

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/mxnetjl/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/mxnetjl/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

MXNet Documentation

MXNet.jl [https://github.com/dmlc/MXNet.jl] is the
Julia [http://julialang.org/] package of
dmlc/mxnet [https://github.com/dmlc/mxnet]. MXNet.jl brings flexible and efficient GPU
computing and state-of-art deep learning to Julia. Some highlight of features
include:

	Efficient tensor/matrix computation across multiple devices,
including multiple CPUs, GPUs and distributed server nodes.

	Flexible symbolic manipulation to composite and construct
state-of-the-art deep learning models.

For more details, see documentation below. Please also checkout the
examples [https://github.com/dmlc/MXNet.jl/tree/master/examples] directory.

Tutorials

Pages = [
 "tutorial/mnist.md",
 "tutorial/char-lstm.md",
]
Depth = 2

User’s Guide

Pages = [
 "user-guide/install.md",
 "user-guide/overview.md",
 "user-guide/faq.md",
]
Depth = 2

API Documentation

Pages = [
 "api/context.md",
 "api/ndarray.md",
 "api/symbolic-node.md",
 "api/model.md",
 "api/initializers.md",
 "api/optimizers.md",
 "api/callbacks.md",
 "api/metric.md",
 "api/io.md",
 "api/nn-factory.md",
 "api/executor.md",
 "api/visualize.md",
]

API Documentation

Pages = ["api/context.md", "api/model.md", "api/initializers.md", "api/optimizers.md", "api/callbacks.md", "api/metric.md", "api/io.md", "api/ndarray.md", "api/symbolic-node.md", "api/nn-factory.md", "api/executor.md", "api/visualize.md"]

Digit Recognition on MNIST

In this tutorial, we will work through examples of training a simple
multi-layer perceptron and then a convolutional neural network (the
LeNet architecture) on the MNIST handwritten digit
dataset [http://yann.lecun.com/exdb/mnist/]. The code for this tutorial
could be found in
examples/mnist [https://github.com/dmlc/MXNet.jl/tree/master/examples/mnist]. There are also two Jupyter notebooks that expand a little more on the MLP [https://github.com/ultradian/julia_notebooks/blob/master/mxnet/mnistMLP.ipynb] and the LeNet [https://github.com/ultradian/julia_notebooks/blob/master/mxnet/mnistLenet.ipynb], using the more general ArrayDataProvider.

Simple 3-layer MLP

This is a tiny 3-layer MLP that could be easily trained on CPU. The
script starts with

using MXNet

to load the MXNet module. Then we are ready to define the network
architecture via the symbolic API. We start
with a placeholder data symbol,

data = mx.Variable(:data)

and then cascading fully-connected layers and activation functions:

fc1 = mx.FullyConnected(data, name=:fc1, num_hidden=128)
act1 = mx.Activation(fc1, name=:relu1, act_type=:relu)
fc2 = mx.FullyConnected(act1, name=:fc2, num_hidden=64)
act2 = mx.Activation(fc2, name=:relu2, act_type=:relu)
fc3 = mx.FullyConnected(act2, name=:fc3, num_hidden=10)

Note each composition we take the previous symbol as the first argument,
forming a feedforward chain. The architecture looks like

Input --> 128 units (ReLU) --> 64 units (ReLU) --> 10 units

where the last 10 units correspond to the 10 output classes (digits
0,...,9). We then add a final SoftmaxOutput operation to turn the
10-dimensional prediction to proper probability values for the 10
classes:

mlp = mx.SoftmaxOutput(fc3, name=:softmax)

As we can see, the MLP is just a chain of layers. For this case, we can
also use the mx.chain macro. The same architecture above can be
defined as

mlp = @mx.chain mx.Variable(:data) =>
 mx.FullyConnected(name=:fc1, num_hidden=128) =>
 mx.Activation(name=:relu1, act_type=:relu) =>
 mx.FullyConnected(name=:fc2, num_hidden=64) =>
 mx.Activation(name=:relu2, act_type=:relu) =>
 mx.FullyConnected(name=:fc3, num_hidden=10) =>
 mx.SoftmaxOutput(name=:softmax)

After defining the architecture, we are ready to load the MNIST data.
MXNet.jl provide built-in data providers for the MNIST dataset, which
could automatically download the dataset into
Pkg.dir("MXNet")/data/mnist if necessary. We wrap the code to
construct the data provider into mnist-data.jl so that it could be
shared by both the MLP example and the LeNet ConvNets example.

batch_size = 100
include("mnist-data.jl")
train_provider, eval_provider = get_mnist_providers(batch_size)

If you need to write your own data providers for customized data format,
please refer to mx.AbstractDataProvider.

Given the architecture and data, we can instantiate an model to do the
actual training. mx.FeedForward is the built-in model that is suitable
for most feed-forward architectures. When constructing the model, we
also specify the context on which the computation should be carried
out. Because this is a really tiny MLP, we will just run on a single CPU
device.

model = mx.FeedForward(mlp, context=mx.cpu())

You can use a mx.gpu() or if a list of devices (e.g.
[mx.gpu(0), mx.gpu(1)]) is provided, data-parallelization will be used
automatically. But for this tiny example, using a GPU device might not
help.

The last thing we need to specify is the optimization algorithm (a.k.a.
optimizer) to use. We use the basic SGD with a fixed learning rate 0.1
and momentum 0.9:

optimizer = mx.SGD(lr=0.1, momentum=0.9, weight_decay=0.00001)

Now we can do the training. Here the n_epoch parameter specifies that
we want to train for 20 epochs. We also supply a eval_data to monitor
validation accuracy on the validation set.

mx.fit(model, optimizer, train_provider, n_epoch=20, eval_data=eval_provider)

Here is a sample output

INFO: Start training on [CPU0]
INFO: Initializing parameters...
INFO: Creating KVStore...
INFO: == Epoch 001 ==========
INFO: ## Training summary
INFO: :accuracy = 0.7554
INFO: time = 1.3165 seconds
INFO: ## Validation summary
INFO: :accuracy = 0.9502
...
INFO: == Epoch 020 ==========
INFO: ## Training summary
INFO: :accuracy = 0.9949
INFO: time = 0.9287 seconds
INFO: ## Validation summary
INFO: :accuracy = 0.9775

Convolutional Neural Networks

In the second example, we show a slightly more complicated architecture
that involves convolution and pooling. This architecture for the MNIST
is usually called the [LeNet]_. The first part of the architecture is
listed below:

input
data = mx.Variable(:data)

first conv
conv1 = @mx.chain mx.Convolution(data, kernel=(5,5), num_filter=20) =>
 mx.Activation(act_type=:tanh) =>
 mx.Pooling(pool_type=:max, kernel=(2,2), stride=(2,2))

second conv
conv2 = @mx.chain mx.Convolution(conv1, kernel=(5,5), num_filter=50) =>
 mx.Activation(act_type=:tanh) =>
 mx.Pooling(pool_type=:max, kernel=(2,2), stride=(2,2))

We basically defined two convolution modules. Each convolution module is
actually a chain of Convolution, tanh activation and then max
Pooling operations.

Each sample in the MNIST dataset is a 28x28 single-channel grayscale
image. In the tensor format used by NDArray, a batch of 100 samples is
a tensor of shape (28,28,1,100). The convolution and pooling operates
in the spatial axis, so kernel=(5,5) indicate a square region of
5-width and 5-height. The rest of the architecture follows as:

first fully-connected
fc1 = @mx.chain mx.Flatten(conv2) =>
 mx.FullyConnected(num_hidden=500) =>
 mx.Activation(act_type=:tanh)

second fully-connected
fc2 = mx.FullyConnected(fc1, num_hidden=10)

softmax loss
lenet = mx.Softmax(fc2, name=:softmax)

Note a fully-connected operator expects the input to be a matrix.
However, the results from spatial convolution and pooling are 4D
tensors. So we explicitly used a Flatten operator to flat the tensor,
before connecting it to the FullyConnected operator.

The rest of the network is the same as the previous MLP example. As
before, we can now load the MNIST dataset:

batch_size = 100
include("mnist-data.jl")
train_provider, eval_provider = get_mnist_providers(batch_size; flat=false)

Note we specified flat=false to tell the data provider to provide 4D
tensors instead of 2D matrices because the convolution operators needs
correct spatial shape information. We then construct a feedforward model
on GPU, and train it.

fit model
model = mx.FeedForward(lenet, context=mx.gpu())

optimizer
optimizer = mx.SGD(lr=0.05, momentum=0.9, weight_decay=0.00001)

fit parameters
mx.fit(model, optimizer, train_provider, n_epoch=20, eval_data=eval_provider)

And here is a sample of running outputs:

INFO: == Epoch 001 ==========
INFO: ## Training summary
INFO: :accuracy = 0.6750
INFO: time = 4.9814 seconds
INFO: ## Validation summary
INFO: :accuracy = 0.9712
...
INFO: == Epoch 020 ==========
INFO: ## Training summary
INFO: :accuracy = 1.0000
INFO: time = 4.0086 seconds
INFO: ## Validation summary
INFO: :accuracy = 0.9915

Predicting with a trained model

Predicting with a trained model is very simple. By calling mx.predict
with the model and a data provider, we get the model output as a Julia
Array:

probs = mx.predict(model, eval_provider)

The following code shows a stupid way of getting all the labels from the
data provider, and compute the prediction accuracy manually:

collect all labels from eval data
labels = Array[]
for batch in eval_provider
 push!(labels, copy(mx.get_label(batch)))
end
labels = cat(1, labels...)

Now we use compute the accuracy
correct = 0
for i = 1:length(labels)
 # labels are 0...9
 if indmax(probs[:,i]) == labels[i]+1
 correct += 1
 end
end
println(mx.format("Accuracy on eval set: {1:.2f}%", 100correct/length(labels)))

Alternatively, when the dataset is huge, one can provide a callback to
mx.predict, then the callback function will be invoked with the
outputs of each mini-batch. The callback could, for example, write the
data to disk for future inspection. In this case, no value is returned
from mx.predict. See also predict.

Generating Random Sentence with LSTM RNN

This tutorial shows how to train a LSTM (Long short-term memory) RNN
(recurrent neural network) to perform character-level sequence training
and prediction. The original model, usually called char-rnn is
described in Andrej Karpathy’s
blog [http://karpathy.github.io/2015/05/21/rnn-effectiveness/], with a
reference implementation in Torch available
here [https://github.com/karpathy/char-rnn].

Because MXNet.jl does not have a specialized model for recurrent neural
networks yet, the example shown here is an implementation of LSTM by
using the default FeedForward model via explicitly unfolding over time.
We will be using fixed-length input sequence for training. The code is
adapted from the char-rnn example for MXNet’s Python
binding [https://github.com/dmlc/mxnet/blob/master/example/rnn/char_lstm.ipynb],
which demonstrates how to use low-level
Symbolic API to build customized neural
network models directly.

The most important code snippets of this example is shown and explained
here. To see and run the complete code, please refer to the
examples/char-lstm [https://github.com/dmlc/MXNet.jl/tree/master/examples/char-lstm]
directory. You will need to install
Iterators.jl [https://github.com/JuliaLang/Iterators.jl] and
StatsBase.jl [https://github.com/JuliaStats/StatsBase.jl] to run this
example.

LSTM Cells

Christopher Olah has a great blog post about LSTM [http://colah.github.io/posts/2015-08-Understanding-LSTMs/] with
beautiful and clear illustrations. So we will not repeat the definition
and explanation of what an LSTM cell is here. Basically, an LSTM cell
takes input x, as well as previous states (including c and h), and
produce the next states. We define a helper type to bundle the two state
variables together:

Because LSTM weights are shared at every time when we do explicit
unfolding, so we also define a helper type to hold all the weights (and
bias) for an LSTM cell for convenience.

Note all the variables are of type SymbolicNode. We will construct the
LSTM network as a symbolic computation graph, which is then instantiated
with NDArray for actual computation.

The following figure is stolen (permission requested) from Christopher
Olah’s blog [http://colah.github.io/posts/2015-08-Understanding-LSTMs/],
which illustrate exactly what the code snippet above is doing.

[image: image]

In particular, instead of defining the four gates independently, we do
the computation together and then use SliceChannel to split them into
four outputs. The computation of gates are all done with the symbolic
API. The return value is a LSTM state containing the output of a LSTM
cell.

Unfolding LSTM

Using the LSTM cell defined above, we are now ready to define a function
to unfold a LSTM network with L layers and T time steps. The first part
of the function is just defining all the symbolic variables for the
shared weights and states.

The embed_W is the weights used for character embedding — i.e.
mapping the one-hot encoded characters into real vectors. The pred_W
and pred_b are weights and bias for the final prediction at each time
step.

Then we define the weights for each LSTM cell. Note there is one cell
for each layer, and it will be replicated (unrolled) over time. The
states are, however, not shared over time. Instead, here we define the
initial states here at the beginning of a sequence, and we will update
them with the output states at each time step as we explicitly unroll
the LSTM.

Unrolling over time is a straightforward procedure of stacking the
embedding layer, and then LSTM cells, on top of which the prediction
layer. During unrolling, we update the states and collect all the
outputs. Note each time step takes data and label as inputs. If the LSTM
is named as :ptb, the data and label at step t will be named
:ptb_data_$t and :ptb_label_$t. Late on when we prepare the data, we
will define the data provider to match those names.

Note at each time step, the prediction is connected to a SoftmaxOutput
operator, which could back propagate when corresponding labels are
provided. The states are then connected to the next time step, which
allows back propagate through time. However, at the end of the sequence,
the final states are not connected to anything. This dangling outputs is
problematic, so we explicitly connect each of them to a BlockGrad
operator, which simply back propagates 0-gradient and closes the
computation graph.

In the end, we just group all the prediction outputs at each time step
as a single SymbolicNode and return. Optionally we will also group the
final states, this is used when we use the trained LSTM to sample
sentences.

Data Provider for Text Sequences

Now we need to construct a data provider that takes a text file, divide
the text into mini-batches of fixed-length character-sequences, and
provide them as one-hot encoded vectors.

Note the is no fancy feature extraction at all. Each character is simply
encoded as a one-hot vector: a 0-1 vector of the size given by the
vocabulary. Here we just construct the vocabulary by collecting all the
unique characters in the training text – there are not too many of them
(including punctuations and whitespace) for English text. Each input
character is then encoded as a vector of 0s on all coordinates, and 1 on
the coordinate corresponding to that character. The
character-to-coordinate mapping is giving by the vocabulary.

The text sequence data provider implements the Data Providers api. We define the CharSeqProvider as below:

The provided data and labels follow the naming convention of inputs used
when unrolling the LSTM. Note in the code below, apart from
$name_data_$t and $name_label_$t, we also provides the initial c
and h states for each layer. This is because we are using the
high-level FeedForward API, which has no idea about time and states. So
we will feed the initial states for each sequence from the data
provider. Since the initial states is always zero, we just need to
always provide constant zero blobs.

Next we implement the eachbatch method from the mx.AbstractDataProvider interface for the
provider. We start by defining the data and label arrays, and the
DataBatch object we will provide in each iteration.

The actual data providing iteration is implemented as a Julia
coroutine. In this way, we can write the data loading logic as a
simple coherent for loop, and do not need to implement the interface
functions like Base.start, Base.next, etc.

Basically, we partition the text into batches, each batch containing
several contiguous text sequences. Note at each time step, the LSTM is
trained to predict the next character, so the label is the same as the
data, but shifted ahead by one index.

Training the LSTM

Now we have implemented all the supporting infrastructures for our
char-lstm. To train the model, we just follow the standard high-level
API. Firstly, we construct a LSTM symbolic architecture:

Note all the parameters are defined in
examples/char-lstm/config.jl [https://github.com/dmlc/MXNet.jl/blob/master/examples/char-lstm/config.jl].
Now we load the text file and define the data provider. The data
input.txt we used in this example is a tiny Shakespeare
dataset [https://github.com/dmlc/web-data/tree/master/mxnet/tinyshakespeare].
But you can try with other text files.

The last step is to construct a model, an optimizer and fit the mode to
the data. We are using the ADAM optimizer [Adam]_ in this example.

Note we are also using a customized NLL evaluation metric, which
calculate the negative log-likelihood during training. Here is an output
sample at the end of the training process.

...
INFO: Speed: 357.72 samples/sec
INFO: == Epoch 020 ==========
INFO: ## Training summary
INFO: NLL = 1.4672
INFO: perplexity = 4.3373
INFO: time = 87.2631 seconds
INFO: ## Validation summary
INFO: NLL = 1.6374
INFO: perplexity = 5.1418
INFO: Saved checkpoint to 'char-lstm/checkpoints/ptb-0020.params'
INFO: Speed: 368.74 samples/sec
INFO: Speed: 361.04 samples/sec
INFO: Speed: 360.02 samples/sec
INFO: Speed: 362.34 samples/sec
INFO: Speed: 360.80 samples/sec
INFO: Speed: 362.77 samples/sec
INFO: Speed: 357.18 samples/sec
INFO: Speed: 355.30 samples/sec
INFO: Speed: 362.33 samples/sec
INFO: Speed: 359.23 samples/sec
INFO: Speed: 358.09 samples/sec
INFO: Speed: 356.89 samples/sec
INFO: Speed: 371.91 samples/sec
INFO: Speed: 372.24 samples/sec
INFO: Speed: 356.59 samples/sec
INFO: Speed: 356.64 samples/sec
INFO: Speed: 360.24 samples/sec
INFO: Speed: 360.32 samples/sec
INFO: Speed: 362.38 samples/sec
INFO: == Epoch 021 ==========
INFO: ## Training summary
INFO: NLL = 1.4655
INFO: perplexity = 4.3297
INFO: time = 86.9243 seconds
INFO: ## Validation summary
INFO: NLL = 1.6366
INFO: perplexity = 5.1378
INFO: Saved checkpoint to 'examples/char-lstm/checkpoints/ptb-0021.params'

Sampling Random Sentences

After training the LSTM, we can now sample random sentences from the
trained model. The sampler works in the following way:

	Starting from some fixed character, take a for example, and feed
it as input to the LSTM.

	The LSTM will produce an output distribution over the vocabulary and
a state in the first time step. We sample a character from the
output distribution, fix it as the second character.

	In the next time step, we feed the previously sampled character as
input and continue running the LSTM by also taking the previous
states (instead of the 0 initial states).

	Continue running until we sampled enough characters.

Note we are running with mini-batches, so several sentences could be
sampled simultaneously. Here are some sampled outputs from a network I
trained for around half an hour on the Shakespeare dataset. Note all the
line-breaks, punctuations and upper-lower case letters are produced by
the sampler itself. I did not do any post-processing.

Sample 1
all have sir,
Away will fill'd in His time, I'll keep her, do not madam, if they here? Some more ha?

Sample 2
am.

CLAUDIO:
Hone here, let her, the remedge, and I know not slept a likely, thou some soully free?

Sample 3
arrel which noble thing
The exchnachsureding worns: I ne'er drunken Biancas, fairer, than the lawfu?

Sample 4
augh assalu, you'ld tell me corn;
Farew. First, for me of a loved. Has thereat I knock you presents?

Sample 5
ame the first answer.

MARIZARINIO:
Door of Angelo as her lord, shrield liken Here fellow the fool ?

Sample 6
ad well.

CLAUDIO:
Soon him a fellows here; for her fine edge in a bogms' lord's wife.

LUCENTIO:
I?

Sample 7
adrezilian measure.

LUCENTIO:
So, help'd you hath nes have a than dream's corn, beautio, I perchas?

Sample 8
as eatter me;
The girlly: and no other conciolation!

BISTRUMIO:
I have be rest girl. O, that I a h?

Sample 9
and is intend you sort:
What held her all 'clama's for maffice. Some servant.' what I say me the cu?

Sample 10
an thoughts will said in our pleasue,
Not scanin on him that you live; believaries she.

ISABELLLLL?

See Andrej Karpathy’s blog
post [http://karpathy.github.io/2015/05/21/rnn-effectiveness/] on more
examples and links including Linux source codes, Algebraic Geometry
Theorems, and even cooking recipes. The code for sampling can be found
in
examples/char-lstm/sampler.jl [https://github.com/dmlc/MXNet.jl/blob/master/examples/char-lstm/sampler.jl].

Visualizing the LSTM

Finally, you could visualize the LSTM by calling to_graphviz on the
constructed LSTM symbolic architecture. We only show an example of
1-layer and 2-time-step LSTM below. The automatic layout produced by
GraphViz is definitely much less clear than Christopher Olah’s
illustrations [http://colah.github.io/posts/2015-08-Understanding-LSTMs/],
but could otherwise be very useful for debugging. As we can see, the
LSTM unfolded over time is just a (very) deep neural network. The
complete code for producing this visualization can be found in
examples/char-lstm/visualize.jl [https://github.com/dmlc/MXNet.jl/blob/master/examples/char-lstm/visualize.jl].

[image: image]

Installation Guide

Automatic Installation

To install MXNet.jl, simply type

Pkg.add("MXNet")

In the Julia REPL. Or to use the latest git version of MXNet.jl, use the
following command instead

Pkg.checkout("MXNet")

MXNet.jl is built on top of libmxnet [https://github.com/dmlc/mxnet].
Upon installation, Julia will try to automatically download and build
libmxnet.

There are three environment variables that change this behaviour. If you
already have a pre-installed version of mxnet you can use MXNET_HOME
to point the build-process in the right direction. If the automatic
cuda detection fails you can also set CUDA_HOME to override the process.
To control which version of libmxnet will be compiled, you can use the
MXNET_COMMIT variable to point to either a version tag (e.g. v0.10.0), a
branch name (e.g. master) or a specific commit hash (e.g. a0b1c2d3).

The libmxnet source is downloaded to Pkg.dir("MXNet", "deps", "src", "mxnet").
The automatic build is using default configurations, with OpenCV disabled.
If the compilation failed due to unresolved dependency, or if
you want to customize the build, you can compile and
install libmxnet manually. Please see below for more details.

Manual Compilation

It is possible to compile libmxnet separately and point MXNet.jl to a
existing library in case automatic compilation fails due to
unresolved dependencies in an non-standard environment; Or when one want
to work with a separate, maybe customized libmxnet.

To build libmxnet, please refer to the installation guide of
libmxnet [https://mxnet.incubator.apache.org/install/index.html]. After
successfully installing libmxnet, set the MXNET_HOME environment
variable to the location of libmxnet. In other words, the compiled
libmxnet.so should be found in $MXNET_HOME/lib.

note

The constant MXNET_HOME is pre-compiled in MXNet.jl package cache.
If you updated the environment variable after installing MXNet.jl,
make sure to update the pre-compilation cache by
Base.compilecache("MXNet").

When the MXNET_HOME environment variable is detected and the
corresponding libmxnet.so could be loaded successfully, MXNet.jl will
skip automatic building during installation and use the specified
libmxnet instead.

Basically, MXNet.jl will search libmxnet.so or libmxnet.dll in the
following paths (and in that order):

	$MXNET_HOME/lib: customized libmxnet builds

	Pkg.dir("MXNet", "deps", "usr", "lib"): automatic builds

	Any system wide library search path

Note that MXNet.jl can not load libmxnet.so even if it is on one of
the paths above in case a library it depends upon is missing from the
LD_LIBRARY_PATH. Thus, if you are going to compile to add CUDA, the
path to the CUDA libraries will have to be added to LD_LIBRARY_PATH.

Overview

MXNet.jl Namespace

Most the functions and types in MXNet.jl are organized in a flat
namespace. Because many some functions are conflicting with existing
names in the Julia Base module, we wrap them all in a mx module. The
convention of accessing the MXNet.jl interface is the to use the mx.
prefix explicitly:

julia> using MXNet

julia> x = mx.zeros(2,3) # MXNet NDArray
2×3 mx.NDArray{Float32} @ CPU0:
 0.0 0.0 0.0
 0.0 0.0 0.0

julia> y = zeros(eltype(x), size(x)) # Julia Array
2×3 Array{Float32,2}:
 0.0 0.0 0.0
 0.0 0.0 0.0

julia> copy!(y, x) # Overloaded function in Julia Base
2×3 Array{Float32,2}:
 0.0 0.0 0.0
 0.0 0.0 0.0

julia> z = mx.ones(size(x), mx.gpu()) # MXNet NDArray on GPU
2×3 mx.NDArray{Float32} @ GPU0:
 1.0 1.0 1.0
 1.0 1.0 1.0

julia> mx.copy!(z, y) # Same as copy!(z, y)
2×3 mx.NDArray{Float32} @ GPU0:
 0.0 0.0 0.0
 0.0 0.0 0.0

Note functions like size, copy! that is extensively overloaded for
various types works out of the box. But functions like zeros and
ones will be ambiguous, so we always use the mx. prefix. If you
prefer, the mx. prefix can be used explicitly for all MXNet.jl
functions, including size and copy! as shown in the last line.

Low Level Interface

NDArray

NDArray is the basic building blocks of the actual computations in
MXNet. It is like a Julia Array object, with some important
differences listed here:

	The actual data could live on different Context (e.g. GPUs). For
some contexts, iterating into the elements one by one is very slow,
thus indexing into NDArray is not recommanded in general. The easiest
way to inspect the contents of an NDArray is to use the copy
function to copy the contents as a Julia Array.

	Operations on NDArray (including basic arithmetics and neural
network related operators) are executed in parallel with automatic
dependency tracking to ensure correctness.

	There is no generics in NDArray, the eltype is always
mx.MX_float. Because for applications in machine learning, single
precision floating point numbers are typical a best choice balancing
between precision, speed and portability. Also since libmxnet is
designed to support multiple languages as front-ends, it is much
simpler to implement with a fixed data type.

While most of the computation is hidden in libmxnet by operators
corresponding to various neural network layers. Getting familiar with
the NDArray API is useful for implementing Optimizer or customized
operators in Julia directly.

The followings are common ways to create NDArray objects:

	mx.empty(shape[, context]): create on uninitialized array of a
given shape on a specific device. For example,
mx.empty(2,3), mx.((2,3), mx.gpu(2)).

	mx.zeros(shape[, context]) and mx.ones(shape[, context]):
similar to the Julia’s built-in zeros and ones.

	mx.copy(jl_arr, context): copy the contents of a Julia Array to
a specific device.

Most of the convenient functions like size, length, ndims,
eltype on array objects should work out-of-the-box. Although indexing
is not supported, it is possible to take slices:

using MXNet
a = mx.ones(2,3)
b = mx.slice(a, 1:2)
b[:] = 2
a

A slice is a sub-region sharing the same memory with the original
NDArray object. A slice is always a contiguous piece of memory, so only
slicing on the last dimension is supported. The example above also
shows a way to set the contents of an NDArray.

using MXNet
mx.srand(42)
a = mx.empty(2,3)
a[:] = 0.5 # set all elements to a scalar
a[:] = rand(size(a)) # set contents with a Julia Array
copy!(a, rand(size(a))) # set value by copying a Julia Array
b = mx.empty(size(a))
b[:] = a # copying and assignment between NDArrays

Note due to the intrinsic design of the Julia language, a normal
assignment

a = b

does not mean copying the contents of b to a. Instead, it just
make the variable a pointing to a new object, which is b.
Similarly, inplace arithmetics does not work as expected:

using MXNet
a = mx.ones(2)
r = a # keep a reference to a
b = mx.ones(2)
a += b # translates to a = a + b
a
r

As we can see, a has expected value, but instead of inplace updating,
a new NDArray is created and a is set to point to this new object. If
we look at r, which still reference to the old a, its content has
not changed. There is currently no way in Julia to overload the
operators like += to get customized behavior.

Instead, you will need to write a[:] = a + b, or if you want real
inplace += operation, MXNet.jl provides a simple macro @mx.inplace:

@mx.inplace a += b
macroexpand(:(@mx.inplace a += b))

As we can see, it translate the += operator to an explicit add_to!
function call, which invokes into libmxnet to add the contents of b
into a directly. For example, the following is the update rule in the
SGD Optimizer (both grad and weight are NDArray objects):

@inplace weight += -lr * (grad_scale * grad + self.weight_decay * weight)

Note there is no much magic in mx.inplace: it only does a shallow
translation. In the SGD update rule example above, the computation like
scaling the gradient by grad_scale and adding the weight decay all
create temporary NDArray objects. To mitigate this issue, libmxnet has a
customized memory allocator designed specifically to handle this kind of
situations. The following snippet does a simple benchmark on allocating
temp NDArray vs. pre-allocating:

using Benchmark
using MXNet

N_REP = 1000
SHAPE = (128, 64)
CTX = mx.cpu()
LR = 0.1

function inplace_op()
 weight = mx.zeros(SHAPE, CTX)
 grad = mx.ones(SHAPE, CTX)

 # pre-allocate temp objects
 grad_lr = mx.empty(SHAPE, CTX)

 for i = 1:N_REP
 copy!(grad_lr, grad)
 @mx.inplace grad_lr .*= LR
 @mx.inplace weight -= grad_lr
 end
 return weight
end

function normal_op()
 weight = mx.zeros(SHAPE, CTX)
 grad = mx.ones(SHAPE, CTX)

 for i = 1:N_REP
 weight[:] -= LR * grad
 end
 return weight
end

make sure the results are the same
@assert(maximum(abs(copy(normal_op() - inplace_op()))) < 1e-6)

println(compare([inplace_op, normal_op], 100))

The comparison on my laptop shows that normal_op while allocating a
lot of temp NDArray in the loop (the performance gets worse when
increasing N_REP), is only about twice slower than the pre-allocated
one.

Row	Function	Average	Relative	Replications
——	—————	————	———–	—————
1	“inplace_op”	0.0074854	1.0	100
2	“normal_op”	0.0174202	2.32723	100

So it will usually not be a big problem unless you are at the bottleneck
of the computation.

Distributed Key-value Store

The type KVStore and related methods are used for data sharing across
different devices or machines. It provides a simple and efficient
integer - NDArray key-value storage system that each device can pull or
push.

The following example shows how to create a local KVStore, initialize
a value and then pull it back.

using MXNet

kv = mx.KVStore(:local)
shape = (2, 3)
key = 3

mx.init!(kv, key, mx.ones(shape) * 2)
a = mx.empty(shape)
mx.pull!(kv, key, a) # pull value into a
a

Intermediate Level Interface

Symbols and Composition

The way we build deep learning models in MXNet.jl is to use the powerful
symbolic composition system. It is like
Theano [http://deeplearning.net/software/theano/], except that we
avoided long expression compilation time by providing larger neural
network related building blocks to guarantee computation performance.
See also this
note [http://mxnet.readthedocs.org/en/latest/program_model.html] for the
design and trade-off of the MXNet symbolic composition system.

The basic type is mx.SymbolicNode. The following is a trivial example of
composing two symbols with the + operation.

using MXNet

A = mx.Variable(:A)
B = mx.Variable(:B)
C = A + B
print(C) # debug printing

We get a new SymbolicNode by composing existing SymbolicNodes by some
operations. A hierarchical architecture of a deep neural network could
be realized by recursive composition. For example, the following code
snippet shows a simple 2-layer MLP construction, using a hidden layer of
128 units and a ReLU activation function.

using MXNet

net = mx.Variable(:data)
net = mx.FullyConnected(net, name=:fc1, num_hidden=128)
net = mx.Activation(net, name=:relu1, act_type=:relu)
net = mx.FullyConnected(net, name=:fc2, num_hidden=64)
net = mx.SoftmaxOutput(net, name=:out)
print(net) # debug printing

Each time we take the previous symbol, and compose with an operation.
Unlike the simple + example above, the operations here are “bigger”
ones, that correspond to common computation layers in deep neural
networks.

Each of those operation takes one or more input symbols for composition,
with optional hyper-parameters (e.g. num_hidden, act_type) to
further customize the composition results.

When applying those operations, we can also specify a name for the
result symbol. This is convenient if we want to refer to this symbol
later on. If not supplied, a name will be automatically generated.

Each symbol takes some arguments. For example, in the + case above, to
compute the value of C, we will need to know the values of the two
inputs A and B. For neural networks, the arguments are primarily two
categories: inputs and parameters. inputs are data and labels for
the networks, while parameters are typically trainable weights,
bias, filters.

When composing symbols, their arguments accumulates. We can list all the
arguments by

mx.list_arguments(net)

Note the names of the arguments are generated according to the provided
name for each layer. We can also specify those names explicitly:

using MXNet
net = mx.Variable(:data)
w = mx.Variable(:myweight)
net = mx.FullyConnected(net, weight=w, name=:fc1, num_hidden=128)
mx.list_arguments(net)

The simple fact is that a Variable is just a placeholder mx.SymbolicNode.
In composition, we can use arbitrary symbols for arguments. For example:

using MXNet
net = mx.Variable(:data)
net = mx.FullyConnected(net, name=:fc1, num_hidden=128)
net2 = mx.Variable(:data2)
net2 = mx.FullyConnected(net2, name=:net2, num_hidden=128)
mx.list_arguments(net2)
composed_net = net2(data2=net, name=:composed)
mx.list_arguments(composed_net)

Note we use a composed symbol, net as the argument data2 for net2
to get a new symbol, which we named :composed. It also shows that a
symbol itself is a call-able object, which can be invoked to fill in
missing arguments and get more complicated symbol compositions.

Shape Inference

Given enough information, the shapes of all arguments in a composed
symbol could be inferred automatically. For example, given the input
shape, and some hyper-parameters like num_hidden, the shapes for the
weights and bias in a neural network could be inferred.

using MXNet
net = mx.Variable(:data)
net = mx.FullyConnected(net, name=:fc1, num_hidden=10)
arg_shapes, out_shapes, aux_shapes = mx.infer_shape(net, data=(10, 64))

The returned shapes corresponds to arguments with the same order as
returned by mx.list_arguments. The out_shapes are shapes for
outputs, and aux_shapes can be safely ignored for now.

for (n, s) in zip(mx.list_arguments(net), arg_shapes)
 println("$n\t=> $s")
end

for (n, s) in zip(mx.list_outputs(net), out_shapes)
 println("$n\t=> $s")
end

Binding and Executing

In order to execute the computation graph specified a composed symbol,
we will bind the free variables to concrete values, specified as
mx.NDArray. This will create an mx.Executor on a given mx.Context.
A context describes the computation devices (CPUs, GPUs, etc.) and an
executor will carry out the computation (forward/backward) specified in
the corresponding symbolic composition.

using MXNet
A = mx.Variable(:A)
B = mx.Variable(:B)
C = A .* B
a = mx.ones(3) * 4
b = mx.ones(3) * 2
c_exec = mx.bind(C, context=mx.cpu(), args=Dict(:A => a, :B => b));

mx.forward(c_exec)
c_exec.outputs[1]
copy(c_exec.outputs[1]) # copy turns NDArray into Julia Array

For neural networks, it is easier to use simple_bind. By providing the
shape for input arguments, it will perform a shape inference for the
rest of the arguments and create the NDArray automatically. In practice,
the binding and executing steps are hidden under the Model interface.

TODO Provide pointers to model tutorial and further details about
binding and symbolic API.

High Level Interface

The high level interface include model training and prediction API, etc.

FAQ

Running MXNet on AWS GPU instances

See the discussions and notes
here [https://github.com/dmlc/MXNet.jl/issues/43].

Evaluation Metrics

Evaluation metrics provide a way to evaluate the performance of a learned model.
This is typically used during training to monitor performance on the validation
set.

Modules = [MXNet.mx]
Pages = ["metric.jl"]

Callback in training

Modules = [MXNet.mx]
Pages = ["callback.jl"]

Executor

Modules = [MXNet.mx]
Pages = ["executor.jl"]

Symbolic API

Modules = [MXNet.mx]
Pages = ["symbolic-node.jl"]

Context

Modules = [MXNet.mx]
Pages = ["context.jl"]

Optimizers

Modules = [MXNet.mx, MXNet.mx.LearningRate, MXNet.mx.Momentum]
Pages = ["optimizer.jl"]

Built-in optimizers

Stochastic Gradient Descent

Modules = [MXNet.mx]
Pages = ["optimizers/sgd.jl"]

ADAM

Modules = [MXNet.mx]
Pages = ["optimizers/adam.jl"]

AdaGrad

Modules = [MXNet.mx]
Pages = ["optimizers/adagrad.jl"]

AdaDelta

Modules = [MXNet.mx]
Pages = ["optimizers/adadelta.jl"]

AdaMax

Modules = [MXNet.mx]
Pages = ["optimizers/adamax.jl"]

RMSProp

Modules = [MXNet.mx]
Pages = ["optimizers/rmsprop.jl"]

Nadam

Modules = [MXNet.mx]
Pages = ["optimizers/nadam.jl"]

Initializer

Modules = [MXNet.mx]
Pages = ["initializer.jl"]

Model

The model API provides convenient high-level interface to do training and predicting on
a network described using the symbolic API.

Modules = [MXNet.mx]
Pages = ["model.jl"]

Neural Network Factory

Neural network factory provide convenient helper functions to define
common neural networks.

Modules = [MXNet.mx]
Pages = ["nn-factory.jl"]

NDArray API

Modules = [MXNet.mx]
Pages = ["ndarray.jl"]

Network Visualization

Modules = [MXNet.mx]
Pages = ["visualize.jl"]

Key-Value Store

Modules = [MXNet.mx]
Pages = ["kvstore.jl"]

Data Providers

Data providers are wrappers that load external data, be it images, text, or general tensors,
and split it into mini-batches so that the model can consume the data in a uniformed way.

AbstractDataProvider interface

mx.AbstractDataProvider

The difference between data and label is that during training stage,
both data and label will be feeded into the model, while during
prediction stage, only data is loaded. Otherwise, they could be anything, with any names, and
of any shapes. The provided data and label names here should match the input names in a target
SymbolicNode.

A data provider should also implement the Julia iteration interface, in order to allow iterating
through the data set. The provider will be called in the following way:

for batch in eachbatch(provider)
 data = get_data(provider, batch)
end

which will be translated by Julia compiler into

state = Base.start(eachbatch(provider))
while !Base.done(provider, state)
 (batch, state) = Base.next(provider, state)
 data = get_data(provider, batch)
end

By default, eachbatch simply returns the provider itself, so the iterator interface
is implemented on the provider type itself. But the extra layer of abstraction allows us to
implement a data provider easily via a Julia Task coroutine. See the
data provider defined in the char-lstm example for an example of using coroutine to define data
providers.

The detailed interface functions for the iterator API is listed below:

Base.eltype(provider) -> AbstractDataBatch

Returns the specific subtype representing a data batch. See AbstractDataBatch.

	provider::AbstractDataProvider: the data provider.

Base.start(provider) -> AbstractDataProviderState

This function is always called before iterating into the dataset. It should initialize
the iterator, reset the index, and do data shuffling if needed.

	provider::AbstractDataProvider: the data provider.

Base.done(provider, state) -> Bool

True if there is no more data to iterate in this dataset.

	provider::AbstractDataProvider: the data provider.

	state::AbstractDataProviderState: the state returned by Base.start and Base.next.

Base.next(provider) -> (AbstractDataBatch, AbstractDataProviderState)

Returns the current data batch, and the state for the next iteration.

	provider::AbstractDataProvider: the data provider.

Note sometimes you are wrapping an existing data iterator (e.g. the built-in libmxnet data iterator) that
is built with a different convention. It might be difficult to adapt to the interfaces stated here. In this
case, you can safely assume that

	Base.start will always be called, and called only once before the iteration starts.

	Base.done will always be called at the beginning of every iteration and always be called once.

	If Base.done return true, the iteration will stop, until the next round, again, starting with
a call to Base.start.

	Base.next will always be called only once in each iteration. It will always be called after
one and only one call to Base.done; but if Base.done returns true, Base.next will
not be called.

With those assumptions, it will be relatively easy to adapt any existing iterator. See the implementation
of the built-in MXDataProvider for example.

!!! note
Please do not use the one data provider simultaneously in two different places, either in parallel,
or in a nested loop. For example, the behavior for the following code is undefined

```julia
for batch in data
    # updating the parameters

    # now let's test the performance on the training set
    for b2 in data
        # ...
    end
end
```


mx.get_batch_size
mx.provide_data
mx.provide_label

AbstractDataBatch interface

mx.AbstractDataProviderState
mx.count_samples
mx.get_data
mx.get_label
mx.get
mx.load_data!
mx.load_label!

Implemented providers and other methods

Modules = [MXNet.mx]
Pages = ["io.jl"]

 _static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_images/LSTM3-chain.png
S

Enb>
X

