

MyMoney’s user guide

[image: Bank account overview page]
[image: Ratio report]
[image: Trendtime report]
This is the documentation of the MyMoney project, a personal finance Web
application build with the Django [https://www.djangoproject.com/] framework.

Of course, just like this project, this documentation isn’t really useful.
This is mainly a good use case to learn Sphinx and ReadTheDoc :)

Contents

	Installation
	Requirements

	Deployment
	Backend
	Production

	Development

	Frontend
	Development

	Internationalization

	Demo

	Tests
	Tox

	Manually

	Users
	Create a basic user

	Permissions

	Anonymous user

	Bank accounts

	Tags

	Schedulers
	Fields
	Period

	Recurrence

	Date

	Start now

	Bank transactions
	Fields
	Status

	Reconcile flag

	Statistics
	Ratio
	Filter type: sum or single

	Back-office

Installation

Requirements

	Python 3.4 (no backward compatibility)

	PostgreSQL only (no MySQL or SQLite support)

Deployment

Backend

The deployment is the same as any other Django projects. Here is a quick
summary:

	install required system packages. For example on Debian:

apt-get install python3 python3-dev postgresql-9.4 libpq-dev virtualenv

	create a PostgreSQL database in a cluster with role and owner

	create a virtualenv:

virtualenv <NAME> -p python3

	install dependencies with pip (see Production
or Development)

	configure the settings (see Production or
Development)

	export the DJANGO_SETTINGS_MODULE to easily use the manage.py with
the proper production setting. For example:

export DJANGO_SETTINGS_MODULE="mymoney.settings.production"

	import the SQL schema:

./manage.py migrate

	create a super user:

./manage.py createsuperuser

Note

WSGI will use the production.py settings, whereas manage.py
will use the local.py by default.

Production

	Install dependencies (in virtualenv):

pip install -r requirements/production.txt

	copy mymoney/settings/production.dist to
mymoney/settings/production.py and edit it:

cp mymoney/settings/production.dist mymoney/settings/production.py

	install JS libraries first with Bower (see
Frontend) then collect statics files:

./manage.py collectstatic

	execute the Django check command and apply fixes if needed:

./manage.py check --deploy

	Set up cron tasks on server to execute the following commands:

	cloning recurring bank transactions:

./manage.py clonescheduled

	cleanup tasks (only usefull with further user accounts):

./manage.py deleteorphansbankaccounts

At the project root directory, the scripts directory provides bash script
wrappers to execute these commands.
Thus, you could create cron rules similar to something like:

0 1 * * * ABSOLUTE_PATH/scripts/clonescheduled.sh <ABSOLUTE_PATH_TO_V_ENV>
0 2 * * * ABSOLUTE_PATH/scripts/deleteorphansbankaccounts.sh <ABSOLUTE_PATH_TO_V_ENV>

For example, create a file in /etc/cron.d/clonescheduled, and edit:

0 2 * * * <USER> /ABSOLUTE_PATH/scripts/clonescheduled.sh <ABSOLUTE_PATH_TO_V_ENV>

Development

	Install dependencies:

pip install -r requirements/local.txt

	copy mymoney/settings/local.dist to mymoney/settings/local.py and
edit it:

cp mymoney/settings/local.dist mymoney/settings/local.py

Frontend

	first intall npm [https://www.npmjs.com] (embed with nodejs)

	install Bower [http://bower.io] with npm:

npm install --production

	At the project root directory, run the following command to install JS
libraries dependencies:

./node_modules/bower/bin/bower install --production

Development

	install gulp globally to use it as a command line tool:

npm install -g gulp

	go to the project root directory and install gulp dependencies:

npm install

	once node packages are installed locally in ./node_modules, you
should be able to execute the following gulp commands implemented in
gulpfile.js:

	js: concat and minify js

	css: concat and minify css

To execute all commands at once, from the project root directory, just
execute:

gulp

Internationalization

	copy mymoney/settings/l10n.dist to mymoney/settings/l10n.py and
edit it:

cp mymoney/settings/l10n.dist mymoney/settings/l10n.py

Further notes about some additional settings:

	USE_L10N_DIST: Whether to use the minify file including translations.
It imply that the translated file is generated with gulp
(mymoney.min.<LANGCODE>.js). If false (default), additionnal JS
translations files would be loaded.

	BOOTSTRAP_CALENDAR_LANGCODE: If USE_L10N_DIST is false, the
language code to use to load the translation file at:
mymoney/static/bower_components/bootstrap-calendar/js/language/<LANGCODE>.js

	BOOTSTRAP_DATEPICKER_LANGCODE: If USE_L10N_DIST is false, the
language code to use to load the translation file at:
mymoney/static/bower_components/bootstrap-datepicker/js/locales/bootstrap-datepicker.<LANGCODE>.js

	edit your final setting file to use the l10n configuration instead:

from .base import *
from .l10n import *

	optionally build the minified JS distribution for your language. To achieve
it, you first need to have gulp installed. See section
Development for more details about gulp.
The gulp js accept optional parameters:

	--lang: the IETF language code of the form : xx-XX. Must be the
same as the Django LANGUAGE_CODE setting.

	--lang_bt_cal: the Bootstrap calendar language code to use. To see the
list of available code supported, take a look at :
mymoney/static/bower_components/bootstrap-calendar/js/language/<LANGCODE>.js

	--lang_bt_dp: the Bootstrap datepicker language code to use. Be
careful, currently the language code must be of the form xx and not
xx-XX. To see the list of available language codes, take a look at :
mymoney/static/bower_components/bootstrap-datepicker/js/locales/bootstrap-datepicker.<LANGCODE>.js

For example, for a French minify JS file, you should execute:

gulp js --lang=fr-FR --lang_bt_cal=fr-FR --lang_bt_dp=fr

Note

Seems too much verbose to specify 3 arguments for languages but
unfortunetly, none of them used the same…

Note

Only French internationalisation/translations are supported for
now. But any contributions are welcome!

Demo

To have a quick look, you could generate some data with the following
commands:

./manage.py demo

You can also clear any data relatives to the project’s models with:

./manage.py demo --purge

Tests

Whichever method is used, you must create a setting file for testing. Copy
mymoney/settings/test.dist to mymoney/settings/test.py and edit it:

cp mymoney/settings/test.dist mymoney/settings/test.py

Tox

You can use Tox [http://tox.readthedocs.org]. At the project root directory without virtualenv, just
execute:

tox

Behind the scenes, it runs several testenv for:

	pylama [https://pylama.readthedocs.org]

	isort [https://github.com/timothycrosley/isort]

	Sphinx [http://sphinx-doc.org]

	test suites with coverage and report

Manually

	install dependencies:

pip install -r requirements/test.txt

	then execute tests:

./manage.py test --settings=mymoney.settings.test mymoney

Users

Create a basic user

To don’t mix superuser and basic user permissions, you will need to create and
use only a basic user. Otherwise, if you use the superuser account on
front-office and try to create a bank account, you won’t see your own account
in the owner list.

Note

This is intentional : a basic user cannot add super user or staff
user as an owner of a bank account.

	create the superuser if not already:

./manage.py createsuperuser

	connect to the Django backoffice in order to create a user account.

Warning

Don’t forget to assign any permissions required (i.e: beginning
with bank).

Permissions

Each permissions are derived from the default Django model (add, change,
delete). However, here is additional permissions:

	administer owners: allow user to manager owners of a bank account

Anonymous user

Because being authenticated is required, an anonymous user could only
access the /login url (LOGIN_URL) or back-office (ADMIN_BASE_URL).
Any attempt as an anonymous user to access an another url would redirect to the
login page.

Bank accounts

The first thing you should do for the first time is to create a new bank
account. After being logged in, you should be on the page /bank-account/.
You could see actions links on the top right corner. Click on Add.

Once created, you should see it in the list. Click on it. You should go to the
bank account overview page. From this page, you could navigate to:

	edit the bank account

	delete the bank account (through action links)

	schedule bank transactions of this bank account

	see statistics of this bank account

	add bank transactions for that bank account

	filter results with a form

	apply some actions on bank transactions

Note

If you have only one bank account, you will be redirected to its
page after being logged in. Otherwise, you will be redirected on the bank
accounts list page at /bank-account/.

Tags

The second step could be to create tags. In the navbar, in tags section,
click on My tags (/bank-transaction-tag/list/). You are on the tags
overview page. From this page, you could apply the following actions on tags:

	add

	edit

	delete

Note

Owners of the same bank account could also view/use your tags (so
even if they are not the owner of the tag). However, a user without
relationship (i.e: not being the owner of your bank accounts) can’t view/use
your tags.

Schedulers

Even before trying to insert some bank transaction, a better approach would be
to create first bank transaction schedulers (for recurring payments for e.g).

On the page of the bank account, click on the link Schedule in the menu tab
links. You are redirected to the scheduler overview page. On this page, you
could:

	see a summary of periodic debit/credit

	add/edit/delete scheduler

Fields

Some fields need more explanations:

Period

For the moment, there are two kinds of periods:

	weekly: clone bank transactions every week for a given date, depending on
localization (i.e. first day of the week).

	monthly: clone bank transactions every month for a given date. Don’t worry,
each month is properly respected : The 2015-01-29 will be 2015-02-28 for the
next month.

Recurrence

You can specify how many time the scheduler will be repeat with the
recurrence field. Leave it empty to be repeated indefinitely.
If not infinite, when 0 is reached, the scheduler is automatically deleted.

Date

The date is used to be repeated for the next corresponding period. For
example, if you have a rent every 10 of the month, you should write
a date where day is 10, and month is the current month (not the next
month), even if the current day is 26 for example.

Warning

Keep in mind that when the background task (cron) would try to
clone a bank transaction, it will create it for the next date.

Start now

When you create a scheduler, you may be interesting in running it immediately.
However be careful, it would create a new bank transaction for the next
period based on the date/period given. Thus, if you want to create an automatic
bank transaction for the current month, the date field must be set for the
previous month.

Bank transactions

Once bank accounts, tags, and schedulers are created, you could now begin to
create other bank transactions. You can manage bank transactions from the
related bank account page overview:

	add

	edit

	delete

On the bank account page, you can filter bank transactions. But also apply some
actions in bulk by checking the corresponding boxes:

	reconciled selected bank transactions

	unreconciled selected bank transactions

	delete

Bank transactions alter the bank account balance when they are:

	created

	updated

	deleted

If you don’t want to apply these alterations, you may set the bank
transaction’s status to inactive. See Status.

Fields

Some fields need more explanations:

Status

Each statuses may have the following actions:

	Status

	Alter balance

	Statistics

	active

	Yes

	Yes

	ignored

	Yes

	No

	inactive

	No

	No

Indeed, bank transactions could:

	alter the bank account balance. Thus, they are used for the total of the
balance (future, current, reconciled)

	being used for statistics (ratio and trendtime)

Active is the default status.
Ignored could be used for internal transfer for example. You may need it if
you want to alter the bank account balance but don’t want to pollute your
statistics with.
Inactive exists for purpose only. I didn’t find any use cases for it now.
May be changed/removed in the future.

Reconcile flag

This is a marker which indicates whether it is synchronous with your real bank
account. It is usefull to anticipate expenses for example. You can see a quick
summary of the reconciled balance as well as the total reconciled balance. On
the contrary, you can also see the balance from a given bank transaction or the
future total balance.

Statistics

You can check statistics for a given bank account. To do so, go on the bank
account page and click on the menu tab item Statistics.
You can then switch between two view modes:

	ratio report: based on tags

	trendtime report: based on dates

Each report provides some basic filters and a quick summary. Each summary has
more details when you click on a targeted item.

Ratio

Filter type: sum or single

Ratio statistics display results grouped by tags. To have relevant percentage,
numbers compared must be of the same sign (positive or negative). That’s why
there is two sub-types:

	expenses

	wages

For an expense search with single mode, each negative bank transactions
are used.
For an expenses search with sum mode, each negative sum of tags are used.

For example, imagine you do some shopping for $100. Unfortunetely, you discover
that an item isn’t good. You return it and get a refund of $25.
With single type filter, the amount used would be -$100. Whereas with sum
type filter, the amount used would be -100 + 25 = -$75.

Most of the time, the desired mode should be sum, that’s why this is the
default mode.

Back-office

Anytime, remember that if you need to bypass the default UI, you could still
use the default Django back-office, reachable at /admin (by default) with
a staff or superuser account.

Note

You can modify the setting ADMIN_BASE_URL to an other
value than admin for obvious security reason.

Warning

With the production setting template, the ADMIN_BASE_URL is
intentionally set to an empty value to throw a CRITICAL check messages when
the following command is run ./manage.py check --deploy.

Index

 _images/statistics-trendtime.png
Current account's trendtime statistics

®See Edit OScheduler i Statistics

Stat report

© Y Filters

Line J Month J B 07262015 Reconciled? J Reset

-500
1000
1500
2000
2500
3000
L L L L L L L L L L L L L L L L L e L 6 6 b 6 L O 6 b b b o o
§EFFFFESSFFFssssgsssgggyyyrygeseseees
® Y Summary
Date Balance Delta
07/01/2015 -993.98 -94.37 (10.49%)
07/02/2015 -1089.04 -95.06 (9.56%)
07/03/2015 111457 -25.53 (2.34%)
07/04/2015 -1126.00 -11.43 (1.03%)

_static/ajax-loader.gif

_images/bankaccount.png
MyMon: A

unts +

Current account

®See Edit OScheduler i Statistics
+ Actions ~
Futur balance: +€1,486.53 Current balance: +€273.96 Reconciled balance: +€31.84

® Y Filters

a Car

0o Rent
status? || Reconciear < Fiter A
0 Restaurant

Shopping

@ Actions

Date Label Reconciled Debit Credit Total balance Reconciled balance Payment method Status Scheduled Tags Memo Actions
08/15/2015 Council tax -99.89 513.47 -1968.16 & Active @ Tax ©-

08/12/2015 Restaurant -26.07 -413.58 -1968.16 Active Restaurant o~

08/10/2015 Rent -910.00 -387.51 -1968.16 & Active @ Rent ©-

08/09/2015 Shopping 02559 4522.49 -1968.16 Active Shopping o-

%

08/06/2015 Shopping -68.31 +615.08 -1968.16 Active Shopping o-

%

08/05/2015 Wages +2615.78 +673.30 -1968.16 Active @ ©-

08/03/2015 Shopping -47.68 -1942.39 -1968.16 Active Shopping o-

P |

07/30/2015 Restaurant -76.55 -1894.71 -1968.16 Active Restaurant o~

07/27/2015 Shopping ¥ 0212 -1818.16 -1968.16 Active Shopping o-

07/26/2015 Something ¢ -27.07 -1726.04 -1876.04 Active o~

p oo

R B E Gt s Ly BT EPP. . a o~

_images/statistics-ratio.png
Current account's ratio statistics

®see @Edit O Scheduler

SEQENSIM Trendime report

© Y Filters

Expenses J Doughnut J

Summary

Legend

o1 Statistics

B 07012015

Reconciled? j

- | 08012015

Car
Rent
Restaurant
Shopping

Tag
no tag
Shopping

Restaurant

Shopping: 20.07%

Percentage
51.14%
20.07%

17.27%

00

00

sum
-841.25
-330.21

.284.05

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 MyMoney’s user guide

 		
 Installation

 		
 Requirements

 		
 Deployment

 		
 Backend

 		
 Frontend

 		
 Internationalization

 		
 Demo

 		
 Tests

 		
 Tox

 		
 Manually

 		
 Users

 		
 Create a basic user

 		
 Permissions

 		
 Anonymous user

 		
 Bank accounts

 		
 Tags

 		
 Schedulers

 		
 Fields

 		
 Period

 		
 Recurrence

 		
 Date

 		
 Start now

 		
 Bank transactions

 		
 Fields

 		
 Status

 		
 Reconcile flag

 		
 Statistics

 		
 Ratio

 		
 Filter type: sum or single

 		
 Back-office

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

