
Mutation Testing in Patterns
Documentation

Release 1.0

Alexander Todorov

Aug 18, 2016

Contents

1 Make sure your tools work 3

2 Make sure your tests work 5

3 Divide and conquer 7

4 Fail fast 9

5 Python: Refactor if string != “” 11

6 Appendix. Mutation testing with Python 13

7 Indices and tables 15

i

ii

Mutation Testing in Patterns Documentation, Release 1.0

Mutation testing is a technique used to evaluate the quality of existing software tests. Mutation testing involves
modifying a program in small ways, for example replacing True constants with False and re-running its test suite.
When the test suite fails the mutant is killed. This tells us how good the test suite is. The goal of this paper is to
describe different software and testing patterns related using practical examples.

Some of them are language specific so please see the relevant sections for information about installing and running the
necessary tools and examples.

Contents 1

Mutation Testing in Patterns Documentation, Release 1.0

2 Contents

CHAPTER 1

Make sure your tools work

Mutation testing relies on dynamically modifying program modules and loading the mutated instance from memory.
Depending on the language specifics there may be several ways to refer to the same module. In Python the following
are equivalent

import sandwich.ham.ham
obj = sandwich.ham.ham.SomeClass()

from sandwich.ham import ham
obj = ham.SomeClass()

Note: The equivalency here is in terms of having access to the same module API.

When we mutation test the right-most ham module our tools may not be able to resolve to the same module if various
importing styles are used. For example see python/example_00/README.

Another possible issue is with programs that load modules dynamically or change the module search path at run-
time. Depending on how the mutation testing tool works these operations may interfere with it. For example see
python/example_01/README.

TL,DR: explore your test tool first and manually verify the results before going further. Unless you know the tools
don’t trust them!

3

Mutation Testing in Patterns Documentation, Release 1.0

4 Chapter 1. Make sure your tools work

CHAPTER 2

Make sure your tests work

Mutation testing relies on the fact that your test suite will fail when a mutation is introduced. In turn any kind of failure
will kill the mutant! The mutation test tool has no way of knowing whether your test suite failed because the mutant
tripped one of the assertions or whether it failed due to other reasons.

For example see python/example_02/README

TL,DR: make sure your test suite is robust and doesn’t randomly fail due to external factors!

5

Mutation Testing in Patterns Documentation, Release 1.0

6 Chapter 2. Make sure your tests work

CHAPTER 3

Divide and conquer

The basic mutation test algorithm is this

for operator in mutation-operators:
for site in operator.sites(code):

operator.mutate(site)
run_tests()

• mutation-operators are the things that make small changes to your code

• operator.sites are the places in your code where this operator can be applied

As you can see mutation testing is a very expensive operation. For example the pykickstart project started with 5523
possible mutations and 347 tests, which took on average 100 seconds to execute. A full mutation testing execution
needs more than 6 days to complete!

In practice however not all tests are related to, or even make use of all program modules. This means that mutated
operators are only tested via subset of the entire test suite. This fact can be used to reduce execution time by scheduling
mutation tests against each individual file/module using only the tests which are related to it. The best case scenario is
when your source file names map directly to test file names.

For example something like this

for f in `find ./src -type f -name "*.py" | sort`; do
TEST_NAME="tests/$f"
runTests $f $TEST_NAME

done

Where runTests executes the mutation testing tool against a single file and executes only the test which is related to
this file. For pykickstart this approach reduced the entire execution time to little over 6 hours!

TL,DR: Good source code and test organization will allow easy division of test runs and tremendously speed up your
mutation testing execution time!

7

http://github.com/rhinstaller/pykickstart

Mutation Testing in Patterns Documentation, Release 1.0

8 Chapter 3. Divide and conquer

CHAPTER 4

Fail fast

Mutation testing relies on your test suite failing when it detects a faulty mutation. It doesn’t matter which particular
test has failed because most of the tools have no way of telling whether or not the failed test is related to the mutated
code. That means it also doesn’t matter if there are more than one failing tests so you can use this to your advantage.

TL,DR: Whenever your test tools and framework support the fail fast option make use of it to reduce test execution
time even more!

9

Mutation Testing in Patterns Documentation, Release 1.0

10 Chapter 4. Fail fast

CHAPTER 5

Python: Refactor if string != “”

Comparison operators may be mutated with each other which gives, depending on the langauge about 10 possible
mutations.

Every time str is not an empty string the following 3 variants are evaluated to True:

• if str != ""

• if str > ""

• if str not in ""

The existing test cases pass and these mutations are never killed. Refactoring this to

if str:
do_something()

is the best way to go about it. This also reduces the total number of possible mutations.

For example see python/example_03/README

TL,DR: Refactor if str != "": to if str:!

11

Mutation Testing in Patterns Documentation, Release 1.0

12 Chapter 5. Python: Refactor if string != “”

CHAPTER 6

Appendix. Mutation testing with Python

Cosmic-Ray is the mutation testing tool for Python. It is recommended that you install the latest version from git:

pip install https://github.com/sixty-north/cosmic-ray/zipball/master

Cosmic-Ray uses Celery to allow concurrent execution of workers (e.g. mutation test jobs). To start the worker

cd myproject/
celery -A cosmic_ray.tasks.worker worker

To execute a test job (called session) use a different terminal and

cd myproject/
cosmic-ray run --baseline=10 session_name.json some/module.py -- tests/some/test.py

Note: Test runner and additional test parameters can be specified. Refer to Cosmic-Ray’s documentation for more
details!

To view the mutation results execute

cosmic-ray report session_name.json

13

https://github.com/sixty-north/cosmic-ray

Mutation Testing in Patterns Documentation, Release 1.0

14 Chapter 6. Appendix. Mutation testing with Python

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

15

	Make sure your tools work
	Make sure your tests work
	Divide and conquer
	Fail fast
	Python: Refactor if string != ``''
	Appendix. Mutation testing with Python
	Indices and tables

