore at the end of the line containing the import.

2. To suppress all missing import errors from a single library, add a per-module section to your mypy config file
setting ignore_missing_imports to True for that library. For example, suppose your codebase makes heavy
use of an (untyped) library named foobar. You can silence all import errors associated with that library and
that library alone by adding the following section to your config file:

[mypy-foobar.*]
ignore_missing_imports = True

Note: this option is equivalent to adding a # type: ignore to every import of foobar in your codebase.
For more information, see the documentation about configuring import discovery in config files. The .* after
foobar will ignore imports of foobar modules and subpackages in addition to the foobar top-level package
namespace.

3. To suppress all missing import errors for all untyped libraries in your codebase, use
--disable-error-code=import-untyped . See Check that import target can be found [import-untyped] for
more details on this error code.

You can also set disable_error_code, like so:

[mypy]
disable_error_code = import-untyped

You can also set the --ignore-missing-imports command line flag or set the ignore_missing_imports
config file option to True in the global section of your mypy config file. We recommend avoiding
--ignore-missing-imports if possible: it’s equivalent to adding a # type: ignore to all unresolved im-
ports in your codebase.
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Library stubs not installed

If mypy can’t find stubs for a third-party library, and it knows that stubs exist for the library, you will get a message like
this:

main.py:1: error: Library stubs not installed for "yaml"
main.py:1: note: Hint: "python3 -m pip install types-PyYAML"
main.py:1: note: (or run "mypy --install-types" to install all missing stub packages)

You can resolve the issue by running the suggested pip commands. If you’re running mypy in CI, you can ensure the
presence of any stub packages you need the same as you would any other test dependency, e.g. by adding them to the
appropriate requirements.txt file.

Alternatively, add the --install-types to your mypy command to install all known missing stubs:

mypy --install-types

This is slower than explicitly installing stubs, since it effectively runs mypy twice – the first time to find the missing
stubs, and the second time to type check your code properly after mypy has installed the stubs. It also can make
controlling stub versions harder, resulting in less reproducible type checking.

By default, --install-types shows a confirmation prompt. Use --non-interactive to install all suggested stub
packages without asking for confirmation and type check your code:

If you’ve already installed the relevant third-party libraries in an environment other than the one mypy is running in,
you can use --python-executable flag to point to the Python executable for that environment, and mypy will find
packages installed for that Python executable.

If you’ve installed the relevant stub packages and are still getting this error, see the section below.

Cannot find implementation or library stub

If you are getting a Cannot find implementation or library stub for module error, this means mypy was
not able to find the module you are trying to import, whether it comes bundled with type hints or not. If you are getting
this error, try:

1. Making sure your import does not contain a typo.

2. If the module is a third party library, making sure that mypy is able to find the interpreter containing the installed
library.

For example, if you are running your code in a virtualenv, make sure to install and use mypy within the virtualenv.
Alternatively, if you want to use a globally installed mypy, set the --python-executable command line flag
to point the Python interpreter containing your installed third party packages.

You can confirm that you are running mypy from the environment you expect by running it like python -m
mypy .... You can confirm that you are installing into the environment you expect by running pip like python
-m pip ....

3. Reading the How imports are found section below to make sure you understand how exactly mypy searches for
and finds modules and modify how you’re invoking mypy accordingly.

4. Directly specifying the directory containing the module you want to type check from the command line, by using
the mypy_path or files config file options, or by using the MYPYPATH environment variable.

Note: if the module you are trying to import is actually a submodule of some package, you should specify
the directory containing the entire package. For example, suppose you are trying to add the module foo.
bar.baz which is located at ~/foo-project/src/foo/bar/baz.py. In this case, you must run mypy ~/
foo-project/src (or set the MYPYPATH to ~/foo-project/src).
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1.20.6 How imports are found

When mypy encounters an import statement or receives module names from the command line via the --module or
--package flags, mypy tries to find the module on the file system similar to the way Python finds it. However, there
are some differences.

First, mypy has its own search path. This is computed from the following items:

• The MYPYPATH environment variable (a list of directories, colon-separated on UNIX systems, semicolon-
separated on Windows).

• The mypy_path config file option.

• The directories containing the sources given on the command line (see Mapping file paths to modules).

• The installed packages marked as safe for type checking (see PEP 561 support)

• The relevant directories of the typeshed repo.

Note: You cannot point to a stub-only package (PEP 561) via the MYPYPATH, it must be installed (see PEP 561
support)

Second, mypy searches for stub files in addition to regular Python files and packages. The rules for searching for a
module foo are as follows:

• The search looks in each of the directories in the search path (see above) until a match is found.

• If a package named foo is found (i.e. a directory foo containing an __init__.py or __init__.pyi file) that’s
a match.

• If a stub file named foo.pyi is found, that’s a match.

• If a Python module named foo.py is found, that’s a match.

These matches are tried in order, so that if multiple matches are found in the same directory on the search path (e.g. a
package and a Python file, or a stub file and a Python file) the first one in the above list wins.

In particular, if a Python file and a stub file are both present in the same directory on the search path, only the stub file
is used. (However, if the files are in different directories, the one found in the earlier directory is used.)

Setting mypy_path /MYPYPATH is mostly useful in the case where you want to try running mypy against multiple distinct
sets of files that happen to share some common dependencies.

For example, if you have multiple projects that happen to be using the same set of work-in-progress stubs, it could be
convenient to just have your MYPYPATH point to a single directory containing the stubs.

1.20.7 Following imports

Mypy is designed to doggedly follow all imports, even if the imported module is not a file you explicitly wanted mypy
to check.

For example, suppose we have two modules mycode.foo and mycode.bar: the former has type hints and the latter
does not. We run mypy -m mycode.foo and mypy discovers that mycode.foo imports mycode.bar.

How do we want mypy to type check mycode.bar? Mypy’s behaviour here is configurable – although we strongly
recommend using the default – by using the --follow-imports flag. This flag accepts one of four string values:

• normal (the default, recommended) follows all imports normally and type checks all top level code (as well as
the bodies of all functions and methods with at least one type annotation in the signature).

• silent behaves in the same way as normal but will additionally suppress any error messages.
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• skip will not follow imports and instead will silently replace the module (and anything imported from it) with
an object of type Any.

• error behaves in the same way as skip but is not quite as silent – it will flag the import as an error, like this:

main.py:1: note: Import of "mycode.bar" ignored
main.py:1: note: (Using --follow-imports=error, module not passed on command line)

If you are starting a new codebase and plan on using type hints from the start, we recommend you use either
--follow-imports=normal (the default) or --follow-imports=error. Either option will help make sure you
are not skipping checking any part of your codebase by accident.

If you are planning on adding type hints to a large, existing code base, we recommend you start by trying to make your
entire codebase (including files that do not use type hints) pass under --follow-imports=normal. This is usually
not too difficult to do: mypy is designed to report as few error messages as possible when it is looking at unannotated
code.

Only if doing this is intractable, we recommend passing mypy just the files you want to type check and use
--follow-imports=silent. Even if mypy is unable to perfectly type check a file, it can still glean some useful
information by parsing it (for example, understanding what methods a given object has). See Using mypy with an
existing codebase for more recommendations.

We do not recommend using skip unless you know what you are doing: while this option can be quite powerful, it can
also cause many hard-to-debug errors.

Adjusting import following behaviour is often most useful when restricted to specific modules. This can be accom-
plished by setting a per-module follow_imports config option.

1.21 The mypy command line

This section documents mypy’s command line interface. You can view a quick summary of the available flags by
running mypy --help.

Note: Command line flags are liable to change between releases.

1.21.1 Specifying what to type check

By default, you can specify what code you want mypy to type check by passing in the paths to what you want to have
type checked:

$ mypy foo.py bar.py some_directory

Note that directories are checked recursively.

Mypy also lets you specify what code to type check in several other ways. A short summary of the relevant flags is
included below: for full details, see Running mypy and managing imports.

-m MODULE, --module MODULE

Asks mypy to type check the provided module. This flag may be repeated multiple times.

Mypy will not recursively type check any submodules of the provided module.
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-p PACKAGE, --package PACKAGE

Asks mypy to type check the provided package. This flag may be repeated multiple times.

Mypy will recursively type check any submodules of the provided package. This flag is identical to --module
apart from this behavior.

-c PROGRAM_TEXT, --command PROGRAM_TEXT

Asks mypy to type check the provided string as a program.

--exclude

A regular expression that matches file names, directory names and paths which mypy should ignore while recur-
sively discovering files to check. Use forward slashes on all platforms.

For instance, to avoid discovering any files named setup.py you could pass --exclude '/setup\.py$'. Simi-
larly, you can ignore discovering directories with a given name by e.g. --exclude /build/ or those matching
a subpath with --exclude /project/vendor/. To ignore multiple files / directories / paths, you can provide
the –exclude flag more than once, e.g --exclude '/setup\.py$' --exclude '/build/'.

Note that this flag only affects recursive directory tree discovery, that is, when mypy is discovering files within a
directory tree or submodules of a package to check. If you pass a file or module explicitly it will still be checked.
For instance, mypy --exclude '/setup.py$' but_still_check/setup.py.

In particular, --exclude does not affect mypy’s import following. You can use a per-module follow_imports
config option to additionally avoid mypy from following imports and checking code you do not wish to be
checked.

Note that mypy will never recursively discover files and directories named “site-packages”,
“node_modules” or “__pycache__”, or those whose name starts with a period, exactly as --exclude '/
(site-packages|node_modules|__pycache__|\..*)/$' would. Mypy will also never recursively
discover files with extensions other than .py or .pyi.

1.21.2 Optional arguments

-h, --help

Show help message and exit.

-v, --verbose

More verbose messages.

-V, --version

Show program’s version number and exit.

1.21.3 Config file

--config-file CONFIG_FILE

This flag makes mypy read configuration settings from the given file.

By default settings are read from mypy.ini, .mypy.ini, pyproject.toml, or setup.cfg in the current di-
rectory. Settings override mypy’s built-in defaults and command line flags can override settings.

Specifying --config-file= (with no filename) will ignore all config files.

See The mypy configuration file for the syntax of configuration files.

--warn-unused-configs

This flag makes mypy warn about unused [mypy-<pattern>] config file sections. (This requires turning off
incremental mode using --no-incremental.)
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1.21.4 Import discovery

The following flags customize how exactly mypy discovers and follows imports.

--explicit-package-bases

This flag tells mypy that top-level packages will be based in either the current directory, or a member of the
MYPYPATH environment variable or mypy_path config option. This option is only useful in the absence of
__init__.py. See Mapping file paths to modules for details.

--ignore-missing-imports

This flag makes mypy ignore all missing imports. It is equivalent to adding # type: ignore comments to all
unresolved imports within your codebase.

Note that this flag does not suppress errors about missing names in successfully resolved modules. For example,
if one has the following files:

package/__init__.py
package/mod.py

Then mypy will generate the following errors with --ignore-missing-imports:

import package.unknown # No error, ignored
x = package.unknown.func() # OK. 'func' is assumed to be of type 'Any'

from package import unknown # No error, ignored
from package.mod import NonExisting # Error: Module has no attribute 'NonExisting'

For more details, see Missing imports.

--follow-imports {normal,silent,skip,error}

This flag adjusts how mypy follows imported modules that were not explicitly passed in via the command line.

The default option is normal: mypy will follow and type check all modules. For more information on what the
other options do, see Following imports.

--python-executable EXECUTABLE

This flag will have mypy collect type information from PEP 561 compliant packages installed for the Python
executable EXECUTABLE. If not provided, mypy will use PEP 561 compliant packages installed for the Python
executable running mypy.

See Using installed packages for more on making PEP 561 compliant packages.

--no-site-packages

This flag will disable searching for PEP 561 compliant packages. This will also disable searching for a usable
Python executable.

Use this flag if mypy cannot find a Python executable for the version of Python being checked, and you don’t
need to use PEP 561 typed packages. Otherwise, use --python-executable.

--no-silence-site-packages

By default, mypy will suppress any error messages generated within PEP 561 compliant packages. Adding this
flag will disable this behavior.

--fast-module-lookup

The default logic used to scan through search paths to resolve imports has a quadratic worse-case behavior in
some cases, which is for instance triggered by a large number of folders sharing a top-level namespace as in:
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foo/
company/

foo/
a.py

bar/
company/

bar/
b.py

baz/
company/

baz/
c.py

...

If you are in this situation, you can enable an experimental fast path by setting the --fast-module-lookup
option.

--no-namespace-packages

This flag disables import discovery of namespace packages (see PEP 420). In particular, this prevents discovery
of packages that don’t have an __init__.py (or __init__.pyi) file.

This flag affects how mypy finds modules and packages explicitly passed on the command line. It also affects
how mypy determines fully qualified module names for files passed on the command line. See Mapping file paths
to modules for details.

1.21.5 Platform configuration

By default, mypy will assume that you intend to run your code using the same operating system and Python version
you are using to run mypy itself. The following flags let you modify this behavior.

For more information on how to use these flags, see Python version and system platform checks.

--python-version X.Y

This flag will make mypy type check your code as if it were run under Python version X.Y. Without this option,
mypy will default to using whatever version of Python is running mypy.

This flag will attempt to find a Python executable of the corresponding version to search for PEP 561 compliant
packages. If you’d like to disable this, use the --no-site-packages flag (see Import discovery for more details).

--platform PLATFORM

This flag will make mypy type check your code as if it were run under the given operating system. Without this
option, mypy will default to using whatever operating system you are currently using.

The PLATFORM parameter may be any string supported by sys.platform.

--always-true NAME

This flag will treat all variables named NAME as compile-time constants that are always true. This flag may be
repeated.

--always-false NAME

This flag will treat all variables named NAME as compile-time constants that are always false. This flag may be
repeated.
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1.21.6 Disallow dynamic typing

The Any type is used to represent a value that has a dynamic type. The --disallow-any family of flags will disallow
various uses of the Any type in a module – this lets us strategically disallow the use of dynamic typing in a controlled
way.

The following options are available:

--disallow-any-unimported

This flag disallows usage of types that come from unfollowed imports (such types become aliases for Any).
Unfollowed imports occur either when the imported module does not exist or when --follow-imports=skip
is set.

--disallow-any-expr

This flag disallows all expressions in the module that have type Any. If an expression of type Any appears
anywhere in the module mypy will output an error unless the expression is immediately used as an argument to
cast() or assigned to a variable with an explicit type annotation.

In addition, declaring a variable of type Any or casting to type Any is not allowed. Note that calling functions
that take parameters of type Any is still allowed.

--disallow-any-decorated

This flag disallows functions that have Any in their signature after decorator transformation.

--disallow-any-explicit

This flag disallows explicit Any in type positions such as type annotations and generic type parameters.

--disallow-any-generics

This flag disallows usage of generic types that do not specify explicit type parameters. For example, you can’t
use a bare x: list. Instead, you must always write something like x: list[int].

--disallow-subclassing-any

This flag reports an error whenever a class subclasses a value of type Any. This may occur when the base class
is imported from a module that doesn’t exist (when using --ignore-missing-imports) or is ignored due to
--follow-imports=skip or a # type: ignore comment on the import statement.

Since the module is silenced, the imported class is given a type of Any. By default mypy will assume that the
subclass correctly inherited the base class even though that may not actually be the case. This flag makes mypy
raise an error instead.

1.21.7 Untyped definitions and calls

The following flags configure how mypy handles untyped function definitions or calls.

--disallow-untyped-calls

This flag reports an error whenever a function with type annotations calls a function defined without annotations.

--untyped-calls-exclude

This flag allows to selectively disable --disallow-untyped-calls for functions and methods defined in spe-
cific packages, modules, or classes. Note that each exclude entry acts as a prefix. For example (assuming there
are no type annotations for third_party_lib available):

# mypy --disallow-untyped-calls
# --untyped-calls-exclude=third_party_lib.module_a
# --untyped-calls-exclude=foo.A
from third_party_lib.module_a import some_func

(continues on next page)
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(continued from previous page)

from third_party_lib.module_b import other_func
import foo

some_func() # OK, function comes from module `third_party_lib.module_a`
other_func() # E: Call to untyped function "other_func" in typed context

foo.A().meth() # OK, method was defined in class `foo.A`
foo.B().meth() # E: Call to untyped function "meth" in typed context

# file foo.py
class A:

def meth(self): pass
class B:

def meth(self): pass

--disallow-untyped-defs

This flag reports an error whenever it encounters a function definition without type annotations or with incomplete
type annotations. (a superset of --disallow-incomplete-defs).

For example, it would report an error for def f(a, b) and def f(a: int, b).

--disallow-incomplete-defs

This flag reports an error whenever it encounters a partly annotated function definition, while still allowing
entirely unannotated definitions.

For example, it would report an error for def f(a: int, b) but not def f(a, b).

--check-untyped-defs

This flag is less severe than the previous two options – it type checks the body of every function, regardless of
whether it has type annotations. (By default the bodies of functions without annotations are not type checked.)

It will assume all arguments have type Any and always infer Any as the return type.

--disallow-untyped-decorators

This flag reports an error whenever a function with type annotations is decorated with a decorator without anno-
tations.

1.21.8 None and Optional handling

The following flags adjust how mypy handles values of type None.

--implicit-optional

This flag causes mypy to treat arguments with a None default value as having an implicit Optional type.

For example, if this flag is set, mypy would assume that the x parameter is actually of type Optional[int] in
the code snippet below since the default parameter is None:

def foo(x: int = None) -> None:
print(x)

Note: This was disabled by default starting in mypy 0.980.

--no-strict-optional

This flag effectively disables checking of Optional types and None values. With this option, mypy doesn’t
generally check the use of None values – it is treated as compatible with every type.
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Warning: --no-strict-optional is evil. Avoid using it and definitely do not use it without understand-
ing what it does.

1.21.9 Configuring warnings

The following flags enable warnings for code that is sound but is potentially problematic or redundant in some way.

--warn-redundant-casts

This flag will make mypy report an error whenever your code uses an unnecessary cast that can safely be removed.

--warn-unused-ignores

This flag will make mypy report an error whenever your code uses a # type: ignore comment on a line that
is not actually generating an error message.

This flag, along with the --warn-redundant-casts flag, are both particularly useful when you are upgrading
mypy. Previously, you may have needed to add casts or # type: ignore annotations to work around bugs in
mypy or missing stubs for 3rd party libraries.

These two flags let you discover cases where either workarounds are no longer necessary.

--no-warn-no-return

By default, mypy will generate errors when a function is missing return statements in some execution paths. The
only exceptions are when:

• The function has a None or Any return type

• The function has an empty body and is marked as an abstract method, is in a protocol class, or is in a stub
file

• The execution path can never return; for example, if an exception
is always raised

Passing in --no-warn-no-return will disable these error messages in all cases.

--warn-return-any

This flag causes mypy to generate a warning when returning a value with type Any from a function declared with
a non-Any return type.

--warn-unreachable

This flag will make mypy report an error whenever it encounters code determined to be unreachable or redundant
after performing type analysis. This can be a helpful way of detecting certain kinds of bugs in your code.

For example, enabling this flag will make mypy report that the x > 7 check is redundant and that the else block
below is unreachable.

def process(x: int) -> None:
# Error: Right operand of "or" is never evaluated
if isinstance(x, int) or x > 7:

# Error: Unsupported operand types for + ("int" and "str")
print(x + "bad")

else:
# Error: 'Statement is unreachable' error
print(x + "bad")

To help prevent mypy from generating spurious warnings, the “Statement is unreachable” warning will be si-
lenced in exactly two cases:
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1. When the unreachable statement is a raise statement, is an assert False statement, or calls a function
that has the NoReturn return type hint. In other words, when the unreachable statement throws an error or
terminates the program in some way.

2. When the unreachable statement was intentionally marked as unreachable using Python version and system
platform checks.

Note: Mypy currently cannot detect and report unreachable or redundant code inside any functions using Type
variables with value restriction.

This limitation will be removed in future releases of mypy.

1.21.10 Miscellaneous strictness flags

This section documents any other flags that do not neatly fall under any of the above sections.

--allow-untyped-globals

This flag causes mypy to suppress errors caused by not being able to fully infer the types of global and class
variables.

--allow-redefinition

By default, mypy won’t allow a variable to be redefined with an unrelated type. This flag enables redefinition of
a variable with an arbitrary type in some contexts: only redefinitions within the same block and nesting depth as
the original definition are allowed. Example where this can be useful:

def process(items: list[str]) -> None:
# 'items' has type list[str]
items = [item.split() for item in items]
# 'items' now has type list[list[str]]

The variable must be used before it can be redefined:

def process(items: list[str]) -> None:
items = "mypy" # invalid redefinition to str because the variable hasn't been␣

→˓used yet
print(items)
items = "100" # valid, items now has type str
items = int(items) # valid, items now has type int

--local-partial-types

In mypy, the most common cases for partial types are variables initialized using None, but without explicit
Optional annotations. By default, mypy won’t check partial types spanning module top level or class top level.
This flag changes the behavior to only allow partial types at local level, therefore it disallows inferring variable
type for None from two assignments in different scopes. For example:

from typing import Optional

a = None # Need type annotation here if using --local-partial-types
b: Optional[int] = None

class Foo:
bar = None # Need type annotation here if using --local-partial-types
baz: Optional[int] = None

(continues on next page)
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(continued from previous page)

def __init__(self) -> None:
self.bar = 1

reveal_type(Foo().bar) # Union[int, None] without --local-partial-types

Note: this option is always implicitly enabled in mypy daemon and will become enabled by default for mypy in
a future release.

--no-implicit-reexport

By default, imported values to a module are treated as exported and mypy allows other modules to import them.
This flag changes the behavior to not re-export unless the item is imported using from-as or is included in
__all__. Note this is always treated as enabled for stub files. For example:

# This won't re-export the value
from foo import bar

# Neither will this
from foo import bar as bang

# This will re-export it as bar and allow other modules to import it
from foo import bar as bar

# This will also re-export bar
from foo import bar
__all__ = ['bar']

--strict-equality

By default, mypy allows always-false comparisons like 42 == 'no'. Use this flag to prohibit such comparisons
of non-overlapping types, and similar identity and container checks:

from typing import Text

items: list[int]
if 'some string' in items: # Error: non-overlapping container check!

...

text: Text
if text != b'other bytes': # Error: non-overlapping equality check!

...

assert text is not None # OK, check against None is allowed as a special case.

--extra-checks

This flag enables additional checks that are technically correct but may be impractical in real code. In particular,
it prohibits partial overlap in TypedDict updates, and makes arguments prepended via Concatenate positional-
only. For example:

from typing import TypedDict

class Foo(TypedDict):
a: int

(continues on next page)
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(continued from previous page)

class Bar(TypedDict):
a: int
b: int

def test(foo: Foo, bar: Bar) -> None:
# This is technically unsafe since foo can have a subtype of Foo at
# runtime, where type of key "b" is incompatible with int, see below
bar.update(foo)

class Bad(Foo):
b: str

bad: Bad = {"a": 0, "b": "no"}
test(bad, bar)

--strict

This flag mode enables all optional error checking flags. You can see the list of flags enabled by strict mode in
the full mypy --help output.

Note: the exact list of flags enabled by running --strict may change over time.

--disable-error-code

This flag allows disabling one or multiple error codes globally. See Error codes for more information.

# no flag
x = 'a string'
x.trim() # error: "str" has no attribute "trim" [attr-defined]

# When using --disable-error-code attr-defined
x = 'a string'
x.trim()

--enable-error-code

This flag allows enabling one or multiple error codes globally. See Error codes for more information.

Note: This flag will override disabled error codes from the --disable-error-code flag.

# When using --disable-error-code attr-defined
x = 'a string'
x.trim()

# --disable-error-code attr-defined --enable-error-code attr-defined
x = 'a string'
x.trim() # error: "str" has no attribute "trim" [attr-defined]
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1.21.11 Configuring error messages

The following flags let you adjust how much detail mypy displays in error messages.

--show-error-context

This flag will precede all errors with “note” messages explaining the context of the error. For example, consider
the following program:

class Test:
def foo(self, x: int) -> int:

return x + "bar"

Mypy normally displays an error message that looks like this:

main.py:3: error: Unsupported operand types for + ("int" and "str")

If we enable this flag, the error message now looks like this:

main.py: note: In member "foo" of class "Test":
main.py:3: error: Unsupported operand types for + ("int" and "str")

--show-column-numbers

This flag will add column offsets to error messages. For example, the following indicates an error in line 12,
column 9 (note that column offsets are 0-based):

main.py:12:9: error: Unsupported operand types for / ("int" and "str")

--show-error-end

This flag will make mypy show not just that start position where an error was detected, but also the end position
of the relevant expression. This way various tools can easily highlight the whole error span. The format is
file:line:column:end_line:end_column. This option implies --show-column-numbers.

--hide-error-codes

This flag will hide the error code [<code>] from error messages. By default, the error code is shown after each
error message:

prog.py:1: error: "str" has no attribute "trim" [attr-defined]

See Error codes for more information.

--pretty

Use visually nicer output in error messages: use soft word wrap, show source code snippets, and show error
location markers.

--no-color-output

This flag will disable color output in error messages, enabled by default.

--no-error-summary

This flag will disable error summary. By default mypy shows a summary line including total number of errors,
number of files with errors, and number of files checked.

--show-absolute-path

Show absolute paths to files.
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--soft-error-limit N

This flag will adjust the limit after which mypy will (sometimes) disable reporting most additional errors. The
limit only applies if it seems likely that most of the remaining errors will not be useful or they may be overly
noisy. If N is negative, there is no limit. The default limit is -1.

--force-uppercase-builtins

Always use List instead of list in error messages, even on Python 3.9+.

--force-union-syntax

Always use Union[] and Optional[] for union types in error messages (instead of the | operator), even on
Python 3.10+.

1.21.12 Incremental mode

By default, mypy will store type information into a cache. Mypy will use this information to avoid unnecessary recom-
putation when it type checks your code again. This can help speed up the type checking process, especially when most
parts of your program have not changed since the previous mypy run.

If you want to speed up how long it takes to recheck your code beyond what incremental mode can offer, try running
mypy in daemon mode.

--no-incremental

This flag disables incremental mode: mypy will no longer reference the cache when re-run.

Note that mypy will still write out to the cache even when incremental mode is disabled: see the --cache-dir
flag below for more details.

--cache-dir DIR

By default, mypy stores all cache data inside of a folder named .mypy_cache in the current directory. This flag
lets you change this folder. This flag can also be useful for controlling cache use when using remote caching.

This setting will override the MYPY_CACHE_DIR environment variable if it is set.

Mypy will also always write to the cache even when incremental mode is disabled so it can “warm up” the cache.
To disable writing to the cache, use --cache-dir=/dev/null (UNIX) or --cache-dir=nul (Windows).

--sqlite-cache

Use an SQLite database to store the cache.

--cache-fine-grained

Include fine-grained dependency information in the cache for the mypy daemon.

--skip-version-check

By default, mypy will ignore cache data generated by a different version of mypy. This flag disables that behavior.

--skip-cache-mtime-checks

Skip cache internal consistency checks based on mtime.
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1.21.13 Advanced options

The following flags are useful mostly for people who are interested in developing or debugging mypy internals.

--pdb

This flag will invoke the Python debugger when mypy encounters a fatal error.

--show-traceback, --tb

If set, this flag will display a full traceback when mypy encounters a fatal error.

--raise-exceptions

Raise exception on fatal error.

--custom-typing-module MODULE

This flag lets you use a custom module as a substitute for the typing module.

--custom-typeshed-dir DIR

This flag specifies the directory where mypy looks for standard library typeshed stubs, instead of the typeshed
that ships with mypy. This is primarily intended to make it easier to test typeshed changes before submitting
them upstream, but also allows you to use a forked version of typeshed.

Note that this doesn’t affect third-party library stubs. To test third-party stubs, for example try MYPYPATH=stubs/
six mypy ....

--warn-incomplete-stub

This flag modifies both the --disallow-untyped-defs and --disallow-incomplete-defs flags so they
also report errors if stubs in typeshed are missing type annotations or has incomplete annotations. If both flags
are missing, --warn-incomplete-stub also does nothing.

This flag is mainly intended to be used by people who want contribute to typeshed and would like a convenient
way to find gaps and omissions.

If you want mypy to report an error when your codebase uses an untyped function, whether that function is
defined in typeshed or not, use the --disallow-untyped-calls flag. See Untyped definitions and calls for
more details.

--shadow-file SOURCE_FILE SHADOW_FILE

When mypy is asked to type check SOURCE_FILE, this flag makes mypy read from and type check the contents
of SHADOW_FILE instead. However, diagnostics will continue to refer to SOURCE_FILE.

Specifying this argument multiple times (--shadow-file X1 Y1 --shadow-file X2 Y2) will allow mypy
to perform multiple substitutions.

This allows tooling to create temporary files with helpful modifications without having to change the source
file in place. For example, suppose we have a pipeline that adds reveal_type for certain variables. This
pipeline is run on original.py to produce temp.py. Running mypy --shadow-file original.py temp.
py original.py will then cause mypy to type check the contents of temp.py instead of original.py, but
error messages will still reference original.py.
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1.21.14 Report generation

If these flags are set, mypy will generate a report in the specified format into the specified directory.

--any-exprs-report DIR

Causes mypy to generate a text file report documenting how many expressions of type Any are present within
your codebase.

--cobertura-xml-report DIR

Causes mypy to generate a Cobertura XML type checking coverage report.

To generate this report, you must either manually install the lxml library or specify mypy installation with the
setuptools extra mypy[reports].

--html-report / --xslt-html-report DIR

Causes mypy to generate an HTML type checking coverage report.

To generate this report, you must either manually install the lxml library or specify mypy installation with the
setuptools extra mypy[reports].

--linecount-report DIR

Causes mypy to generate a text file report documenting the functions and lines that are typed and untyped within
your codebase.

--linecoverage-report DIR

Causes mypy to generate a JSON file that maps each source file’s absolute filename to a list of line numbers that
belong to typed functions in that file.

--lineprecision-report DIR

Causes mypy to generate a flat text file report with per-module statistics of how many lines are typechecked etc.

--txt-report / --xslt-txt-report DIR

Causes mypy to generate a text file type checking coverage report.

To generate this report, you must either manually install the lxml library or specify mypy installation with the
setuptools extra mypy[reports].

--xml-report DIR

Causes mypy to generate an XML type checking coverage report.

To generate this report, you must either manually install the lxml library or specify mypy installation with the
setuptools extra mypy[reports].

1.21.15 Enabling incomplete/experimental features

--enable-incomplete-feature {PreciseTupleTypes}

Some features may require several mypy releases to implement, for example due to their complexity, potential
for backwards incompatibility, or ambiguous semantics that would benefit from feedback from the community.
You can enable such features for early preview using this flag. Note that it is not guaranteed that all features will
be ultimately enabled by default. In rare cases we may decide to not go ahead with certain features.

List of currently incomplete/experimental features:

• PreciseTupleTypes: this feature will infer more precise tuple types in various scenarios. Before variadic types
were added to the Python type system by PEP 646, it was impossible to express a type like “a tuple with at least
two integers”. The best type available was tuple[int, ...]. Therefore, mypy applied very lenient checking
for variable-length tuples. Now this type can be expressed as tuple[int, int, *tuple[int, ...]]. For
such more precise types (when explicitly defined by a user) mypy, for example, warns about unsafe index access,
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and generally handles them in a type-safe manner. However, to avoid problems in existing code, mypy does not
infer these precise types when it technically can. Here are notable examples where PreciseTupleTypes infers
more precise types:

numbers: tuple[int, ...]

more_numbers = (1, *numbers, 1)
reveal_type(more_numbers)
# Without PreciseTupleTypes: tuple[int, ...]
# With PreciseTupleTypes: tuple[int, *tuple[int, ...], int]

other_numbers = (1, 1) + numbers
reveal_type(other_numbers)
# Without PreciseTupleTypes: tuple[int, ...]
# With PreciseTupleTypes: tuple[int, int, *tuple[int, ...]]

if len(numbers) > 2:
reveal_type(numbers)
# Without PreciseTupleTypes: tuple[int, ...]
# With PreciseTupleTypes: tuple[int, int, int, *tuple[int, ...]]

else:
reveal_type(numbers)
# Without PreciseTupleTypes: tuple[int, ...]
# With PreciseTupleTypes: tuple[()] | tuple[int] | tuple[int, int]

1.21.16 Miscellaneous

--install-types

This flag causes mypy to install known missing stub packages for third-party libraries using pip. It will display the
pip command that will be run, and expects a confirmation before installing anything. For security reasons, these
stubs are limited to only a small subset of manually selected packages that have been verified by the typeshed
team. These packages include only stub files and no executable code.

If you use this option without providing any files or modules to type check, mypy will install stub packages
suggested during the previous mypy run. If there are files or modules to type check, mypy first type checks those,
and proposes to install missing stubs at the end of the run, but only if any missing modules were detected.

Note: This is new in mypy 0.900. Previous mypy versions included a selection of third-party package stubs,
instead of having them installed separately.

--non-interactive

When used together with --install-types, this causes mypy to install all suggested stub packages using pip
without asking for confirmation, and then continues to perform type checking using the installed stubs, if some
files or modules are provided to type check.

This is implemented as up to two mypy runs internally. The first run is used to find missing stub packages, and
output is shown from this run only if no missing stub packages were found. If missing stub packages were found,
they are installed and then another run is performed.

--junit-xml JUNIT_XML

Causes mypy to generate a JUnit XML test result document with type checking results. This can make it easier
to integrate mypy with continuous integration (CI) tools.
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--find-occurrences CLASS.MEMBER

This flag will make mypy print out all usages of a class member based on static type information. This feature is
experimental.

--scripts-are-modules

This flag will give command line arguments that appear to be scripts (i.e. files whose name does not end in .py)
a module name derived from the script name rather than the fixed name __main__.

This lets you check more than one script in a single mypy invocation. (The default __main__ is technically more
correct, but if you have many scripts that import a large package, the behavior enabled by this flag is often more
convenient.)

1.22 The mypy configuration file

Mypy is very configurable. This is most useful when introducing typing to an existing codebase. See Using mypy with
an existing codebase for concrete advice for that situation.

Mypy supports reading configuration settings from a file with the following precedence order:

1. ./mypy.ini

2. ./.mypy.ini

3. ./pyproject.toml

4. ./setup.cfg

5. $XDG_CONFIG_HOME/mypy/config

6. ~/.config/mypy/config

7. ~/.mypy.ini

It is important to understand that there is no merging of configuration files, as it would lead to ambiguity. The
--config-file command-line flag has the highest precedence and must be correct; otherwise mypy will report an
error and exit. Without the command line option, mypy will look for configuration files in the precedence order above.

Most flags correspond closely to command-line flags but there are some differences in flag names and some flags may
take a different value based on the module being processed.

Some flags support user home directory and environment variable expansion. To refer to the user home directory, use
~ at the beginning of the path. To expand environment variables use $VARNAME or ${VARNAME}.

1.22.1 Config file format

The configuration file format is the usual ini file format. It should contain section names in square brackets and flag
settings of the form NAME = VALUE. Comments start with # characters.

• A section named [mypy] must be present. This specifies the global flags.

• Additional sections named [mypy-PATTERN1,PATTERN2,...] may be present, where PATTERN1, PATTERN2,
etc., are comma-separated patterns of fully-qualified module names, with some components optionally replaced
by the ‘*’ character (e.g. foo.bar, foo.bar.*, foo.*.baz). These sections specify additional flags that only
apply to modules whose name matches at least one of the patterns.

A pattern of the form qualified_module_name matches only the named module, while
dotted_module_name.* matches dotted_module_name and any submodules (so foo.bar.* would
match all of foo.bar, foo.bar.baz, and foo.bar.baz.quux).
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Patterns may also be “unstructured” wildcards, in which stars may appear in the middle of a name (e.g site.*.
migrations.*). Stars match zero or more module components (so site.*.migrations.* can match site.
migrations).

When options conflict, the precedence order for configuration is:

1. Inline configuration in the source file

2. Sections with concrete module names (foo.bar)

3. Sections with “unstructured” wildcard patterns (foo.*.baz), with sections later in the configuration file
overriding sections earlier.

4. Sections with “well-structured” wildcard patterns (foo.bar.*), with more specific overriding more gen-
eral.

5. Command line options.

6. Top-level configuration file options.

The difference in precedence order between “structured” patterns (by specificity) and “unstructured” patterns (by order
in the file) is unfortunate, and is subject to change in future versions.

Note: The warn_unused_configs flag may be useful to debug misspelled section names.

Note: Configuration flags are liable to change between releases.

1.22.2 Per-module and global options

Some of the config options may be set either globally (in the [mypy] section) or on a per-module basis (in sections like
[mypy-foo.bar]).

If you set an option both globally and for a specific module, the module configuration options take precedence. This lets
you set global defaults and override them on a module-by-module basis. If multiple pattern sections match a module,
the options from the most specific section are used where they disagree.

Some other options, as specified in their description, may only be set in the global section ([mypy]).

1.22.3 Inverting option values

Options that take a boolean value may be inverted by adding no_ to their name or by (when applicable) swapping their
prefix from disallow to allow (and vice versa).

1.22.4 Example mypy.ini

Here is an example of a mypy.ini file. To use this config file, place it at the root of your repo and run mypy.

# Global options:

[mypy]
warn_return_any = True
warn_unused_configs = True

(continues on next page)
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(continued from previous page)

# Per-module options:

[mypy-mycode.foo.*]
disallow_untyped_defs = True

[mypy-mycode.bar]
warn_return_any = False

[mypy-somelibrary]
ignore_missing_imports = True

This config file specifies two global options in the [mypy] section. These two options will:

1. Report an error whenever a function returns a value that is inferred to have type Any.

2. Report any config options that are unused by mypy. (This will help us catch typos when making changes to our
config file).

Next, this module specifies three per-module options. The first two options change how mypy type checks code in
mycode.foo.* and mycode.bar, which we assume here are two modules that you wrote. The final config option
changes how mypy type checks somelibrary, which we assume here is some 3rd party library you’ve installed and
are importing. These options will:

1. Selectively disallow untyped function definitions only within the mycode.foo package – that is, only for function
definitions defined in the mycode/foo directory.

2. Selectively disable the “function is returning any” warnings within mycode.bar only. This overrides the global
default we set earlier.

3. Suppress any error messages generated when your codebase tries importing the module somelibrary. This is
useful if somelibrary is some 3rd party library missing type hints.

1.22.5 Import discovery

For more information, see the Import discovery section of the command line docs.

mypy_path

Type
string

Specifies the paths to use, after trying the paths from MYPYPATH environment variable. Useful if you’d like to
keep stubs in your repo, along with the config file. Multiple paths are always separated with a : or , regardless
of the platform. User home directory and environment variables will be expanded.

Relative paths are treated relative to the working directory of the mypy command, not the config file. Use the
MYPY_CONFIG_FILE_DIR environment variable to refer to paths relative to the config file (e.g. mypy_path =
$MYPY_CONFIG_FILE_DIR/src).

This option may only be set in the global section ([mypy]).

Note: On Windows, use UNC paths to avoid using : (e.g. \\127.0.0.1\X$\MyDir where X is the drive letter).

files

Type
comma-separated list of strings
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A comma-separated list of paths which should be checked by mypy if none are given on the command line.
Supports recursive file globbing using glob, where * (e.g. *.py) matches files in the current directory and **/
(e.g. **/*.py) matches files in any directories below the current one. User home directory and environment
variables will be expanded.

This option may only be set in the global section ([mypy]).

modules

Type
comma-separated list of strings

A comma-separated list of packages which should be checked by mypy if none are given on the command line.
Mypy will not recursively type check any submodules of the provided module.

This option may only be set in the global section ([mypy]).

packages

Type
comma-separated list of strings

A comma-separated list of packages which should be checked by mypy if none are given on the command line.
Mypy will recursively type check any submodules of the provided package. This flag is identical to modules
apart from this behavior.

This option may only be set in the global section ([mypy]).

exclude

Type
regular expression

A regular expression that matches file names, directory names and paths which mypy should ignore while recur-
sively discovering files to check. Use forward slashes (/) as directory separators on all platforms.

[mypy]
exclude = (?x)(

^one\.py$ # files named "one.py"
| two\.pyi$ # or files ending with "two.pyi"
| ^three\. # or files starting with "three."

)

Crafting a single regular expression that excludes multiple files while remaining human-readable can be a chal-
lenge. The above example demonstrates one approach. (?x) enables the VERBOSE flag for the subsequent reg-
ular expression, which ignores most whitespace and supports comments. The above is equivalent to:
(^one\.py$|two\.pyi$|^three\.).

For more details, see --exclude.

This option may only be set in the global section ([mypy]).

Note: Note that the TOML equivalent differs slightly. It can be either a single string (including a multi-line
string) – which is treated as a single regular expression – or an array of such strings. The following TOML
examples are equivalent to the above INI example.

Array of strings:
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[tool.mypy]
exclude = [

"^one\\.py$", # TOML's double-quoted strings require escaping backslashes
'two\.pyi$', # but TOML's single-quoted strings do not
'^three\.',

]

A single, multi-line string:

[tool.mypy]
exclude = '''(?x)(

^one\.py$ # files named "one.py"
| two\.pyi$ # or files ending with "two.pyi"
| ^three\. # or files starting with "three."

)''' # TOML's single-quoted strings do not require escaping backslashes

See Using a pyproject.toml file.

namespace_packages

Type
boolean

Default
True

Enables PEP 420 style namespace packages. See the corresponding flag --no-namespace-packages for more
information.

This option may only be set in the global section ([mypy]).

explicit_package_bases

Type
boolean

Default
False

This flag tells mypy that top-level packages will be based in either the current directory, or a member of the
MYPYPATH environment variable or mypy_path config option. This option is only useful in the absence of
__init__.py. See Mapping file paths to modules for details.

This option may only be set in the global section ([mypy]).

ignore_missing_imports

Type
boolean

Default
False

Suppresses error messages about imports that cannot be resolved.

If this option is used in a per-module section, the module name should match the name of the imported module,
not the module containing the import statement.
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follow_imports

Type
string

Default
normal

Directs what to do with imports when the imported module is found as a .py file and not part of the files, modules
and packages provided on the command line.

The four possible values are normal, silent, skip and error. For explanations see the discussion for the
--follow-imports command line flag.

Using this option in a per-module section (potentially with a wildcard, as described at the top of this page) is a
good way to prevent mypy from checking portions of your code.

If this option is used in a per-module section, the module name should match the name of the imported module,
not the module containing the import statement.

follow_imports_for_stubs

Type
boolean

Default
False

Determines whether to respect the follow_imports setting even for stub (.pyi) files.

Used in conjunction with follow_imports=skip, this can be used to suppress the import of a module from
typeshed, replacing it with Any.

Used in conjunction with follow_imports=error, this can be used to make any use of a particular typeshed
module an error.

Note: This is not supported by the mypy daemon.

python_executable

Type
string

Specifies the path to the Python executable to inspect to collect a list of available PEP 561 packages. User home
directory and environment variables will be expanded. Defaults to the executable used to run mypy.

This option may only be set in the global section ([mypy]).

no_site_packages

Type
boolean

Default
False

Disables using type information in installed packages (see PEP 561). This will also disable searching for a usable
Python executable. This acts the same as --no-site-packages command line flag.
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no_silence_site_packages

Type
boolean

Default
False

Enables reporting error messages generated within installed packages (see PEP 561 for more details on distribut-
ing type information). Those error messages are suppressed by default, since you are usually not able to control
errors in 3rd party code.

This option may only be set in the global section ([mypy]).

1.22.6 Platform configuration

python_version

Type
string

Specifies the Python version used to parse and check the target program. The string should be in the format
MAJOR.MINOR – for example 2.7. The default is the version of the Python interpreter used to run mypy.

This option may only be set in the global section ([mypy]).

platform

Type
string

Specifies the OS platform for the target program, for example darwin or win32 (meaning OS X or Windows,
respectively). The default is the current platform as revealed by Python’s sys.platform variable.

This option may only be set in the global section ([mypy]).

always_true

Type
comma-separated list of strings

Specifies a list of variables that mypy will treat as compile-time constants that are always true.

always_false

Type
comma-separated list of strings

Specifies a list of variables that mypy will treat as compile-time constants that are always false.
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1.22.7 Disallow dynamic typing

For more information, see the Disallow dynamic typing section of the command line docs.

disallow_any_unimported

Type
boolean

Default
False

Disallows usage of types that come from unfollowed imports (anything imported from an unfollowed import is
automatically given a type of Any).

disallow_any_expr

Type
boolean

Default
False

Disallows all expressions in the module that have type Any.

disallow_any_decorated

Type
boolean

Default
False

Disallows functions that have Any in their signature after decorator transformation.

disallow_any_explicit

Type
boolean

Default
False

Disallows explicit Any in type positions such as type annotations and generic type parameters.

disallow_any_generics

Type
boolean

Default
False

Disallows usage of generic types that do not specify explicit type parameters.

disallow_subclassing_any

Type
boolean

Default
False

Disallows subclassing a value of type Any.
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1.22.8 Untyped definitions and calls

For more information, see the Untyped definitions and calls section of the command line docs.

disallow_untyped_calls

Type
boolean

Default
False

Disallows calling functions without type annotations from functions with type annotations. Note that when used
in per-module options, it enables/disables this check inside the module(s) specified, not for functions that come
from that module(s), for example config like this:

[mypy]
disallow_untyped_calls = True

[mypy-some.library.*]
disallow_untyped_calls = False

will disable this check inside some.library, not for your code that imports some.library. If you
want to selectively disable this check for all your code that imports some.library you should instead use
untyped_calls_exclude, for example:

[mypy]
disallow_untyped_calls = True
untyped_calls_exclude = some.library

untyped_calls_exclude

Type
comma-separated list of strings

Selectively excludes functions and methods defined in specific packages, modules, and classes from action of
disallow_untyped_calls. This also applies to all submodules of packages (i.e. everything inside a given
prefix). Note, this option does not support per-file configuration, the exclusions list is defined globally for all
your code.

disallow_untyped_defs

Type
boolean

Default
False

Disallows defining functions without type annotations or with incomplete type annotations (a superset of
disallow_incomplete_defs).

For example, it would report an error for def f(a, b) and def f(a: int, b).

disallow_incomplete_defs

Type
boolean

Default
False
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Disallows defining functions with incomplete type annotations, while still allowing entirely unannotated defini-
tions.

For example, it would report an error for def f(a: int, b) but not def f(a, b).

check_untyped_defs

Type
boolean

Default
False

Type-checks the interior of functions without type annotations.

disallow_untyped_decorators

Type
boolean

Default
False

Reports an error whenever a function with type annotations is decorated with a decorator without annotations.

1.22.9 None and Optional handling

For more information, see the None and Optional handling section of the command line docs.

implicit_optional

Type
boolean

Default
False

Causes mypy to treat arguments with a None default value as having an implicit Optional type.

Note: This was True by default in mypy versions 0.980 and earlier.

strict_optional

Type
boolean

Default
True

Effectively disables checking of Optional types and None values. With this option, mypy doesn’t generally
check the use of None values – it is treated as compatible with every type.

Warning: strict_optional = false is evil. Avoid using it and definitely do not use it without under-
standing what it does.
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1.22.10 Configuring warnings

For more information, see the Configuring warnings section of the command line docs.

warn_redundant_casts

Type
boolean

Default
False

Warns about casting an expression to its inferred type.

This option may only be set in the global section ([mypy]).

warn_unused_ignores

Type
boolean

Default
False

Warns about unneeded # type: ignore comments.

warn_no_return

Type
boolean

Default
True

Shows errors for missing return statements on some execution paths.

warn_return_any

Type
boolean

Default
False

Shows a warning when returning a value with type Any from a function declared with a non- Any return type.

warn_unreachable

Type
boolean

Default
False

Shows a warning when encountering any code inferred to be unreachable or redundant after performing type
analysis.
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1.22.11 Suppressing errors

Note: these configuration options are available in the config file only. There is no analog available via the command
line options.

ignore_errors

Type
boolean

Default
False

Ignores all non-fatal errors.

1.22.12 Miscellaneous strictness flags

For more information, see the Miscellaneous strictness flags section of the command line docs.

allow_untyped_globals

Type
boolean

Default
False

Causes mypy to suppress errors caused by not being able to fully infer the types of global and class variables.

allow_redefinition

Type
boolean

Default
False

Allows variables to be redefined with an arbitrary type, as long as the redefinition is in the same block and nesting
level as the original definition. Example where this can be useful:

def process(items: list[str]) -> None:
# 'items' has type list[str]
items = [item.split() for item in items]
# 'items' now has type list[list[str]]

The variable must be used before it can be redefined:

def process(items: list[str]) -> None:
items = "mypy" # invalid redefinition to str because the variable hasn't been␣

→˓used yet
print(items)
items = "100" # valid, items now has type str
items = int(items) # valid, items now has type int

local_partial_types

Type
boolean
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Default
False

Disallows inferring variable type for None from two assignments in different scopes. This is always implicitly
enabled when using the mypy daemon.

disable_error_code

Type
comma-separated list of strings

Allows disabling one or multiple error codes globally.

enable_error_code

Type
comma-separated list of strings

Allows enabling one or multiple error codes globally.

Note: This option will override disabled error codes from the disable_error_code option.

implicit_reexport

Type
boolean

Default
True

By default, imported values to a module are treated as exported and mypy allows other modules to import them.
When false, mypy will not re-export unless the item is imported using from-as or is included in __all__. Note
that mypy treats stub files as if this is always disabled. For example:

# This won't re-export the value
from foo import bar
# This will re-export it as bar and allow other modules to import it
from foo import bar as bar
# This will also re-export bar
from foo import bar
__all__ = ['bar']

strict_concatenate

Type
boolean

Default
False

Make arguments prepended via Concatenate be truly positional-only.

strict_equality

type
boolean

default
False

Prohibit equality checks, identity checks, and container checks between non-overlapping types.
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strict

type
boolean

default
False

Enable all optional error checking flags. You can see the list of flags enabled by strict mode in the full mypy
--help output.

Note: the exact list of flags enabled by strict may change over time.

1.22.13 Configuring error messages

For more information, see the Configuring error messages section of the command line docs.

These options may only be set in the global section ([mypy]).

show_error_context

Type
boolean

Default
False

Prefixes each error with the relevant context.

show_column_numbers

Type
boolean

Default
False

Shows column numbers in error messages.

hide_error_codes

Type
boolean

Default
False

Hides error codes in error messages. See Error codes for more information.

pretty

Type
boolean

Default
False

Use visually nicer output in error messages: use soft word wrap, show source code snippets, and show error
location markers.
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color_output

Type
boolean

Default
True

Shows error messages with color enabled.

error_summary

Type
boolean

Default
True

Shows a short summary line after error messages.

show_absolute_path

Type
boolean

Default
False

Show absolute paths to files.

force_uppercase_builtins

Type
boolean

Default
False

Always use List instead of list in error messages, even on Python 3.9+.

force_union_syntax

Type
boolean

Default
False

Always use Union[] and Optional[] for union types in error messages (instead of the | operator), even on
Python 3.10+.

1.22.14 Incremental mode

These options may only be set in the global section ([mypy]).

incremental

Type
boolean

Default
True
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Enables incremental mode.

cache_dir

Type
string

Default
.mypy_cache

Specifies the location where mypy stores incremental cache info. User home directory and environment variables
will be expanded. This setting will be overridden by the MYPY_CACHE_DIR environment variable.

Note that the cache is only read when incremental mode is enabled but is always written to, unless the value is
set to /dev/null (UNIX) or nul (Windows).

sqlite_cache

Type
boolean

Default
False

Use an SQLite database to store the cache.

cache_fine_grained

Type
boolean

Default
False

Include fine-grained dependency information in the cache for the mypy daemon.

skip_version_check

Type
boolean

Default
False

Makes mypy use incremental cache data even if it was generated by a different version of mypy. (By default,
mypy will perform a version check and regenerate the cache if it was written by older versions of mypy.)

skip_cache_mtime_checks

Type
boolean

Default
False

Skip cache internal consistency checks based on mtime.
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1.22.15 Advanced options

These options may only be set in the global section ([mypy]).

plugins

Type
comma-separated list of strings

A comma-separated list of mypy plugins. See Extending mypy using plugins.

pdb

Type
boolean

Default
False

Invokes pdb on fatal error.

show_traceback

Type
boolean

Default
False

Shows traceback on fatal error.

raise_exceptions

Type
boolean

Default
False

Raise exception on fatal error.

custom_typing_module

Type
string

Specifies a custom module to use as a substitute for the typing module.

custom_typeshed_dir

Type
string

This specifies the directory where mypy looks for standard library typeshed stubs, instead of the typeshed that
ships with mypy. This is primarily intended to make it easier to test typeshed changes before submitting them
upstream, but also allows you to use a forked version of typeshed.

User home directory and environment variables will be expanded.

Note that this doesn’t affect third-party library stubs. To test third-party stubs, for example try MYPYPATH=stubs/
six mypy ....
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warn_incomplete_stub

Type
boolean

Default
False

Warns about missing type annotations in typeshed. This is only relevant in combination with
disallow_untyped_defs or disallow_incomplete_defs.

1.22.16 Report generation

If these options are set, mypy will generate a report in the specified format into the specified directory.

Warning: Generating reports disables incremental mode and can significantly slow down your workflow. It is
recommended to enable reporting only for specific runs (e.g. in CI).

any_exprs_report

Type
string

Causes mypy to generate a text file report documenting how many expressions of type Any are present within
your codebase.

cobertura_xml_report

Type
string

Causes mypy to generate a Cobertura XML type checking coverage report.

To generate this report, you must either manually install the lxml library or specify mypy installation with the
setuptools extra mypy[reports].

html_report / xslt_html_report

Type
string

Causes mypy to generate an HTML type checking coverage report.

To generate this report, you must either manually install the lxml library or specify mypy installation with the
setuptools extra mypy[reports].

linecount_report

Type
string

Causes mypy to generate a text file report documenting the functions and lines that are typed and untyped within
your codebase.

linecoverage_report

Type
string
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Causes mypy to generate a JSON file that maps each source file’s absolute filename to a list of line numbers that
belong to typed functions in that file.

lineprecision_report

Type
string

Causes mypy to generate a flat text file report with per-module statistics of how many lines are typechecked etc.

txt_report / xslt_txt_report

Type
string

Causes mypy to generate a text file type checking coverage report.

To generate this report, you must either manually install the lxml library or specify mypy installation with the
setuptools extra mypy[reports].

xml_report

Type
string

Causes mypy to generate an XML type checking coverage report.

To generate this report, you must either manually install the lxml library or specify mypy installation with the
setuptools extra mypy[reports].

1.22.17 Miscellaneous

These options may only be set in the global section ([mypy]).

junit_xml

Type
string

Causes mypy to generate a JUnit XML test result document with type checking results. This can make it easier
to integrate mypy with continuous integration (CI) tools.

scripts_are_modules

Type
boolean

Default
False

Makes script x become module x instead of __main__. This is useful when checking multiple scripts in a single
run.

warn_unused_configs

Type
boolean

Default
False

Warns about per-module sections in the config file that do not match any files processed when invoking mypy.
(This requires turning off incremental mode using incremental = False.)
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verbosity

Type
integer

Default
0

Controls how much debug output will be generated. Higher numbers are more verbose.

1.22.18 Using a pyproject.toml file

Instead of using a mypy.ini file, a pyproject.toml file (as specified by PEP 518) may be used instead. A few notes
on doing so:

• The [mypy] section should have tool. prepended to its name:

– I.e., [mypy] would become [tool.mypy]

• The module specific sections should be moved into [[tool.mypy.overrides]] sections:

– For example, [mypy-packagename] would become:

[[tool.mypy.overrides]]
module = 'packagename'
...

• Multi-module specific sections can be moved into a single [[tool.mypy.overrides]] section with a module
property set to an array of modules:

– For example, [mypy-packagename,packagename2] would become:

[[tool.mypy.overrides]]
module = [

'packagename',
'packagename2'

]
...

• The following care should be given to values in the pyproject.toml files as compared to ini files:

– Strings must be wrapped in double quotes, or single quotes if the string contains special characters

– Boolean values should be all lower case

Please see the TOML Documentation for more details and information on what is allowed in a toml file. See PEP 518
for more information on the layout and structure of the pyproject.toml file.

1.22.19 Example pyproject.toml

Here is an example of a pyproject.toml file. To use this config file, place it at the root of your repo (or append it to
the end of an existing pyproject.toml file) and run mypy.

# mypy global options:

[tool.mypy]
python_version = "2.7"

(continues on next page)
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(continued from previous page)

warn_return_any = true
warn_unused_configs = true
exclude = [

'^file1\.py$', # TOML literal string (single-quotes, no escaping necessary)
"^file2\\.py$", # TOML basic string (double-quotes, backslash and other characters␣

→˓need escaping)
]

# mypy per-module options:

[[tool.mypy.overrides]]
module = "mycode.foo.*"
disallow_untyped_defs = true

[[tool.mypy.overrides]]
module = "mycode.bar"
warn_return_any = false

[[tool.mypy.overrides]]
module = [

"somelibrary",
"some_other_library"

]
ignore_missing_imports = true

1.23 Inline configuration

Mypy supports setting per-file configuration options inside files themselves using # mypy: comments. For example:

# mypy: disallow-any-generics

Inline configuration comments take precedence over all other configuration mechanisms.

1.23.1 Configuration comment format

Flags correspond to config file flags but allow hyphens to be substituted for underscores.

Values are specified using =, but = True may be omitted:

# mypy: disallow-any-generics
# mypy: always-true=FOO

Multiple flags can be separated by commas or placed on separate lines. To include a comma as part of an option’s
value, place the value inside quotes:

# mypy: disallow-untyped-defs, always-false="FOO,BAR"

Like in the configuration file, options that take a boolean value may be inverted by adding no- to their name or by
(when applicable) swapping their prefix from disallow to allow (and vice versa):
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# mypy: allow-untyped-defs, no-strict-optional

1.24 Mypy daemon (mypy server)

Instead of running mypy as a command-line tool, you can also run it as a long-running daemon (server) process and
use a command-line client to send type-checking requests to the server. This way mypy can perform type checking
much faster, since program state cached from previous runs is kept in memory and doesn’t have to be read from the file
system on each run. The server also uses finer-grained dependency tracking to reduce the amount of work that needs
to be done.

If you have a large codebase to check, running mypy using the mypy daemon can be 10 or more times faster than
the regular command-line mypy tool, especially if your workflow involves running mypy repeatedly after small edits –
which is often a good idea, as this way you’ll find errors sooner.

Note: The command-line interface of mypy daemon may change in future mypy releases.

Note: Each mypy daemon process supports one user and one set of source files, and it can only process one type
checking request at a time. You can run multiple mypy daemon processes to type check multiple repositories.

1.24.1 Basic usage

The client utility dmypy is used to control the mypy daemon. Use dmypy run -- <flags> <files> to type check
a set of files (or directories). This will launch the daemon if it is not running. You can use almost arbitrary mypy flags
after --. The daemon will always run on the current host. Example:

dmypy run -- prog.py pkg/*.py

dmypy run will automatically restart the daemon if the configuration or mypy version changes.

The initial run will process all the code and may take a while to finish, but subsequent runs will be quick, especially if
you’ve only changed a few files. (You can use remote caching to speed up the initial run. The speedup can be significant
if you have a large codebase.)

Note: Mypy 0.780 added support for following imports in dmypy (enabled by default). This functionality is still
experimental. You can use --follow-imports=skip or --follow-imports=error to fall back to the stable func-
tionality. See Following imports for details on how these work.

Note: The mypy daemon requires --local-partial-types and automatically enables it.
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1.24.2 Daemon client commands

While dmypy run is sufficient for most uses, some workflows (ones using remote caching, perhaps), require more
precise control over the lifetime of the daemon process:

• dmypy stop stops the daemon.

• dmypy start -- <flags> starts the daemon but does not check any files. You can use almost arbitrary mypy
flags after --.

• dmypy restart -- <flags> restarts the daemon. The flags are the same as with dmypy start. This is
equivalent to a stop command followed by a start.

• Use dmypy run --timeout SECONDS -- <flags> (or start or restart) to automatically shut down the
daemon after inactivity. By default, the daemon runs until it’s explicitly stopped.

• dmypy check <files> checks a set of files using an already running daemon.

• dmypy recheck checks the same set of files as the most recent check or recheck command. (You can also use
the --update and --remove options to alter the set of files, and to define which files should be processed.)

• dmypy status checks whether a daemon is running. It prints a diagnostic and exits with 0 if there is a running
daemon.

Use dmypy --help for help on additional commands and command-line options not discussed here, and dmypy
<command> --help for help on command-specific options.

1.24.3 Additional daemon flags

--status-file FILE

Use FILE as the status file for storing daemon runtime state. This is normally a JSON file that contains informa-
tion about daemon process and connection. The default path is .dmypy.json in the current working directory.

--log-file FILE

Direct daemon stdout/stderr to FILE. This is useful for debugging daemon crashes, since the server traceback is
not always printed by the client. This is available for the start, restart, and run commands.

--timeout TIMEOUT

Automatically shut down server after TIMEOUT seconds of inactivity. This is available for the start, restart,
and run commands.

--update FILE

Re-check FILE, or add it to the set of files being checked (and check it). This option may be repeated, and it’s
only available for the recheck command. By default, mypy finds and checks all files changed since the previous
run and files that depend on them. However, if you use this option (and/or --remove), mypy assumes that only
the explicitly specified files have changed. This is only useful to speed up mypy if you type check a very large
number of files, and use an external, fast file system watcher, such as watchman or watchdog, to determine which
files got edited or deleted. Note: This option is never required and is only available for performance tuning.

--remove FILE

Remove FILE from the set of files being checked. This option may be repeated. This is only available for the
recheck command. See --update above for when this may be useful. Note: This option is never required and
is only available for performance tuning.

--fswatcher-dump-file FILE

Collect information about the current internal file state. This is only available for the status command. This
will dump JSON to FILE in the format {path: [modification_time, size, content_hash]}. This is
useful for debugging the built-in file system watcher. Note: This is an internal flag and the format may change.
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--perf-stats-file FILE

Write performance profiling information to FILE. This is only available for the check, recheck, and run com-
mands.

--export-types

Store all expression types in memory for future use. This is useful to speed up future calls to dmypy inspect
(but uses more memory). Only valid for check, recheck, and run command.

1.24.4 Static inference of annotations

The mypy daemon supports (as an experimental feature) statically inferring draft function and method type annotations.
Use dmypy suggest FUNCTION to generate a draft signature in the format (param_type_1, param_type_2, ..
.) -> ret_type (types are included for all arguments, including keyword-only arguments, *args and **kwargs).

This is a low-level feature intended to be used by editor integrations, IDEs, and other tools (for example, the mypy
plugin for PyCharm), to automatically add annotations to source files, or to propose function signatures.

In this example, the function format_id() has no annotation:

def format_id(user):
return f"User: {user}"

root = format_id(0)

dmypy suggest uses call sites, return statements, and other heuristics (such as looking for signatures in base classes)
to infer that format_id() accepts an int argument and returns a str. Use dmypy suggest module.format_id
to print the suggested signature for the function.

More generally, the target function may be specified in two ways:

• By its fully qualified name, i.e. [package.]module.[class.]function.

• By its location in a source file, i.e. /path/to/file.py:line. The path can be absolute or relative, and line
can refer to any line number within the function body.

This command can also be used to find a more precise alternative for an existing, imprecise annotation with some Any
types.

The following flags customize various aspects of the dmypy suggest command.

--json

Output the signature as JSON, so that PyAnnotate can read it and add the signature to the source file. Here is
what the JSON looks like:

[{"func_name": "example.format_id",
"line": 1,
"path": "/absolute/path/to/example.py",
"samples": 0,
"signature": {"arg_types": ["int"], "return_type": "str"}}]

--no-errors

Only produce suggestions that cause no errors in the checked code. By default, mypy will try to find the most
precise type, even if it causes some type errors.

--no-any

Only produce suggestions that don’t contain Any types. By default mypy proposes the most precise signature
found, even if it contains Any types.
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--flex-any FRACTION

Only allow some fraction of types in the suggested signature to be Any types. The fraction ranges from 0 (same
as --no-any) to 1.

--callsites

Only find call sites for a given function instead of suggesting a type. This will produce a list with line numbers and
types of actual arguments for each call: /path/to/file.py:line: (arg_type_1, arg_type_2, ...).

--use-fixme NAME

Use a dummy name instead of plain Any for types that cannot be inferred. This may be useful to emphasize to a
user that a given type couldn’t be inferred and needs to be entered manually.

--max-guesses NUMBER

Set the maximum number of types to try for a function (default: 64).

1.24.5 Statically inspect expressions

The daemon allows to get declared or inferred type of an expression (or other information about an expression, such as
known attributes or definition location) using dmypy inspect LOCATION command. The location of the expression
should be specified in the format path/to/file.py:line:column[:end_line:end_column]. Both line and col-
umn are 1-based. Both start and end position are inclusive. These rules match how mypy prints the error location in
error messages.

If a span is given (i.e. all 4 numbers), then only an exactly matching expression is inspected. If only a position is
given (i.e. 2 numbers, line and column), mypy will inspect all expressions, that include this position, starting from the
innermost one.

Consider this Python code snippet:

def foo(x: int, longer_name: str) -> None:
x
longer_name

Here to find the type of x one needs to call dmypy inspect src.py:2:5:2:5 or dmypy inspect src.py:2:5.
While for longer_name one needs to call dmypy inspect src.py:3:5:3:15 or, for example, dmypy inspect
src.py:3:10. Please note that this command is only valid after daemon had a successful type check (without parse
errors), so that types are populated, e.g. using dmypy check. In case where multiple expressions match the provided
location, their types are returned separated by a newline.

Important note: it is recommended to check files with --export-types since otherwise most inspections will not
work without --force-reload .

--show INSPECTION

What kind of inspection to run for expression(s) found. Currently the supported inspections are:

• type (default): Show the best known type of a given expression.

• attrs: Show which attributes are valid for an expression (e.g. for auto-completion). Format is {"Base1":
["name_1", "name_2", ...]; "Base2": ...}. Names are sorted by method resolution order. If
expression refers to a module, then module attributes will be under key like "<full.module.name>".

• definition (experimental): Show the definition location for a name expression or member expression.
Format is path/to/file.py:line:column:Symbol. If multiple definitions are found (e.g. for a Union
attribute), they are separated by comma.

--verbose

Increase verbosity of types string representation (can be repeated). For example, this will print fully qualified
names of instance types (like "builtins.str"), instead of just a short name (like "str").
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--limit NUM

If the location is given as line:column, this will cause daemon to return only at most NUM inspections of
innermost expressions. Value of 0 means no limit (this is the default). For example, if one calls dmypy inspect
src.py:4:10 --limit=1 with this code

def foo(x: int) -> str: ..
def bar(x: str) -> None: ...
baz: int
bar(foo(baz))

This will output just one type "int" (for baz name expression). While without the limit option, it would output
all three types: "int", "str", and "None".

--include-span

With this option on, the daemon will prepend each inspection result with the full span of corresponding expres-
sion, formatted as 1:2:1:4 -> "int". This may be useful in case multiple expressions match a location.

--include-kind

With this option on, the daemon will prepend each inspection result with the kind of corresponding expression,
formatted as NameExpr -> "int". If both this option and --include-span are on, the kind will appear first,
for example NameExpr:1:2:1:4 -> "int".

--include-object-attrs

This will make the daemon include attributes of object (excluded by default) in case of an atts inspection.

--union-attrs

Include attributes valid for some of possible expression types (by default an intersection is returned). This is
useful for union types of type variables with values. For example, with this code:

from typing import Union

class A:
x: int
z: int

class B:
y: int
z: int

var: Union[A, B]
var

The command dmypy inspect --show attrs src.py:10:1 will return {"A": ["z"], "B": ["z"]},
while with --union-attrs it will return {"A": ["x", "z"], "B": ["y", "z"]}.

--force-reload

Force re-parsing and re-type-checking file before inspection. By default this is done only when needed (for
example file was not loaded from cache or daemon was initially run without --export-types mypy option),
since reloading may be slow (up to few seconds for very large files).
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1.25 Using installed packages

Packages installed with pip can declare that they support type checking. For example, the aiohttp package has built-in
support for type checking.

Packages can also provide stubs for a library. For example, types-requests is a stub-only package that provides stubs
for the requests package. Stub packages are usually published from typeshed, a shared repository for Python library
stubs, and have a name of form types-<library>. Note that many stub packages are not maintained by the original
maintainers of the package.

The sections below explain how mypy can use these packages, and how you can create such packages.

Note: PEP 561 specifies how a package can declare that it supports type checking.

Note: New versions of stub packages often use type system features not supported by older, and even fairly recent
mypy versions. If you pin to an older version of mypy (using requirements.txt, for example), it is recommended
that you also pin the versions of all your stub package dependencies.

Note: Starting in mypy 0.900, most third-party package stubs must be installed explicitly. This decouples mypy and
stub versioning, allowing stubs to updated without updating mypy. This also allows stubs not originally included with
mypy to be installed. Earlier mypy versions included a fixed set of stubs for third-party packages.

1.25.1 Using installed packages with mypy (PEP 561)

Typically mypy will automatically find and use installed packages that support type checking or provide stubs. This
requires that you install the packages in the Python environment that you use to run mypy. As many packages don’t
support type checking yet, you may also have to install a separate stub package, usually named types-<library>.
(See Missing imports for how to deal with libraries that don’t support type checking and are also missing stubs.)

If you have installed typed packages in another Python installation or environment, mypy won’t automatically find them.
One option is to install another copy of those packages in the environment in which you installed mypy. Alternatively,
you can use the --python-executable flag to point to the Python executable for another environment, and mypy will
find packages installed for that Python executable.

Note that mypy does not support some more advanced import features, such as zip imports and custom import hooks.

If you don’t want to use installed packages that provide type information at all, use the --no-site-packages flag to
disable searching for installed packages.

Note that stub-only packages cannot be used with MYPYPATH. If you want mypy to find the package, it must be installed.
For a package foo, the name of the stub-only package (foo-stubs) is not a legal package name, so mypy will not find
it, unless it is installed (see PEP 561: Stub-only Packages for more information).
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1.25.2 Creating PEP 561 compatible packages

Note: You can generally ignore this section unless you maintain a package on PyPI, or want to publish type information
for an existing PyPI package.

PEP 561 describes three main ways to distribute type information:

1. A package has inline type annotations in the Python implementation.

2. A package ships stub files with type information alongside the Python implementation.

3. A package ships type information for another package separately as stub files (also known as a “stub-only pack-
age”).

If you want to create a stub-only package for an existing library, the simplest way is to contribute stubs to the typeshed
repository, and a stub package will automatically be uploaded to PyPI.

If you would like to publish a library package to a package repository yourself (e.g. on PyPI) for either internal or
external use in type checking, packages that supply type information via type comments or annotations in the code
should put a py.typed file in their package directory. For example, here is a typical directory structure:

setup.py
package_a/

__init__.py
lib.py
py.typed

The setup.py file could look like this:

from setuptools import setup

setup(
name="SuperPackageA",
author="Me",
version="0.1",
package_data={"package_a": ["py.typed"]},
packages=["package_a"]

)

Some packages have a mix of stub files and runtime files. These packages also require a py.typed file. An example
can be seen below:

setup.py
package_b/

__init__.py
lib.py
lib.pyi
py.typed

The setup.py file might look like this:

from setuptools import setup

setup(
name="SuperPackageB",

(continues on next page)
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(continued from previous page)

author="Me",
version="0.1",
package_data={"package_b": ["py.typed", "lib.pyi"]},
packages=["package_b"]

)

In this example, both lib.py and the lib.pyi stub file exist. At runtime, the Python interpreter will use lib.py, but
mypy will use lib.pyi instead.

If the package is stub-only (not imported at runtime), the package should have a prefix of the runtime package name
and a suffix of -stubs. A py.typed file is not needed for stub-only packages. For example, if we had stubs for
package_c, we might do the following:

setup.py
package_c-stubs/

__init__.pyi
lib.pyi

The setup.py might look like this:

from setuptools import setup

setup(
name="SuperPackageC",
author="Me",
version="0.1",
package_data={"package_c-stubs": ["__init__.pyi", "lib.pyi"]},
packages=["package_c-stubs"]

)

The instructions above are enough to ensure that the built wheels contain the appropriate files. However, to ensure
inclusion inside the sdist (.tar.gz archive), you may also need to modify the inclusion rules in your MANIFEST.in:

global-include *.pyi
global-include *.typed

1.26 Extending and integrating mypy

1.26.1 Integrating mypy into another Python application

It is possible to integrate mypy into another Python 3 application by importing mypy.api and calling the run function
with a parameter of type list[str], containing what normally would have been the command line arguments to mypy.

Function run returns a tuple[str, str, int], namely (<normal_report>, <error_report>,
<exit_status>), in which <normal_report> is what mypy normally writes to sys.stdout, <error_report>
is what mypy normally writes to sys.stderr and exit_status is the exit status mypy normally returns to the
operating system.

A trivial example of using the api is the following

import sys
from mypy import api

(continues on next page)
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result = api.run(sys.argv[1:])

if result[0]:
print('\nType checking report:\n')
print(result[0]) # stdout

if result[1]:
print('\nError report:\n')
print(result[1]) # stderr

print('\nExit status:', result[2])

1.26.2 Extending mypy using plugins

Python is a highly dynamic language and has extensive metaprogramming capabilities. Many popular libraries use these
to create APIs that may be more flexible and/or natural for humans, but are hard to express using static types. Extending
the PEP 484 type system to accommodate all existing dynamic patterns is impractical and often just impossible.

Mypy supports a plugin system that lets you customize the way mypy type checks code. This can be useful if you want
to extend mypy so it can type check code that uses a library that is difficult to express using just PEP 484 types.

The plugin system is focused on improving mypy’s understanding of semantics of third party frameworks. There is
currently no way to define new first class kinds of types.

Note: The plugin system is experimental and prone to change. If you want to write a mypy plugin, we recommend
you start by contacting the mypy core developers on gitter. In particular, there are no guarantees about backwards
compatibility.

Backwards incompatible changes may be made without a deprecation period, but we will announce them in the plugin
API changes announcement issue.

1.26.3 Configuring mypy to use plugins

Plugins are Python files that can be specified in a mypy config file using the plugins option and one of the two formats:
relative or absolute path to the plugin file, or a module name (if the plugin is installed using pip install in the same
virtual environment where mypy is running). The two formats can be mixed, for example:

[mypy]
plugins = /one/plugin.py, other.plugin

Mypy will try to import the plugins and will look for an entry point function named plugin. If the plugin entry point
function has a different name, it can be specified after colon:

[mypy]
plugins = custom_plugin:custom_entry_point

In the following sections we describe the basics of the plugin system with some examples. For more technical details,
please read the docstrings in mypy/plugin.py in mypy source code. Also you can find good examples in the bundled
plugins located in mypy/plugins.
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1.26.4 High-level overview

Every entry point function should accept a single string argument that is a full mypy version and return a subclass of
mypy.plugin.Plugin:

from mypy.plugin import Plugin

class CustomPlugin(Plugin):
def get_type_analyze_hook(self, fullname: str):

# see explanation below
...

def plugin(version: str):
# ignore version argument if the plugin works with all mypy versions.
return CustomPlugin

During different phases of analyzing the code (first in semantic analysis, and then in type checking) mypy calls plugin
methods such as get_type_analyze_hook() on user plugins. This particular method, for example, can return a
callback that mypy will use to analyze unbound types with the given full name. See the full plugin hook method list
below.

Mypy maintains a list of plugins it gets from the config file plus the default (built-in) plugin that is always enabled.
Mypy calls a method once for each plugin in the list until one of the methods returns a non-None value. This callback
will be then used to customize the corresponding aspect of analyzing/checking the current abstract syntax tree node.

The callback returned by the get_xxx method will be given a detailed current context and an API to create new nodes,
new types, emit error messages, etc., and the result will be used for further processing.

Plugin developers should ensure that their plugins work well in incremental and daemon modes. In particular, plugins
should not hold global state due to caching of plugin hook results.

1.26.5 Current list of plugin hooks

get_type_analyze_hook() customizes behaviour of the type analyzer. For example, PEP 484 doesn’t support defining
variadic generic types:

from lib import Vector

a: Vector[int, int]
b: Vector[int, int, int]

When analyzing this code, mypy will call get_type_analyze_hook("lib.Vector"), so the plugin can return some
valid type for each variable.

get_function_hook() is used to adjust the return type of a function call. This hook will be also called for instantiation
of classes. This is a good choice if the return type is too complex to be expressed by regular python typing.

get_function_signature_hook() is used to adjust the signature of a function.

get_method_hook() is the same as get_function_hook() but for methods instead of module level functions.

get_method_signature_hook() is used to adjust the signature of a method. This includes special Python methods
except __init__() and __new__(). For example in this code:

from ctypes import Array, c_int

(continues on next page)
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(continued from previous page)

x: Array[c_int]
x[0] = 42

mypy will call get_method_signature_hook("ctypes.Array.__setitem__") so that the plugin can mimic the
ctypes auto-convert behavior.

get_attribute_hook() overrides instance member field lookups and property access (not assignments, and not method
calls). This hook is only called for fields which already exist on the class. Exception: if __getattr__ or
__getattribute__ is a method on the class, the hook is called for all fields which do not refer to methods.

get_class_attribute_hook() is similar to above, but for attributes on classes rather than instances. Unlike above, this
does not have special casing for __getattr__ or __getattribute__.

get_class_decorator_hook() can be used to update class definition for given class decorators. For example, you can
add some attributes to the class to match runtime behaviour:

from dataclasses import dataclass

@dataclass # built-in plugin adds `__init__` method here
class User:

name: str

user = User(name='example') # mypy can understand this using a plugin

get_metaclass_hook() is similar to above, but for metaclasses.

get_base_class_hook() is similar to above, but for base classes.

get_dynamic_class_hook() can be used to allow dynamic class definitions in mypy. This plugin hook is called for
every assignment to a simple name where right hand side is a function call:

from lib import dynamic_class

X = dynamic_class('X', [])

For such definition, mypy will call get_dynamic_class_hook("lib.dynamic_class"). The plugin should create
the corresponding mypy.nodes.TypeInfo object, and place it into a relevant symbol table. (Instances of this class
represent classes in mypy and hold essential information such as qualified name, method resolution order, etc.)

get_customize_class_mro_hook() can be used to modify class MRO (for example insert some entries there) before
the class body is analyzed.

get_additional_deps() can be used to add new dependencies for a module. It is called before semantic analysis. For
example, this can be used if a library has dependencies that are dynamically loaded based on configuration information.

report_config_data() can be used if the plugin has some sort of per-module configuration that can affect typechecking.
In that case, when the configuration for a module changes, we want to invalidate mypy’s cache for that module so that
it can be rechecked. This hook should be used to report to mypy any relevant configuration data, so that mypy knows
to recheck the module if the configuration changes. The hooks should return data encodable as JSON.

164 Chapter 1. Contents

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/reference/datamodel.html#object.__getattr__
https://docs.python.org/3/reference/datamodel.html#object.__getattribute__
https://docs.python.org/3/reference/datamodel.html#object.__getattr__
https://docs.python.org/3/reference/datamodel.html#object.__getattribute__


Mypy Documentation, Release 1.10.0

1.26.6 Useful tools

Mypy ships mypy.plugins.proper_plugin plugin which can be useful for plugin authors, since it finds missing
get_proper_type() calls, which is a pretty common mistake.

It is recommended to enable it is a part of your plugin’s CI.

1.27 Automatic stub generation (stubgen)

A stub file (see PEP 484) contains only type hints for the public interface of a module, with empty function bodies.
Mypy can use a stub file instead of the real implementation to provide type information for the module. They are useful
for third-party modules whose authors have not yet added type hints (and when no stubs are available in typeshed) and
C extension modules (which mypy can’t directly process).

Mypy includes the stubgen tool that can automatically generate stub files (.pyi files) for Python modules and C
extension modules. For example, consider this source file:

from other_module import dynamic

BORDER_WIDTH = 15

class Window:
parent = dynamic()
def __init__(self, width, height):

self.width = width
self.height = height

def create_empty() -> Window:
return Window(0, 0)

Stubgen can generate this stub file based on the above file:

from typing import Any

BORDER_WIDTH: int = ...

class Window:
parent: Any = ...
width: Any = ...
height: Any = ...
def __init__(self, width, height) -> None: ...

def create_empty() -> Window: ...

Stubgen generates draft stubs. The auto-generated stub files often require some manual updates, and most types will
default to Any. The stubs will be much more useful if you add more precise type annotations, at least for the most
commonly used functionality.

The rest of this section documents the command line interface of stubgen. Run stubgen --help for a quick summary
of options.

Note: The command-line flags may change between releases.
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1.27.1 Specifying what to stub

You can give stubgen paths of the source files for which you want to generate stubs:

$ stubgen foo.py bar.py

This generates stubs out/foo.pyi and out/bar.pyi. The default output directory out can be overridden with -o
DIR .

You can also pass directories, and stubgen will recursively search them for any .py files and generate stubs for all of
them:

$ stubgen my_pkg_dir

Alternatively, you can give module or package names using the -m or -p options:

$ stubgen -m foo -m bar -p my_pkg_dir

Details of the options:

-m MODULE, --module MODULE

Generate a stub file for the given module. This flag may be repeated multiple times.

Stubgen will not recursively generate stubs for any submodules of the provided module.

-p PACKAGE, --package PACKAGE

Generate stubs for the given package. This flag maybe repeated multiple times.

Stubgen will recursively generate stubs for all submodules of the provided package. This flag is identical to
--module apart from this behavior.

Note: You can’t mix paths and -m /-p options in the same stubgen invocation.

Stubgen applies heuristics to avoid generating stubs for submodules that include tests or vendored third-party packages.

1.27.2 Specifying how to generate stubs

By default stubgen will try to import the target modules and packages. This allows stubgen to use runtime introspection
to generate stubs for C extension modules and to improve the quality of the generated stubs. By default, stubgen will
also use mypy to perform light-weight semantic analysis of any Python modules. Use the following flags to alter the
default behavior:

--no-import

Don’t try to import modules. Instead only use mypy’s normal search mechanism to find sources. This does not
support C extension modules. This flag also disables runtime introspection functionality, which mypy uses to
find the value of __all__. As result the set of exported imported names in stubs may be incomplete. This flag
is generally only useful when importing a module causes unwanted side effects, such as the running of tests.
Stubgen tries to skip test modules even without this option, but this does not always work.

--no-analysis

Don’t perform semantic analysis of source files. This may generate worse stubs – in particular, some module,
class, and function aliases may be represented as variables with the Any type. This is generally only useful
if semantic analysis causes a critical mypy error. Does not apply to C extension modules. Incompatible with
--inspect-mode.
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--inspect-mode

Import and inspect modules instead of parsing source code. This is the default behavior for C modules and
pyc-only packages. The flag is useful to force inspection for pure Python modules that make use of dynamically
generated members that would otherwise be omitted when using the default behavior of code parsing. Implies
--no-analysis as analysis requires source code.

--doc-dir PATH

Try to infer better signatures by parsing .rst documentation in PATH. This may result in better stubs, but currently
it only works for C extension modules.

1.27.3 Additional flags

-h, --help

Show help message and exit.

--ignore-errors

If an exception was raised during stub generation, continue to process any remaining modules instead of imme-
diately failing with an error.

--include-private

Include definitions that are considered private in stubs (with names such as _foo with single leading underscore
and no trailing underscores).

--export-less

Don’t export all names imported from other modules within the same package. Instead, only export imported
names that are not referenced in the module that contains the import.

--include-docstrings

Include docstrings in stubs. This will add docstrings to Python function and classes stubs and to C extension
function stubs.

--search-path PATH

Specify module search directories, separated by colons (only used if --no-import is given).

-o PATH, --output PATH

Change the output directory. By default the stubs are written in the ./out directory. The output directory will
be created if it doesn’t exist. Existing stubs in the output directory will be overwritten without warning.

-v, --verbose

Produce more verbose output.

-q, --quiet

Produce less verbose output.

1.28 Automatic stub testing (stubtest)

Stub files are files containing type annotations. See PEP 484 for more motivation and details.

A common problem with stub files is that they tend to diverge from the actual implementation. Mypy includes the
stubtest tool that can automatically check for discrepancies between the stubs and the implementation at runtime.
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1.28.1 What stubtest does and does not do

Stubtest will import your code and introspect your code objects at runtime, for example, by using the capabilities of the
inspect module. Stubtest will then analyse the stub files, and compare the two, pointing out things that differ between
stubs and the implementation at runtime.

It’s important to be aware of the limitations of this comparison. Stubtest will not make any attempt to statically analyse
your actual code and relies only on dynamic runtime introspection (in particular, this approach means stubtest works
well with extension modules). However, this means that stubtest has limited visibility; for instance, it cannot tell if a
return type of a function is accurately typed in the stubs.

For clarity, here are some additional things stubtest can’t do:

• Type check your code – use mypy instead

• Generate stubs – use stubgen or pyright --createstub instead

• Generate stubs based on running your application or test suite – use monkeytype instead

• Apply stubs to code to produce inline types – use retype or libcst instead

In summary, stubtest works very well for ensuring basic consistency between stubs and implementation or to check for
stub completeness. It’s used to test Python’s official collection of library stubs, typeshed.

Warning: stubtest will import and execute Python code from the packages it checks.

1.28.2 Example

Here’s a quick example of what stubtest can do:

$ python3 -m pip install mypy

$ cat library.py
x = "hello, stubtest"

def foo(x=None):
print(x)

$ cat library.pyi
x: int

def foo(x: int) -> None: ...

$ python3 -m mypy.stubtest library
error: library.foo is inconsistent, runtime argument "x" has a default value but stub␣
→˓argument does not
Stub: at line 3
def (x: builtins.int)
Runtime: in file ~/library.py:3
def (x=None)

error: library.x variable differs from runtime type Literal['hello, stubtest']
Stub: at line 1
builtins.int

(continues on next page)
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(continued from previous page)

Runtime:
'hello, stubtest'

1.28.3 Usage

Running stubtest can be as simple as stubtest module_to_check. Run stubtest --help for a quick summary
of options.

Stubtest must be able to import the code to be checked, so make sure that mypy is installed in the same environment as
the library to be tested. In some cases, setting PYTHONPATH can help stubtest find the code to import.

Similarly, stubtest must be able to find the stubs to be checked. Stubtest respects the MYPYPATH environment variable
– consider using this if you receive a complaint along the lines of “failed to find stubs”.

Note that stubtest requires mypy to be able to analyse stubs. If mypy is unable to analyse stubs, you may get an error on
the lines of “not checking stubs due to mypy build errors”. In this case, you will need to mitigate those errors before
stubtest will run. Despite potential overlap in errors here, stubtest is not intended as a substitute for running mypy
directly.

If you wish to ignore some of stubtest’s complaints, stubtest supports a pretty handy allowlist system.

The rest of this section documents the command line interface of stubtest.

--concise

Makes stubtest’s output more concise, one line per error

--ignore-missing-stub

Ignore errors for stub missing things that are present at runtime

--ignore-positional-only

Ignore errors for whether an argument should or shouldn’t be positional-only

--allowlist FILE

Use file as an allowlist. Can be passed multiple times to combine multiple allowlists. Allowlists can be created
with –generate-allowlist. Allowlists support regular expressions.

The presence of an entry in the allowlist means stubtest will not generate any errors for the corresponding defi-
nition.

--generate-allowlist

Print an allowlist (to stdout) to be used with –allowlist

When introducing stubtest to an existing project, this is an easy way to silence all existing errors.

--ignore-unused-allowlist

Ignore unused allowlist entries

Without this option enabled, the default is for stubtest to complain if an allowlist entry is not necessary for stubtest
to pass successfully.

Note if an allowlist entry is a regex that matches the empty string, stubtest will never consider it unused. For
example, to get –ignore-unused-allowlist behaviour for a single allowlist entry like foo.bar you could add an
allowlist entry (foo\.bar)?. This can be useful when an error only occurs on a specific platform.

--mypy-config-file FILE

Use specified mypy config file to determine mypy plugins and mypy path
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--custom-typeshed-dir DIR

Use the custom typeshed in DIR

--check-typeshed

Check all stdlib modules in typeshed

--help

Show a help message :-)

1.29 Common issues and solutions

This section has examples of cases when you need to update your code to use static typing, and ideas for working
around issues if mypy doesn’t work as expected. Statically typed code is often identical to normal Python code (except
for type annotations), but sometimes you need to do things slightly differently.

1.29.1 No errors reported for obviously wrong code

There are several common reasons why obviously wrong code is not flagged as an error.

The function containing the error is not annotated.

Functions that do not have any annotations (neither for any argument nor for the return type) are not type-checked, and
even the most blatant type errors (e.g. 2 + 'a') pass silently. The solution is to add annotations. Where that isn’t
possible, functions without annotations can be checked using --check-untyped-defs.

Example:

def foo(a):
return '(' + a.split() + ')' # No error!

This gives no error even though a.split() is “obviously” a list (the author probably meant a.strip()). The error
is reported once you add annotations:

def foo(a: str) -> str:
return '(' + a.split() + ')'

# error: Unsupported operand types for + ("str" and List[str])

If you don’t know what types to add, you can use Any, but beware:

One of the values involved has type ‘Any’.

Extending the above example, if we were to leave out the annotation for a, we’d get no error:

def foo(a) -> str:
return '(' + a.split() + ')' # No error!

The reason is that if the type of a is unknown, the type of a.split() is also unknown, so it is inferred as having type
Any, and it is no error to add a string to an Any.

If you’re having trouble debugging such situations, reveal_type() might come in handy.

Note that sometimes library stubs with imprecise type information can be a source of Any values.

__init__ method has no annotated arguments and no return type annotation.

This is basically a combination of the two cases above, in that __init__ without annotations can cause Any types leak
into instance variables:
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class Bad:
def __init__(self):

self.value = "asdf"
1 + "asdf" # No error!

bad = Bad()
bad.value + 1 # No error!
reveal_type(bad) # Revealed type is "__main__.Bad"
reveal_type(bad.value) # Revealed type is "Any"

class Good:
def __init__(self) -> None: # Explicitly return None

self.value = value

Some imports may be silently ignored.

A common source of unexpected Any values is the --ignore-missing-imports flag.

When you use --ignore-missing-imports, any imported module that cannot be found is silently replaced with
Any.

To help debug this, simply leave out --ignore-missing-imports. As mentioned in Missing imports, setting
ignore_missing_imports=True on a per-module basis will make bad surprises less likely and is highly encour-
aged.

Use of the --follow-imports=skip flags can also cause problems. Use of these flags is strongly discouraged and
only required in relatively niche situations. See Following imports for more information.

mypy considers some of your code unreachable.

See Unreachable code for more information.

A function annotated as returning a non-optional type returns ‘None’ and mypy doesn’t complain.

def foo() -> str:
return None # No error!

You may have disabled strict optional checking (see –no-strict-optional for more).

1.29.2 Spurious errors and locally silencing the checker

You can use a # type: ignore comment to silence the type checker on a particular line. For example, let’s say our
code is using the C extension module frobnicate, and there’s no stub available. Mypy will complain about this, as it
has no information about the module:

import frobnicate # Error: No module "frobnicate"
frobnicate.start()

You can add a # type: ignore comment to tell mypy to ignore this error:

import frobnicate # type: ignore
frobnicate.start() # Okay!

The second line is now fine, since the ignore comment causes the name frobnicate to get an implicit Any type.
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Note: You can use the form # type: ignore[<code>] to only ignore specific errors on the line. This way you are
less likely to silence unexpected errors that are not safe to ignore, and this will also document what the purpose of the
comment is. See Error codes for more information.

Note: The # type: ignore comment will only assign the implicit Any type if mypy cannot find information about
that particular module. So, if we did have a stub available for frobnicate then mypy would ignore the # type:
ignore comment and typecheck the stub as usual.

Another option is to explicitly annotate values with type Any – mypy will let you perform arbitrary operations on Any
values. Sometimes there is no more precise type you can use for a particular value, especially if you use dynamic
Python features such as __getattr__:

class Wrapper:
...
def __getattr__(self, a: str) -> Any:

return getattr(self._wrapped, a)

Finally, you can create a stub file (.pyi) for a file that generates spurious errors. Mypy will only look at the stub file
and ignore the implementation, since stub files take precedence over .py files.

1.29.3 Ignoring a whole file

• To only ignore errors, use a top-level # mypy: ignore-errors comment instead.

• To only ignore errors with a specific error code, use a top-level # mypy: disable-error-code="..." com-
ment. Example: # mypy: disable-error-code="truthy-bool, ignore-without-code"

• To replace the contents of a module with Any, use a per-module follow_imports = skip. See Following
imports for details.

Note that a # type: ignore comment at the top of a module (before any statements, including imports or docstrings)
has the effect of ignoring the entire contents of the module. This behaviour can be surprising and result in “Module . . .
has no attribute . . . [attr-defined]” errors.

1.29.4 Issues with code at runtime

Idiomatic use of type annotations can sometimes run up against what a given version of Python considers legal code.
These can result in some of the following errors when trying to run your code:

• ImportError from circular imports

• NameError: name "X" is not defined from forward references

• TypeError: 'type' object is not subscriptable from types that are not generic at runtime

• ImportError or ModuleNotFoundError from use of stub definitions not available at runtime

• TypeError: unsupported operand type(s) for |: 'type' and 'type' from use of new syntax

For dealing with these, see Annotation issues at runtime.
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1.29.5 Mypy runs are slow

If your mypy runs feel slow, you should probably use the mypy daemon, which can speed up incremental mypy runtimes
by a factor of 10 or more. Remote caching can make cold mypy runs several times faster.

1.29.6 Types of empty collections

You often need to specify the type when you assign an empty list or dict to a new variable, as mentioned earlier:

a: List[int] = []

Without the annotation mypy can’t always figure out the precise type of a.

You can use a simple empty list literal in a dynamically typed function (as the type of a would be implicitly Any and
need not be inferred), if type of the variable has been declared or inferred before, or if you perform a simple modification
operation in the same scope (such as append for a list):

a = [] # Okay because followed by append, inferred type List[int]
for i in range(n):

a.append(i * i)

However, in more complex cases an explicit type annotation can be required (mypy will tell you this). Often the
annotation can make your code easier to understand, so it doesn’t only help mypy but everybody who is reading the
code!

1.29.7 Redefinitions with incompatible types

Each name within a function only has a single ‘declared’ type. You can reuse for loop indices etc., but if you want to
use a variable with multiple types within a single function, you may need to instead use multiple variables (or maybe
declare the variable with an Any type).

def f() -> None:
n = 1
...
n = 'x' # error: Incompatible types in assignment (expression has type "str",␣

→˓variable has type "int")

Note: Using the --allow-redefinition flag can suppress this error in several cases.

Note that you can redefine a variable with a more precise or a more concrete type. For example, you can redefine a
sequence (which does not support sort()) as a list and sort it in-place:

def f(x: Sequence[int]) -> None:
# Type of x is Sequence[int] here; we don't know the concrete type.
x = list(x)
# Type of x is List[int] here.
x.sort() # Okay!

See Type narrowing for more information.
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1.29.8 Invariance vs covariance

Most mutable generic collections are invariant, and mypy considers all user-defined generic classes invariant by default
(see Variance of generic types for motivation). This could lead to some unexpected errors when combined with type
inference. For example:

class A: ...
class B(A): ...

lst = [A(), A()] # Inferred type is List[A]
new_lst = [B(), B()] # inferred type is List[B]
lst = new_lst # mypy will complain about this, because List is invariant

Possible strategies in such situations are:

• Use an explicit type annotation:

new_lst: List[A] = [B(), B()]
lst = new_lst # OK

• Make a copy of the right hand side:

lst = list(new_lst) # Also OK

• Use immutable collections as annotations whenever possible:

def f_bad(x: List[A]) -> A:
return x[0]

f_bad(new_lst) # Fails

def f_good(x: Sequence[A]) -> A:
return x[0]

f_good(new_lst) # OK

1.29.9 Declaring a supertype as variable type

Sometimes the inferred type is a subtype (subclass) of the desired type. The type inference uses the first assignment to
infer the type of a name:

class Shape: ...
class Circle(Shape): ...
class Triangle(Shape): ...

shape = Circle() # mypy infers the type of shape to be Circle
shape = Triangle() # error: Incompatible types in assignment (expression has type
→˓"Triangle", variable has type "Circle")

You can just give an explicit type for the variable in cases such the above example:

shape: Shape = Circle() # The variable s can be any Shape, not just Circle
shape = Triangle() # OK
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1.29.10 Complex type tests

Mypy can usually infer the types correctly when using isinstance, issubclass, or type(obj) is some_class
type tests, and even user-defined type guards, but for other kinds of checks you may need to add an explicit type cast:

from typing import Sequence, cast

def find_first_str(a: Sequence[object]) -> str:
index = next((i for i, s in enumerate(a) if isinstance(s, str)), -1)
if index < 0:

raise ValueError('No str found')

found = a[index] # Has type "object", despite the fact that we know it is "str"
return cast(str, found) # We need an explicit cast to make mypy happy

Alternatively, you can use an assert statement together with some of the supported type inference techniques:

def find_first_str(a: Sequence[object]) -> str:
index = next((i for i, s in enumerate(a) if isinstance(s, str)), -1)
if index < 0:

raise ValueError('No str found')

found = a[index] # Has type "object", despite the fact that we know it is "str"
assert isinstance(found, str) # Now, "found" will be narrowed to "str"
return found # No need for the explicit "cast()" anymore

Note: Note that the object type used in the above example is similar to Object in Java: it only supports operations
defined for all objects, such as equality and isinstance(). The type Any, in contrast, supports all operations, even if
they may fail at runtime. The cast above would have been unnecessary if the type of o was Any.

Note: You can read more about type narrowing techniques here.

Type inference in Mypy is designed to work well in common cases, to be predictable and to let the type checker give
useful error messages. More powerful type inference strategies often have complex and difficult-to-predict failure
modes and could result in very confusing error messages. The tradeoff is that you as a programmer sometimes have to
give the type checker a little help.

1.29.11 Python version and system platform checks

Mypy supports the ability to perform Python version checks and platform checks (e.g. Windows vs Posix), ignoring
code paths that won’t be run on the targeted Python version or platform. This allows you to more effectively typecheck
code that supports multiple versions of Python or multiple operating systems.

More specifically, mypy will understand the use of sys.version_info and sys.platform checks within if/elif/
else statements. For example:

import sys

# Distinguishing between different versions of Python:
if sys.version_info >= (3, 8):

(continues on next page)
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# Python 3.8+ specific definitions and imports
else:

# Other definitions and imports

# Distinguishing between different operating systems:
if sys.platform.startswith("linux"):

# Linux-specific code
elif sys.platform == "darwin":

# Mac-specific code
elif sys.platform == "win32":

# Windows-specific code
else:

# Other systems

As a special case, you can also use one of these checks in a top-level (unindented) assert; this makes mypy skip the
rest of the file. Example:

import sys

assert sys.platform != 'win32'

# The rest of this file doesn't apply to Windows.

Some other expressions exhibit similar behavior; in particular, TYPE_CHECKING, variables named MYPY, and any vari-
able whose name is passed to --always-true or --always-false. (However, True and False are not treated
specially!)

Note: Mypy currently does not support more complex checks, and does not assign any special meaning when assigning
a sys.version_info or sys.platform check to a variable. This may change in future versions of mypy.

By default, mypy will use your current version of Python and your current operating system as default values for sys.
version_info and sys.platform.

To target a different Python version, use the --python-version X.Y flag. For example, to verify your code type-
checks if were run using Python 3.8, pass in --python-version 3.8 from the command line. Note that you do not
need to have Python 3.8 installed to perform this check.

To target a different operating system, use the --platform PLATFORM flag. For example, to verify your code type-
checks if it were run in Windows, pass in --platform win32. See the documentation for sys.platform for examples
of valid platform parameters.

1.29.12 Displaying the type of an expression

You can use reveal_type(expr) to ask mypy to display the inferred static type of an expression. This can be useful
when you don’t quite understand how mypy handles a particular piece of code. Example:

reveal_type((1, 'hello')) # Revealed type is "Tuple[builtins.int, builtins.str]"

You can also use reveal_locals() at any line in a file to see the types of all local variables at once. Example:

a = 1
b = 'one'

(continues on next page)
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reveal_locals()
# Revealed local types are:
# a: builtins.int
# b: builtins.str

Note: reveal_type and reveal_locals are only understood by mypy and don’t exist in Python. If you try to run
your program, you’ll have to remove any reveal_type and reveal_locals calls before you can run your code. Both
are always available and you don’t need to import them.

1.29.13 Silencing linters

In some cases, linters will complain about unused imports or code. In these cases, you can silence them with a comment
after type comments, or on the same line as the import:

# to silence complaints about unused imports
from typing import List # noqa
a = None # type: List[int]

To silence the linter on the same line as a type comment put the linter comment after the type comment:

a = some_complex_thing() # type: ignore # noqa

1.29.14 Covariant subtyping of mutable protocol members is rejected

Mypy rejects this because this is potentially unsafe. Consider this example:

from typing import Protocol

class P(Protocol):
x: float

def fun(arg: P) -> None:
arg.x = 3.14

class C:
x = 42

c = C()
fun(c) # This is not safe
c.x << 5 # Since this will fail!

To work around this problem consider whether “mutating” is actually part of a protocol. If not, then one can use a
@property in the protocol definition:

from typing import Protocol

class P(Protocol):
@property
def x(self) -> float:
pass

(continues on next page)
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def fun(arg: P) -> None:
...

class C:
x = 42

fun(C()) # OK

1.29.15 Dealing with conflicting names

Suppose you have a class with a method whose name is the same as an imported (or built-in) type, and you want to use
the type in another method signature. E.g.:

class Message:
def bytes(self):

...
def register(self, path: bytes): # error: Invalid type "mod.Message.bytes"

...

The third line elicits an error because mypy sees the argument type bytes as a reference to the method by that name.
Other than renaming the method, a workaround is to use an alias:

bytes_ = bytes
class Message:

def bytes(self):
...

def register(self, path: bytes_):
...

1.29.16 Using a development mypy build

You can install the latest development version of mypy from source. Clone the mypy repository on GitHub, and then
run pip install locally:

git clone https://github.com/python/mypy.git
cd mypy
python3 -m pip install --upgrade .

To install a development version of mypy that is mypyc-compiled, see the instructions at the mypyc wheels repo.

1.29.17 Variables vs type aliases

Mypy has both type aliases and variables with types like Type[...]. These are subtly different, and it’s important to
understand how they differ to avoid pitfalls.

1. A variable with type Type[...] is defined using an assignment with an explicit type annotation:

class A: ...
tp: Type[A] = A

2. You can define a type alias using an assignment without an explicit type annotation at the top level of a module:
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class A: ...
Alias = A

You can also use TypeAlias (PEP 613) to define an explicit type alias:

from typing import TypeAlias # "from typing_extensions" in Python 3.9 and earlier

class A: ...
Alias: TypeAlias = A

You should always use TypeAlias to define a type alias in a class body or inside a function.

The main difference is that the target of an alias is precisely known statically, and this means that they can be used in
type annotations and other type contexts. Type aliases can’t be defined conditionally (unless using supported Python
version and platform checks):

class A: ...
class B: ...

if random() > 0.5:
Alias = A

else:
# error: Cannot assign multiple types to name "Alias" without an
# explicit "Type[...]" annotation
Alias = B

tp: Type[object] # "tp" is a variable with a type object value
if random() > 0.5:

tp = A
else:

tp = B # This is OK

def fun1(x: Alias) -> None: ... # OK
def fun2(x: tp) -> None: ... # Error: "tp" is not valid as a type

1.29.18 Incompatible overrides

It’s unsafe to override a method with a more specific argument type, as it violates the Liskov substitution principle. For
return types, it’s unsafe to override a method with a more general return type.

Other incompatible signature changes in method overrides, such as adding an extra required parameter, or removing an
optional parameter, will also generate errors. The signature of a method in a subclass should accept all valid calls to the
base class method. Mypy treats a subclass as a subtype of the base class. An instance of a subclass is valid everywhere
where an instance of the base class is valid.

This example demonstrates both safe and unsafe overrides:

from typing import Sequence, List, Iterable

class A:
def test(self, t: Sequence[int]) -> Sequence[str]:

...

(continues on next page)
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class GeneralizedArgument(A):
# A more general argument type is okay
def test(self, t: Iterable[int]) -> Sequence[str]: # OK

...

class NarrowerArgument(A):
# A more specific argument type isn't accepted
def test(self, t: List[int]) -> Sequence[str]: # Error

...

class NarrowerReturn(A):
# A more specific return type is fine
def test(self, t: Sequence[int]) -> List[str]: # OK

...

class GeneralizedReturn(A):
# A more general return type is an error
def test(self, t: Sequence[int]) -> Iterable[str]: # Error

...

You can use # type: ignore[override] to silence the error. Add it to the line that generates the error, if you
decide that type safety is not necessary:

class NarrowerArgument(A):
def test(self, t: List[int]) -> Sequence[str]: # type: ignore[override]

...

1.29.19 Unreachable code

Mypy may consider some code as unreachable, even if it might not be immediately obvious why. It’s important to note
that mypy will not type check such code. Consider this example:

class Foo:
bar: str = ''

def bar() -> None:
foo: Foo = Foo()
return
x: int = 'abc' # Unreachable -- no error

It’s easy to see that any statement after return is unreachable, and hence mypy will not complain about the mis-typed
code below it. For a more subtle example, consider this code:

class Foo:
bar: str = ''

def bar() -> None:
foo: Foo = Foo()
assert foo.bar is None
x: int = 'abc' # Unreachable -- no error

Again, mypy will not report any errors. The type of foo.bar is str, and mypy reasons that it can never be None.
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Hence the assert statement will always fail and the statement below will never be executed. (Note that in Python,
None is not an empty reference but an object of type None.)

In this example mypy will go on to check the last line and report an error, since mypy thinks that the condition could
be either True or False:

class Foo:
bar: str = ''

def bar() -> None:
foo: Foo = Foo()
if not foo.bar:

return
x: int = 'abc' # Reachable -- error

If you use the --warn-unreachable flag, mypy will generate an error about each unreachable code block.

1.29.20 Narrowing and inner functions

Because closures in Python are late-binding (https://docs.python-guide.org/writing/gotchas/#late-binding-closures),
mypy will not narrow the type of a captured variable in an inner function. This is best understood via an example:

def foo(x: Optional[int]) -> Callable[[], int]:
if x is None:

x = 5
print(x + 1) # mypy correctly deduces x must be an int here
def inner() -> int:

return x + 1 # but (correctly) complains about this line

x = None # because x could later be assigned None
return inner

inner = foo(5)
inner() # this will raise an error when called

To get this code to type check, you could assign y = x after x has been narrowed, and use y in the inner function, or
add an assert in the inner function.

1.30 Supported Python features

A list of unsupported Python features is maintained in the mypy wiki:

• Unsupported Python features
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1.30.1 Runtime definition of methods and functions

By default, mypy will complain if you add a function to a class or module outside its definition – but only if this is
visible to the type checker. This only affects static checking, as mypy performs no additional type checking at runtime.
You can easily work around this. For example, you can use dynamically typed code or values with Any types, or you
can use setattr() or other introspection features. However, you need to be careful if you decide to do this. If used
indiscriminately, you may have difficulty using static typing effectively, since the type checker cannot see functions
defined at runtime.

1.31 Error codes

Mypy can optionally display an error code such as [attr-defined] after each error message. Error codes serve two
purposes:

1. It’s possible to silence specific error codes on a line using # type: ignore[code]. This way you won’t
accidentally ignore other, potentially more serious errors.

2. The error code can be used to find documentation about the error. The next two topics (Error codes enabled by
default and Error codes for optional checks) document the various error codes mypy can report.

Most error codes are shared between multiple related error messages. Error codes may change in future mypy releases.

1.31.1 Silencing errors based on error codes

You can use a special comment # type: ignore[code, ...] to only ignore errors with a specific error code (or
codes) on a particular line. This can be used even if you have not configured mypy to show error codes.

This example shows how to ignore an error about an imported name mypy thinks is undefined:

# 'foo' is defined in 'foolib', even though mypy can't see the
# definition.
from foolib import foo # type: ignore[attr-defined]

1.31.2 Enabling/disabling specific error codes globally

There are command-line flags and config file settings for enabling certain optional error codes, such as
--disallow-untyped-defs, which enables the no-untyped-def error code.

You can use --enable-error-code and --disable-error-code to enable or disable specific error codes that don’t
have a dedicated command-line flag or config file setting.

1.31.3 Per-module enabling/disabling error codes

You can use configuration file sections to enable or disable specific error codes only in some modules. For example,
this mypy.ini config will enable non-annotated empty containers in tests, while keeping other parts of code checked
in strict mode:

[mypy]
strict = True

[mypy-tests.*]
(continues on next page)
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allow_untyped_defs = True
allow_untyped_calls = True
disable_error_code = var-annotated, has-type

Note that per-module enabling/disabling acts as override over the global options. So that you don’t need to repeat the
error code lists for each module if you have them in global config section. For example:

[mypy]
enable_error_code = truthy-bool, ignore-without-code, unused-awaitable

[mypy-extensions.*]
disable_error_code = unused-awaitable

The above config will allow unused awaitables in extension modules, but will still keep the other two error codes
enabled. The overall logic is following:

• Command line and/or config main section set global error codes

• Individual config sections adjust them per glob/module

• Inline # mypy: disable-error-code="..." comments can further adjust them for a specific module. For
example: # mypy: disable-error-code="truthy-bool, ignore-without-code"

So one can e.g. enable some code globally, disable it for all tests in the corresponding config section, and then re-enable
it with an inline comment in some specific test.

1.31.4 Subcodes of error codes

In some cases, mostly for backwards compatibility reasons, an error code may be covered also by another, wider error
code. For example, an error with code [method-assign] can be ignored by # type: ignore[assignment].
Similar logic works for disabling error codes globally. If a given error code is a subcode of another one, it will be
mentioned in the documentation for the narrower code. This hierarchy is not nested: there cannot be subcodes of other
subcodes.

1.31.5 Requiring error codes

It’s possible to require error codes be specified in type: ignore comments. See ignore-without-code for more
information.

1.32 Error codes enabled by default

This section documents various errors codes that mypy can generate with default options. See Error codes for general
documentation about error codes. Error codes for optional checks documents additional error codes that you can enable.

1.32. Error codes enabled by default 183



Mypy Documentation, Release 1.10.0

1.32.1 Check that attribute exists [attr-defined]

Mypy checks that an attribute is defined in the target class or module when using the dot operator. This applies to both
getting and setting an attribute. New attributes are defined by assignments in the class body, or assignments to self.x
in methods. These assignments don’t generate attr-defined errors.

Example:

class Resource:
def __init__(self, name: str) -> None:

self.name = name

r = Resource('x')
print(r.name) # OK
print(r.id) # Error: "Resource" has no attribute "id" [attr-defined]
r.id = 5 # Error: "Resource" has no attribute "id" [attr-defined]

This error code is also generated if an imported name is not defined in the module in a from ... import statement
(as long as the target module can be found):

# Error: Module "os" has no attribute "non_existent" [attr-defined]
from os import non_existent

A reference to a missing attribute is given the Any type. In the above example, the type of non_existent will be Any,
which can be important if you silence the error.

1.32.2 Check that attribute exists in each union item [union-attr]

If you access the attribute of a value with a union type, mypy checks that the attribute is defined for every type in that
union. Otherwise the operation can fail at runtime. This also applies to optional types.

Example:

from typing import Union

class Cat:
def sleep(self) -> None: ...
def miaow(self) -> None: ...

class Dog:
def sleep(self) -> None: ...
def follow_me(self) -> None: ...

def func(animal: Union[Cat, Dog]) -> None:
# OK: 'sleep' is defined for both Cat and Dog
animal.sleep()
# Error: Item "Cat" of "Union[Cat, Dog]" has no attribute "follow_me" [union-attr]
animal.follow_me()

You can often work around these errors by using assert isinstance(obj, ClassName) or assert obj is not
None to tell mypy that you know that the type is more specific than what mypy thinks.
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1.32.3 Check that name is defined [name-defined]

Mypy expects that all references to names have a corresponding definition in an active scope, such as an assignment,
function definition or an import. This can catch missing definitions, missing imports, and typos.

This example accidentally calls sort() instead of sorted():

x = sort([3, 2, 4]) # Error: Name "sort" is not defined [name-defined]

1.32.4 Check that a variable is not used before it’s defined [used-before-def]

Mypy will generate an error if a name is used before it’s defined. While the name-defined check will catch issues with
names that are undefined, it will not flag if a variable is used and then defined later in the scope. used-before-def check
will catch such cases.

Example:

print(x) # Error: Name "x" is used before definition [used-before-def]
x = 123

1.32.5 Check arguments in calls [call-arg]

Mypy expects that the number and names of arguments match the called function. Note that argument type checks have
a separate error code arg-type.

Example:

from typing import Sequence

def greet(name: str) -> None:
print('hello', name)

greet('jack') # OK
greet('jill', 'jack') # Error: Too many arguments for "greet" [call-arg]

1.32.6 Check argument types [arg-type]

Mypy checks that argument types in a call match the declared argument types in the signature of the called function (if
one exists).

Example:

from typing import Optional

def first(x: list[int]) -> Optional[int]:
return x[0] if x else 0

t = (5, 4)
# Error: Argument 1 to "first" has incompatible type "tuple[int, int]";
# expected "list[int]" [arg-type]
print(first(t))
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1.32.7 Check calls to overloaded functions [call-overload]

When you call an overloaded function, mypy checks that at least one of the signatures of the overload items match the
argument types in the call.

Example:

from typing import overload, Optional

@overload
def inc_maybe(x: None) -> None: ...

@overload
def inc_maybe(x: int) -> int: ...

def inc_maybe(x: Optional[int]) -> Optional[int]:
if x is None:

return None
else:

return x + 1

inc_maybe(None) # OK
inc_maybe(5) # OK

# Error: No overload variant of "inc_maybe" matches argument type "float" [call-
→˓overload]
inc_maybe(1.2)

1.32.8 Check validity of types [valid-type]

Mypy checks that each type annotation and any expression that represents a type is a valid type. Examples of valid
types include classes, union types, callable types, type aliases, and literal types. Examples of invalid types include bare
integer literals, functions, variables, and modules.

This example incorrectly uses the function log as a type:

def log(x: object) -> None:
print('log:', repr(x))

# Error: Function "t.log" is not valid as a type [valid-type]
def log_all(objs: list[object], f: log) -> None:

for x in objs:
f(x)

You can use Callable as the type for callable objects:

from typing import Callable

# OK
def log_all(objs: list[object], f: Callable[[object], None]) -> None:

for x in objs:
f(x)
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1.32.9 Require annotation if variable type is unclear [var-annotated]

In some cases mypy can’t infer the type of a variable without an explicit annotation. Mypy treats this as an error. This
typically happens when you initialize a variable with an empty collection or None. If mypy can’t infer the collection
item type, mypy replaces any parts of the type it couldn’t infer with Any and generates an error.

Example with an error:

class Bundle:
def __init__(self) -> None:

# Error: Need type annotation for "items"
# (hint: "items: list[<type>] = ...") [var-annotated]
self.items = []

reveal_type(Bundle().items) # list[Any]

To address this, we add an explicit annotation:

class Bundle:
def __init__(self) -> None:

self.items: list[str] = [] # OK

reveal_type(Bundle().items) # list[str]

1.32.10 Check validity of overrides [override]

Mypy checks that an overridden method or attribute is compatible with the base class. A method in a subclass must
accept all arguments that the base class method accepts, and the return type must conform to the return type in the base
class (Liskov substitution principle).

Argument types can be more general is a subclass (i.e., they can vary contravariantly). The return type can be narrowed
in a subclass (i.e., it can vary covariantly). It’s okay to define additional arguments in a subclass method, as long all
extra arguments have default values or can be left out (*args, for example).

Example:

from typing import Optional, Union

class Base:
def method(self,

arg: int) -> Optional[int]:
...

class Derived(Base):
def method(self,

arg: Union[int, str]) -> int: # OK
...

class DerivedBad(Base):
# Error: Argument 1 of "method" is incompatible with "Base" [override]
def method(self,

arg: bool) -> int:
...
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1.32.11 Check that function returns a value [return]

If a function has a non-None return type, mypy expects that the function always explicitly returns a value (or raises an
exception). The function should not fall off the end of the function, since this is often a bug.

Example:

# Error: Missing return statement [return]
def show(x: int) -> int:

print(x)

# Error: Missing return statement [return]
def pred1(x: int) -> int:

if x > 0:
return x - 1

# OK
def pred2(x: int) -> int:

if x > 0:
return x - 1

else:
raise ValueError('not defined for zero')

1.32.12 Check that functions don’t have empty bodies outside stubs [empty-body]

This error code is similar to the [return] code but is emitted specifically for functions and methods with empty bodies
(if they are annotated with non-trivial return type). Such a distinction exists because in some contexts an empty body
can be valid, for example for an abstract method or in a stub file. Also old versions of mypy used to unconditionally
allow functions with empty bodies, so having a dedicated error code simplifies cross-version compatibility.

Note that empty bodies are allowed for methods in protocols, and such methods are considered implicitly abstract:

from abc import abstractmethod
from typing import Protocol

class RegularABC:
@abstractmethod
def foo(self) -> int:

pass # OK
def bar(self) -> int:

pass # Error: Missing return statement [empty-body]

class Proto(Protocol):
def bar(self) -> int:

pass # OK
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1.32.13 Check that return value is compatible [return-value]

Mypy checks that the returned value is compatible with the type signature of the function.

Example:

def func(x: int) -> str:
# Error: Incompatible return value type (got "int", expected "str") [return-value]
return x + 1

1.32.14 Check types in assignment statement [assignment]

Mypy checks that the assigned expression is compatible with the assignment target (or targets).

Example:

class Resource:
def __init__(self, name: str) -> None:

self.name = name

r = Resource('A')

r.name = 'B' # OK

# Error: Incompatible types in assignment (expression has type "int",
# variable has type "str") [assignment]
r.name = 5

1.32.15 Check that assignment target is not a method [method-assign]

In general, assigning to a method on class object or instance (a.k.a. monkey-patching) is ambiguous in terms of types,
since Python’s static type system cannot express the difference between bound and unbound callable types. Consider
this example:

class A:
def f(self) -> None: pass
def g(self) -> None: pass

def h(self: A) -> None: pass

A.f = h # Type of h is Callable[[A], None]
A().f() # This works
A.f = A().g # Type of A().g is Callable[[], None]
A().f() # ...but this also works at runtime

To prevent the ambiguity, mypy will flag both assignments by default. If this error code is disabled, mypy will treat the
assigned value in all method assignments as unbound, so only the second assignment will still generate an error.

Note: This error code is a subcode of the more general [assignment] code.
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1.32.16 Check type variable values [type-var]

Mypy checks that value of a type variable is compatible with a value restriction or the upper bound type.

Example:

from typing import TypeVar

T1 = TypeVar('T1', int, float)

def add(x: T1, y: T1) -> T1:
return x + y

add(4, 5.5) # OK

# Error: Value of type variable "T1" of "add" cannot be "str" [type-var]
add('x', 'y')

1.32.17 Check uses of various operators [operator]

Mypy checks that operands support a binary or unary operation, such as + or ~. Indexing operations are so common
that they have their own error code index (see below).

Example:

# Error: Unsupported operand types for + ("int" and "str") [operator]
1 + 'x'

1.32.18 Check indexing operations [index]

Mypy checks that the indexed value in indexing operation such as x[y] supports indexing, and that the index expression
has a valid type.

Example:

a = {'x': 1, 'y': 2}

a['x'] # OK

# Error: Invalid index type "int" for "dict[str, int]"; expected type "str" [index]
print(a[1])

# Error: Invalid index type "bytes" for "dict[str, int]"; expected type "str" [index]
a[b'x'] = 4
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1.32.19 Check list items [list-item]

When constructing a list using [item, ...], mypy checks that each item is compatible with the list type that is inferred
from the surrounding context.

Example:

# Error: List item 0 has incompatible type "int"; expected "str" [list-item]
a: list[str] = [0]

1.32.20 Check dict items [dict-item]

When constructing a dictionary using {key: value, ...} or dict(key=value, ...), mypy checks that each
key and value is compatible with the dictionary type that is inferred from the surrounding context.

Example:

# Error: Dict entry 0 has incompatible type "str": "str"; expected "str": "int" [dict-
→˓item]
d: dict[str, int] = {'key': 'value'}

1.32.21 Check TypedDict items [typeddict-item]

When constructing a TypedDict object, mypy checks that each key and value is compatible with the TypedDict type
that is inferred from the surrounding context.

When getting a TypedDict item, mypy checks that the key exists. When assigning to a TypedDict, mypy checks that
both the key and the value are valid.

Example:

from typing import TypedDict

class Point(TypedDict):
x: int
y: int

# Error: Incompatible types (expression has type "float",
# TypedDict item "x" has type "int") [typeddict-item]
p: Point = {'x': 1.2, 'y': 4}

1.32.22 Check TypedDict Keys [typeddict-unknown-key]

When constructing a TypedDict object, mypy checks whether the definition contains unknown keys, to catch invalid
keys and misspellings. On the other hand, mypy will not generate an error when a previously constructed TypedDict
value with extra keys is passed to a function as an argument, since TypedDict values support structural subtyping (“static
duck typing”) and the keys are assumed to have been validated at the point of construction. Example:

from typing import TypedDict

class Point(TypedDict):
x: int

(continues on next page)
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y: int

class Point3D(Point):
z: int

def add_x_coordinates(a: Point, b: Point) -> int:
return a["x"] + b["x"]

a: Point = {"x": 1, "y": 4}
b: Point3D = {"x": 2, "y": 5, "z": 6}

add_x_coordinates(a, b) # OK

# Error: Extra key "z" for TypedDict "Point" [typeddict-unknown-key]
add_x_coordinates(a, {"x": 1, "y": 4, "z": 5})

Setting a TypedDict item using an unknown key will also generate this error, since it could be a misspelling:

a: Point = {"x": 1, "y": 2}
# Error: Extra key "z" for TypedDict "Point" [typeddict-unknown-key]
a["z"] = 3

Reading an unknown key will generate the more general (and serious) typeddict-item error, which is likely to result
in an exception at runtime:

a: Point = {"x": 1, "y": 2}
# Error: TypedDict "Point" has no key "z" [typeddict-item]
_ = a["z"]

Note: This error code is a subcode of the wider [typeddict-item] code.

1.32.23 Check that type of target is known [has-type]

Mypy sometimes generates an error when it hasn’t inferred any type for a variable being referenced. This can happen
for references to variables that are initialized later in the source file, and for references across modules that form an
import cycle. When this happens, the reference gets an implicit Any type.

In this example the definitions of x and y are circular:

class Problem:
def set_x(self) -> None:

# Error: Cannot determine type of "y" [has-type]
self.x = self.y

def set_y(self) -> None:
self.y = self.x

To work around this error, you can add an explicit type annotation to the target variable or attribute. Sometimes you
can also reorganize the code so that the definition of the variable is placed earlier than the reference to the variable in
a source file. Untangling cyclic imports may also help.

We add an explicit annotation to the y attribute to work around the issue:
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class Problem:
def set_x(self) -> None:

self.x = self.y # OK

def set_y(self) -> None:
self.y: int = self.x # Added annotation here

1.32.24 Check for an issue with imports [import]

Mypy generates an error if it can’t resolve an import statement. This is a parent error code of import-not-found and
import-untyped

See Missing imports for how to work around these errors.

1.32.25 Check that import target can be found [import-not-found]

Mypy generates an error if it can’t find the source code or a stub file for an imported module.

Example:

# Error: Cannot find implementation or library stub for module named "m0dule_with_typo" ␣
→˓[import-not-found]
import m0dule_with_typo

See Missing imports for how to work around these errors.

1.32.26 Check that import target can be found [import-untyped]

Mypy generates an error if it can find the source code for an imported module, but that module does not provide type
annotations (via PEP 561).

Example:

# Error: Library stubs not installed for "bs4" [import-untyped]
import bs4
# Error: Skipping analyzing "no_py_typed": module is installed, but missing library␣
→˓stubs or py.typed marker [import-untyped]
import no_py_typed

In some cases, these errors can be fixed by installing an appropriate stub package. See Missing imports for more details.

1.32.27 Check that each name is defined once [no-redef]

Mypy may generate an error if you have multiple definitions for a name in the same namespace. The reason is that
this is often an error, as the second definition may overwrite the first one. Also, mypy often can’t be able to determine
whether references point to the first or the second definition, which would compromise type checking.

If you silence this error, all references to the defined name refer to the first definition.

Example:
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class A:
def __init__(self, x: int) -> None: ...

class A: # Error: Name "A" already defined on line 1 [no-redef]
def __init__(self, x: str) -> None: ...

# Error: Argument 1 to "A" has incompatible type "str"; expected "int"
# (the first definition wins!)
A('x')

1.32.28 Check that called function returns a value [func-returns-value]

Mypy reports an error if you call a function with a None return type and don’t ignore the return value, as this is usually
(but not always) a programming error.

In this example, the if f() check is always false since f returns None:

def f() -> None:
...

# OK: we don't do anything with the return value
f()

# Error: "f" does not return a value (it only ever returns None) [func-returns-value]
if f():

print("not false")

1.32.29 Check instantiation of abstract classes [abstract]

Mypy generates an error if you try to instantiate an abstract base class (ABC). An abstract base class is a class with at
least one abstract method or attribute. (See also abc module documentation)

Sometimes a class is made accidentally abstract, often due to an unimplemented abstract method. In a case like this
you need to provide an implementation for the method to make the class concrete (non-abstract).

Example:

from abc import ABCMeta, abstractmethod

class Persistent(metaclass=ABCMeta):
@abstractmethod
def save(self) -> None: ...

class Thing(Persistent):
def __init__(self) -> None:

...

... # No "save" method

# Error: Cannot instantiate abstract class "Thing" with abstract attribute "save" ␣
→˓[abstract]
t = Thing()
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1.32.30 Safe handling of abstract type object types [type-abstract]

Mypy always allows instantiating (calling) type objects typed as Type[t], even if it is not known that t is non-abstract,
since it is a common pattern to create functions that act as object factories (custom constructors). Therefore, to prevent
issues described in the above section, when an abstract type object is passed where Type[t] is expected, mypy will
give an error. Example:

from abc import ABCMeta, abstractmethod
from typing import List, Type, TypeVar

class Config(metaclass=ABCMeta):
@abstractmethod
def get_value(self, attr: str) -> str: ...

T = TypeVar("T")
def make_many(typ: Type[T], n: int) -> List[T]:

return [typ() for _ in range(n)] # This will raise if typ is abstract

# Error: Only concrete class can be given where "Type[Config]" is expected [type-
→˓abstract]
make_many(Config, 5)

1.32.31 Check that call to an abstract method via super is valid [safe-super]

Abstract methods often don’t have any default implementation, i.e. their bodies are just empty. Calling such methods
in subclasses via super() will cause runtime errors, so mypy prevents you from doing so:

from abc import abstractmethod
class Base:

@abstractmethod
def foo(self) -> int: ...

class Sub(Base):
def foo(self) -> int:

return super().foo() + 1 # error: Call to abstract method "foo" of "Base" with
# trivial body via super() is unsafe [safe-super]

Sub().foo() # This will crash at runtime.

Mypy considers the following as trivial bodies: a pass statement, a literal ellipsis ..., a docstring, and a raise
NotImplementedError statement.

1.32.32 Check the target of NewType [valid-newtype]

The target of a NewType definition must be a class type. It can’t be a union type, Any, or various other special types.

You can also get this error if the target has been imported from a module whose source mypy cannot find, since any
such definitions are treated by mypy as values with Any types. Example:

from typing import NewType

# The source for "acme" is not available for mypy
from acme import Entity # type: ignore

(continues on next page)
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# Error: Argument 2 to NewType(...) must be subclassable (got "Any") [valid-newtype]
UserEntity = NewType('UserEntity', Entity)

To work around the issue, you can either give mypy access to the sources for acme or create a stub file for the module.
See Missing imports for more information.

1.32.33 Check the return type of __exit__ [exit-return]

If mypy can determine that __exit__ always returns False, mypy checks that the return type is not bool. The boolean
value of the return type affects which lines mypy thinks are reachable after a with statement, since any __exit__
method that can return Truemay swallow exceptions. An imprecise return type can result in mysterious errors reported
near with statements.

To fix this, use either typing.Literal[False] or None as the return type. Returning None is equivalent to returning
False in this context, since both are treated as false values.

Example:

class MyContext:
...
def __exit__(self, exc, value, tb) -> bool: # Error

print('exit')
return False

This produces the following output from mypy:

example.py:3: error: "bool" is invalid as return type for "__exit__" that always returns␣
→˓False
example.py:3: note: Use "typing_extensions.Literal[False]" as the return type or change␣
→˓it to

"None"
example.py:3: note: If return type of "__exit__" implies that it may return True, the␣
→˓context

manager may swallow exceptions

You can use Literal[False] to fix the error:

from typing import Literal

class MyContext:
...
def __exit__(self, exc, value, tb) -> Literal[False]: # OK

print('exit')
return False

You can also use None:

class MyContext:
...
def __exit__(self, exc, value, tb) -> None: # Also OK

print('exit')
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1.32.34 Check that naming is consistent [name-match]

The definition of a named tuple or a TypedDict must be named consistently when using the call-based syntax. Example:

from typing import NamedTuple

# Error: First argument to namedtuple() should be "Point2D", not "Point"
Point2D = NamedTuple("Point", [("x", int), ("y", int)])

1.32.35 Check that literal is used where expected [literal-required]

There are some places where only a (string) literal value is expected for the purposes of static type checking, for example
a TypedDict key, or a __match_args__ item. Providing a str-valued variable in such contexts will result in an error.
Note that in many cases you can also use Final or Literal variables. Example:

from typing import Final, Literal, TypedDict

class Point(TypedDict):
x: int
y: int

def test(p: Point) -> None:
X: Final = "x"
p[X] # OK

Y: Literal["y"] = "y"
p[Y] # OK

key = "x" # Inferred type of key is `str`
# Error: TypedDict key must be a string literal;
# expected one of ("x", "y") [literal-required]
p[key]

1.32.36 Check that overloaded functions have an implementation [no-overload-
impl]

Overloaded functions outside of stub files must be followed by a non overloaded implementation.

from typing import overload

@overload
def func(value: int) -> int:

...

@overload
def func(value: str) -> str:

...

# presence of required function below is checked
def func(value):

pass # actual implementation
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1.32.37 Check that coroutine return value is used [unused-coroutine]

Mypy ensures that return values of async def functions are not ignored, as this is usually a programming error, as the
coroutine won’t be executed at the call site.

async def f() -> None:
...

async def g() -> None:
f() # Error: missing await
await f() # OK

You can work around this error by assigning the result to a temporary, otherwise unused variable:

_ = f() # No error

1.32.38 Warn about top level await expressions [top-level-await]

This error code is separate from the general [syntax] errors, because in some environments (e.g. IPython) a top level
await is allowed. In such environments a user may want to use --disable-error-code=top-level-await, that
allows to still have errors for other improper uses of await, for example:

async def f() -> None:
...

top = await f() # Error: "await" outside function [top-level-await]

1.32.39 Warn about await expressions used outside of coroutines [await-not-async]

await must be used inside a coroutine.

async def f() -> None:
...

def g() -> None:
await f() # Error: "await" outside coroutine ("async def") [await-not-async]

1.32.40 Check types in assert_type [assert-type]

The inferred type for an expression passed to assert_type must match the provided type.

from typing_extensions import assert_type

assert_type([1], list[int]) # OK

assert_type([1], list[str]) # Error
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1.32.41 Check that function isn’t used in boolean context [truthy-function]

Functions will always evaluate to true in boolean contexts.

def f():
...

if f: # Error: Function "Callable[[], Any]" could always be true in boolean context ␣
→˓[truthy-function]
pass

1.32.42 Check that string formatting/interpolation is type-safe [str-format]

Mypy will check that f-strings, str.format() calls, and % interpolations are valid (when corresponding template is a
literal string). This includes checking number and types of replacements, for example:

# Error: Cannot find replacement for positional format specifier 1 [str-format]
"{} and {}".format("spam")
"{} and {}".format("spam", "eggs") # OK
# Error: Not all arguments converted during string formatting [str-format]
"{} and {}".format("spam", "eggs", "cheese")

# Error: Incompatible types in string interpolation
# (expression has type "float", placeholder has type "int") [str-format]
"{:d}".format(3.14)

1.32.43 Check for implicit bytes coercions [str-bytes-safe]

Warn about cases where a bytes object may be converted to a string in an unexpected manner.

b = b"abc"

# Error: If x = b'abc' then f"{x}" or "{}".format(x) produces "b'abc'", not "abc".
# If this is desired behavior, use f"{x!r}" or "{!r}".format(x).
# Otherwise, decode the bytes [str-bytes-safe]
print(f"The alphabet starts with {b}")

# Okay
print(f"The alphabet starts with {b!r}") # The alphabet starts with b'abc'
print(f"The alphabet starts with {b.decode('utf-8')}") # The alphabet starts with abc

1.32.44 Check that overloaded functions don’t overlap [overload-overlap]

Warn if multiple @overload variants overlap in potentially unsafe ways. This guards against the following situation:

from typing import overload

class A: ...
class B(A): ...

(continues on next page)
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@overload
def foo(x: B) -> int: ... # Error: Overloaded function signatures 1 and 2 overlap with␣
→˓incompatible return types [overload-overlap]
@overload
def foo(x: A) -> str: ...
def foo(x): ...

def takes_a(a: A) -> str:
return foo(a)

a: A = B()
value = takes_a(a)
# mypy will think that value is a str, but it could actually be an int
reveal_type(value) # Revealed type is "builtins.str"

Note that in cases where you ignore this error, mypy will usually still infer the types you expect.

See overloading for more explanation.

1.32.45 Notify about an annotation in an unchecked function [annotation-
unchecked]

Sometimes a user may accidentally omit an annotation for a function, and mypy will not check the body of this function
(unless one uses --check-untyped-defs or --disallow-untyped-defs). To avoid such situations go unnoticed,
mypy will show a note, if there are any type annotations in an unchecked function:

def test_assignment(): # "-> None" return annotation is missing
# Note: By default the bodies of untyped functions are not checked,
# consider using --check-untyped-defs [annotation-unchecked]
x: int = "no way"

Note that mypy will still exit with return code 0, since such behaviour is specified by PEP 484.

1.32.46 Report syntax errors [syntax]

If the code being checked is not syntactically valid, mypy issues a syntax error. Most, but not all, syntax errors are
blocking errors: they can’t be ignored with a # type: ignore comment.

1.32.47 Miscellaneous checks [misc]

Mypy performs numerous other, less commonly failing checks that don’t have specific error codes. These use the misc
error code. Other than being used for multiple unrelated errors, the misc error code is not special. For example, you
can ignore all errors in this category by using # type: ignore[misc] comment. Since these errors are not expected
to be common, it’s unlikely that you’ll see two different errors with the misc code on a single line – though this can
certainly happen once in a while.

Note: Future mypy versions will likely add new error codes for some errors that currently use the misc error code.
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1.33 Error codes for optional checks

This section documents various errors codes that mypy generates only if you enable certain options. See Error codes
for general documentation about error codes. Error codes enabled by default documents error codes that are enabled
by default.

Note: The examples in this section use inline configuration to specify mypy options. You can also set the same options
by using a configuration file or command-line options.

1.33.1 Check that type arguments exist [type-arg]

If you use --disallow-any-generics, mypy requires that each generic type has values for each type argument. For
example, the types list or dict would be rejected. You should instead use types like list[int] or dict[str,
int]. Any omitted generic type arguments get implicit Any values. The type list is equivalent to list[Any], and
so on.

Example:

# mypy: disallow-any-generics

# Error: Missing type parameters for generic type "list" [type-arg]
def remove_dups(items: list) -> list:

...

1.33.2 Check that every function has an annotation [no-untyped-def]

If you use --disallow-untyped-defs, mypy requires that all functions have annotations (either a Python 3 annota-
tion or a type comment).

Example:

# mypy: disallow-untyped-defs

def inc(x): # Error: Function is missing a type annotation [no-untyped-def]
return x + 1

def inc_ok(x: int) -> int: # OK
return x + 1

class Counter:
# Error: Function is missing a type annotation [no-untyped-def]
def __init__(self):

self.value = 0

class CounterOk:
# OK: An explicit "-> None" is needed if "__init__" takes no arguments
def __init__(self) -> None:

self.value = 0
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1.33.3 Check that cast is not redundant [redundant-cast]

If you use --warn-redundant-casts, mypy will generate an error if the source type of a cast is the same as the target
type.

Example:

# mypy: warn-redundant-casts

from typing import cast

Count = int

def example(x: Count) -> int:
# Error: Redundant cast to "int" [redundant-cast]
return cast(int, x)

1.33.4 Check that methods do not have redundant Self annotations [redundant-self]

If a method uses the Self type in the return type or the type of a non-self argument, there is no need to annotate the
self argument explicitly. Such annotations are allowed by PEP 673 but are redundant. If you enable this error code,
mypy will generate an error if there is a redundant Self type.

Example:

# mypy: enable-error-code="redundant-self"

from typing import Self

class C:
# Error: Redundant "Self" annotation for the first method argument
def copy(self: Self) -> Self:

return type(self)()

1.33.5 Check that comparisons are overlapping [comparison-overlap]

If you use --strict-equality, mypy will generate an error if it thinks that a comparison operation is always true
or false. These are often bugs. Sometimes mypy is too picky and the comparison can actually be useful. Instead of
disabling strict equality checking everywhere, you can use # type: ignore[comparison-overlap] to ignore the
issue on a particular line only.

Example:

# mypy: strict-equality

def is_magic(x: bytes) -> bool:
# Error: Non-overlapping equality check (left operand type: "bytes",
# right operand type: "str") [comparison-overlap]
return x == 'magic'

We can fix the error by changing the string literal to a bytes literal:
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# mypy: strict-equality

def is_magic(x: bytes) -> bool:
return x == b'magic' # OK

1.33.6 Check that no untyped functions are called [no-untyped-call]

If you use --disallow-untyped-calls, mypy generates an error when you call an unannotated function in an an-
notated function.

Example:

# mypy: disallow-untyped-calls

def do_it() -> None:
# Error: Call to untyped function "bad" in typed context [no-untyped-call]
bad()

def bad():
...

1.33.7 Check that function does not return Any value [no-any-return]

If you use --warn-return-any, mypy generates an error if you return a value with an Any type in a function that is
annotated to return a non-Any value.

Example:

# mypy: warn-return-any

def fields(s):
return s.split(',')

def first_field(x: str) -> str:
# Error: Returning Any from function declared to return "str" [no-any-return]
return fields(x)[0]

1.33.8 Check that types have no Any components due to missing imports [no-any-
unimported]

If you use --disallow-any-unimported , mypy generates an error if a component of a type becomes Any because
mypy couldn’t resolve an import. These “stealth” Any types can be surprising and accidentally cause imprecise type
checking.

In this example, we assume that mypy can’t find the module animals, which means that Cat falls back to Any in a type
annotation:

# mypy: disallow-any-unimported

from animals import Cat # type: ignore
(continues on next page)
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# Error: Argument 1 to "feed" becomes "Any" due to an unfollowed import [no-any-
→˓unimported]
def feed(cat: Cat) -> None:

...

1.33.9 Check that statement or expression is unreachable [unreachable]

If you use --warn-unreachable, mypy generates an error if it thinks that a statement or expression will never be
executed. In most cases, this is due to incorrect control flow or conditional checks that are accidentally always true or
false.

# mypy: warn-unreachable

def example(x: int) -> None:
# Error: Right operand of "or" is never evaluated [unreachable]
assert isinstance(x, int) or x == 'unused'

return
# Error: Statement is unreachable [unreachable]
print('unreachable')

1.33.10 Check that expression is redundant [redundant-expr]

If you use --enable-error-code redundant-expr, mypy generates an error if it thinks that an expression is re-
dundant.

# Use "mypy --enable-error-code redundant-expr ..."

def example(x: int) -> None:
# Error: Left operand of "and" is always true [redundant-expr]
if isinstance(x, int) and x > 0:

pass

# Error: If condition is always true [redundant-expr]
1 if isinstance(x, int) else 0

# Error: If condition in comprehension is always true [redundant-expr]
[i for i in range(x) if isinstance(i, int)]
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1.33.11 Warn about variables that are defined only in some execution paths
[possibly-undefined]

If you use --enable-error-code possibly-undefined , mypy generates an error if it cannot verify that a variable
will be defined in all execution paths. This includes situations when a variable definition appears in a loop, in a
conditional branch, in an except handler, etc. For example:

# Use "mypy --enable-error-code possibly-undefined ..."

from typing import Iterable

def test(values: Iterable[int], flag: bool) -> None:
if flag:

a = 1
z = a + 1 # Error: Name "a" may be undefined [possibly-undefined]

for v in values:
b = v

z = b + 1 # Error: Name "b" may be undefined [possibly-undefined]

1.33.12 Check that expression is not implicitly true in boolean context [truthy-bool]

Warn when the type of an expression in a boolean context does not implement __bool__ or __len__. Unless one
of these is implemented by a subtype, the expression will always be considered true, and there may be a bug in the
condition.

As an exception, the object type is allowed in a boolean context. Using an iterable value in a boolean context has a
separate error code (see below).

# Use "mypy --enable-error-code truthy-bool ..."

class Foo:
pass

foo = Foo()
# Error: "foo" has type "Foo" which does not implement __bool__ or __len__ so it could␣
→˓always be true in boolean context
if foo:

...

1.33.13 Check that iterable is not implicitly true in boolean context [truthy-iterable]

Generate an error if a value of type Iterable is used as a boolean condition, since Iterable does not implement
__len__ or __bool__.

Example:

from typing import Iterable

def transform(items: Iterable[int]) -> list[int]:
# Error: "items" has type "Iterable[int]" which can always be true in boolean␣

→˓context. Consider using "Collection[int]" instead. [truthy-iterable]
if not items:

(continues on next page)
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(continued from previous page)

return [42]
return [x + 1 for x in items]

If transform is called with a Generator argument, such as int(x) for x in [], this function would not return
[42] unlike what might be intended. Of course, it’s possible that transform is only called with list or other container
objects, and the if not items check is actually valid. If that is the case, it is recommended to annotate items as
Collection[int] instead of Iterable[int].

1.33.14 Check that # type: ignore include an error code [ignore-without-code]

Warn when a # type: ignore comment does not specify any error codes. This clarifies the intent of the ignore and
ensures that only the expected errors are silenced.

Example:

# Use "mypy --enable-error-code ignore-without-code ..."

class Foo:
def __init__(self, name: str) -> None:

self.name = name

f = Foo('foo')

# This line has a typo that mypy can't help with as both:
# - the expected error 'assignment', and
# - the unexpected error 'attr-defined'
# are silenced.
# Error: "type: ignore" comment without error code (consider "type: ignore[attr-defined]
→˓" instead)
f.nme = 42 # type: ignore

# This line warns correctly about the typo in the attribute name
# Error: "Foo" has no attribute "nme"; maybe "name"?
f.nme = 42 # type: ignore[assignment]

1.33.15 Check that awaitable return value is used [unused-awaitable]

If you use --enable-error-code unused-awaitable, mypy generates an error if you don’t use a returned value
that defines __await__.

Example:

# Use "mypy --enable-error-code unused-awaitable ..."

import asyncio

async def f() -> int: ...

async def g() -> None:
# Error: Value of type "Task[int]" must be used
# Are you missing an await?
asyncio.create_task(f())
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You can assign the value to a temporary, otherwise unused to variable to silence the error:

async def g() -> None:
_ = asyncio.create_task(f()) # No error

1.33.16 Check that # type: ignore comment is used [unused-ignore]

If you use --enable-error-code unused-ignore, or --warn-unused-ignores mypy generates an error if you
don’t use a # type: ignore comment, i.e. if there is a comment, but there would be no error generated by mypy on
this line anyway.

Example:

# Use "mypy --warn-unused-ignores ..."

def add(a: int, b: int) -> int:
# Error: unused "type: ignore" comment
return a + b # type: ignore

Note that due to a specific nature of this comment, the only way to selectively silence it, is to include the error code
explicitly. Also note that this error is not shown if the # type: ignore is not used due to code being statically
unreachable (e.g. due to platform or version checks).

Example:

# Use "mypy --warn-unused-ignores ..."

import sys

try:
# The "[unused-ignore]" is needed to get a clean mypy run
# on both Python 3.8, and 3.9 where this module was added
import graphlib # type: ignore[import,unused-ignore]

except ImportError:
pass

if sys.version_info >= (3, 9):
# The following will not generate an error on either
# Python 3.8, or Python 3.9
42 + "testing..." # type: ignore

1.33.17 Check that @override is used when overriding a base class method [explicit-
override]

If you use --enable-error-code explicit-overridemypy generates an error if you override a base class method
without using the @override decorator. An error will not be emitted for overrides of __init__ or __new__. See
PEP 698.

Note: Starting with Python 3.12, the @override decorator can be imported from typing. To use it with older Python
versions, import it from typing_extensions instead.

Example:
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# Use "mypy --enable-error-code explicit-override ..."

from typing import override

class Parent:
def f(self, x: int) -> None:

pass

def g(self, y: int) -> None:
pass

class Child(Parent):
def f(self, x: int) -> None: # Error: Missing @override decorator

pass

@override
def g(self, y: int) -> None:

pass

1.33.18 Check that overrides of mutable attributes are safe [mutable-override]

mutable-override will enable the check for unsafe overrides of mutable attributes. For historical reasons, and because
this is a relatively common pattern in Python, this check is not enabled by default. The example below is unsafe, and
will be flagged when this error code is enabled:

from typing import Any

class C:
x: float
y: float
z: float

class D(C):
x: int # Error: Covariant override of a mutable attribute

# (base class "C" defined the type as "float",
# expression has type "int") [mutable-override]

y: float # OK
z: Any # OK

def f(c: C) -> None:
c.x = 1.1

d = D()
f(d)
d.x >> 1 # This will crash at runtime, because d.x is now float, not an int
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1.33.19 Check that reveal_type is imported from typing or typing_extensions
[unimported-reveal]

Mypy used to have reveal_type as a special builtin that only existed during type-checking. In runtime it fails with
expected NameError, which can cause real problem in production, hidden from mypy.

But, in Python3.11 typing.reveal_type() was added. typing_extensions ported this helper to all supported
Python versions.

Now users can actually import reveal_type to make the runtime code safe.

Note: Starting with Python 3.11, the reveal_type function can be imported from typing. To use it with older
Python versions, import it from typing_extensions instead.

# Use "mypy --enable-error-code unimported-reveal"

x = 1
reveal_type(x) # Note: Revealed type is "builtins.int" \

# Error: Name "reveal_type" is not defined

Correct usage:

# Use "mypy --enable-error-code unimported-reveal"
from typing import reveal_type # or `typing_extensions`

x = 1
# This won't raise an error:
reveal_type(x) # Note: Revealed type is "builtins.int"

When this code is enabled, using reveal_locals is always an error, because there’s no way one can import it.

1.33.20 Check that TypeIs narrows types [narrowed-type-not-subtype]

PEP 742 requires that when TypeIs is used, the narrowed type must be a subtype of the original type:

from typing_extensions import TypeIs

def f(x: int) -> TypeIs[str]: # Error, str is not a subtype of int
...

def g(x: object) -> TypeIs[str]: # OK
...
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1.34 Additional features

This section discusses various features that did not fit in naturally in one of the previous sections.

1.34.1 Dataclasses

The dataclasses module allows defining and customizing simple boilerplate-free classes. They can be defined using
the @dataclasses.dataclass decorator:

from dataclasses import dataclass, field

@dataclass
class Application:

name: str
plugins: list[str] = field(default_factory=list)

test = Application("Testing...") # OK
bad = Application("Testing...", "with plugin") # Error: list[str] expected

Mypy will detect special methods (such as __lt__) depending on the flags used to define dataclasses. For example:

from dataclasses import dataclass

@dataclass(order=True)
class OrderedPoint:

x: int
y: int

@dataclass(order=False)
class UnorderedPoint:

x: int
y: int

OrderedPoint(1, 2) < OrderedPoint(3, 4) # OK
UnorderedPoint(1, 2) < UnorderedPoint(3, 4) # Error: Unsupported operand types

Dataclasses can be generic and can be used in any other way a normal class can be used:

from dataclasses import dataclass
from typing import Generic, TypeVar

T = TypeVar('T')

@dataclass
class BoxedData(Generic[T]):

data: T
label: str

def unbox(bd: BoxedData[T]) -> T:
...

val = unbox(BoxedData(42, "<important>")) # OK, inferred type is int
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For more information see official docs and PEP 557.

Caveats/Known Issues

Some functions in the dataclasses module, such as asdict(), have imprecise (too permissive) types. This will be
fixed in future releases.

Mypy does not yet recognize aliases of dataclasses.dataclass, and will probably never recognize dynamically
computed decorators. The following example does not work:

from dataclasses import dataclass

dataclass_alias = dataclass
def dataclass_wrapper(cls):
return dataclass(cls)

@dataclass_alias
class AliasDecorated:
"""
Mypy doesn't recognize this as a dataclass because it is decorated by an
alias of `dataclass` rather than by `dataclass` itself.
"""
attribute: int

AliasDecorated(attribute=1) # error: Unexpected keyword argument

To have Mypy recognize a wrapper of dataclasses.dataclass as a dataclass decorator, consider using the
dataclass_transform() decorator:

from dataclasses import dataclass, Field
from typing import TypeVar, dataclass_transform

T = TypeVar('T')

@dataclass_transform(field_specifiers=(Field,))
def my_dataclass(cls: type[T]) -> type[T]:

...
return dataclass(cls)

1.34.2 Data Class Transforms

Mypy supports the dataclass_transform() decorator as described in PEP 681.

Note: Pragmatically, mypy will assume such classes have the internal attribute __dataclass_fields__ (even though
they might lack it in runtime) and will assume functions such as dataclasses.is_dataclass() and dataclasses.
fields() treat them as if they were dataclasses (even though they may fail at runtime).

1.34. Additional features 211

https://docs.python.org/3/library/dataclasses.html
https://peps.python.org/pep-0557/
https://docs.python.org/3/library/dataclasses.html#module-dataclasses
https://docs.python.org/3/library/dataclasses.html#dataclasses.asdict
https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://docs.python.org/3/library/dataclasses.html#dataclasses.dataclass
https://docs.python.org/3/library/typing.html#typing.dataclass_transform
https://docs.python.org/3/library/typing.html#typing.dataclass_transform
https://www.python.org/dev/peps/pep-0681/#the-dataclass-transform-decorator
https://docs.python.org/3/library/dataclasses.html#dataclasses.is_dataclass
https://docs.python.org/3/library/dataclasses.html#dataclasses.fields
https://docs.python.org/3/library/dataclasses.html#dataclasses.fields


Mypy Documentation, Release 1.10.0

1.34.3 The attrs package

attrs is a package that lets you define classes without writing boilerplate code. Mypy can detect uses of the package
and will generate the necessary method definitions for decorated classes using the type annotations it finds. Type
annotations can be added as follows:

import attr

@attrs.define
class A:

one: int
two: int = 7
three: int = attrs.field(8)

If you’re using auto_attribs=False you must use attrs.field:

import attrs

@attrs.define
class A:

one: int = attrs.field() # Variable annotation (Python 3.6+)
two = attrs.field() # type: int # Type comment
three = attrs.field(type=int) # type= argument

Typeshed has a couple of “white lie” annotations to make type checking easier. attrs.field() and attrs.Factory
actually return objects, but the annotation says these return the types that they expect to be assigned to. That enables
this to work:

import attrs

@attrs.define
class A:

one: int = attrs.field(8)
two: dict[str, str] = attrs.Factory(dict)
bad: str = attrs.field(16) # Error: can't assign int to str

Caveats/Known Issues

• The detection of attr classes and attributes works by function name only. This means that if you have your own
helper functions that, for example, return attrs.field() mypy will not see them.

• All boolean arguments that mypy cares about must be literal True or False. e.g the following will not work:

import attrs
YES = True
@attrs.define(init=YES)
class A:

...

• Currently, converter only supports named functions. If mypy finds something else it will complain about not
understanding the argument and the type annotation in __init__ will be replaced by Any.

• Validator decorators and default decorators are not type-checked against the attribute they are setting/validating.

• Method definitions added by mypy currently overwrite any existing method definitions.
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1.34.4 Using a remote cache to speed up mypy runs

Mypy performs type checking incrementally, reusing results from previous runs to speed up successive runs. If you
are type checking a large codebase, mypy can still be sometimes slower than desirable. For example, if you create a
new branch based on a much more recent commit than the target of the previous mypy run, mypy may have to process
almost every file, as a large fraction of source files may have changed. This can also happen after you’ve rebased a local
branch.

Mypy supports using a remote cache to improve performance in cases such as the above. In a large codebase, remote
caching can sometimes speed up mypy runs by a factor of 10, or more.

Mypy doesn’t include all components needed to set this up – generally you will have to perform some simple integration
with your Continuous Integration (CI) or build system to configure mypy to use a remote cache. This discussion assumes
you have a CI system set up for the mypy build you want to speed up, and that you are using a central git repository.
Generalizing to different environments should not be difficult.

Here are the main components needed:

• A shared repository for storing mypy cache files for all landed commits.

• CI build that uploads mypy incremental cache files to the shared repository for each commit for which the CI
build runs.

• A wrapper script around mypy that developers use to run mypy with remote caching enabled.

Below we discuss each of these components in some detail.

Shared repository for cache files

You need a repository that allows you to upload mypy cache files from your CI build and make the cache files available
for download based on a commit id. A simple approach would be to produce an archive of the .mypy_cache directory
(which contains the mypy cache data) as a downloadable build artifact from your CI build (depending on the capabilities
of your CI system). Alternatively, you could upload the data to a web server or to S3, for example.

Continuous Integration build

The CI build would run a regular mypy build and create an archive containing the .mypy_cache directory produced
by the build. Finally, it will produce the cache as a build artifact or upload it to a repository where it is accessible by
the mypy wrapper script.

Your CI script might work like this:

• Run mypy normally. This will generate cache data under the .mypy_cache directory.

• Create a tarball from the .mypy_cache directory.

• Determine the current git master branch commit id (say, using git rev-parse HEAD).

• Upload the tarball to the shared repository with a name derived from the commit id.
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Mypy wrapper script

The wrapper script is used by developers to run mypy locally during development instead of invoking mypy directly. The
wrapper first populates the local .mypy_cache directory from the shared repository and then runs a normal incremental
build.

The wrapper script needs some logic to determine the most recent central repository commit (by convention, the
origin/master branch for git) the local development branch is based on. In a typical git setup you can do it like
this:

git merge-base HEAD origin/master

The next step is to download the cache data (contents of the .mypy_cache directory) from the shared repository based
on the commit id of the merge base produced by the git command above. The script will decompress the data so that
mypy will start with a fresh .mypy_cache. Finally, the script runs mypy normally. And that’s all!

Caching with mypy daemon

You can also use remote caching with the mypy daemon. The remote cache will significantly speed up the first dmypy
check run after starting or restarting the daemon.

The mypy daemon requires extra fine-grained dependency data in the cache files which aren’t included by default. To
use caching with the mypy daemon, use the --cache-fine-grained option in your CI build:

$ mypy --cache-fine-grained <args...>

This flag adds extra information for the daemon to the cache. In order to use this extra information, you will also need
to use the --use-fine-grained-cache option with dmypy start or dmypy restart. Example:

$ dmypy start -- --use-fine-grained-cache <options...>

Now your first dmypy check run should be much faster, as it can use cache information to avoid processing the whole
program.

Refinements

There are several optional refinements that may improve things further, at least if your codebase is hundreds of thousands
of lines or more:

• If the wrapper script determines that the merge base hasn’t changed from a previous run, there’s no need to
download the cache data and it’s better to instead reuse the existing local cache data.

• If you use the mypy daemon, you may want to restart the daemon each time after the merge base or local branch
has changed to avoid processing a potentially large number of changes in an incremental build, as this can be
much slower than downloading cache data and restarting the daemon.

• If the current local branch is based on a very recent master commit, the remote cache data may not yet be available
for that commit, as there will necessarily be some latency to build the cache files. It may be a good idea to look
for cache data for, say, the 5 latest master commits and use the most recent data that is available.

• If the remote cache is not accessible for some reason (say, from a public network), the script can still fall back to
a normal incremental build.

• You can have multiple local cache directories for different local branches using the --cache-dir option. If the
user switches to an existing branch where downloaded cache data is already available, you can continue to use
the existing cache data instead of redownloading the data.

214 Chapter 1. Contents



Mypy Documentation, Release 1.10.0

• You can set up your CI build to use a remote cache to speed up the CI build. This would be particularly useful if
each CI build starts from a fresh state without access to cache files from previous builds. It’s still recommended to
run a full, non-incremental mypy build to create the cache data, as repeatedly updating cache data incrementally
could result in drift over a long time period (due to a mypy caching issue, perhaps).

1.34.5 Extended Callable types

Note: This feature is deprecated. You can use callback protocols as a replacement.

As an experimental mypy extension, you can specify Callable types that support keyword arguments, optional argu-
ments, and more. When you specify the arguments of a Callable, you can choose to supply just the type of a nameless
positional argument, or an “argument specifier” representing a more complicated form of argument. This allows one
to more closely emulate the full range of possibilities given by the def statement in Python.

As an example, here’s a complicated function definition and the corresponding Callable:

from typing import Callable
from mypy_extensions import (Arg, DefaultArg, NamedArg,

DefaultNamedArg, VarArg, KwArg)

def func(__a: int, # This convention is for nameless arguments
b: int,
c: int = 0,
*args: int,
d: int,
e: int = 0,
**kwargs: int) -> int:

...

F = Callable[[int, # Or Arg(int)
Arg(int, 'b'),
DefaultArg(int, 'c'),
VarArg(int),
NamedArg(int, 'd'),
DefaultNamedArg(int, 'e'),
KwArg(int)],
int]

f: F = func

Argument specifiers are special function calls that can specify the following aspects of an argument:

• its type (the only thing that the basic format supports)

• its name (if it has one)

• whether it may be omitted

• whether it may or must be passed using a keyword

• whether it is a *args argument (representing the remaining positional arguments)

• whether it is a **kwargs argument (representing the remaining keyword arguments)

The following functions are available in mypy_extensions for this purpose:

1.34. Additional features 215

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable


Mypy Documentation, Release 1.10.0

def Arg(type=Any, name=None):
# A normal, mandatory, positional argument.
# If the name is specified it may be passed as a keyword.

def DefaultArg(type=Any, name=None):
# An optional positional argument (i.e. with a default value).
# If the name is specified it may be passed as a keyword.

def NamedArg(type=Any, name=None):
# A mandatory keyword-only argument.

def DefaultNamedArg(type=Any, name=None):
# An optional keyword-only argument (i.e. with a default value).

def VarArg(type=Any):
# A *args-style variadic positional argument.
# A single VarArg() specifier represents all remaining
# positional arguments.

def KwArg(type=Any):
# A **kwargs-style variadic keyword argument.
# A single KwArg() specifier represents all remaining
# keyword arguments.

In all cases, the type argument defaults to Any, and if the name argument is omitted the argument has no name (the
name is required for NamedArg and DefaultNamedArg). A basic Callable such as

MyFunc = Callable[[int, str, int], float]

is equivalent to the following:

MyFunc = Callable[[Arg(int), Arg(str), Arg(int)], float]

A Callable with unspecified argument types, such as

MyOtherFunc = Callable[..., int]

is (roughly) equivalent to

MyOtherFunc = Callable[[VarArg(), KwArg()], int]

Note: Each of the functions above currently just returns its type argument at runtime, so the information contained
in the argument specifiers is not available at runtime. This limitation is necessary for backwards compatibility with the
existing typing.py module as present in the Python 3.5+ standard library and distributed via PyPI.
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1.35 Frequently Asked Questions

1.35.1 Why have both dynamic and static typing?

Dynamic typing can be flexible, powerful, convenient and easy. But it’s not always the best approach; there are good
reasons why many developers choose to use statically typed languages or static typing for Python.

Here are some potential benefits of mypy-style static typing:

• Static typing can make programs easier to understand and maintain. Type declarations can serve as machine-
checked documentation. This is important as code is typically read much more often than modified, and this is
especially important for large and complex programs.

• Static typing can help you find bugs earlier and with less testing and debugging. Especially in large and complex
projects this can be a major time-saver.

• Static typing can help you find difficult-to-find bugs before your code goes into production. This can improve
reliability and reduce the number of security issues.

• Static typing makes it practical to build very useful development tools that can improve programming productivity
or software quality, including IDEs with precise and reliable code completion, static analysis tools, etc.

• You can get the benefits of both dynamic and static typing in a single language. Dynamic typing can be perfect
for a small project or for writing the UI of your program, for example. As your program grows, you can adapt
tricky application logic to static typing to help maintenance.

See also the front page of the mypy web site.

1.35.2 Would my project benefit from static typing?

For many projects dynamic typing is perfectly fine (we think that Python is a great language). But sometimes your
projects demand bigger guns, and that’s when mypy may come in handy.

If some of these ring true for your projects, mypy (and static typing) may be useful:

• Your project is large or complex.

• Your codebase must be maintained for a long time.

• Multiple developers are working on the same code.

• Running tests takes a lot of time or work (type checking helps you find errors quickly early in development,
reducing the number of testing iterations).

• Some project members (devs or management) don’t like dynamic typing, but others prefer dynamic typing and
Python syntax. Mypy could be a solution that everybody finds easy to accept.

• You want to future-proof your project even if currently none of the above really apply. The earlier you start, the
easier it will be to adopt static typing.
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1.35.3 Can I use mypy to type check my existing Python code?

Mypy supports most Python features and idioms, and many large Python projects are using mypy successfully. Code
that uses complex introspection or metaprogramming may be impractical to type check, but it should still be possible
to use static typing in other parts of a codebase that are less dynamic.

1.35.4 Will static typing make my programs run faster?

Mypy only does static type checking and it does not improve performance. It has a minimal performance impact. In
the future, there could be other tools that can compile statically typed mypy code to C modules or to efficient JVM
bytecode, for example, but this is outside the scope of the mypy project.

1.35.5 Is mypy free?

Yes. Mypy is free software, and it can also be used for commercial and proprietary projects. Mypy is available under
the MIT license.

1.35.6 Can I use duck typing with mypy?

Mypy provides support for both nominal subtyping and structural subtyping. Structural subtyping can be thought of
as “static duck typing”. Some argue that structural subtyping is better suited for languages with duck typing such
as Python. Mypy however primarily uses nominal subtyping, leaving structural subtyping mostly opt-in (except for
built-in protocols such as Iterable that always support structural subtyping). Here are some reasons why:

1. It is easy to generate short and informative error messages when using a nominal type system. This is especially
important when using type inference.

2. Python provides built-in support for nominal isinstance() tests and they are widely used in programs. Only
limited support for structural isinstance() is available, and it’s less type safe than nominal type tests.

3. Many programmers are already familiar with static, nominal subtyping and it has been successfully used in
languages such as Java, C++ and C#. Fewer languages use structural subtyping.

However, structural subtyping can also be useful. For example, a “public API” may be more flexible if it is typed with
protocols. Also, using protocol types removes the necessity to explicitly declare implementations of ABCs. As a rule
of thumb, we recommend using nominal classes where possible, and protocols where necessary. For more details about
protocol types and structural subtyping see Protocols and structural subtyping and PEP 544.

1.35.7 I like Python and I have no need for static typing

The aim of mypy is not to convince everybody to write statically typed Python – static typing is entirely optional,
now and in the future. The goal is to give more options for Python programmers, to make Python a more competitive
alternative to other statically typed languages in large projects, to improve programmer productivity, and to improve
software quality.
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1.35.8 How are mypy programs different from normal Python?

Since you use a vanilla Python implementation to run mypy programs, mypy programs are also Python programs. The
type checker may give warnings for some valid Python code, but the code is still always runnable. Also, some Python
features and syntax are still not supported by mypy, but this is gradually improving.

The obvious difference is the availability of static type checking. The section Common issues and solutions mentions
some modifications to Python code that may be required to make code type check without errors. Also, your code must
make attributes explicit.

Mypy supports modular, efficient type checking, and this seems to rule out type checking some language features, such
as arbitrary monkey patching of methods.

1.35.9 How is mypy different from Cython?

Cython is a variant of Python that supports compilation to CPython C modules. It can give major speedups to certain
classes of programs compared to CPython, and it provides static typing (though this is different from mypy). Mypy
differs in the following aspects, among others:

• Cython is much more focused on performance than mypy. Mypy is only about static type checking, and increasing
performance is not a direct goal.

• The mypy syntax is arguably simpler and more “Pythonic” (no cdef/cpdef, etc.) for statically typed code.

• The mypy syntax is compatible with Python. Mypy programs are normal Python programs that can be run using
any Python implementation. Cython has many incompatible extensions to Python syntax, and Cython programs
generally cannot be run without first compiling them to CPython extension modules via C. Cython also has a
pure Python mode, but it seems to support only a subset of Cython functionality, and the syntax is quite verbose.

• Mypy has a different set of type system features. For example, mypy has genericity (parametric polymorphism),
function types and bidirectional type inference, which are not supported by Cython. (Cython has fused types
that are different but related to mypy generics. Mypy also has a similar feature as an extension of generics.)

• The mypy type checker knows about the static types of many Python stdlib modules and can effectively type
check code that uses them.

• Cython supports accessing C functions directly and many features are defined in terms of translating them to C
or C++. Mypy just uses Python semantics, and mypy does not deal with accessing C library functionality.

1.35.10 Does it run on PyPy?

Somewhat. With PyPy 3.8, mypy is at least able to type check itself. With older versions of PyPy, mypy relies on
typed-ast, which uses several APIs that PyPy does not support (including some internal CPython APIs).

1.35.11 Mypy is a cool project. Can I help?

Any help is much appreciated! Contact the developers if you would like to contribute. Any help related to development,
design, publicity, documentation, testing, web site maintenance, financing, etc. can be helpful. You can learn a lot by
contributing, and anybody can help, even beginners! However, some knowledge of compilers and/or type systems is
essential if you want to work on mypy internals.
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