
Murano
Release 2.0.0.0b3.dev156

February 26, 2016

Contents

1 Introduction to Murano 3
1.1 Key features . 3
1.2 Target Users . 4
1.3 Architecture . 5
1.4 Use cases . 6

2 Using Murano 7
2.1 Quickstart . 7
2.2 Managing environments . 11
2.3 Managing applications . 14
2.4 Log into murano-spawned instance . 36
2.5 Deploying environments using CLI . 37

3 Developing Applications 41
3.1 Step-by-Step . 41
3.2 Execution plan template . 51
3.3 HOT packages . 53
3.4 MuranoPL Reference . 56
3.5 Murano actions . 70
3.6 Murano packages . 71
3.7 Migrating applications between releases . 79
3.8 Application unit tests . 85
3.9 Examples . 89
3.10 Use-cases . 90
3.11 FAQ . 93

4 Miscellaneous 95
4.1 Murano Installation Guide . 95
4.2 Murano workflow . 108
4.3 Murano Policy Enforcement . 110
4.4 Building Murano Image . 118
4.5 Murano automated tests description . 122
4.6 Murano client . 125
4.7 Contributing to Murano . 128
4.8 Development Guidelines . 129
4.9 Murano TroubleShooting and Debug Tips . 129
4.10 Murano API v1 specification . 131

i

5 Indices and tables 159

ii

Murano, Release 2.0.0.0b3.dev156

Murano is an open source OpenStack project that combines an application catalog with versatile tooling to simplify
and accelerate packaging and deployment. It can be used with almost any application and service in OpenStack.

Murano project consists of several source code repositories:

• murano - is the main repository. It contains code for Murano API server, Murano engine and MuranoPL.

• murano-agent - agent which runs on guest VMs and executes deployment plan.

• murano-dashboard - Murano UI implemented as a plugin for OpenStack Dashboard.

• python-muranoclient - Client library and CLI client for Murano.

This documentation guides application developers through the process of composing an application package to get it
ready for uploading to Murano.

Besides the deployment rules and requirements, it contains information on how to manage images, categories, and
repositories using the murano client that will surely be helpful for cloud administrators.

It also explains to end users how they can use the catalog directly from the dashboard. These include guidance on how
to manage applications and environments.

And it provides information on how to contribute to the project.

Note: Deploying Murano and Contibuting guides are under development at the moment. The most recently updated
information is published as the BETA version of the Murano documentation.

Contents 1

https://git.openstack.org/cgit/openstack/murano/
https://git.openstack.org/cgit/openstack/murano-agent/
https://git.openstack.org/cgit/openstack/murano-dashboard/
https://git.openstack.org/cgit/openstack/python-muranoclient/

Murano, Release 2.0.0.0b3.dev156

2 Contents

CHAPTER 1

Introduction to Murano

1.1 Key features

Murano has a number of features designed to interact with the application catalog, for instance managing what’s in
the catalog, and determining how apps in the catalog are deployed.

1.1.1 Application catalog

1. Easy browsing:

• Icons display applications for point-and-click and drag-and-drop selection and deployment.

• Each application provides configuration information required for deploying it to a cloud.

• An application topology of your environment is available in a separate tab, and shows the number of
instances spawned by each application.

• The presence of the Quick Deploy button on the applications page saves the time.

2. Quick filtering by:

• Tags and words included in application name and description.

• Recent activity.

• Predefined category.

3. Dependency tracking:

• Automatic detection of dependent applications that minimizes the possibility of an application deployment
with incorrect configuration.

• No underlying IaaS configuration knowledge is required.

1.1.2 Application catalog management

1. Easy application uploading using UI or CLI from:

• Local zip file.

• URL.

• Package name, using an application repository.

2. Managing applications include:

3

Murano, Release 2.0.0.0b3.dev156

• Application organization in categories or transfer between them.

• Application name, description and tags update.

• Predefined application categories list setting.

3. Deployment tracking includes the availability of:

• Logs for deployments via UI.

• Deployment modification history to track the recent changes.

1.1.3 Application lifecycle management

1. Simplified configuration and integration:

• It is up to an application developer to decide what their application will be able to do.

• Dependencies between applications are easily configured.

• New applications can be connected with already existing ones.

• Well specified application actions are available.

2. HA-mode and auto-scaling:

• Application authors can set up any available monitoring system to track application events and call corre-
sponding actions, such as failover, starting additional instances, and others.

3. Isolation:

• Applications in the same environments can easily interact with each other, though applications between
different tenants are isolated.

1.2 Target Users

Cloud end users want to simply use applications as opposed to installing and managing them. Cloud administrators,
in turn, would like to offer a well tested set of on demand self-service applications to dramatically reduce their support
burden.

Murano solves the problems of both constituents. It enables cloud administrators to publish cloud-ready applications
in an online catalog. Cloud end users can use the catalog to deploy these on demand applications, reliably and
consistently, with a button click.

1.2.1 Cloud administrators

For cloud administrators Murano provides UI and API to easily compose, deploy, run applications, and manage their
lifecycle.

Designed to be operating system independent, it can handle apps on all manner of the environments in the cloud, either
Windows or Linux/Unix-based operating systems.

It can be used to pre-configure and deploy anything that can run in the cloud, from low-level networking services to
end-user applications. By automating these ongoing cloud application management activities, Murano speeds up the
deployment, even for complex distributed applications, without sacrificing simplicity of use.

4 Chapter 1. Introduction to Murano

Murano, Release 2.0.0.0b3.dev156

1.2.2 Cloud end users

Murano catalog lets cloud end users choose from the available applications and services, and compose reliable dis-
tributed environments with an intuitive UI. Even users unfamiliar with cloud environments can easily deploy cloud-
aware applications.

Murano masks cloud-infrastructure specifics from end users, letting them reliably compose and deploy applications in
the cloud for the widest range of workloads and use cases without touching IaaS internals.

1.3 Architecture

Murano is composed of the following major components:

• murano command-line client

• murano-dashboard

• murano-api

• murano-engine

• murano-agent

They interact with each other as illustrated in the following diagram:

All remote operations on users’ servers, such as software installation and configuration, are carried out through an
AMQP queue to the murano-agent. Such communication can easily be configured on a separate instance of AMQP to
ensure that the infrastructure and servers are isolated.

Besides, Murano uses other OpenStack services to prevent the reimplementation of the existing functionality. Murano
interacts with these services using their REST API through their python clients.

The external services used by Murano are:

• the Orchestration service (Heat) to orchestrate infrastructural resources such as servers, volumes, and net-
works. Murano dynamically creates heat templates based on application definitions.

1.3. Architecture 5

Murano, Release 2.0.0.0b3.dev156

• the Identity service (Keystone) to make murano API available to all OpenStack users.

1.4 Use cases

IT-as-a-Service

An IT organization manages applications and controls the applications availability to different OpenStack
cloud users in a simple and timesaving manner.

A cloud end user can easily find and deploy any available application from the catalog.

Self-service portal

An application developer and quality assurance engineer reduces efforts on testing an application for
compatibility with other applications, databases, platforms, and other components it depends on, by con-
figuring compound combinations of applications dynamically and deploying environments that satisfy all
requirements within minutes.

Glue layer use case

A cloud end user is able to link an ever growing number of technologies to any application in an Open-
Stack cloud with a minimum cost due to the powerful Murano architecture.

Currently, Murano applications have been integrated with the following technologies: Docker, Legacy
apps VMs or bare metal, apps outside of OpenStack, and others.

The following technologies are to become available in the future: Cloudify and TOSCA, Apache Brook-
lyn, and APS.

6 Chapter 1. Introduction to Murano

CHAPTER 2

Using Murano

2.1 Quickstart

This is a brief walkthrough to quickly get you familiar with the basic operations you can perform when using the
Application catalog directly from the dashboard.

For the detailed instructions on how to manage your environments and applications, please proceed with dedicated
sections.

2.1.1 Upload an application

To upload an application to the catalog:

1. Log in to the OpenStack dashboard.

2. Navigate to Murano > Manage > Packages.

3. Click on the Import Package button:

4. In the Import Package dialog:

• Select URL from the Package Source drop-down list;

• Specify the URL in the Package URL field. Lets upload the Apache HTTP Server package using
http://storage.apps.openstack.org/apps/io.murano.apps.apache.ApacheHttpServer.zip;

• Click Next to continue:

7

http://storage.apps.openstack.org/apps/io.murano.apps.apache.ApacheHttpServer.zip

Murano, Release 2.0.0.0b3.dev156

5. View the package details in the new dialog, click Next to continue:

6. Select the Application Servers from the application category list, click Create to import the application package:

8 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

7. Now your application is available from Murano > Application Catalog > Applications page.

2.1.2 Deploy an application

To add an application to an environment’s component list and deploy the environment:

1. Log in to the OpenStack dashboard.

2. Navigate to Murano > Application Catalog > Applications.

3. Click on the Quick Deploy button from the required application from the list. Lets deploy Apache HTTP Server,
for example:

2.1. Quickstart 9

Murano, Release 2.0.0.0b3.dev156

4. Check Assign Floating IP and click Next to proceed:

5. Select the Instance Image from the drop-down list and click Create:

6. Now the Apache HTTP Server application is successfully added to the newly created quick-env-1 environ-
ment. Click the Deploy This Environment button to start the deployment:

10 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

It may take some time for the environment to deploy. Wait until the status is changed from Deploying to
Ready.

7. Navigate to Murano > Application Catalog > Environments to view the details.

2.1.3 Delete an application

To delete an application that belongs to the environment:

1. Log in to the OpenStack dashboard.

2. Navigate to Murano > Application Catalog > Environments.

3. Click on the name of the environment to view its details, which include components, topology, and deployment
history.

4. In the Component List section, click on the Delete Component button next to the application to be deleted.
Confirm the deletion.

Note: If an application that you are deleting has already been deployed, you should redeploy it to apply the recent
changes. If the environment has not been deployed with this component, the changes are applied immediately on
receiving the confirmation.

Warning: Due to a known bug in Murano Kilo, resources allocated by a deleted application might not be re-
claimed until the deletion of an environment. See LP1417136 for the details.

2.2 Managing environments

An environment is a set of logically connected applications that are grouped together for an easy management. By
default, each environment has a single network for all its applications, and the deployment of the environment is
defined in a single heat stack. Applications in different environments are always independent from one another.

An environment is a single unit of deployment. This means that you deploy not an application but an environment that
contains one or multiple applications.

2.2. Managing environments 11

https://bugs.launchpad.net/murano/+bug/1417136

Murano, Release 2.0.0.0b3.dev156

Using OpenStack Dashboard you can easily perform such actions with an environment as creating, editing, reviewing,
deploying, and others.

2.2.1 Create an environment

To create an environment, perform the following steps:

1. In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

2. On the Environments page, click the Add New button.

3. In the Environment Name field, enter the name for the new environment.

4. From the Environment Default Network drop-down list, choose a specific network, if necessary, or leave the
default Create New option to generate a new network.

5. Click the rightmost Create button. You will be redirected to the page with the environment components.

Alternatively, you can create an environment automatically using the Quick Deploy button below any application in
the Application Catalog. For more information, see: Quick deploy.

2.2.2 Edit an environment

You can edit the name of an environment. For this, perform the following steps:

1. In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

2. Position your mouse pointer over the environment name and click the appeared pencil icon.

3. Edit the name of the environment.

4. Click the tick icon to apply the change.

2.2.3 Review an environment

This section provides a general overview of an environment, its structure, possible statuses, and actions. An environ-
ment groups applications together. An application that is added to an environment is called a component.

To see an environment status, navigate to Murano > Application Catalog > Environments. Environments may have
one of the following statuses:

• Ready to configure. When the environment is new and contains no components.

• Ready to deploy. When the environment contains a component or multiple components and is ready for de-
ployment.

12 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

• Ready. When the environment has been successfully deployed.

• Deploying. When the deploying is in progress.

• Deploy FAILURE. When the deployment finished with errors.

• Deleting. When deleting of an environment is in progress.

• Delete FAILURE. You can abandon the environment in this case.

Currently, the component status corresponds to the environment status.

To review an environment and its components, or reconfigure the environment, click the name of an environment or
simply click the rightmost Manage Components button.

• On the Components tab you can:

– Add or delete a component from an environment

– Send an environment to deploy

– Track a component status

– Call murano actions of a particular application in a deployed environment:

For more information on murano actions, see: Murano actions.

• On the Topology, Deployment History, and Latest Deployment Log tabs of the environment page you can view
the following:

– The application topology of an environment. For more information, see: Application topology.

– The log of a particular deployment. For more information, see: Deployment history.

– The information on the latest deployment of an environment. For more information, see: Latest deployment
log.

2.2. Managing environments 13

Murano, Release 2.0.0.0b3.dev156

2.3 Managing applications

In murano, each application, as well as the form of application data entry, is defined by its package. The murano
dashboard allows you to import and manage packages as well as search, filter, and add applications from catalog to
environments.

This section provides detailed instructions on how to import application packages into murano and then add appli-
cations to an environment and deploy it. This section also shows you how to find component details, application
topology, and deployment logs.

2.3.1 Import an application package

There are several ways of importing an application package into murano:

• from a zip file

• from murano applications repository

• from bundles of applications

From a zip file

Perform the following steps to import an application package from a .zip file:

1. In OpenStack dashboard, navigate to Murano > Manage > Packages.

2. Click the Import Package button on the top right of the page.

3. From the Package source drop-down list choose File, then click Browse to select a .zip file you want to import,
and then click Next.

14 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

4. At this step, the package is already uploaded. Choose a category from the Application Category menu. You can
select multiple categories while holding down the Ctrl key. If necessary, verify and update the information
about the package, then click the Create button.

2.3. Managing applications 15

Murano, Release 2.0.0.0b3.dev156

Note: Though specifying a category is optional, we recommend that you specify at least one. It helps to filter
applications in the catalog.

Green messages appear at the top right corner when the application is successfully uploaded. In case of a failure, you
will see a red message with the problem description. For more information, please refer to the logs.

From a repository

Perform the following steps to import an application package from murano applications repository:

16 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

Note: To import an application package from a repository, you need to know the full name of the package. For the
packages names, go to http://apps.openstack.org/#tab=murano-apps and click on the desired package to see its full
name.

1. In dashboard, navigate to Murano > Manage > Packages.

2. Click the Import Package button on the top right of the page.

3. From the Package source drop-down list, choose Repository, enter the package name, and then click Next. Note
that you may also specify the version of the package.

4. At this step, the package is already uploaded. Choose a category from the Application Category menu. You can
select multiple categories while holding down the Ctrl key. If necessary, verify and update the information
about the package, then click the Create button.

2.3. Managing applications 17

http://apps.openstack.org/#tab=murano-apps

Murano, Release 2.0.0.0b3.dev156

From a bundle of applications

Perform the following steps to import a bundle of applications:

Note: To import an application bundle from a repository, you need to know the full name of the package bundle. To
find it out, go to http://apps.openstack.org/#tab=murano-apps and click on the desired bundle to see its full name.

1. In dashboard, navigate to Murano > Manage > Packages.

2. Click the Import Bundle button on the top right of the page.

18 Chapter 2. Using Murano

http://apps.openstack.org/#tab=murano-apps

Murano, Release 2.0.0.0b3.dev156

3. From the Package Bundle Source drop-down list, choose Repository, enter the bundle name, and then click
Create.

2.3.2 Search for an application in the catalog

When you have imported many applications and want to quickly find a required one, you can filter them by category,
tags and words that the application name or description contains:

In dashboard, navigate to Murano > Application Catalog > Applications.

The page is divided into two sections:

• Recent Activity shows the most recently imported or deployed applications.

• The bottom section contains all the available applications sorted alphabetically.

To view all the applications of a specific category, select it from the App Category drop-down list:

2.3. Managing applications 19

Murano, Release 2.0.0.0b3.dev156

To filter applications by tags or words from the application name or description, use the rightmost filter:

Note: Tags can be specified during the import of an application package.

20 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

For example, there is an application that has the word community-developed in description. Let’s find it with the filter.
The following screenshot shows you the result.

2.3.3 Delete an application package

To delete an application package from the catalog, please perform the following steps:

1. In dashboard, navigate to Murano > Manage > Package Definitions.

2. Select a package or multiple packages you want to delete and click Delete Packages.

2.3. Managing applications 21

Murano, Release 2.0.0.0b3.dev156

3. Confirm the deletion.

2.3.4 Add an application to environment

After uploading an application, the second step is to add it to an environment. You can do this:

• from environment details page

• from applications catalog page

From environment details page

1. In OpenStack dashboard, navigate to Murano > Application catalog > Environments.

2. Find the environment you want to manage and click Manage Components, or simply click on the environment’s
name.

3. Procced with the Drop Components here field or the Add Component button.

Use of Drop Components here field

1. On the Environment Components page, drag and drop a desired application into the Drop Components here field
under the Application Components section.

22 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

2. Configure the application. Note that the settings may vary from app to app and are predefined by the application
author. When done, click Next, then click Create.

Now the application appears in the Component List section on the Environment Components page. Use of Add
Component button

1. On the Environment Components page, click Add Component.

2. Find the application you want to add and click Add to Env.

2.3. Managing applications 23

Murano, Release 2.0.0.0b3.dev156

3. Configure the application and click Next. Note that the settings may vary from app to app and are predefined by
the application author.

4. To add more applications, check Add more applications to the environment, then click Create and repeat the
steps above. Otherwise, just click Create.

Now the application appears in the Component List section on the Environment Components page.

From applications catalog page

1. In OpenStack dashboard, navigate to Murano > Application catalog > Applications.

2. On the Applications catalog page, use one of the following methods:

24 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

• Quick deploy. Automatically creates an environment, adds the selected application, and redirects you to
the page with the environment components.

• Add to Env. Adds an application to an already existing environment.

Quick Deploy button

1. Find the application you want to add and click Quick Deploy. Let’s add Apache Tomcat, for example.

2. Configure the application. Note that the settings may vary from app to app and are predefined by the application
author. When done, click Next, then click Create. In the example below we assign a floating IP address.

2.3. Managing applications 25

Murano, Release 2.0.0.0b3.dev156

Now the Apache Tomcat application is successfully added to an automatically created quick-env-1 environment.

Add to Env button

1. From the Environment drop-down list, select the required environment.

26 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

2. Find the application you want to add and click Add to Env. Let’s add Apache Tomcat, for example.

2.3. Managing applications 27

Murano, Release 2.0.0.0b3.dev156

3. Configure the application and click Next. Note that the settings may vary from app to app and are predefined by
the application author. In the example below we assign a floating IP address.

4. To add more applications, check Add more applications to the environment, then click Create and repeat the
steps above. Otherwise, just click Create.

28 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

2.3.5 Deploy an environment

Make sure to add necessary applications to your environment, then deploy it following one of the options below:

• Deploy an environment from the Environments page

1. In OpenStack dashboard, navigate to Murano > Application Catalog > Environments.

2. Select Deploy Environment from the Actions drop-down list next to the environment you want to deploy.

It may take some time for the environment to deploy. Wait for the status to change from Deploying to
Ready. You cannot add applications to your environment during deployment.

• Deploy an environment from the Environment Components page

1. In OpenStack dashboard, navigate to Murano > Application Catalog > Environments.

2. Click the name of the environment you want to deploy.

2.3. Managing applications 29

Murano, Release 2.0.0.0b3.dev156

3. On the Environment Components page, click Deploy This Environment to start the deployment.

It may take some time for the environment to deploy. You cannot add applications to your environment
during deployment. Wait for the status to change from Deploying to Ready. You can check the status either
on the Environments page or on the Environment Components page.

Browse component details

You can browse component details to find the following information about a component:

• Name

• ID

• Type

• Instance name (available only after deployment)

• Heat orchestration stack name (available only after deployment)

To browse a component details, perform the following steps:

1. In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

30 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

2. Click the name of the required environment.

3. In the Component List section, click the name of the required component.

The links redirect to corresponding horizon pages with the detailed information on instance and heat stack.

Application topology

Once you add an application to your environment, the application topology of this environment becomes available
in a separate tab. The topology represents an elastic diagram showing the relationship between a component and the
infrastructure it runs on. To view the topology:

1. In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

2. Click the name of the necessary environment.

3. Click the Topology tab.

The topology is helpful to visually display complex components, for example Kubernetes. The red icons reflect errors
during the deployment while the green ones show success.

2.3. Managing applications 31

Murano, Release 2.0.0.0b3.dev156

The following elements of the topology are virtual machine and an instance of dependent MuranoPL class:

Element Meaning

Virtual machine

Instance

Position your mouse pointer over an element to see its name, ID, and other details.

32 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

Deployment logs

To get detailed information on a deployment, use:

• Deployment history, which contains logs and deployment structure of an environment.

• Latest deployment log, which contains information on the latest deployment of an environment.

• Component logs, which contain logs on a particular component in an environment.

Deployment history

To see the log of a particular deployment, proceed with the steps below:

1. In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

2. Click the name of the required environment.

3. Click the Deployment History tab.

4. Find the required deployment and click Show Details.

5. Click the Logs tab to see the logs.

2.3. Managing applications 33

Murano, Release 2.0.0.0b3.dev156

Latest deployment log

To see the latest deployment log, proceed with the steps below:

1. In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

2. Click the name of the required environment.

3. Click the Latest Deployment Log tab to see the logs.

Component logs

To see the logs of a particular component of an environment, proceed with the steps below:

1. In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

2. Click the name of the required environment.

3. In the Component List section, click the required component.

4. Click the Logs tab to see the component logs.

2.3.6 Delete an application

To delete an application that belongs to the environment:

34 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

1. In OpenStack dashboard, navigate to Murano > Application Catalog > Environments.

2. Click on the name of the environment you want to delete an application from.

3. In the Component List section, click the Delete Component button next to the application you want to delete.
Then confirm the deletion.

Note: If the application that you are deleting has already been deployed, you should redeploy the environment to
apply the recent changes. If the environment has not been deployed with this component, the changes are applied
immediately on receiving the confirmation.

Warning: Due to a known bug in murano as of Kilo release, the OS resources allocated by a deleted application
might not be reclaimed until you delete the environment. See the Deallocating stack resources blueprint for details.

2.3. Managing applications 35

https://blueprints.launchpad.net/murano/+spec/deallocating-stack-resources

Murano, Release 2.0.0.0b3.dev156

2.4 Log into murano-spawned instance

After the application is successfully deployed, you may need to log into the virtual machine with the installed appli-
cation. Follow the steps below. Follow the steps below

All cloud images (including images imported from The OpenStack Application Catalog) have password authentication
turned off. That is why it is not possible to log in from the dashboard console. So SSH is used to reach an instance
spawned by murano.

Possible default image users are:

• ec2-user

• ubuntu or debian (depending on the operation system)

1. Prepare a key pair.

To log in through SSH, provide a key pair during the application creation. If you do not have a key pair, click
the plus sign to create one directly from the Configure Application dialog.

2. After the deployment is completed, find out the instance IP address.

Check out:

• Deployment logs

36 Chapter 2. Using Murano

http://apps.openstack.org/

Murano, Release 2.0.0.0b3.dev156

• Detailed instance parameters.

See the Instance name link on the Component Details page.

3. To connect to the instance through SSH with the key pair, run:

$ ssh ec2-user@<IP> -i <key.location>

2.5 Deploying environments using CLI

The main tool for deploying murano environments is murano-dashboard. It is designed to be easy-to-use and intuitive.
But it is not the only tool you can use to deploy a murano environment, murano CLI client also possesses required
functionality for the task. This is an advanced scenario, however, that requires knowledge of internal murano workflow,
murano object model, and murano environment lifecycle. This scenario is suitable for deployments without horizon
or deployment automation.

Note: This is an advanced mechanism and you should use it only when you are confident in what you are doing.
Otherwise, it is recommended that you use murano-dashboard.

2.5. Deploying environments using CLI 37

Murano, Release 2.0.0.0b3.dev156

2.5.1 Create an environment

The following command creates a new murano environment that is ready for configuration. For convenience, this
guide refers to environment ID as $ENV_ID.

murano environment-create deployed_from_cli

+----------------------------------+-------------------+---------------------+---------------------+
| ID | Name | Created | Updated |
+----------------------------------+-------------------+---------------------+---------------------+
| a66e5ea35e9d4da48c2abc37b5a9753a | deployed_from_cli | 2015-10-06T13:50:45 | 2015-10-06T13:50:45 |
+----------------------------------+-------------------+---------------------+---------------------+

2.5.2 Create a configuration session

Murano uses configuration sessions to allow several users to edit and configure the same environment concurrently.
Most of environment-related commands require the --session-id parameter. For convenience, this guide refers
to session ID as $SESS_ID.

To create a configuration session, use the murano environment-session-create $ENV_ID command:

murano environment-session-create $ENV_ID

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | 5cbe7e561ffc484ebf11aabf83f9f4c6 |
+----------+----------------------------------+

2.5.3 Add applications to an environment

To manipulate environments object model from CLI, use the environment-apps-edit command:

murano environment-apps-edit --session-id $SESS_ID $ENV_ID object_model_patch.json

The object_model_patch.json contains the jsonpatch object. This object is applied to the /services
key of the environment in question. Below is an example of the object_model_patch.json file content:

[
{ "op": "add", "path": "/-", "value":

{
"instance": {

"availabilityZone": "nova",
"name": "xwvupifdxq27t1",
"image": "fa578106-b3c1-4c42-8562-4e2e2d2a0a0c",
"keyname": "",
"flavor": "m1.small",
"assignFloatingIp": false,
"?": {

"type": "io.murano.resources.LinuxMuranoInstance",
"id": "===id1==="

}
},

38 Chapter 2. Using Murano

Murano, Release 2.0.0.0b3.dev156

"name": "ApacheHttpServer",
"enablePHP": true,
"?": {

"type": "io.murano.apps.apache.ApacheHttpServer",
"id": "===id2==="

}
}

}
]

For convenience, the murano client replaces the "===id1===", "===id2===" (and so on) strings with UUIDs.
This way you can ensure that object IDs inside your object model are unique. To learn more about jsonpatch, consult
jsonpatch.com and RFC 6902. The murano-environment-edit command fully supports jsonpatch. This means that
you can alter, add, or remove parts of your applications object model.

2.5.4 Verify your object model

To verify whether your object model is correct, check the environment by running the environment-show command
with the --session-id parameter:

murano environment-show $ENV_ID --session-id $SESS_ID --only-apps

[
{
"instance": {

"availabilityZone": "nova",
"name": "xwvupifdxq27t1",
"assignFloatingIp": false,
"keyname": "",
"flavor": "m1.small",
"image": "fa578106-b3c1-4c42-8562-4e2e2d2a0a0c",
"?": {

"type": "io.murano.resources.LinuxMuranoInstance",
"id": "fc4fe975f5454bab99bb0e309249e2d2"

}
},
"?": {

"status": "pending",
"type": "io.murano.apps.apache.ApacheHttpServer",
"id": "69cdf10d31e64196b4de894e7ea4f1be"

},
"enablePHP": true,
"name": "ApacheHttpServer"

}
]

2.5.5 Deploy your environment

To deploy a session $SESS_ID of your environment, use the murano environment-deploy command:

murano environment-deploy $ENV_ID --session-id $SESS_ID

You can later use the murano environment-show command to track the deployment status.

To view the deployed applications of a particular environment, use the murano environment-show command with
the --only-apps parameter and specifying the environment ID:

2.5. Deploying environments using CLI 39

http://jsonpatch.com
http://tools.ietf.org/html/rfc6902

Murano, Release 2.0.0.0b3.dev156

murano environment-show $ENV_ID --only-apps

40 Chapter 2. Using Murano

CHAPTER 3

Developing Applications

3.1 Step-by-Step

The goal of this manual is to walk you through the steps that should be taken while composing an application package
to get it ready for uploading to Murano.

This tutorial uses a demo application named ApacheHTTPServer to demonstrate how you can create your own Murano
application from scratch. We will walk you through its source code and explain how to upload it.

ApacheHTTPServer is a simple Murano application that spawns a virtual machine and installs Apache HTTP Server
on it. It may also install php if a user wants to.

The source code of ApacheHTTPServer is available at github.

ApacheHTTPServer’s source code is written in MuranoPL. This programming language is object-oriented, and we
will see classes, objects and object instances. The detailed explanation of its syntax can be found in the MuranoPL
reference.

Warning: Before you start the Murano application creation process, please consider the System prerequisites and
Lab requirements in order you do not risk starting with a wrong environment

3.1.1 Step 1. Create the structure of the package

You should structure an application package very neatly in order the application could be managed and deployed in
the catalog successfully.

The package structure of ApacheHTTPServer package is:
..

|_ Classes
| |_ ApacheHttpServer.yaml
|
|_ Resources
| |_ scripts
| |_runApacheDeploy.sh
| |_ DeployApache.template
|
|_ UI
| |_ ui.yaml
|
|_ logo.png

41

https://github.com/openstack/murano-apps/tree/master/ApacheHTTPServer/package

Murano, Release 2.0.0.0b3.dev156

|
|_ manifest.yaml

The detailed information regarding the package structure can be found in the Murano packages section.

3.1.2 Step 2. Create the manifest file

The application manifest file contains general application metadata. It is an entry-point for each Murano application,
and is very similar to the manifest of a jar archive. It has a fixed format based on YAML.

The ApacheHTTPServer’s manifest file:

1 Format: 1.0
2 Type: Application
3 FullName: io.murano.apps.apache.ApacheHttpServer
4 Name: Apache HTTP Server
5 Description: |
6 The Apache HTTP Server Project is an effort to develop and maintain an
7 open-source HTTP server for modern operating systems including UNIX and
8 Windows NT.
9 ...

10 Author: Mirantis, Inc
11 Tags: [HTTP, Server, WebServer, HTML, Apache]
12 Classes:
13 io.murano.apps.apache.ApacheHttpServer: ApacheHttpServer.yaml

Now, let’s inspect manifest.yaml line-by-line.

Format

Specifies the version of the format for manifest.yaml to track the syntax changes. Format key presents in each manifest
file. Currently, 1.0 is the only available version:

Format: 1.0

Type

Specifies the type of the package:

Type: Application

Note: Application starts with the capital letter. This is the naming convention for all the pre-defined values in
Murano code.

FullName

Stands for the unique service application name. That name allows to easily recognize to which scope an application
belongs. All other applications can address to the Apache application methods by this name.

To ensure the global uniqueness, the same naming convention as the naming convention of Java packages and classes is
followed. The io.murano.apps.apache. part is the “package” part of the name, while ApacheHttpServer
stands for the “class” part of the name:

42 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

FullName: io.murano.apps.apache.ApacheHttpServer

Note: It is not necessary that all applications belong to one domain. This naming allows to determine an application
group by its name. OpenStack-related applications may have full names, started with org.openstack.apps, for
example, org.openstack.apps.Rally

Name

Stands for the display name of the application. You will be able to reset a display name when you upload
ApacheHTTPServer package to Murano:

Name: Apache HTTP Server

Description

Contains the application description rendered under the application title:

1 Description: |
2 The Apache HTTP Server Project is an effort to develop and maintain an
3 open-source HTTP server for modern operating systems including UNIX and
4 Windows NT. The goal of this project is to provide a secure, efficient and
5 extensible server that provides HTTP services in sync with the current HTTP
6 standards.
7 Apache httpd has been the most popular web server on the Internet since
8 April 1996, and celebrated its 17th birthday as a project this February.

Let’s take a closer look at the syntax:

The vertical line | symbol comes from YAML syntax. The > symbol can be used interchangeably. These are the
YAML block style indicators, which mean that all the leading indents and new line symbols should be preserved. This
is very useful for long, multi-line descriptions, because this affects how they are displayed on the UI.

Warning: Avoid tab symbols inside YAML files. If YAML contains the tab symbol, it will not be parsed
correctly. The error message may be cryptic or misleading. We recommend that you check the YAML syntax
before composing the application package using any of the available online tools.

Author

Contains the name of the author of an application, it is only displayed in the application details and does not affect
anything.

Author: Mirantis, Inc

Note: Single quotes usage is optional here: Author: ’Mirantis, Inc’, thus they are omitted in the code
extract below.

Tags

Is an array of tags. You can search an application by its tag. You may want to specify several tags for one application:

3.1. Step-by-Step 43

http://yaml.org/spec/current.html#id2537921

Murano, Release 2.0.0.0b3.dev156

Tags: [HTTP, Server, WebServer, HTML, Apache]

Besides, YAML allows tag specification using another syntax, which is an equivalent to the one given above:

Tags:
- HTTP
- Server
- WebServer
- HTML
- Apache

Classes

Is a mapping between all classes present in ApacheHttpServer application and the file names where these classes are
defined in. This is one-to-one relationship, which means that there is one and the only class per a single file.

The line io.murano.apps.apache.ApacheHttpServer: ApacheHttpServer.yaml says that the
class io.murano.apps.apache.ApacheHttpServer is defined in the file ApacheHttpServer.yaml:

Classes:
io.murano.apps.apache.ApacheHttpServer: ApacheHttpServer.yaml

3.1.3 Step 3. Create the execution plan template

The execution plan template contains the instructions understandable to the murano agent on what should be executed
to deploy an application. It is the file with the .template extension located in the /APP_NAME/Resources
directory.

The ApacheHTTPServer’s DeployApache.template:

1 FormatVersion: 2.0.0
2 Version: 1.0.0
3 Name: Deploy Apache
4

5 Parameters:
6 enablePHP: $enablePHP
7

8 Body: |
9 return apacheDeploy('{0}'.format(args.enablePHP)).stdout

10

11 Scripts:
12 apacheDeploy:
13 Type: Application
14 Version: 1.0.0
15 EntryPoint: runApacheDeploy.sh
16 Files: []
17 Options:
18 captureStdout: true
19 captureStderr: true

As it can be viewed from the source code, besides specifying versions of different items, ApacheHTTPServer execution
plan accepts the enablePHP parameter. This parameter is an input parameter to the apacheDeploy.sh script.
This script initiates runApacheDeploy.sh execution, which is also located at the Resources directory and
installs apache app and php if selected.

For the detailed information regarding the execution plan template, its sections and syntax, please refer to the Execution
plan template.

44 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

3.1.4 Step 4. Create the dynamic UI form definition

ApacheHTTPServer’s ui.yaml source code:

1 Version: 2
2

3 Application:
4 ?:
5 type: io.murano.apps.apache.ApacheHttpServer
6 name: $.appConfiguration.name
7 enablePHP: $.appConfiguration.enablePHP
8 instance:
9 ?:

10 type: io.murano.resources.LinuxMuranoInstance
11 name: generateHostname($.instanceConfiguration.unitNamingPattern, 1)
12 flavor: $.instanceConfiguration.flavor
13 image: $.instanceConfiguration.osImage
14 keyname: $.instanceConfiguration.keyPair
15 availabilityZone: $.instanceConfiguration.availabilityZone
16 assignFloatingIp: $.appConfiguration.assignFloatingIP
17

18 Forms:
19 - appConfiguration:
20 fields:
21 - name: license
22 type: string
23 description: Apache License, Version 2.0
24 hidden: true
25 required: false
26 - name: name
27 type: string
28 label: Application Name
29 initial: 'ApacheHttpServer'
30 description: >-
31 Enter a desired name for the application. Just A-Z, a-z, 0-9, dash and
32 underline are allowed
33 - name: enablePHP
34 label: Enable PHP
35 type: boolean
36 description: >-
37 Add php support to the Apache WebServer
38 initial: false
39 required: false
40 widgetMedia:
41 css: {all: ['muranodashboard/css/checkbox.css']}
42 - name: assignFloatingIP
43 type: boolean
44 label: Assign Floating IP
45 description: >-
46 Select to true to assign floating IP automatically
47 initial: false
48 required: false
49 widgetMedia:
50 css: {all: ['muranodashboard/css/checkbox.css']}
51 - name: dcInstances
52 type: integer
53 hidden: true
54 initial: 1
55

3.1. Step-by-Step 45

Murano, Release 2.0.0.0b3.dev156

56 ...

Now, let’s inspect it line-by-line.

Application

Defines the object model by which engine deploys the ApacheHTTPServer application, and includes YAQL expres-
sions.

The section contains the reference to the Apache class, the one that is provided in the manifest, named with the ?
symbol. This indicates system information:

1 Application:
2 ?:
3 type: io.murano.apps.apache.ApacheHttpServer

For ApacheHTTPServer application it is defined that the user should input the application name, some instance pa-
rameters and decide whether PHP should be enabled or not:

enablePHP: $.appConfiguration.enablePHP

The instance section assumes that the value, entered by the user in the first form named appConfiguration is
stored in an application object module. The same applies for the instance parameter. Providing the question mark with
the defined type io.murano.resources.LinuxMuranoInstance indicates an instance of MuranoPl object.

1 instance:
2 ?:
3 type: io.murano.resources.LinuxMuranoInstance

Note: This parameter is named instance here because its class definition property has the instance name. You
can specify any name in the class definition file, and then use it in the UI form definition.

Forms

Contains UI forms prototypes that are merged to the application creation wizard.

Each form field will be translated to the Django field and most of the parameters correspond to parameters in the
Django form field. All fields are required by default. Hidden fields are used to print extra information in the form
description.

After the upload, the section content will be browsed on the left side of the form and its description on the right.

Please take a look at the Configure Application: Apache HTTP Server dialog:

46 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

Note: The assignFloatingIP and enablePHP boolean fields are shown as checkboxes.

Here is how the second dialog looks like:

3.1. Step-by-Step 47

Murano, Release 2.0.0.0b3.dev156

For more information about Dynamic UI, please refer to the main reference.

3.1.5 Step 5: Define MuranoPL class definitions

All application classes are located in the Classes folder. As ApacheHttpServer uses only one class, just one file can
be found in this directory.

Here is how it looks like:

1 Namespaces:
2 =: io.murano.apps.apache
3 std: io.murano
4 res: io.murano.resources
5 sys: io.murano.system
6

7 Name: ApacheHttpServer
8

9 Extends: std:Application
10

11 Properties:
12 name:
13 Contract: $.string().notNull()

48 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

14

15 enablePHP:
16 Contract: $.bool()
17 Default: false
18

19 instance:
20 Contract: $.class(res:Instance).notNull()
21

22 Methods:
23 initialize:
24 Body:
25 - $._environment: $.find(std:Environment).require()
26

27 deploy:
28 Body:
29 - If: not $.getAttr(deployed, false)
30 Then:
31 - $._environment.reporter.report($this, 'Creating VM for Apache Server.')
32 - $securityGroupIngress:
33 ...
34 - $._environment.securityGroupManager.addGroupIngress($securityGroupIngress)
35 - $.instance.deploy()
36 - $resources: new(sys:Resources)
37 - $template: $resources.yaml('DeployApache.template').bind(dict(enablePHP => $.enablePHP))
38 - $._environment.reporter.report($this, 'Instance is created. Deploying Apache')
39 - $.instance.agent.call($template, $resources)
40 - $._environment.reporter.report($this, 'Apache is installed.')
41 - $.setAttr(deployed, true)

Now, let’s inspect it line-by-line.

Namespaces

Can be named shortcuts since this is an additional section which enables short names instead of the long ones:

1 Namespaces:
2 =: io.murano.apps.apache
3 std: io.murano
4 res: io.murano.resources
5 sys: io.murano.system

Note: =: refers to the current namespace

Name

Contains the class name that is defined in this file. So full class name will be current namespace and name, provided
by corresponding key: io.murano.apps.apache.ApacheHttpServer:

Name: ApacheHttpServer

Note: One .yaml file should contain only one class definition.

3.1. Step-by-Step 49

Murano, Release 2.0.0.0b3.dev156

Extends

Determines inheritance, and io.murano.Application should be a parent for all the murano applications.

This class has defined deploy method and only instances of that class can be used in Environment class. Environ-
ment class, in its turn, is responsible for the deployment configurations. Definition of both classes are located at
meta/io.murano folder of murano repository.

Thus, if you want to have some modifications of ApacheHttpServer, you can set
io.murano.apps.apache.ApacheHttpServer in the Extends section of a new Application class:

Extends: std:Application

Properties

Defines the dictionary. Apache HTTP Server application has three properties: name, enablePHP and instance.
For each of them certain Contract is defined.

Only enablePHP is optional, and its default value equals to false.

Instance is the required parameter and should be an instance of the predefined in core library
io.murano.resources.Instance class.

Methods

The initialize method is like __init__ in Python, and executes together with properties initialization.

It accesses the environment, which the application belongs to, and is used only for sending reports about the deploy-
ment state.

Private variable _environment is defined as follows:

1 initialize:
2 Body:
3 - $._environment: $.find(std:Environment).require()

The deploy method sets up instance spawning and configuration. This method should be executed only once. So in
the first order deployed variable is checked to be false in the current scope.

It performs the following actions:

• configures securityGroups;

• initiates new virtual machine spawning: $.instance.deploy()

• loads the execution plan template, located in the Resources directory to the instance of resources class:
$resources.yaml(’DeployApache.template’)

• updates the plan with parameters taken from the user: bind(dict(enablePHP => $.enablePHP))

• sends ready-to-execute-plan to murano agent: $.instance.agent.call($template,
$resources)

3.1.6 Step 6. Add the application logo (optional)

Download or create your own .png image associated with your application.

The recommended size is 70x70 px, and the square shape is preferable. There are no limits regarding the image
filename. In Apache HTTP Server we use the default name logo.png:

50 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

3.1.7 Step 7. Compose a zip archive

Select all the files prepared for the package and create an archive in zip format. If the command is executed from the
console, do not forget to add the -r option to include all the attachments.

Note: The manifest file should not contain the root folder. In other words, the manifest should be located in the
archive root directory.

Congratulations! Your application is ready to be uploaded to the application catalog.

3.2 Execution plan template

An execution plan template is a set of metadata that describes the installation process of an application on a virtual
machine. It is a minimal executable unit that can be triggered in Murano workflows and is understandable to the
Murano agent, which is responsible for receiving, correctness verification and execution of the statements included in
the template.

The execution plan template is able to trigger any type of script that executes commands and installs application
components as the result. Each script included in the execution plan template may consist of a single file or a set of
interrelated files. A single script can be reused across several execution plans.

This section is devoted to the structure and syntax of an execution plan template. For different configurations of
templates, please refer to the Examples section.

3.2. Execution plan template 51

Murano, Release 2.0.0.0b3.dev156

3.2.1 Template sections

The table below contains the list of the sections that can be included in the execution plan template with the description
of their meaning and the default attributes which are used by the agent if any of the listed parameters is not specified.

Section
name

Meaning and default value

For-
matVer-
sion

a version of the execution plan template syntax format. Default is 1.0.0. Optional

Name a human-readable name for the execution plan to be used for logging. Optional
Version a version of the execution plan itself, is used for logging and tracing. Each time the content of the

template content changes (main script, attached scripts, properties, etc.), the version value should be
incremented. This is in contrast with FormatVersion, which is used to distinguish the execution
plan format. The default value is 0.0.0. Optional

Body string that represents the Python statement and is executed by the murano-agent. Scripts defined in
the Scripts section are invoked from here. Required

Parame-
ters

a dictionary of the String->JsonObject type that maps parameter names to their values.
Optional.

Scripts a dictionary that maps script names to their script definitions. Required

3.2.2 FormatVersion property

FormatVersion is a property that all other depend on. That is why it is very important to specify it correctly.

FormatVersion 1.0.0 (default) is still used by Windows murano-agent. New features that are introduced in Kilo, such
as Chef or Puppet, and downloadable files require version 2.1.0, while nearly all the applications in murano-apps
repository work with FormatVersion 2.0.0. And if you omit the FormatVersion property or put something like
<2.0.0, it will lead to the incorrect behaviour. The same happens if, for example, FormatVersion=2.1.0, and
a VM has the pre-Kilo agent.

3.2.3 Scripts section

Scripts are the building blocks of execution plan templates. As the name implies those are the scripts for different
deployment platforms.

Each script may consists of one or more files. Those files are script’s program modules, resource files, configs,
certificates etc.

Scripts may be executed as a whole (like a single piece of code), expose some functions that can be independently
called in an execution plan script or both. This depends on deployment platform and executor capabilities.

Scripts are specified using Scripts attribute of execution plan. This attribute maps script name to a structure
(document) that describes the script. It has the following properties:

Type the name of a deployment platform the script is targeted to. The available alternative options for version>=2.1.0
are Application, Chef, Puppet, and for version<2.1.0 is Application only. String, required.

Version the minimum version of the deployment platform/executor required by the script. String, optional.

EntryPoint the name of the script file that is an entry point for this execution plan template. String, required.

Files the filenames of the additional files required for the script. Thus, if the script specified in the EntryPoint
section imports other scripts, they should be provided in this section.

The filenames may include slashes that the agent preserve on VM. If a filename is enclosed in the angle brackets
(<...>) it will be base64-encoded. Otherwise, it will be treated as a plain-text that may affect line endings.

52 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

In Kilo, entries for this property may be not just strings but also dictionaries (for example, filename: URL)
to specify downloadable files or git repositories.

The default value is [] that means that no extra files are used. Array, optional.

Options an optional dictionary of type String->JsonObject that contains additional options for the script ex-
ecutor. If not provided, an empty dictionary is assumed.

Available alternatives are: captureStdout, captureStderr, verifyExitcode (raise an exception
if result is not positive). As Options are executor-dependent, these three alternatives are available for the
Application executor, but may have no sense for other types. captureStdout, captureStderr and
verifyExitcode require boolean values, and have True as their default values.

Dictionary, optional.

Please make sure the files specified in EntryPoint and Files sections exist.

3.3 HOT packages

3.3.1 Compose a package

Murano is an Application catalog which intends to support applications defined in different formats. As a first step to
universality, support of a heat orchestration template was added. It means that any heat template could be added as a
separate application into the Application Catalog. This could be done in two ways: manual and automatic.

Automatic package composing

Before uploading an application into the catalog, it should be prepared and archived. A Murano command line will do
all preparation for you. Just choose the desired Heat Orchestration Template and perform the following command:

murano package-create –template wordpress/template.yaml

Note, that optional parameters could be specified:

–name an application name, copied from a template by default

–logo an application square logo, by default the heat logo will be used

–description text information about an application, by default copied from a template

–author a name of an application author

–output a name of an output file archive to save locally

–full-name a fully qualified domain name that specifies exact application location

Note: To performing this command python-muranoclient should be installed in the system

As the result, an application definition archive will be ready for uploading.

Manual package composing

Application package could be composed manually. Follow the 5 steps below.

• Step 1. Choose the desired heat orchestration template

For this example chef-server.yaml template will be used.

3.3. HOT packages 53

https://github.com/openstack/heat-templates/blob/master/hot/chef-server.yaml

Murano, Release 2.0.0.0b3.dev156

• Step 2. Rename it to template.yaml

• Step 3. Prepare an application logo (optional step)

It could be any picture associated with the application.

• Step 4. Create manifest.yaml file

All service information about the application is contained here. Specify the following parameters:

Format defines an application definition format; should be set to Heat.HOT/1.0

Type defines a manifest type, should be set to Application

FullName a unique name which will be used to identify the application in Murano Catalog

Description text information about an application

Author a name of an application author or a company

Tags keywords associated with the application

Logo a name of a logo file for an application

Take a look at the example:

Format: Heat.HOT/1.0
Type: Application
FullName: io.murano.apps.Chef-Server
Name: Chef Server
Description: "Heat template to deploy Open Source CHEF server on a VM"
Author: Kate
Tags:
- hot-based

Logo: logo.png

• Step 5. Create a zip archive, containing the specified files: template.yaml, manifest.yaml, logo.png

Applications page looks like:

54 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

The configuration form, where you can enter template parameters, will be generated automatically and looks as fol-
lows:

3.3. HOT packages 55

Murano, Release 2.0.0.0b3.dev156

After filling the form the application is ready to be deployed.

3.4 MuranoPL Reference

To develop applications, murano project refers to Murano Programming Language (MuranoPL). It is represented by
easily readable YAML and YAQL languages. The sections below describe these languages.

3.4.1 YAML

YAML is an easily readable data serialization format that is a superset of JSON. Unlike JSON, YAML is designed to
be read and written by humans and relies on visual indentation to denote nesting of data structures. This is similar to
how Python uses indentation for block structures instead of curly brackets in most C-like languages. Also YAML may
contain more data types as compared to JSON. See http://yaml.org/ for a detailed description of YAML.

MuranoPL is designed to be representable in YAML so that MuranoPL code could remain readable and structured.
Usually MuranoPL files are YAML encoded documents. But MuranoPL engine itself does not deal directly with
YAML documents, and it is up to the hosting application to locate and deserialize the definitions of particular classes.
This gives the hosting application the ability to control where those definitions can be found (a file system, a database,
a remote repository, etc.) and possibly use some other serialization formats instead of YAML.

MuranoPL engine relies on a host deserialization code when detecting YAQL expressions in a source definition. It
provides them as instances of the YaqlExpression class rather than plain strings. Usually, YAQL expressions can be
distinguished by the presence of $ (the dollar sign) and operators, but in YAML, a developer can always state the type
by using YAML tags explicitly. For example:

1 Some text - a string
2 $.something() - a YAQL expression
3 "$.something()" - a string because quotes are used
4 !!str $ - a string because a YAML tag is used
5 !yaql "text" - a YAQL expression because a YAML tag is used

3.4.2 YAQL

YAQL (Yet Another Query Language) is a query language that was also designed as a part of the murano project.
MuranoPL makes an extensive use of YAQL. A description of YAQL can be found here.

Simply speaking, YAQL is the language for expression evaluation. The following examples are all valid YAQL ex-
pressions: 2 + 2, foo() > bar(), true != false.

The interesting thing in YAQL is that it has no built in list of functions. Everything YAQL can access is customizable.
YAQL cannot call any function that was not explicitly registered to be accessible by YAQL. The same is true for
operators. So the result of the expression 2 * foo(3, 4) completely depends on explicitly provided implementations of
“foo” and “operator_*”.

YAQL uses a dollar sign ($) to access external variables, which are also explicitly provided by the host application,
and function arguments. $variable is a syntax to get a value of the variable “$variable”, $1, $2, etc. are the names
for function arguments. “$” is a name for current object: data on which an expression is evaluated, or a name of a
single argument. Thus, “$” in the beginning of an expression and “$” in the middle of it can refer to different things.

By default, YAQL has a lot of functions that can be registered in a YAQL context. This
is very similar to how SQL works but uses more Python-like syntax. For example:
$.where($.myObj.myScalar > 5, $.myObj.myArray.len() > 0, and $.myObj.myArray.any($
= 4)).select($.myObj.myArray[0]) can be executed on $ = array of objects, and result in another
array that is a filtration and projection of a source data.

56 Chapter 3. Developing Applications

http://yaml.org/
https://yaql.readthedocs.org

Murano, Release 2.0.0.0b3.dev156

Note: There is no assignment operator in YAQL, and = means comparison, the same what == means in Python.

As YAQL has no access to underlying operating system resources and is fully controllable by the host, it is secure
to execute YAQL expressions without establishing a trust to the executed code. Also, because functions are not
predefined, different methods can be accessible in different context. So, YAQL expressions that are used to specify
property contracts are not necessarily valid in workflow definitions.

3.4.3 Common class structure

Here is a common template for class declarations. Note, that it is in the YAML format.

1 Name: class name
2 Namespaces: namespaces specification
3 Extends: [list of parent classes]
4 Properties: properties declaration
5 Methods:
6 methodName:
7 Arguments:
8 - list
9 - of

10 - arguments
11 Body:
12 - list
13 - of
14 - instructions

Thus MuranoPL class is a YAML dictionary with predefined key names, all keys except for Name are optional and
can be omitted (but must be valid if specified).

Class name

Class names are alphanumeric names of the classes. Traditionally, all class names begin with an upper-case letter
symbol and are written in PascalCasing.

In MuranoPL all class names are unique. At the same time, MuranoPL supports namespaces. So, in different names-
paces you can have classes with the same name. You can specify a namespace explicitly, like ns:MyName. If you
omit the namespace specification, MyName is expanded using the default namespace =:. Therefore, MyName equals
=:MyName if = is a valid namespace.

Namespaces

Namespaces declaration specifies prefixes that can be used in the class body to make long class names shorter.

Namespaces:
=: io.murano.services.windows
srv: io.murano.services
std: io.murano

In the example above, the srv: Something class name is automatically translated to
io.murano.services.Something.

= means the current namespace, so that MyClass means io.murano.services.windows.MyClass.

If the class name contains the period (.) in its name, then it is assumed to be already fully namespace qualified and is
not expanded. Thus ns.Myclass remains as is.

3.4. MuranoPL Reference 57

Murano, Release 2.0.0.0b3.dev156

Note: To make class names globally unique, we recommend specifying a developer’s domain name as a part of the
namespace.

Extends

MuranoPL supports multiple inheritance. If present, the Extends section shows base classes that are extended. If
the list consists of a single entry, then you can write it as a scalar string instead of an array. If you do not specify any
parents or omit the key, then the class extends io.murano.Object. Thus, io.murano.Object is the root class
for all class hierarchies.

Properties

Properties are class attributes that together with methods create public class interface. Usually, but not always, proper-
ties are the values, and reference other objects that have to be entered in an environment designer prior to a workflow
invocation.

Properties have the following declaration format:

propertyName:
Contract: property contract
Usage: property usage
Default: property default

Contract

Contract is a YAQL expression that says what type of the value is expected for the property as well as additional con-
straints imposed on a property. Using contracts you can define what value can be assigned to a property or argument.
In case of invalid input data it may be automatically transformed to confirm to the contract. For example, if bool value
is expected and user passes any not null value it will be converted to True. If converting is impossible exception
ContractViolationException will be raised.

The following contracts are available:

58 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

Operation Definition

$.int() an integer value (may be null). String values consisting
of digits are converted to integers

$.int().notNull() a mandatory integer

$.string()
$.string().notNull()

a string. If the value is not a string, it is converted to a
string

$.bool()
$.bool().notNull()

bools are true and false. 0 is converted to false, other
integers to true

$.class(ns:ClassName)
$.class(ns:ClassName).notNull()

value must be a reference to an instance of specified
class name

$.class(ns:ClassName, ns:DefaultClassName) create instance of the ns:DefaultClassName class
if no instance provided

$.class(ns:Name).check($.p = 12) the value must be of the ns:Name type and have the p
property equal to 12

$.class(ns:Name).owned() a current object must be direct or indirect owner of the
value

$.class(ns:Name).notOwned() the value must be owned by any object except current
one

[$.int()]
[$.int().notNull()]

an array of integers. Similar to other types.

[$.int().check($ > 0)] an array of the positive integers (thus not null)

[$.int(), $.string()] an array that has at least two elements, first is int and
others are strings

[$.int(), 2]
[$.int(), 2, 5]

an array of ints with at least 2 items
an array of ints with at least 2 items, and maximum of 5
items

{ A: $.int(), B: [$.string()] } the dictionary with the A key of the int type and B - an
array of strings

$
[]
{}

any scalar or data structure as is
any array
any dictionary

{ $.string().notNull(): $.int().notNull() } dictionary string -> int

A: StringMap
$.string().notNull(): $

the dictionary with the A key that must be equal to
StringMap, and other keys be
any scalar or data structure

3.4. MuranoPL Reference 59

Murano, Release 2.0.0.0b3.dev156

In the example above property port must be int value greater than 0 and less than 65536; scope must be a string
value and one of ‘public’, ‘cloud’, ‘host’ or ‘internal’, and protocol must be a string value and either ‘TCP’ or
‘UDP’. When user passes some values to these properties it will be checked that values confirm to the contracts.

Namespaces:
=: io.murano.apps.docker
std: io.murano

Name: ApplicationPort

Properties:
port:
Contract: $.int().notNull().check($ > 0 and $ < 65536)

scope:
Contract: $.string().notNull().check($ in list(public, cloud, host, internal))
Default: private

protocol:
Contract: $.string().notNull().check($ in list(TCP, UDP))
Default: TCP

Methods:
getRepresentation:
Body:

Return:
port: $.port
scope: $.scope
protocol: $.protocol

Usage

Usage states the purpose of the property. This implies who and how can access it. The following usages are available:

60 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

Property Explanation

In Input property. Values of such properties are obtained
from a user and cannot be modified in MuranoPL
workflows. This is the default value for the Usage key.

Out A value is obtained from executing MuranoPL
workflow and cannot be modified by a user.

InOut A value can be modified both by user and by workflow.

Const The same as In but once workflow is executed a
property cannot be changed neither by a user nor by a
workflow.

Runtime A property is visible only from within workflows. It is
neither read from input nor serialized to a workflow
output.

The usage attribute is optional and can be omitted (which implies In).

If the workflow tries to write to a property that is not declared with one of the types above, it is considered to be private
and accessible only to that class (and not serialized to output and thus would be lost upon the next deployment). An
attempt to read the property that was not initialized results in an exception.

Default

Default is a value that is used if the property value is not mentioned in the input object model, but not when it is set
to null. Default, if specified, must conform to a declared property contract. If Default is not specified, then null is the
default.

For properties that are references to other classes, Default can modify a default value of the referenced objects. For
example:

p:
Contract: $.class(MyClass)
Default: {a: 12}

This overrides default for the a property of MyClass for instance of MyClass that is created for this property.

Workflow

Workflows are the methods that describe how the entities that are represented by MuranoPL classes are deployed.

In a typical scenario, the root object in an input data model is of the io.murano.Environment type, and has the
deploy method. This method invocation causes a series of infrastructure activities (typically, a Heat stack modifi-

3.4. MuranoPL Reference 61

Murano, Release 2.0.0.0b3.dev156

cation) and the deployment scripts execution initiated by VM agents commands. The role of the workflow is to map
data from the input object model, or a result of previously executed actions, to the parameters of these activities and
to initiate these activities in a correct order.

Methods

Methods have input parameters, and can return a value to a caller. Methods are defined in the Workflow section of the
class using the following template:

methodName:
Usage: Action
Arguments:

- list
- of
- arguments

Body:
- list
- of
- instructions

Action is an optional parameter that specifies methods to be executed by direct triggering after deployment.

Arguments are optional too, and are declared using the same syntax as class properties, except for the Usage attribute
that is meaningless for method parameters. For example, arguments also have a contract and optional default:

scaleRc:
Arguments:
- rcName:

Contract: $.string().notNull()
- newSize:

Contract: $.int().notNull()

The Method body is an array of instructions that get executed sequentially. There are 3 types of instructions that can
be found in a workflow body:

• expressions,

• assignments,

• block constructs.

Expressions

Expressions are YAQL expressions that are executed for their side effect. All accessible object methods can be called
in the expression using the $obj.methodName(arguments) syntax.

62 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

Expression Explanation

$.methodName()
$this.methodName()

invoke method ‘methodName’ on this (self) object

$.property.methodName()
$this.property.methodName()

invocation of method on object that is in property

$.method(1, 2, 3) methods can have arguments

$.method(1, 2, thirdParameter => 3) named parameters also supported

list($.foo().bar($this.property), $p) complex expressions can be constructed

Assignment

Assignments are single key dictionaries with a YAQL expression as a key and arbitrary structure as a value. Such a
construct is evaluated as an assignment.

3.4. MuranoPL Reference 63

Murano, Release 2.0.0.0b3.dev156

Assignment Explanation

$x: value assigns value to the local variable $x

$.x: value
$this.x: value

assign the value to the object’s property

$.x: $.y copies the value of the property y to the property x

$x: [$a, $b] sets $x to the array of two values: $a and $b

$x:
SomeKey:

NestedKey: $variable

structures of any level of complexity can be evaluated

$.x[0]: value assigns the value to the first array entry of the x
property

$.x.append(): value appends the value to an array in the x property

$.x.insert(1): value inserts the value into the position 1

$x: [$a, $b].delete(0) sets $x to the array without 0 index item

$.x.key.subKey: value
$.x[key][subKey]: value

deep dictionary modification

Block constructs

Block constructs control a program flow. They are dictionaries that have strings as all their keys.

The following block constructs are available:

64 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

Assignment Explanation

Return: value Returns value from a method

If: predicate()
Then:

- code
- block

Else:
- code
- block

predicate() is a YAQL expression that must be
evaluated to True or False

The Else section is optional
One-line code blocks can be written as scalars rather
than an array.

While: predicate()
Do:

- code
- block

predicate() must be evaluated to True or False

For: variableName
In: collection
Do:

- code
- block

collection must be a YAQL expression returning
iterable collection or evaluatable array as in assignment
instructions, for example, [1, 2, $x]

Inside a code block loop, a variable is accessible as
$variableName

Repeat:
Do:

- code
- block

Repeats the code block specified number of times

Break: Breaks from loop

Match:
case1:

- code
- block

case2:
- code
- block

Value: $valExpression()
Default:

- code
- block

Matches the result of $valExpression() against a
set of possible values (cases). The code block of first
matched case is executed.

If no case matched and the default key is present than
the Default code block get executed.
The case values are constant values (not expressions).

Switch:
$predicate1():

- code
- block

$predicate2():
- code
- block

Default:
- code
- block

All code blocks that have their predicate evaluated to
True are executed, but the order of predicate
evaluation is not fixed.

The Default key is optional.

If no predicate evaluated to True, the Default code
block get executed.

Parallel:
- code
- block

Limit: 5

Executes all instructions in code block in a separate
green threads in parallel.

The limit is optional and means the maximum number
of concurrent green threads.

Try:
- code
- block

Catch:
With: keyError
As: e
Do:

- code
- block

Else:
- code
- block

Finally:
- code
- block

Try and Catch are keywords that represent the handling
of exceptions due to data or coding errors during
program execution. A Try block is the block of code
in which exceptions occur. A Catch block is the block
of code, that is executed if an exception occurred.
Exceptions are not declared in Murano PL. It means
that exceptions of any types can be handled and
generated. Generating of exception can be done with
construct: Throw: keyError.

The Else is optional block. Else block is executed if
no exception occurred.

The Finally also is optional. It’s a place to put any
code that will be executed, whether the try-block raised
an exception or not.

3.4. MuranoPL Reference 65

Murano, Release 2.0.0.0b3.dev156

Notice, that if you have more then one block construct in your workflow, you need to insert dashes before each
construct. For example:

Body:
- If: predicate1()
Then:

- code
- block

- While: predicate2()
Do:

- code
- block

Object model

Object model is a JSON serialized representation of objects and their properties. Everything you do in the OpenStack
dashboard is reflected in an object model. The object model is sent to the Application catalog engine when the user
decides to deploy the built environment. On the engine side, MuranoPL objects are constructed and initialized from
the received Object model, and a predefined method is executed on the root object.

Objects are serialized to JSON using the following template:

1 {
2 "?": {
3 "id": "globally unique object ID (UUID)",
4 "type": "fully namespace-qualified class name",
5

6 "optional designer-related entries can be placed here": {
7 "key": "value"
8 }
9 },

10

11 "classProperty1": "propertyValue",
12 "classProperty2": 123,
13 "classProperty3": ["value1", "value2"],
14

15 "reference1": {
16 "?": {
17 "id": "object id",
18 "type": "object type"
19 },
20

21 "property": "value"
22 },
23

24 "reference2": "referenced object id"
25 }

Objects can be identified as dictionaries that contain the ? entry. All system fields are hidden in that entry.

There are two ways to specify references:

1. reference1 as in the example above. This method allows inline definition of an object. When the instance of
the referenced object is created, an outer object becomes its parent/owner that is responsible for the object. The
object itself may require that its parent (direct or indirect) be of a specified type, like all applications require to
have Environment somewhere in a parent chain.

2. Referring to an object by specifying other object ID. That object must be defined elsewhere in an object tree.
Object references distinguished from strings having the same value by evaluating property contracts. The former

66 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

case would have $.class(Name) while the later - the $.string() contract.

3.4.4 MuranoPL Core Library

Some objects and actions can be used in several application deployments. All common parts are grouped into Mura-
noPL libraries. Murano core library is a set of classes needed in each deployment. Class names from core library can
be used in the application definitions. This library is located under the meta directory.

Classes included in the Murano core library are as follows:

io.murano

• object

• application

• security-group-manager

• environment

io.murano.resources

• instance

• network

io.murano.system

• logger

Class: Object

A parent class for all MuranoPL classes. It implements the initialize, setAttr, and getAttrmethods defined
in the pythonic part of the Object class. All MuranoPL classes are implicitly inherited from this class.

See also:

Source Object.yaml file.

Class: Application

Defines an application itself. All custom applications must be derived from this class.

See also:

Source Application.yaml file.

Class: SecurityGroupManager

Manages security groups during an application deployment.

See also:

Source SecurityGroupManager.yaml file.

3.4. MuranoPL Reference 67

https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano
https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Object.yaml
https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Application.yaml
https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/SecurityGroupManager.yaml

Murano, Release 2.0.0.0b3.dev156

Class: Environment

Defines an environment in terms of the deployment process and groups all Applications and their related infrastruc-
tures. It also able to deploy them at once.

Environments is intent to group applications to manage them easily.

Table 3.1: Environment class properties

Property Description Default
usage

name An environment name. In
applications A list of applications belonging to an environment. In
agentListenerA property containing the io.murano.system.AgentListener object that

can be used to interact with Murano Agent.
Runtime

stack A property containing a HeatStack object that can be used to interact with Heat. Runtime
instanceNotifierA property containing the io.murano.system.InstanceNotifier object

that can be used to keep track of the amount of deployed instances.
Runtime

defaultNetworksA property containing user-defined Networks
(io.murano.resources.Network) that can be used as default networks for
the instances in this environment.

In

securityGroupManagerA property containing the SecurityGroupManager object that can be used to
construct a security group associated with this environment.

Runtime

See also:

Source Environment.yaml file.

Class: Instance

Defines virtual machine parameters and manages an instance lifecycle: spawning, deploying, joining to the network,
applying security group, and deleting.

Table 3.2: Instance class properties

Property Description Default
usage

name An instance name. In
flavor An instance flavor defining virtual machine hardware parameters. In
image An instance image defining operation system. In
keyname Optional. A key pair name used to connect easily to the instance. In
agent Configures interaction with the Murano agent using io.murano.system.Agent. Runtime
ipAddressesA list of all IP addresses assigned to an instance. Out
networks Specifies the networks that an instance will be joined to. Custom networks that extend

Network class can be specified. An instance will be connected to them and for the
default environment network or flat network if corresponding values are set to True.
Without additional configuration, instance will be joined to the default network that is
set in the current environment.

In

assignFloatingIpDetermines if floating IP is required. Default is False. In
floatingIpAddressIP addresses assigned to an instance after an application deployment. Out
securityGroupNameOptional. A security group that an instance will be joined to. In

See also:

Source Instance.yaml file.

68 Chapter 3. Developing Applications

https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Environment.yaml
https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/resources/Instance.yaml

Murano, Release 2.0.0.0b3.dev156

Resources

Instance class uses the following resources:

Agent-v2.template Python Murano Agent template.

Note: This agent is supposed to be unified. Currently, only Linux-based machines are supported. Windows
support will be added later.

linux-init.sh Python Murano Agent initialization script that sets up an agent with valid information containing an
updated agent template.

Agent-v1.template Windows Murano Agent template.

windows-init.sh Windows Murano Agent initialization script.

Class: Network

The basic abstract class for all MuranoPL classes representing networks.

See also:

Source Network.yaml file.

Class: Logger

Logging API is the part of core library since Liberty release. It was introduced to improve debuggability of MuranoPL
programs.

You can get a logger instance by calling a logger function which is located in io.murano.system namespace.
The logger function takes a logger name as the only parameter. It is a common recommendation to use full class
name as a logger name within that class. This convention avoids names conflicts in logs and ensures a better logging
subsystem configurability.

Logger class instantiation:

$log: logger('io.murano.apps.activeDirectory.ActiveDirectory')

Table 3.3: Log levels prioritized in order of severity

Level Description
CRITICAL Very severe error events that will presumably lead the application to abort.
ERROR Error events that might not prevent the application from running.
WARNING Events that are potentially harmful but will allow the application to continue running.
INFO Informational messages highlighting the progress of the application at the coarse-grained level.
DEBUG Detailed informational events that are useful when debugging an application.
TRACE Even more detailed informational events comparing to the DEBUG level.

There are several methods that fully correspond to the log levels you can use for logging events. They are debug,
trace, info, warning, error, and critical.

Logging example:

$log.info('print my info message {message}', message=>message)

Logging methods use the same format rules as the YAQL format function. Thus the line above is equal to the:

3.4. MuranoPL Reference 69

https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/resources/Network.yaml

Murano, Release 2.0.0.0b3.dev156

$log.info('print my info message {message}'.format(message=>message))

To print an exception stacktrace, use the exception method. This method uses the ERROR level:

Try:
- Throw: exceptionName
Message: exception message

Catch:
With: exceptionName
As: e
Do:

- $log.exception($e, 'something bad happen "{message}"', message=>message)

Note: You can configure the logging subsystem through the logging.conf file of the Murano Engine.

See also:

• Source Logger.yaml file.

• OpenStack networking logging configuration.

3.5 Murano actions

Murano action is a type of MuranoPL method. The differences from a regular MuranoPL method are:

• Action is executed on deployed objects.

• Action execution is initiated by API request, you do not have to call the method manually.

So murano action allows performing any operations on objects:

• Getting information from the VM, like a config that is generated during the deployment

• VM rebooting

• Scaling

A list of available actions is formed during the environment deployment. Right after the deployment is finished, you
can call action asynchronously. Murano engine generates a task for every action. Therefore, the action status can be
tracked.

Note: Actions may be called against any MuranoPL object, including Environment, Application, and any
other objects.

To mark a method as an action, use Usage: Action.

The following example shows an action that returns an archive with a configuration file:

exportConfig:
Usage: Action
Body:

- $._environment.reporter.report($this, 'Action exportConfig called')
- $resources: new(sys:Resources)
- $template: $resources.yaml('ExportConfig.template')
- $result: $.masterNode.instance.agent.call($template, $resources)
- $._environment.reporter.report($this, 'Got archive from Kubernetes')
- Return: new(std:File, base64Content => $result.content,

filename => 'application.tar.gz')

70 Chapter 3. Developing Applications

https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/Logger.yaml
http://docs.openstack.org/liberty/config-reference/content/networking-options-logging.html

Murano, Release 2.0.0.0b3.dev156

List of available actions can be found with environment details or application details API calls. It’s located in object
model special data. Take a look at the following example:

Request: http://localhost:8082/v1/environments/<id>/services/<id>

Response:

{
"name": "SimpleVM",
"?": {
"_26411a1861294160833743e45d0eaad9": {

"name": "SimpleApp"
},
"type": "io.murano.apps.Simple",
"id": "e34c317a-f5ee-4f3d-ad2f-d07421b13d67",
"_actions": {

"e34c317a-f5ee-4f3d-ad2f-d07421b13d67_exportConfig": {
"enabled": true,
"name": "exportConfig"

}
}

}
}

3.6 Murano packages

3.6.1 Package structure

The structure of the Murano application package is predefined. An application could be successfully uploaded to an
application catalog.

The application package root folder should contain the following:

manifest.yaml file is an application entry point.

Note: the filename is fixed, do not use any custom names.

Classes folder contains MuranoPL class definitions.

Resources folder contains execution plan templates and the scripts folder with all the files required for an application
deployment located in it.

UI folder contains the dynamic UI yaml definitions.

logo.png file (optional) is an image file associated to your application.

Note: There are no any special limitations regarding an image filename. Though, if it differs from the default
logo.png, specify it in an application manifest file.

images.lst file (optional) contains a list of images required by an application.

Here is the visual representation of the Murano application package structure:

3.6. Murano packages 71

Murano, Release 2.0.0.0b3.dev156

72 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

3.6.2 Dynamic UI definition specification

The main purpose of Dynamic UI is to generate application creation forms “on-the-fly”. The Murano dashboard does
not know anything about applications that will be presented in the catalog and which web forms are required to create
an application instance. So all application definitions should contain an instruction, which tells the dashboard how to
create an application and what validations need to be applied. This document will help you to compose a valid UI
definition for your application.

The UI definition should be a valid YAML file and may contain the following sections (for version 2.x):

• Version Points out the syntax version in use. Optional

• Templates An auxiliary section, used together with an Application section to help with object model compos-
ing. Optional

• Application Object model description passed to murano engine and used for application deployment. Required

• Forms Web form definitions. Required

Version

The syntax and format of dynamic UI definitions may change over time, so the concept of format versions is in-
troduced. Each UI definition file may contain a top-level section called Version to indicate the minimum version of
Murano Dynamic UI platform which is capable to process it. If the section is missing, the format version is assumed
to be latest supported.

The version consists of two non-negative integer segments, separated by a dot, i.e. has a form of MAJOR.MINOR.
Dynamic UI platforms having the same MAJOR version component are compatible: i.e. the platform having the
higher version may process UI definitions with lower versions if their MAJOR segments are the same. For example,
Murano Dynamic UI platform of version 2.2 is able to process UI definitions of versions 2.0, 2.1 and 2.2, but is unable
to process 3.0 or 1.9.

Currently, the latest version of Dynamic UI platform is 2.3. It is incompatible with UI definitions of Version 1.0, which
were used in Murano releases before Juno.

Note: Although the Version field is considered to be optional, its default value is the latest supported version. So
if you intent to use applications with the previous stable murano version, verify that the version is set correctly.

3.6. Murano packages 73

Murano, Release 2.0.0.0b3.dev156

3.6.3 Version history

Version Changes OpenStack Version
1.0

• Initial Dymanic UI implemen-
tation

Icehouse

2.0
• instance field support is

dropped
• New Application section that

describes engine object model
• New Templates section for

keeping reusable pieces of Ob-
ject

Juno, Kilo

2.1
• New network field provides a

selection of networks and their
subnetworks as a dropdown
populated with those which are
available to the current tenant.

Liberty

2.2
• Now application name is

added automatically to the last
service form. It is needed for a
user to recognize one created
application from another in the
UI. Previously all application
definitions contained the name
property. So to support back-
ward compatibility, you need
to manually remove name field
from class properties.

Liberty

2.3
• Now password field supports
confirmInput flag and val-
idator overloading with single
regexValidator or multi-
ple validators attribute.

Mitaka

Application and Templates

The Application section describes an application object model. This model will be translated into json, and an ap-
plication will be deployed according to that json. The application section should contain all necessary keys that are
required by the murano-engine to deploy an application. Note that the system section of the object model goes under
the ?. So murano recognizes that instead of simple value, MuranoPL object is used. You can pick parameters you got
from a user (they should be described in the Forms section) and pick the right place where they should be set. To do
this YAQL is used. Below is an example of how two YAQL functions are used for object model generation:

• generateHostname is used for a machine hostname template generation; it accepts two arguments: name pattern
(string) and index (integer). If ‘#’ symbol is present in name pattern, it will be replaced with the index provided.
If pattern is not given, a random name will be generated.

74 Chapter 3. Developing Applications

https://git.openstack.org/cgit/openstack/yaql/tree/README.rst

Murano, Release 2.0.0.0b3.dev156

• repeat is used to produce a list of data snippets, given the template snippet (first argument) and number of
times it should be reproduced (second argument). Inside that template snippet current step can be referenced as
$index.

Note: While evaluating YAQL expressions referenced from Application section (as well as almost all attributes inside
Forms section, see later), $ root object is set to the list of dictionaries with cleaned validated forms’ data. For example,
to obtain a cleaned value of field name of form appConfiguration , you should reference it as $.appConfiguration.name.
This context will be called as a standard context throughout the text.

Example:

Templates:
primaryController:

?:
type: io.murano.windows.activeDirectory.PrimaryController

host:
?:
type: io.murano.windows.Host

adminPassword: $.appConfiguration.adminPassword
name: generateHostname($.appConfiguration.unitNamingPattern, 1)
flavor: $.instanceConfiguration.flavor
image: $.instanceConfiguration.osImage

secondaryController:
?:

type: io.murano.windows.activeDirectory.SecondaryController
host:

?:
type: io.murano.windows.Host

adminPassword: $.appConfiguration.adminPassword
name: generateHostname($.appConfiguration.unitNamingPattern, $index + 1)
flavor: $.instanceConfiguration.flavor
image: $.instanceConfiguration.osImage

Application:
?:
type: io.murano.windows.activeDirectory.ActiveDirectory

primaryController: $primaryController
secondaryControllers: repeat($secondaryController, $.appConfiguration.dcInstances - 1)

Forms

This section describes markup elements for defining forms, which are currently rendered and validated with Django.
Each form has a name, field definitions (mandatory), and validator definitions (optionally).

Note that each form is splitted into 2 parts:

• input area - left side, where all the controls are located

• description area - right side, where descriptions of the controls are located

Each field should contain:

• name - system field name, could be any

• type - system field type

Currently supported options for type attribute are:

3.6. Murano packages 75

Murano, Release 2.0.0.0b3.dev156

• string - text field (no inherent validations) with one-line text input

• boolean - boolean field, rendered as a checkbox

• text - same as string, but with a multi-line input

• integer - integer field with an appropriate validation, one-line text input

• password - text field with validation for strong password, rendered as two masked text inputs (second one is for
password confirmation)

• clusterip - specific text field, used for entering cluster IP address (validations for valid IP address syntax and for
that IP to belong to a fixed subnet)

• databaselist - specific field, a list of databases (comma-separated list of databases’ names, where each name has
the following syntax first symbol should be latin letter or underscore; subsequent symbols can be latin letter,
numeric, underscore, at the sign, number sign or dollar sign), rendered as one-line text input

• image - specific field, used for filtering suitable images by image type provided in murano metadata in glance
properties.

• flavor - specific field, used for selection instance flavor from a list

• keypair - specific field, used for selecting a keypair from a list

• azone - specific field, used for selecting instance availability zone from a list

• network - specific field, used to select a network and subnet from a list of the ones available to the current user

• any other value is considered to be a fully qualified name for some Application package and is rendered as a pair
of controls: one for selecting already existing Applications of that type in an Environment, second - for creating
a new Application of that type and selecting it

Other arguments (and whether they are required or not) depends on a field’s type and other attributes values. Most of
them are standard Django field attributes. The most common attributes are the following:

• label - name, that will be displayed in the form; defaults to name being capitalized.

• description - description, that will be displayed in the description area. Use yaml line folding character >- to
keep the correct formatting during data transferring.

• descriptionTitle - title of the description, defaults to label; displayed in the description area

• hidden whether field should be visible or not in the input area. Note that hidden field’s description will still be
visible in the descriptions area (if given). Hidden fields are used storing some data to be used by other, visible
fields.

• minLength, maxLength (for string fields) and minValue, maxValue (for integer fields) are transparently trans-
lated into django validation properties.

• regexValidator - regular expression to validate user input. Used with string field.

• errorMessages - dictionary with optional ‘invalid’ and ‘required’ keys that set up what message to show to the
user in case of errors.

• validators is a list of dictionaries, each dictionary should at least have expr key, under that key either some
YAQL expression is stored, either one-element dictionary with regexValidator key (and some regexp string as
value). Another possible key of a validator dictionary is message, and although it is not required, it is highly
desirable to specify it - otherwise, when validator fails (i.e. regexp doesn’t match or YAQL expression evaluates
to false) no message will be shown. Note that field-level validators use YAQL context different from all other
attributes and section: here $ root object is set to the value of field being validated (to make expressions shorter).

- name: someField
type: string
label: Domain Name

76 Chapter 3. Developing Applications

https://git.openstack.org/cgit/openstack/yaql/tree/README.rst

Murano, Release 2.0.0.0b3.dev156

validators:
- expr:

regexpValidator: '(^[^.]+$|^[^.]{1,15}\..*$)'
message: >-

NetBIOS name cannot be shorter than 1 symbol and
longer than 15 symbols.

- expr:
regexpValidator: '(^[^.]+$|^[^.]*\.[^.]{2,63}.*$)'

message: >-
DNS host name cannot be shorter than 2 symbols and
longer than 63 symbols.

helpText: >-
Just letters, numbers and dashes are allowed.
A dot can be used to create subdomains

• widgetMedia sets some custom CSS and JavaScript used for the field’s widget rendering. Note, that files should
be placed to Django static folder in advance. Mostly they are used to do some client-side field enabling/disabling,
hiding/unhiding etc.

• requirements is used only with flavor field and prevents user to pick unstable for a deployment flavor. It allows
to set minimum ram (in MBs), disk space (in GBs) or virtual CPU quantity.

Example that shows how to hide items smaller than regular small flavor in a flavor select field:

- name: flavor
type: flavor
label: Instance flavor
requirements:

min_disk: 20
min_vcpus: 2
min_memory_mb: 2048

• include_subnets is used only with network field. True by default. If True, the field list includes all the
possible combinations of network and subnet. E.g. if there are two available networks X and Y, and X has two
subnets A and B, while Y has a single subnet C, then the list will include 3 items: (X, A), (X, B), (Y, C). If set
to False only network names will be listed, without their subnets.

• filter is used only with network field. None by default. If set to a regexp string, will be used to display only the
networks with names matching the given regexp.

• murano_networks is used only with network field. None by default. May have values None, exclude or
translate. Defines the handling of networks which are created by murano. Such networks usually have very
long randomly generated names, and thus look ugly when displayed in the list. If this value is set to exclude
then these networks are not shown in the list at all. If set to translate the names of such networks are
replaced by a string Network of %env_name%.

Note: This functionality is based on the simple string matching of the network name prefix and the names of
all the accessible murano environments. If the environment is renamed after the initial deployment this feature
will not be able to properly translate or exclude its network name.

• allow_auto is used only with network field. True by default. Defines if the default value of the dropdown
(labeled “Auto”) should be present in the list. The default value is a tuple consisting of two None values. The
logic on how to treat this value is up to application developer. It is suggested to use this field to indicate that
the instance should join default environment network. For use-cases where such behavior is not desired, this
parameter should be set to False.

Besides field-level validators, form-level validators also exist. They use standard context for YAQL evaluation and
are required when there is a need to validate some form’s constraint across several fields.

3.6. Murano packages 77

Murano, Release 2.0.0.0b3.dev156

Example

Forms:
- appConfiguration:

fields:
- name: dcInstances
type: integer
hidden: true
initial: 1
required: false
maxLength: 15
helpText: Optional field for a machine hostname template

- name: unitNamingPattern
type: string
label: Instance Naming Pattern
required: false
maxLength: 64
regexpValidator: '^[a-zA-Z][-_\w]*$'
errorMessages:
invalid: Just letters, numbers, underscores and hyphens are allowed.

helpText: Just letters, numbers, underscores and hyphens are allowed.
description: >-

Specify a string that will be used in a hostname instance.
Just A-Z, a-z, 0-9, dash, and underline are allowed.

- instanceConfiguration:
fields:
- name: title

type: string
required: false
hidden: true
descriptionTitle: Instance Configuration
description: Specify some instance parameters based on which service will be created.

- name: flavor
type: flavor
label: Instance flavor
description: >-
Select a flavor registered in OpenStack. Consider that service performance
depends on this parameter.

required: false
- name: osImage

type: image
imageType: windows
label: Instance image
description: >-
Select valid image for a service. Image should already be prepared and
registered in glance.

- name: availabilityZone
type: azone
label: Availability zone
description: Select an availability zone, where service will be installed.
required: false

78 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

3.6.4 Murano package repository

Murano client and dashboard can install both packages and bundles of packages from murano repository. To do so
you should set MURANO_REPO_URL settings in murano dashboard or MURANO_REPO_URL env variable for
the CLI client, and use a respective command to import the package. These commands automatically import all the
prerequisites required to install the application along with any images mentioned in the applications.

Setting up your own repository

It is fairly easy to set up your own murano package repository. To do so you need a web server that would serve 3 directories:

• /apps/

• /bundles/

• /images/

When importing an application by name, the client appends any version info, if present to the application name, .zip
file extension and searches for that file in the apps directory.

When importing a bundle by name, the client appends .bundle file extension to the bundle name and searches it in
the bundles directory. A bundle file is a json or a yaml file with the following structure:

{"Packages":
[

{"Name": "io.murano.apps.ApacheHttpServer"},
{"Version": "", "Name": "io.murano.apps.Nginx"},
{"Version": "0.0.1", "Name": "io.murano.apps.Lighttpd"}

]
}

Glance images can be auto-imported by the client, when mentioned in images.lst inside the package. Please see
Step-by-Step for more information about package composition. When importing images from the image.lst file,
the client simply searches for a file with the same name as the name attribute of the image in the images directory of
the repository.

3.7 Migrating applications between releases

This document describes how a developer of murano application can update existing packages to make them synchro-
nized with all implemented features and requirements.

3.7.1 Migrate applications from Murano v0.5 to Stable/Juno

Applications created for murano v0.5, unfortunately, are not supported in Murano stable/juno. This document provides
the application code changes required for compatibility with the stable/juno murano version.

Rename ‘Workflow’ to ‘Methods’

In stable/juno the name of section containing class methods is renamed to Methods, as the latter is more OOP and
doesn’t cause confusion with Mistral. So, you need to change it in app.name/Classes in all classes describing workflow
of your app.

For example:

3.7. Migrating applications between releases 79

Murano, Release 2.0.0.0b3.dev156

Workflow:
deploy:
Body:

- $._environment.reporter.report($this, 'Creating VM')

Should be changed to:

Methods:
deploy:
Body:

- $._environment.reporter.report($this, 'Creating VM')

Change the Instance type in the UI definition ‘Application’ section

The Instance class was too generic and contained some dirty workarounds to differently handle Windows and Linux
images, to bootstrap an instance in a number of ways, etc. To solve these problems more classes were added to the
Instance inheritance hierarchy.

Now, base Instance class is abstract and agnostic of the desired OS and agent type. It is inherited by two classes:
LinuxInstance and WindowsInstance.

• LinuxInstance adds a default security rule for Linux, opening a standard SSH port;

• WindowsInstance adds a default security rule for Windows, opening an RDP port. At the same time WindowsIn-
stance prepares a user-data allowing to use Murano v1 agent.

LinuxInstance is inherited by two other classes, having different software config method:

• LinuxMuranoInstance adds a user-data preparation to configure Murano v2 agent;

• LinuxUDInstance adds a custom user-data field allowing the services to supply their own user data.

You need to specify the instance type which is required by your app. It specifies a field in UI, where user can select an
image matched to the instance type. This change must be added to UI form definition in app.name/UI/ui.yaml.

For example, if you are going to install your application on Ubuntu, you need to change:

Application:
?:
instance:
?:

type: io.murano.resources.Instance

to:

Application:
?:
instance:
?:

type: io.murano.resources.LinuxMuranoInstance

3.7.2 Migrate applications to Stable/Kilo

In Kilo, there are no breaking changes that affect backward compatibility. But there are two new features which you
can use since Kilo.

80 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

1. Pluggable Pythonic classes for murano

Now you can create plug-ins for MuranoPL. A plug-in (extension) is an independent Python package implementing
functionality which you want to add to the workflow of your application.

For a demo application demonstrating the usage of plug-ins, see the murano/contrib/plugins/murano_exampleplugin
folder.

The application consist of the following components:

• An ImageValidatorMixin class that inherits the generic instance class
(io.murano.resources.Instance) and adds a method capable of validating the instance image
for having an appropriate murano metadata type. This class may be used as a mixin when added to inheritance
hierarchy of concrete instance classes.

• A concrete class called DemoInstance that inherits from io.murano.resources.LinuxMuranoInstance and Im-
ageValidatorMixin to add the image validation logic to a standard, murano-enabled and Linux-based instance.

• An application that deploys a single VM using the DemoInstance class if the tag on the user-supplied image
matches the user-supplied constant.

The ImageValidatorMixin demonstrates the instantiation of plug-in provided class and its usage, as well as handling
of exception which may be thrown if the plug-in is not installed in the environment.

2. Murano mistral integration

The core library has a new system class for mistral client that allows to call Mistral APIs from the murano application
model.

The system class allows you to:

• Upload a mistral workflow to mistral.

• Trigger the mistral workflow that is already deployed, wait for completion and return the execution output.

To use this feature, add some mistral workflow to Resources folder of your package. For example, create file
TestEcho_MistralWorkflow.yaml:

version: '2.0'

test_echo:
type: direct
input:

- input_1
output:

out_1: <% $.task1_output_1 %>
out_2: <% $.task2_output_2 %>
out_3: <% $.input_1 %>

tasks:
my_echo_test:

action: std.echo output='just a string'
publish:
task1_output_1: 'task1_output_1_value'
task1_output_2: 'task1_output_2_value'

on-success:
- my_echo_test_2

my_echo_test_2:
action: std.echo output='just a string'
publish:

3.7. Migrating applications between releases 81

Murano, Release 2.0.0.0b3.dev156

task2_output_1: 'task2_output_1_value'
task2_output_2: 'task2_output_2_value'

And provide workflow to use the mistral client:

Namespaces:
=: io.murano.apps.test
std: io.murano
sys: io.murano.system

Name: MistralShowcaseApp

Extends: std:Application

Properties:
name:

Contract: $.string().notNull()

mistralClient:
Contract: $.class(sys:MistralClient)
Usage: Runtime

Methods:
initialize:

Body:
- $this.mistralClient: new(sys:MistralClient)

deploy:
Body:

- $resources: new('io.murano.system.Resources')
- $workflow: $resources.string('TestEcho_MistralWorkflow.yaml')
- $.mistralClient.upload(definition => $workflow)
- $output: $.mistralClient.run(name => 'test_echo', inputs => dict(input_1 => input_1_value))
- $this.find(std:Environment).reporter.report($this, $output.get('out_3'))

3.7.3 Migrate applications to Stable/Liberty

In Liberty a number of useful features that can be used by developers creating their murano applications were imple-
mented. This document describes these features and steps required to include them to new apps.

1. Versioning

Package version

Now murano packages have a new optional attribute in their manifest called Version - a standard SemVer format
version string. All MuranoPL classes have the version of the package they contained in. To specify the version of your
package, add a new section to the manifest file:

Version: 0.1.0

If no version specified, the package version will be equal to 0.0.0.

82 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

Package requirements

There are cases when packages may require other packages for their work. Now you need to list such packages in the
Require section of the manifest file:

Require:
package1_FQN: version_spec_1
...
packageN_FQN: version_spec_N

version_spec here denotes the allowed version range. It can be either in semantic_version specification pip-like format
or as partial version string. If you do not want to specify the package version, leave this value empty:

Require:
package1_FQN: >=0.0.3
package2_FQN:

In this case, the last dependency 0.x.y is used.

Note: All packages depend on the io.murano package (core library). If you do not specify this requirement in the
list (or the list is empty or even there is no Require key in package manifest), then dependency io.murano: 0 will be
automatically added.

Object version

Now you can specify the version of objects in UI definition when your application requires specific version of some
class. To do this, add new key classVersion to section ? describing object:

?:
type: io.test.apps.TestApp
classVersion: 0.0.1

classVersion of all classes included to package equals Version of this package.

2. YAQL

In Liberty, murano was updated to use yaql 1.0.0. The new version of yaql allows you to use a number of new functions
and features that help to increase the speed of developing new applications.

Note: Usage of these features makes your applications incompatible with older versions of murano.

Also, in Liberty you can change Format in the manifest of package from 1.0 to 1.1 or 1.2.

• 1.0 - supported by all versions of murano.

• 1.1 - supported by Liberty+. Specify it, if you want to use features from yaql 0.2 and yaql 1.0.0 at the same time
in your application.

• 1.2 - supported by Liberty+. A number of features from yaql 0.2 do not work with this format (see the list
below). We recommend you to use it for new applications where compatibility with Kilo is not required.

Some examples of yaql 0.2 features that are not compatible with the 1.2 format

• Several functions now cannot be called as MuranoObject methods: id(), cast(), super(),
psuper(), type().

3.7. Migrating applications between releases 83

Murano, Release 2.0.0.0b3.dev156

• Now you do not have the ability to compare non-comparable types. For example “string != false”

• Dicts are not iterable now, so you cannot do this: If: $key in $dict. Use $key in $dict.keys()
or $v in $dict.values()

• Tuples are not available. => always means keyword argument.

3. Simple software configuration

Previously, you always had to create execution plans even when some short scripts had to be executed on a VM. This
process included creating a template file, creating a script, and describing the sending of the execution plan to the
murano agent.

Now you can use a new class io.murano.configuration.Linux from murano core-library. This allows sending short
commands to the VM and putting files from the Resources folder of packages to some path on the VM without the
need of creating execution plans.

To use this feature you need to:

• Declare a namespace (for convenience)

Namespaces:
conf: io.murano.configuration
...

• Create object of io.murano.configuration.Linux class in workflow of your application:

$linux: new(conf:Linux)

• Run one of the two feature methods: runCommand or putFile:

first agrument is agent of instance, second - your command
$linux.runCommand($.instance.agent, 'service apache2 restart')

or:

getting content of file from 'Resources' folder
- $resources: new(sys:Resources)
- $fileContent: $resources.string('your_file.name')
put this content to some directory on VM
- $linux.putFile($.instance.agent, $fileContent, '/tmp/your_file.name')

Note: At the moment, you can use this feature only if your app requires an instance of LinuxMuranoInstance
type.

4. UI network selection element

Since Liberty, you can provide users with the ability to choose where to join their VM: to a new network cre-
ated during the deployment, or to an already existing network. Dynamic UI now has a new type of field -
NetworkChoiseField. This field provides a selection of networks and their subnetworks as a dropdown pop-
ulated with those which are available to the current tenant.

To use this feature, you should make the following updates in the Dynamic UI of an application:

• Add network field:

84 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

fields:
- name: network

type: network
label: Network
description: Select a network to join. 'Auto' corresponds to a default environment's network.
required: false
murano_networks: translate

To see the full list of the network field arguments, refer to the UI forms specification.

• Add template:

Templates:
customJoinNet:

- ?:
type: io.murano.resources.ExistingNeutronNetwork

internalNetworkName: $.instanceConfiguration.network[0]
internalSubnetworkName: $.instanceConfiguration.network[1]

• Add declaration of networks instance property:

Application:
?:

type: io.murano.apps.exampleApp
instance:

?:
type: io.murano.resources.LinuxMuranoInstance

networks:
useEnvironmentNetwork: $.instanceConfiguration.network[0]=null
useFlatNetwork: false
customNetworks: switch($.instanceConfiguration.network[0], $=null=>list(), $!=null=>$customJoinNet)

For more details about this feature, see use-cases

Note: To use this feature, the version of UI definition must be 2.1+

5. Remove name field from fields and object model in dynamic UI

Previously, each class of an application had a name property. It had no built-in predefined meaning for MuranoPL
classes and mostly used for dynamic UI purposes.

Now you can create your applications without this property in classes and without a corresponding field in UI defini-
tions. The field for app name will be automatically generated on the last management form before start of deployment.
Bonus of deleting this - to remove unused property from muranopl class that is needed for dashboard only.

So, to update existing application developer should make 3 steps:

1. remove name field and property declaration from UI definition;

2. remove name property from class of application and make sure that it is not used anywhere in workflow

3. set version of UI definition to 2.2 or higher

3.8 Application unit tests

Murano applications are written in MuranoPL. To make the development of applications easier and enable application
testing, a special framework was created. So it is possible to add unit tests to an application package and check if the

3.8. Application unit tests 85

Murano, Release 2.0.0.0b3.dev156

application is in actual state. Also, application deployment can be simulated with unit tests, so you do not need to run
the murano engine.

A separate service that is called murano-test-runner is used to run MuranoPL unit tests.

All application test cases should be:

• Specified in the MuranoPL class, inherited from io.murano.test.testFixture

This class supports loading object model with the corresponding load(json) function. Also it contains a minimal
set of assertions such as assertEqual and etc.

Note, that test class has the following reserved methods are:

– initialize is executed once, like in any other murano application

– setUp is executed before each test case

– tearDown is executed after each test case

• Named with test prefix

usage: murano-test-runner [-h] [--config-file CONFIG_FILE]
[--os-auth-url OS_AUTH_URL]
[--os-username OS_USERNAME]
[--os-password OS_PASSWORD]
[--os-project-name OS_PROJECT_NAME]
[-l [</path1, /path2> [</path1, /path2> ...]]] [-v]
[--version]
<PACKAGE_FQN>
[<testMethod1, className.testMethod2> [<testMethod1, className.testMethod2> ...]]

positional arguments:
<PACKAGE_FQN>

Full name of application package that is going to be
tested

<testMethod1, className.testMethod2>
List of method names to be tested

optional arguments:
-h, --help show this help message and exit
--config-file CONFIG_FILE

Path to the murano config
--os-auth-url OS_AUTH_URL

Defaults to env[OS_AUTH_URL]
--os-username OS_USERNAME

Defaults to env[OS_USERNAME]
--os-password OS_PASSWORD

Defaults to env[OS_PASSWORD]
--os-project-name OS_PROJECT_NAME

Defaults to env[OS_PROJECT_NAME]
-l [</path1 /path2> [</path1 /path2> ...]], --load_packages_from [</path1 /path2> [</path1 /path2> ...]]

Directory to search packages from. Will be used instead of
directories, provided in the same option in murano configuration file.

-v, --verbose increase output verbosity
--version show program's version number and exit

The fully qualified name of a package is required to specify the test location. It can be an application package that
contains one or several classes with all the test cases, or a separate package. You can specify a class name to execute
all the tests located in it, or specify a particular test case name.

Authorization parameters can be provided in the murano configuration file, or with higher priority -os- parameters.

86 Chapter 3. Developing Applications

https://git.openstack.org/cgit/openstack/murano/tree/murano/engine/system/test_fixture.py

Murano, Release 2.0.0.0b3.dev156

Consider the following example of test execution for the Tomcat application. Tests are located in the same package
with application, but in a separate class called io.murano.test.TomcatTest. It contains testDeploy1
and testDeploy2 test cases. The application package is located in the /package/location/directory (murano-apps
repository e.g). As the result of the following command, both test cases from the specified package and class will be
executed.

murano-test-runner io.murano.apps.apache.Tomcat io.murano.test.TomcatTest -l /package/location/directory /io.murano/location -v

The following command runs a single testApacheDeploy test case from the application package.

murano-test-runner io.murano.apps.apache.Tomcat io.murano.test.TomcatTest.testDeploy1

The main purpose of MuranoPL unit test framework is to enable mocking. Special yaql functions are registered for
that:

def inject(target, target_method, mock_object, mock_name) inject to set up mock for class or object, where mock
definition is a name of the test class method

def inject(target, target_method, yaql_expr) inject to set up mock for a class or object, where mock definition is
a YAQL expression

Parameters description:

target MuranoPL class name (namespaces can be used or full class name in quotes) or MuranoPL object

target_method Method name to mock in target

mock_object Object, where mock definition is contained

mock_name Name of method, where mock definition is contained

yaql_expr YAQL expression, parameters are allowed

So the user is allowed to specify mock functions in the following ways:

• Specify a particular method name

• Provide a YAQL expression

Consider how the following functions may be used in the MuranoPL class with unit tests:

Namespaces:
=: io.murano.test
sys: io.murano.system

Extends: TestFixture

Name: TomcatTest

Methods:
initialize:

Body:
Object model can be loaded from json file, or provided
directly in MuranoPL code as a yaml insertion.
- $.appJson: new(sys:Resources).json('tomcat-for-mock.json')
- $.heatOutput: new(sys:Resources).json('output.json')
- $.log: logger('test')
- $.agentCallCount: 0

Mock method to replace the original one
agentMock:

Arguments:
- template:

3.8. Application unit tests 87

Murano, Release 2.0.0.0b3.dev156

Contract: $
- resources:

Contract: $
- timeout:

Contract: $
Default: null

Body:
- $.log.info('Mocking murano agent')
- $.assertEqual('Deploy Tomcat', $template.Name)
- $.agentCallCount: $.agentCallCount + 1

Mock method, that returns predefined heat stack output
getStackOut:

Body:
- $.log.info('Mocking heat stack')
- Return: $.heatOutput

testDeploy1:
Body:

Loading object model
- $.env: $this.load($.appJson)

Set up mock for the push method of *io.murano.system.HeatStack* class
- inject(sys:HeatStack, push, $.heatOutput)

Set up mock for the concrete object with mock method name
- inject($.env.stack, output, $.heatOutput)

Set up mock with YAQL function
- inject('io.murano.system.Agent', call, $this, agentMock)

Mocks will be called instead of original function during the deployment
- $.env.deploy()

Check, that mock worked correctly
- $.assertEqual(1, $.agentCallCount)

testDeploy2:
Body:

- inject(sys:HeatStack, push, $this, getStackOut)
- inject(sys:HeatStack, output, $this, getStackOut)

Mock is defined with YAQL function and it will print the original variable (agent template)
- inject(sys:Agent, call, withOriginal(t => $template) -> $.log.info('{0}', $t))

- $.env: $this.load($.appJson)
- $.env.deploy()

- $isDeployed: $.env.applications[0].getAttr(deployed, false, 'io.murano.apps.apache.Tomcat')
- $.assertEqual(true, $isDeployed)

Provided methods are test cases for the Tomcat application. Object model and heat stack output are predefined and
located in the package Resources directory. By changing some object model or heat stack parameters, different
cases may be tested without a real deployment. Note, that some asserts are used in those example. The first one is
checked, that agent call function was called only once as needed. And assert from the second test case checks for a
variable value at the end of the application deployment.

88 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

Test cases examples can be found in TomcatTest.yaml class of the Apache Tomcat application located at murano-
apps repository. You can run test cases with the commands provided above.

3.9 Examples

Application name Description

Zabbix Agent

Zabbix Agent is a simple application. It doesn’t deploy
a VM by itself, but is installed on a specific VM that
may contain any other applications. This VM is tracked
by Zabbix and by its configuration.
So Murano performs the Zabbix agent configuration
based on the user input. The user chooses the way of in-
stance tracking - HTTP or ICMP that may perform some
modifications in the application package.
It is worth noting that application scripts are written in
Python, not in Bash as usual. This application does not
work without Zabbix server application since it’s a re-
quired property, determined in the application definition.

Zabbix Server

Zabbix Server application interacts with Zabbix Agent
by calling its setUpAgent method and providing infor-
mation about itself: IP and hostname of VM on which
the server is installed.
Server installs MySQL database and requests database
name, password and some other parameters from the
user.

Docker Crate

This is a good example on how difficult logic may be
simplified with the inheritance that is supported by Mu-
ranoPL. Definition of this app is simple, but the oppor-
tunity it provides is fantastic.
Crate is a distributed database, in the Murano Applica-
tion catalog it looks like a regular application. It may
be deployed on Google Kubernetes or regular Docker
server. The user picks the desired option while filling in
the form since these options are set in the UI definition.
The form field has a list of possible options:
...
type:
- io.murano.apps.docker.kubernetes.KubernetesPod
- io.murano.apps.docker.DockerStandaloneHost
Information about the application itself (docker image
and port that is needed to be opened) is contained in the
getContainer method. All other actions for the applica-
tion configuration are located at the DockerStandalone-
Host definition and its dependencies. Note that this ap-
plication doesn’t have a filename:Resources folder at all
since the installation is made by Docker itself.

3.9. Examples 89

https://git.openstack.org/cgit/openstack/murano-apps/tree/Tomcat/package/Classes/TomcatTest.yaml
https://git.openstack.org/cgit/openstack/murano-apps/tree/Tomcat/package/Classes/TomcatTest.yaml
https://github.com/openstack/murano-apps/tree/master/ZabbixAgent/package
https://github.com/openstack/murano-apps/tree/master/ZabbixServer/package
https://github.com/openstack/murano-apps/tree/master/Docker/Applications/Crate/package

Murano, Release 2.0.0.0b3.dev156

3.10 Use-cases

3.10.1 Performing application interconnections

Murano can handle application interconnections installed on virtual machines. The decision of how to combine appli-
cations is made by the author of an application.

To illustrate the way such interconnection can be configured, let’s analyze the mechanisms applied in WordPress
application, which uses MySql.

MySql is a very popular database and can be used in quite a number of various applications. Instead of the creation
of a database inside definition of the WordPress application, it calls the methods from the MySQL class. At the same
time MySQL remains an independent application.

MySql has a number of methods:

• deploy

• createDatabase

• createUser

• assignUser

• getConnectionString

In the io.murano.apps.WordPress class definition the database property is a contact for the
io.murano.databases.MySql class. So, the database configuration methods can be called with the param-
eters passed by the user in the main method:

- $.database.createDatabase($.dbName)
- $.database.createUser($.dbUser, $.dbPassword)
- $.database.assignUser($.dbUser, $.dbName)

Any other methods of any other class can be invoked the same way to make the proposal application installation
algorithm clear and constructive. Also, it allows not to duplicate the code in new applications.

3.10.2 Using application already installed on the image

Suppose you have everything already prepared on image. And you want to share this image with others. This problem
can be solved in several ways.

Let’s use the HDPSandbox application to illustrate how this can be done with Murano.

Note: An image may not contain murano-agent at all.

Prepare an application package of the structure:

|_ Classes
| |_ HDPSandbox.yaml
|
|_ UI
| |_ ui.yaml
|
|_ logo.png

Note: The Resources folder is not included in the package since the image contains everything that user expects.
So no extra instructions are needed to be executed on murano-agent.

90 Chapter 3. Developing Applications

https://github.com/openstack/murano-apps/tree/master/HDPSandbox/package

Murano, Release 2.0.0.0b3.dev156

UI is provided for specifying the application name, which is used for the application recognition in logging. And
what is more, it contains the image name as a deployment instruction template (object model) in the Application
section:

1 Application:
2 ?:
3 type: io.murano.apps.HDPSandbox
4 name: $.appConfiguration.name
5 instance:
6 ?:
7 type: io.murano.resources.LinuxMuranoInstance
8 name: generateHostname($.instanceConfiguration.unitNamingPattern, 1)
9 flavor: $.instanceConfiguration.flavor

10 image: 'hdp-sandbox'
11 assignFloatingIp: true

Moreover, the unsupported flavors can be specified here, so that the user can select only from the valid ones. Provide
the requirements in the corresponding section to do this:

requirements:
min_disk: 50 (Gb)
min_memory_mb: 4096 (Mb)
min_vcpus: 1

After the UI form creation, and the HDPSandbox application deployment, the VM with the predefined image is
spawned. Such type of applications may interact with regular applications. Thus, if you have an image with Puppet,
you can call the deploy method of the Puppet application and then puppet manifests or any shell scripts on the
freshly spawned VM.

The presence of the logo.png should never be underestimated, since it helps to make your application recognizable
among other applications included in the catalog.

3.10.3 Interacting with non-OpenStack services

This section tells about the interaction between an application and any non-OpenStack services, that have an API.

External load-balancer

Suppose, you have powerful load-balancer on a real server. And you want to run the application on an OpenStack VM.
Murano can set up new applications to be managed by that external load-balancer (LB). Let’s go into more details.

To implement this case the following apps are used:

• LbApp: its class methods call LB API

• WebApp: runs on the real LB

Several instances of WebApp are deployed with each of them calling two methods:

- $.loadBalancer.createPool()
- $.loadBalancer.addMember($instance)
where $.loadBalancer is an instance of the LbApp class

The first method creates a pool and associates it with a virtual server. This happens once only. The second one registers
a member in the newly created pool.

3.10. Use-cases 91

Murano, Release 2.0.0.0b3.dev156

It is also possible to perform other modifications to the LB configuration, which are only restricted by the LB API
functionality.

So, you need to specify the maximum instance number in the UI form related to the WebApp application. All of them
are subsequently added to the LB pool. After the deployment, the LB virtual IP, by which an application is accessible,
is displayed.

3.10.4 Configuring Network Access for VMs

By default, each VM instance deployed by io.murano.resources.Instance class or its descendants joins
an environment’s default network. This network gets created when the Environment is deployed for the first time, a
subnet is created in it and is uplinked to a router which is detected automatically based on its name.

This behavior may be overridden in two different ways.

Using existing network as environment’s default

This option is available for users when they create a new environment in the Dashboard. A dropdown control is
displayed next to the input field prompting for the name of environment. By default this control provides to create
a new network, but the user may opt to choose some already existing network to be the default for the environment
being created. If the network has more than one subnet, the list will include all the available options with their CIDRs
shown. The selected network will be used as environment’s default, so no new network will be created.

Note: Murano does not check the configuration or topology of the network selected this way. It is up to the user
to ensure that the network is uplinked to some external network via a router - otherwise the murano engine will not
be able to communicate with the agents on the deployed VMs. If the Applications being deployed require internet
connectivity it is up to the user to ensure that this net provides it, than DNS nameservers are set and accessible etc.

Modifying the App UI to prompt user for network

The application package may be designed to ask user about the network they want to use for the VMs deployed by this
particular application. This allows to override the default environment’s network setting regardless of its value.

To do this, application developer has to include a network field into the Dynamic UI definition of the app. The value
returned by this field is a tuple of network_id and a subnet_id. This values may be passed as the input properties for
io.murano.resources.ExistingNeutronNetwork object which may be in its turn passed to an instance
of io.murano.resources.Instance as its network configuration.

The UI definition may look like this:

Templates:
customJoinNet:
- ?:

type: io.murano.resources.ExistingNeutronNetwork
internalNetworkName: $.instanceConfiguration.network[0]
internalSubnetworkName: $.instanceConfiguration.network[1]

Application:
?:
type: com.example.someApplicationName

instance:
?:

type: io.murano.resources.LinuxMuranoInstance
networks:

useEnvironmentNetwork: $.instanceConfiguration.network[0]=null

92 Chapter 3. Developing Applications

Murano, Release 2.0.0.0b3.dev156

useFlatNetwork: false
customNetworks: switch($.instanceConfiguration.network[0], $=null=>list(), $!=null=>$customJoinNet)

Forms:
- instanceConfiguration:

fields:
- name: network
type: network
label: Network
description: Select a network to join. 'Auto' corresponds to a default environment's network.
required: false
murano_networks: translate

For more details on the Dynamic UI its controls and templates please refer to its specification.

3.11 FAQ

There are too many files in Murano package, why not to use a single Heat Template?

To install a simple Apache service to a new VM, Heat Template is definitely simpler. But the Apache
service is useless without its applications running under it. Thus, a new Heat Template is necessary for
every application that you want to run with Apache. In Murano, you can compose a result software to
install it on a VM on-the-fly: it is possible to select an application that can run under Apache dynamically.
Or you can set a VM where Apache is installed as a parameter. This way, the files in the application
package allow to compose compound applications with multiple configuration options. For any single
combination you need a separate Heat Template.

The Application section is defined in the UI form. Can I remove it?

No. The Application section is a template for Murano object model which is the instruction that
helps you to understand the environment structure that you deploy. While filling the forms that are auto-
generated from the UI.yaml file, object model is updated with the values entered by the user. Eventually,
the Murano engine receives the resulted object model (.json file) after the environment is sent to the
deploy.

The Templates section is defined in the UI form. What’s the purpose?

Sometimes, the user needs to create several instances with the same configuration. A template defined by
a variable in the Templates section is multiplied by the value of the number of instances that are set by
the user. A YAQL repeat function is used for this operation.

Some properties have Usage, others do not. What does this affect?

Usage indicates how a particular property is used. The default value is In, so sometimes it is omitted.
The Out property indicates that it is not set from outside, but is calculated in the class methods and is
available for the read operation from other classes. If you don’t want to initialize in the class constructor,
and the property has no default value, you specify Out in the Usage.

Can I use multiple inheritance in my classes?

Yes. You can specify a list of parent classes instead of a single string in the regular YAML notation. The
list with one element is also acceptable.

There are FullName and Name properties in the manifest file. What’s the difference between them?

Name is displayed in the web UI catalog, and FullName is a system name used by the engine to get the
class definition and resolve the class interconnections.

How does Murano know which class is the main one?

3.11. FAQ 93

Murano, Release 2.0.0.0b3.dev156

There is no main class term in the MuranoPL. Everything depends on a particular object model and an
instance class representing the instance. Usually, an entry-point class has exactly the same name as the
package FullName, and it uses other classes.

What is the difference between $variable and $.variable in the class definitions?

By default, $ represents a current object (similar to self in Python or this in C++/Java/C#), so
$.variable accesses the object field/property. In contrast, $variable (without a dot) means a local
method variable. Note that $ can change its value during execution of some YAQL functions like select,
where it means a current value. A more safe form is to use a reserved variable $this instead of $.
$this.variable always refers to an object-level value in any context.

94 Chapter 3. Developing Applications

CHAPTER 4

Miscellaneous

Installation

4.1 Murano Installation Guide

4.1.1 Content

Prepare A Lab For Murano

This section provides basic information about lab’s system requirements. It also contains a description of a test which
you may use to check if your hardware fits the requirements. To do this, run the test and compare the results with
baseline data provided.

System prerequisites

Supported Operating Systems

• Ubuntu Server 12.04 LTS

• RHEL/CentOS 6.4

System packages are required for Murano

Ubuntu

• gcc

• python-pip

• python-dev

• libxml2-dev

• libxslt-dev

• libffi-dev

• libpq-dev

• python-openssl

• mysql-client

CentOS

95

Murano, Release 2.0.0.0b3.dev156

• gcc

• python-pip

• python-devel

• libxml2-devel

• libxslt-devel

• libffi-devel

• postgresql-devel

• pyOpenSSL

• mysql

Lab Requirements

Criteria Minimal Recommended
CPU 4 core @ 2.4 GHz 24 core @ 2.67 GHz
RAM 8 GB 24 GB or more
HDD 2 x 500 GB (7200 rpm) 4 x 500 GB (7200

rpm
RAID Software RAID-1 (use mdadm as it will improve read performance almost two

times)
Hardware RAID-10

Table: Hardware requirements

There are a few possible storage configurations except the shown above. All of them were tested and were working
well.

• 1x SSD 500+ GB

• 1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto the HDD and mount the SSD
drive to folder where VM images are)

• 1x HDD (15000 rpm) 500+ GB

Test Your Lab Host Performance

We have measured time required to boot 1 to 5 instances of Windows system simultaneously. You can use this data as
the baseline to check if your system is fast enough.

You should use sysprepped images for this test, to simulate VM first boot.

Steps to reproduce test:

1. Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let’s assume that its name is ws-2012-
std.qcow2

2. Ensure that there is NO KVM PROCESSES on the host. To do this, run command:

ps aux | grep kvm

3. Make 5 copies of Windows image file:

for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

96 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

4. Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

5. Start ONE instance with command below (as root) and measure time between VM’s launch and the moment
when Server Manager window appears. To view VM’s desktop, connect with VNC viewer to your host to VNC
screen :1 (port 5901):

sudo ./start-vm.sh 1

6. Turn VM off. You may simply kill all KVM processes by

sudo killall kvm

7. Start FIVE instances with command below (as root) and measure time interval between ALL VM’s launch and
the moment when LAST Server Manager window appears. To view VM’s desktops, connect with VNC viewer
to your host to VNC screens :1 thru :5 (ports 5901-5905):

sudo ./start-vm.sh 5

8. Turn VMs off. You may simply kill all KVM processes by

sudo killall kvm

Baseline Data

The table below provides baseline data which we’ve got in our environment.

Avg. Time refers to the lab with recommended hardware configuration, while Max. Time refers to minimal hardware
configuration.

Boot ONE instance Boot FIVE instances
Avg. Time 3m:40s 8m
Max. Time 5m 20m

Host Optimizations

Default KVM installation could be improved to provide better performance.

The following optimizations may improve host performance up to 30%:

• change default scheduler from CFQ to Deadline

• use ksm

• use vhost-net

Installing and Running the Development Version

The devstack directory contains the files necessary to integrate Murano with Devstack.

4.1. Murano Installation Guide 97

http://docs.openstack.org/developer/devstack/
http://docs.openstack.org/developer/devstack/

Murano, Release 2.0.0.0b3.dev156

Enabling in Devstack

1. Download DevStack:

git clone https://git.openstack.org/openstack-dev/devstack
cd devstack

2. Edit local.conf to enable murano devstack plugin:

> cat local.conf
[[local|localrc]]
enable_plugin murano git://git.openstack.org/openstack/murano

3. If you want Murano Cloud Foundry Broker API service enabled, add the following line to local.conf:

enable_service murano-cfapi

4. (Optional) To import Murano packages when DevStack is up, define an ordered list of packages FQDNs in
local.conf. Make sure to list all package dependencies. These packages will by default be imported from
the murano-apps git repository.

Example:

MURANO_APPS=io.murano.apps.apache.Tomcat,io.murano.apps.Guacamole

You can also use the variables MURANO_APPS_REPO and MURANO_APPS_BRANCH to configure the git repos-
itory which will be used as the source for the imported packages.

5. Install DevStack:

./stack.sh

Installing and Running Manually

Prepare Environment

Install Prerequisites First you need to install a number of packages with your OS package manager. The list of
packages depends on the OS you use.

Ubuntu
sudo apt-get install python-pip python-dev \

libmysqlclient-dev libpq-dev \
libxml2-dev libxslt1-dev \
libffi-dev

Fedora
Note: Fedora support wasn’t thoroughly tested. We do not guarantee that murano will work on Fedora.

sudo yum install gcc python-setuptools python-devel python-pip

CentOS
sudo yum install gcc python-setuptools python-devel
sudo easy_install pip

98 Chapter 4. Miscellaneous

http://docs.openstack.org/developer/devstack/

Murano, Release 2.0.0.0b3.dev156

Install tox
sudo pip install tox

Install And Configure Database Murano can use various database types on the back end. For development purposes
SQLite is enough in most cases. For production installations you should use MySQL or PostgreSQL databases.

Warning: Although murano could use a PostgreSQL database on the back end, it wasn’t thoroughly tested and
should be used with caution.

To use a MySQL database you should install it and create an empty database first:

apt-get install python-mysqldb mysql-server

mysql -u root -p

mysql> CREATE DATABASE murano;
mysql> GRANT ALL PRIVILEGES ON murano.* TO 'murano'@'localhost' \

IDENTIFIED BY 'MURANO_DBPASS';
mysql> exit;

Install the API service and Engine

1. Create a folder which will hold all Murano components.

mkdir ~/murano

2. Clone the murano git repository to the management server.

cd ~/murano
git clone git://git.openstack.org/openstack/murano

3. Set up the murano config file

Murano has a common config file for API and Engine services.

First, generate a sample configuration file, using tox

cd ~/murano/murano
tox -e genconfig

And make a copy of it for further modifications

cd ~/murano/murano/etc/murano
ln -s murano.conf.sample murano.conf

4. Edit murano.conf with your favorite editor. Below is an example which contains basic settings your are
likely need to configure.

Note: The example below uses SQLite database. Edit [database] section if you want to use other database
type.

[DEFAULT]
debug = true
verbose = true
rabbit_host = %RABBITMQ_SERVER_IP%
rabbit_userid = %RABBITMQ_USER%

4.1. Murano Installation Guide 99

Murano, Release 2.0.0.0b3.dev156

rabbit_password = %RABBITMQ_PASSWORD%
rabbit_virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%
driver = messagingv2

...

[database]
backend = sqlalchemy
connection = sqlite:///murano.sqlite

...

[keystone]
auth_url = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'

...

[keystone_authtoken]
auth_uri = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'
auth_host = '%OPENSTACK_HOST_IP%'
auth_port = 5000
auth_protocol = http
admin_tenant_name = %OPENSTACK_ADMIN_TENANT%
admin_user = %OPENSTACK_ADMIN_USER%
admin_password = %OPENSTACK_ADMIN_PASSWORD%

...

[murano]
url = http://%YOUR_HOST_IP%:8082

[rabbitmq]
host = %RABBITMQ_SERVER_IP%
login = %RABBITMQ_USER%
password = %RABBITMQ_PASSWORD%
virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%

[networking]
default_dns = 8.8.8.8 # In case openstack neutron has no default

DNS configured

5. Create a virtual environment and install Murano prerequisites. We will use tox for that. Virtual environment will
be created under .tox directory.

cd ~/murano/murano
tox

6. Create database tables for Murano.

cd ~/murano/murano
tox -e venv -- murano-db-manage \
--config-file ./etc/murano/murano.conf upgrade

7. Open a new console and launch Murano API. A separate terminal is required because the console will be locked
by a running process.

cd ~/murano/murano
tox -e venv -- murano-api --config-file ./etc/murano/murano.conf

100 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

8. Import Core Murano Library.

cd ~/murano/murano
pushd ./meta/io.murano
zip -r ../../io.murano.zip *
popd
tox -e venv -- murano --murano-url http://localhost:8082 \
package-import --is-public io.murano.zip

9. Open a new console and launch Murano Engine. A separate terminal is required because the console will be
locked by a running process.

cd ~/murano/murano
tox -e venv -- murano-engine --config-file ./etc/murano/murano.conf

Register in Keystone To make the murano API available to all OpenStack users, you need to register the Application
Catalog service within the Identity service.

1. Add application-catalog service:

openstack service create --name murano --description "Application Catalog for OpenStack" application-catalog

2. Provide an endpoint for that service:

openstack endpoint create --region RegionOne --publicurl http://<murano-ip>:8082 --internalurl http://<murano-ip>:8082 --adminurl http://<murano-ip>:8082 <MURANO-SERVICE-ID>

where MURANO-SERVICE-ID is the unique service number that you can find in the openstack service create
output.

Note: URLs (publicurl, internalurl and adminurl) may be different depending on your environment.

Install Murano Dashboard

Murano API & Engine services provide the core of Murano. However, your need a control plane to use
it. This section describes how to install and run Murano Dashboard.

1. Clone the repository with Murano Dashboard.

cd ~/murano
git clone git://git.openstack.org/openstack/murano-dashboard

2. Clone horizon repository

git clone git://git.openstack.org/openstack/horizon

3. Create venv and install muranodashboard as editable module.

cd horizon
tox -e venv -- pip install -e ../murano-dashboard

4. Copy muranodashboard plugin file.

This step enables murano panel in horizon dashboard.

cp ../murano-dashboard/muranodashboard/local/_50_murano.py openstack_dashboard/local/enabled/

5. Prepare local settings.

To get more information, check out official horizon documentation.

4.1. Murano Installation Guide 101

http://docs.openstack.org/developer/horizon/topics/settings.html#openstack-settings-partial

Murano, Release 2.0.0.0b3.dev156

cp openstack_dashboard/local/local_settings.py.example openstack_dashboard/local/local_settings.py

6. Customize local settings according to OpenStack installation.
...
ALLOWED_HOSTS = '*'

Provide OpenStack Lab credentials
OPENSTACK_HOST = '%OPENSTACK_HOST_IP%'

...

Set secret key to prevent it's generation
SECRET_KEY = 'random_string'

...

DEBUG_PROPAGATE_EXCEPTIONS = DEBUG

Also, it’s better to change default session backend from browser cookies to database to avoid issues with forms
during creating applications:
...
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': 'murano-dashboard.sqlite',
}

}

SESSION_ENGINE = 'django.contrib.sessions.backends.db'

If you do not plan to get murano service from keystone application catalog, provide where murano-api service
is running:
...
MURANO_API_URL = 'http://localhost:8082'

7. Perform database synchronization.

Optional step. Needed in case you set up database as a session backend.

tox -e venv -- python manage.py migrate --noinput

You can reply ‘no’ since for development purpose separate user is not needed.

8. Run Django server at 127.0.0.1:8000 or provide different IP and PORT parameters.

tox -e venv -- python manage.py runserver <IP:PORT>

Development server will be restarted automatically on every code change.

9. Open dashboard using url http://localhost:8000

Import Murano Applications

Applications need to be imported to fill the catalog. This can be done via the dashboard, and via CLI:

1. Clone the murano apps repository.

102 Chapter 4. Miscellaneous

http://localhost:8000

Murano, Release 2.0.0.0b3.dev156

cd ~/murano
git clone git://git.openstack.org/openstack/murano-apps

2. Import every package you need from this repository, using the command below.

cd ~/murano/murano
pushd ../murano-apps/Docker/Applications/%APP-NAME%/package
zip -r ~/murano/murano/app.zip *
popd
tox -e venv -- murano --murano-url http://localhost:8082 package-import app.zip

Network Configuration Murano may work in various networking environments and is capable to detect the cur-
rent network configuration and choose the appropriate settings automatically. However, some additional actions are
required to support advanced scenarios.

Nova network support Nova Network is simplest networking solution, which has limited capabilities but is avail-
able on any OpenStack deployment without the need to deploy any additional components.

When a new Murano Environment is created, Murano checks if a dedicated networking service (i.e. Neutron) exists
in the current OpenStack deployment. It relies on Keystone’s service catalog for that. If such a service is not present,
Murano automatically falls back to Nova Network. No further configuration is needed in this case, all the VMs
spawned by Murano will be joining the same Network.

Neutron support If Neutron is installed, Murano enables its advanced networking features that give you ability to
not care about configuring networks for your application.

By default it will create an isolated network for each environment and join all VMs needed by your application to that
network. To install and configure application in just spawned virtual machine Murano also requires a router connected
to the external network.

Automatic Neutron network configuration To create router automatically, provide the following parameters in
config file:

[networking]

external_network = %EXTERNAL_NETWORK_NAME%
router_name = %MURANO_ROUTER_NAME%
create_router = true

To figure out the name of the external network, perform the following command:

openstack network list --external

During the first deploy, required networks and router with specified name will be created and set up.

Manual neutron network configuration

• Step 1. Create public network

• First, you need to check for existence of external networks. Login as admin and go to Project ->
Network -> Network Topology. And check network type in network details at Admin -> Networks
-> Network name page. The same action can be done via CLI by running openstack network list
–external. To create new external network examine OpenStack documentation.

4.1. Murano Installation Guide 103

http://docs.openstack.org/cli-reference/openstack.html#openstack-network-create

Murano, Release 2.0.0.0b3.dev156

• Step 2. Create local network

• Go to Project -> Network -> Networks.

• Click Create Network and fill the form.

104 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

• Step 3. Create router

• Go to Project -> Network -> Routers

• Click “Create Router”

• In the “Router Name” field, enter the murano-default-router

If you specify a name other than murano-default-router, it will be necessary to change the
following settings in the config file:

[networking]

router_name = %SPECIFIED_NAME%
create_router = false

• Click on the specified router name

• In the opened view click “Add interface”

• Specify the subnet and IP address

4.1. Murano Installation Guide 105

Murano, Release 2.0.0.0b3.dev156

And check the result in Network Topology tab.

SSL configuration

Murano components are able to work with SSL. This chapter will help you to make proper settings with SSL configu-
ration.

106 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

HTTPS for Murano API

SSL for Murano API service can be configured in ssl section in /etc/murano/murano.conf. Just point to a
valid SSL certificate. See the example below:

[ssl]
cert_file = PATH
key_file = PATH
ca_file = PATH

• cert_file Path to the certificate file the server should use when binding to an SSL-wrapped socket.

• key_file Path to the private key file the server should use when binding to an SSL-wrapped socket.

• ca_file Path to the CA certificate file the server should use to validate client certificates provided during an SSL
handshake. This is ignored if cert_file and “key_file” are not set.

The use of SSL is automatically started after point to HTTPS protocol instead of HTTP during registration Murano
API service in endpoints (Change publicurl argument to start with https://). SSL for Murano API is implemented like
in any other OpenStack component. This realization is based on ssl python module so more information about it can
be found here.

SSL for RabbitMQ

All Murano components communicate with each other by RabbitMQ. This interaction can be encrypted with SSL. By
default all messages in Rabbit MQ are not encrypted. Each RabbitMQ Exchange should be configured separately.

Murano API <-> Rabbit MQ exchange <-> Murano Engine

Edit ssl parameters in default section of /etc/murano/murano.conf. Set rabbit_use_ssl option to true
and configure ssl kombu parameters. Specify the path to the SSL keyfile and SSL CA certificate in a regular format:
/path/to/file without quotes or leave it empty to allow self-signed certificates.

connect over SSL for RabbitMQ (boolean value)
#rabbit_use_ssl=false

SSL version to use (valid only if SSL enabled). valid values
are TLSv1, SSLv23 and SSLv3. SSLv2 may be available on some
distributions (string value)
#kombu_ssl_version=

SSL key file (valid only if SSL enabled) (string value)
#kombu_ssl_keyfile=

SSL cert file (valid only if SSL enabled) (string value)
#kombu_ssl_certfile=

SSL certification authority file (valid only if SSL enabled)
(string value)
#kombu_ssl_ca_certs=

Murano Agent -> Rabbit MQ exchange

In main murano configuration file there is a section ,named rabbitmq, that is responsible for set up communication
between Murano Agent and Rabbit MQ. Just set ssl parameter to True to enable ssl.

[rabbitmq]
host = localhost
port = 5672

4.1. Murano Installation Guide 107

https://docs.python.org/2/library/ssl.html

Murano, Release 2.0.0.0b3.dev156

login = guest
password = guest
virtual_host = /
ssl = True

If you want to configure Murano Agent in a different way change the default template. It can be found in Murano Core
Library, located at http://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Resources/Agent-v1.template.
Take a look at appSettings section:

<appSettings>
<add key="rabbitmq.host" value="%RABBITMQ_HOST%"/>
<add key="rabbitmq.port" value="%RABBITMQ_PORT%"/>
<add key="rabbitmq.user" value="%RABBITMQ_USER%"/>
<add key="rabbitmq.password" value="%RABBITMQ_PASSWORD%"/>
<add key="rabbitmq.vhost" value="%RABBITMQ_VHOST%"/>
<add key="rabbitmq.inputQueue" value="%RABBITMQ_INPUT_QUEUE%"/>
<add key="rabbitmq.resultExchange" value=""/>
<add key="rabbitmq.resultRoutingKey" value="%RESULT_QUEUE%"/>
<add key="rabbitmq.durableMessages" value="true"/>

<add key="rabbitmq.ssl" value="%RABBITMQ_SSL%"/>
<add key="rabbitmq.allowInvalidCA" value="true"/>
<add key="rabbitmq.sslServerName" value=""/>

</appSettings>

Desired parameter should be set directly to the value of the key that you want to change. Quotes are need to be kept.
Thus you can change “rabbitmq.ssl” and “rabbitmq.port” values to make Rabbit MQ work with this exchange in a
different from Murano-Engine way. After modification, don’t forget to zip and re-upload core library.

SSL for Murano Dashboard

If you are going not to use self-signed certificates additional configuration do not need to be done. Just point
https in the URL. Otherwise, set MURANO_API_INSECURE = True on horizon config. You can find it in
/etc/openstack-dashboard/local_settings.py..

Background Concepts for Murano

4.2 Murano workflow

What happens when a component is being created in an environment? This document will use the Telnet package
referenced elsewhere as an example. It assumes the package has been previously uploaded to Murano.

4.2.1 Step 1. Begin deployment

The API sends a message that instructs murano-engine, the workflow component of Murano, to deploy an environment.
The message consists of a JSON document containing the class types required to create the environment, as well as
any parameters the user selected prior to deployment. Examples are:

• An Environment object (io.murano.Environment) with a name

• An object (or objects) referring to networks that need to be created or that already exist

108 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

• A list of Applications (e.g. io.murano.apps.linux.Telnet). Each Application will contain, or will reference,
anything it requires. The Telnet example, has a property called instance whose contract states it must be of type
io.murano.resources.Instance. In turn the Instance has properties it requires (like a name, a flavor, a keypair
name).

Each object in this model has an ID so that the state of each can be tracked.

The classes that are required are determined by the application’s manifest. In the Telnet example only one class is
explicitly required; the telnet application definition.

The Telnet class definition refers to several other classes. It extends Application and it requires an In-
stance. It also refers to the Environment in which it will be contained, sends reports through the environment’s
io.murano.system.StatusReporter and adds security group rules to the SecurityGroupManager.

4.2.2 Step 2. Load definitions

The engine makes a series of requests to the API to download packages it needs. These requests pass the class names
the environment will require, and during this stage the engine will validate that all the required classes exist and are
accessible, and will begin creating them. All Classes whose workflow sections contain an initialize fragment are then
initialized. A typical initialization order would be (defined by the ordering in the model sent to the murano-engine):

• Network

• Instance

• Object

• Environment

4.2.3 Step 3. Deploy resources

The workflow defined in Environment.deploy is now executed. The first step typically is to initialize the messaging
component that will pay attention to murano-agent (see later). The next stage is to deploy each application the environ-
ment knows about in turn, by running deploy() for each application. This happens concurrently for all the applications
belonging to an instance.

In the Telnet example (under Workflow), the workflow dictates sending a status message (via the environment’s re-
porter, and configuring some security group rules. It is at this stage that the engine first contacts Heat to request
information about any pre-existing resources (and there will be none for a fresh deploy) before updating the new Heat
template with the security group information.

Next it instructs the engine to deploy the instance it relies on. A large part of the interaction with Heat is carried out
at this stage; the first thing an Instance does is add itself to the environment’s network. Since the network doesn’t yet
exist, murano-engine runs the neutron network workflow which pushes template fragments to Heat. These fragments
can define: * Networks * Subnets * Router interfaces

Once this is done the Instance itself constructs a Heat template fragment and again pushes it to Heat. The Instance will
include a userdata script that is run when the instance has started up, and which will configure and run murano-agent.

4.2.4 Step 4. Software configuration via murano-agent

If the workflow includes murano-agent components (and the telnet example does), typically the application workflow
will execute them as the next step.

In the telnet example, the workflow instructs the engine to load DeployTelnet.yaml as YAML, and pass it to the murano-
agent running on the configured instance. This causes the agent to execute the EntryPoint defined in the agent script
(which in this case deploys some packages and sets some iptables rules).

4.2. Murano workflow 109

Murano, Release 2.0.0.0b3.dev156

4.2.5 Step 5. Done

After execution is finished, the engine sends a last message indicating that fact; the API receives it and marks the
environment as deployed.

4.3 Murano Policy Enforcement

4.3.1 Murano Policy Enforcement Example

Introduction

As a part of the policy guided fulfillment, we need to enforce policies on the Murano environment deployment. If the
policy enforcement failed, deployment fails. Policies are defined and evaluated in the Congress project. The policy
language for Congress is Datalog. The congress policy consists of Datalog rules and facts. The cloud administrator
defines policies in Congress. Examples of such policies:

• all VM instances must have at least 2GB of RAM

• all Apache server instances must have given certified version

• data placement policy: all DB instances must be deployed at given geo location (enforcing some law restriction
on data placement)

These policies are evaluated over data in the form of tables (Congress data structures). A deployed Murano en-
vironment must be decomposed to Congress data structures. The decomposed environment is sent to congress for
simulation. Congress simulates whether the resulting state does not violate any defined policy. Deployment is aborted
in case of policy violation. Murano uses two predefined policies in Congress:

• murano_system contains rules and facts of policies defined by cloud admin.

• murano contains only facts/records reflecting resulting state after deployment of an environment.

Records in the murano policy are queried by rules from the murano_system policy. The congress simulation does not
create any records in the murano policy. Congress will only give feedback on whether the resulting state violates the
policy or not.

Example

In this example we will create rules that prohibit creating VM instances with flavor with more than 2048 MB ram.

Prior creating rules your OpenStack installation has to be configured as described in policyenf_setup.

Example rules

1. Create predeploy_errors rule

Policy validation engine checks rule predeploy_errors and rules referenced inside this rule are
evaluated by congress engine.

We create example rule which references flavor_ram rule we create afterwards. It disables flavors
with ram higher than 2048 MB and constructs message returned to the user in msg variable.

predeploy_errors(eid, obj_id, msg) :-
murano:objects(obj_id, pid, type),
murano:objects(eid, tid, "io.murano.Environment"),
murano:connected(eid, pid),

110 Chapter 4. Miscellaneous

https://wiki.openstack.org/wiki/Congress

Murano, Release 2.0.0.0b3.dev156

murano:properties(obj_id, "flavor", flavor_name),
flavor_ram(flavor_name, ram),
gt(ram, 2048),
murano:properties(obj_id, "name", obj_name),
concat(obj_name, ": instance flavor has RAM size over 2048MB", msg)

Use this command to create the rule:

congress policy rule create murano_system "predeploy_errors(eid, obj_id, msg) :- murano:objects(obj_id, pid, type), murano:objects(eid, tid, \"io.murano.Environment\"), murano:connected(eid, pid), murano:properties(obj_id, \"flavor\", flavor_name), flavor_ram(flavor_name, ram), gt(ram, 2048), murano:properties(obj_id, \"name\", obj_name), concat(obj_name, \": instance flavor has RAM size over 2048MB\", msg)"

In this example we used data from policy murano which is represented by murano:properties.
There are stored rows with decomposition of model representing murano application. We also used
built-in functions of congress - gt - greater-than, and concat which joins two strings into variable.

2. Create flavor_ram rule

We create the rule that resolves parameters of flavor by flavor name and returns ram parameter. It
uses rule flavors from nova policy. Data in this policy is filled by nova datasource driver.

Use this command to create the rule:

congress policy rule create murano_system "flavor_ram(flavor_name, ram) :- nova:flavors(id, flavor_name, cpus, ram)"

Example rules in murano app deployment

1. Create environment with simple application

• Choose Git application from murano applications

• Create with “m1.medium” instance flavor which uses 4096MB so validation will fail

2. Deploy environment

4.3. Murano Policy Enforcement 111

Murano, Release 2.0.0.0b3.dev156

• Environment is in Status: Deploy FAILURE

• Check deployment log:

4.3.2 Murano Policy Based Modification of Environment Example

Introduction

Goal is to be able to define modification of an environment by Congress policies prior deployment. This allows to
add components (for example monitoring), change/set properties (for example to enforce given zone, flavors, ...) and
relationships into environment, so modified environment is after that deployed.

Example Use Cases:

• install monitoring agent on each VM instance (adding component with the agent and creating relationship between
agent and instance)

• all Apache server instances must have given certified version (version property is set on all Apache applications
within environment to given version)

These policies are evaluated over data in the form of tables (Congress data structures). A deployed Murano en-
vironment must be decomposed to Congress data structures. The decomposed environment is sent to congress for
simulation. Congress simulates whether the resulting state needs to be modified. In case that modifications of de-
ployed environment are needed congress returns list of actions which needs to be performed on given environment
prior the deployment. Actions and its parameters are returned from congress in YAML format.

Example of action specification returned from congress:

• set keyname property on instance identified by object_id to value production-key

set-property: {object_id: c46770dec1db483ca2322914b842e50f, prop_name: keyname, value: production-key}

Administrator can use above one line action specification as output of congress rules. This action specification is
parsed in murano. Given action class is loaded. Action instance is created. Parsed parameters are supplied to action
__init__ method. Then action is performed on given environment (modify method).

Example

In this example assume that we are in production environment. Administrator needs to enforce that all VM instances
will be deployed with secure key pair used for production environment.

Prior creating rules your OpenStack installation has to be configured as described in policyenf_setup.

112 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

Example rules

1. Create predeploy_modify rule

Policy validation engine checks rule predeploy_modify and rules referenced inside this rule are
evaluated by congress engine.

predeploy_modify(eid, obj_id, action) :-
murano:objects(obj_id, pid, type),
murano:objects(eid, tid, "io.murano.Environment"),
murano:connected(eid, pid),
murano:properties(obj_id, "keyname", kn),
concat("set-property: {object_id: ", obj_id, first_part),
concat(first_part, ", prop_name: keyname, value: production-key}", action)

Use this command to create the rule:

congress policy rule create murano_system 'predeploy_modify(eid, obj_id, action):-murano:objects(obj_id, pid, type), murano_env_of_object(obj_id, eid), murano:properties(obj_id, "keyname", kn), concat("set-property: {object_id: ", obj_id, first_part), concat(first_part, ", prop_name: keyname, value: production-key}", action)'

Key pair production-key must exists or change it to any existing key pair.

2. Deploy environment and check modification

Deploy any environment and check that instances within the environment were deployed with the
key pair specified above.

4.3.3 Murano Policy Enforcement Setup Guide

Introduction

Before policy enforcement feature will be used, it has to be configured. It has to be enabled in Murano configuration,
and Congress has to have created policy and rules used during policy evaluation.

This document does not cover Murano and Congress configuration options useful for Murano application deployment
(e.g., DNS setup, floating IPs, ...).

Setup

This setup uses openstack command. You can use copy-paste for commands.

If you are using DevStack installation, you can setup environment using following command.

source devstack/openrc admin admin

1. Murano

Enable policy enforcement in Murano:

• edit /etc/murano/murano.conf to enable enable_model_policy_enforcer option:

[engine]
Enable model policy enforcer using Congress (boolean value)
enable_model_policy_enforcer = true

• restart murano-engine

2. Congress

Policy enforcement uses following policies:

4.3. Murano Policy Enforcement 113

Murano, Release 2.0.0.0b3.dev156

• murano policy

Policy is created by Congress’ murano datasource driver, which is part of Congress. It has to
be configured for the OpenStack tenant where Murano application will be deployed. Datasource
driver retrieves deployed Murano environments and populates Congress’ murano policy tables
(policyenf_dev).

Following commands removes existing murano policy, and creates new murano policy config-
ured for tenant demo.

. ~/devstack/openrc admin admin # if you are using devstack, otherwise you have to setup env manually

remove default murano datasource configuration, because it is using 'admin' tenant. We need 'demo' tenant to be used.
openstack congress datasource delete murano
openstack congress datasource create murano murano --config username="$OS_USERNAME" --config tenant_name="demo" --config password="$OS_PASSWORD" --config auth_url="$OS_AUTH_URL"

• murano_system policy Policy holds user defined rules for policy enforcement. Rules typically uses tables
from other policies (e.g., murano, nova, keystone, ...). Policy enforcement expects predeploy_errors
table here which is created by creating predeploy_errors rules.

Following command creates murano_system rule

create murano_system policy
openstack congress policy create murano_system

resolves objects within environment
openstack congress policy rule create murano_system 'murano_env_of_object(oid,eid):-murano:connected(eid,oid), murano:objects(eid,tid,"io.murano.Environment")'

• murano_action policy with internal management rules Following rules are used internally in policy
enforcement request. These rules are stored in dedicated murano_action policy which is created
here. They are important for case when an environment is deployed again.

create murano_action policy
openstack congress policy create murano_action --kind action

register action deleteEnv
openstack congress policy rule create murano_action 'action("deleteEnv")'

states
openstack congress policy rule create murano_action 'murano:states-(eid, st) :- deleteEnv(eid), murano:states(eid, st)'

parent_types
openstack congress policy rule create murano_action 'murano:parent_types-(tid, type) :- deleteEnv(eid), murano:connected(eid, tid),murano:parent_types(tid,type)'
openstack congress policy rule create murano_action 'murano:parent_types-(eid, type) :- deleteEnv(eid), murano:parent_types(eid,type)'

properties
openstack congress policy rule create murano_action 'murano:properties-(oid, pn, pv) :- deleteEnv(eid), murano:connected(eid, oid), murano:properties(oid, pn, pv)'
openstack congress policy rule create murano_action 'murano:properties-(eid, pn, pv) :- deleteEnv(eid), murano:properties(eid, pn, pv)'

objects
openstack congress policy rule create murano_action 'murano:objects-(oid, pid, ot) :- deleteEnv(eid), murano:connected(eid, oid), murano:objects(oid, pid, ot)'
openstack congress policy rule create murano_action 'murano:objects-(eid, tnid, ot) :- deleteEnv(eid), murano:objects(eid, tnid, ot)'

relationships
openstack congress policy rule create murano_action 'murano:relationships-(sid, tid, rt) :- deleteEnv(eid), murano:connected(eid, sid), murano:relationships(sid, tid, rt)'
openstack congress policy rule create murano_action 'murano:relationships-(eid, tid, rt) :- deleteEnv(eid), murano:relationships(eid, tid, rt)'

connected
openstack congress policy rule create murano_action 'murano:connected-(tid, tid2) :- deleteEnv(eid), murano:connected(eid, tid), murano:connected(tid,tid2)'
openstack congress policy rule create murano_action 'murano:connected-(eid, tid) :- deleteEnv(eid), murano:connected(eid,tid)'

114 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

4.3.4 Murano Policy Enforcement - Developer Guide

This document describes internals of murano policy enforcement.

Model Decomposition

Models of Murano applications are transformed to set of rules that are processed by congress. This represent data for
policy validation.

There are several “tables” created in murano policy for different kind of rules:

• murano:objects(object_id, parent_id, type_name)

• murano:properties(object_id, property_name, property_value)

• murano:relationships(source, target, name)

• murano:connected(source, target)

• murano:parent_types(object_id, parent_type_name)

• murano:states(environment_id, state)

murano:objects(object_id, parent_id, type_name)

This rule is used for representation of all objects in Murano model (environment, applications, instances, ...). Value of
property type is used as type_name parameter:

name: wordpress-env
'?': {type: io.murano.Environment, id: 83bff5ac}
applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}

Transformed to these rules:

• murano:objects+("83bff5ac", "tenant_id", "io.murano.Environment")

• murano:objects+("83bff5ac", "e7a13d3c", "io.murano.databases.MySql")

Note: The owner of the environment is a tenant

murano:properties(object_id, property_name, property_value)

Each object can have properties. In this example we have application with one property:

applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}
database: wordpress

Transformed to this rule:

• murano:properties+("e7a13d3c", "database", "wordpress")

Inner properties are also supported using dot notation:

instance:
'?': {id: 825dc61d, type: io.murano.resources.LinuxMuranoInstance}
networks:

useFlatNetwork: false

4.3. Murano Policy Enforcement 115

Murano, Release 2.0.0.0b3.dev156

Transformed to this rule:

• murano:properties+("825dc61d", "networks.useFlatNetwork", "False")

If model contains list of values it is represented as set of multiple rules:

instances:
- '?': {id: be3c5155, type: io.murano.resources.LinuxMuranoInstance}
networks:

customNetworks: [10.0.1.0, 10.0.2.0]

Transformed to these rules:

• murano:properties+("be3c5155", "networks.customNetworks", "10.0.1.0")

• murano:properties+("be3c5155", "networks.customNetworks", "10.0.2.0")

murano:relationships(source, target, name)

Murano app models can contain references to other applications. In this example WordPress application references
MySQL in property “database”:

applications:
- '?':

id: 0aafd67e
type: io.murano.databases.MySql

- '?':
id: 50fa68ff
type: io.murano.apps.WordPress

database: 0aafd67e

Transformed to this rule:

• murano:relationships+("50fa68ff", "0aafd67e", "database")

Note: For property “database” we do not create rule murano:properties+.

Also if we define inner object inside other object, they will have relationship between them:

applications:
- '?':

id: 0aafd67e
type: io.murano.databases.MySql

instance:
'?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}

Transformed to this rule:

• murano:relationships+("0aafd67e", "ed8df2b0", "instance")

There are special relationships “services” from the environment to its applications:

• murano:relationships+("env_id", "app_id", "services")

murano:connected(source, target)

This table stores both direct and indirect connections between instances. It is derived from the
murano:relationships:

116 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

applications:
- '?':

id: 0aafd67e
type: io.murano.databases.MySql

instance:
'?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}

- '?':
id: 50fa68ff
type: io.murano.apps.WordPress

database: 0aafd67e

Transformed to rules:

• murano:connected+("50fa68ff", "0aafd67e") # WordPress to MySql

• murano:connected+("50fa68ff", "ed8df2b0") # WordPress to LinuxMuranoInstance

• murano:connected+("0aafd67e", "ed8df2b0") # MySql to LinuxMuranoInstance

murano:parent_types(object_id, parent_name)

Each object in murano has a class type and these classes can inherit from one or more parents:

e.g. LinuxMuranoInstance > LinuxInstance > Instance

So this model:

instances:
- '?': {id: be3c5155, type: LinuxMuranoInstance}

Transformed to these rules:

• murano:objects+("...", "be3c5155", "LinuxMuranoInstance")

• murano:parent_types+("be3c5155", "LinuxMuranoInstance")

• murano:parent_types+("be3c5155", "LinuxInstance")

• murano:parent_types+("be3c5155", "Instance")

Note: Type of object is also repeated among parent types (LinuxMuranoInstance in example) for easier han-
dling of user-created rules.

Note: If type inherits from more than one parent and those parents inherit from one common type, parent_type
rule is included only once for common type.

murano:states(environment_id, state)

Currently only one record for environment is created:

• murano:states+("uugi324", "pending")

Tutorials

4.3. Murano Policy Enforcement 117

Murano, Release 2.0.0.0b3.dev156

4.4 Building Murano Image

4.4.1 MS Windows image builder for OpenStack Murano

Introduction

This repository contains MS Windows templates, powershell scripts and bash scripted logic used to create qcow2
images for QEMU/KVM based virtual machines used in OpenStack.

MS Windows Versions

Supported by builder versions with en_US localization:

• Windows 2012 R2

• Windows 2012 R2 Core

• Windows 2008 R2

• Windows 2008 R2 Core

Getting Started

Trial versions of Windows 2008 R2 / 2012 R2 used by default. You could use these images for 180 days without
activation. You could download evaluation versions from official Microsoft website:

• [Windows 2012 R2 - download]

• [Windows 2008 R2 - download]

System requirements

• Debian based Linux distribution, like Ubuntu, Mint and so on.

• Packages required: qemu-kvm virt-manager virt-goodies virtinst bridge-utils
libvirt-bin uuid-runtime samba samba-common cifs-utils

• User should be able to run sudo without password prompt!

sudo echo "${USER} ALL = NOPASSWD: ALL" > /etc/sudoers.d/${USER}
sudo chmod 440 /etc/sudoers.d/${USER}

• Free disk space > 50G on partition where script will spawn virtual machines because of 40G required by virtual
machine HDD image.

• Internet connectivity.

• Samba shared resource.

Configuring builder

Configuration parameters to tweak:

[default]

118 Chapter 4. Miscellaneous

https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2012-r2
https://www.microsoft.com/en-us/download/details.aspx?id=11093

Murano, Release 2.0.0.0b3.dev156

• workdir - place where script would prepare all software required by build scenarios. By default is not set, i.e.
script directory would used as root of working space.

• vmsworkdir - must contain valid path, this parameter tells script where it should spawn virtual machines.

• runparallel - true of false, false set by default. This parameter describes how to start virtual machines, one
by one or in launch them in background.

[samba]

• mode - local or remote. In local mode script would try to install and configure Samba server locally. If set to
remote, you should also provide information about connection.

• host - in local mode - is 192.168.122.1, otherwise set proper ip address.

• user - set to guest by default in case of guest rw access.

• domain - Samba server user domain, if not set host value used.

• password - Samba server user password.

• image-builder-share - Samba server remote directory.

MS Windows install preparation:

[win2k12r2] or [win2k8r2] - shortcuts for 2012 R2 and 2008 R2.

• enabled - true of false, include or exclude release processing by script.

• editions - standard, core or both(space used as delimiter).

• iso - local path to iso file

By default [win2k8r2] - disabled, if you need you can enable this release in config.ini file.

Run

Preparation

Run chmod +x *.sh in builder directory to make script files executable.

Command line parameters:

runme.sh - the main script

• --help - shows usage

• --forceinstall-dependencies - Runs dependencies install.

• --check-smb - Run checks or configuration of Samba server.

• --download-requirements - Download all required and configures software except MS Windows ISO.

• --show-configured - Shows configured and available to use MS Windows releases.

• --run - normal run

Experimental options:

• --config-file - Set configuration file location instead of default.

4.4. Building Murano Image 119

Murano, Release 2.0.0.0b3.dev156

Use cases

All examples below describes changes in config.ini file

1. I want to build one image for specific version and edition. For example: version - 2012 R2 and edition -
standard. Steps to reach the goal:

• Disable [win2k8r2] from script processing.

[win2k8r2]
enabled=false

• Update [win2k12r2] with desired edition(standard).

[win2k12r2]
enabled=true
editions=standard

• Execute runme.sh --run

2. I want to build two images for specific version with all supported by script editions. For example: 2012 R2 and
editions - standard and core. Steps to reach the goal:

• Disable [win2k8r2] from script processing.

[win2k8r2]
enabled=false

• Update [win2k12r2] with desired editions(standard and core).

[win2k12r2]
enabled=true
editions=standard core

• Execute runme.sh --run

3. I want to build two images for all supported by script versions with specific editions. For example: versions -
2012 R2 and 2008 R2 and edition - core. Steps to reach the goal:

• Update [win2k8r2] with desired edition(core).

[win2k8r2]
enabled=true
editions=core

• Update [win2k12r2] with desired edition(core).

[win2k12r2]
enabled=true
editions=core

• Execute runme.sh --run

4.4.2 Linux Image

At the moment the best way to build a Linux image with the murano agent is to use disk image builder.

Note: Disk image builder requires sudo rights

The process is quite simple. Let’s assume that you use a directory ~/git for cloning git repositories:

120 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

export GITDIR=~/git
mkdir -p $GITDIR

Clone the components required to build an image to that directory:

cd $GITDIR
git clone git://git.openstack.org/openstack/murano
git clone git://git.openstack.org/openstack/murano-agent
git clone git://git.openstack.org/openstack/diskimage-builder

Checkout a change request that allows to build an image using disk image builder completely installed to virtual
environment:

cd $GITDIR/diskimage-builder
git fetch https://review.openstack.org/openstack/diskimage-builder refs/changes/02/168002/2 && git checkout FETCH_HEAD

Install additional packages required by disk image builder:

sudo apt-get install qemu-utils curl python-tox

Export paths where additional dib elements are located:

export ELEMENTS_PATH=$GITDIR/murano/contrib/elements:$GITDIR/murano-agent/contrib/elements

Add passenv = ELEMENTS_PATH at testenv:venv section in tox.ini. And build Ubuntu-based image with the murano
agent:

cd $GITDIR/diskimage-builder
tox -e venv -- disk-image-create vm ubuntu murano-agent -o ../murano-agent.qcow2

If you need a Fedora based image, replace ‘ubuntu’ to ‘fedora’ in the last command.

It’ll take a while (up to 30 minutes if your hard drive and internet connection are slow).

When you are done upload the murano-agent.qcow2 image to glance and play :)

4.4.3 Upload image into glance

To deploy applications with murano, virtual machine images should be uploaded into glance in a special way - mu-
rano_image_info property should be set.

1. Use the openstack client image create command to import your disk image to glance:

openstack image create --public \
> --disk-format qcow2 --container-format bare \
> --file <IMAGE_FILE> --property <IMAGE_METADATA> <NAME>

Replace the command line arguments to openstack image create with the appropriate values for your environment and
disk image:

• Replace <IMAGE_FILE> with the local path to the image file to upload. E.g. ws-2012-std.qcow2.

• Replace <IMAGE_METADATA> with the following property string

• Replace <NAME> with the name that users will refer to the disk image by. E.g. ws-2012-std

murano_image_info='{"title": "Windows 2012 Standard Edition", "type": "windows.2012"}'

where:

• title - user-friendly description of the image

4.4. Building Murano Image 121

Murano, Release 2.0.0.0b3.dev156

• type - murano image type, see Murano image types

2. To update metadata of the existing image run the command:

openstack image set --property <IMAGE_MATADATA> <IMAGE_ID>

• Replace <IMAGE_METADATA> with murano_image_info property, e.g.

• Replace <IMAGE_ID> with image id from the previous command output.

murano_image_info='{"title": "Windows 2012 Standard Edition", "type": "windows.2012"}'

Warning: The value of the –property argument (named murano_image_info) is a JSON string. Only double
quotes are valid in JSON, so please type the string exactly as in the example above.

Note: Existing images could be marked in a simple way in the horizon UI with the murano dashboard installed.
Navigate to Murano -> Manage -> Images -> Mark Image and fill up a form:

• Image - ws-2012-std

• Title - My Prepared Image

• Type - Windows Server 2012

After these steps desired image can be chosen in application creation wizard.

Murano image types

Type Name Description
windows.2012 Windows Server 2012
linux Generic Linux images, Ubuntu / Debian, RedHat / Centos, etc
cirros.demo Murano demo image, based on CirrOS

4.5 Murano automated tests description

This page describes automated tests for a Murano project:

• where tests are located

• how they are run

• how execute tests on a local machine

• how to find the root of problems with FAILed tests

4.5.1 Murano continuous integration service

Murano project has separate CI server, which runs tests for all commits and verifies that new code does not break
anything.

Murano CI uses OpenStack QA cloud for testing infrastructure.

Murano CI url: https://murano-ci.mirantis.com/jenkins/ Anyone can login to that server, using launchpad credentials.

There you can find each job for each repository: one for the murano and another one for murano-dashboard.

• “gate-murano-dashboard-selenium*” verifies each commit to murano-dashboard repository

122 Chapter 4. Miscellaneous

https://murano-ci.mirantis.com/jenkins/

Murano, Release 2.0.0.0b3.dev156

• “gate-murano-integration*” verifies each commit to murano repository

Other jobs allow to build and test Murano documentation and perform another useful work to support Murano CI
infrastructure. All jobs are run on fresh installation of operating system and all components are installed on each run.

4.5.2 Murano automated tests: UI tests

The murano project has a web user interface and all possible user scenarios should be tested. All UI tests are located
at the https://git.openstack.org/cgit/openstack/murano-dashboard/tree/muranodashboard/tests/functional

Automated tests for Murano Web UI are written in Python using special Selenium library. This library is
used to automate web browser interaction from Python. For more information please visit https://selenium-
python.readthedocs.org/

Prerequisites:

• Install Python module, called nose performing one of the following commands easy_install nose or pip install
nose This will install the nose libraries, as well as the nosetests script, which you can use to automatically
discover and run tests.

• Install external Python libraries, which are required for Murano Web UI tests: testtools and selenium

Download and run tests:

First of all make sure that all additional components are installed.

• Clone murano-dashboard git repository:

– git clone git://git.openstack.org/openstack/murano-dashboard*

• Change default settings:

– Copy muranodashboard/tests/functional/config/config.conf.example to config.conf

– Set appropriate urls and credentials for your OpenStack lab. Only admin users are appropriate.

[murano]

horizon_url = http://localhost/horizon
murano_url = http://localhost:8082
user = ***
password = ***
tenant = ***
keystone_url = http://localhost:5000/v2.0/

All tests are kept in sanity_check.py and divided into 5 test suites:

• TestSuiteSmoke - verification of Murano panels; check, that could be open without errors.

• TestSuiteEnvironment - verification of all operations with environment are finished successfully.

• TestSuiteImage - verification of operations with images.

• TestSuiteFields - verification of custom fields validators.

• TestSuitePackages - verification of operations with Murano packages.

• TestSuiteApplications - verification of Application Catalog page and of application creation process.

To specify which tests/suite to run, pass test/suite names on the command line:

4.5. Murano automated tests description 123

https://git.openstack.org/cgit/openstack/murano-dashboard/tree/muranodashboard/tests/functional
https://selenium-python.readthedocs.org/
https://selenium-python.readthedocs.org/

Murano, Release 2.0.0.0b3.dev156

• to run all tests: nosetests sanity_check.p

• to run a single suite: nosetests sanity_check.py:<test suite name>

• to run a single test: nosetests sanity_check.py:<test suite name>.<test name>

In case of SUCCESS execution, you should see something like this:
.........................

Ran 34 tests in 1.440s

OK

In case of FAILURE, folder with screenshots of the last operation of tests that finished with errors would be created.
It’s located in muranodashboard/tests/functional folder.

There are also a number of command line options that can be used to control the test execution and generated outputs.
For more details about nosetests, try:

nosetests -h

4.5.3 Murano Automated Tests: Tempest Tests

All Murano services have tempest-based automated tests, which allow to verify API interfaces and deployment sce-
narios.

Tempest tests for Murano are located at the: https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional

The following Python files contains basic tests suites for different Murano components.

API Tests

Murano API tests are run on devstack gate and located at https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/api

• test_murano_envs.py contains test suite with actions on murano’s environments(create, delete, get and etc.)

• test_murano_sessions.py contains test suite with actions on murano’s sessions(create, delete, get and etc.)

• test_murano_services.py contains test suite with actions on murano’s services(create, delete, get and etc.)

• test_murano_repository.py contains test suite with actions on murano’s package repository

Engine Tests

Murano Engine Tests are run on murano-ci : https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/engine

• base.py contains base test class and tests with actions on deploy Murano services such as ‘Telnet’ and ‘Apache’.

Command Line Tests

Murano CLI tests case are currently in the middle of creation. The current scope is read only operations on a cloud
that are hard to test via unit tests.

All tests have description and execution steps in there docstrings.

Client

124 Chapter 4. Miscellaneous

https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional
https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/api
https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/engine

Murano, Release 2.0.0.0b3.dev156

4.6 Murano client

Module python-muranoclient comes with CLI murano utility, that interacts with Murano application catalog

4.6.1 Installation

To install latest murano CLI client run the following command in your shell:

pip install python-muranoclient

Alternatively you can checkout the latest version from https://git.openstack.org/cgit/openstack/python-muranoclient

4.6.2 Using CLI client

In order to use the CLI, you must provide your OpenStack username, password, tenant name or id, and auth
endpoint. Use the corresponding arguments (--os-username, --os-password, --os-tenant-name or
--os-tenant-id, --os-auth-url and --murano-url) or set corresponding environment variables:

export OS_USERNAME=user
export OS_PASSWORD=password
export OS_TENANT_NAME=tenant
export OS_AUTH_URL=http://auth.example.com:5000/v2.0
export MURANO_URL=http://murano.example.com:8082/

Once you’ve configured your authentication parameters, you can run murano help to see a complete listing of
available commands and arguments and murano help <sub_command> to get help on specific subcommand.

4.6.3 Bash completion

To get the latest bash completion script download murano.bash_completion from the source repository and add it to
your completion scripts.

4.6.4 Listing currently installed packages

To get list of currently installed packages run:

murano package-list

To show details about specific package run:

murano package-show <PKG_ID>

4.6.5 Importing packages in Murano

package-import subcommand can install packages in several different ways:

• from a locall file

• from a http url

• from murano app repository

4.6. Murano client 125

https://git.openstack.org/cgit/openstack/python-muranoclient
https://git.openstack.org/cgit/openstack/python-muranoclient/plain/tools/murano.bash_completion

Murano, Release 2.0.0.0b3.dev156

When creating a package you can specify it’s categories with -c/--categories and set it’s publicity with
--public

To import a local package run:

murano package-import /path/to/package.zip

To import a package from http url run:

murano package-import http://example.com/path/to/package.zip

And finally you can import a package from Murano repository. To do so you have to specify base url for the repository
with --murano-repo-url or with the corresponding MURANO_REPO_URL environment variable. After doing so,
running:

murano --murano-repo-url="http://example.com/" package-import io.app.foo

would access specified repository and download app io.app.foo from it’s app directory. This option supports an
optional --package-version parameter, that would instruct murano client to download package of a specific
version.

package-import inspects package requirements specified in the package’s manifest under Require section and
attempts to import them from Murano Repository. package-import also inspects any image prerequisites, men-
tioned in the images.lst file in the package. If there are any image requirements client would inspect images already
present in the image database. Unless image with the specific name and hash is present client would attempt to
download it.

For more info about specifying images and requirements for the package see package creation docs: Step-by-Step.

If any of the packages, being installed is already registered in Murano, client would ask you what do do with it. You
can specify the default action with --exists-action, passing s for skip, u for update, and a for abort.

4.6.6 Importing bundles of packages in Murano

package-import subcommand can install packages in several different ways:

• from a local file

• from a http url

• from murano app repository

When creating a package you can specify it’s categories with -c/--categories and set it’s publicity with
--public

To import a local bundle run:

murano bundle-import /path/to/bundle

To import a bundle from http url run:

murano bundle-import http://example.com/path/to/bundle

To import a bundle from murano repository run:

murano bundle-import bundle_name

Note: When importing from a local file packages would first be searched in a directory, relative to the directory
containing the bundle file itself. This is done to facilitate installing bundles in an environment with no access to the
repository itself.

126 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

4.6.7 Deleting packages from murano

To delete a package run:

murano package-delete <PKG_ID>

4.6.8 Downloading package file

Running:

murano package-download <PKG_ID> > file.zip

would download the zip archive with specified package

4.6.9 Creating a package

Murano client is able to create application packages from package source files/directories. To find out more about this
command run:

murano help package-create

This command is useful, when application package files are spread across several directories, and for auto-generating
packages from heat templates For more info about package composition please see package creation docs: Step-by-
Step.

4.6.10 Managing Environments

It is possible to create/update/delete environments with following commands:

murano environment-create <NAME>
murano environment-delete <NAME_OR_ID>
murano environment-list
murano environment-rename <OLD_NAME_OR_ID> <NEW_NAME>
murano environment-show <NAME_OR_ID>

You can get list of deployments for environment with:

murano deployment-list <NAME_OR_ID>

4.6.11 Managing Categories

It is possible to create/update/delete categories with following commands:

murano category-create <NAME>
murano category-delete <ID> [<ID> ...]
murano category-list
murano category-show <ID>

4.6.12 Managing environment templates

It is possible to manage environment templates with following commands:

4.6. Murano client 127

Murano, Release 2.0.0.0b3.dev156

murano env-template-create <NAME>
murano env-template-add-app <NAME> <FILE>
murano env-template-del-app <NAME> <FILE>
murano env-template-delete <ID>
murano env-template-list
murano env-template-show <ID>
murano env-template-update <ID> <NEW_NAME>

Guidelines

4.7 Contributing to Murano

If you’re interested in contributing to the Murano project, the following will help get you started.

4.7.1 Contributor License Agreement

In order to contribute to the Murano project, you need to have signed OpenStack’s contributor’s agreement:

• http://docs.openstack.org/infra/manual/developers.html

• http://wiki.openstack.org/CLA

4.7.2 Project Hosting Details

• Bug trackers

– General murano tracker: https://launchpad.net/murano

– Python client tracker: https://launchpad.net/python-muranoclient

– Tracker for bugs related to specific apps: https://launchpad.net/murano-apps

• Mailing list (prefix subjects with [Murano] for faster responses) http://lists.openstack.org/cgi-
bin/mailman/listinfo/openstack-dev

• Wiki https://wiki.openstack.org/wiki/Murano

• IRC channel

– #murano at FreeNode

– https://wiki.openstack.org/wiki/Meetings#Murano_meeting

• Code Hosting

– https://git.openstack.org/cgit/openstack/murano

– https://git.openstack.org/cgit/openstack/murano-agent

– https://git.openstack.org/cgit/openstack/murano-dashboard

– https://git.openstack.org/cgit/openstack/python-muranoclient

• Code Review

– https://review.openstack.org/#/q/murano+AND+status:+open,n,z

– http://docs.openstack.org/infra/manual/developers.html#development-workflow

128 Chapter 4. Miscellaneous

http://docs.openstack.org/infra/manual/developers.html
http://wiki.openstack.org/CLA
https://launchpad.net/murano
https://launchpad.net/python-muranoclient
https://launchpad.net/murano-apps
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev
https://wiki.openstack.org/wiki/Murano
https://wiki.openstack.org/wiki/Meetings#Murano_meeting
https://git.openstack.org/cgit/openstack/murano
https://git.openstack.org/cgit/openstack/murano-agent
https://git.openstack.org/cgit/openstack/murano-dashboard
https://git.openstack.org/cgit/openstack/python-muranoclient
https://review.openstack.org/#/q/murano+AND+status:+open,n,z
http://docs.openstack.org/infra/manual/developers.html#development-workflow

Murano, Release 2.0.0.0b3.dev156

4.8 Development Guidelines

4.8.1 Coding Guidelines

For all the code in Murano we have a rule - it should pass PEP 8.

To check your code against PEP 8 run:

tox -e pep8

See also:

• https://pep8.readthedocs.org/en/latest/

• https://flake8.readthedocs.org

• http://docs.openstack.org/developer/hacking/

4.8.2 Testing Guidelines

Murano has a suite of tests that are run on all submitted code, and it is recommended that developers execute the tests
themselves to catch regressions early. Developers are also expected to keep the test suite up-to-date with any submitted
code changes.

Unit tests are located at murano/tests.

Murano’s suite of unit tests can be executed in an isolated environment with Tox. To execute the unit tests run the
following from the root of Murano repo on Python 2.7:

tox -e py27

4.8.3 Documentation Guidelines

Murano dev-docs are written using Sphinx / RST and located in the main repo in doc directory.

The documentation in docstrings should follow the PEP 257 conventions (as mentioned in the PEP 8 guidelines).

More specifically:

1. Triple quotes should be used for all docstrings.

2. If the docstring is simple and fits on one line, then just use one line.

3. For docstrings that take multiple lines, there should be a newline after the opening quotes, and before the closing
quotes.

4. Sphinx is used to build documentation, so use the restructured text markup to designate parameters, return
values, etc. Documentation on the sphinx specific markup can be found here:

Run the following command to build docs locally.

tox -e docs

4.9 Murano TroubleShooting and Debug Tips

During installation and setting environment of new projects you can run into different problems. This section intends
to reduce the time spent on the solution of these problems.

4.8. Development Guidelines 129

http://www.python.org/dev/peps/pep-0008/
https://pep8.readthedocs.org/en/latest/
https://flake8.readthedocs.org
http://docs.openstack.org/developer/hacking/
http://tox.testrun.org/
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0008/
http://sphinx.pocoo.org/markup/index.html

Murano, Release 2.0.0.0b3.dev156

4.9.1 Problems during configuration

Log location

Murano is a multi component project, there several places where logs could be found.

The location of the log file completely depends on the setting in the config file of the corresponding component.
log_file parameter points to the log file, and if it’s omitted or commented logging will be sent to stdout.

Possible problem list

• murano-db-manage failed to execute

– Check connection parameter in provided config file. It should be a connection string.

• Murano Dashboard is not working

– Make sure, that prepare_murano.sh script was executed and murano file located in enabled folder under
openstack_dashboard repository.

– Check, that murano data is not inserted twice in the settings file and as a plugin.

4.9.2 Problems during deployment

Besides identifying errors from log files, there is another and more flexible way to browse deployment errors - directly
from UI. After Deploy Failed status is appeared navigate to environment components and open Deployment History
page. Click on the Show details button located at the corresponding deployment row of the table. Then go to the Logs
tab. You can see steps of the deployments and the one that failed would have red color.

• Deployment freeze after Begin execution: io.murano.system.Agent.call problem with con-
nection between Murano Agent and spawned instance.

• Need to check transport access to the virtual machine (check router has gateway).

• Check for rabbitMq settings: verify that agent has been obtained valid rabbit parameters. Go to the spawned
virtual machine and open /etc/murano/agent.conf or C:MuranoAgentagent.conf on Windows-based machine.
Also, you can examine agent logs, located by default at /var/log/murano-agent.log The first part of the log file
will contain reconnection attempts to the rabbit - since the valid rabbit address and queue have not been obtained
yet.

• Check that driver option is set to messagingv2

• Check that linux image name is not starts with ‘w’ letter

• [exceptions.EnvironmentError]: Unexpected stack state NOT_FOUND - problem with
heat stack creation, need to examine Heat log file. If you are running the deployment on a new tenant check that
the router exists and it has gateway to the external network.

• Router could not be created, no external network found - Find external_network pa-
rameter in config file and check that specified external network is really exist via UI or by executing openstack
network list –external command.

• NoPackageForClassFound: Package for class io.murano. Environment is not
found - Check that murano core package is uploaded. If no, the content of meta/io.murano folder should be
zipped and uploaded to Murano.

API specification

130 Chapter 4. Miscellaneous

http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html

Murano, Release 2.0.0.0b3.dev156

4.10 Murano API v1 specification

4.10.1 General information

• Introduction

The murano service API is a programmatic interface used for interaction with murano. Other interac-
tion mechanisms like the murano dashboard or the murano CLI should use the API as an underlying
protocol for interaction.

• Allowed HTTPs requests

– POST : To create a resource

– GET : Get a resource or list of resources

– DELETE : To delete resource

– PATCH : To update a resource

• Description Of Usual Server Responses

– 200 OK - the request was successful.

– 201 Created - the request was successful and a resource was created.

– 204 No Content - the request was successful but there is no representation to return (i.e. the response
is empty).

– 400 Bad Request - the request could not be understood or required parameters were missing.

– 401 Unauthorized - authentication failed or user didn’t have permissions for requested operation.

– 403 Forbidden - access denied.

– 404 Not Found - resource was not found

– 405 Method Not Allowed - requested method is not supported for resource.

– 406 Not Acceptable - the requested resource is only capable of generating content not acceptable
according to the Accept headers sent in the request.

– 409 Conflict - requested method resulted in a conflict with the current state of the resource.

• Response of POSTs and PUTs

All POST and PUT requests by convention should return the created object (in the case of POST,
with a generated ID) as if it was requested by GET.

• Authentication

All requests include a keystone authentication token header (X-Auth-Token). Clients must authenti-
cate with keystone before interacting with the murano service.

4.10.2 Glossary

• Environment

The environment is a set of applications managed by a single tenant. They could be related logically
with each other or not. Applications within a single environment may comprise of complex config-
uration while applications in different environments are always independent from one another. Each
environment is associated with a single OpenStack project (tenant).

• Session

4.10. Murano API v1 specification 131

Murano, Release 2.0.0.0b3.dev156

Since murano environments are available for local modification for different users and from different
locations, it’s needed to store local modifications somewhere. Sessions were created to provide this
opportunity. After a user adds an application to the environment - a new session is created. After a
user sends an environment to deploy, a session with a set of applications changes status to deploying
and all other open sessions for that environment become invalid. One session could be deployed only
once.

• Object Model

Applications are defined in MuranoPL object model, which is defined as a JSON object. The murano
API doesn’t know anything about it.

• Package

A .zip archive, containing instructions for an application deployment.

• Environment-Template The environment template is the specification of a set of applications managed by
a single tenant, which are related to each other. The environment template is stored in an environment
template catalog, and it can be managed by the user (creation, deletion, updating). Finally, it can be
deployed on OpenStack by translating into an environment.

4.10.3 Environment API

Attribute Type Description
id string Unique ID
name string User-friendly name
created datetime Creation date and time in ISO format
updated datetime Modification date and time in ISO format
tenant_id string OpenStack tenant ID
version int Current version
networking string Network settings
acquired_by string Id of a session that acquired this environment (for example is deploying it)
status string Deployment status: ready, pending, deploying

Common response codes

Code Description
200 Operation completed successfully
403 User is not authorized to perform the operation

List environments

Request

Method URI Description
GET /environments Get a list of existing Environments

Parameters:

• all_tenants - boolean, indicates whether environments from all tenants are listed. True environments from all
tenants are listed. Admin user required. False environments only from current tenant are listed (default like
option unspecified).

Response

This call returns a list of environments. Only the basic properties are returned.

132 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

{
"environments": [

{
"status": "ready",
"updated": "2014-05-14T13:02:54",
"networking": {},
"name": "test1",
"created": "2014-05-14T13:02:46",
"tenant_id": "726ed856965f43cc8e565bc991fa76c3",
"version": 0,
"id": "2fa5ab704749444bbeafe7991b412c33"

},
{

"status": "ready",
"updated": "2014-05-14T13:02:55",
"networking": {},
"name": "test2",
"created": "2014-05-14T13:02:51",
"tenant_id": "726ed856965f43cc8e565bc991fa76c3",
"version": 0,
"id": "744e44812da84e858946f5d817de4f72"

}
]

}

Create environment

Attribute Type Description
name string Environment name; at least one non-white space symbol

Request

Method URI Description
POST /environments Create new Environment

• Content-Type application/json

• Example {“name”: “env_name”}

Response

{
"id": "ce373a477f211e187a55404a662f968",
"name": "env_name",
"created": "2013-11-30T03:23:42Z",
"updated": "2013-11-30T03:23:44Z",
"tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
"version": 0

}

Update environment

Attribute Type Description
name string Environment name; at least one non-white space symbol

Request

4.10. Murano API v1 specification 133

Murano, Release 2.0.0.0b3.dev156

Method URI Description
PUT /environments/<env_id> Update an existing Environment

• Content-Type application/json

• Example {“name”: “env_name_changed”}

Response

Content-Type application/json

{
"id": "ce373a477f211e187a55404a662f968",
"name": "env_name_changed",
"created": "2013-11-30T03:23:42Z",
"updated": "2013-11-30T03:45:54Z",
"tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
"version": 0

}

Code Description
200 Edited environment
400 Environment name must contain at least one non-white space symbol
403 User is not authorized to access environment
404 Environment not found
409 Environment with specified name already exists

Get environment details

Request

Return information about the environment itself and about applications, including this environment.

Method URI Header Description
GET /environ-

ments/{id}
X-Configuration-Session
(optional)

Response detailed information about Environment
including child entities

Response

Content-Type application/json

{
"status": "ready",
"updated": "2014-05-14T13:12:26",
"networking": {},
"name": "quick-env-2",
"created": "2014-05-14T13:09:55",
"tenant_id": "726ed856965f43cc8e565bc991fa76c3",
"version": 1,
"services": [

{
"instance": {

"flavor": "m1.medium",
"image": "cloud-fedora-v3",
"name": "exgchhv6nbika2",
"ipAddresses": [

"10.0.0.200"
],
"?": {

"type": "io.murano.resources.Instance",

134 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

"id": "14cce9d9-aaa1-4f09-84a9-c4bb859edaff"
}

},
"name": "rewt4w56",
"?": {

"status": "ready",
"_26411a1861294160833743e45d0eaad9": {

"name": "Telnet"
},
"type": "io.murano.apps.linux.Telnet",
"id": "446373ef-03b5-4925-b095-6c56568fa518"

}
}

],
"id": "20d4a012628e4073b48490a336a8acbf"

}

Delete environment

Request

Method URI Description
DELETE /environments/{id}?abandon Remove specified Environment.

Parameters:

• abandon - boolean, indicates how to delete environment. False is used if all resources used by environment
must be destroyed; True is used when just database must be cleaned

Response

Code Description
200 OK. Environment deleted successfully
403 User is not allowed to delete this resource
404 Not found. Specified environment doesn‘t exist

4.10.4 Environment configuration API

Multiple sessions could be opened for one environment simultaneously, but only one session going to be deployed.
First session that starts deploying is going to be deployed; other ones become invalid and could not be deployed at
all. User could not open new session for environment that in deploying state (that’s why we call it “almost lock free”
model).

Attribute Type Description
id string Session unique ID
environment_id string Environment that going to be modified during this session
created datetime Creation date and time in ISO format
updated datetime Modification date and time in ISO format
user_id string Session owner ID
version int Environment version for which configuration session is opened
state string Session state. Could be: open, deploying, deployed

4.10. Murano API v1 specification 135

Murano, Release 2.0.0.0b3.dev156

Configure environment / open session

During this call new working session is created, and session ID should be sent in a request header with name
X-Configuration-Session.

Request

Method URI Description
POST /environments/<env_id>/configure Creating new configuration session

Response

Content-Type application/json

{
"updated": datetime.datetime(2014, 5, 14, 14, 17, 58, 949358),
"environment_id": "744e44812da84e858946f5d817de4f72",
"ser_id": "4e91d06270c54290b9dbdf859356d3b3",
"created": datetime.datetime(2014, 5, 14, 14, 17, 58, 949305),
"state": "open", "version": 0L, "id": "257bef44a9d848daa5b2563779714820"

}

Code Description
200 Session created successfully
401 User is not authorized to access this session
403 Could not open session for environment, environment has deploying status

Deploy session

With this request all local changes made within the environment start to deploy on OpenStack.

Request

Method URI Description
POST /environments/<env_id>/sessions/

<session_id>/deploy Deploy changes made in session
with specified session_id

Response

Code Description
200 Session status changes to deploying
401 User is not authorized to access this session
403 Session is already deployed or deployment is in progress
404 Not found. Specified session doesn‘t exist

Get session details

Request

Method URI Description
GET /environments/<env_id>/sessions/ <session_id> Get details about session with specified session_id

Response

{
"id": "4aecdc2178b9430cbbb8db44fb7ac384",
"environment_id": "4dc8a2e8986fa8fa5bf24dc8a2e8986fa8",

136 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

"created": "2013-11-30T03:23:42Z",
"updated": "2013-11-30T03:23:54Z",
"user_id": "d7b501094caf4daab08469663a9e1a2b",
"version": 0,
"state": "deploying"

}

Code Description
200 Session details information received
401 User is not authorized to access this session
403 Session is invalid
404 Not found. Specified session doesn‘t exist

Delete session

Request

Method URI Description
DELETE /environments/<env_id>/sessions/ <session_id> Delete session with specified session_id

Response

Code Description
200 Session is deleted successfully
401 User is not authorized to access this session
403 Session is in deploying state and could not be deleted
404 Not found. Specified session doesn‘t exist

4.10.5 Environment deployments API

Environment deployment API allows to track changes of environment status, deployment events and errors. It also
allows to browse deployment history.

List Deployments

Returns information about all deployments of the specified environment.

Request

Method URI Description
GET /environments/<env_id>/deployments Get list of environment deployments

Response

Content-Type application/json

{
"deployments": [

{
"updated": "2014-05-15T07:24:21",
"environment_id": "744e44812da84e858946f5d817de4f72",
"description": {

"services": [
{

"instance": {
"flavor": "m1.medium",

4.10. Murano API v1 specification 137

Murano, Release 2.0.0.0b3.dev156

"image": "cloud-fedora-v3",
"?": {

"type": "io.murano.resources.Instance",
"id": "ef729199-c71e-4a4c-a314-0340e279add8"

},
"name": "xkaduhv7qeg4m7"

},
"name": "teslnet1",
"?": {

"_26411a1861294160833743e45d0eaad9": {
"name": "Telnet"

},
"type": "io.murano.apps.linux.Telnet",
"id": "6e437be2-b5bc-4263-8814-6fd57d6ddbd5"

}
}

],
"defaultNetworks": {

"environment": {
"name": "test2-network",
"?": {

"type": "io.murano.lib.networks.neutron.NewNetwork",
"id": "b6a1d515434047d5b4678a803646d556"

}
},
"flat": null

},
"name": "test2",
"?": {

"type": "io.murano.Environment",
"id": "744e44812da84e858946f5d817de4f72"

}
},
"created": "2014-05-15T07:24:21",
"started": "2014-05-15T07:24:21",
"finished": null,
"state": "running",
"id": "327c81e0e34a4c93ad9b9052ef42b752"

}
]

}

Code Description
200 Deployments information received successfully
401 User is not authorized to access this environment

4.10.6 Application management API

All applications should be created within an environment and all environment modifications are held within the session.
Local changes apply only after successful deployment of an environment session.

Get application details

Using GET requests to applications endpoint user works with list containing all applications for specified environ-
ment. A user can request a whole list, specific application, or specific attribute of a specific application using tree

138 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

traversing. To request a specific application, the user should add to endpoint part an application id, e.g.: /environ-
ments/<env_id>/services/<application_id>. For selection of specific attribute on application, simply appending part
with attribute name will work. For example to request application name, user should use next endpoint: /environ-
ments/<env_id>/services/<application_id>/name

Request

Method URI Header
GET /environments/<env_id>/services/<app_id> X-Configuration-Session (optional)

Parameters:

• env_id - environment ID, required

• app_id - application ID, optional

Response

Content-Type application/json

{
"instance": {

"flavor": "m1.medium",
"image": "cloud-fedora-v3",
"?": {

"type": "io.murano.resources.Instance",
"id": "060715ff-7908-4982-904b-3b2077ff55ef"

},
"name": "hbhmyhv6qihln3"

},
"name": "dfg34",
"?": {

"status": "pending",
"_26411a1861294160833743e45d0eaad9": {

"name": "Telnet"
},
"type": "io.murano.apps.linux.Telnet",
"id": "6e7b8ad5-888d-4c5a-a498-076d092a7eff"

}
}

POST applications

New application can be added to the murano environment using session. Result JSON is calculated in Murano dash-
board, which based on UI definition

Request

Content-Type application/json

Method URI Header
POST /environments/<env_id>/services X-Configuration-Session

{
"instance": {
"flavor": "m1.medium",
"image": "clod-fedora-v3",
"?": {

"type": "io.murano.resources.Instance",
"id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"

},

4.10. Murano API v1 specification 139

Murano, Release 2.0.0.0b3.dev156

"name": "nhekhv6r7mhd4"
},
"name": "sdf34sadf",
"?": {
"_26411a1861294160833743e45d0eaad9": {

"name": "Telnet"
},
"type": "io.murano.apps.linux.Telnet",
"id": "190c8705-5784-4782-83d7-0ab55a1449aa"

}
}

Response

Created application returned

Content-Type application/json

{
"instance": {

"flavor": "m1.medium",
"image": "cloud-fedora-v3",
"?": {

"type": "io.murano.resources.Instance",
"id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"

},
"name": "nhekhv6r7mhd4"

},
"name": "sdf34sadf",
"?": {

"_26411a1861294160833743e45d0eaad9": {
"name": "Telnet"

},
"type": "io.murano.apps.linux.Telnet",
"id": "190c8705-5784-4782-83d7-0ab55a1449a1"

}
}

Code Description
200 Session is deleted successfully
401 User is not authorized to access this session
403 Session is in deploying state and could not be deleted
404 Not found. Specified session doesn‘t exist
400 Required header or body are not provided

Delete application from environment

Delete one or all applications from the environment

Request

Method URI Header
DELETE /environments/<env_id>/services/<app_id> X-Configuration-Session(optional)

Parameters:

• env_id - environment ID, required

• app_id - application ID, optional

140 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

4.10.7 Statistic API

Statistic API intends to provide billing feature

Instance environment statistics

Request

Get information about all deployed instances in the specified environment

Method URI
GET /environments/<env_id>/instance-statistics/raw/<instance_id>

Parameters:

• env_id - environment ID, required

• instance_id - ID of the instance for which need to provide statistic information, optional

Response

Attribute Type Description
type int Code of the statistic object; 200 - instance, 100 - application
type_name string Class name of the statistic object
instance_id string Id of deployed instance
active bool Instance status
type_title string User-friendly name for browsing statistic in UI
duration int Seconds of instance uptime

Content-Type application/json

[
{

"type": 200,
"type_name": "io.murano.resources.Instance",
"instance_id": "ef729199-c71e-4a4c-a314-0340e279add8",
"active": true,
"type_title": null,
"duration": 1053,

}
]

Request

Method URI
GET /environments/<env_id>/instance-statistics/aggregated

Response

Attribute Type Description
type int Code of the statistic object; 200 - instance, 100 - application
duration int Amount uptime of specified type objects
count int Quantity of specified type objects

Content-Type

application/json

[
{

"duration": 720,

4.10. Murano API v1 specification 141

Murano, Release 2.0.0.0b3.dev156

"count": 2,
"type": 200

}
]

General Request Statistics

Request

Method URI
GET /stats

Response

Attribute Type Description
requests_per_tenant int Number of incoming requests for user tenant
errors_per_second int Class name of the statistic object
errors_count int Class name of the statistic object
requests_per_second float Average number of incoming request received in one second
requests_count int Number of all requests sent to the server
cpu_percent bool Current cpu usage
cpu_count int Available cpu power is cpu_count * 100%
host string Server host-name
average_response_time float Average time response waiting, seconds

Content-Type application/json

[
{

"updated": "2014-05-15T08:26:17",
"requests_per_tenant": "{\"726ed856965f43cc8e565bc991fa76c3\": 313}",
"created": "2014-04-29T13:23:59",
"cpu_count": 2,
"errors_per_second": 0,
"requests_per_second": 0.0266528,
"cpu_percent": 21.7,
"host": "fervent-VirtualBox",
"error_count": 0,
"request_count": 320,
"id": 1,
"average_response_time": 0.55942

}
]

4.10.8 Actions API

Murano actions are simple MuranoPL methods, that can be called on deployed applications. Application contains a
list with available actions. Actions may return a result.

Execute an action

Generate task with executing specified action. Input parameters may be provided.

Request

Content-Type application/json

142 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

Method URI Header
POST /environments/<env_id>/actions/<action_id>

Parameters:

• env_id - environment ID, required

• actions_id - action ID to execute, required

"{<action_property>: value}"

or

"{}" in case action has no properties

Response

Task ID that executes specified action is returned

Content-Type application/json

{
"task_id": "620e883070ad40a3af566d465aa156ef"

}

GET action result

Request result value after action execution finish. Not all actions have return values.

Request

Method URI Header
GET /environments/<env_id>/actions/<task_id>

Parameters:

• env_id - environment ID, required

• task_id - task ID, generated on desired action execution

Response

Json, describing action result is returned. Result type and value are provided.

Content-Type application/json

{
"isException": false,
"result": ["item1", "item2"]

}

4.10.9 Application catalog API

Manage application definitions in the Application Catalog. You can browse, edit and upload new application packages
(.zip.package archive with all data that required for a service deployment).

4.10.10 Packages

Methods for application package management

4.10. Murano API v1 specification 143

Murano, Release 2.0.0.0b3.dev156

Package Properties

• id: guid of a package (fully_qualified_name can also be used for some API functions)

• fully_qualified_name: fully qualified domain name - domain name that specifies exact application lo-
cation

• name: user-friendly name

• type: package type, “library” or “application”

• description: text information about application

• author: name of application author

• tags: list of short names, connected with the package, which allows to search applications easily

• categories: list of application categories

• class_definition: list of class names used by a package

• is_public: determines whether the package is shared for other tenants

• enabled: determines whether the package is browsed in the Application Catalog

• owner_id: id of a tenant that owns the package

List packages

/v1/catalog/packages?{marker}{limit}{order_by}{type}{category}{fqn}{owned}{id}{catalog}{class_name}{name}
[GET]

This is the compound request to list and search through application catalog. If there are no search parameters all
packages that is_public, enabled and belong to the user’s tenant will be listed. Default order is by ‘created’ field. For
an admin role all packages are available.

Parameters

Response 200 (application/json)

{"packages": [
{
"id": "fed57567c9fa42c192dcbe0566f8ea33",
"fully_qualified_name" : "com.example.murano.services.linux.telnet",
"is_public": false,
"name": "Telnet",
"type": "linux",
"description": "Installs Telnet service",
"author": "OpenStack, Inc.",
"created": "2014-04-02T14:31:55",
"enabled": true,
"tags": ["linux", "telnet"],
"categories": ["Utility"],
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

},
{
"id": "fed57567c9fa42c192dcbe0566f8ea31",
"fully_qualified_name": "com.example.murano.services.windows.WebServer",
"is_public": true,
"name": "Internet Information Services",
"type": "windows",
"description": "The Internet Information Service sets up an IIS server and joins it into an existing domain",
"author": "OpenStack, Inc.",

144 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

"created": "2014-04-02T14:31:55",
"enabled": true,
"tags": ["windows", "web"],
"categories": ["Web"],
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

}]
}

Upload a new package[POST]

/v1/catalog/packages

See the example of multipart/form-data request, It should contain two parts - text (json string) and file object

Request (multipart/form-data)

Content-type: multipart/form-data, boundary=AaB03x
Content-Length: $requestlen

--AaB03x
content-disposition: form-data; name="submit-name"

--AaB03x
Content-Disposition: form-data; name="JsonString"
Content-Type: application/json

{"categories":["web"] , "tags": ["windows"], "is_public": false, "enabled": false}
`categories` - array, required
`tags` - array, optional
`name` - string, optional
`description` - string, optional
`is_public` - bool, optional
`enabled` - bool, optional

--AaB03x
content-disposition: file; name="file"; filename="test.tar"
Content-Type: targz
Content-Transfer-Encoding: binary

$binarydata
--AaB03x--

Response 200 (application/json)

{
"updated": "2014-04-03T13:00:13",
"description": "A domain service hosted in Windows environment by using Active Directory Role",
"tags": ["windows"],
"is_public": true,
"id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
"categories": ["test1"],
"name": "Active Directory",
"author": "Mirantis, Inc",
"created": "2014-04-03T13:00:13",
"enabled": true,
"class_definition": [

"com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"com.mirantis.murano.windows.activeDirectory.SecondaryController",

4.10. Murano API v1 specification 145

Murano, Release 2.0.0.0b3.dev156

"com.mirantis.murano.windows.activeDirectory.Controller",
"com.mirantis.murano.windows.activeDirectory.PrimaryController"

],
"fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"type": "Application",
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

}

Get package details

/v1/catalog/packages/{id} [GET]

Display details for a package.

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/json)

{
"updated": "2014-04-03T13:00:13",
"description": "A domain service hosted in Windows environment by using Active Directory Role",
"tags": ["windows"],
"is_public": true,
"id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
"categories": ["test1"],
"name": "Active Directory",
"author": "Mirantis, Inc",
"created": "2014-04-03T13:00:13",
"enabled": true,
"class_definition": [

"com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"com.mirantis.murano.windows.activeDirectory.SecondaryController",
"com.mirantis.murano.windows.activeDirectory.Controller",
"com.mirantis.murano.windows.activeDirectory.PrimaryController"

],
"fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"type": "Application",
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

}

Response 403

• In attempt to get a non-public package by a user whose tenant is not an owner of this package.

Response 404

• In case the specified package id doesn’t exist.

4.10.11 Update a package

/v1/catalog/packages/{id} [PATCH]

Allows to edit mutable fields (categories, tags, name, description, is_public, enabled). See the full specification here.

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

146 Chapter 4. Miscellaneous

http://tools.ietf.org/html/rfc6902

Murano, Release 2.0.0.0b3.dev156

Content type

application/murano-packages-json-patch

Allowed operations:

[
{ "op": "add", "path": "/tags", "value": ["foo", "bar"] },
{ "op": "add", "path": "/categories", "value": ["foo", "bar"] },
{ "op": "remove", "path": "/tags", ["foo"] },
{ "op": "remove", "path": "/categories", ["foo"] },
{ "op": "replace", "path": "/tags", "value": [] },
{ "op": "replace", "path": "/categories", "value": ["bar"] },
{ "op": "replace", "path": "/is_public", "value": true },
{ "op": "replace", "path": "/enabled", "value": true },
{ "op": "replace", "path": "/description", "value":"New description" },
{ "op": "replace", "path": "/name", "value": "New name" }

]

Request 200 (application/murano-packages-json-patch)

[
{ "op": "add", "path": "/tags", "value": ["windows", "directory"] },
{ "op": "add", "path": "/categories", "value": ["Directory"] }

]

Response 200 (application/json)

{
"updated": "2014-04-03T13:00:13",
"description": "A domain service hosted in Windows environment by using Active Directory Role",
"tags": ["windows", "directory"],
"is_public": true,
"id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
"categories": ["test1"],
"name": "Active Directory",
"author": "Mirantis, Inc",
"created": "2014-04-03T13:00:13",
"enabled": true,
"class_definition": [

"com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"com.mirantis.murano.windows.activeDirectory.SecondaryController",
"com.mirantis.murano.windows.activeDirectory.Controller",
"com.mirantis.murano.windows.activeDirectory.PrimaryController"

],
"fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
"type": "Application",
"owner_id": "fed57567c9fa42c192dcbe0566f8ea40"

}

Response 403

• An attempt to update immutable fields

• An attempt to perform operation that is not allowed on the specified path

• An attempt to update non-public package by user whose tenant is not an owner of this package

Response 404

• An attempt to update package that doesn’t exist

4.10. Murano API v1 specification 147

Murano, Release 2.0.0.0b3.dev156

Delete application definition from the catalog

/v1/catalog/packages/{id} [DELETE]

Parameters

• id (required) Hexadecimal id (or fully qualified name) of the package to delete

Response 404

• An attempt to delete package that doesn’t exist

Get application package

/v1/catalog/packages/{id}/download [GET]

Get application definition package

Parameters

• id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octetstream)

The sequence of bytes representing package content

Response 404

Specified package id doesn’t exist

Get UI definition

/v1/catalog/packages/{id}/ui [GET]

Retrieve UI definition for a application which described in a package with provided id

Parameters

• id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing UI definition

Response 404

Specified package id doesn’t exist

Response 403

Specified package is not public and not owned by user tenant, performing the request

Response 404

• Specified package id doesn’t exist

Get logo

Retrieve application logo which described in a package with provided id

/v1/catalog/packages/{id}/logo [GET]

Parameters

148 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing application logo

Response 403

Specified package is not public and not owned by user tenant, performing the request

Response 404

Specified package is not public and not owned by user tenant, performing the request

4.10.12 Categories

Provides category management. Categories are used in the Application Catalog to group application for easy browsing
and search.

List categories

• /v1/catalog/packages/categories [GET]

!DEPRECATED (Plan to remove in L release) Retrieve list of all available application categories

Response 200 (application/json)

A list, containing category names

Content-Type application/json

{
"categories": ["Web service", "Directory", "Database", "Storage"]

}

• /v1/catalog/categories [GET]

Method URI Description
GET /catalog/categories Get list of existing categories

Retrieve list of all available application categories

Response 200 (application/json)

A list, containing detailed information about each category

Content-Type application/json

{"categories": [
{

"id": "0420045dce7445fabae7e5e61fff9e2f",
"updated": "2014-12-26T13:57:04",
"name": "Web",
"created": "2014-12-26T13:57:04",
"package_count": 1

},
{

"id": "3dd486b1e26f40ac8f35416b63f52042",
"updated": "2014-12-26T13:57:04",
"name": "Databases",
"created": "2014-12-26T13:57:04",
"package_count": 0

4.10. Murano API v1 specification 149

Murano, Release 2.0.0.0b3.dev156

}]
}

Get category details

/catalog/categories/<category_id> [GET]

Return detailed information for a provided category

Request

Method URI Description
GET /catalog/categories/<category_id> Get category detail

Parameters

• category_id - required, category ID, required

Response

Content-Type application/json

{
"id": "b308f7fa8a2f4a5eb419970c827f4466",
"updated": "2015-01-28T17:00:19",
"packages": [

{
"fully_qualified_name": "io.murano.apps.ZabbixServer",
"id": "4dfb566e69e6445fbd4aea5099fe95e9",
"name": "Zabbix Server"

}
],
"name": "Web",
"created": "2015-01-28T17:00:19",
"package_count": 1

}

Code Description
200 OK. Category deleted successfully
401 User is not authorized to access this session
404 Not found. Specified category doesn‘t exist

Add new category

/catalog/categories [POST]

Add new category to the Application Catalog

Parameters

Attribute Type Description
name string Environment name; only alphanumeric characters and ‘-‘

Request

Method URI Description
POST /catalog/categories Create new category

Content-Type application/json

Example {“name”: “category_name”}

150 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

Response

{
"id": "ce373a477f211e187a55404a662f968",
"name": "category_name",
"created": "2013-11-30T03:23:42Z",
"updated": "2013-11-30T03:23:44Z",
"package_count": 0

}

Code Description
200 OK. Category created successfully
401 User is not authorized to access this session
409 Conflict. Category with specified name already exist

Delete category

/catalog/categories [DELETE]

Request

Method URI Description
DELETE /catalog/categories/<category_id> Delete category with specified id

Parameters:

• category_id - required, category ID, required

Response

Code Description
200 OK. Category deleted successfully
401 User is not authorized to access this session
404 Not found. Specified category doesn‘t exist
403 Forbidden. Category with specified name is assigned to the package, presented in the catalog

4.10.13 Environment template API

Manage environment template definitions in murano. It is possible to create, update, delete, and deploy into OpenStack
by translating it into an environment. In addition, applications can be added to or deleted from the environment
template.

Environment Template Properties

Attribute Type Description
id string Unique ID
name string User-friendly name
created datetime Creation date and time in ISO format
updated datetime Modification date and time in ISO format
tenant_id string OpenStack tenant ID
version int Current version
networking string Network settings
description string The environment template specification

Common response codes

Code Description
200 Operation completed successfully
401 User is not authorized to perform the operation

4.10. Murano API v1 specification 151

Murano, Release 2.0.0.0b3.dev156

Methods for Environment Template API

List Environments Templates

Request

Method URI Description
GET /templates Get a list of existing environment templates

Parameters:

• is_public - boolean, indicates whether public environment templates are listed or not. True public environments
templates from all tenants are listed. False private environments templates from current tenant are listed empty
all tenant templates plus public templates from all tenants are listed

Response

This call returns a list of environment templates. Only the basic properties are returned.

{
"templates": [

{
"updated": "2014-05-14T13:02:54",
"networking": {},
"name": "test1",
"created": "2014-05-14T13:02:46",
"tenant_id": "726ed856965f43cc8e565bc991fa76c3",
"version": 0,
"is_public": false,
"id": "2fa5ab704749444bbeafe7991b412c33"

},
{

"updated": "2014-05-14T13:02:55",
"networking": {},
"name": "test2",
"created": "2014-05-14T13:02:51",
"tenant_id": "123452452345346345634563456345346",
"version": 0,
"is_public": true,
"id": "744e44812da84e858946f5d817de4f72"

}
]

}

Create environment template

Attribute Type Description
name string and ‘-‘ Environment template name; only alphanumeric characters

Request

Method URI Description
POST /templates Create a new environment template

Content-Type application/json

Example {“name”: “env_temp_name”}

Response

152 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

{
"id": "ce373a477f211e187a55404a662f968",
"name": "env_temp_name",
"created": "2013-11-30T03:23:42Z",
"updated": "2013-11-30T03:23:44Z",
"tenant_id": "0849006f7ce94961b3aab4e46d6f229a",

}

Code Description
200 Operation completed successfully
401 User is not authorized to perform the operation
409 The environment template already exists

Get environment templates details

Request

Return information about environment template itself and about applications, including to this environment template.

Method URI Description
GET /templates/{env-temp-id} Obtains the environment template information

• env-temp-id - environment template ID, required

Response

Content-Type application/json

{
"updated": "2015-01-26T09:12:51",
"networking":
{
},
"name": "template_name",
"created": "2015-01-26T09:12:51",
"tenant_id": "00000000000000000000000000000001",
"version": 0,
"id": "aa9033ca7ce245fca10e38e1c8c4bbf7",

}

Code Description
200 OK. Environment Template created successfully
401 User is not authorized to access this session
404 The environment template does not exist

Delete environment template

Request

Method URI Description
DELETE /templates/<env-temp-id> Delete the template id

Parameters:

• env-temp_id - environment template ID, required

4.10. Murano API v1 specification 153

Murano, Release 2.0.0.0b3.dev156

Code Description
200 OK. Environment Template created successfully
401 User is not authorized to access this session
404 The environment template does not exist

Adding application to environment template

Request

Method URI Description
POST /templates/{env-temp-id}/services Create a new application

Parameters:

• env-temp-id - The environment-template id, required

• payload - the service description

Content-Type application/json

Example

{
"instance": {

"assignFloatingIp": "true",
"keyname": "mykeyname",
"image": "cloud-fedora-v3",
"flavor": "m1.medium",
"?": {

"type": "io.murano.resources.LinuxMuranoInstance",
"id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"

}
},
"name": "orion",
"port": "8080",
"?": {

"type": "io.murano.apps.apache.Tomcat",
"id": "54cea43d-5970-4c73-b9ac-fea656f3c722"

}
}

Response

{
"instance":
{

"assignFloatingIp": "true",
"keyname": "mykeyname",
"image": "cloud-fedora-v3",
"flavor": "m1.medium",
"?":
{

"type": "io.murano.resources.LinuxMuranoInstance",
"id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"

}
},
"name": "orion",
"?":
{

"type": "io.murano.apps.apache.Tomcat",

154 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

"id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
},
"port": "8080"

}

Code Description
200 OK. Environment Template created successfully
401 User is not authorized to access this session
404 The environment template does not exist

Get applications information from an environment template

Request

Method URI | Description
GET /templates/{env-temp-id}/services | It obtains the service description

Parameters:

• env-temp-id - The environment template ID, required

Content-Type application/json

Response

[
{

"instance":
{

"assignFloatingIp": "true",
"keyname": "mykeyname",
"image": "cloud-fedora-v3",
"flavor": "m1.medium",
"?":
{

"type": "io.murano.resources.LinuxMuranoInstance",
"id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"

}
},
"name": "tomcat",
"?":
{

"type": "io.murano.apps.apache.Tomcat",
"id": "54cea43d-5970-4c73-b9ac-fea656f3c722"

},
"port": "8080"

},
{

"instance": "ef984a74-29a4-45c0-b1dc-2ab9f075732e",
"password": "XXX",
"name": "mysql",
"?":
{

"type": "io.murano.apps.database.MySQL",
"id": "54cea43d-5970-4c73-b9ac-fea656f3c722"

}
}

]

4.10. Murano API v1 specification 155

Murano, Release 2.0.0.0b3.dev156

Code Description
200 OK. Environment Template created successfully
401 User is not authorized to access this session
404 The environment template does not exist

Create an environment from an environment template

Request

Method URI | Description
POST /templates/{env-temp-id}/create-environment| Create an environment

Parameters:

• env-temp-id - The environment template ID, required

Payload:

• ‘environment name’: The environment name to be created.

Content-Type application/json

Example

{
"name": "environment_name"

}

Response

{
"environment_id": "aa90fadfafca10e38e1c8c4bbf7",
"name": "environment_name",
"created": "2015-01-26T09:12:51",
"tenant_id": "00000000000000000000000000000001",
"version": 0,
"session_id": "adf4dadfaa9033ca7ce245fca10e38e1c8c4bbf7",

}

Code Description
200 OK. Environment template created successfully
401 User is not authorized to access this session
404 The environment template does not exist
409 The environment already exists

POST /templates/{env-temp-id}/clone

Request

Method URI Description
POST /templates/{env-temp-id}/clone It clones a public template from one tenant to another

Parameters:

• env-temp-id - environment template ID, required

Example Payload

{
'name': 'cloned_env_template_name'

}

Content-Type application/json

156 Chapter 4. Miscellaneous

Murano, Release 2.0.0.0b3.dev156

Response

{
"updated": "2015-01-26T09:12:51",
"name": "cloned_env_template_name",
"created": "2015-01-26T09:12:51",
"tenant_id": "00000000000000000000000000000001",
"version": 0,
"is_public": False,
"id": "aa9033ca7ce245fca10e38e1c8c4bbf7",

}

Code Description
200 OK. Environment Template cloned successfully
401 User is not authorized to access this session
403 User has no access to these resources
404 The environment template does not exist
409 Conflict. The environment template name already exists

4.10. Murano API v1 specification 157

Murano, Release 2.0.0.0b3.dev156

158 Chapter 4. Miscellaneous

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

159

	Introduction to Murano
	Key features
	Target Users
	Architecture
	Use cases

	Using Murano
	Quickstart
	Managing environments
	Managing applications
	Log into murano-spawned instance
	Deploying environments using CLI

	Developing Applications
	Step-by-Step
	Execution plan template
	HOT packages
	MuranoPL Reference
	Murano actions
	Murano packages
	Migrating applications between releases
	Application unit tests
	Examples
	Use-cases
	FAQ

	Miscellaneous
	Murano Installation Guide
	Murano workflow
	Murano Policy Enforcement
	Building Murano Image
	Murano automated tests description
	Murano client
	Contributing to Murano
	Development Guidelines
	Murano TroubleShooting and Debug Tips
	Murano API v1 specification

	Indices and tables

