

 Navigation

 	
 index

 	
 next |

 	sbt-native-packager 1.0a1 documentation

 SBT Native Packager Plugin

 This sbt plugin provides you with everything you need to package your application.
 No matter if you want to build a simple standalone application or a server application.
 The JVM lets you run anywhere. SBT Native Packager lets you deploy everywhere!

 Getting Started »

 Installation

 Add the plugin to your plugins.sbt. If you use sbt 0.13.5
 or higher the you have just one line to add to your build.sbt:

 enablePlugins(SbtNativePackager)

 We provide a set of plugins. One for each supported format and for each archetype.
 Just select the one you want to use and all other plugins you require are loaded
 automatically.

 Introduction

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sbt-native-packager 1.0a1 documentation

Introduction

	Goals

	Scope

	Formats and Archetypes

 Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

 Goals

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sbt-native-packager 1.0a1 documentation

 	Introduction

Goals

Describe our goals

 Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

 Scope

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sbt-native-packager 1.0a1 documentation

 	Introduction

Scope

 Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

 Formats and Archetypes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	sbt-native-packager 1.0a1 documentation

 	Introduction

Formats and Archetypes

 Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

 Getting Started

 Navigation

 	
 index

 	
 previous |

 	sbt-native-packager 1.0a1 documentation

Contents

	Getting Started
	Version 1.0 and greater

	Version 0.8.x or lower

	Packaging Formats

	Archetypes

Getting Started

The sbt-native-packager is a plugin. To use it, first create a project/plugins.sbt file with the following content.

addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "x.y.z")

Also, each operating system requires its own tools. These tools are specified
in the operating system specific sections.

Version 1.0 and greater

If you use sbt 0.13.5 or greater you can enable sbt native packager by enabling it in your build.sbt.
We recommend to use an archetype for setting up your build

enablePlugins(JavaAppPackaging)

but if you only want the bare minimum you can only add the packager plugin

enablePlugins(SbtNativePackager)

The autoplugins mechanism will import everything automatically.

Build.scala

If you use a Build.scala you can import the available keys
with this statement

import com.typesafe.sbt.SbtNativePackager.autoImport._

Version 0.8.x or lower

If you don’t use autoplugins you need to import the available
keys yourself. In your build.sbt or Build.scala add

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerKeys._

Packaging Formats

 *.deb

 Packaging format for Debian based systems like Ubuntu

 debian:packageBin

 Debian Plugin »

 *.rpm

 Packaging format for Redhat based systems like RHEL or CentOS.

 rpm:packageBin

 Rpm Plugin »

 *.msi

 Packaging format for windows systems.

 windows:packageBin

 Windows Plugin »

 Index

 Navigation

 	
 index

 	sbt-native-packager 1.0a1 documentation

Index

 Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

formats/rpm.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Rpm Plugin

RedHat rpm files support a very advanced number of features. To take full advantage of this environment,
it’s best to understand how the rpm package system works.
http://fedoraproject.org/wiki/How_to_create_an_RPM_package is a good tutorial, but it focuses on building
packages from source. The sbt-native-packager takes the approach that SBT has built your source and generated
‘binary’ packages.

Contents

		Rpm Plugin
		Requirements

		Build

		Configuration

		Settings

		Tasks

		Customize

 The rpm plugin depends on the linux plugin. For general linux settings read the
 Linux Plugin Documentation

Requirements

You need the following applications installed

		rpm

		rpm-build

Build

sbt rpm:packageBin

Required Settings

A rpm package needs some mandatory settings to be valid. Make sure
you have these settings in your build:

rpmVendor := "typesafe"

1.0 or higher

Enables the rpm plugin

enablePlugins(RpmPlugin)

0.8 or lower

For this versions rpm packaging is automatically activated.
See the Getting Started page for information
on how to enable sbt native packager.

Configuration

Settings and Tasks inherited from parent plugins can be scoped with Rpm.

linuxPackageMappings in Rpm := linuxPackageMappings.value

Settings

Informational Settings

		packageName in Rpm

		The name of the package for the rpm.
Its value defines the first component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the Name:
tag in the spec file.
Its default value is drawn from packageName in Linux.

		version in Rpm

		The version of the package for rpm.
Takes the form x.y.z, and note that there can be no dashes in this version string.
It defines the second component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the Version:
tag in the spec file.
Its default value is drawn from the project defined version.

		rpmRelease

		The release number is the package’s version. When the sofware is first packaged at a
particular version, the release should be "1". If the software is repackaged at
the same version, the release number should be incremented, and dropped back to "1"
when the software version is new.
Its value defines the third component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the Release:
tag in the spec file.
Its default value is "1".

		packageArchitecture in Rpm

		The build architecture for the binary rpm.
Its value defines the fourth component of the rpm file name
(packageName-version-rpmRelease.packageArchitecture.rpm), as well as the BuildArch:
tag in the spec file.
Its default value is "noarch".

		packageSummary in Rpm

		A brief, one-line summary of the package.
Note, the summary must not contain line separators or end in a period.
Its value defines the Summary: tag in the spec file, and its default
value is drawn from packageSummary in Linux.

		packageDescription in Rpm

		A longer, multi-line description of the package.
Its value defines the %description block in the spec file, and its
default value is drawn from packageDescription in Linux.

		rpmVendor

		The name of the company/user generating the RPM.

		rpmUrl

		A url associated with the software in the RPM.

		rpmLicense

		The license associated with software in the RPM.

Dependency Settings

		rpmAutoreq

		Enable or disable the automatic processing of required packages.
Takes the form "yes" or "no", defaults to "yes".
Defines the AutoReq: tag in the spec file.

		rpmRequirements

		The RPM packages that are required to be installed for this RPM to work.

		rpmAutoprov

		Enable or disable the automatic processing of provided packages.
Takes the form "yes" or "no", defaults to "yes".
Defines the AutoProv: tag in the spec file.

		rpmProvides

		The RPM package names that this RPM provides.

		rpmPrerequisites

		The RPM packages this RPM needs before installation

		rpmObsoletes

		The packages this RPM allows you to remove

		rpmConflcits

		The packages this RPM conflicts with and cannot be installed with.

Meta Settings

		rpmPrefix

		The path passed set as the base for the revocable package

		rpmChangelogFile

		External file to be imported and used to generate the changelog of the RPM.

Scriptlet Settings

		maintainerScripts in Rpm

		Contains the scriptles being injected into the specs file. Currently supports all
previous scriptlets: %pretrans, %pre, %verifyscript%, %post, %posttrans,
%preun and %postun

		rpmBrpJavaRepackJars

		appends __os_install_post scriptlet to rpmPre avoiding jar repackaging

SystemV Start Script Settings

		rpmDaemonLogFile

		File name of the log generated by application daemon.

Tasks

The Rpm support grants the following commands:

		rpm:package-bin

		Generates the .rpm package for this project.

		rpm:rpmlint

		Generates the .rpm file and runs the rpmlint command to look for issues in the package. Useful for debugging.

Customize

Rpm Prefix

The rpm prefix allows you to create a relocatable package as defined by http://www.rpm.org/max-rpm/s1-rpm-reloc-prefix-tag.html.
This optional setting with a handful of overrides to scriptlets and templates will allow you to create a working java_server
archetype that can be relocated in the file system.

Example Settings:

defaultLinuxInstallLocation := "/opt/package_root",
rpmPrefix := Some(defaultLinuxInstallLocation),
linuxPackageSymlinks := Seq.empty,
defaultLinuxLogsLocation := defaultLinuxInstallLocation + "/" + name

rpmChangelogFile

The rpmChangelogFile property allows you to set a source that will be imported and used on the RPM generation.
So if you use rpm commands to see the changelog it brings that information. You have to create the content on
that file following the RPM conventions that are available here http://fedoraproject.org/wiki/Packaging:Guidelines#Changelogs.

Example Settings:

changelog := "changelog.txt"

rpmChangelogFile := Some(changelog)

* Sun Aug 24 2014 Team <contact@example.com> - 1.1.0
-Allow to login using social networks
* Wed Aug 20 2014 Team <contact@example.com> - 1.0.1
-Vulnerability fix.
* Tue Aug 19 2014 Team <contact@example.com> - 1.0.0
-First version of the system

Template Changes

Apply the following changes to the default init start script. You can find this in the sbt-native-packager source.

src/templates/start

...
[-e /etc/sysconfig/$prog] && . /etc/sysconfig/$prog

smb could define some additional options in $RUN_OPTS
RUN_CMD="${PACKAGE_PREFIX}/${{app_name}}/bin/${{app_name}}"
...

Scriptlet Changes

Changing the scripts can be done in two ways. Override the maintainerScripts in Rpm.
For example:

// overriding
import RpmConstants._
maintainerScripts in Rpm := Map(
 Pre -> Seq("""echo "pre-install""""),
 Post -> Seq("""echo "post-install""""),
 Pretrans -> Seq("""echo "pretrans""""),
 Posttrans -> Seq("""echo "posttrans""""),
 Preun -> Seq("""echo "pre-uninstall""""),
 Postun -> Seq("""echo "post-uninstall"""")
)

// appending with strings and replacements
import RpmConstants._
maintainerScripts in Rpm := maintainerScriptsAppend((maintainerScripts in Rpm).value)(
 Pretrans -> "echo 'hello, world'",
 Post -> s"echo 'installing ${(packageName in Rpm).value}'"
)

// appending from a different file
import RpmConstants._
maintainerScripts in Rpm := maintainerScriptsAppendFromFile((maintainerScripts in Rpm).value)(
 Pretrans -> (sourceDirectory.value / "rpm" / "pretrans"),
 Post -> (sourceDirectory.value / "rpm" / "posttrans")
)

The helper methods can be found in MaintainerScriptHelper Scaladocs [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MaintainerScriptHelper$].

You also can place new scripts in the src/rpm/scriptlets folder. For example:

src/rpm/scriptlets/preinst

...
echo "PACKAGE_PREFIX=${RPM_INSTALL_PREFIX}" > /etc/sysconfig/${{app_name}}
...

src/rpm/scriptlets/preun

...
rm /etc/sysconfig/${{app_name}}
...

Using files will override all previous contents. The names used can be found in
the RPM Scaladocs [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.rpm.RpmPlugin$$Names$].

Scriptlet Migration from 1.0.x

Before

rpmPostun := rpmPost.value.map { content =>
 s"""|$content
 |echo "I append this to the current content
 |""".stripMargin
 }.orElse {
 Option("""echo "There wasn't any previous content"
 """.stripMargin)
 }

After

// this gives you easy access to the correct keys
import RpmConstants._
// in order to append you have to pass the initial maintainerScripts map
maintainerScripts in Rpm := maintainerScriptsAppend((maintainerScripts in Rpm).value)(
 Pretrans -> "echo 'hello, world'",
 Post -> s"echo 'installing ${(packageName in Rpm).value}'"
)

Jar Repackaging

rpm repackages jars by default (described in this blog post [http://swaeku.github.io/blog/2013/08/05/how-to-disable-brp-java-repack-jars-during-rpm-build]) in order to optimize jars.
This behaviour is turned off by default with this setting.

rpmBrpJavaRepackJars := false

Note that this appends content to your Pre definition, so make sure not to override it.
For more information on this topic follow these links:

		issue #195 [https://github.com/sbt/sbt-native-packager/issues/195]

		pullrequest #199 [https://github.com/sbt/sbt-native-packager/pull/199]

		OpenSuse issue [https://github.com/sbt/sbt-native-packager/issues/215]

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

formats/universal.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Universal Plugin

Universal packaging just takes a plain mappings configuration and generates various
package files for distribution. It allows you to provide your users a distribution
that is not tied to any particular platform, but may require manual labor to set up.

Contents

		Universal Plugin
		Related Plugins

		Requirements

		Build

		Configurations

		Settings

		Tasks

		Customize

 The universal plugin depends on the sbt-native-packager plugin. For general settings read the
 SBT Native Packager Plugin Documentation

Related Plugins

		Linux Plugin

		Windows Plugin

		Docker Plugin

Requirements

Depending on what package format you want to use, you need one of the following applications installed

		zip (if native)

		gzip

		xz

		tar

		hdiutil (for dmg)

Build

There is a task for each output format

Zip

sbt universal:packageBin

Tar

sbt universal:packageZipTarball

Xz

sbt universal:packageXzTarball

Dmg

sbt universal:packageOsxDmg

Required Settings

A universal has no mandatory fields.

1.0 or higher

Enable the universal plugin

enablePlugins(UniversalPlugin)

0.8 or lower

For this versions universal packaging is automatically activated.
See the Getting Started page for information
on how to enable sbt native packager.

Configurations

Settings and Tasks inherited from parent plugins can be scoped with Universal.

Universal packaging provides three Configurations:

		universal

		For creating full distributions

		universal-docs

		For creating bundles of documentation

		universal-src

		For creating bundles of source.

name in Universal := name.value

name in UniversalDocs <<= name in Universal

name in UniversalSrc <<= name in Universal

packageName in Universal := packageName.value

Settings

As we showed before, the Universal packages are completely configured through the use of the mappings key. Simply
specify the desired mappings for a given configuration. For Example:

mappings in Universal <+= packageBin in Compile map { p => p -> "lib/foo.jar" }

However, sometimes it may be advantageous to customize the files for each archive separately. For example, perhaps
the .tar.gz has an additional README plaintext file in addition to a README.html. To add this just to the .tar.gz file,
use the task-scope feature of sbt:

mappings in Universal in package-zip-tarball += file("README") -> "README"

Besides mappings, the name, sourceDirectory and target configurations are all respected by universal packaging.

Note: The Universal plugin will make anything in a bin/ directory executable. This is to work around issues with JVM
and file system manipulations.

Tasks

		universal:package-bin

		Creates the zip universal package.

		universal:package-zip-tarball

		Creates the tgz universal package.

		universal:package-xz-tarball

		Creates the txz universal package. The xz command can get better compression
for some types of archives.

		universal:package-osx-dmg

		Creates the dmg universal package. This only work on OSX or systems with hdiutil.

		universal-docs:package-bin

		Creates the zip universal documentation package.

		universal-docs:package-zip-tarball

		Creates the tgz universal documentation package.

		universal-docs:package-xz-tarball

		Creates the txz universal documentation package. The xz command can get better compression
for some types of archives.

Customize

Universal Archive Options

You can customize the commandline options (if used) for the different zip formats.
If you want to force local for the tgz output add this line:

universalArchiveOptions in (Universal, packageZipTarball) := Seq("--force-local", "-pcvf")

This will set the cli options for the packageZipTarball task in the Universal plugin to the following sequence.
Currently these task can be customized

		universal:package-zip-tarball

		universalArchiveOptions in (Universal, packageZipTarball)

		universal:package-xz-tarball

		universalArchiveOptions in (Universal, packageXzTarball)

Getting Started with Universal Packaging

By default, all files found in the src/universal directory are included in the distribution. So, the first step
in creating a a distribution is to place files in this directory in the layout you would like in the distributed zip file.

To add build generated files to the distribution, simple add a mapping to the mappings in Universal setting. Let’s
look at an example where we add the packaged jar of a project to the lib folder of a distribution:

mappings in Universal <+= (packageBin in Compile) map { jar =>
 jar -> ("lib/" + jar.getName)
}

The above does two things:

		It depends on packageBin in Compile which will generate a jar file form the project.

		It creates a mapping (a Tuple2[File, String]) which denotes the file and the location in the distribution as a string.

You can use this to add anything you desire to the package.

Note

If you are using an application archetype or the playframework, the jar mapping is already defined and
you should not include these in your build.sbt. issue 227 [https://github.com/sbt/sbt-native-packager/issues/227]

Universal Conventions

This plugin has a set of conventions for universal packages that enable the automatic generation of native packages. The
universal convention has the following package layout:

bin/
 <scripts and things you want on the path>
lib/
 <shared libraries>
conf/
 <configuration files that should be accessible using platform standard config locations.>
doc/
 <Documentation files that should be easily accessible. (index.html treated specially)>

If your plugin matches these conventions, you can enable the settings to automatically generate native layouts based on your universal package. To do
so, add the following to your build.sbt:

mapGenericFilesToLinux

mapGenericFilesToWinows

In Linux, this mapping creates symlinks from platform locations to the install location of the universal package. For example,
given the following packaging:

bin/
 cool-tool
lib/
 cool-tool.jar
conf/
 cool-tool.conf

The mapGenericFilesToLinux settings will create the following package (symlinks denoted with ->):

/usr/share/<pkg-name>/
 bin/
 cool-tool
 lib/
 cool-tool.jar
 conf/
 cool-tool.conf
/usr/bin/
 cool-tool -> /usr/share/<package-name>/bin/cool-tool
/etc/<pkg-name> -> /usr/share/<package-name>/conf

The mapGenericFilesToWindows will construct an MSI that installs the application in <Platform Program Files>\<Package Name> and include
the bin directory on Windows PATH environment variable (optionally disabled). While these mappings provide a great start to nice packaging, it still
may be necessary to customize the native packaging for each platform. This can be done by configuring those settings directly.

For example, even using generic mapping, debian has a requirement for changelog files to be fully formed. Using the above generic mapping, we can configure just this
changelog in addition to the generic packaging by first defining a changelog in src/debian/changelog and then adding the following setting:

linuxPackageMappings in Debian <+= (name in Universal, sourceDirectory in Debian) map { (name, dir) =>
 (packageMapping(
 (dir / "changelog") -> "/usr/share/doc/sbt/changelog.gz"
) withUser "root" withGroup "root" withPerms "0644" gzipped) asDocs()
}

Notice how we’re only modifying the package mappings for Debian linux packages. For more information on the underlying packaging settings, see
Windows Plugin and Linux Plugin documentation.

Change/Remove Top Level Directory in Output

Your output package (zip, tar, gz) by default contains a single folder
with your application. If you want to change this folder or remove this
top level directory completely use the topLevelDirectory setting.

Removing the top level directory

topLevelDirectory := None

Changing it to another value, e.g. the packageName without the version

topLevelDirectory := Some(packageName.value)

Or just a plain hardcoded string

topLevelDirectory := Some("awesome-app")

MappingsHelper

The MappingsHelper [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MappingsHelper$] class provides a set of helper functions to make mapping directories easier.

sbt 0.13.5 and plugin 1.0.x or higher

import NativePackagerHelper._

plugin version 0.8.x or lower

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerHelper._

You get a set of methods which will help you to create mappings very easily.

mappings in Universal ++= directory("src/main/resources/cache")

mappings in Universal ++= contentOf("src/main/resources/docs")

mappings in Universal <++= sourceDirectory map (src => directory(src / "main" / "resources" / "cache"))

mappings in Universal <++= sourceDirectory map (src => contentOf(src / "main" / "resources" / "docs"))

Mapping Examples

SBT provides and IO and Path [http://www.scala-sbt.org/0.13.1/docs/Detailed-Topics/Paths.html] API, which
lets you define custom mappings easily. The files will appear in the generate universal zip, but also in your
debian/rpm/msi/dmg builds as described above in the conventions.

The packageBin in Compile dependency is only needed, if your files get generated
during the packageBin command or before. For static files you can remove it.

Mapping a complete directory

mappings in Universal <++= (packageBin in Compile, target) map { (_, target) =>
 val dir = target / "scala-2.10" / "api"
 (dir.***) pair relativeTo(dir.getParentFile)
}

This maps the api folder directly to the generate universal zip. dir.*** is a short way for
dir ** "*", which means _select all files including dir. relativeTo(dir.getParentFile)
generates a function with a file -> Option[String] mapping, which tries to generate a relative
string path from dir.getParentFile to the passed in file. pair uses the relativeTo
function to generate a mapping File -> String, which is your file to relative destination.

It exists some helper methods to map a complete directory in more human readable way.

//For dynamic content, e.g. something in the target directory which depends on a Task
mappings in Universal <++= (packageBin in Compile, target) map { (_, target) =>
 directory(target / "scala-2.10" / "api")
}

//For static content it can be added to mappings directly
mappings in Universal ++= directory("SomeResourcesToInclude")

Mapping the content of a directory

mappings in Universal <++= (packageBin in Compile, target) map { (_, target) =>
 val dir = target / "scala-2.10" / "api"
 (dir.*** --- dir) pair relativeTo(dir)
}

The dir gets excluded and is used as root for relativeTo(dir).

Filter/Remove mappings

If you want to remove mappings, you have to filter the current list of mappings.
This example demonstrates how to build a fat jar with sbt-assembly, but using all
the convenience of the sbt native packager archetypes.

tl;dr how to remove stuff

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {
 // universalMappings: Seq[(File,String)]
 val universalMappings = (mappings in Universal).value
 val fatJar = (assembly in Compile).value
 // removing means filtering
 val filtered = universalMappings filter {
 case (file, name) => ! name.endsWith(".jar")
 }
 // add the fat jar
 filtered :+ (fatJar -> ("lib/" + fatJar.getName))
}

// sbt 0.12 syntax
mappings in Universal <<= (mappings in Universal, assembly in Compile) map { (universalMappings, fatJar) => /* same logic */}

The complete build.sbt should contain these settings if you want a single assembled fat jar.

// the assembly settings
assemblySettings

// we specify the name for our fat jar
jarName in assembly := "assembly-project.jar"

// using the java server for this application. java_application would be fine, too
packageArchetype.java_server

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {
 val universalMappings = (mappings in Universal).value
 val fatJar = (assembly in Compile).value
 val filtered = universalMappings filter {
 case (file, name) => ! name.endsWith(".jar")
 }
 filtered :+ (fatJar -> ("lib/" + fatJar.getName))
}

// the bash scripts classpath only needs the fat jar
scriptClasspath := Seq((jarName in assembly).value)

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

formats/debian.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Debian Plugin

The debian package specification is very robust and powerful. If you wish to do any advanced features, it’s best to understand how
the underlying packaging system works. http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/ is an excellent tutorial.

SBT Native Packager provides two ways to build debian packages. A native one, where you need dpkg-deb installed
or a java, platform independent approach with jdeb [https://github.com/tcurdt/jdeb]. By default the native implementation
is activated.

Contents

		Debian Plugin
		Requirements

		Build

		Configurations

		Settings

		Tasks

		Customize

 The debian plugin depends on the linux plugin. For general linux settings read the
 Linux Plugin Documentation

Requirements

If you use the native debian package implementation you need the following applications installed:

		dpkg-deb

		dpkg-sig

		dpkg-genchanges

		lintian

		fakeroot

Build

sbt debian:packageBin

Required Settings

A debian package needs some mandatory settings to be valid. Make sure
you have these settings in your build:

name := "Debian Example"

version := "1.0"

maintainer := "Max Smith <max.smith@yourcompany.io>"

packageSummary := "Hello World Debian Package"

packageDescription := """A fun package description of our software,
 with multiple lines."""

Enable the debian plugin to activate the native package implementation.

enablePlugins(DebianPlugin)

Java based packaging

If you want to use the java based implementation, enable the following plugin.

enablePlugins(JDebPackaging)

and this to your plugins.sbt

libraryDependencies += "org.vafer" % "jdeb" % "1.3" artifacts (Artifact("jdeb", "jar", "jar"))

JDeb is a provided dependency so you have to add it on your own. It brings a lot of dependencies
that could slow your build times. This is the reason the dependency is marked as provided.

Configurations

Settings and Tasks inherited from parent plugins can be scoped with Debian.

linuxPackageMappings in Debian := linuxPackageMappings.value

Settings

Debian requires the following specific settings:

		name in Debian

		The name of the package for debian (if different from general linux name).

		version in Debian

		The debian-friendly version of the package. Should be of the form x.y.z-build-aa.

		debianPackageDependencies in Debian

		The list of debian packages that this package depends on.

		debianPackageRecommends in Debian

		The list of debian packages that are recommended to be installed with this package.

		linuxPackageMappings in Debian

		Debian requires a /usr/share/doc/{package name}/changelog.gz file that describes
the version changes in this package. These should be appended to the base linux versions.

		maintainerScripts in Debian (debianMaintainerScripts)

		DEPRECATED use maintainerScripts in Debian instead.
These are the packaging scripts themselves used by dpkg-deb to build your debian. These
scripts are used when installing/uninstalling a debian, like prerm, postinstall, etc. These scripts
are placed in the DEBIAN file when building. Some of these files can be autogenerated,
for example when using a package archetype, like server_application. However, any autogenerated file
can be overridden by placing your own files in the src/debian/DEBIAN directory.

		changelog in Debian

		This is the changelog used by dpkg-genchanges to create the .changes file. This will allow you to
upload the debian package to a mirror.

Tasks

The Debian support grants the following commands:

		debian:package-bin

		Generates the .deb package for this project.

		debian:lintian

		Generates the .deb file and runs the lintian command to look for issues in the package. Useful for debugging.

		debian:gen-changes

		Generates the .changes, and therefore the .deb package for this project.

Customize

This section contains example on how you can customize your debian build.

Customizing Debian Metadata

A Debian package provides metadata, which includes dependencies and recommendations.
A basic example to depend on java and recommend a git installation.

debianPackageDependencies in Debian ++= Seq("java2-runtime", "bash (>= 2.05a-11)")

debianPackageRecommends in Debian += "git"

To hook into the debian package lifecycle (https://wiki.debian.org/MaintainerScripts) you
can add preinst , postinst , prerm and/or postrm scripts. Just place them into
src/debian/DEBIAN. Or you can do it programmatically in your build.sbt

import DebianConstants._
maintainerScripts in Debian := maintainerScriptsAppend((maintainerScripts in Debian).value)(
 Preinst -> "echo 'hello, world'",
 Postinst -> s"echo 'installed ${(packageName in Debian).value}'"
)

The helper methods can be found in MaintainerScriptHelper Scaladocs [http://www.scala-sbt.org/sbt-native-packager/latest/api/#com.typesafe.sbt.packager.MaintainerScriptHelper$].

If you use the JavaServerAppPackaging there are predefined postinst and
preinst files, which start/stop the application on install/remove calls. Existing
maintainer scripts will be extended not overridden.

Your control scripts are in a different castle.. directory? No problem.

debianControlScriptsDirectory <<= (sourceDirectory) apply (_ / "deb" / "control")

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

formats/docker.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Docker Plugin

Docker images describe how to set up a container for running an application, including what files are present, and what program to run.

https://docs.docker.com/introduction/understanding-docker/ provides an introduction to Docker.
https://docs.docker.com/reference/builder/ describes the Dockerfile; a file which describes how to set up the image.

sbt-native-packager focuses on creating a Docker image which can “just run” the application built by SBT.

Contents

		Docker Plugin
		Requirements

		Build

		Configuration

		Settings

		Tasks

		Customize

Requirements

You need the docker console client installed and version 1.3 or higher is required.
SBT Native Packager doesn’t use the REST API, but instead uses the CLI directly.

It is currently not possible to provide authentication for Docker repositories from within the build.
The docker binary used by the build should already have been configured with the appropriate
authentication details. See https://docs.docker.com/reference/commandline/cli/#login.

Build

sbt docker:publishLocal

Required Settings

enablePlugins(DockerPlugin)

Spotify java based docker client

You can also use the java-based spotify Docker client. Add this to your build.sbt

enablePlugins(DockerSpotifyClientPlugin)

and this to your plugins.sbt

libraryDependencies += "com.spotify" % "docker-client" % "3.5.13"

The Docker-spotify client is a provided dependency so you have to add it on your own.
It brings a lot of dependenciesthat could slow your build times. This is the reason
the dependency is marked as provided.

Configuration

Settings and Tasks inherited from parent plugins can be scoped with Docker.

mappings in Docker := mappings.value

Settings

Informational Settings

		packageName in Docker

		The name of the package for Docker (if different from general name).
This will only affect the image name.

		version in Docker

		The version of the package for Docker (if different from general version). Often takes the form x.y.z.

		maintainer in Docker

		The maintainer of the package, required by the Dockerfile format.

Environment Settings

		dockerBaseImage

		The image to use as a base for running the application. It should include binaries on the path for chown, mkdir, have a discoverable java binary, and include the user configured by daemonUser (daemon, by default).

		daemonUser in Docker

		The user to use when executing the application. Files below the install path also have their ownership set to this user.

		dockerExposedPorts

		A list of ports to expose from the Docker image.

		dockerExposedVolumes in Docker

		A list of data volumes to make available in the Docker image.

		dockerEntrypoint in Docker

		Overrides the default entrypoint for docker-specific service discovery tasks before running the application.
Defaults to the bash executable script, available at bin/<script name> in the current WORKDIR of /opt/docker.

Publishing Settings

		dockerRepository

		The repository to which the image is pushed when the docker:publish task is run. This should be of the form [username] (assumes use of the index.docker.io repository) or [repository.host]/[username].

		dockerUpdateLatest

		The flag to automatic update the latest tag when the docker:publish task is run. Default value is FALSE.

Tasks

The Docker support provides the following commands:

		docker:stage

		Generates a directory with the Dockerfile and environment prepared for creating a Docker image.

		docker:publishLocal

		Builds an image using the local Docker server.

		docker:publish

		Builds an image using the local Docker server, and pushes it to the configured remote repository.

Customize

There are some predefined settings, which you can easily customize. These
settings are explained in some detail in the next sections. If you want to
describe your Dockerfile completely yourself, you can provide your own
docker commands as described in Custom Dockerfile.

Docker Image Name

packageName in Docker := packageName.value

version in Docker := version.value

Docker Base Image

dockerBaseImage := "dockerfile/java"

Docker Repository

dockerRepository := Some("dockeruser")

Docker Image Customization

dockerExposedPorts := Seq(9000, 9443)

dockerExposedVolumes := Seq("/opt/docker/logs")

In order to work properly with USER daemon the exposed volumes are first
created (if they do not existend) and chowned.

Install Location

The path to which the application is written can be changed with the setting.
The files from mappings in Docker are extracted underneath this directory.

defaultLinuxInstallLocation in Docker := "/opt/docker"

Custom Dockerfile

All settings before are used to create a single sequence of docker commands.
You have the option to write all of them on your own, filter or change existing
commands or simply add some.

First of all you should take a look what you docker commands look like.
In your sbt console type

> show dockerCommands
[info] List(Cmd(FROM,dockerfile/java:latest), Cmd(MAINTAINER,Your Name <y.n@yourcompany.com>), ...)

Remove Commands

SBT Native Packager added some commands you may not need. For example
the chowning of a exposed volume.

import com.typesafe.sbt.packager.docker._

// we want to filter the chown command for '/data'
dockerExposedVolumes += "/data"

dockerCommands := dockerCommands.value.filterNot {

 // ExecCmd is a case class, and args is a varargs variable, so you need to bind it with @
 case ExecCmd("RUN", args @ _*) => args.contains("chown") && args.contains("/data")

 // dont filter the rest
 case cmd => false
}

Add Commands

Adding commands is as straightforward as adding anything in a list.

import com.typesafe.sbt.packager.docker._

dockerCommands += Cmd("USER", daemonUser.value)

dockerCommands ++= Seq(
 // setting the run script executable
 ExecCmd("RUN",
 "chmod", "u+x",
 s"${(defaultLinuxInstallLocation in Docker).value}/bin/${executableScriptName.value}"),
 // setting a daemon user
 Cmd("USER", "daemon")
)

Write from Scratch

You can simply wipe out all docker commands with

dockerCommands := Seq()

Now let’s start adding some Docker commands.

import com.typesafe.sbt.packager.docker._

dockerCommands := Seq(
 Cmd("FROM", "dockerfile/java:latest"),
 Cmd("MAINTAINER", maintainer.value),
 ExecCmd("CMD", "echo", "Hello, World from Docker")
)

Busybox/Ash Support

The default shell support for the Java archetype (JavaAppPackaging) is bash, with a Windows
bat file also generated. Busybox is a popular minimal Docker base image that uses ash, a much
more limited shell than bash. The result is that if you build a Docker image for Busybox the
generated bash launch script will likely not work.

Optionally you can use an ash-compatible archetype that derives from JavaAppPacking called
AshScriptPlugin. Enable this by including:

enablePlugins(AshScriptPlugin)

With this plugin enabled an ash-compatible launch script will be generated in your Docker image.

Just like for JavaAppPackaging you have the option of overriding the default script by supplying
your own src/templates/ash-template file. When overriding the file don’t forget to include
${{template_declares}} somewhere to populate $app_classpath $app_mainclass from your sbt project.
You’ll likely need these to launch your program.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

formats/windows.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Windows Plugin

The windows packaging is completely tied to the WIX installer toolset. For any non-trivial package,
it’s important to understand how WIX works. http://wix.tramontana.co.hu/ is an excellent tutorial
to how to create packages using wix.

However, the native-packager provides a simple layer on top of wix that may be enough for most projects.
If it is not, just override wixConfig or wixFile settings. Let’s look at the layer above direct
xml configuration.

Contents

		Windows Plugin
		Requirements

		Build

		Configuration

		Settings

		Tasks

		Customize

 The windows plugin depends on the linux plugin. For general linux settings read the
 Universal Plugin Documentation

Requirements

You need the following applications installed

		WIX Toolset [http://wixtoolset.org/]

Build

sbt windows:packageBin

Required Settings

A windows package needs some mandatory settings to be valid. Make sure
you have these settings in your build:

// general package information (can be scoped to Windows)
maintainer := "Josh Suereth <joshua.suereth@typesafe.com>"
packageSummary := "test-windows"
packageDescription := """Test Windows MSI."""

// wix build information
wixProductId := "ce07be71-510d-414a-92d4-dff47631848a"
wixProductUpgradeId := "4552fb0e-e257-4dbd-9ecb-dba9dbacf424"

1.0 or higher

Enables the windows plugin

enablePlugins(WindowsPlugin)

0.8 or lower

For this versions windows packaging is automatically activated.
See the Getting Started page for information
on how to enable sbt native packager.

Configuration

Settings and Tasks inherited from parent plugins can be scoped with Universal.

mappings in Windows := (mappings in Universal).value

Now, let’s look at the full set of windows settings.

Settings

		name in Windows

		The name of the generated msi file.

		candleOptions

		the list of options to pass to the candle.exe command.

		lightOptions

		the list of options to pass to the light.exe command. Most likely setting is: Seq("-ext", "WixUIExtension", "-cultures:en-us") for UI.

		wixProductId

		The GUID to use to identify the windows package/product.

		wixProductUpgradeId

		The GUID to use to identify the windows package/product upgrade identifier (see wix docs).

		wixPackageInfo

		The information used to autoconstruct the <Product><Package/> portion of the wix xml. Note: unused if ``wixConfig`` is overridden

		wixProductLicense

		An (optional) rtf file to display as the product license during installation. Default to looking for src/windows/License.rtf

		wixFeatures

		A set of windows features that users can install with this package. Note: unused if ``wixConfig`` is overridden

		wixProductConfig

		inline XML to use for wix configuration. This is everything nested inside the <Product> element.

		wixConfig

		inline XML to use for wix configuration. This is used if the wixFile setting is not specified.

		wixFile

		The file containing WIX xml that defines the build.

		mappings in packageMsi in Windows

		A list of file->location pairs. This list is used to move files into a location where WIX can pick up the files and generate a cab or embedded cab for the msi.
The WIX xml should use the relative locations in this mappings when references files for the package.

Tasks

		windows:packageBin

		Creates the msi package.

		wix-file

		Generates the Wix xml file from wixConfig and wixProductConfig setings, unless overriden.

The native-packager plugin provides a few handy utilities for generating Wix XML. These
utilities are located in the com.typesafe.packager.windows.WixHelper object. Among
these are the following functions:

		cleanStringForId(String): String

		Takes in a string and returns a wix-friendly identifier. Note: truncates to 50 characters.

		cleanFileName(String): String

		Takes in a file name and replaces any $ with $$ to make it past the Wix preprocessor.

		generateComponentsAndDirectoryXml(File): (Seq[String], scala.xml.Node)

		This method will take a file and generate <Directory>, <Component> and <File>
XML elements for all files/directories contained in the given file. It will return the
Id settings for any generated components. This is a handy way to package a large
directory of files for usage in the Features of an MSI.

Customize

Feature configuration

The abstraction over wix allows you to configure “features” that users may optionally install. These feature are higher level things,
like a set of files or menu links. The currently supported components of features are:

		Files (ComponentFile)

		Path Configuration (AddDirectoryToPath)

		Menu Shortcuts (AddShortCuts)

To create a new feature, simple instantiate the WindowsFeature class with the desired feature components that are included.

Here’s an example feature that installs a binary and a script, as well as path settings:

wixFeatures += WindowsFeature(
 id="BinaryAndPath",
 title="My Project's Binaries and updated PATH settings",
 desc="Update PATH environment variables (requires restart).",
 components = Seq(
 ComponentFile("bin/cool.bat"),
 ComponentFile("lib/cool.jar"),
 AddDirectoryToPath("bin"))
)

All file references should line up exactly with those found in the mappings in Windows configuration. When generating an MSI, the plugin will first create
a directory using all the mappings in Windows and configure this for inclusion in a cab file. If you’d like to add files to include, these must first
be added to the mappings, and then to a feature. For example, if we complete the above setting to include file mappings, we’d have the following:

mappings in Windows ++= (packageBin in Compile, sourceDirectory in Windows) map { (jar, dir) =>
 Seq(jar -> "lib/cool.jar", (dir / "cool.bat") -> "bin/cool.bat")
}

wixFeatures += WindowsFeature(
 id="BinaryAndPath",
 title="My Project's Binaries and updated PATH settings",
 desc="Update PATH environment variables (requires restart).",
 components = Seq(
 ComponentFile("bin/cool.bat"),
 ComponentFile("lib/cool.jar"),
 AddDirectoryToPath("bin"))
)

Right now this layer is very limited in what it can accomplish, and hasn’t been heavily debugged. If you’re interested in helping contribute, please
do so! However, for most command line tools, it should be sufficient for generating a basic msi that windows users can install.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

formats/linux.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Linux Plugin

The native packager plugin is designed so that linux packages look similar, but can contain distribution specific information.

Contents

		Linux Plugin
		Related Plugins

		Build

		Configurations

		Settings

		Customize

 The linux plugin depends on the universal plugin. For universal settings read the
 Universal Plugin Documentation

Related Plugins

		Debian Plugin

		Rpm Plugin

		Docker Plugin

Build

The linux plugin is just a top level plugin for linux packaging formats.
The Linux scope contains settings which can be used by the plugins
depending on the linux plugin.

sbt "show linux:linuxPackageMappings"

Required Settings

A linux package needs some mandatory settings to be valid. Make sure
you have these settings in your build:

name := "Linux Example"

version := "1.0"

maintainer := "Max Smith <max.smith@yourcompany.io>"

packageSummary := "Hello World Debian Package"

packageDescription := """A fun package description of our software,
 with multiple lines."""

1.0 or higher

Enable the debian plugin to activate the native package implementation.

enablePlugins(LinuxPlugin)

0.8 or lower

For this versions linux packaging is automatically activated.
See the Getting Started page for information
on how to enable sbt native packager.

In order to use the utility functions you need to import them with
(if you haven’t already imported this)

import com.typesafe.sbt.SbtNativePackager._

Configurations

Settings and tasks inherited from parent plugins can be scoped with Linux.

name in Linux := name.value

Settings

The required fields for any linux distribution are:

		name in Linux

		The name given the package for installation.

		maintainer

		The name of the maintainer of the package (important for ownership and signing).

		packageSummary

		A one-sentence short summary of what the package does.

		packageDescription

		A longer description of what the package does and what it includes.

		linuxPackageMappings

		A list of files and their desired installation locations for the package, as well as other metainformation.

Customize

Package Mappings

Most of the work in generating a linux package is constructing package mappings. These ‘map’ a file to a location on disk where it should
reside as well as information about that file. Package mappings allow the specification of file ownership, permissions and whether or not
the file can be considered “configuration”.

Note that while the sbt-native-packager plugin allows you to specify all of this information, not all platforms will make use of the
information. It’s best to be specific about how you want files handled and run tests on each platform you wish to deploy to.

A package mapping takes this general form

(packageMapping(
 file -> "/usr/share/man/man1/sbt.1.gz"
) withPerms "0644" gzipped) asDocs()

Let’s look at each of the methods supported in the packageMapping ‘library’.

		packageMapping(mappings: (File, String)*)

		This method takes a variable number of File -> String pairs. The File should be a locally available file that can be bundled,
and the String is the installation location on disk for that file. This returns a new PackageMapping that supports the remaining methods.

		withPerms(mask: String)

		This function adjusts the installation permissions of the associated files. The flags passed should be of the form of a mask, e.g. 0755.

		gzipped

		This ensures that the files are written in compressed format to the destination. This is a convenience for distributions that want files zipped.

		asDocs

		This denotes that the mapped files are documentation files. Note: I believe these are only used for ``RPM``s.

		withConfig(value:String="true")

		This denotes whether or not a %config attribute is attached to the given files in the generated rpm SPEC. Any value other than "true" will be
placed inside the %config()` definition, for example ``withConfig("noreplace") results in %config(noreplace) attribute in the rpm spec.

		withUser(user:String)

		This denotes which user should be the owner of the given files in the resulting package.

		withGroup(group:String)

		This denotes which group should be the owner of the given files in the resulting package.

The LinuxPackageMapping Models

All classes are located in the com.typesafe.sbt.packager.linux package. So if you want to create
instances yourself you have to add import com.typesafe.sbt.packager.linux._ to your build file.

A LinuxPackageMapping contains the following fields:

		mappings: Traversable[(File, String)]

		A list of mappings aggregated by this LinuxPackageMapping

		fileData: LinuxFileMetaData

		Permissions for all the defined mappings. Default to “root:root 755”

		zipped: Boolean

		Are the mappings zipped. Default to false

All mappings are stored in the task linuxPackageMappings which returns a Seq[LinuxPackageMapping]. To display the contents
open the sbt console and call

show linuxPackageMappings

The LinuxFileMetaData has the following fields

		user: String

		The user owning all the mappings. Default “root”

		group: String

		The group owning all the mappings. Default “root”

		permissions: String

		Access permissions for all the mappings. Default “755”

		config: String

		Are the mappings config files. Default “false”

		docs: Boolean

		Are the mappings docs. Default to false

Last but not least there are the linuxPackageSymlinks, which encapsulate symlinks on your
destination system. A LinuxSymlink contains only two fields

		link: String

		The actual link that points to destination

		destination: String

		The link destination

You can see all currently configured symlinks with this simple command.
linuxPackageSymlinks is just a Seq[LinuxSymlink]

show linuxPackageSymlinks

Modifying Mappings in General

Adding, filtering and altering mappings are always simple methods on a sequence: Seq[LinuxPackageMapping].
The basic construct for adding looks like this

// simple
linuxPackageMappings += packageMapping((theFile, "/absolute/path/somefile.txt"))

// specialized
linuxPackageMappings += packageMapping((theFile, "/absolute/path/somefile.txt")) withPerms("644") asDocs()

If you want to filter or alter things. The example has a lot of things you can _possibly_ do. Just pick
what you need. After this section there are smaller examples, showing how you can implement certain functions.

// sbt 0.13.0 syntax
linuxPackageMappings := {
 // mappings: Seq[LinuxPackageMapping]
 val mappings = linuxPackageMappings.value
 // this process will must return another Seq[LinuxPackageMapping]
 mappings map { linuxPackage =>
 // basic scala collections operations. Seq[(java.io.File, String)]
 val filtered = linuxPackage.mappings map {
 case (file, name) => file -> name // altering stuff here
 } filter {
 case (file, name) => true // remove stuff from mappings
 }
 // case class copy method. Specify only what you need
 val fileData = linuxPackage.fileData.copy(
 user = "new user",
 group = "another group",
 permissions = "444",
 config = "false",
 docs = false
)
 // case class copy method. Specify only what you need.
 // returns a fresh LinuxPackageMapping
 linuxPackage.copy(
 mappings = filtered,
 fileData = fileData
)
 } filter {
 linuxPackage => linuxPackage.mappings.nonEmpty // remove stuff. Here all empty linuxPackageMappings
 }
}

// sbt 0.12.x syntax
linuxPackageMappings <<= linuxPackageMappings map { mappings =>
 /* stuff. see above */
 mappings
}

The ordering in which you apply the tasks is important.

Add Mappings

To add an arbitrary file in your build path

linuxPackageMappings += {
 val file = sourceDirectory.value / "resources" / "somefile.txt"
 packageMapping((file, "/absolute/path/somefile.txt"))
}

linuxPackageMappings can be scoped to Rpm` or ``Debian if you want to add mappings only for a single packaging type.

linuxPackageMappings in Debian += {
 val file = sourceDirectory.value / "resources" / "debian-somefile.txt"
 packageMapping((file, "/absolute/path/somefile.txt"))
}

linuxPackageMappings in Rpm += {
 val file = sourceDirectory.value / "resources" / "rpm-somefile.txt"
 packageMapping((file, "/absolute/path/somefile.txt"))
}

Filter/Remove Mappings

If you want to remove some mappings you have to filter the current list of linuxPackageMappings.
As linuxPackageMappings is a task, the order of your settings is important. Here are some examples
on how to filter mappings.

// this is equal to
// linuxPackageMappings <<= linuxPackageMappings map { mappings => /* stuff */ mappings }
linuxPackageMappings := {
 // first get the current mappings. mapping is of type Seq[LinuxPackageMapping]
 val mappings = linuxPackageMappings.value
 // map over the mappings if you want to change them
 mappings map { mapping =>
 // we remove everything besides files that end with ".conf"
 val filtered = mapping.mappings filter {
 case (file, name) => name endsWith ".conf"
 }
 // now we copy the mapping but replace the mappings
 mapping.copy(mappings = filtered)
 } filter {
 // remove all LinuxPackageMapping instances that have to file mappings
 _.mappings.nonEmpty
 }
}

Alter LinuxPackageMapping

First we alter the permissions for all LinuxPackageMapping s that match a specific criteria.

// Altering permissions for configs
linuxPackageMappings := {
 val mappings = linuxPackageMappings.value
 // Changing the group for all configs
 mappings map {
 case linuxPackage if linuxPackage.fileData.config equals "true" =>
 // altering the group
 val newFileData = linuxPackage.fileData.copy(
 group = "appdocs"
)
 // altering the LinuxPackageMapping
 linuxPackage.copy(
 fileData = newFileData
)
 case linuxPackage => linuxPackage
 }
}

Alter LinuxSymlinks

First we alter the permissions for all LinuxPackageMapping s that match a specific criteria.

// The same as linuxPackageMappings
linuxPackageSymlinks := {
 val links = linuxPackageSymlinks.value

 links filter { /* remove stuff */ } map { /* change stuff */}
}

Add Empty Directories

There is a special helper function that allows you to add empty directories to the package mappings. This might be useful if the service needs some location to store files.

// Add an empty folder to mappings
linuxPackageMappings += packageTemplateMapping(s"/usr/share/${name.value}/lib/native")() withUser(name.value) withGroup(name.value)

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

formats/jdkpackager.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

JDKPackager Plugin

JDK 8 from Oracle includes the tool javapackager (née javafxpackager), which generates native application launchers and installers for MacOS X, Windows, and Linux. This plugin complements the existing sbt-native-packager formats by taking the settings and staged output from JavaAppPackaging and passing them through javapackager to create native formats per Oracle’s provided features.

The actual mechanism used by this plugin is the support provided by the lib/ant-javafx.jar Ant task library, which provides more capabilities than the javapackager command line version, but the idea is the same.

This plugin’s most relevant addition to the core sbt-native-packager capabilities is the generation of MacOS X App bundles, and associated .dmg` and ``.pkg package formats. With this plugin complete drag-and-drop installable application bundles are possible, including the embedding of the JRE. It can also generate Windows .exe and .msi installers provided the requisite tools are available on the Windows build platform (see below). While Linux package formats are also possible via this plugin, it is likely the native sbt-native-packager support for .deb and .rpm formats will provide more configurability.

Contents

		JDKPackager Plugin
		Requirements

		Enabling

		Build

		Settings

		Example

		Debugging

 The JDKPackagerPlugin depends on the Universal, JavaAppPackaging and LauncherJarPlugin plugins. For inherited settings read the Java Application Plugin Documentation

Requirements

The ant-javafx.jar library comes with Oracle JDK 8, found in the lib directory along with tools.jar and friends. If sbt is running under the JVM in Oracle JDK 8, then the plugin should be able to find the path to ant-javafx.jar. If sbt is running under a different JVM, then the path to the tool will have to be specified via the jdkPackager:antPackagerTasks setting.

This plugin must be run on the platform of the target installer. The Oracle tooling does not provide a means of creating, say, Windows installers on MacOS, or MacOS on Linux, etc.

To use create Windows launchers & installers, the either the WIX Toolset (msi) or Inno Setup (exe) is required:

		WIX Toolset [http://wixtoolset.org/]

		Inno Setup [http://www.jrsoftware.org/isinfo.php]

For further details on the capabilities of javapackager, see the windows [http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javapackager.html] and Unix [http://docs.oracle.com/javase/8/docs/technotes/tools/unix/javapackager.html] references. (Note: only a few of the possible settings are exposed through this plugin. Please submit a Github [https://github.com/sbt/sbt-native-packager/issues] issue or pull request if something specific is desired.)

Enabling

The plugin is enabled via the AutoPlugins facility:

enablePlugins(JDKPackagerPlugin)

Build

To use, first get your application working per JavaAppPackaging instructions (including the mainClass setting). Once that is working, run

sbt jdkPackager:packageBin

By default, the plugin makes the installer type that is native to the current build platform in the directory target/jdkpackager/bundles. The key jdkPackageType can be used to modify this behavior. Run help jdkPackageType in sbt for details. The most popular setting is likely to be jdkAppIcon.

Settings

For the latest documentation reference the key descriptions in sbt.

		jdkPackagerBasename

		Filename sans extension for generated installer package.

		jdkPackagerType

		Value passed as the native attribute to fx:deploy task.
Per javapackager documentation, this may be one of the following:

		all: Runs all of the installers for the platform on which it is running, and creates a disk image for the application.

		installer: Runs all of the installers for the platform on which it is running.

		image: Creates a disk image for the application. On OS X, the image is the .app file. On Linux, the image is the directory that gets installed.

		dmg: Generates a DMG file for OS X.

		pkg: Generates a .pkg package for OS X.

		mac.appStore: Generates a package for the Mac App Store.

		rpm: Generates an RPM package for Linux.

		deb: Generates a Debian package for Linux.

		exe: Generates a Windows .exe package.

		msi: Generates a Windows Installer package.

 Because only a subset of the possible settings are exposed through he plugin, updates are likely required to fully make use of all formats. ``dmg`` currently the most tested type.

		jdkAppIcon

		Path to platform-specific application icon:

		icns: MacOS

		ico: Windows

		png: Linux

Defaults a generically bland Java icon.

		jdkPackagerToolkit

		GUI toolkit used in app. Either JavaFXToolkit (default) or SwingToolkit

		jdkPackagerJVMArgs

		Sequence of arguments to pass to the JVM.
Default: Seq("-Xmx768m").
Oracle JVM argument docs [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAHJIJG]

		jdkPackagerAppArgs

		List of command line arguments to pass to the application on launch.
Default: Seq.empty
Oracle arguments docs [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CACIJFHB]

		jdkPackagerProperties

		Map of System properties to define in application.
Default: Map.empty
Oracle properties docs [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAHCIFJ]

		jdkPackagerAssociations

		Set of application file associations to register for the application.
Example: jdkPackagerAssociations := Seq(FileAssociation(“foo”, “application/x-foo”, Foo Data File”, iconPath))
Default: `Seq.empty
Note: Requires JDK >= 8 build 40.
Oracle associations docs [http://docs.oracle.com/javase/8/docs/technotes/guides/deploy/javafx_ant_task_reference.html#CIAIDHBJ]

Example

To take it for a test spin, run sbt jdkPackager:packageBin in the test-project-jdkpackager directory of the sbt-native-packager source. Then look in the target/jdkpackager/bundles directory for the result (specific name depends on platform built).

Here’s what the build file looks like:

name := "JDKPackagerPlugin Example"

version := "0.1.0"

organization := "com.foo.bar"

libraryDependencies ++= Seq(
 "com.typesafe" % "config" % "1.2.1"
)

mainClass in Compile := Some("ExampleApp")

enablePlugins(JDKPackagerPlugin)

maintainer := "Previously Owned Cats, Inc."

packageSummary := "JDKPackagerPlugin example package thingy"

packageDescription := "A test package using Oracle's JDK bundled javapackager tool."

lazy val iconGlob = sys.props("os.name").toLowerCase match {
 case os if os.contains("mac") ⇒ "*.icns"
 case os if os.contains("win") ⇒ "*.ico"
 case _ ⇒ "*.png"
}

jdkAppIcon := (sourceDirectory.value ** iconGlob).getPaths.headOption.map(file)

jdkPackagerType := "installer"

jdkPackagerJVMArgs := Seq("-Xmx1g")

jdkPackagerProperties := Map("app.name" -> name.value, "app.version" -> version.value)

jdkPackagerAppArgs := Seq(maintainer.value, packageSummary.value, packageDescription.value)

jdkPackagerAssociations := Seq(
 FileAssociation("foobar", "application/foobar", "Foobar file type"),
 FileAssociation("barbaz", "application/barbaz", "Barbaz file type", jdkAppIcon.value)
)

// Example of specifying a fallback location of `ant-javafx.jar` if plugin can't find it.
(antPackagerTasks in JDKPackager) := (antPackagerTasks in JDKPackager).value orElse {
 for {
 f <- Some(file("/usr/lib/jvm/java-8-oracle/lib/ant-javafx.jar")) if f.exists()
 } yield f
}

Debugging

If you are having trouble figuring out how certain features affect the generated package, you can find the Ant-based build definition file in target/jdkpackager/build.xml. You should be able to run Ant directly in that file assuming jdkPackager:packageBin has been run at least once.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

formats/index.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Packaging Formats

		Universal Plugin
		Related Plugins

		Requirements

		Build

		Configurations

		Settings

		Tasks

		Customize

		Linux Plugin
		Related Plugins

		Build

		Configurations

		Settings

		Customize

		Debian Plugin
		Requirements

		Build

		Configurations

		Settings

		Tasks

		Customize

		Rpm Plugin
		Requirements

		Build

		Configuration

		Settings

		Tasks

		Customize

		Docker Plugin
		Requirements

		Build

		Configuration

		Settings

		Tasks

		Customize

		Windows Plugin
		Requirements

		Build

		Configuration

		Settings

		Tasks

		Customize

		JDKPackager Plugin
		Requirements

		Enabling

		Build

		Settings

		Example

		Debugging

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/cheatsheet.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Archetype Cheatsheet

This is a set FAQ composed on a single page.

Path Configurations

This section describes where and how to configure different kind of paths settings like

		what is the installation location of my package

		where is the log directory created

		what is the name of my start script

Quick Reference Table

This table gives you a quick overview of the setting and the scope you should use.
Paths which do not begin with a / are relative to the universal directory.
The scopes are ordered from general to specific, so a more specific one will override
the generic one. Only the listed scopes for a setting a relevant. Any changes in other
scopes will have no effect!

		output path
		scopes
		archetype
		comment

		lib
		all
		JavaApp
		

		conf
		all
		JavaApp
		

		bin/<executableScriptName>
		Global
		JavaApp
		

		bin/<executableScriptName>.bat
		Global
		JavaApp
		

		bin/<executableScriptName>
		Global
		
		Entrypoint DockerPlugin

		<defaultLinuxInstallationLocation>/<packageName>
		Linux, Debian, Rpm
		JavaApp
		

		<defaultLinuxLogLocation>/<packageName>
		Linux
		JavaServerApplication
		

		logs
		Linux
		JavaServerApplication
		Symlink

		/etc/default/<packageName>
		Linux
		JavaServerApplication
		

		/var/run/<packageName>
		Linux
		JavaServerApplication
		

		/etc/init.d/<packageName>
		Linux, Debian, Rpm
		JavaServerApplication
		For SystemV

		/etc/init/<packageName>
		Linux, Debian, Rpm
		JavaServerApplication
		For Upstart

		/usr/lib/systemd/system/<packageName>.service
		Linux, Debian, Rpm
		JavaServerApplication
		For Systemd

		<defaultLinuxInstallLocation>
		Docker
		
		Installation path inside the container

Settings

These settings configure the path behaviour

		name

		Use for the normal jar generation process

		packageName

		Defaults to normalizedName. Can be override in different scopes

		executableScriptName

		Defaults to normalizedName. Sets the name of the executable starter script

		defaultLinuxInstallLocation

		Defaults to /usr/share/. Used to determine the installation path for for linux packages (rpm, debian)

		defaultLinuxLogsLocation

		Defaults to /var/log/. Used to determine the log path for linux packages (rpm, debian).

JVM Options

JVM options can be added via different mechanisms. It depends on your use case which is most suitable.
The available options are

		Adding via bashScriptExtraDefines and batScriptExtraDefines

		Providing a application.ini (JavaApp) or etc-default (JavaServer) file

		Set javaOptions in Universal (JavaApp) or javaOptions in Linux (JavaServer, linux only)

 If you want to change the location of your config keep in mind that
 the path in bashScriptConfigLocation should either

 		be absolute (e.g. /etc/etc-default/my-config) or

 		starting with ${app_home}/../ (e.g. ${app_home}/../conf/application.ini)

Extra Defines

With this approach you are altering the bash/bat script that gets executed.
Your configuration is literally woven into it, so it applies to any archetype
using this bashscript (app, akka app, server, ...).

For a bash script this could look like this.

bashScriptExtraDefines += """addJava "-Dconfig.file=${app_home}/../conf/app.config""""

// or more. -X options don't need to be prefixed with -J
bashScriptExtraDefines ++= Seq(
 """addJava "-Xms1024m"""",
 """addJava "-Xmx2048m""""
)

For information take a look at the :doc:` customize section for java apps </archetypes/java_app/customize>`

File - application.ini or etc-default

Another approach would be to provide a file that is read by the bash script during execution.

Java App

Create a file src/universal/conf/application.ini (gets automatically added to the package mappings)
and add this to your build.sbt inject the config location into the bashscript.

bashScriptConfigLocation := Some("${app_home}/../conf/application.ini")

Java Server

See Server App Config - src/templates/etc-default-{systemv,systemd}

Setting - javaOptions

The last option to set your java options is using javaOptions in Universal (JavaApp and Server).
This will generate files according to your archetype. The following table gives you an overview what
you can use and how things will be behave if you mix different options. Options lower in the table
are more specific and will thus override the any previous settings (if allowed).

		javaOpts
		Scope
		bashScriptConfigLocation
		Archetype
		mappings
		comment

		Nil
		Universal
		None
		JavaApp
		
		No jvm options

		Nil
		Universal
		Some(appIniLocation)
		JavaApp
		
		User provides the application.ini file in src/universal/conf/application.ini

		opts
		Universal
		Some(_)
		JavaApp
		added
		creates application.ini but leaves bashScriptConfigLocation unchanged

		opts
		Universal
		None
		JavaApp
		added
		creates application.ini and sets bashScriptConfigLocation. If src/universal/conf/application.ini is present it will be overridden

		Nil
		Linux
		None
		JavaServer
		added
		creates etc-default and sets bashScriptConfigLocation

		opts
		Linux
		None
		JavaServer
		added
		creates etc-default, appends javaOptions in Linux and sets bashScriptConfigLocation

		opts
		Linux
		Some(_)
		JavaServer
		added
		creates etc-default, appends javaOptions in Linux and overrides bashScriptConfigLocation

Overriding Templates

You can override the default template used to generate any of the scripts in
any archetype. Listed below are the overridable files and variables that
you can use when generating scripts.

Bat Script - src/templates/bat-template

Creating a file here will override the default template used to
generate the .bat script for windows distributions.

Syntax

@@APP_ENV_NAME@@ - will be replaced with the script friendly name of your package.

@@APP_NAME@@ - will be replaced with user friendly name of your package.

		@APP_DEFINES@@ - will be replaced with a set of variable definitions, like

		APP_MAIN_CLASS, APP_MAIN_CLASS.

You can define additional variable definitions using batScriptExtraDefines.

Bash Script - src/templates/bash-template

Creating a file here will override the default template used to
generate the BASH start script found in bin/<application> in the
universal distribution

Syntax

${{template_declares}} - Will be replaced with a series of declare <var>
lines based on the bashScriptDefines key. You can add more defines to
the bashScriptExtraDefines that will be used in addition to the default set:

		app_mainclass - The main class entry point for the application.

		app_classpath - The complete classpath for the application (in order).

Service Manager

It’s also possible to override the entire script/configuration for your service manager.
Create a file src/templates/$format/$loader and it will be used instead.

Possible values:

		$format - debian or rpm

		$loader - upstart, systemv or systemd

Syntax

You can use ${{variable_name}} to reference variables when writing your script. The default set of variables is:

		author - The name of the author; defined by maintainer in Linux.

		descr - The short description of the service; defined by packageSummary in Linux.

		exec - The script/binary to execute when starting the service; defined by executableScriptName in Linux.

		chdir - The working directory for the service; defined by defaultLinuxInstallLocation/(packageName in Linux).

		retries - The number of times to retry starting the server; defined to be the constant 0.

		retryTimeout - The amount of time to wait before trying to run the server; defined to be the constant 60.

		app_name - The name of the application (linux friendly); defined by packageName in Linux.

		version - The software version; defined by version.

		daemon_user - The user that the service should run as; defined by daemonUser in Linux.

		daemon_user_uid - The user ID of the user that the service should run as; defined by daemonUserUid in Linux.

		daemon_group - The group of the user that the service should run as; defined by daemonGroup in Linux.

		daemon_group_gid - The group ID of the group of the user that the service should run as; defined by daemonGroupGid in Linux.

		daemon_shell - The shell of the user that the service should run as; defined by daemonShell in Linux.

		term_timeout - The timeout for the service to respond to a TERM signal; defined by termTimeout in Linux, defaults to 60.

		kill_timeout - The timeout for the service to respond to a KILL signal; defined by killTimeout in Linux, defaults to 30.

		start_facilities - Intended for the Required-Start: line in the INIT INFO block. Its value is automatically generated with respect to the chosen system loader.

		stop_facilities - Intended for the Required-Stop: line in the INIT INFO block. Its value is automatically generated with respect to the chosen system loader.

		start_runlevels - Intended for the Default-Start: line in the INIT INFO block. Its value is automatically generated with respect to the chosen system loader.

		stop_runlevels - Intended for the Default-Stop: line in the INIT INFO block. Its value is automatically generated with respect to the chosen system loader.

Server App Config - src/templates/etc-default-{systemv,systemd}

Creating a file here will override the /etc/default/<application> template
for the corresponding loader.

The file /etc/default/<application> is used as follows given the loader:

		systemv: sourced as a bourne script.

		systemd: used as an EnvironmentFile directive parameter (see `man

systemd.exec`, section EnvironmentFile for a description of the expected file
format).
- upstart: presently ignored.

If you’re only overriding JAVA_OPTS, your environment file could be compatible
with both systemv and systemd loaders; if such is the case, you can specify a
single file at src/templates/etc-default which will serve as an override for
all loaders.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/index.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

		Java Application Archetype
		Features

		Usage

		Customize

		Sitemap

		Java Server Application Archetype
		Features

		Usage

		Customize

		Service Managers

		Sitemap

		Akka Microkernel

		Archetype Cheatsheet
		Path Configurations

		JVM Options

		Overriding Templates

Project Archetypes

Project archetypes are default deployment scripts that try to “do the right thing” for a given type of project.
Because not all projects are created equal, there is no one single archetype for all native packages, but a set
of them for usage.

The architecture of the plugin is set up so that you can customize your packages at any level of complexity.
For example, if you’d like to write Windows Installer XML by hand and manually map files, you should be able to do this while
still leveraging the default configuration for other platforms.

Currently, in the nativepackager these archetypes are available:

		Java Command Line Application

		Java Server Application

		Additional Configuration Archetypes (e.g. ClasspathJarPlugin, AshScriptPlugin,..)

Java Command Line Application

A Java Command Line application is a Java application that consists of a set of JARs and a main method. There is no
custom start scripts, or services. It is just a bash/bat script that starts up a Java project. To use
this archetype in your build, do the following in your build.sbt:

enablePlugins(JavaAppPackaging)

name := "A-package-friendly-name"

packageSummary in Linux := "The name you want displayed in package summaries"
packageSummary in Windows := "The name you want displayed in Add/Remove Programs"
packageDescription := " A description of your project"

maintainer in Windows := "Company"
maintainer in Debian := "Your Name <your@email.com>"

wixProductId := "ce07be71-510d-414a-92d4-dff47631848a"
wixProductUpgradeId := "4552fb0e-e257-4dbd-9ecb-dba9dbacf424"

This archetype will use the mainClass setting of sbt (automatically discovers your main class) to generate bat and bin scripts for your project.
In case you have multiple main classes you can point to a specific class with the following setting:

mainClass in Compile := Some("foo.bar.Main")

The universal layout produced looks like the following:

bin/
 <app_name> <- BASH script
 <app_name>.bat <- cmd.exe script
lib/
 <Your project and dependent jar files here.>

You can add additional files to the project by placing things in src/windows, src/universal or src/linux as needed.

The scripts under bin will execute the main method of a class found in your application. But you can specific a custom main class method with the -main flag.

The default bash script also supports having a configuration file. This config file can be used to specify default arguments to the BASH script.
To define a config location for your bash script, you can manually override the template defines:

bashScriptConfigLocation := "$app_home/conf/my.conf"

This string can include any variable defines in the BASH script. In this case, app_home refers to the install location of the script.

Java Server

This archetype is designed for Java applications that are intended to run as
servers or services. This archetype includes wiring an application to start
immediately upon startup. To activate this archetype replace enablePlugins(JavaAppPackaging) with enablePlugis(JavaServerAppPackaging).

The Java Server archetype has a similar installation layout as the java
application archetype. The primary differences are:

		Linux
		/var/log/<pkg> is symlinked from <install>/logs

		Creates a start script in /etc/init.d or /etc/init/

		Creates a startup config file in /etc/default/<pkg>

Akka Microkernel Application

 The Akka Microkernel Archetype will be deprecated in favor of the more
 general and better maintained Java App Archetype

An Akka microkernel application is similar to a Java Command Line application. Instead of running the classic mainClass,
an Akka microkernel application instantiates and runs a subclass of
Bootable [https://github.com/akka/akka/blob/master/akka-kernel/src/main/scala/akka/kernel/Main.scala] . A minimal example
could look like this

class HelloKernel extends Bootable {
 val system = ActorSystem("hellokernel")

 def startup = {
 // HelloActor and Start case object must of course be defined
 system.actorOf(Props[HelloActor]) ! Start
 }

 def shutdown = {
 system.terminate()
 }
}

The bash/bat script that starts up the Akka application is copied from the Akka distribution.

To use this archetype in your build, add the following to your build.sbt:

packageArchetype.akka_application

name := "A-package-friendly-name"

mainClass in Compile := Some("HelloKernel")

For more information take a look at the akka docs

		Akka microkernel [http://doc.akka.io/docs/akka/snapshot/scala/microkernel.html]

		akka.kernel.Main source [https://github.com/akka/akka/blob/master/akka-kernel/src/main/scala/akka/kernel/Main.scala]

		akka.kernel.Bootable docs [http://doc.akka.io/api/akka/snapshot/index.html#akka.kernel.Bootable]

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

gettingstarted/first_app.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Package your first App

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

gettingstarted/setup.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Setup

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_app/gettingstarted.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Getting Started

The sbt-native-packager is an sbt plugin. Please follow the Installation instructions for how to set it up on a project.

The sbt-native-packager attempts to make building packages for different operating systems easier. While it provides
some basic abstractions around packaging, it also allows you to dig down into the nuts and bolts of each platform as
needed to generate the best package possible.

Here’s the basic architecture of the plugin:

[image: Architecture diagram.]
 [https://docs.google.com/drawings/d/1ASOPHY8UUGLDHrYYXFWqfYOuQe5sBioX8GKkeN3Yvd0/pub?w=960&h=720]When using the full power of the plugin, all of the packaging is driven from the mappings in Universal setting, which defines
what files will be included in the package. These files are automatically moved around for the appropriate native packaging as needed.

We’ll examine each level of packaging.

Defining a new package

To define a new package, after installing the plugin and ensuring the basic settings are on the project, start configuring your package contents
either using Archetypes or Universal Plugin hooks. These will describe the appropriate way to begin packaging for your application.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_app/index.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Java Application Archetype

Application packaging focuses on how your application is launched (via a bash or bat script), how dependencies
are managed and how configuration and other auxiliary files are included in the final distributable. The JavaAppPackaging archetype
provides a default application structure and executable scripts to launch your application.

Additionally there is Server Packaging which provides platform-specific
functionality for installing your application in server environments. You can customize specific debian and rpm packaging
for a variety of platforms and init service loaders including Upstart, System V and SystemD (experimental).

Features

The JavaAppPackaging archetype contains the following features.

		Default application mappings (no fat jar)

		Executable bash/bat script

Usage

 Version 1.0 or higher with sbt 0.13.5 and and higher

enablePlugins(JavaAppPackaging)

Version 0.8 or lower

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerKeys._

packageArchetype.java_application

Customize

You can customize the bash/bat scripts in different ways. This is explained in
the Customize section. The application structure is customizable
via the standard mappings, which is described in the Universal Plugin Section.

Sitemap

		Getting Started

		My First Packaged Project

		Customize Java Applications

		Generating files for the package

		Writing Documentation

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_app/my-first-project.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

My First Packaged Project

After installing the native packager, let’s set up a raw sbt project to experiment with bundling things. First, let’s create a
project/build.properties file to save the sbt version

sbt.version=0.13.7

sbt builds should always specify which version of sbt they are designed to use. This helps keeps builds consistent between developers,
and documents to users which version of sbt you require for the build.

Next, let’s add the native packager to our build by created a project/plugins.sbt file with the following contents

addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "x.y.z")

Now, the build needs to be configured for packaging. Let’s define the build.sbt file as follows

 Version 1.0 or higher with sbt 0.13.5 and and higher

name := "example-cli"
version := "1.0"

enablePlugins(JavaAppPackaging)

Version 0.8 or lower

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerKeys._

name := "example-cli"

version := "1.0"

packageArchetype.java_application

The third line of build.sbt adds the default packaging settings for java applications. The native packager includes two
“batteries included” options for packaging applications:

		java_application - Defines packaging of your project with a start script and automatic PATH additions

		java_server - Defines packaging of your project with automatic service start scripts (supports System V + init.d).

In addition to these, you can always directly configure all packaging by hand. For now, we’re using one of the built-in options
as these are pretty robust and configurable.

Now that the build is set up, Let’s create an application that we can run on the command line. Create the following file
src/main/scala/TestApp.scala

object TestApp extends App {
 println("IT LIVES!")
}

Once this is created, start sbt on the console and run the stage command

$ sbt
> stage

Now, in another terminal, let’s look at what was generated

target/universal/stage/
 bin/
 example-cli
 example-cli.bat
 lib/
 example-cli.example-cli-1.0.jar
 org.scala-lang.scala-library-2.10.3.jar

By default, the plugin has created both a windows BAT file and a linux/mac bash script for running the application.
In addition, all the dependent jars are added into the lib/ folder. Let’s try out the script in a terminal

$./target/universal/stage/bin/example-cli
IT LIVES!
$

Now that the package has been verified, let’s work on the generic or “universal” packaging. This is when
the plugin packages your application in a simple format that should be consumable from most operating systems or
platforms. There are two ways to do this in the sbt console

> universal:packageBin
[info] /home/jsuereth/projects/sbt/sbt-native-packager/tutorial-example/target/universal/example-cli-1.0.zip

> universal:packageZipTarball
[info] /home/jsuereth/projects/sbt/sbt-native-packager/tutorial-example/target/universal/example-cli-1.0.tgz

This task simple constructs either a tgz or zip file with the exact same contents we found in the staged directory.

While this is a great first step towards deploying our application, we’d like to make it even simpler. Our target
deployment platform is Ubuntu. The command line tool should be usable by all our developers with a very simple
installation and update mechanism. So, let’s try to make a debian out of our package. Try the debian:packageBin task in the sbt console

> debian:packageBin
[trace] Stack trace suppressed: run last debian:debianControlFile for the full output.
[error] (debian:debianControlFile) packageDescription in Debian cannot be empty. Use
[error] packageDescription in Debian := "My package Description"
[error] Total time: 0 s, completed Apr 1, 2014 10:21:13 AM

Here, the native packager is warning that we haven’t fully configured all the information required to generate a valid debian file. In particular, the packageDescription needs to be filled out for debian, in addition to a few other settings. Let’s add the debian configuration to build.sbt

packageDescription in Debian := "Example Cli"

maintainer in Debian := "Josh Suereth"

Now, let’s try to run the debian:packageBin command in the sbt console again

$ sbt
> debian:PackageBin
[info] Altering postrm/postinst files to add user example-cli and group example-cli
[info] dpkg-deb: building package `example-cli' in `/home/jsuereth/projects/sbt/sbt-native-packager/tutorial-example/target/example-cli-1.0.deb'

This generates a debian file that will install the following owners and files

root:root /usr/
examplecli:examplecli share/example-cli/
examplecli:examplecli bin/
examplecli:examplecli example-cli
examplecli:examplecli lib/
examplecli:examplecli example-cli.example-cli-1.0.jar
examplecli:examplecli org.scala-lang.scala-library-2.10.3.jar
root:root bin/
root:root example-cli -> ../share/example-cli/bin/example-cli

So, the default packaging takes the “universal” distribution and places it inside a /usr/share directory, owned by a user for the application. In addition, there is a a symlink in /usr/bin to the distributed bin script. This allows users on the platform to run the example-cli as a native install.

We can generate other packages via the following tasks. Here’s a complete list of current options.

		universal:packageBin - Generates a universal zip file

		universal:packageZipTarball - Generates a universal tgz file

		debian:packageBin - Generates a deb

		docker:publishLocal - Builds a Docker image using the local Docker server

		rpm:packageBin - Generates an rpm

		universal:packageOsxDmg - Generates a DMG file with the same contents as the universal zip/tgz.

		windows:packageBin - Generates an MSI

While we only covered the necessary configuration for debian, each package type beyond universal requires some additional
configuration relative to that packager. For example, windows MSIs require UUIDs for all packages which are used to uniquely
identify two packages that may have the same name.

Next, let’s look at how to customize the executable bash/bat scripts.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_app/generating-files.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Generating files for the package

Let’s dynamically (in the build) construct some files that should be included in the package.

For the example, let’s download a license file for our application and add it to the distribution. First,
let’s create a task which will download a license file. Add the following to build.sbt

val downloadLicense = taskKey[File]("Downloads the latest license file.")

downloadLicense := {
 val location = target.value / "downloads" / "LICENSE"
 location.getParentFile.mkdirs()
 IO.download(url("http://www.schillmania.com/projects/soundmanager2/license.txt?txt"), location)
 location
}

Now, we have a task that will download the BSD license when run. Note: We assume that the license file is
something you host on your own website and keep up to date separately form the package.

Next, let’s wire this license into the package. The native package, by default, works with mappings.
In sbt, a mappings object is a grouping of files and relative locations, e.g

/home/jsuereth/projects/example/src/universal/conf/app.config -> conf/app.config
/home/jsuereth/projects/example/src/universal/conf/jvmopts -> conf/jvmopts

shows the mapping of the configuration files we set up previously. We can directly
append files to the mappings rather than relying on the native packager to find things. Let’s add
the license in the root of the package we’re creating. Add the following to the build.sbt

mappings in Universal += downloadLicense.value -> "LICENSE"

This is appending a new mapping to those used for packaging. In this case, we reference the file returned by
the downloadLicense task and put it in the root directory of the package, calling it LICENSE. We
can verify this by checking the stage task

$ sbt stage
$ ls target/universal/stage
bin conf lib LICENSE

You can see the license file is now included in the distribution.

With control over mappings, you can rework any aspect of the native packager defaults just by overriding
which files are used. However, sometimes the defaults don’t need to be completely replaced, just altered a bit.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_app/customize.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Customize Java Applications

While the native packager tries to provide robust BASH/BAT scripts for your applications, they may not always be enough.
The native packager provides a mechanism where the template used to create each script can be customized or directly
overridden.

The easiest way to add functionality to the default script is by adding bashScriptExtraDefines :doc:` as described
in adding configuration for applications </archetypes/java_app/customize>`. Customizing the bash
script will effect all platform-specific builds. The server archetype provides a further level of customization for
specific System Loaders and Package types. These template file are described in
configuring servers.

Customizing the Application

 If you plan to use the Java Server Archetype you have other options to configure
 your application.
 This section is for non-server, standalone applications. However everything will work for server
 applications as well.

After creating a package, the very next thing needed, usually, is the ability for users/ops to customize
the application once it’s deployed. Let’s add some configuration to the newly deployed application.

There are generally two types of configurations:

		Configuring the JVM and the process

		Configuring the Application itself.

You have three options.

Via build.sbt

First, you can specify your options via the build.sbt.

javaOptions in Universal ++= Seq(
 // -J params will be added as jvm parameters
 "-J-Xmx64m",
 "-J-Xms64m",

 // others will be added as app parameters
 "-Dproperty=true",
 "-port=8080",

 // you can access any build setting/task here
 s"-version=${version.value}"
)

For the -X settings you need to add a suffix -J so the start script will
recognize these as vm config parameters.

Via Application.ini

The second option is to create src/universal/conf/application.ini with the following template

Setting -X directly (-J is stripped)
-J-X
-J-Xmx1024

Add additional jvm parameters
-Dkey=val

Turn on JVM debugging, open at the given port
-jvm-debug <port>

Don't run the java version check
-no-version-check

enabling debug and sending -d as app argument
the '--' prevents app-parameter swallowing when
using a reserved parameter. See #184
-d -- -d

The file will be installed to ${app_home}/conf/application.ini and read from there
by the startscript. You can use # for comments and new lines as you like. This file
currently doesn’t has any variable substitution. We recommend using the build.sbt if
you need any information from your build.

The configuration file for bash scripts takes arguments for the BASH file on each line,
and allows comments which start with the # character. Essentially, this provides
a set of default arguments when calling the script.

By default, any file in the src/universal directory is packaged. This is a convenient
way to include things like licenses, and readmes.

BashScript defines

The last option is to use the bashScriptExtraDefines. Generally you can add arbitrary
bash commands here, but for configurations you have two methods to add jvm and app parameters.

bashScriptExtraDefines += """addJava "-Dconfig.file=${app_home}/../conf/app.config""""
bashScriptExtraDefines += """addApp "--port=8080"""

Testing the configuration

Now, if we run the stage task, we’ll see this file show up in the distribution

$ sbt stage
$ ls target/universal/stage
 bin/
 conf/
 lib/
$ ls target/universal/stage/conf
 application.ini

Execute the script in debug mode to see what command line it executes

./target/universal/stage/bin/example-cli -d
 # Executing command line:
 java
 -Xms1024m
 -Xmx1024m
 -XX:MaxPermSize=256m
 -XX:ReservedCodeCacheSize=128m
 -DsomeProperty=true
 -cp
 /home/jsuereth/projects/sbt/sbt-native-packager/tutorial-example/target/universal/stage/lib/example-cli.example-cli-1.0.jar:/home/jsuereth/projects/sbt/sbt-native-packager/tutorial-example/target/universal/stage/lib/org.scala-lang.scala-library-2.10.3.jar:/home/jsuereth/projects/sbt/sbt-native-packager/tutorial-example/target/universal/stage/lib/com.typesafe.config-1.2.0.jar
 TestApp

As you can see -d is a reserved parameter. If you need to use this for your application you can
use the following syntax

./target/universal/stage/bin/example-cli -- -d

This will prevent the bashscript from interpreting the -d as the debug parameter

Customize application.ini name

If you don’t like application.ini as a name, you can change this in the build.sbt.
The default configuration looks like this

bashScriptConfigLocation := Some("${app_home}/../conf/application.ini")

These additions are useful if you need to reference existing variables from the
bashscript.

Example: Typesafe Config Library

Now that we have ability to configure the JVM, let’s add in a more robust method of customizing the application. We’ll be using the Typesafe Config [https://github.com/typesafehub/config] library for this purpose.

First, let’s add it as a dependency in build.sbt

libraryDependencies += "com.typesafe" % "config" % "1.2.0"

Next, let’s create the configuration file itself. Add the following to src/universal/conf/app.config

example {
 greeting = "Hello, World!"
}

Now, we need a means of telling the typesafe config library where to find our configuration. The library supports
a JVM property “config.file” which it will use to look for configuration. Let’s expose this file
in the startup BASH script. To do so, add the following to build.sbt

bashScriptExtraDefines += """addJava "-Dconfig.file=${app_home}/../conf/app.config""""

This line modifies the generated BASH script to add the JVM options the location of the application configuration on disk. Now, let’s modify the application (src/main/scala/TestApp.scala) to read this configuration

import com.typesafe.config.ConfigFactory

object TestApp extends App {
 val config = ConfigFactory.load()
 println(config.getString("example.greeting"))
}

Now, let’s try it out on the command line

$ sbt stage
$./target/universal/stage/bin/example-cli
Hello, World!

Finally, let’s see what this configuration looks like in a linux distribution. Let’s run the debian packaging again

$ sbt debian:packageBin

The resulting structure is the following

/usr/
 share/example-cli/
 conf/
 app.config
 application.ini
 bin/
 example-cli
 lib/
 example-cli.example-cli-1.0.jar
 org.scala-lang.scala-library-2.10.3.jar
 bin/
 example-cli -> ../share/example-cli/bin/example-cli
/etc/
 example-cli -> /usr/share/example-cli/conf

Here, we can see that the entire conf directory for the application is exposed on /etc as is standard for
other linux applications. By convention, all files in the universal conf directory are marked as configuration
files when packaged, allowing users to modify them.

Configuring for Windows

While we just covered how to do configuration for linux/mac, windows offers some subtle differences.

First, while the BASH file allows you to configure where to load JVM options and default arguments, in
windows we can only configure JVM options. The path is hardcoded, as well to:

<install directory>/@@APP_ENV_NAME@@_config.txt

where @@APP_ENV_NAME@@ is replaced with an environment friendly name for your app. In this example, that would be: EXAMPLE_CLI.

We can provide a configuration for JVM options on windows by creating a src/universal/EXAMPLE_CLI_config.txt file with the following contents

-Xmx512M
-Xms128M

This will add each line of the file as arguments to the JVM when running your application.

Now, if we want to add the typesafe config library again, we need to write the config.file property into the JVM options again.

One means of doing this is hooking the batScriptExtraDefines key. This allows us to insert various BAT settings/commands into the script. Let’s use this to hook the config file location, using the other variables in the BASH script. Modify your build.sbt as follows

batScriptExtraDefines += """set _JAVA_OPTS=%_JAVA_OPTS% -Dconfig.file=%EXAMPLE_CLI_HOME%\\conf\\app.config"""

Now, the windows version will also load the configuration from the conf/ directory of the package.

More Complex Scripts

As you read earlier the bashScriptExtraDefines sequence allows you to add new lines to the default bash script used to start the application.
This is useful when you need a setting which isn’t mean for the command-line parameter list passed to the java process. The lines added to
bashScriptExtraDefines are placed near the end of the script and have access to a number of utility bash functions (e.g. addJava,
addApp, addResidual, addDebugger). You can add lines to this script as we did for the Typesafe config file above. For more complex
scripts you can also inject a separate file managed in your source tree or resource directory:

bashScriptExtraDefines ++= IO.readLines(baseDirectory.value / "scripts" / "extra.sh")

This will add the contents of /scripts/extra.sh in the resource directory to the bash script. Note you should always concatenate lines
to bashScriptExtraDefines as other stages in the pipeline may be include lines to the start-script.

Overriding Templates (Bash/Bat)

In order to override full templates, like the default bash script, you can create a file in src/templates/bash-template.
Alternatively, you can use a different file location by setting bashScriptTemplateLocation.

#!/usr/bin/env bash

realpath() {
 # TODO - The original bash template has a robust mechanism to find the true
 # path to your application, following multiple symlinks.
 #
}

addJava() {
 # Here we override the original templates addJava method to do nothing,
 # since this was how we were adding configuration before.
}

declare -r real_script_path="$(realpath "$0")"

We have to provide an app_home for the default bash declarations to work.
 declare -r app_home="$(realpath "$(dirname "$real_script_path")")"

 # The auto-generated classpath relies on this variable existing
 # and pointing at the lib directory.
declare -r lib_dir="$(realpath "${app_home}/../lib")"

This line tells the native packager template engine to inject
all of its settings into this spot in the bash file.
${{template_declares}}

Here we make use of two of the injected settings for the bash file:
* app_classpath - represents the full list of JARs for this application.
* app_mainclass - represents the class with a main method we should call.
exec java -cp $app_classpath $app_mainclass $@

Similarly the windows BAT template can be overridden by placing a new template in src/templates/bat-template.
You can also use a different file location by setting batScriptTemplateLocation.

@REM A bat starter script
@echo off

@REM Here we need to set up a "home" variable for our classpath.
@REM The APP_ENV_NAME variable is replaced by the packager template engine
@REM with an "environment variable friendly" name for the app.
if "%@@APP_ENV_NAME@@_HOME%"=="" set "@@APP_ENV_NAME@@_HOME=%~dp0\\.."
set "APP_LIB_DIR=%@@APP_ENV_NAME@@_HOME%\lib\"

@REM - This tells the template engine to inject any custom defines into our bat file here.
@@APP_DEFINES@@

@REM - Here we use the provided APP_CLASSPATH and APP_MAIN_CLASS parameters
java -cp "%APP_CLASSPATH%" %APP_MAIN_CLASS% %*

While we just replaced the default templates with simpler templates, this should really only be done if:

		There is a bug in one of the script templates you need to workaround

		There is a deficiency in the features of one of the templates you need to fix.

In general, the templates are intended to provide enough utility that customization is only necessary for truly custom scripts.

Overriding bat templates (src/templates/bat-template or a custom path using batScriptTemplateLocation)

This will override the default template used to generate the .bat script for windows distributions.

Syntax

@@APP_ENV_NAME@@ - will be replaced with the script friendly name of your package.

@@APP_NAME@@ - will be replaced with user friendly name of your package.

		@APP_DEFINES@@ - will be replaced with a set of variable definitions, like

		APP_MAIN_CLASS, APP_MAIN_CLASS.

You can define additional variable definitions using batScriptExtraDefines.

Overriding bash templates (src/templates/bash-template or a custom path using bashScriptTemplateLocation)

This will override the default template used to generate the BASH start script found in bin/<application> in the
universal distribution

Syntax

${{template_declares}} - Will be replaced with a series of declare <var>
lines based on the bashScriptDefines key. You can add more defines to
the bashScriptExtraDefines that will be used in addition to the default set:

		app_mainclass - The main class entry point for the application.

		app_classpath - The complete classpath for the application (in order).

Next, let’s look at how to document the application.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_server/customize.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Customize Java Server Applications

Application Configuration

After creating a package, the very next thing needed, usually, is the ability for users/ops to customize the application once it’s deployed. Let’s add some configuration to the newly deployed application.

There are generally two types of configurations:

		Configuring the JVM and the process

		Configuring the Application itself.

The server archetype provides you with a special feature to configure your application
with a single file outside of customizing the bash or bat script for applications.
As this file is OS dependent, each OS gets section.

Linux Configuration

There are different ways described in Customizing the Application
and can be used the same way.

The server archetype adds an additional way with an etc-default file placed
in src/templates, which currently only works for SystemV and
systemd. The file gets sourced before the actual startscript is executed.
The file will be installed to /etc/default/<normalizedName>

Example /etc/default/<normalizedName> for SystemV:

Available replacements
--
${{author}} package author
${{descr}} package description
${{exec}} startup script name
${{chdir}} app directory
${{retries}} retries for startup
${{retryTimeout}} retry timeout
${{app_name}} normalized app name
${{daemon_user}} daemon user

Setting JAVA_OPTS

JAVA_OPTS="-Dpidfile.path=/var/run/${{app_name}}/play.pid $JAVA_OPTS"

For rpm/systemv you need to set the PIDFILE env variable as well
PIDFILE="/var/run/${{app_name}}/play.pid"

export env vars for 3rd party libs

COMPANY_API_KEY=123abc
export COMPANY_API_KEY

Environment variables

The usual JAVA_OPTS can be used to override settings. This is a nice way to test
different jvm settings with just restarting the jvm.

Windows Configuration

Support planned.

Service Manager Configuration

It is possible to change the default Service Manager for a given platform by specifying a ServerLoader. To use
Upstart for an Rpm package simply:

import com.typesafe.sbt.packager.archetypes.ServerLoader

serverLoading in Rpm := ServerLoader.Upstart

As a side note Fedora/RHEL/Centos family of linux specifies Default requiretty in its /etc/sudoers
file. This prevents the default Upstart script from working correctly as it uses sudo to run the application
as the daemonUser . Simply disable requiretty to use Upstart or modify the Upstart template.

Customize Start Script

Sbt Native Packager leverages templating to customize various start/stop scripts and pre/post install tasks.
As an example, to alter the loader-functions which manage the specific start and stop process commands
for SystemLoaders you can to the linuxScriptReplacements map:

import com.typesafe.sbt.packager.archetypes.TemplateWriter

linuxScriptReplacements += {
 val functions = sourceDirectory.value / "templates" / "custom-loader-functions"
 // Nil == replacements. If you want to replace stuff in your script put them in this Seq[(String,String)]
 "loader-functions" -> TemplateWriter.generateScript(functions.toURL, Nil)
}

which will add the following resource file to use start/stop instead of initctl in the post install script:

startService() {
 app_name=$1
 start $app_name
}

stopService() {
 app_name=$1
 stop $app_name
}

The debian and redhat pages have further information on overriding
distribution specific actions.

Override Start Script

It’s also possible to override the entire script/configuration for your service manager.
Create a file src/templates/$format/$loader and it will be used instead.

Possible values:

		$format - debian or rpm

		$loader - upstart, systemv or systemd

Syntax

You can use ${{variable_name}} to reference variables when writing your script. The default set of variables is:

		descr - The description of the server.

		author - The configured author name.

		exec - The script/binary to execute when starting the server

		chdir - The working directory for the server.

		retries - The number of times to retry starting the server.

		retryTimeout - The amount of time to wait before trying to run the server.

		app_name - The name of the application (linux friendly)

		app_main_class - The main class / entry point of the application.

		app_classpath - The (ordered) classpath of the application.

		daemon_user - The user that the server should run as.

SystemD Support

There is also experimental SystemD support for Fedora release 20 (Heisenbug). You can use the `Systemd` server loader:

import com.typesafe.sbt.packager.archetypes.ServerLoader

serverLoading in Rpm := ServerLoader.Systemd

There is only partial systemd support in Ubuntu 14.04 LTS which prevents sbt-native-packager systemd from working correctly on
Ubuntu. Ubuntu 15.04 is the first version that switched to Systemd and the default Upstart won’t work. Switch to Systemd with

import com.typesafe.sbt.packager.archetypes.ServerLoader

serverLoading in Debian := ServerLoader.Systemd

Package Lifecycle Configuration

Some scripts are covered in the standard application type. Read more on Java Application Customization.
For the java_server package lifecycle scripts are customized to provide the following additional features

		Chowning directories and files correctly (if necessary)

		Create/Delete users and groups according to your mapping

		Register application at your init system

For this purpose sbt-native-packager ships with some predefined templates. These can be
overridden with different techniques, depending on the packaging system.

Partially Replace Template Functionality

Most sbt-native-packager scripts are broken up into partial templates in the resources directory [https://github.com/sbt/sbt-native-packager/tree/master/src/main/resources/com/typesafe/sbt/packager].
You can override these default template snippets by adding to the linuxScriptReplacements map. As
an example you can change the loader-functions which starts/stop services based on a certain `ServerLoader`:

linuxScriptReplacements += "loader-functions" -> TemplateWriter.generateScript(getClass.getResource("/custom-loader-functions"), Nil)

The custom-loader-functions file must declare the startService() and stopService() functions used in various
service management scripts.

RPM Scriptlets

RPM puts all scripts into one file. To override or append settings to your
scriptlets use these settings:

		rpmPre

		%pre scriptlet

		rpmPost

		%post scriptlet

		rpmPosttrans

		%posttrans scriptlet

		rpmPreun

		“%preun scriptlet”

		rpmPostun

		%postun scriptlet

		rpmVerifyscript

		%verifyscript scriptlet

If you want to have your files separated from the build definition use the
default location for rpm scriptlets. To override default templates in a RPM
build put the new scriptlets in the rpmScriptsDirectory (by default src/rpm/scriptlets).

		rpmScriptsDirectory

		By default to src/rpm/scriptlets. Place your templates here.

Available templates are

post-rpm
pre-rpm
postun-rpm
preun-rpm

Override Postinst scriptlet

By default the post-rpm template only starts the service, but doesn’t register it.

service ${{app_name}} start

For CentOS we can do

chkconfig ${{app_name}} defaults
service ${{app_name}} start || echo "${{app_name}} could not be started. Try manually with service ${{app_name}} start"

For RHEL

update-rc.d ${{app_name}} defaults
service ${{app_name}} start || echo "${{app_name}} could not be started. Try manually with service ${{app_name}} start"

Debian Control Scripts

To override default templates in a Debian build put the new control files in the
debianControlScriptsDirectory (by default src/debian/DEBIAN).

		debianControlScriptsDirectory

		By default to src/debian/DEBIAN. Place your templates here.

		debianMakePreinstScript

		creates or discovers the preinst script used by this project.

		debianMakePrermScript

		creates or discovers the prerm script used by this project.

		debianMakePostinstScript

		creates or discovers the postinst script used by this project.

		debianMakePostrmScript

		creates or discovers the postrm script used by this project.

Available templates are

postinst
preinst
postun
preun

Linux Replacements

This is a list of values you can access in your templates

${{author}}
${{descr}}
${{exec}}
${{chdir}}
${{retries}}
${{retryTimeout}}
${{app_name}}
${{daemon_user}}
${{daemon_group}}

Example Configurations

A list of very small configuration settings can be found at sbt-native-packager-examples [https://github.com/muuki88/sbt-native-packager-examples]

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_server/index.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Java Server Application Archetype

In the Application Packaging section we described how to build and
customize settings related to an application. The server archetype adds additional features you may
need when running your application as a service on a server. SBT Native Packager ships with a set of
predefined install and uninstall scripts for various platforms and service managers.

Features

The JavaServerAppPackaging archetype contains all JavaAppPackaging feature and the following

		install/uninstall services

		default mappings for server applications

		Creates a start script in /etc/init.d (SystemV) or /etc/init/ (Upstart)

Usage

 Version 1.0 or higher with sbt 0.13.5 and and higher

enablePlugins(JavaServerAppPackaging)

Version 0.8 or lower

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerKeys._

packageArchetype.java_server

Customize

The server archetype provides additional options to customize your application
behaviour at buildtime, installation, uninstallation and during runtime. The
basic application script customization is discussed in Java Application Customization.

Service Managers

Platforms are tied to both package managers (Rpm, Debian) and Service Managers (System V, Upstart, SystemD). By
default the native packager will configure a service manager to run the daemon process. The available
configurations are:

		Platform
		Service Manager
		Working

		Ubuntu
		Upstart (Default)
		X

		Ubuntu
		System V
		X

		CentOS
		System V (Default)
		X

		CentOS 6.5
		Upstart
		X

		Fedora
		System V (Default)
		X

		Fedora
		systemd
		experimental

		Windows
		Windows Services
		

Sitemap

		My First Packaged Server Project

		Customize Java Server Applications

Next, let’s get started with simple application

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_app/writing-documentation.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Writing Documentation

There are many ways to document your projects, and many ways to expose them. While the native packager places
no limit on WHAT is included in a package, there are some things which receive special treatment.

Specifically: linux man pages.

To create a linux man page for the application, let’s create a src/linux/usr/share/man/man1/example-cli.1 file

.\" Process this file with
.\" groff -man -Tascii example-cli.1
.\"
.TH EXAMPLE_CLI 1 "NOVEMBER 2011" Linux "User Manuals"
.SH NAME
example-cli \- Example CLI
.SH SYNOPSIS
.B example-cli [-h]

Notice the location of the file. Any file under src/linux is automatically included,
relative to /, in linux packages (deb, rpm). That means the man file will not appear
in the universal package (confusing linux users).

Now that the man page is created, we can use a few tasks provided to view it in sbt. Let’s look in the sbt console

$ sbt
> generateManPages
[info] Generated man page for[/home/jsuereth/projects/sbt/sbt-native-packager/tutorial-example/src/linux/usr/share/man/man1/example-cli.1] =
[info] EXAMPLE_CLI(1) User Manuals EXAMPLE_CLI(1)
[info]
[info]
[info]
[info] NAME
[info] example-cli - Example CLI
[info]
[info] SYNOPSIS
[info] example-cli [-h]
[info]
[info]
[info]
[info] Linux NOVEMBER 2011 EXAMPLE_CLI(1)

We can use this task to work on the man pages and ensure they’ll look OK. You can also directly use groff to view changes in
your man pages.

In addition to providing the means to view the man page, the native packager will also automatically gzip man pages for the
distribution. The resulting man page is stored in /usr/share/man/man1/example-cli.1.gz in linux distributions.

TODO - A bit more on other documentation methods.

That’s the end for the getting started guide for Java Applications! Feel free to read the guide on
Java Servers, which offers a few differences in how configuration
is done for packaging to underlying systems.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/akka_app/index.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Akka Microkernel

 The Akka Microkernel Archetype will be deprecated in favor of the more
 general and better maintained Java App Archetype

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

archetypes/java_server/my-first-project.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

My First Packaged Server Project

Follow the instructions for the basic java_application setup in Java Application Archetype to get a working build and
understand the core concepts of sbt-native-packager. Based on this configuration we exchange enable in our build.sbt

 Version 1.0 or higher with sbt 0.13.5 and and higher

enablePlugins(JavaServerAppPackaging) // instead of JavaAppPackaging

Version 0.8 or lower

import com.typesafe.sbt.SbtNativePackager._
import NativePackagerKeys._

packageArchetype.java_server // instead of java_application

which will activate all server specific settings. As the server settings are dependent
on which OS your using the following sections will provide details for each supported
OS.

Linux

A basic build.sbt for the supported rpm and deb packaging systems
require the following information:

maintainer in Linux := "John Smith <john.smith@example.com>"

packageSummary in Linux := "A small package summary"

packageDescription := "A longer description of your application"

There are additional parameters available to configure.

daemonUser in Linux := normalizedName.value // user which will execute the application

daemonGroup in Linux := (daemonUser in Linux).value // group which will execute the application

The archetype will automatically append/prepend the creation/deletion of the user
to your packaging for Debian. Note: All specified users are deleted on an apt-get purge <dpkg>.

 It is not a good idea to use root as the appUser for services as it represents a security risk.

Default Mappings

The java_server archetype creates a default package structure with the following access
rights. <package> is a placeholder for your actual application name. By default this is
normalizedName.

		Folder
		User
		Permissions
		Purpose

		/usr/share/<package>
		root
		755 / (655)
		static, non-changeable files

		/etc/default/<package>
		root
		644
		default config file

		/etc/<package>
		root
		644
		config folder -> link to /usr/share/<package-name>/conf

		/var/run/<package>
		daemon
		644
		if the application generates a pid on its own

		/var/log/<package>
		daemon
		644
		log folder -> symlinked from /usr/share/<package>/log

You can read more on best practices on wikipedia filesystem hierarchy [http://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard], debian policies [https://www.debian.org/doc/debian-policy/ch-files.html] and in
this native packager discussion [https://github.com/sbt/sbt-native-packager/pull/174].

If you want to change something in this predefined structure read more about it in
the linux section.

Debian (.deb)

A basic build.sbt for debian requires only the Linux settings. You can build your
server application with

debian:packageBin

Ubuntu provides two different bootsystems, SystemV and Upstart (default). To switch between
both you can add this to your build.sbt

import com.typesafe.sbt.packager.archetypes.ServerLoader.{SystemV, Upstart}

serverLoading in Debian := SystemV

RPM (.rpm)

A basic build.sbt for rpm requires the Linux settings and

rpmVendor := "Your organization Inc."

Build your rpm package with

rpm:packageBin

The output is partially on stderr which is a bit confusing. If the build
ends with success you are fine.

Windows

Planned for 0.8.0

Docker

A basic build.sbt for Docker requires the linux.Keys.maintainer setting:

maintainer in Docker := "John Smith <john.smith@example.com>"

There are a number of other available settings:

daemonUser in Docker := normalizedName.value // user in the Docker image which will execute the application (must already exist)

dockerBaseImage := "dockerfile/java" // Docker image to use as a base for the application image

dockerExposedPorts in Docker := Seq(9000, 9443) // Ports to expose from container for Docker container linking

dockerExposedVolumes in Docker := Seq("/opt/docker/logs") // Data volumes to make available in image

dockerRepository := Some("dockerusername") // Repository used when publishing Docker image

A directory with appropriate contents for building a Docker image can be created with

docker:stage

To build an image and store it in the local Docker server, use

docker:publishLocal

To build an image, publish locally, and then push to a remote Docker repository, use

docker:publish

Next, let’s look at how to customize a java server application.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down.png

_static/up.png

_static/down-pressed.png

topics/index.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Advanced Topics

		Custom Package Formats
		SBT Assembly

		Proguard

		Multi Module Builds

		Custom Packaging Format

		Dealing with long classpaths
		Generate a launcher jar

		Generate a classpath jar

		Configure a wildcard classpath

		Play 2 Packaging
		Build Configuration

		Application Configuration

		Deployment
		Setup publish Task

		Default Deployment

		Custom Deployments

		Custom Configurations

		Contributing Documentation

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

topics/longclasspath.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Dealing with long classpaths

By default, when the native packager generates a script for starting your application, it will generate an invocation
of java that that passes every library on the classpath to the classpath argument, -cp. If you have a lot of
dependencies, this may result in a very long command being executed, which, aside from being aesthetically unpleasing
and difficult to work with when using tools like ps, causes problems on some platforms, notably Windows, that have
limits to how long commands can be.

There are a few ways you can work around this in the native packager.

Generate a launcher jar

The native packager includes a plugin that allows generating a launcher jar. This launcher jar will contain no classes,
but will have your projects main class and classpath in its manifest. The script that sbt then generates executes this
jar like so:

java -jar myproject-launcher.jar

To enable the launcher jar, enable the LauncherJarPlugin:

enablePlugins(LauncherJarPlugin)

Generate a classpath jar

The classpath jar is very similar to the launcher jar, in that it also has the classpath on its manifest, but it does
not include the main class in its manifest, and so executed by the start script by invoking:

java -cp myproject-classpath.jar some.Main

To enable the classpath jar:

enablePlugins(ClasspathJarPlugin)

Configure a wildcard classpath

JDK 6 and above supports configuring the classpath using wildcards. To enable this, simply override the
scriptClasspath task to only contain *, for example:

scriptClasspath := Seq("*")

One downside of this approach is that the classpath ordering will no longer match the classpath ordering that sbt uses.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

topics/play.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Play 2 Packaging

Although Play 2 supports Sbt Native Packager, it requires some additional steps
to successfully package and run your application.

Build Configuration

Depending on whether you want to package your application as a deb-package or
as an rpm-package, you have to setup your build configuration accordingly.
Please, refer to Debian and Redhat
pages for additional information.

Note that Upstart is not supported by all available operation systems and may not always work as expected.
You can always fallback to the SystemV service manager instead.
For more information on service managers please refer
to Getting Started With Servers page.

Application Configuration

In order to run your application in production you need to provide it with at least:

		Location where it can store its pidfile

		Production configuration

One way to provide this information is to append the following content in your build definition:

javaOptions in Universal ++= Seq(
 // JVM memory tuning
 "-J-Xmx1024m",
 "-J-Xms512m",

 // Since play uses separate pidfile we have to provide it with a proper path
 s"-Dpidfile.path=/var/run/${packageName.value}/play.pid",

 // Use separate configuration file for production environment
 s"-Dconfig.file=/usr/share/${packageName.value}/conf/production.conf",

 // Use separate logger configuration file for production environment
 s"-Dlogger.file=/usr/share/${packageName.value}/conf/production-logger.xml",

 // You may also want to include this setting if you use play evolutions
 "-DapplyEvolutions.default=true"
)

This way you should either store your production configuration under ${{path_to_app_name}}/conf/production.conf
or put it under /usr/share/${{app_name}}/conf/production.conf by hand or using some configuration management system.

SystemV

If you use a system using SystemV start script make sure to provide
a etc-default in src/templates and set the PIDFILE environment variable.

Setting JAVA_OPTS

you can use this instead of the application.ini as well
JAVA_OPTS="-Dpidfile.path=/var/run/${{app_name}}/play.pid $JAVA_OPTS"

For rpm/systemv you need to set the PIDFILE env variable as well
PIDFILE="/var/run/${{app_name}}/play.pid"

See customize java server application for more information on application.ini
and etc-default template.

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

topics/deployment.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Deployment

This page shows you how to configure your build to deploy your build universal(zip, tgz, txz), rpm, debian or msi packages.
For information on docker, please take a look at the docker page.

Setup publish Task

You need a working publish task in order to use the following configurations.
A good starting point is the sbt publish documentation [http://www.scala-sbt.org/0.13/docs/Publishing.html]. You should have something
like this in your build.sbt

publishTo := {
 val nexus = "https://oss.sonatype.org/"
 if (version.value.trim.endsWith("SNAPSHOT"))
 Some("snapshots" at nexus + "content/repositories/snapshots")
 else
 Some("releases" at nexus + "service/local/staging/deploy/maven2")
}

For an automatised build process are other plugins like the sbt release plugin [https://github.com/sbt/sbt-release].

Default Deployment

The easiest way is to add UniversalDeployPlugin to your build.sbt

import NativePackagerKeys._

enablePlugins(JavaServerAppPackaging, UniversalDeployPlugin)

You are now able to publish your packaged application in both tgz and zip formats with:

		universal:publish

		Publish the zip (or tgz/txz depending on the configuration. Default is to publish zip along with tgz) package

Custom Deployments

When using other package formats we need to explicitly configure the
deployment setup to a more specific one.

RPM

Your build.sbt should contain:

enablePlugins(RpmPlugin, RpmDeployPlugin)

This will make possible to push the RPM with:

`sbt rpm:publish

Debian

Enabled with:

enable(DebianPlugin, DebianDeployPlugin)

that will make possible to publish a deb package with:

sbt deb:publish

Windows

If using an msi packaging you need to enable:

enable(WindowsPlugin, WindowsDeployPlugin)

Then, pushing the package is

sbt windows:publish

Custom Configurations

You could configure only what you need as well.

Debian

makeDeploymentSettings(Debian, packageBin in Debian, "deb")

//if you want a changes file as well
makeDeploymentSettings(Debian, genChanges in Debian, "changes")

RPM

makeDeploymentSettings(Rpm, packageBin in Rpm, "rpm")

Windows

makeDeploymentSettings(Windows, packageBin in Windows, "msi")

Universal

// zip
makeDeploymentSettings(Universal, packageBin in Universal, "zip")

makeDeploymentSettings(UniversalDocs, packageBin in UniversalDocs, "zip")

// additional tgz
addPackage(Universal, packageZipTarball in Universal, "tgz")

// additional txz
addPackage(UniversalDocs, packageXzTarball in UniversalDocs, "txz")

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

topics/custom.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Custom Package Formats

This section provides an overview of different packaging flavors.

SBT Assembly

Main Goal

Create a fat-jar with sbt-assembly in order to deliver a single,

self-containing jar as a package instead of the default lib/ structure

First add the sbt-assembly plugin to your plugins.sbt file.

addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.11.2")

The next step is to remove all the jar mappings from the normal mappings and only add the
assembly jar. In this example we’ll set the assembly jar name ourself, so we know exactly
what the output should look like. Finally we change the scriptClasspath so it only
contains the assembled jar. This is what the final build.sbt should contain:

import AssemblyKeys._

// the assembly settings
assemblySettings

// we specify the name for our fat jar
jarName in assembly := "assembly-project.jar"

// using the java server for this application. java_application is fine, too
packageArchetype.java_server

// removes all jar mappings in universal and appends the fat jar
mappings in Universal := {
 // universalMappings: Seq[(File,String)]
 val universalMappings = (mappings in Universal).value
 val fatJar = (assembly in Compile).value
 // removing means filtering
 val filtered = universalMappings filter {
 case (file, name) => ! name.endsWith(".jar")
 }
 // add the fat jar
 filtered :+ (fatJar -> ("lib/" + fatJar.getName))
}

// the bash scripts classpath only needs the fat jar
scriptClasspath := Seq((jarName in assembly).value)

Proguard

Main Goal

Create a package that contains a single fat-jar that has been shrunken / optimized / obfuscated with proguard [http://proguard.sourceforge.net/].

First add the sbt-proguard [https://github.com/sbt/sbt-proguard] plugin to
the plugins.sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-proguard" % "0.2.2")

Then configure the proguard options in build.sbt:

import com.typesafe.sbt.SbtProguard.ProguardKeys

// initialize the proguard settings
proguardSettings

// to configure proguard for scala, see
// http://proguard.sourceforge.net/manual/examples.html#scala
ProguardKeys.options in Proguard ++= Seq(
 "--dontwarn scala.**",
 "--dontwarn ch.qos.**"
 // ...
)

// specify the entry point for a standalone app
ProguardKeys.options in Proguard += ProguardOptions.keepMain("com.example.Main")

// Java 8 requires a newer version of proguard than sbt-proguard's default
ProguardKeys.proguardVersion in Proguard := "5.2.1"

// filter out jar files from the list of generated files, while
// keeping non-jar output such as generated launch scripts
mappings in Universal := (mappings in Universal).value.
 filter {
 case (file, name) => ! name.endsWith(".jar")
 }

// ... and then append the jar file emitted from the proguard task to
// the file list
mappings in Universal ++= (ProguardKeys.proguard in Proguard).
 value.map(jar => jar -> ("lib/" +jar.getName))

// point the classpath to the output from the proguard task
scriptClasspath := (ProguardKeys.proguard in Proguard).value.map(jar => jar.getName)

Now when you package your project using a command such as sbt universal:package-zip-tarball,
it will include fat jar that has been created by proguard rather than the normal
output in /lib.

Multi Module Builds

Main Goal

Aggregate multiple projects into one native package

If you want to aggregate different projects in a multi module build to a single package,
you can specify everything in a single build.sbt

import NativePackagerKeys._

name := "mukis-fullstack"

// used like the groupId in maven
organization in ThisBuild := "de.mukis"

// all sub projects have the same version
version in ThisBuild := "1.0"

scalaVersion in ThisBuild := "2.11.2"

// common dependencies
libraryDependencies in ThisBuild ++= Seq(
 "com.typesafe" % "config" % "1.2.0"
)

// this is the root project, aggregating all sub projects
lazy val root = Project(
 id = "root",
 base = file("."),
 // configure your native packaging settings here
 settings = packageArchetype.java_server++ Seq(
 maintainer := "John Smith <john.smith@example.com>",
 packageDescription := "Fullstack Application",
 packageSummary := "Fullstack Application",
 // entrypoint
 mainClass in Compile := Some("de.mukis.frontend.ProductionServer")
),
 // always run all commands on each sub project
 aggregate = Seq(frontend, backend, api)
) dependsOn(frontend, backend, api) // this does the actual aggregation

// --------- Project Frontend ------------------
lazy val frontend = Project(
 id = "frontend",
 base = file("frontend")
) dependsOn(api)

// --------- Project Backend ----------------
lazy val backend = Project(
 id = "backend",
 base = file("backend")
) dependsOn(api)

// --------- Project API ------------------
lazy val api = Project(
 id = "api",
 base = file("api")
)

Custom Packaging Format

Main Goal

Use native packager to define your own custom packaging format

and reuse stuff you already like

The very core principle of native packager are the mappings. They are a sequence
of File -> String tuples, that map a file on your system to a location on your install
location.

Defining a custom mapping format is basically transforming these mappings into the format
of you choice. To do so, we recommend the following steps

		Create a new configuration scope for you packaging type

		Define a packageBin task in your new scope that transforms the mappings into a package

The following examples demonstrates how to create a simple text format, which lists all your
mappings inside a package format. A minimal build.sbt would look like this

import NativePackagerKeys._

val TxtFormat = config("txtFormat")

val root = project.in(file("."))
 // adding your custom configuration scope
 .configs(TxtFormat)
 .settings(packageArchetype.java_server:_*)
 .settings(
 name := "mukis-custom-package",
 version := "1.0",
 mainClass in Compile := Some("de.mukis.ConfigApp"),
 maintainer in Linux := "Nepomuk Seiler <nepomuk.seiler@mukis.de>",
 packageSummary in Linux := "Custom application configuration",
 packageDescription := "Custom application configuration",
 // defining your custom configuration
 packageBin in TxtFormat := {
 val fileMappings = (mappings in Universal).value
 val output = target.value / s"${packageName.value}.txt"
 // create the is with the mappings. Note this is not the ISO format -.-
 IO.write(output, "# Filemappings\n")
 // append all mappings to the list
 fileMappings foreach {
 case (file, name) => IO.append(output, s"${file.getAbsolutePath}\t$name${IO.Newline}")
 }
 output
 }
)

To create your new “packageFormat” just run

txtFormat:packageBin

If you want to read more about sbt configurations:

		sbt tasks [http://www.scala-sbt.org/0.13/docs/Tasks.html]

		sbt configurations [http://www.scala-sbt.org/0.13.5/docs/Detailed-Topics/Testing.html#additional-test-configurations-with-shared-sources]

		custom configuration [http://stackoverflow.com/questions/18789477/define-custom-configuration-in-sbt]

 © Copyright 2014 sbt-native-packager team.
 Created using Sphinx 1.3.5.

topics/documentation.html

 Navigation

 		
 index

 		sbt-native-packager 1.0a1 documentation »

Contributing Documentation

You can clone the sbt-native-packager GitHub repo [https://github.com/sbt/sbt-native-packager] and modify
the rst files [http://sphinx-doc.org/rest.html] in the
src/sphinx/ [https://github.com/sbt/sbt-native-packager/tree/master/src/sphinx] directory.

The site is generated with the sbt-site [https://github.com/sbt/sbt-site] plugin. You’ll need the following
dependencies installed:

		python-sphinx

		python-pip

and the sphinx_bootstrap_theme library available via pip:

pip install sphinx_bootstrap_theme

See the sbt-native-packager developer guide [https://github.com/sbt/sbt-native-packager/wiki/Developer-Guide#documentat