HERCULES Documentation

Release v1.0

Ping He

Aug 22, 2019

Contents

1 HERCULES: A High-order Finite-difference Solver for Incompressible Boundary Layer Flows
1.1 Download
1.2 Installation
1.3 Tutorials e e e e e e e e e e e e
1.4 Development
1.5 Contact

00 00 W W N =

CHAPTER 1

HERCULES: A High-order Finite-difference Solver for Incompressible
Boundary Layer Flows

HERCULES is an open-source computational fluid dynamics (CFD) code for simulating incompressible boundary
layer flows. HERCULES is developed for high-performance turbulence simulations, and it can be used to conduct
direct numerical simulation (DNS) of neutrally and stably stratified turbulent open-/closed-channel flows, as well as
Ekman layer flows. HERCULES is written in Fortran 90. It has been tested on a number of HPC systems, e.g., ARL
HPC Excalibur, AFRL HPC Lightening, and TACC Stampede, and is shown to have excellent parallel efficiency with
up to 10,000 CPU cores.

HERCULES is configured for turbulent channel flow simulations in a rectangular wall-bounded domain with periodic
boundaries in the horizontal directions. It solves the Navier-Stokes equations and the temperature equation using a
high-order finite-difference approach. Spectral discretization can also be used for horizontal derivatives.

HERCULES Documentation, Release v1.0

The HERCULES repository comprises of five main directories:
¢ doc: documentation
* license: license files
* misc: some utilities for pre-processing
» src: HERCULES source code
* tutorials: sample DNS simulations

Contents:

1.1 Download

HERCULES-v1.0 is available at:
https://github.com/friedenhe/hercules/archive/v1.0.zip

2 Chapter 1. HERCULES: A High-order Finite-difference Solver for Incompressible Boundary Layer
Flows

https://github.com/friedenhe/hercules/archive/v1.0.zip

HERCULES Documentation, Release v1.0

The latest version is available at:

https://github.com/friedenhe/hercules

1.2 Installation

To install HERCULES, you need a Linux environment and these software packages:

1. A GNU or Intel C compiler, e.g., gcc or icc.

2. A GNU or Intel Fortran compiler, e.g., gfortran or ifort

3. A MPI software, e.g., openmpi, mvapich2, or mpich
NOTE: if you use the GNU C and Fortran compilers, your MPI software should be also compiled by GNU.
The installation of HERCULES is straightforward. If you use GNU compilers, run:

sh install_GNU.sh

The installation will be automatically done.

NOTE: HERCULES depends on two external libs: FFTW and 2DECOMP_FFT. So when you run install_GNU.sh,
these two libs will be (automatically) compiled first.

If you use Intel compilers, run this instead:

’sh install_Intel.sh

Similarly, you can install HERCULES on Cray by running:

’sh install_Cray_Intel.sh

After the installation is done, an executive named hercules.exe should be generated. This is the main program you
will use for DNS simulations. In addition, you should see a file named parameters.input which defines the input
parameters for the simulations. HERCULES comes with a default parameters.input file for DNS of plane closed-
channel flows at Re_tau=180.

1.3 Tutorials

To run HERCULES, you need the main program hercules.exe (which should be generated after the installation) and
the input file parameters.input. See the detailed explanation of the input parameters at the end of this page. In
addition, you need to put the initial turbulent flow fields in the results folder. Otherwise, it will take a very long time
to generate turbulence from a laminar flow field.

When you run hercules.exe, the code will try to read initial fields named init_u.dat, init_v.dat, etc. from the results
folder. The best way to get the initial flow fields is from your previous simulations. Note that HERCULES will save
intermediate flow fields named bak_u.dat, bak_v.dat, etc. for re-start runs. You can rename them to init_u.dat,
init_v.dat, etc.

The above trick will not work if you are running HERCULES for the first time. Therefore, I prepare some coarse-
resolution initial turbulent flow fields (e.g., coarse_u_32_cubic.dat) for your first run. These coarse flow fields come
with HERCULES, they are in the misc/Turb_Gen folder. To interpolate these coarse-resolution flow fields to any
resolution you need, you can use the Matlab code Interpolate_Initial_Fields.m provided in the misc/Turb_Gen
folder. After you run the Matlab code, some initial fields named init_u.dat, init_v.dat, etc. will be generated. You
need to move these files to the results folder.

1.2. Installation 3

https://github.com/friedenhe/hercules

HERCULES Documentation, Release v1.0

NOTE: if you don’t have an access to Matlab, use Octave (https://www.gnu.org/software/octave) instead. Octave is a
free alternative to Matlab and it can be installed on Ubuntu by running:

sudo apt-get install octave

To run the Matlab script using Octave, do:

’octave Interpolate_Initial_Fields.m

The followings are the specific steps you need to follow to run HERCULES for a few DNS benchmarks.
1. Plane Closed-channel Flows at Re_tau=180

This is a classical DNS benchmark case for turbulent channel flows, please refer to Moser, Kim, and Man-
sour (1999), “Direct numerical simulation of turbulent channel flow up to Re_tau=590" in Physics of Fluids.
(hereinafter referred to as MKM99).

Since the default setup of HERCULES is for MKM99, you don’t need to change parameters.input. You only
need to prepare some initial turbulent fields. Here are the steps you need to follow.

* Go to the misc/Turb_Gen folder, and run the Matlab script Interpolate_Initial_Fields.m. This script will
generate some files named init_u.dat, init_v.dat, etc.

¢ Move the generated files init_u.dat, init_v.dat, etc. to the results folder.

¢ In the main folder, start the simulation using 2 CPU cores by running:

mpirun -np 2 hercules.exe

* The simulation results (including the instantaneous, mean, and re-start files) will be stored in the results
folder. These files are in binary format. To plot the results (e.g., the mean profiles), you can use the Matlab
script Plot_Mean_Profiles.m in the /misc/Post_Processing folder.

¢ By default, the simulation will be run for 20 non-dimensional times. You probably need a longer time for
a fully developed turbulent field. To do this, after the above simulation is done, you can rename the re-start
files bak_u.dat to init_u.dat (same for other variables). Then, you can re-run the simulation with the new
initial fields:

’mpirun -np 2 hercules.exe

* If you want to use more CPU cores, you need to change p_row and p_col in parameters.input accordingly.
For example, you want to run HERCULES using 8 cores, you need to change p_row=4 and p_col=2 in
parameters.input, and run:

mpirun -np 8 hercules.exe

So far, you should be able to run HERCULES for the MKM99 case. Good luck!
2. Stably Stratified Closed-channel Flows at Re_tau=180 and Ri_tau=18

This is a benchmark case for stratified turbulent channel flows, please refer to Garcia-Villalba and del Alamo
(2011), “Turbulence modification by stable stratification in channel flow” in Physics of Fluids (hereinafter re-
ferred to as GD11).

To run HERCULES for GD11, you need to change some parameters in parameters.input. In addition, you
need to prepare some initial turbulent fields. Here are the steps you need to follow.

* Copy tutorials/parameters.input.GD11 to the main folder and rename it to parameters.input; replace
the old parameters.input.

4 Chapter 1. HERCULES: A High-order Finite-difference Solver for Incompressible Boundary Layer
Flows

https://www.gnu.org/software/octave

HERCULES Documentation, Release v1.0

* Go to the misc/Turb_Gen folder. In the Matlab script Interpolate_Initial_Fields.m, change nx2=288,
ny2=288, nz2=128. These are the grid numbers we need for the GD11 case. Run the script, and it will
generate some files named init_u.dat, init_v.dat, etc.

* Move the generated files init_u.dat, init_v.dat, etc. to the results folder.

¢ In the main folder, start the simulation using 2 CPU cores by running:

mpirun -np 2 hercules.exe

You can follow the steps 4 and 5 in the MKM99 case for plotting the output and doing the re-start runs.
3. Neutrally Stratified Ekman Layer Flows at Re_g=400

This is a benchmark case for Ekman layer flows, please refer to Coleman, Ferziger, and Spalart (1990), “A
numerical study of the turbulent Ekman layer” in Journal of Fluid Mechanics. (hereinafter referred to as CFS90).
Here are the steps you need to follow.

¢ Copy tutorials/parameters.input.CFS90 to the main folder and rename it to parameters.input; replace
the old parameters.input.

* Go to the misc/Turb_Gen folder. In the Matlab script nterpolate_Initial_Fields.m, change nx2=288,
ny2=288, nz2=128. In addition, change Uscaling=0.06. Note that we need to scale the initial field for the
CFS90 case. Run the script, and it will generate some files named init_u.dat, init_v.dat, etc.

* Move the generated files init_u.dat, init_v.dat, etc. to the results folder.

¢ In the main folder, start the simulation using 2 CPU cores by running:

mpirun -np 2 hercules.exe

Again, the CFS90 case needs a longer time to converge, you can follow the steps 4 and 5 in the MKM99 case
for plotting the output and doing the re-start runs.

Here is a sample parameters.input file for the MKM99 case. The meaning of each parameter is explained as

follows:

&domain
p_row = 2
p_col =1
1x = 12.56637061
1y = 4.188790205
1z = 2.0
nx = 256
ny = 192
nz = 128
zstretch = 1.1
ochannel =0

/

&modeling
dp_opt =1
cds = 2
issk =1
dts = 2
isnoise =0
noise_mag = 0.1
isdamp =0
nzdamp = 15
cdamp = 0.01

(continues on next page)

1.3. Tutorials 5

HERCULES Documentation, Release v1.0

(continued from previous page)

&constants
nu
alpha
got
fc
ug
vg
dt
imax
u_mrf
isscalar
t_ref
tbot
ttop
is_ri_var
ri_str
ri_end

&io
restart
istmsr
ibackup
iinstfl
imeanfl
isxy2d
xy2d_id
isxz2d
xz2d_1id
isyzz2d
yz2d_id
intv_2d

.005555556
.007936508

O O O O

1

1
2000
2000
2000
0
10,32, 64
0
32,64
0
32,64
1000

p_row, p_col These two parameters control the domain decomposition in the x and y directions for parallel simu-
lation. The grid numbers nx and ny should be divisible by p_row, and the grid numbers ny and nz should be
divisible by p_col. Make sure to use p_row*p_col cores for parallel simulation. To ensure high parallel effi-
ciency, p_row shouldn’t be too close to nx and ny, and p_col shouldn’t be too close to ny and nz. In addition,

p_row and p_col should be as close as possible.
Ix, ly, 1z Domain sizes in the x, y, and z directions.

nx, ny, nz Number of cells in the x, y, and z directions.

zstretch This parameter controls the grid refinement near the wall. The larger zstretch the finner grids near the wall.
The default value for zstretch is 1.1.

ochannel This parameter controls the channel configuration. 0: closed channel flows (non-slip boundary condition
for the top and bottom walls). 1: open channel flows (non-slip and slip boundary conditions for the bottom and
top walls, respectively).

dp_opt This parameter controls the options to drive the flow. 1: constant friction. Re and Ri are friction Reynolds
number and Richardson number in this case. 2: constant bulk velocity. Re and Ri are bulk Reynolds number
and Richardson number in this case. 3: constant geostrophic wind for Ekman layer. Re and Ri are geostrophic

Reynolds number and and bulk Richardson number in this case.

cds Differential scheme for spatial derivatives in the horizontal directions. 1: 2nd order central difference scheme. 2:

6 Chapter 1. HERCULES: A High-order Finite-difference Solver for Incompressible Boundary Layer

Flows

HERCULES Documentation, Release v1.0

4th order central difference scheme. 3: Spectral method.

issk If the nonlinear terms are casted in skew-symmetric form (only for cds=3). For the spectral method, the skew-
symmetric form has a better numerical stability (compared with the divergence form) and is strongly recom-
mended. 0: no. 1: yes.

dts Time advancement scheme for the convective terms (for the diffusion term, the Crank-Nicolson scheme is used.)
1: 2nd order Adam-Bashforth. 2: 3rd order Runge-Kutta.

isnoise, noise_mag Add random noise for the initial fields (to generate turbulence). isnoise=1: add random noise to
the initial fields. noise_mag: the magnitude (%) of the random noise if isnoise=1.

isdamp, nzdamp, cdamp Rayleigh damping parameters. isdamp=1: apply Rayleigh damping to the domain top.
nzdamp: how many points for damping if isdamp=1. cdamp: damping coefficient if isdamp=1.

nu Kinematic viscosity. For the constant friction simulations (dp_opt=1), set nu=1/Re_tau. Similarly, for the constant
mass flow rate simulation, set nu=1/Re_b. For the Ekman layer case, set nu=1/Re_g.

alpha Thermal diffusivity. Usually, we set alpha=nu/Pr, where Pr=0.7.

got g/T. Here g is the gravitational acceleration and T is temperature. Set this parameter to non-zero for stratified flow
simulation. For the constant friction simulations (dp_opt=1), set got=Ri_tau. Similarly, for the constant mass
flow rate simulation, set got=Ri_b. For the Ekman layer case, set got=Ri_g.

fc Coriolis parameter. This parameter is for Ekman layer simulation. Set it to nu*2.0.
ug, vg Geostrophic wind speeds. Set ug to 1.0 for Ekman layer simulation.

dt Time step. dt is restricted by the maximal CFL number.

imax How many steps to run.

u_mrf Moving speed of the reference frame. The default value is 0. Set it to be about half of the bulk velocity can
reduce the maximal CFL number.

isscalar Whether to include scalar (temperature) for the simulation.

tbot and ttop Bottom wall and top wall temperature. For stratified closed channel flow case, set tbot=-0.5 and
ttop=0.5. For stratified open-channel case, set tbot=-1.0 and ttop=0.0.

is_ri_var and ri_str and ri_end These parameters define the time-varying Richardson number value during the sim-
ulation. is_ri_var=1: Richardson number will vary during the simulation. ri_str: initial ri value if is_ri_var=1.
ri_end: final ri value if is_ri_var=1.

restart 1: read initial field from ‘“results/init_u.dat”, “results/init_v.dat”, etc. 0: use a default initial field
(u=0,v=0,w=0,t=0,p=0).

istmsr istmsr=1: output time-series of u, v, w, p, t collected from a vertical line in the center of the domain.

ibackup, iinstfl, imeanfl These parameters control the output frequency of the backup, instantaneous, and mean
fields. ibackup: output frequency of the backup fields. iinstfl: output frequency of the instantaneous fields.
imeanfl: output frequency of the mean fields.

isxy2d, xy2d_id isxy2d=1: output 2D slices of u, v, w, t at specific x-y planes. xy2d_id: the k index for the 2D slice,
you can give values for multiple levels.

isxz2d,xz2d_id isxz2d=1: output 2D slices of u, v, w, t at specific x-z planes. xz2d_id: the j index for the 2D slice,
you can give values for multiple levels.

isyz2d, yz2d_id isyz2d=1: output 2D slices of u, v, w, t at specific y-z planes. yz2d_id: the i index for the 2D slice,
you can give values for multiple levels.

intv_2d The output frequency of the 2D slices output (steps).

1.3. Tutorials 7

HERCULES Documentation, Release v1.0

1.4 Development

HERCULES is written in Fortran 90. The Doxygen documentation of it source codes is at:

HERCULES Doxygen

1.5 Contact

If you have questions, please contact: Ping He (friedenhe @ gmail.com)

8 Chapter 1. HERCULES: A High-order Finite-difference Solver for Incompressible Boundary Layer
Flows

_static/HERCULES/index.html
mailto:friedenhe@gmail.com

	HERCULES: A High-order Finite-difference Solver for Incompressible Boundary Layer Flows
	Download
	Installation
	Tutorials
	Development
	Contact

