

Mutalyzer API client and command line interface

[image: _images/client.svg]
 [https://github.com/mutalyzer/client/graphs/commit-activity][image: _images/client1.svg]
 [https://travis-ci.org/mutalyzer/client][image: _images/d5de33db562b35f1ef5f04b8a70d470b423f315e.svg]
 [https://mutalyzer-client.readthedocs.io/en/latest][image: _images/client2.svg]
 [https://github.com/mutalyzer/client/releases][image: _images/client3.svg]
 [https://github.com/mutalyzer/client/releases][image: _images/mutalyzer-client.svg]
 [https://pypi.org/project/mutalyzer-client/][image: _images/client4.svg]
 [https://github.com/mutalyzer/client][image: _images/client5.svg]
 [https://github.com/mutalyzer/client][image: _images/client6.svg]
 [https://github.com/mutalyzer/client][image: _images/client7.svg]
 [https://raw.githubusercontent.com/mutalyzer/client/master/LICENSE.md]

This package provides a client library and a command line interface for the
Mutalyzer [https://mutalyzer.nl] web service.

Please see ReadTheDocs [https://mutalyzer-client.readthedocs.io/en/latest/index.html] for the latest documentation.

Contents:

	Installation
	From source

	Usage

	Library

	Contributors

Installation

The software is distributed via PyPI [https://pypi.org/project/mutalyzer-client], it can be installed with pip:

pip install mutalyzer-client

From source

The source is hosted on GitHub [https://github.com/mutalyzer/client.git], to install the latest development version, use
the following commands.

git clone https://github.com/mutalyzer/client.git mutalyzer-client
cd mutalyzer-client
pip install .

Usage

This package provides a command line interface that takes subcommands as its
first parameter. To see the full list of subcommands, use the -h parameter.

mutalyzer_client -h

To get more information about a subcommand, use the -h option again.

mutalyzer_client vcf_to_hgvs -h

Library

The Mutalyzer class contains all relevant methods. A class instance is
created by providing a build name.

>>> from mutalyzer_client import Mutalyzer
>>>
>>> mutalyzer = Mutalyzer('GRCh37')

The hgvs_to_db can be used to convert an HGVS [http://varnomen.hgvs.org/] description to a simple format
to be used in databases.

>>> mutalyzer.hgvs_to_db('NC_000001.10:g.12783G>A')
('chr1', 12783, 'G', 'A')

To work with VCF files, we recommend to use the PyVCF [https://pyvcf.readthedocs.io/en/latest/index.html] library.

>>> from vcf import Reader
>>>
>>> reader = Reader(open('data/sample.vcf'))
>>> record = next(reader)

To convert a VCF record to HGVS, use the vcf_to_hgvs method.

>>> mutalyzer.vcf_to_hgvs(record.CHROM, record.POS, record.REF, record.ALT[0])
'NC_000001.10:g.12783G>A'

To convert a VCF record to database format, use the vcf_to_db method.

>>> mutalyzer.vcf_to_db(record.CHROM, record.POS, record.REF, record.ALT[0])
('chr1', 12783, 'G', 'A')

Contributors

	Jeroen F.J. Laros <J.F.J.Laros@lumc.nl> (Original author, maintainer)

Find out who contributed:

git shortlog -s -e

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone.

Our Standards

Examples of behaviour that contributes to creating a positive environment
include:

	Using welcoming and inclusive language.

	Being respectful of differing viewpoints and experiences.

	Gracefully accepting constructive criticism.

	Focusing on what is best for the community.

	Showing empathy towards other community members.

Examples of unacceptable behaviour by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances.

	Trolling, insulting/derogatory comments, and personal or political attacks.

	Public or private harassment.

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission.

	Other conduct which could reasonably be considered inappropriate in a
professional setting.

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behaviour and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behaviour.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviour that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behaviour may be
reported by contacting the project team at mailto:J.F.J.Laros@lumc.nl. The
project team will review and investigate all complaints, and will respond in a
way that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org],
version 1.4, available at
http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

Please follow these guidelines if you would like to contribute to the project.

Table of Contents

Please read through these guidelines before you get started:

	Questions & Concerns

	Issues & Bugs

	Feature Requests

	Submitting Pull Requests

	Code Style

Questions & Concerns

If you have any questions about using or developing for this project, reach out
to @mutalyzer or send an email.

Issues & Bugs

Submit an issue [https://github.com/mutalyzer/client/issues/new] or pull request [https://github.com/mutalyzer/client/compare] with a fix if you find any
bugs in the project. See below for instructions on
sending in pull requests, and be sure to reference the code style
guide first!

When submitting an issue or pull request, make sure you are as detailed as
possible and fill in all answers to questions asked in the templates. For
example, an issue that simply states “X/Y/Z is not working!” will be closed.

Feature Requests

Submit an issue [https://github.com/mutalyzer/client/issues/new] to request a new feature. Features fall into one of
two categories:

	Major: Major changes should be discussed with me via email. I am
always open to suggestions and will get back to you as soon as I can!

	Minor: A minor feature can simply be added via a pull request [https://github.com/mutalyzer/client/compare].

Submitting Pull Requests

Before you do anything, make sure you check the current list of pull
requests [https://github.com/mutalyzer/client/pulls] to ensure you are not duplicating anyone’s work. Then, do the
following:

	Fork the repository and make your changes in a git branch: git checkout -b my-branch base-branch

	Read and follow the code style guidelines.

	Make sure your feature or fix does not break the project! Test thoroughly.

	Commit your changes, and be sure to leave a detailed commit message.

	Push your branch to your forked repo on GitHub: git push origin my-branch

	Submit a pull request [https://github.com/mutalyzer/client/compare] and hold tight!

	If any changes are requested by the project maintainers, make them and
follow this process again until the changes are merged in.

Code Style

Please follow the coding style conventions detailed below:

	For Python: PEP 8 - Style Guide for Python Code [https://www.python.org/dev/peps/pep-0008/].

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Mutalyzer API client and command line interface

 		
 Installation

 		
 From source

 		
 Usage

 		
 Library

 		
 Contributors

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

